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Executive Summary

Carbon monoxide (CO) and methane (CH4) are among the major air pollutant and greenhouse gases
in the atmosphere. Accurate monitoring of the emissions of these gases plays an important role in
climate change mitigation. The TROPOspheric Monitoring Instrument (TROPOMI) was launched
in 2017 and measures, among other, CO and methane concentrations with a high spatial resolution
of 5.5 × 7.5 km2 and daily global coverage. For high accuracy CO and methane emission source lo-
calization and quantification using TROPOMI data, generally Chemical Transport Models (CTMs)
are used, which are very complex and require extensive resources in terms of time and computa-
tional load. To analyse emissions without the use of a CTM, a CTM-independent method has been
developed by Beirle et al. [1] for NOx. The main goal of this research is to test the CTM-independent
method by Beirle et al. [1] for CO and methane. Two separate functional models are developed for
the gases, where the CO model is fully optimized and tuned.
The method uses the divergence of the flux to estimate emissions. The divergence is independent
of changes in wind fields and can therefore be used for long term analyses of emissions, which
makes the method suitable for the separation of closely-space emissions sources, as well as the
quantification of a full grid of emissions. Using the divergence, sources are identified by an iterative
Gaussian peak-fitting algorithm.
The developed divergence method for CO uses background and altitude correction, as well as a
land mask filter to improve the performance of the method. Synthetic pseudo data from the WRF-
chem model is used to tune the divergence method. The sensitivity analyses using the pseudo data
resulted in an optimal method, which makes use of the ERA5 100 m (altitude) wind field with a filter
on low (< 1 m/s) and high (> 10 m/s) wind speeds at a model resolution of 0.03°. The divergence
model uncertainty is estimated as 20%, with a quantification limit of 50 Gg/a.
The optimised divergence model is used to test seven case studies using TROPOMI data, which
showed that the model is able to separate closely-spaced emission sources up to 13 km in distance.
The model successfully identified all known sources for the TROPOMI case studies. Furthermore,
the model identified multiple sources that were not previously known in bottom-up inventories and
previous studies. The TROPOMI case studies showed the potential of the divergence method to de-
tect and separate emission point sources, as well as quantify CO emissions from cities. The case
studies demonstrated the ability of the divergence model in detecting unknown emission sources,
showing the added value of the divergence method in regions where limited information on emis-
sion source locations and quantifications is available.

Key Points
• A CTM-independent divergence method is developed and optimised for carbon monoxide

which estimates emissions by divergence calculations.

• Gaussian peak-fitting is used to identify and separate closely-spaced emission sources.

• Synthetic pseudo data from the WRF-chem CTM is used to tune and optimize the model.

• Seven case studies are analysed using the optimised divergence model and TROPOMI data.

Keywords
TROPOMI, Carbon monoxide, Methane, Chemical transport model, Divergence, Peak-fitting,
Source localization, Emission quantification, Source separation, Pseudo data
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1
Introduction

This report describes the thesis research of the project “High Resolution Model-Independent Car-
bon Monoxide Emission Localization and Characterization Using TROPOMI”. The project is super-
vised by Dr. I. C. Dedoussi, assistant professor at Aircraft Noise and Climate Effects (ANCE) at Delft
University of Technology, faculty of Aerospace Engineering. It is conducted at SRON Netherlands
Institute for Space Research under supervision of Dr. Ir. J. D. Maasakkers (daily supervisor) and
Prof. Dr. I. Aben (overall supervisor).

1.1. Introduction to the Problem
From the 1800s on, humankind has made large technological advancements that still greatly in-
fluence present day society. These technological advancements have led to, besides many great
societal improvements, a rapid increase of greenhouse gas emissions, which cause global warming.
Some important atmospheric species for air quality and climate control are carbon monoxide (CO),
methane (CH4) and nitrogen dioxide (NO2) [2]. As the global mean temperature rises, it gets increas-
ingly important to accurately monitor and control the emission sources of greenhouse gases and
other pollutants [4]. For this reason, it is important that reliable measurements are available. One
way to accurately measure atmospheric concentrations is by using space-based remote-sensing
instruments. One of these instruments is the TROPOspheric Monitoring Instrument (TROPOMI).
TROPOMI was launched in 2017 and obtains daily atmospheric trace gas concentrations on a spa-
tial scale of 3.5 × 7 km2 for NO2 and 5.5 × 7 km2 for CO and methane. Furthermore, the instrument
is able to effectively detect large point sources [5].

SRON Netherlands Institute for Space Research is the co-principal investigator institute for the
TROPOMI instrument. TROPOMI is carried by the single-payload Sentinel-5P satellite. It carries out
measurements of atmospheric concentrations of the relevant species for research into air quality,
climate and the ozone layer. The high spatial resolution and daily global coverage make TROPOMI
an important instrument in climate change research [6]. The data that TROPOMI provides allows
for the detection of enhancements in concentrations that are linked to emissions, for example from
iron/steel plants for carbon monoxide and gas leaks for methane.

For high accuracy emission analysis and quantification, generally a Chemical Transport Model (CTM)
is used. These models simulate the atmosphere and generate concentrations of gases consistent
with a given distribution of emissions. CTMs are very complex and require extensive resources in
terms of time and computational load [7]. Therefore, methods have been developed that are CTM-
independent. One of these methods is developed by Beirle et al. [1]. This method uses mathemati-
cal methods to estimate emissions. The method approximates transport fluxes by using reanalysis
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wind fields in the continuity equation. Iterative peak-fitting is then used to distinguish and estimate
emissions from large point sources [1]. The main advantage of this method is the ability to identify
and separate closely-spaced point sources. The second advantage is the ability to estimate a full grid
of emissions. This method is developed for the short-lived pollutant nitrogen dioxide. However, no
such model exists yet for carbon monoxide and methane. Therefore, this research will investigate if
the model by Beirle et al. [1] can be adapted for carbon monoxide and methane. To construct the
models for CO and methane, the different characteristics of the gases need to be taken into consid-
eration.

The main goal of this research is to test the CTM-independent model by Beirle et al. [1] for carbon
monoxide and methane. This adaptation is not straightforward as both the observations (e.g. worse
TROPOMI coverage for both CO and methane) and characteristics of the gases (longer lifetime in
the atmosphere, different spatial and temporal patterns of emissions) differ greatly. The CO model
is developed and fully optimized, while the model for methane is developed, but the optimization
of the model is not within the scope of this research. To test the validity of the model, the outcome
of the mathematical model are compared with the emission estimates based on chemical transport
model simulations and emission inventories.

1.2. The Beirle Method
The Beirle method is a method named after Beirle et al. [1]. The method uses daily TROPOMI NO2

data and the temporal mean of the divergence of the flux to perform long-term emission analysis,
and is especially useful in localizing and quantifying emissions from point sources (i.e. industry).
In Figure 1.1, the emission profiles (E) from an urban source and a point source (industrial plant)
are shown. Urban emissions tend to consist of a large area with diffuse emission sources (cars,
households), while point sources have a more concentrated area of emissions.

Figure 1.1: Schematic illustration for the divergence of flux profiles. The figure shows emission profiles (E) for urban
and industry sources. The concentration profile (C) is slightly distorted due to the wind vector (w). The divergence (D)
preserves strong flux gradients around point sources [8].
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When observing the atmospheric concentration due to these emissions, the urban source shows a
spatially large enhancement, slightly distorted due to the wind field (w). The point source, however,
shows a plume-like enhancement down-wind of the source, parallel to the wind direction. The flux
of this concentration is defined as the flow of gas particles (g m s−1) over a horizontal area. The
divergence of the flux (D) is highly sensitive to point sources like power plants, where spatial gradi-
ents in the flux are particularly high [8]. The divergence of urban sources consists of a large positive
enhancement, followed by a large negative enhancement. The divergence of the point source sees
a strong enhancement, concentrated around the area of emission (E), followed by a negative diver-
gence along the plume. Since the divergence enhancements for point sources are spatially indepen-
dent of wind direction, a long term analysis can be carried out to localize and quantify these sources.

In Figure 1.2, an example of the model result is shown. In Figure A, the TROPOMI data for a sin-
gle day can be seen. Multiple NO2 gas plumes are observed that move with the wind (blue ar-
rows). When these concentration measurements are averaged over time (Figure B), the patterns are
smeared out due to changing wind conditions (direction and speed), and the benefit of TROPOMI’s
high spatial resolution is lost. Due to this smearing out, long-term localization and quantification
analyses using the TROPOMI concentration are infeasible. This smearing out can be prevented by
averaging the divergence of the horizontal fluxes, rather than the tropospheric columns. Analysing
the mean of the divergence of the flux enables the identification of point sources like Power Plants
(PPs) and Cement Plants (CPs), as shown in Figure C.

Figure 1.2: Tropospheric NO2 column over Riyadh as derived from TROPOMI. (A) Single overpass on 17 December 2017.
Arrows indicate wind vectors. (B) Temporal average for December 2017 to October 2018. (C) Emission map of TROPOMI
for December 2017 to October 2018. Clear individual sources can be seen [1].

To identify emission sources from the temporal mean of the divergence, an iterative Gaussian peak-
fitting algorithm is used. This algorithm consists of three steps. (1) For a given map of the temporal
mean obtained from the divergence calculation, the location with the maximum divergence value in
the domain is identified. (2) Around this location, a 2D Gaussian is fitted on the data. (3) The fitted
peak is subtracted from the divergence map, after which the residual is used for the next iteration.
This process is repeated until no more sources are identified. The Gaussian peak-fitting algorithm
can be used to separate closely-spaced emission sources and to quantify a full grid of emissions.
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1.3. Introduction to the Report
In chapter 2, the theoretical background to the problem is given. It describes the three trace gases
(NO2, CO and CH4). It covers the properties of the trace gases, and how these gases behave in the
atmosphere. Next, the sources and sinks are described for all gases. Different techniques for at-
mospheric trace gases measurements are described, after which the TROPOMI instrument is elabo-
rated in more detail. The theoretical background ends with an extensive description of the Sentinel-
5P mission and the TROPOMI instrument.

The methodology for the CTM-independent emission localization and quantification method is de-
scribed in chapter 4. The chapter starts with a description of the TROPOMI data product and the
necessary data preparation procedures to ensure the data is suitable for the divergence method. It
covers the various model corrections and filters used to improve the output of the model. The chap-
ters are concluded with a description of the pseudo data that is used to test the performance of the
model.

The results of the method are described in chapter 5. It starts with the results from the pseudo data.
It describes the various sensitivity analyses that are used to find the optimal parameters for the CO
model. After the model settings are optimised, six case studies are analysed using the optimised CO
model to test the performance for real-life cases. To test the functionality of the methane model,
one additional case study is described in this chapter. The report is finalised with the conclusions
(chapter 6) and recommendations (chapter 7).



2
Theoretical Background

This chapter describes the three trace gases that are considered in this thesis research. It starts
with an overview of Earth’s atmosphere, after which the trace gas properties are elaborated. The
sources and sinks are described after the first introduction to the gases. The chapter is focused
on the comparison between the gases, and how different characteristics lead to other approaches
in remote-sensing analysis. The TROPOMI instrument will be extensively described, after which
emission quantification methods for TROPOMI will be elaborated.

2.1. Gases in the Earth’s Atmosphere
The atmosphere of the Earth is a thin layer of air which is retained by Earth’s gravity. The main
components are nitrogen (N2, 78.08 %), oxygen (O2, 20.95 %) and argon (Ar, 0.934 %). Furthermore,
numerous trace gases are present in the atmosphere, which are gases that make up only small frac-
tions of the total volume. The distribution across the atmosphere is not homogeneous and varies
with height [2]. Usually, the concentration of gases is given in either parts-per-million (ppm) or
parts-per-billion (ppb).

The atmosphere is divided into five layers, known as (1) the troposphere, (2) the stratosphere, (3)
the mesosphere, (4) the thermosphere and (5) the exosphere. The first four layers are schematically
shown in Figure 2.1. As can be seen in the figure, the pressure decreases almost linearly throughout
these layers in the vertical direction. The transitional boundaries of the layers are defined by the
reversing heat gradient throughout the atmosphere.
First, the troposphere is defined as the layer of air between the surface of the Earth up to 12-16 kilo-
meters in height. The air in the troposphere is heated from the surface and therefore has a negative
temperature gradient of -6 K km−1. About 80 percent of the total atmospheric mass is present in
the troposphere. Most human activity takes place in the troposphere, which results in most anthro-
pogenic emissions being released into this layer. The second layer of air, when looking from the
surface of the Earth, is the stratosphere, which stretches from approximately 12 kilometers to 50
kilometers in height. This layer of air has the absorption of solar radiation between 200 - 300 nm
by atmospheric ozone as main source of heat. Therefore, the heat gradient is reversed with respect
to the troposphere. In this layer, most of the Earth’s ozone is present, which is commonly referred
to as the ozone layer. Next, the mesosphere is reached. In this region, the temperature gradient is
once again reversed due to cooling by radiative emissions from CO2. The limit of this layer is 85
km. The stratosphere and mesosphere together are often referred to as the middle atmosphere. The
fourth layer is defined as the thermosphere. This layer starts at the mesopause and, at a height of
600 km, reaches the exosphere. The thermosphere has a positive temperature gradient due to the

5
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absorption of high-energy Ultra-Violet (UV)-radiation. Lastly, the exosphere is the final layer of air.
This region has no clear upper boundary, but gradually fades into space [9, 10].

Figure 2.1: The layers of the Earth’s atmosphere, classified by their vertical temperature gradient [9].

The five layers of air that together are defined as the atmosphere, are made up of different gases.
Many of the trace gases that are present in the atmosphere play an important role in the regulation of
the conditions on Earth, one of which is global temperature. The temperature on Earth is influenced
greatly by Greenhouse Gases (GHGs). These gases, principally water vapour (H2O), carbon dioxide
(CO2), methane (CH4) and ozone (O3), are naturally present in the atmosphere. These gases trap
thermal infrared radiation emitted by the Earth’s surface. Without these GHGs, the average surface
of the Earth would be around 30 degrees Kelvin cooler [11]. This research will further investigate the
emissions of NO2, CO and methane in the atmosphere.

2.1.1. Nitrogen Dioxide
Nitrogen dioxide (NO2) is one of seven oxides of nitrogen and is mostly generated through combus-
tion, effectively the use of energy. It has a molecular weight of 46.01 g/mol, a melting point of 261.95
Kelvin and a boiling point of 294.3 Kelvin [12]. As previously discussed, the temperature of air in
the atmosphere is often below the melting point of NO2. However, due to the low partial pressure
of NO2 in the atmosphere (908 mmHg at 298.15 Kelvin), condensation does not occur. The lack of
condensation makes that NO2 can exist in the atmosphere in the gaseous form [13]. Nitrogen diox-
ide is formed by the rapid reaction between NO and O3 (Equation 2.1) , which in turn photolyzes
back to NO (Equation 2.2) [14]. In this equation, hv refers to the light photon which is absorbed by
the molecule. Since these reactions are catalysed by the energy from sunlight, the NO2/NO ratio is
highly influenced by weather [15].

NO+O3 → NO2 +O2 (2.1)
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NO2 +hv → NO+O (2.2)

The O-atom from Equation 2.2 then reacts with oxygen to produce ozone. NO2 is not a direct green-
house gas, but acts as a precursor for the greenhouse gas ozone. This cycle of NO and NO2 reactions
takes about one minute during daytime. Since it has no net effect on ozone, it is referred to as a null
cycle.

Nitrogen dioxide is also produced by the oxidation of nitric oxide by oxygen. This mainly takes place
at high temperatures during the combustion process. As the temperature of the combustion pro-
cess increases, the percentage of emitted nitrogen dioxide is decreased. Actually, for normal com-
bustion, only 5 to 10 percent of the nitrogen oxides are emitted as nitrogen dioxide. The remaining
90 to 95 percent is emitted as nitric oxide. This does, however, strongly vary with source type [16].
Nitrogen dioxide has an absorption spectrum that lies in the UV and visible spectrum, between ap-
proximately 350 and 600 nm [6]. Due to the fast cycle of NO and NO2 which takes only a minute
during daytime, both gases will be referred to as NOx from this point forward.

The main sink of NOx is the oxidation to HNO3 in the daytime, according to Equation 2.3, where M
denotes a non-reacting molecule (chaperone) that absorbs a portion of the energy to ensure a stable
reaction product [2]. At night, NO2 is oxidized by O3, which forms N2O5 by conversion of the NO3

radical. This formation can only take place at night, since during the daytime NO3 is photolyzed
back to NO2 within a few seconds. The products of the oxidation of NOx, which are HNO3 and
N2O5, are eventually converted back to NOx and are serving as reservoirs. However, stratospheric
N2O5 can also be converted to HNO3 in the presence of aqueous aerosols [17]. The combination of
NOx and its reservoirs is referred to as NOy. The main importance of nitrogen oxides (NOx) is the
role it has in the regulation of the Earth’s ozone distribution [14].

NO2 +OH+M → HNO3 +M (2.3)

The global mean concentration of NOx in the troposphere is estimated as 1.7 ppb [18]. This value
is also called the mixing ratio or mole fraction, which is the number of moles for a specific gas per
mole of air [2]. It is given in mol/mol or as unit of volume v/v. Mixing ratios of trace gases are usu-
ally given in ppm or ppb. However, the local mean mixing ratio of NOx varies greatly per region.
For instance, urban NOx concentrations are observed to be much higher than the global average.
The urban NOx concentration in Europe saw a peak in the early 1990s of 30 ppb, but has decreased
from 28 ppb in the late 1990s to 11 ppb present day. For roadside areas, it is observed to have de-
creased from 32 ppb to 18 ppb for the same time period. For rural background, the decrease has
been smaller, with values of around 10 ppb in the late 1990s to 4 ppb present day [19]. This decrease
in NOx can be explained due to stricter emission standards for new road vehicles. Also, the power
generation relies less on the usage of coal, especially in first-world countries. In recent years, diesel
engines have become less popular [20]. Since diesel-fuelled cars emit more NOx, this could explain
the decrease of NOx emission in roadside areas. The reduction in rural background concentrations
could be explained due to the overall decrease in NOx emissions across Europe.

There exists a daily variation of weekday mean concentration of NOx in the troposphere, as observed
in the UK in 2019 and shown in Figure 2.2. This can be explained by the lower number of vehicle
hours in the weekends. The mean concentration of NO2 is observed to be up to 22% lower in the
weekends in the UK. Hourly variations for roadside areas tends to be related to rush hour. Peaks can
be observed around 9 AM and 6 PM, with a daily minimum around 3 AM. These hourly means are
similar for urban areas, but with a peak at 9 PM compared to the 6PM for roadside. The rural areas
tend to have a smaller hourly variation, and barely noticeable minima and maxima [19].
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Figure 2.2: Daily NO2 concentrations as observed by UK ground stations for roadside, urban and rural areas. 1 ppb ≈ 0.53
µg m−3 [19].

2.1.2. Carbon Monoxide
Carbon monoxide (CO) is a toxic, colorless and odorless gas. It is an important atmospheric con-
stituent when considering air quality [21]. The production of CO is related to the partial oxidation
of carbon-containing compounds. This occurs when there is not enough oxygen in the combustion
process to produce carbon dioxide (CO2), or is achieved due to low mixing of air and fuel [22]. The
reaction is shown in Equation 2.4.

2 C+O2 → 2 CO (2.4)

CO is not poisonous, but it does have a negative temporary effect on the human respiratory system.
CO can attach itself to hemoglobin in the human red blood cells, which in turn prevents the uptake
of oxygen [23]. CO has a molecular mass of 28.0 g/mol, which makes it slightly lighter than air (=28.8
g/mol). It has a melting point of 68 Kelvin and a boiling point of 82 Kelvin. This results in CO be-
ing present in the atmosphere in the gaseous phase. CO itself is not a strong greenhouse gas, but
it does influence radiative forcing indirectly by affecting concentrations of greenhouse gases, such
as methane and ozone. Therefore, it does not cause climate change directly, but greatly influences
it [24]. Carbon monoxide reacts with the hydroxyl radical (OH) which triggers a chain of chemical
reactions, ultimately producing carbon dioxide, NOx and the hydroxyl radical. Also, since OH is the
most important sink of methane, CO has an indirect influence on the concentration of methane.
Furthermore, CO is the largest principal sink of tropospheric OH, with up to 40 percent of the OH
radials reacting with carbon monoxide in today’s troposphere [25, 21]. The hydroxyl radical is in turn
important since it removes most climate-damaging trace gases by oxidation. This is referred to as
the oxidation capacity of the atmosphere and without this process, climate and atmospheric com-
position would be very different from what it is today [26]. The chain of reactions that is initialized
by CO and ultimately leads to the formation of ozone is shown in Equation 2.5.

CO+2 O2 +hv → CO2 +O3 (2.5)
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Carbon monoxide has an absorption spectrum that lies in the infrared, with two peaks at approx-
imately 1.6 µm and 2.3 µm in the Short-Wave InfraRed (SWIR) and 4.6 µm in the Medium-Wave
InfraRed (MWIR) [27].

The concentration of carbon monoxide in the atmosphere is generally around 100 ppb. Higher lev-
els are observed in urban areas, compared to rural areas [28]. General background concentrations
of carbon monoxide on a global scale are found to be between 50 and 120 ppb. The concentration of
CO in urban regions, however, depends highly on weather conditions and topography, as well as the
density of combustion-powered vehicles and the distance from the traffic [23]. The concentration
of CO has increased gradually from around 90 ppb in the 1850s to 110 ppb in the 1950s. From the
early 1600s up to the 1850, CO levels were at a reasonably constant 90 ppb [25]. From the beginning
of 2000, CO levels in the troposphere have decreased from 125 ppb in 2000 to 105 in 2014, as shown
in Figure 2.3. This change in the global CO concentration can be explained by technological inno-
vation. Vehicles and industries are, due to technological advancements, polluting less compared to
previous times. The peak around 2003 can be explained by large scale forest fires in Russia. The
dip after 2008 can be explained by the global financial crisis, which decreased global manufacturing
activity [24].

Figure 2.3: Global mean carbon monoxide levels at an altitude of 3,700 meters, as measured by the MOPITT instrument
[24].

2.1.3. Methane
Methane (CH4) is a colorless and odorless gas and is the most abundant organic trace gas in the at-
mosphere. Methane is third in line as most abundant greenhouse gas in the troposphere, following
water vapour and carbon dioxide (CO2) [29]. It has a molar mass of 16.043 g mol−1, a melting point
of 90.7 Kelvin and a boiling point of 111.6 Kelvin, which makes that it is present in the atmosphere
in the gaseous form. Most methane that is present on Earth is produced by microbes which are
present in landfills and other soils, cattle, insects like termites, sediments and rice fields [30]. The
reaction which produces methane by microbes is shown in Equation 2.6.

CO2 +4 H2 → CH4 +2 H2O (2.6)

Methane can also be produced geologically due to the break-up of organic matter at high pressure
and temperature. The reaction in Equation 2.6 is also seen in industrial processes. However, there
is little need for the production of methane for industrial purposes. Methane is slowly oxidized by
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photo-chemical reactions in the atmosphere which ultimately produces ozone and carbon diox-
ide. Methane can also be oxidized by the hydroxyl radical to produce, among other gases, CO and
ozone, if there is sufficient NOx present [29]. Methane, just as CO, controls the amount of OH in the
troposphere.

The relative influence of different trace gases on global warming is defined as the Global Warm-
ing Potential (GWP). This is defined as the heat that is absorbed by a GHG, relative to the heat that
would be absorbed by the same emitted mass of carbon dioxide over a certain time period. There-
fore, the GWP of CO2 is set to one [31]. The GWP also includes indirect effects on global warm-
ing. For instance, methane has a direct influence on global warming, but also acts as a precursor
for atmospheric ozone. Gases with a higher GWP have a higher impact on global warming com-
pared to CO2 over the same time period [32]. These GWPs are defined for the short-term of 20 years
(GWP20) and the long-term of 100 years (GWP100). Methane has a GWP20 of 82.5 and a GWP100 of
29.8 [33]. The short-term GWP for methane is much larger than the GWP of carbon dioxide for the
same time-span. Carbon dioxide has a very long lifetime in the atmosphere (up to 1000 years [34]),
which results in CO2 emissions causing increased CO2 concentrations for over a thousand years.
The lifetime of carbon dioxide is not straightforward, since CO2 is not destroyed over time, but in-
stead moves through different parts of the ocean-atmosphere-land system. To simplify this value,
often a lifetime of 100 years is chosen. The lifetime of methane, for instance, is much shorter, as
will be elaborated in subsection 2.1.5. However, a molecule of methane can absorb substantially
more energy than a molecule of carbon dioxide, which makes that methane has a higher GWP than
carbon dioxide [32]. This results in methane being an excellent target for climate change mitigation
research.

The mean global methane concentration in the atmosphere has increased by 0.5-0.8% annually
since the industrial revolution [35]. In the 1750s, the global mean methane concentration was esti-
mated to be around 722 ppb. This rose to 1890 ppb in 2021. The global monthly mean tends to vary
slightly, as can be seen in Figure 2.4.

Figure 2.4: Globally averaged, monthly mean atmospheric methane abundance determined from marine surface sites, as
published by the Global Monitoring Division of NOAA’s Earth System Laboratory [36].
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These monthly variations are due to the seasonality of the OH sinks and sources, like wetlands,
rice fields and the burning of biomass. Maximum monthly concentrations are observed around
September and October with a minimum in the summer months [37]. This is due to the maximum
concentration of OH being in the summer. Furthermore, this figure also shows the rapid increase of
mean methane levels in the Earth’s atmosphere in the last four years. Since emissions, and therefore
concentrations, of methane are rapidly increasing, methane is the second most important human-
induced greenhouse gas, with carbon dioxide being the first [38]. Methane is responsible for more
than 18 percent of the heat that is generated from greenhouse gas concentrations in 2019 [37].

2.1.4. Mixing Ratio
In the previous sections, the mixing ratios for NOx, CO and methane are given. To more easily com-
pare the values, the mixing ratios of the trace gases are shown in Table 2.1 [18]. The values given in
the table are global mean values. The mixing ratios of trace gases differ highly per location. For in-
stance, the local mixing ratio for NOx of the Asia-Pacific region is 4.7 ppb, while in the more remote
regions like Oceania it is observed to be < 0.1 ppb [18]. For carbon monoxide, the global mean con-
centration varies between 50 - 120 ppb [23]. For methane, the mixing ratio is seasonably varying,
but the global mean is observed to be around 1890 ppb. However, it is rapidly increasing [36]. The
global mean concentration of trace gases is highly dependent on the lifetime of the specific trace
gas. The longer the lifetime, the more it mixes in the atmosphere. Gases with short lifetimes are not
transported over large distances and are not well-mixed and therefore have a lower mixing ratio.

Table 2.1: Global means for selected trace gases.

Mixing ratio Mixing ratio
(mol/mol) (ppb)

Nitrogen oxides (NOx) 1.7 × 10−9 1.7
Carbon monoxide (CO) 1 × 10−7 100
Methane (CH4) 1.89 × 10−6 1890

2.1.5. Lifetime
The influence of greenhouse gases on climate change is largely determined by their lifetime in the
atmosphere. The lifetime of a trace gas is calculated by using the global burden (B) and the global
integrated loss (L). The global burden is the number of molecules of a trace gas (n) integrated over
the volume (V ) of the atmosphere [39]:

B =
∫

n ·dV (2.7)

The global integrated loss (LG I L) is the local sinks (l ) in molecules per unit volume per unit time,
integrated over the volume. The local sink factor (l ), if constant, can also be written as l = αn,
where α is the local loss frequency. If a trace gas has no local sinks, then α= 0. The equation for the
global integrated loss can now be written as:

LG I L =
∫

l ·dV =
∫
αn ·dV (2.8)

The equation for the global lifetime (τg ) can now be written as:

τg = B

LG I L
(2.9)

As can be seen from Equation 2.9, the lifetime of a trace gas is not only dependent on the distribu-
tion and magnitude of the loss frequency, but also on the spatial distribution. These factors again



12 2. Theoretical Background

depend on atmospheric transport, loss rates and location of the emissions. As these factors change
over time, the lifetime in turn also changes. This makes that there is no unique lifetime for specific
trace gases [39].

The lifetime of NOx relates non-linearly to its own concentration [40]. This is mainly due to NOx

being a precursor its own sinks. In summer months, it decreases to 3 hours, while in the winter
months it can get up to 13 hours [41]. Kenagy et al. [42] found the lifetime of NOx in the winter during
the day to be up to 29 hours, as opposed to a lifetime of 6.3 hours during the night. This is mainly due
to lower mean temperatures in wintertime [42]. However, recent studies define the mean lifetime of
NOx as 4 hours [43]. The short lifetime of NOx makes that the determining of NOx emissions from
observed NOx columns is relatively straightforward [44]. Carbon monoxide has a lifetime of about
1 - 3 months [45]. This time period is long enough for CO to be transported over long distances by
winds, but not long enough for the gas to be mixed evenly throughout the atmosphere [24]. Methane
has a lifetime in the atmosphere of 9.1 [8.2 - 10.0] years [46]. This duration is sufficient for methane
to be transported over long distances and be reasonably well-mixed throughout the atmosphere. A
total overview of the lifetimes for NOx, CO and CH4 can be found in Table 2.2.

Table 2.2: The different lifetimes for selected trace gases.

Lifetime
Nitrogen oxides (NOx) 3 - 29 hours
Carbon monoxide (CO) 1 - 3 months
Methane (CH4) 8.2 - 10 years

2.2. Sources and Sinks
In the previous section, sources and sinks of NOx, CO and methane are elaborated. This section
aims to quantify those sources and sinks. It is well known that CO and NOx have significant an-
thropogenic and natural sources. Their budgets are taken from, respectively, Stavrakou et al. [47]
and Holloway, Levy, and Kasibhatla [48]. The source and sink budgets of methane are taken from
Saunois et al. [49].

2.2.1. Nitrogen Dioxide
NOx emissions are dominated by anthropogenic sources. These source types make up around 65%
of total global NOx emissions [50]. The main anthropogenic source is fossil fuel combustion. About
50% of the fossil fuel emissions are due to stationary sources like power plants, cement plants and
industrial boilers. The other half is found to be from motor vehicles [51]. Natural sources of atmo-
spheric gases are all source types that are not directly caused by humans. For NOx, natural sources
make up about 35% of total NOx emissions globally. The main natural source is emission from mi-
crobial processes in soils, which makes up around 17% of the total NOx emissions globally [50].
However, soils can also be identified as an (partly) anthropogenic source due to fertilizer applica-
tions. Fires are estimated to contribute around 9% to global NOx emissions. Furthermore, lightning
emissions contributes an average of 6% to global yearly NOx emissions [52]. The remainder of NOx

emissions comes from oxidation of ammonia and volcanic activity [51]. However, the uncertainties
are significant for natural sources [47]. In Table 2.3, the major NOx sources in Teragram (Tg = 1012

g) are shown.
The main sink of NOx is the reaction with the hydroxyl radical to produce nitric acid (HNO3). This
is a daytime reaction and takes place 5-10 times faster in summertime than in the wintertime [51].
The global budget that is the result of this reaction is difficult to define, since it is hard to measure
the rate constant for the thermolecular association reaction [47]. Hydrolysis of N2O5 at the surface
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Table 2.3: Global annual NOx emissions [47].

Sources Global emissions
[Tg a−1]

Anthropogenic 28.7
Fires 5.2
Soil 14.7
Lightning 4.6
Total source 53.2

of aerosols is an important NOx loss process during nighttime. Its impact is largest in high-polluted
areas in wintertime, since nights are longer compared to summertime. Other sinks of NOx include
dry deposition to vegetation and soils, which is a direct sink of NOx. An indirect sink is found in
the wet and dry deposition of organic nitrates. In Table 2.4 an overview of the sinks is given. From
a comparison with the sources overview, it can be seen that there is a global annual NOx emission
surplus of 0.5 Tg.

Table 2.4: Global annual sinks for NOx [47].

Sinks Global sinks
[Tg a−1]

NOx + OH 30.1
Aerosols 9.7
Other 12.9
Total sink 52.7

2.2.2. Carbon Monoxide
For CO, the emissions are found to be 60% anthropogenic and 40% natural. Anthropogenic emis-
sions are mainly the result of incomplete combustion of carbonaceous materials. Global annual CO
emissions in 2000 were found to be 2491 ± 361 Tg. As the global CO concentration since 2000 has
slightly decreased, it can be assumed that this is the results of decreased CO emissions. Therefore,
the values described in this section need to be scaled to this decrease. The main anthropogenic
source of CO emissions is biomass burning, which contributes 748 Tg/a (498 Tg/a CO in the North-
ern Hemisphere, 250 Tg/a CO in the Southern Hemisphere). This includes burning of savanna,
forests, agricultural residue, fuelwood, and animal waste. It does have to be said, however, that not
all forest fires are anthropogenic, and should be classified as natural sources. The second largest
anthropogenic source is fossil fuel combustion with a total of 300 Tg/a. From this emission value,
282 Tg is emitted in the Northern hemisphere and 18 Tg in the Southern hemisphere [48].

The chemical/natural sources of CO are dominated by two oxidation types: biogenic HydroCarbon
(HC) oxidation and methane oxidation. The oxidation of HCs results in 683 Tg/a globally. As op-
posed to anthropogenic sources, there is a minimal difference in emissions for the Northern and
Southern hemisphere. Lastly, the reaction of methane with the hydroxyl radical yields CO as a prod-
uct. The production of CO is therefore highly dependent on the distribution of CH4 and OH. As
methane concentrations are slightly higher in the Northern hemisphere as opposed to the Southern
hemisphere, there is a minimal surplus of CO produced in the Northern hemisphere. The global
value results in 760 Tg annually [48]. An overview of the values can be found in Table 2.5. Other
minor CO sources are vegetation and oceans.
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Table 2.5: Global annual CO sources [48].

Sources Global emissions
[Tg a−1]

Fossil fuel 300
Biomass burning 748
Biogenic HC oxidation 683
Methane oxidation 760
Total source 2491

CO is mainly removed from the atmosphere by tropospheric oxidation with the hydroxyl radical to
form carbon dioxide. As can be seen in Table 2.6, there is a significant uncertainty in the sink budget
from OH oxidation [48]. Other sinks of CO include chemical reactions in the stratosphere and soil
uptake. When the sinks of CO are compared to the source, it can be seen that it is not quite clear
whether there is an CO emission surplus or not. When the global mean is taken (CO sinks: 2491
Tg/a), it is clear that the global CO concentration is decreasing.

Table 2.6: Global annual sinks for carbon monoxide [48].

Sinks Global sinks
[Tg a−1]

Oxidation by OH 1400 - 2600
Stratosphere 100
Soil uptake 250 - 640
Total sink 2100 - 3000

2.2.3. Methane
As opposed to NOx and carbon monoxide, the global concentration of methane has continued to in-
crease in the last years [36]. Methane emissions can be grouped into three categories: biogenic, ther-
mogenic and pyrogenic. Biogenic sources contain methane-producing microbes (methanogens).
Examples of biogenic methane sources are wetlands, rice paddies, agriculture and waste. Ther-
mogenic methane is formed over millions of years through geological processes, from which the
emissions mainly consist of exploitation of coal, oil and natural gas. Lastly, pyrogenic methane is
produced by the incomplete combustion of biomass and soil carbon, mainly during biomass burn-
ing and combustion of fossil fuels [53].

The methane budgets that are shown in this chapter are all taken from research by Saunois et al.
[49]. The main anthropogenic source of methane is agriculture and waste. This includes cattle, rice
cultivation and landfills. This source has an estimated total emission value of 227 [205-246] Tg/a
in 2017. When looking at current emissions, this value needs to be scaled up. The scaling factor
will not be identical for every emission source, but differs per source type. The second largest an-
thropogenic source is fossil fuel exploitation, averaging around 108 [91-121] Tg/a. This includes
coal plants and gas transport pipelines, as well as compressor stations. This is followed by biomass
burning, averaging around 28 [25-32] Tg/a.

For natural methane sources, wetlands are found to be the largest at 194 [155-217] Tg/a. Further-
more, there are many minor sources that contribute to global methane emissions. Among others,
these include fresh water lakes, wildfires, wild animals, oceans and permafrost. Combined, they
result in 39 [21-50] Tg emitted annually [49]. An overview of emissions is given in Table 2.7.
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Table 2.7: Bottom-up global annual sources for methane [49].

Source Global emissions
[Tg a−1]

Agriculture and waste 227 [205-246]
Fossil fuels 108 [91-121]
Biomass burning 28 [25-32]
Natural wetlands 194 [155-217]
Other natural sources 39 [21-50]
Total natural sources 232 [194-267]
Total anthropogenic sources 364 [340-381]
Total methane sources 596 [572-614]

The methane sinks are dominated by oxidation with the hydroxyl radical. This oxidation occurs
mainly in the troposphere and accounts for about 80% of the global methane sink. Other large
sinks are, among others, oxidation by bacteria in aerated soils (4%), oxidation by chlorine radicals
and oxygen in the stratosphere (3%) and reactions with chlorine radicals from sea salt (3%). Fur-
thermore, the soil sink makes up 6% of the total methane sinks [53]. An overview can be found in
Table 2.8. From the source and sinks, it can be seen that there is a global annual methane imbal-
ance of 25 Tg in 2017, with a large uncertainty. This surplus has resulted in the increase of the global
mean concentration of methane over the last years.

Table 2.8: Global annual sinks for methane [49].

Sink Global sink
[Tg a−1]

Soil uptake 40 [37-47]
Total chemical loss 531 [502-540]
Total sink 571 [540-585]

This thesis research focuses on anthropogenic emission sources of carbon monoxide and methane.
For carbon monoxide, the main sources are coal-, gas- and oil-fired power plants and other indus-
trial processes, which include chemical production, petroleum refining and metals production. For
methane, the main anthropogenic industrial processes can be traced back to fossil fuel exploitation
such as coal mines and operational oil and gas facilities. Furthermore, landfills are a major factor
amongst anthropogenic methane sources.

2.3. Measuring Atmospheric Trace Gases
There are different methods to measure atmospheric trace gas concentrations, ranging from static
in-situ instruments to remote-sensing techniques with aircraft of satellites. Since the divergence
method uses large grids of trace gas concentration data, this research is focused on remote-sensing
techniques. This section will describe the TROPOMI instrument, which makes use of absorption
spectroscopy.

2.3.1. Physical Measurement Principles
The absorption bands of CO and methane are used to detect the concentration of the trace gases
in the atmosphere. This is done using absorption spectroscopy, which is widely used in remote
sensing. TROPOMI uses backscattered solar radiation for the detection of trace gases, as shown in
Figure 2.5 (a). Photons from the sun pass through an atmospheric column, reflect on the Earth’s
surface, and are detected by the remote-sensing instrument. Each trace gas in the atmospheric col-
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umn absorbs energy from the photons at specific wavelengths. The photons that are detected by the
instrument can be analysed for dips in the spectrum, after which an estimation can be made of the
presence of specific trace gases in the measured atmospheric column. It is important for remote-
sensing instruments to pass over a specific location at the same local solar time, since consistency in
viewing geometry conditions and illumination must be ensured. This way, measurements at differ-
ent days are inter-comparable. To achieve this, the instrument must be carried by a satellite which
is in polar sun-synchronous Low Earth Orbit (LEO) [5].

The trace gas concentrations retrieved by remote-sensing instruments are generally expressed as
the total column dry air atmospheric mixing ratio. The dry-air mole fraction of CO is defined as
the total number of CO molecules in a vertical column above a unit surface divided by the cor-
responding total number of molecules of dry air in that column. This is done to ensure that the
measurement is mostly insensitive to varying surface altitude and pressure differences. However,
due to a changing relative contribution of the stratosphere, the total column dry air atmospheric
mixing ratio has a dependency on surface elevation, and therefore is not fully insensitive to surface
altitude. This will be further elaborated in chapter 4. This insensitivity is shown in Figure 2.5 (b).
The CO concentration is dependent on the atmospheric pressure, but the dry-air mole fraction is
taken relative to the O2 concentration. This levels out changes in the XCO measurement due to a
varying atmospheric pressure [3].

(a) A visualization of the total
column mixing ratio principle.

(b) The insensitivity of the dry-air mole fraction measurement. All
enhancements in the XCO measurement can be related to CO emissions.

Figure 2.5: Principles used in remote-sensing measurements [3].

One last vital detail to note is that remote-sensing instruments do not measure emissions, but con-
centrations. Since the instrument’s measurements always include the tropospheric background,
emissions cannot be easily isolated. This makes that methane emission detection is more diffi-
cult than CO emission detection due to the higher background values of methane compared to CO,
which in turn is more difficult than NOx emission detection.

2.4. TROPOMI
The Sentinel-5 Precursor (Sentinel-5P) satellite is part of the Global Monitoring of the Environment
(GMES) project by the European Community (EC). It is a Dutch initiative and is realized in coopera-
tion with the European Space Agency (ESA). The GMES iniative is established to help Europe reach
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its goals regarding global governance of the environment and sustainable development. This is done
by providing high quality data, information and knowledge in a timely fashion [6]. The Sentinel-5P
mission is a single-payload satellite that orbits the Earth in LEO at approximately 824 km. It has a
sun-synchronous orbit with a mean overpass time of 13:30 h and a period of 101 minutes. A sun-
synchronous orbit means that the overpass on any point on the surface of the Earth is at the same
local solar time, which is necessary to maintain consistent lighting and sun angle. Sentinel-5P was
launched in October 2017 and has TROPOMI as payload. TROPOMI provides information on con-
centrations of trace gases and aerosols with daily global coverage, which means the satellite has
the possibility to monitor the entire surface of the Earth every day. It has a swath of 2600 km, so
14 orbits are needed to obtain daily global coverage. The measured trace gases include ozone (O3),
carbon monoxide (CO), methane (CH4), nitrogen dioxide (NO2), sulfur dioxide (SO2), formaldehyde
(CH2O), aerosols and cloud properties. These trace gases are important for research into air quality,
the ozone layer and climate forcing. As the name suggests, the Sentinel-5P mission connects the
previous Ozone Monitoring Instrument (OMI) and Scanning Imaging Absorption spectroMeter for
Atmospheric CartograpHY (SCIAMACHY) missions with the future Sentinel-5 missions. Sentinel-
5P works in close cooperation with the NASA-NOAA’s Suomi National Polar-orbiting Partnership
(Suomi NPP) satellite, which includes the use of Visible/Infrared Imager and Radiometer Suite (VI-
IRS) for high resolution cloud information. Sentinel-5P flies within 5 minutes of Suomi NPP, trailing
behind it. Suomi NPP provides cloud mask data with a higher spatial resolution than Sentinel-5P [6].

TROPOMI measures trace gas concentrations by analysing reflected sunlight from the Earths atmo-
sphere in four spectral bands: UV, visible, Near-InfraRed (NIR) and SWIR. The measurement prin-
ciple is depicted in Figure 2.6. TROPOMI measures a strip on the Earth by using a two-dimensional
detector. This is done for a period of 1 second, in which the satellite moves about 7 km. This is why
the spatial resolution in the latitudinal direction is 7 km. After August 2019 this resolution was in-
creased to 5.5 km, which is achieved by carrying out a measurement every ∼0.8 seconds. The width
of the strip, or the swath, is 2600 km. Each second, a new measurement is started. Therefore, the
instrument scans the Earth as it moves [6].

Figure 2.6: The TROPOMI measurement principle, which shows the resolution of 7 km and the swath of 2600 km. All
ground pixels are measured at the same time [6].

2.4.1. TROPOMI Trace Gas Concentration Retrievals
The TROPOMI data products that will be addressed in this thesis research are shown in Table 2.9.
In this table, product accuracy is defined as the mean deviation between the actual value and the
measured value. The product precision is defined as the variation due to randomness, such as
noise. These values are estimates and are based on retrieval simulations, as well as on findings
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from previous OMI and SCIAMACHY missions. The accuracy of the methane product depends
heavily on the cloud clearing. This procedure decreases the accuracy of the product, since it has
to balance false cloud detection in clear scenes with cloud contamination. To minimise this er-
ror, TROPOMI uses a cloud mask from the VIIRS data that is provided by the Suomi NPP satellite,
instead of using its own UVNS data [6]. In the following section(s), the TROPOMI data products
will be elaborated in more detail. Additional data product information can be found on the web-
site of the TROPOMI Mission Performance Centre: http://www.tropomi.eu/data-products/
mission-performance-centre.

Table 2.9: TROPOMI data products for individual observations [6].

Product Accuracy Precision Remarks
NO2

Tropospheric column
Total column

10%
1 ·1015 mol/cm2

1 ·1015 mol/cm2

1 ·1015 mol/cm2
Cloud-free, polluted conditions
Background concentration

CO
Total column

15% 10%

CH4

Methane
2% 0.6% Cloud free

Nitrogen Dioxide
The spatial and temporal distributions of nitrogen dioxide vary strongly due to the short lifetime.
The high spatial resolution of TROPOMI is therefore very important. Variations in the NO2 concen-
tration can be detected more easily and emission sources can be better quantified. Since most of
the NO2 in the troposphere is present in the boundary layer, small clouds and sub-pixel cloud vari-
ability are a major source of error on spatial scales at or below TROPOMI’s spatial resolution [54].
Therefore, the NO2 data is reliable up to a specific cloud fraction [6].

Carbon Monoxide
For cloud-free and low aerosol concentration scenarios, TROPOMI SWIR measurements are experi-
encing little atmospheric scattering. With scattering, there is no energy transformation, but the spa-
tial distribution of the photon’s energy changes. The low scattering results in most of the measured
photons being reflected at the Earth’s surface. This light path causes the measurements being influ-
enced by CO in the tropospheric column. Largest CO concentrations are measured close to emission
sources in the lower troposphere. Because of the sensitivity for variations in CO concentration in the
lower troposphere, TROPOMI SWIR measurements can be applied to relate satellite measurements
to emission sources. There is one downside to limiting the CO observations to cloud-free scenarios
only. This would limit the number of CO retrievals dramatically, since only 11% of observations are
on clear sky regions [55]. However, observations with low cloud fractions have sufficient sensitivity
for CO. Thus, the TROPOMI SWIR retrieval algorithm accounts for both cloud-free and partial cloud
coverage scenes [21].

Methane
Atmospheric methane measurements make, just like carbon monoxide measurements, use of spec-
troscopic measurements of sunlight back-scattered by the Earth’s surface and atmosphere in the
SWIR spectral range. The path of the measured photons is largely influenced by aerosols and cloud
coverage. Since reliable prior information about these parameters is generally not available, methane
retrieval methods are simultaneously inferring gas concentrations and a correction for scattering
effects [21]. For methane, only cloud-free measurements are used, since otherwise the accuracy of
the measurement is not sufficient. The TROPOMI methane retrieval makes use of SWIR and NIR

http://www.tropomi.eu/data-products/mission-performance-centre
http://www.tropomi.eu/data-products/mission-performance-centre
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bands to both obtain methane total column concentrations as well as atmospheric scattering prop-
erties to minimise scattering induced retrieval errors on methane. The SWIR band is used for the
methane concentrations, while the SWIR-NIR combination constraints the atmospheric scattering
properties. The errors induced by the residual scattering are found to be mostly below 1% [56].

2.4.2. Data Quality and Known Data Issues
SRON recommends to use the CO data with qa > 0.5. The qa-value parameter definition is shown in
Table 2.10, which is taken from the TROPOMI CO ATBD.

Table 2.10: CO qa-value parameter definition.

qa-value Remark
1.0 Clear-sky and clear sky like observations
0.7 Mid-level clouds
0.4 High clouds, experimental data set
0.0 Corrupted or defective data

For methane, it is recommended to use qa > 0.5 to avoid misinterpretation of the data [57]. The
quality definition values for methane are given in Table 2.11, which is taken from the TROPOMI
methane ATBD. As for CO, TROPOMI CH4 data has some known issues as well. First of all, filtering
on qa > 0.5 does not remove all pixels with poor quality. In some cases, pixels with low methane
concentrations are not filtered out. Second, uncertainties in the estimation for XC H4 are based on
the single sounding precision due to measurement noise. It is recommended to multiply the error
by a factor 2, for more reliable results. Third, due to the need to use the low-accuracy sun glint
measurements, observations over water are harder to interpret, combined with a lower coverage
than measurements over land [6].

Table 2.11: CH4 qa-value parameter definition.

qa-value Condition Remarks
1.0 Clear-sky Highest quality data
0.8 Failed deconvoluted irradiance spectrum Not pixel specific
0.4 Not clear-sky
0.0 No convergence Lowest quality data

2.5. Emission Quantification Methods for TROPOMI
Besides the method by Beirle et al. [1], two other mass-balance-based methods are used to quantify
emissions from point sources: the Cross-Sectional Flux (CSF) and Integrated Mass Enhancement
(IME) method, which are taken from Varon et al. [58]. However, the IME and CSF are only useful
when a single orbit of TROPOMI data is considered. These methods are generally not applied for
long term analyses, as opposed to the Beirle method. The CSF and IME methods are used to quantify
emissions on an individual day. These quantification can be averaged over a longer period of time
to obtain a long-term analysis.

2.5.1. The Beirle Method
The Beirle method has the ability to extract top-down emission maps at high spatial resolution. It
combines TROPOMI NO2 tropospheric columns V with wind fields w. The Beirle model uses the
temporal mean of horizontal fluxes to locate point sources. High gradients of fluxes can be found
around these point sources, which improves the identification and localization performance.
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The flux F is calculated according to

F = LV w (2.10)

where L is the ratio of NOx/NO2. This ratio is taken as L = 1.32±0.26. According to the continuity
equation, the divergence D of the flux F can be used to obtain values for the sources E and sinks S,
according to

D =∇(LV w) = E −S (2.11)

The sink term is dependent on a first-order time constant τc , which is taken as τc = 4±1.3 hours.
Since the divergence is a linear operator, long-term averaged emissions can be determined from the
averaged sink term plus the divergence of the flux. The NOx emissions can now be calculated as

E = S +D = LV /τc +∇(LV w) (2.12)

The Beirle method uses offline TROPOMI Level 2 data products. Measurements with qa < 0.75 are
not considered. TROPOMI NO2 data are gridded on a uniform latitude-longitude scale with spac-
ing 0.027°. To remove the upper tropospheric background and biases of the stratospheric estimate,
the 5th percentile of the TROPOMI data is subtracted from the operational tropospheric column.
The result is the lower tropospheric column V . Wind data is linearly interpolated between the mea-
sured location and the grid location. For the calculation of the divergence, numerical derivatives
are calculated as the fourth-order central-finite difference, as shown in Equation 2.13.

y ′ = y−2 −8y−1 +8y+1 − y+2

12h
(2.13)

with h being the spacing in x, also defined as the spatial resolution. In this equation, yi is the value
at a certain gridpoint, where the subscript i denotes the location of the gridpoint with respect to the
gridpoint of which the divergence is calculated.

Iterative Peak Fitting
To localize point sources and separate them from the background, iterative peak-fitting is used. This
algorithm has three steps, as shown below. These steps are repeated until no more possible sources
are found.

1. For a given map of E , the location with the maximum emission value Emax is determined. The
geo-location is saved as (latmax, lonmax). This location is named Pmax.

2. Around Pmax, a 2D Gaussian is fitted.

3. The fitted peak is subtracted from the emission map E.

2.5.2. Cross-sectional Flux Method
The CSF method computes the flux through a cross section orthogonal to the plume axis to estimate
the source rate. It makes use of the mass balance, which states that the source rate Q must be equal
to the product of the wind speed U and the column plane transect along the axis perpendicular to
the wind vector, according to

Q =
∫ +∞

−∞
U (x, y)∆Ω(x, y)dy (2.14)

where the integral is commonly approximated as a discrete summation of the product of the wind
speed U and the vertical column enhancement ∆Ω(x, y) over the plume width. An advantage of the
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CSF method is that the method considers the full downwind extent of the plume. A disadvantage
is related to the wind characterisation, which is the need to describe the vertical average of the
wind velocity over the plume extent. This is problematic, since there is generally no information
on the horizontal variability of the wind over the scale of the plume. However, this can be avoided
by using a uniform effective wind speed Ue f f applied to the cross-plume integral C , as shown in
Equation 2.15. The integral C is independent of the downwind direction x when Ue f f is taken as
uniform with distance x downwind of the source. Now, C can be calculated for different values of x
after which the values are averaged to improve the accuracy of the method [58].

Q =CUe f f , with C =
∫ +∞

−∞
∆Ω(x, y)dy (2.15)

2.5.3. Integrated Mass Enhancement Method
The IME method relates the total plume mass detected downwind of the source to the source rate.
The column plume IME is taken as

IME =
N∑

j=1
∆Ω j A j (2.16)

where N is the number of pixels of area A. The source rate calculation is based on the relationship
between the IME and the residence time in the plume τp , which is a first-order time constant. The
time constant can in turn be expressed in terms of the effective wind speed and the plume size Lp ,
according to Equation 2.17. Since the dissipation of the plume occurs through turbulent diffusion,
Ue f f and Lp must be considered as operational parameters, rather than simple physical constants.
Since the detectable plume size Lp depends on the source rate and the wind speed, Equation 2.17
becomes non-linear [58].

Q = 1

τ
IME = Ue f f

Lp
IME = Ue f f

Lp

N∑
j=1
∆Ω j A j (2.17)

2.5.4. Supporting Data and Databases
To properly analyse and quantify local emissions, supporting data is used. The project uses wind
data (GEOS-FP and ERA5), bottom-up emission inventories (EDGAR, REAS, TNO and DACCIWA))
and the previously described cloud-data from Suomi NPP. The wind data is used in various emission
localization and quantification methods, both for CTM-dependent and CTM-independent meth-
ods. In the method by Beirle et al. [1], it is used for flux calculations. In other methods, it is mostly
used to analyse the source of plumes by analysing the wind direction or to calculate the source rate,
as is the case for the IME and CSF methods. The emission databases are used to compare the results
of the to be constructed model to known emission sources. Also, the model allows for evaluating
the known emission quantities by comparing the model results with the values from the previously
mentioned inventories. Furthermore, the project makes use of supporting data that is supplied with
the TROPOMI Level 2 data. Possible data products that can be used are the surface pressure, surface
albedo and the aerosol optical thickness.

ERA5
ECMWF ReAnalysis v5 (ERA5) is a reanalysis wind dataset that contains hourly wind data with a
spatial resolution of 0.28° × 0.28° (≈ 31 × 31 km2). For the higher resolution grids, the same linear
interpolation method as described in the Goddard Earth Observing System - Forward Processing
(GEOS-FP) section can be used. The wind vectors are available at multiple altitudes, but this re-
search uses the 10 m and 100 m altitude wind vectors. According to Olauson [59], ERA5 has a lower
mean absolute error when compared to other similar wind datasets [60] Reanalysis datasets are
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based on measurements, and some measurement and observation data points are within the same
gridcell, with the majority of the gridcells not including any measurement station. To obtain global
coverage, a data assimilation process is used to combine observations [61].

GEOS-FP Wind Data
GEOS-FP are wind data files supplied by NASA’s Global Modeling Assimilation Office (GMAO). The
wind direction and speed is provided at a 0.25° × 0.3125° (≈ 25 × 25 km2) grid. This resolution is
reasonably high when considering a global scale. However, it is approximately a factor 10 larger
than the standard resolution of 0.027° that is used in the method by Beirle et al. [1]. To estimate the
relative wind direction and speed at the high resolution gridpoints, linear interpolation of the 0.25°
× 0.3125° can be used. The GEOS-FP wind data is available for every hour. The lowest grid point
altitude is 60 m above the surface, but the wind speed at 10 m can be obtained by calculation from
the 60 m wind speed, if necessary. On average, the GEOS-FP wind data has a standard deviation
of 1.6 m s−1 at 10 m altitude, independent of wind speed [5]. In general, the surface wind speed is
underestimated for low latitude (sub)tropical regions. For higher latitudes, the wind speed is mostly
overestimated [62].

EDGAR
Emissions Database for Global Atmospheric Research (EDGAR) is a global bottom-up emission in-
ventory with a 0.1° × 0.1° grid resolution. EDGAR contains anthropogenic emission data for NOx,
CO and CH4 for all 20 emission sectors (infrastructure, agriculture, etc.). EDGAR is generally used as
the standard emission database in air quality modelling [63]. This research uses EDGAR data from
the year 2017.

REAS
Regional Emission inventory in ASia (REAS) is a gridded bottom-up inventory of East, Southeast and
South Asia. It includes emissions from fuel combustion in power plants, industry, transport and do-
mestic sectors. It has a spatial resolution of 0.25° × 0.25° and a monthly temporal resolution. The
inventory includes estimates for industry including both combustion and non-combustion sources,
road transport, other transport (non-aviation) and residential emissions. For this research, the av-
erage emissions from 2015 are used. The inventory includes both NOx and CO [64].

TNO
To support policy related studies on air quality and climate modelling, TNO developed a spatially
resolved non-gridded emission inventory at high resolution (7 × 7 km) on a European scale. The
inventory is largely based on the official country emissions, since European countries report these
to the EU and the UN. However, since the quality of these official emissions varies per country, the
quantifications are studied in detail and appropriately adjusted. The inventory contains, among
other, emissions for NOx and CO [65] and is plant-specific, meaning only emissions from industry
are included. This research uses data from the year 2017.

DACCIWA
The Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) inventory contains
fossil fuel emissions for West-Africa. The inventory uses spatial proxies (geographical locations of
plants and road networks) to convert national emissions into gridded inventories at a spatial resolu-
tion of 0.1° × 0.1° for all emission sectors. It has a yearly temporal resolution and includes emissions
for NOx and CO. The inventory contains emissions up to 2015 [66]. Therefore, the year 2015 will be
used in this research.
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As stated in chapter 1, CTMs are used for the most accurate estimation of emissions. However, al-
though accurate, these models have the downside of having a high computational cost. This relates
to both actual cost as well as processing time and the occupation of the computational structure.
Therefore, this research investigates the use of models that do not rely on the use of CTMs. One of
these models is the model by Beirle et al. [1]. Beirle developed a method for nitrogen dioxide that
allows localization and quantification of point sources, without the use of a CTM.

In addition, it has the ability to not only estimate the emissions that are related to those specific
point sources, but to calculate a full grid of emissions. This is a feature that separates the Beirle
method from other CTM-
independent methods. This thesis project aims to design an emission quantification and localiza-
tion model for carbon monoxide and methane by means of a CTM-independent analysis method,
which will be designed, optimized, validated and implemented for CO. The CTM-independent model
for methane will only be developed, as the optimization and validation is out of the scope of this re-
search. Both models will be based on the NO2 model by Beirle et al. [1].

3.1. Relevance of the Project
The CTM-independent emission localization and quantification model for CO and methane can be
used for many different types of research. It will be able to quantify emissions, and therefore can
be used in case of a long-term blowout of a large super emitter. Furthermore, it is able to iden-
tify individual point sources, and therefore can be used in areas where there are multiple emission
sources nearby. In case the model performs well and can localize and quantify emission sources
adequately, the model can be widely used in research. The model will be specifically useful in the
case where many sources are close-by. An example of this is shown in the Riyadh location elabo-
rated in section 1.2. This is made abundantly clear in Figure 1.2, where multiple nearby sources can
be identified in the emission map. Also, the model can be run for different spatial resolutions and
data sets easily, which is more complicated when using a chemical transport model analysis. This
allows for analysis using a wide variety of time periods, spatial resolutions and grid sizes. The main
advantages of the model are the possibility to identify nearby emission sources and to obtain a full
grid of emissions at a high resolution, without the need to run a CTM.

23
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3.2. Research Question(s)
The main research question of this thesis is:

"How can the CTM-independent emission quantification and localization method for
NO2 by Beirle et al. [1] be adapted for carbon monoxide so it can be used for identifi-
cation of closely-spaced emission sources and how can this model be optimized and
utilized?”

The main research question will be answered by first focusing on the lower-level research questions.
The answers of these sub-questions will together provide the answer to the main research question.

• How does the divergence model need to be tuned to accommodate the different characteris-
tics of these gases?

– How do the different lifetimes and mixing ratios of the gases effect the design of the
divergence model?

– How does the TROPOMI coverage of the three gases influence the performance of the
divergence model?

– What is the effect of different spatial resolutions on the output of the model, and what is
the optimal resolution?

– How can pseudo-observations be used to test the emission quantification estimates?

• Compared to other emission quantification methods, what errors are associated with the re-
sulting emission fields and how sensitive are the results to the input data used and assump-
tions made?

– What are the error sources for the divergence model?

– What errors are related to the three gases and how does this differ for CO, NO2 and CH4?

– How is the total uncertainty of the emissions estimated?

– What is the effect of uncertainties in the meteo-data?

– How well does the divergence model perform for different numerical differentiation
methods?

• To what extent can these methods be used to separate the signals from large point sources
from background emissions and quantify their emissions?

– How well does the divergence model perform in identifying point sources when using a
peak-fitting algorithm?

– How well can nearby point sources be identified as individual sources, and up to which
resolution is this possible?
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This chapter describes the methodology of the divergence method for carbon monoxide. It starts
with a description of the data preparation, including the filtering and sub-pixel oversampling. After,
it describes the different filters and corrections that are necessary to improve the model perfor-
mance. It shows the Gaussian peak-fitting algorithm and the emission quantification based on this
algorithm. Lastly, the adaptations for the methane model are briefly described. The chapter ends
with the pseudo data that is used to test the performance of the method. A schematic overview of
the divergence method is included in Figure A.1 in Appendix A.

4.1. Data Preparation
Before the TROPOMI data can be used as input for the divergence method, the data needs to be pre-
pared. The TROPOMI data is filtered on domain (lat, lon) and gridded by a sub-pixel oversampling
routine.

4.1.1. The TROPOMI Data Product
To process the orbit files into usable CO data files, first the orbit files are imported. All orbits that are
within the specified time interval are selected. This means that the orbit files have global coverage
within the time interval. After the data selection, the orbit files are processed. First, the necessary
variables (Table 4.1) are extracted from the orbit files.

Table 4.1: The extracted variables from the TROPOMI Level 2 orbit files.

Variable Unit
Time [s]
Latitude [degree]
Longitude [degree]
XCO [mol/m−2]
Height scattering layer [m]
Aerosol optical thickness [-]
Solar zenith angle [degree]
Processing quality flags [-]
Latitude corners [degree]
Longitude corners [degree]
XCO precision [mol/m−2]
Surface pressure [Pa]
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Using these variables, the qa-value and the weekday are calculated. The calculation of these values
is done in a previous stage and is therefore not part of this research. The qa-value is obtained by
using the Aerosol Optical Thickness (AOT) and the Height Scattering Layer (HSL), as shown in Ta-
ble 4.2. The value qa=0.0 is used to filter out unusable data. The value qa=0.0 is obtained in two
different ways. First, the TROPOMI data includes processing quality flags. If a pixel has a processing
quality flag value which is unequal to zero, it obtains a qa-value of zero. Similarly, qa-values of pixels
with a solar zenith angle larger than 80 degrees are set to zero as well.

Table 4.2: qa-values for corresponding AOT and HSL values.

qa-value Limits Description

1.0
AOT <0.5
HSL <500

Clear sky

0.7
AOT >0.5
HSL <5000

Medium thick clouds

0.4 All other values
High clouds
Low thick clouds
Medium thin clouds

After the data is filtered and corrected, the pixels are saved in a Comma-Separated Value (CSV) file.
These files are processed by month and contain all data variables that are previously described. The
processed global monthly CO CSV files are around 25 GigaByte (GB) in size, which makes importing
these files in Python time consuming. Therefore, the monthly global CO files are re-selected into
monthly local CO files. A list of coordinates (latitude, longitude) of to be analysed locations is used
to select the corresponding domains. Around every location, a domain of 5° × 5° is selected from
the global data. These monthly local CO files vary from 10 MegaByte (MB) to 1 GB in size.

4.1.2. Data Selection
The locations in the location list are identified by a number. Two examples are given in Table 4.3.
When analysing a domain with a single point source, for instance a power plant at a remote loca-
tion or a city that is assumed to be a point source, the latitude and longitude are taken as the same
coordinates as the point source. In case a domain has multiple sources or is expected to have multi-
ple sources, the grid size, resolution and latitude and longitude are chosen such that all sources are
within the domain.

Table 4.3: Two examples to the input file.

Num Latitude Longitude Name Description

0 24.66 46.86 Riyadh
City center of Riyad,
steel and power plants
in the vicinity

1 28.51 84.28 India
Jharkhand region in India,
multiple large steel plants

Before a location can be analysed, certain parameters need to be set, as shown in Table 4.4. The
model grid resolution is equal to the FORTRAN resolution (subsection 4.1.3) and the FORTRAN res-
olution will be adjusted automatically when the model grid resolution is changed. The grid size is
identical in the latitudinal and longitudinal direction, which results in a square grid. When a grid
size of 50 gridpoints is chosen with a grid resolution of 0.05°, the full domain is a 101 × 101 grid with
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an area of 5° × 5°. The centerpoint is independent of the grid size. The full length of the grid in the
latitudinal and longitudinal direction is:

Gridl at = Gridl on = 2 ·Gridsi ze +1 (4.1)

Table 4.4: Parameters that need to be defined before a model run.

Parameter Format Description
Location number Number of the location to select the corresponding

latitude and longitude
Grid size Grid length in number of gridpoints
Grid resolution Degrees between adjacent gridpoints
Start date DD-MM-YYYY Initial date of the analysis
End date DD-MM-YYYY Final date of the analysis
qa-value To filter out data below the selected quality value

Since the divergence method considers daily CO grids, the monthly local CO files are further re-
duced by filtering and data-selection. The pre-sampling process consists of four steps. (1) First, the
data is filtered on latitude and longitude bounds and pixels with Not-a-Number (NaN) values in the
XCO column (also called ‘bad pixels’) are filtered out. (2) The files are re-selected by date to obtain
daily files. (3) Next, the model has an optional TROPOMI resolution filter, to filter out pixels with a
large surface footprint which is common at the edge of the swath. (4) The resulting daily data files
are re-selected based on orbit number. Some locations have double orbits for a single day, which
results in overlapping data if the orbits are not separated. Overlapping data decreases the accuracy
of the model since the data does not match the wind input for both orbits. Therefore, the initial daily
orbit is saved by using an identifier: Single Orbit (SO) in the file name. The second orbit is identified
by Double Orbit (DO). Both orbits are then used as input for the divergence model. The resulting
local daily filtered CO files are significantly smaller than the initial files, with the daily files generally
being less than 1 MB in size.

4.1.3. Pixel Oversampling
The FORTRAN sub-pixel oversampling routine is used to convert the TROPOMI data into a suitable
grid that can be used for the divergence method. The routine needs two inputs: a TROPOMI data
domain and an oversampling resolution. The centerpoint of the FORTRAN grid is taken as the ap-
proximate center of the domain, and the number of gridpoints depends on the width of the domain
and the resolution. The FORTRAN oversampling method is shown in Figure 4.1.
The figure shows a schematic representation of a TROPOMI satellite pixel p. The pixel p has an area
of S(p) and a value (XCO or surface pressure) of Ω(p). The black (dashed) boxes i represent the
gridcells, which represent the borders around the gridpoints. The overlap between the TROPOMI
pixel p and any gridcell i is denoted as A(p, i ). For any gridcell i , it has N (i ) overlapping satellite
pixels. The Ω̄(p) is the weighted average of the TROPOMI value within the gridcell of the pixel p.
The average is calculated according to:

Ω̄(i ) =
∑N (i )

p=1
A(p,i )
S(p) Ω(p)∑N (i )

p=1
A(p,i )
S(p)

(4.2)

In case the gridcell has multiple overlapping TROPOMI pixels where one of the pixels has a NaN
value, the routine does not use the NaN pixel for the calculation of the weighted average Ω̄(p). The
routine needs at least one TROPOMI pixel with a real value overlapping the gridcell to successfully
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Figure 4.1: The FORTRAN sub-pixel oversampling method, showing four gridcells being overlapped by a TROPOMI pixel
[67].

compute a weighted average. The FORTRAN sub-pixel oversampling routine has three main advan-
tages. (1) It is computationally fast. The routine can sample a full year of data for a single parameter
(XCO or surface pressure) in less than half a minute. The full routine for both variables then takes
approximately one minute. (2) The routine fully uses and appropriately weights the information
from all individual TROPOMI observations with a wide range of pixel sizes and parameter values.
This makes the routine a robust option for oversampling. (3) The routine automatically grids the
data and weights the values at the gridpoint. Therefore, there is no need to re-grid the data in a
later stage. Also, since the data is weighted to calculate the value in each gridcell, there is less error
associated with the gridding of the data.

The oversampling appropriately weights the information of each satellite pixel to calculate the value
of the gridcell. However, when a gridcell is fully located within the boundaries of a single TROPOMI
pixel, the value of the gridcell is equal to the value of the TROPOMI pixel. A special case arises when
the domain contains missing pixels. In case a gridcell is overlapped by at least one TROPOMI pixel
with a real value, it will obtain a value by the oversampling routine. A gridcell can only partly be
overlapped by a TROPOMI pixel, while the residual of the gridcell is not overlapped by any pixel.
This is shown in schematically in Figure 4.2. In this figure, two TROPOMI pixels are shown with a
low value (blue box) and high value (red box). The black boxes represent the gridcells in the domain.
The oversampling routine weights the information each pixel to assign a value to each gridcell, as is
shown by the gridcell colors. It can be seen that the bottom gridcells are fully weighted by the blue
pixel, while the top gridcells are fully weighted by the red pixel. The top-left box is not overlapped
by any pixel, and will therefore not be assigned any value. The area covered by the oversampled
gridcells is now approximately twice as large as the area of the two TROPOMI pixels. Therefore, the
oversampling routine increases the domain data coverage in case of missing pixels. In general, the
divergence method uses grid resolutions similar to the TROPOMI pixel resolution.

The improvement of data coverage in the domain by the oversampling routine is dependent on the
model resolution. This is shown in Figure 4.3, where the TROPOMI data for Lahore, Pakistan is can
be seen on the left. In this sub-figure, rivers can be clearly identified by the string of missing pixels.
Furthermore, the missing pixels in the top-right corner can be related to the Himalayas. The middle
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Figure 4.2: Two TROPOMI pixels, one with a low value (blue) and one with a high value (red) and the weighted average
that is allocated to each gridcell. The white gridcell is not overlapped, and therefore results in a zero value.

and the right plot show the model grid coverage. A black gridcell indicates that the oversampling
routine found a TROPOMI value in the gridcell. White gridcells indicate missing values. When using
the oversampling routine on a low resolution of 0.1 degrees (middle), the missing pixels are mostly
covered. When the model resolution is increased up to 0.02 degrees (right), the three rivers and
the Himalayas can be clearly identified again. Therefore, when analysing low-coverage locations,
running on a low resolution might be preferable. However, this negatively affects the accuracy of
the data, since the TROPOMI data is smeared out over a larger area than initially observed.

Figure 4.3: A methane plot (left) showing missing pixels over rivers. The oversampling routine improves coverage for low
resolutions (middle) and partly improves coverage for high resolutions (right).

The FORTRAN files now consist of oversampled gridded CO data for a specified domain for a cer-
tain time interval. The domain of the FORTRAN gridded data is based on the grid that was created
by the model, based on the latitude, longitude, grid size and resolution. However, the FORTRAN
grid and the model grid do not necessarily overlap at each gridpoint. The resolution of both grids is
equal, but the center-point often differs slightly. Therefore, if the two center-points do not match,
the divergence model center-point is reset to match the center of the FORTRAN grid. The model
grid is reset, since the FORTRAN grid contains measurements at specific latitude and longitude co-
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ordinates, and therefore the data measurements will decrease in accuracy if shifted. Shifting the
model grid, however, has no negative effects.

4.2. Model Functions
The daily gridded local CO files (subsection 4.1.3) are used as input for the divergence method. The
CO and surface pressure values are directly assigned to the corresponding gridpoint in the model
grid. Since the FORTRAN grid is slightly larger than the model grid due to the 0.5° buffer, not all the
data is used. The FORTRAN CO data has the unit ppb. However, for emission quantification, g m−2

is a more convenient unit. This unit does introduce the issue of varying surface pressure, due to its
dependence on the pressure p. The COg /m2 can be calculated from COppb using:

COg /m2 =COppb ·
MCO

Mai r
· p

g
·10−6 (4.3)

where MCO is the molar mass of carbon dioxide (=28.01 kg/mol), Mai r is the molar mass of air
(=28.964 kg/mol), p is the surface pressure extracted from the FORTRAN grid (in Pa) and g is the
gravitational acceleration constant (=9.80665 m/s2).

4.2.1. Data Corrections and Filters
To improve the accuracy of the output and the performance of the model, data filters and correc-
tions are used. The model uses one filter and three corrections:

• Land mask filter

• Altitude correction

• Background correction

• Interpolation of isolated missing values

Land Mask Filter
Similar to the TROPOMI NOx data product, the TROPOMI CO data product includes measurements
over water. However, due to the low surface albedo of water bodies, only scenes with cloud coverage
can be used, since the top of the clouds have a higher albedo. The downside to these cloud-coverage
measurements is the shorter atmospheric column. The TROPOMI CO concentration measurements
are column-averaged XCO values. Therefore, the height of the atmospheric column is one of the in-
fluencing factors of the measured amount of CO in the atmosphere. Since the column is shortened
by not including the part of the atmospheric column below the cloud, the CO concentration mea-
surement with cloud-coverage will be lower. Furthermore, the part of the atmosphere where most
emissions take place is not observed by TROPOMI when only the column above the cloud is used,
which again results in unrealistic low measurements.
Due to the varying altitude of the top of clouds, or aerosol Height Scattering Layer (HSL), the CO
concentration measurements over water are hard to interpret. Furthermore, due to the large vari-
ation in measured CO values, the divergence method detects large erroneous emissions over water
bodies. Another problem arises at coastal regions. The CO values on water-based gridpoints are
lower, as compared to the land-based gridpoints. The divergence method detects this variation and
the output shows large divergence values at the coast. Since the wind direction in coastal regions
is mostly land inward, the divergence method identifies the CO increase as downwind, which leads
to a positive divergence value at the coast. The gridpoints with a positive divergence are in turn
wrongfully identified as emission sources.
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To resolve this problem, a land-mask filter is used. This process filters out all gridpoints over wa-
ter. Large bays and lakes are included in the land-mask. However, small lakes and rivers are not
identified by the filter. For instance, the IJsselmeer region in the Netherlands is not identified as
water body, while the Bay Area (San Francisco) is included in the land-mask. First, the land surface
is imported from Cartopy’s Natural Earth Feature. For the filter, a resolution of 10 m is used. Next,
the land body is defined as one or multiple polygons, dependent on the shape of the land body, to
further simplify the process. Now, the filter tests whether each gridpoint in the domain is inside the
polygon(s), defined by the previous step. If not, the gridpoint is filtered out.

The land-mask filter decreases erroneous emission values in coastal regions, as well as over water
bodies. The major downside to the filter is the excessive data loss in coastal regions. Since data
above water is filtered out, the two gridpoints neighbouring the coastal grid edge are not usable
for the divergence calculation. A result of this data loss is that coastal emissions sources cannot be
analysed by the divergence method.

Altitude Correction
The influence of the height of the atmospheric column on the column-averaged CO concentration
measurement results in another altitude-related issue. Similar to measurements above clouds, CO
concentration measurements at increased altitude above sea level result in lower CO values. This
problem is similarly caused by the shortened atmospheric column. As the surface height above sea
level increases, the measured CO value decreases. For simplicity purposes, this relation is assumed
to be linear. Domains that have a large variation in surface elevation experience erroneous values
in the divergence calculation. The altitude-CO relation can be seen clearly in Figure 4.4. In this plot,
the Jharkhand steel plants in the mid-East of India can be seen, as well as the larger cities (New Delhi
in the north, Mumbai and Hyderabad in the south). Furthermore, in the north of the grid, Nepal
(and the Himalaya) can be seen. Due to high elevation of Nepal, on average 3,265 meter, the CO
concentration measurement over this part of the domain is significantly lower as compared to the
India lowlands. Next, the river-regions in India can be seen to have an increased CO enhancement.
This is partly due to the higher pollution levels due to the high population density in these areas, as
well as the lower surface elevation of the rivers, as compared to their neighbouring areas.

Figure 4.4: Average CO concentration map (g m−2) for two months in early 2019, showing India and Nepal. Extremely low
CO concentration values can be seen for low surface pressure (high altitude) around the Himalayas.
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Since the altitude-CO correlation is assumed to be linear, the altitude correction formula is:

COc =COm +h ·β (4.4)

where COc is the corrected CO value, COm is the TROPOMI measured CO value, h is the altitude
above sea level andβ is the altitude correction factor. The altitude can be calculated from the surface
pressure, which can be extracted from the TROPOMI data product, according to:

h = ln

(
p

patmos

)
· −1

0.12
·10−3 (4.5)

where patmos is the atmospheric pressure at sea level, taken as 101,325 Pa. The altitude approxima-
tion formula in Equation 4.5 is valid up to 11 kilometers, which makes it sufficient to use for surface
elevation calculations. To correct the data for this altitude correlation, the altitude correction factor
(β) needs to be determined. This factor is calculated for every day. Linear regression is used to find
the slope of regression line, as shown in Figure 4.5. The slope is then taken as the altitude correction
factor.

Figure 4.5: The altitude-CO relation for India on 2019-01-01. The dots denote the CO concentration measurement at a
certain altitude, the red line is the linear regression line. The TROPOMI CO value denotes the oversampled CO values with
a fifth percentile background correction. CO concentration measurements below 1,000 m (light blue) are not used for the
calculation of the altitude correction factor.

In Figure 4.5, it can be seen that below 500 meters of altitude, the CO concentration measurements
do not behave linearly when compared to altitude. This is due to CO emissions at these altitudes,
since many steel plants in India are located below 500 meters of altitude. Therefore, increased CO
concentration measurements can be observed in this altitude region. As can be seen in Figure 4.5,
these CO emissions results in a slight over-estimation of the actual slope. Therefore, it is necessary
to filter out areas with CO emissions, to only look at the background CO level. This, however, is
not a straightforward action. Even though the surface altitude at which steel plants are located are
mostly known, the surface altitude at which the emissions are observed is not related to the surface
altitude of the steel plants. Due to changing winds, the CO emissions can be observed at various
surface elevations. Therefore, it is not sufficient to filter out altitudes at which emission sources
are located. In the case of India, the CO is observed to be emitted below 500 meters of altitude.
However, CO enhancement that deviate from the linear regression line are observed up to 1,000
meters of surface altitude. Therefore, all CO concentration values below 1,000 meters are filtered
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out (light blue markers in Figure 4.5). The linear regression uses only the CO concentration values
above 1,000 meters of altitude (dark blue markers). The corresponding slope is taken as the altitude
correction factor.
The altitude correction factor is not constant throughout the year. Due to the a varying tropopause
height, there is a seasonal change observed in the altitude correction factor. The height of the
tropopause determines the relative weights of the stratosphere and troposphere for the XCO cal-
culation. The surface elevation results in a reduction of the mass of the tropospheric sub-column.
Therefore, an increase in surface elevation shifts the contribution of the tropospheric and strato-
spheric air mass to the total column. Since the CO abundance is lower in the stratosphere com-
pared to the troposphere, the measured XCO decreases as altitude increases [68]. When analysing
the daily altitude correction factors for a full year, this variation can be clearly seen (Figure 4.6).

Figure 4.6: The seasonality of the altitude correction factor. The red line represent the fitted average.

To obtain a seasonal altitude correction factor, a sine is fitted to the data. To fit the curve, a Harmonic
Oscillator hyBrid fIT (HOBIT) function is used. This function fits the data according to:

f (x) = y0 + y1 · sin(ω · x +φ) (4.6)

First, the algorithm splits the data into random train and test subsets. Next, the training data is used
to find a fit for the data using a least squares approximation. The function will return the best-fit
values for all parameters in Equation 4.6. To test the fit, the result of the data fit is used on the test
data, after which the Root-Mean-Square Error (RMSE) is calculated:

RMSE =
√√√√ n∑

i=1

(
ŷi − yi

)2

n
(4.7)

where ŷi is the predicted value of observation i , yi is the actual value of observation i and n is the
number of observations in the data. The value of the sine function (Equation 4.6) is then used as the
altitude correction factor for a specific day. An example of the altitude correction factor values can
be found in Figure 4.6.

Background Correction
The divergence method uses the first-order derivative of the flux to calculate the emissions in a
grid. Since the divergence uses the derivative of the flux, the method is able to identify changes in
the flux field. The flux is dependent on two variables: the amount of CO in the atmosphere and
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the wind speed (and direction). A change in the flux field can therefore be caused by a variation in
both the CO and the wind field. However, to appropriately estimate emissions, only changes in the
CO concentration should be considered. The problem that arises from the influence of the wind
on the flux, and therefore the divergence, is illustrated in figure Figure 4.7. This figure shows four
subplots, from left to right: (1) an artificial input signal named ‘Background’, (2) the GEOS-FP 10
meter altitude wind speed in x-direction (longitudinal), (3) the corresponding wind speed in the
y-direction (latitudinal), and (4) the corresponding divergence output.

Figure 4.7: A simulated case without background correction. Enhancements in the divergence map are the result of the
wind speed in combination with a high background.

The input signal is taken as random Gaussian noise, with µ = 1 and σ = 0.01. Therefore, there is
only a small deviation input values (min = 0.97, max = 1.03). This input signal is reasonably similar
to the TROPOMI CO data that is used to calculate the divergence. Since the input is solely Gaus-
sian random noise, the divergence output is expected to be similar to the input signal, and behave
more or less random. However, the divergence map shows clear enhancements. Furthermore, the
divergence output is strongly correlated to the wind speed. To counter this wind-induced problem,
a background correction is used. To remove the background, the fifth percentile of the CO data is
calculated. This value is subtracted from the CO data, after which all negative values are filtered out.
By removing the background, only the CO enhancements are used for the flux calculation. This
minimizes the influence of the wind on the flux. To illustrate the background correction, the previ-
ous example is used with a new input of random Gaussian noise with µ= 1 and σ= 0.3 (Figure 4.8).
By using a larger variance, the lowest values are observed to be around zero. This simulates the
background corrected TROPOMI CO data.

Figure 4.8: A simulation for the background correction. The erroneous divergence enhancements are mostly fixed.

When looking at the divergence map with this new input, no correlation with the wind fields can be
observed, and the output shows mostly random behaviour. By using a fifth percentile background
correction, the influence of the divergence of the wind field on the total divergence is minimized.

Minimising Data Gaps
One of the main causes of data loss in the divergence output is individual gridpoints with missing
CO concentration values. One gridpoint without a concentration value will cause 8 neighbouring
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gridpoints to not have a divergence value, since the derivative calculation is insufficient. This is
shown in Figure 4.9. The left sub-figure shows the pixelmap (gridpoints that have coverage) for the
CO concentration. The right figure shows the corresponding pixelmap for the divergence. Around
the missing gridpoints in the concentration pixelmap, a plus-like structure can be seen in the diver-
gence pixelmap. A small number of individual missing gridpoints in the concentration map result
in extensive data loss for the divergence map. In this case, approximately 4% of the grid coverage for
the divergence is lost due to the background correction, 2% due to multiple neighbouring missing
gridpoints and 2% due to individual missing gridpoints.

Figure 4.9: The coverage map, showing grid coverage (average of TROPOMI pixels per gridcell) for concentration (left)
and coverage for divergence (right). The data loss by individual missing pixels (‘+’ form) can be seen in the divergence
map.

To minimize this data loss, individual gridpoint with missing concentration values are linearly in-
terpolated with their nearest neighbours. In case a gridpoint with a missing value is neighbouring
another gridpoints with a missing value, the value is not interpolated. The diagonal neighbouring
gridpoints are not included in the interpolation of a gridpoint, the method uses only the four non-
diagonal neighbouring gridpoints.

4.3. Model Analysis
The divergence is calculated for each gridpoint separately for every single day. In some cases, loca-
tions have double orbits on one day. Due to overlap between swaths in adjacent orbits, one domain
might be included in more than one orbit, as shown in Figure 4.10. This occurs mainly at high
latitudes. The figure shows the revisit frequency for different locations on the Earth. Low latitude
domains experience a double orbit only sporadically, while higher latitude can have up to seven
orbits per day.

In case a domain has perfect coverage (no missing data) and no double orbits, the coverage map
will show 365 pixels per gridpoints for a full year of data. This number can increase when domains
have multiple days with double orbits per year. To start the model analysis, all grid files for every
single day are imported, including days with multiple orbits. For every gridpoint, the mean values
of CO concentration and divergence are calculated for the full time interval. This process consists
of four steps: (1) one orbit grid file is imported. (2) Each gridpoint with a value in the orbit grid file
is added to the mean grid. (3) The model checks how many data entries (ν) are used for the sum of
the values for one gridpoint. (4) The mean is calculated by dividing the sum of the values by ν. In
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Figure 4.10: The daily geometric revisit frequency of TROPOMI.

general, every additional data entry leads to a value of ν according to ν= ν+1.
One problem arises for low-coverage grids. Generally, the model output is unstable for gridpoints
with a low number of pixels used to calculate the mean. In Figure 4.11, the value of the divergence
and the number of pixels for each gridpoint are plotted. The divergence value becomes unstable for
ν < 20. Therefore, all gridpoints with ν < 20 for the divergence are filtered out in the temporal mean.

Figure 4.11: The model output showing gridpoints with their number of pixels and the corresponding divergence. The
output becomes stable above 20 pixels.

The divergence method relies on good coverage to have a stable output. However, the TROPOMI
coverage is mostly dependent on the geographical location of the grid. For instance, when a grid
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containing only the Netherlands is used for the divergence analysis with a time interval of October
1st - March 31st, the coverage is expected to be low. This is due to the high cloud coverage in these
autumn - winter - spring months. Most likely, a large part of the grid will not have good (>20 pixels)
coverage (Figure 4.11). Therefore, this location in combination with the time interval is not feasible.
However, this does not mean that all locations with a winter time interval are infeasible. Riyadh, for
instance, has sufficient coverage year-round and therefore can be used in combination with a time
interval containing only the winter months. One solution to the low-coverage locations is to simply
use a larger time interval. Mostly, using a full year of data is sufficient.

4.3.1. Divergence Calculations
After the TROPOMI CO data is re-selected, oversampled, filtered and corrected, the divergence can
be calculated. Wind data from GEOS-FP and ERA5 is used for the divergence calculations. Both
wind fields have a resolution of 0.25°. However, to properly calculate the divergence, the wind vec-
tor at every gridpoint is needed. Therefore, both wind fields are spatially interpolated to find the
wind vectors at intermediate grid points. The model uses a spline interpolation function for the
wind interpolation. Spline interpolation is used since it has a reasonably fast computational time
and favorable accuracy as compared to linear interpolation, which has a faster computational time
but lower accuracy.

Now, the flux F = (Fx ,Fy ) is calculated by using the wind vector w = (u, v) and the CO concentration
column value (Ψ):

F =Ψ ·w (4.8)

The flux is calculated in the x-direction by using the u wind vector and in the y-direction by using
the v wind vector. To calculate the divergence, first the spacing of the grid in the x- and y-direction is
needed. To obtain these variables, the dimensions of the grid cells can be used. Since the length of 1°
in meters in longitude varies with latitude, it is calculated for every gridpoint separately. To calculate
the distance d in meters from the grid resolution in degrees, the haversine (hav(θ)) function is used.
The haversine determines the great-circle distance between two points on a sphere, as shown in:

d = 2R arcsin

(√
sin2

(ϕ2 −ϕ1

2

)
+

(
1− sin2

(ϕ2 −ϕ1

2

)
− sin2

(ϕ2 +ϕ1

2

))
· sin2

(
λ2 −λ1

2

))
(4.9)

whereϕ is the latitudinal coordinate, λ is the longitudinal coordinate and R is the nominal radius of
the Earth in meters (R = 6,371,000 [m]). To calculate the length of the gridcell in the x (longitudinal)
direction, the ∆λ (λ2 −λ1) is taken as twice the grid resolution, while the ∆ϕ (ϕ2 −ϕ1) is taken as
zero. To calculate the length of the gridcell in the y (latitudinal) direction, ∆ϕ is taken as twice the
grid resolution, while ∆λ is taken as zero. The gradient of the flux, or the divergence (D), can be
calculated as the first-order partial derivative of the flux in the x and y direction, according to:

D =∇F = ∂

∂x
Fx + ∂

∂y
Fy (4.10)

The spacing value (distance d) is then used to calculate the divergence in the x- and y-direction. The
calculation uses a fourth-order central finite difference numerical differentiation method (Equa-
tion 4.11) to calculate the derivative of the flux.

D0 = −F−2 +8F−1 −8F+1 +F+2

12h
(4.11)

In this equation, the subscript of F denotes the gridpoint that is used for the calculation, with re-
spect to the gridpoint for which the divergence is calculated, and F is the flux value at the gridpoint.
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The divergence therefore uses two gridpoints west and two gridpoints east when calculating the
divergence in the x-direction. For the calculation of the divergence in the y-direction, it uses two
gridpoints north and two gridpoints south of the considered gridpoint (subscript 0). In Figure 4.12,
the grid is schematically shown. To calculate the divergence of the flux at a certain gridpoint (red),
four neighbouring gridpoints are used (blue).

Figure 4.12: A cut-out from the model grid, showing the gridcells (black), the gridpoint used for the divergence calculation
(red) and the gridpoints used for the numerical derivative (blue).

One disadvantage of the fourth-order central finite difference numerical derivative method is the
extensive data loss. As stated before, the two rows and gridpoints closest to the grid edge can not be
properly calculated, since there is not enough data to calculate the derivative. This problem can be
overcome by increasing the grid size by 2 gridpoints to run the previously defined grid size. However,
the grid edges are not the sole reason for data loss due to the numerical derivative. Data gaps exists
over land-based water bodies such as rivers and lakes, as well as large water bodies such as seas
and oceans. Therefore, coastal regions experience data loss similar to the grid points neighbouring
the grid edge. In areas with lakes and rivers, the data loss is often limited to a single or multiple
TROPOMI pixels. It then depends on the grid resolution as to what number of grid points with
data loss this then translates to. An example is illustrated in Figure 4.13. In this figure, the three
gridcells with the red dot represent a missing TROPOMI pixel, and therefore have no assigned CO
value. Since the numerical derivative method needs the neighbouring gridcells to have an assigned
CO value to calculate the divergence, the missing gridcells result in extensive data loss around the
missing gridcells. In this example, approximately 10% of the gridcells are have a non-existing CO
value. This results in approximately 50% of the gridcells having non-existing divergence values (red
gridcells). In the figure, only the green gridcells can be properly calculated.

Figure 4.13: A cut-out from the model grid, showing the gridcells without a TROPOMI CO value (blank with red dot). All
other gridcells do have a TROPOMI CO value. This data gap results in extensive data loss (red gridcells) for the divergence
calculation. The green gridcells do have a divergence value.

The spacing hx is equal to the width of gridcell and the spacing hy is equal to the height of the grid-
cell, as previously calculated. As all variables are known, the divergence can be calculated. This
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is again done in the x- (Divx) and y-direction (Divy) separately, and for every gridpoint. Since the
calculation of the divergence needs two gridpoints with known values in all four cardinal directions,
the points closer than three gridpoints from the grid edge can not be properly calculated. There-
fore, these are not taken into consideration. After all gridpoints are calculated, the two outer rows
and columns of gridpoints are filtered out. To obtain the total divergence at every gridpoint, the
calculated divergence values Divx and Divy are added up.

4.3.2. Gaussian Peak-fitting
The mean divergence map which is calculated in the previous section is now used to calculate the
emissions. This is done, similarly to the divergence calculation, for every gridpoint. Since the diver-
gence (D) has the unit [g m−2 s−1], the emissions E (Gg a−1) per gridcell can be easily calculated by
using:

E = D · A · t ·10−9 (4.12)

where A is the area of the gridcell (m2) and t is the time interval (in years). The area is calculated
by using the width and length of the gridcell, according to Equation 4.9 on page 37. The resulting
emission map is used for the iterative Gaussian peak-fitting algorithm, which consists of three steps:

1. Identify the gridpoint with the highest value in the emission map. The location of this grid-
point is identified as (Pmax)

2. Fit a 2D Gaussian on the gridpoint at Pmax.

3. Subtract the fitted signal from the emission map.

This is an iterative process. Before the process is carried out, the number of iterations for the Gaus-
sian peak-fitting algorithm must be defined. In the emission map, there are two types of high values:
sources and artefacts. Artefacts are locations that show high CO emission enhancements, without
emission sources in the vicinity. Emission sources mostly have spatial Gaussian behavior in the
emission map. For this reason, the algorithm can fit a Gaussian on top of the gridpoint with the
highest value. However, artefacts generally do not have a Gaussian form in the spatial domain.
Therefore, the algorithm generally can not fit a Gaussian on top of artefacts. If the algorithm is not
able to obtain a proper fit, the corresponding gridpoint will be identified with a skip. This results in
the value being skipped when the algorithm is looking for the highest value in the grid for the next
iteration. This way, the algorithm will not stay in an infinite loop when identifying artefacts.

After the gridpoint with the highest value (non-Skip) is identified, a 2D Gaussian is fitted on the data
around the gridpoint, according to

f (x, y) = H ·exp

(
−

(
(x −x0)2

2σ2
X

+
(
y − y0

)2

2σ2
Y

))
(4.13)

where H is the height of the Gaussian, x0 and y0 are the coordinates of the center andσX andσY are
the widths of the Gaussian. To fit the Gaussian, first the data in normalized. The data is normalized
to be able to enforce limits in the fit of the Gaussian, especially in terms of the height H . Then, the
fitting process uses a non-linear least squares optimization process to find the best parameters for
the Gaussian fit. The least squares method adjusts the parameters of the Gaussian fit to best match
the model data.
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The method selects the fit by minimizing the sum of squared residuals Ss for all n gridpoints in the
grid, according to Equation 4.14.

Ss =
n∑

i=1
Ei − f

(
pi

)2 (4.14)

where Ei is the value of the emission data at gridpoint i , f
(
pi

)
denotes the value of the Gaussian

function at gridpoint i , and pi denotes the values of the parameters for gridpoint i to construct
the Gaussian. The necessary parameters are (1) the height H (normalized to 1), (2) the width in x-
direction, (3) the width in y-direction, (4) the x-coordinate of the center, and (5) the y-coordinate
of the center. Since the data is normalized, the initial guess for the height of the Gaussian is taken
as one. The initial guesses for the x- and y-coordinate of the center of the Gaussian are taken as
the coordinates of the previously selected gridpoint. The initial guess parameters for the width are
taken as zero.

To force the method to fit the Gaussian to the selected peak (Pmax), bounds are used for the least
squares optimization. Firstly, the most strict bounds are used for the center of the Gaussian. To
make sure no other peaks are fitted, the center of the Gaussian is forced to deviate no further than
one gridpoint from the gridpoint Pmax. For the height of the Gaussian, the method is forced to stay
within 5 percent of the peak height: H = [0.95,1.05] to make sure the algorithm fits the desired peak
in the data. Lastly, since the width of the Gaussian varies per location and model resolution, no
bounds are used for these parameters.

To obtain the best possible fit, the Gaussian peak-fitting algorithm uses a rotation for the fit. This
sequence uses a loop that runs the Gaussian fitting for a full 360 degrees rotation, with 1° intervals.
For every degree of rotation, the RMSE (Equation 4.7) of the fit is calculated. The degree of rotation
with the lowest RMSE is selected for the final fit. To include a rotation in the fit method, the Gaussian
function is expressed as:

f (x, y) = H ·exp
(
−
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a (x −x0)2 +2b (x −x0)

(
y − y0

)+ c
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)2
))

(4.15)

Now, the rotation parameters a, b and c are expressed as:

a = cos2θ
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(4.16)

b =−sin2θ
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c = sin2θ
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(4.18)

where θ is the clockwise rotation angle. After the best possible fit is determined, the fitted Gaussian
is subtracted from the emission map, after which the next iteration will take place. This is repeated,
until the pre-defined number of iterations is reached. All fitted Gaussian outputs are merged in a
new emission map, which is used for further analysis.

4.3.3. Emission Quantification
After the model carried out the pre-defined number of iterations for the Gaussian peak-fitting al-
gorithm, the model output is compared to bottom-up inventories. Bottom-up inventories estimate
emissions using statistical analyses of activity data combined with country-specific emission fac-
tors, as opposed to top-down methods, which estimate emissions from observations [69].
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For the CO model analysis, three different inventories are used:

• EDGAR

• REAS

• TNO

• DACCIWA

The EDGAR database consists of world-wide estimates of CO emissions, while REAS is limited to
Asia and the Middle-East, TNO is limited to Europe and DACCIWA is limited to Africa. Even though
the REAS and TNO database are limited in domain, the spatial accuracy of the inventories is higher
compared to EDGAR. In Figure 4.14, an example of the emission output is shown. In the left subplot,
the divergence model emissions are shown, including three known locations of steel plants in the
Jharkhand (India) area, denoted by the markers. The right subplot shows the emissions from the
REAS inventory. The estimates are shown in averaged yearly emissions per gridcell. For the REAS
emissions, the area of the gridcells is 0.25° × 0.25°. For the model emissions, the area of the gridcells
is 0.03° × 0.03°.

Figure 4.14: The emission map, showing the identified sources by the Gaussian peak-fitting algorithm (left), as well as the
emission estimate from the REAS inventory for Jharkhand, India. All sources match known emission sources.

Artefact Identification
In Figure 4.14, four point sources have been identified by the Gaussian peak-fitting algorithm. How-
ever, there are only three known sources in the area. The resulting source can now be one of two
things: either it is an unknown point source, or it is an artefact. This can be determined by looking
at the CO concentration on individual days. If the identified source location shows plumes being
emitted from that location, then it is most likely that the source is an emission source. If no plumes
are observed, but the individual days do show enhancements which can be related to orography or
waterbodies, it is most likely an artefact. To identify plumes, not only the CO concentration map
needs to be taken into consideration. Plumes are known to deviate with the wind direction, always
elongating in the downwind direction. Therefore, by looking at both the CO concentration map and
the wind field, it can determined whether an enhancement signal is a plume.
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By looking at Figure 4.15, it is very likely that the Jharkhand area has multiple sources. The markers
indicate some of the larger sources, but some smaller sources have not yet been identified. It is clear
that the previously described location is indeed an emission source.

Figure 4.15: The CO concentration map for January 31st, 2019 with the GEOS-FP 10 m wind field (left), showing multiple
plumes in the Jharkhand area. The wind speed and direction is shown by the black arrows. The resulting divergence
output is shown on the right. Known emission sources are marked.

4.3.4. An Explanation For Divergence Output Form

The divergence method uses a 2D Gaussian (latitudinal, longitudinal) for the fit on the TROPOMI
divergence data. This is necessary, since the form of the divergence output is not always circular.
Furthermore, the fitted Gaussian often shows a rotation with respect to the positive north and east
axes. The results of the Gaussian fits are compared to wind data in the form of a wind rose, to test the
influence of the wind on the form of the divergence output, and therefore the Gaussian fit. A general
case is shown in Figure 4.16. The figure shows the peak-fitting sequence for a domain in Slovakia.
The Gaussian is fitted on the CO divergence map (top-left). The algorithm identifies one location
during ‘Iteration 0’ and the resulting Gaussian is depicted using contour lines (bottom-left). The
fitted Gaussian is subtracted from the CO divergence map, and the residual background is shown in
the top-right sub-figure. The form of the wind rose matches the output form of the Gaussian fit.

The phenomenon that the divergence output form matches the wind rose, has a simple explanation.
When an emission source is emitting CO into a windy atmosphere, the emission shows a plume-like
behavior. Due to inaccuracies in the TROPOMI data and the varying resolution of the data in lon-
gitudinal direction, the measured start of the plume can differ. Due to this location shift, the diver-
gence method detects flux changes at different distances from the actual source. Since the wind has
a dominant longitudinal (positive and negative) wind direction, the divergence output is elongated
in the longitudinal direction. This is visible in Figure 4.16. Since the Gaussian fit matches the di-
vergence output, the fit is also elongated in the longitudinal direction. As the TROPOMI resolution
only varies in longitudinal direction, this elongation of the divergence output is mostly observed in
the longitudinal direction. However, due to inaccuracies in the TROPOMI data with respect to the
start of the plume, the phenomenon is also observed in the latitudinal direction, albeit less frequent.



4.4. Adaptation for the Methane Model 43

Figure 4.16: The results of the iterative peak-fitting algorithm (left bottom) is compared to the wind rose (right bottom).
Similarities can be seen in the form of both outputs. Each contour line of the Gaussian fit in the sub-figure left-below
represent a drop of 0.15 with respect to the highest value of the normalized divergence data.

4.4. Adaptation for the Methane Model
The different characteristics of methane as compared to CO results in the need to slightly adapt
the CO model to obtain a functional model for methane. First, methane has significantly worse
TROPOMI coverage compared to CO. The longer lifetime of methane results in lower relative en-
hancements (plume-background) and therefore only cloud-free observations are used, which re-
sults in lower coverage for methane. As stated before, coverage is an important factor in the perfor-
mance of the divergence method. CO does have low coverage in scenes with high cloud coverage,
but generally has sufficient coverage when analysing a full year of data. In short, if a grid is analysed
for a full year of data, it mostly will yield a stable result.

The coverage of methane, however, depends largely on the geographical location. This is similar to
CO, albeit that methane has close to zero coverage for some locations, as shown in Figure 4.17. In
this figure, the coverage is defined as the number of TROPOMI pixels within a certain 1° × 1° gridcell
in 2019. It can be seen that especially Northern Africa, the Middle East and Australia have good
coverage. Low coverage areas are South America, Siberia, China and central Africa.

When analysing a location that is located in a high coverage area and using a sufficient time interval
(> 1 year), the output is expected to be stable. However, when looking at locations in low coverage
areas, even with a sufficient time interval, the output will most likely be unstable. Furthermore,
the TROPOMI retrieval algorithm for methane has a high dependence on aerosol optical thickness
and albedo. To verify whether enhancements in the divergence/emission map are due to emission
sources and not due to aerosol and albedo induced artefacts, the emission output can be compared
to the albedo and aerosol optical thickness averages. Figure 4.18 shows three maps: the average
albedo in the SWIR, the average aerosol optical thickness (middle) and the emission map (right).
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Figure 4.17: The yearly mean coverage for methane, showing high coverage in desert regions and low coverage over moun-
tain areas.

Furthermore, the map shows locations of known coal mines in Australia (markers). The emission
map shows clear enhancements around the known locations of the coal mines. However, the figure
shows clear enhancements that can be related to a high gradient in the albedo map. These gradients
in the aerosol and albedo maps result in a gradient in the measured methane concentration, and
therefore show up as enhancements in the emission map. These enhancements are albedo and
aerosol induced artefacts. Since the optimization of the methane model is not within the scope of
this research, the albedo and aerosol corrections are not extensively studied, but included in the
recommendations.

Figure 4.18: To test whether enhancements in the emission output are not artefacts, the albedo (left) and aerosol (middle)
map can be compared to the emission map (right). Emission sources are identified with makers, all other divergence
enhancements are artefacts.

4.5. WRF-generated CO Pseudo Data
To test the performance of the divergence method, pseudo data is used. This data is generated by
the Weather Research and Forecasting (WRF)-chem CTM and the CTM is used to simulate CO con-
centrations around selected emission sources in Europe. The simulations use emissions estimates
from the European Pollutant Release and Transfer Register (E-PRTR) for the year 2017 [70]. The
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model then uses wind fields to simulate the CO concentrations in the atmosphere in the domain
around the emission source on a uniform 3 × 3 km grid. The WRF-chem has two outputs: the grid-
ded simulated CO concentration (xco) and the wind vectors (u, v) that are used to simulate the CO
throughout the grid. The wind output is the 10 m surface wind. The simulated xco and wind vari-
ables can be used by the divergence model to test the performance of the method. To be able to use
the simulation data as input for the divergence method, the TROPOMI orbits are used. To obtain
a simulated CO concentration value for every TROPOMI pixel in the orbit, the weighted average of
the gridded simulation data is used for every overlapping TROPOMI pixel. This way, the WRF sim-
ulations are sampled similar to as TROPOMI would have observed the data. The TROPOMI orbit
files now include the WRF-simulated CO concentration and the measured TROPOMI AOT and HSL
values. The WRF-chem xco data has multiple tracers. A combination of these tracers results in the
full CO simulation. The tracers are defined as:

1. Background

2. Emission source

3. Public power

4. Industry

5. Other stationary combustion

6. Road transport

7. Fugitives

8. Solvents

9. Other (Shipping, aviation, waste, livestock)

Each tracer contains its own xco value, and the nine tracers are merged to obtain the total xco for
a specific TROPOMI pixel. Since the tracers will be individually added to obtain the xco value, the
individual tracers can be manipulated to obtain different results. For instance, the tracer (2) of a
source with source strength 117 Gg/a can be multiplied by a factor 2 to obtain a source with source
strength 234 Gg/a. These source strength variations can be used to test the detection and quantifi-
cation limits of the model in a later stage. Furthermore, since tracers can easily be added, a tracer
with an additional source can be used to test the source separation ability of the model.

The pseudo data consists of three data types: Pressure Weighted (PW), without Averaging Kernel
(NO AK) and with Averaging Kernel (AK). First, the PW contains the xco value as simulated by the
WRF-chem model. It has perfect coverage, and therefore can be used to test the performance of the
model in an ideal situation. The dataset without AK uses the pressure weighted xco value, but also
uses the TROPOMI filtering. Therefore, this set can be used to test the influence of lower coverage
on the performance of the model. Lastly, the dataset with AK is the most realistic dataset, as it is
the closest match to the actual TROPOMI data. The AK dataset corrects for measurements above
clouds. The vertical sensitivity of the retrieval for the total column of CO is described by the AK. The
AK is dependent on the cloudiness of the scene, as shown in Figure 4.19. For strict cloud clearing
of the data (black line), the AK is close to one for all altitudes. Using a slightly less strict data filter
(yellow) to obtain the clear-sky like scenes results in a slightly reduced sensitivity for CO towards the
surface. However, the sensitivity for this filter setting is reasonable. The presence of thick clouds
significantly influences the vertical sensitivity of the retrieval. Due to cloud shielding, the sensitivity
below the cloud is significantly reduced. This results in the retrieval estimating the CO total column



46 4. Methodology

based mainly on the measurement above the cloud [71]. Therefore, it is necessary to use appropriate
TROPOMI filtering, with at least a HSL (z) of z < 5 km and an AOT (τ) of τ < 0.5. The AK dataset can
be used to test the influence of the characteristics of the TROPOMI data (coverage and sensitivity)
on the performance of the model.

Figure 4.19: The averaging kernel for three different categories of cloudiness: strict cloud clearing (black), semi clear-sky
(yellow) and high optical thick clouds (blue). The standard deviation is indicated as error bars [71].

The pseudo data contains two types of domains, named WRF locations. First, there are 18 domains
containing only one source. These domains can be used to test the performance of the emission
quantification of the divergence method. Second, there are two domains with multiple sources, of
which one contains two sources and one contains three sources. These domains can be used to test
the performance of the source separation of the divergence method.

The domains with a single source can be used to test the performance of the emission quantifica-
tion. The performance is quantified by comparing the output of the Gaussian peak-fitting algorithm
with the actual WRF emissions. The performance factor (P f ) is set as the relative deviation from the
actual WRF emissions, and can be written as:

P f =
Qdi v −QW RF

QW RF
·100% (4.19)

where Qdi v is the emission quantification of the divergence model and QW RF is the actual WRF
emission quantity. To improve the overall performance of the model, a sensitivity analysis is used.
This analysis varies parameter setting for filters used in the divergence model to obtain the settings
with the best performance. The best performing setting is the analysis with the lowest absolute
performance factor P f .
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TROPOMI Data Filtering
The first step is determining the appropriate filtering for the TROPOMI data. As previously elabo-
rated, the sensitivity to the emission sources of TROPOMI measurements with high cloud coverage
is low. One problem with data filtering for the divergence method is, however, the coverage issues.
The TROPOMI data needs to be appropriately filtered without creating low-coverage issues. There-
fore, multiple filter settings are tested. The least strict settings are taken as the minimal required
filtering: z < 5 km and τ < 0.5, as defined by previous research. To test whether the performance of
the method improves for stricter filter settings, a sensitivity analysis is used. This analysis combines
all filter settings for the height scattering layer and aerosol optical thickness: z = [0.5, 2.5, 5.0] and
τ = [0.4, 0.45, 0.5]. This results in nine sensitivity tests. The performance of the filter thresholds are
expressed in terms of the grid coverage and the performance factor (P f ). It is expected that stricter
filter settings will result in a better sensitivity to emissions, but with lower coverage. The sensitivity
analysis will determine if the improved estimation compensates for the lower grid coverage.

4.5.1. Sensitivity Analysis
The divergence model parameter optimization consists of separate sensitivity analyses to obtain
optimal model settings for (1) dataset, (2) wind fields, (3) TROPOMI resolution, and (4) divergence
model resolution. Furthermore, the pseudo data is used to test the quantification limit and the un-
certainty, as well as the effect of alternative numerical differentiation methods. Each analysis calcu-
lates the performance factor for each individual sensitivity test, after which results can be compared
to determine which test has the best performance. The best performing model settings are selected
and used as main settings for the method, resulting in an optimized divergence model. All analyses
are run on 0.04° model resolution, with the exception of the sensitivity analysis for model resolution.

Dataset
The dataset sensitivity analysis looks at the performance of the three different datasets for all WRF
locations. It uses the WRF-model wind to test the influence of the dataset on the performance of
the model. It is expected that the pressure weighted is the best performing model. The analysis
with the AK is closest to the actual TROPOMI data, which can be used to estimate the performance
of the TROPOMI data as input for the divergence method. The pressure weighted has perfect cov-
erage, while the other two datasets use the filtering for AOT and HSL as determined by the sensi-
tivity analysis for the TROPOMI filtering. The dataset analysis is mainly carried out to understand
the influence of the AK dataset, and therefore the TROPOMI data, on the output of the divergence
method.

Wind Fields
The sensitivity analysis for the wind uses three different wind fields as input: (1) GEOS-FP 10 m, (2)
ERA5 10 m and (3) ERA5 100 m. The analysis is carried out with the PW dataset. This way, only the
influence of the wind is tested. The analysis uses seven model runs. The analysis model runs with
the following wind inputs:

1. WRF-model wind

2. GEOS-FP 10 m

3. ERA5 10 m

4. ERA5 100 m

5. GEOS-FP 10 m with wind speed filter (WSP)
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6. Lowest value of GEOS-FP 10 m and ERA5 10 m

7. Highest value of GEOS-FP 10 m and ERA5 10 m

The first model run uses the WRF-model wind. This ‘perfect wind’ should result in the best per-
formance. All other performance factors should be compared to the performance factor of the first
run. The wind sensitivity analysis has three modified runs. Run (5) uses a wind speed filter, in which
all values below 1 m/s and above 10 m/s are filtered out [1]. This is due the inaccuracy of the wind
measurements for wind speeds below 1 m/s. Furthermore, strong winds with speeds over 10 m/s
might result in erroneous values in the divergence, as shown in Figure 4.20. The figure shows two
problems with large wind speeds. First of all, the plumes are stretched out and broken up. This
results in the divergence map showing a line of dipoles, instead of a positive enhancement at the
beginning of the plume. A dipole is a phenomenon where a strong positive enhancement is directly
bordered by a strong negative enhancement. These broken up plumes result in erroneous strong
positive and negative values in the divergence, which decrease the accuracy of the method. Fur-
thermore, due to the high wind speeds, even small variations in CO concentrations are detected by
the divergence method. This results in large noise fields in the output.

Figure 4.20: A day in 2019 with wind speeds up to 18 m/s, resulting in strong wind-induced noise fields in the divergence
map. Due to strong winds, the plumes in the grid are broken-up, resulting in dipoles in the divergence.

Run (6) uses the lowest value for each gridpoint of GEOS-FP 10 m and ERA5 10 m. This is done to
minimize the error due to erroneous wind speeds. However, this decreases the divergence signal
strength. Run (7) uses the opposite, and takes the highest value of both wind fields. This is done to
maximize the signal input for the divergence calculations. However, it is likely that this test leads to
increasing noise in the grid.

TROPOMI Resolution
The test for the TROPOMI resolution is based on the varying across-track resolution of TROPOMI.
As the latitudinal resolution has no variation, a sensitivity test is used only for the longitudinal reso-
lution. The test is undertaken to investigate whether the results of the divergence method improve
when the TROPOMI pixels at the edges of the swath are filtered out. For this analysis, the AK dataset
with the WRF-model wind is used. Since the performance of the divergence method depends on
the TROPOMI resolution, low resolution pixels can decrease the performance of the method. To
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determine the filter thresholds, the TROPOMI pixel resolution for a domain Hebei, China has been
used. In Figure 4.21, the across-track pixel resolution is shown. The figure contains all TROPOMI
measurements in a 2° × 2° domain with multiple orbits. The resolution varies between 0.0589° and
0.41°, with most values between 0.06° and 0.15°. Looking at July 6th, the variation of the TROPOMI
pixel resolution in a single day can clearly be seen. To only filter out the most extreme outliers, two
filter thresholds are chosen: Tr es < 0.3° and Tr es < 0.25°. The Hebei domain is taken as an example
and TROPOMI resolution varies per domain, dependent on the latitude.

Figure 4.21: The TROPOMI across-track pixel resolution for a domain in Hebei, China, early July 2020. For each day, the
large variation of TROPOMI resolution throughout the swath can be seen between 0.059° (min) and 0.41° (max).

Model Resolution
Lastly, the model resolution is tested. For this analysis, the AK dataset with the WRF-model wind is
used. The model resolution both has influence on the emission quantification, as well as the source
separation ability. To test source separation, a domain with multiple sources is used. Six different
model resolutions are tested: Mr es = [0.02, 0.03, 0.04, 0.05, 0.06, 0.07]. The divergence method aims
to separate sources by using the TROPOMI data. It will not be beneficial to use model resolution
lower than the TROPOMI resolution. Therefore, a maximum resolution of 0.07° is chosen. To test
the highest possible model resolution, a model run on 0.01° is used. The output (Figure 4.22) shows
two main issues. First, since the model uses a sub-pixel oversampling routine, the input signal is
smoothed. On a resolution like 0.01°, this results in only the edges of the pixel being smoothed.
Therefore, the output shows excessive stripe-like noise.
Furthermore, since the model resolution (0.01°) is about seven times higher than the TROPOMI
resolution (≈ 0.07°), it is possible that the five-point numerical method (fourth order) is located fully
within one TROPOMI pixel. That means that for certain gridpoints, the divergence will be identified
as zero. When a plume is detected by the divergence method, the divergence shows large positive
enhancements around the start of the plume. The divergence will be slightly negative along the
direction of the plume. When using too high resolutions, however, the start of the plume will show
a large positive enhancement, alternated with zero values for the divergence. This causes noise
in the output, and decreases the signal strength around the source. Therefore, a maximum model
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resolution of 0.02° is chosen. The sensitivity analysis is used to determine whether this resolution
is feasible, or too high as well. To ensure that the model does not use a too high resolution for the
pseudo data analysis, a standard resolution of 0.04° is chosen for all sensitivity analyses.

Figure 4.22: A divergence analysis for a location in India on a extremely high model resolution (0.01°). The model output
shows excessive stripe-like noise.

Quantification Limit
Since the WRF-generated pseudo data consists of multiple tracers where the emission sources are
all identified as a separate tracer, the source strength of the sources can be manipulated by using a
multiplication factor for the specific tracer. Using this scaling, the same source can be duplicated
with different emission rates and the performance of the model can be tested for different source
strengths. This way, the quantification limit can be tested. The quantification limit is defined as the
source strength at which the divergence method obtains a successful fit from the Gaussian peak-
fitting algorithm. To test the quantification limit, a large source (> 100 Gg/a) is taken. The multi-
plication factors are taken as [0.05, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.75, 0.8, 0.9, 1.0, 1.5, 2.5, 5, 7.5],
which results in a sensitivity analysis with 16 different source strengths ranging from approximately
5 Gg/a to 750 Gg/a (dependent on original source strength).

Uncertainty Estimation
The WRF-generated pseudo data is used to estimate the uncertainty of the model, in combination
with the optimal filter settings that resulted from the sensitivity analysis. This is done by comparing
the divergence method estimate with the actual WRF emissions. The relative deviation from the
WRF emissions (%) is used. For each individual WRF location, this deviation is calculated. The
mean (x̄) of the deviation values is then calculated as:

x̄ = 1

n

n∑
i=1

xi (4.20)

where n is the number of analysed WRF locations. The standard deviation (σ) of the sample is
calculated as

σ=
√∑n

i=1 (xi − x̄)2

(n −1)
(4.21)

The uncertainty of the method is now taken as one standard deviation of the sample.
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Alternative Numerical Differentiation Methods
As stated before, the performance of the divergence method is directly related to the coverage of the
TROPOMI CO data. High TROPOMI coverage generally results in a stable output and a successful
Gaussian fit for the fitting algorithm. One disadvantage of the divergence method is the need to
calculate the first-order derivative of the flux by using a numerical differentiation method. These
methods enlarge data gaps and results in data loss near the borders of the grid. To test the influence
of different numerical differentiation methods on the grid coverage and the performance of the di-
vergence method, a sensitivity test is used.

After all optimal parameter values for the filter are determined by the sensitivity analysis, the sen-
sitivity test for the numerical methods is carried out. This test uses the optimal filter setting, in
combination with the pseudo data AK dataset. Two sensitivity tests are carried out, one for the
second-order numerical differentiation method (Equation 4.22), and one for the fourth-order nu-
merical differentiation method (Equation 4.23). The second order method will result in less data
loss due to the 2-point formula. However, it will be less accurate than the fourth-order method. In
turn, the fourth-order method will have a higher accuracy, but will result in a larger data loss. The
results from both sensitivity tests can be compared to estimate whether the increase in coverage can
compensate the decrease in accuracy.

f ′(x) = f (x +∆x)− f (x −∆x)

2∆x
(4.22)

f ′(x) = − f (x −2∆x)+8 f (x −∆x)−8 f (x +∆x)+ f (x +2∆x)

12∆x
(4.23)





5
Results

This chapter shows results from the divergence method. It starts with the results from the WRF-
generated pseudo-data. It shows the sensitivity analyses for the TROPOMI filtering and the model
filters and parameters. Furthermore, it determines the quantification limit and the uncertainty of
the divergence method. Lastly, it shows seven case studies. In these studies, results from the diver-
gence method for a specified location are compared to other quantification methods and bottom-
up inventories, as well as previous research.

5.1. Optimizing the Model Parameters
As previously described in the methodology in chapter 4, the sensitivity analysis for the pseudo data
consists of two parts. First, the appropriate filtering is chosen for the TROPOMI data. This test uses
various filter thresholds for AOT and HSL. After the filter thresholds are chosen, the sensitivity anal-
yses elaborated in chapter 4 are carried out.

For the sensitivity analyses, nine non-coastal locations from the WRF pseudo-data are used. The
locations are identified with a number (identifier), as shown in Table 5.1. The WRF locations include
a large variety of yearly emissions, ranging from 20.5 Gg/a to 117 Gg/a. Since the sensitivity analyses
are time intensive, only the Galati, Watenstedt and Duisburg domains are used for the AOT and HSL
filter thresholds analysis. For the remaining analyses, all nine locations will be used.

Table 5.1: The WRF pseudo-data locations that are used for the sensitivity analyses.

City Country Latitude Longitude Emissions [Gg/a]
Galati Romania 45.44 27.98 62.5
Gent Belgium 51.18 3.81 94.2
Kosice Slovakia 48.61 21.19 114
Dunaujvaros Hungary 46.94 18.94 20.5
Saarlouis Germany 49.35 6.75 101
Eisenhüttenstadt Germany 52.16 14.61 38.8
Watenstedt Germany 52.15 10.40 75
Bremen Germany 53.12 8.68 52.1
Duisburg Germany 51.50 6.73 117

53
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5.1.1. TROPOMI Filtering Thresholds
The values for the filtering thresholds for AOT and HSL are chosen based on two performance pa-
rameters: the average grid coverage and the emissions quantification by the Gaussian peak-fitting
algorithm. Especially the filtering on AOT results in significant data loss, as shown in Figure 5.1. Be-
low AOT= 0.1, approximately 98% of the data is filtered out. For AOT= 0.5, this is 75%. However, this
value will differ for each domain. Locations with low cloud coverage year-round, like desert regions,
will see a lower data loss due to strict AOT filter thresholds compared to locations in Scandinavian
countries, which have significant higher cloud coverage throughout the year.

Figure 5.1: Average data loss (%) for specified thresholds for AOT filtering in Gent, Belgium.

First, the average grid coverage is analysed. The coverage is taken as the average number of data en-
tries each gridpoint obtained over the full time domain. The analysis uses one year of data, with the
possibility of multiple orbits per day, and therefore has a maximum grid coverage of approximately
480 (pixels/gridpoint). Figure 5.2 shows a 94% data loss at the most strict AOT and HSL filter settings.
The least strict threshold, AOT=0.5 and HSL=5 km sees an average coverage of 76 (pixels/gridpoint).
This translates to an 84% data loss.

Figure 5.2: The average grid coverage for various AOT and HSL filter settings for all WRF locations, showing increased data
loss for stricter filter settings.
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The differences in coverage between the different thresholds are therefore significant. To determine
which setting is optimal, the emission estimates must be analysed. Ideally, the most strict filter
thresholds are used, but the stability of the output must be taken into account. Instability in the
output means that the data does not converge to the optimal solution due to low coverage, as pre-
viously described in the methodology.

When looking at the emission estimate deviations from the actual WRF emissions for different fil-
ter thresholds (Figure 5.3), no clear improvement can be seen for stricter filter settings. Duisburg
does show improvements at HSL=5 km for stricter AOT filter thresholds. However, for the same
thresholds, Galati sees a degradation in emission estimate accuracy. Furthermore, some quantifi-
cations are impossible due to low coverage, which explains some missing values in the plot. This
is mostly observed for AOT=0.4. For AOT=0.5 and HSL=5 km, the model performs reasonably well,
with estimations within 20% of the actual WRF-generated emissions. When using stricter settings,
the estimate should theoretically improve. However, due to low coverage, the Gaussian peak-fitting
algorithm results become unstable, and therefore result in a worse estimation output. Since the
divergence model performs best with the highest possible coverage and the data has sufficient sen-
sitivity for all filter thresholds, the least strict settings (AOT=0.5, HSL=5 km) are chosen. These filters
will be used for the remaining sensitivity analyses.

Figure 5.3: Emission estimates from the divergence method compared to the actual WRF emissions [%] for specified
thresholds for the AOT and HSL filtering. No clear improvement for stricter filter settings is observed.

5.1.2. Sensitivity Analyses
For all sensitivity analyses, the two locations with the lowest yearly emissions (Dunaujvaros at 20.5
Gg/a and Eisenhüttenstadt at 38.8 Gg/a) are plotted with different markers (triangular), since these
locations are below the threshold of 50 Gg/a for reasonable Gaussian peak-fitting performance.
These low-emission locations can easily distort the average quantification performance.

TROPOMI Sampling
The sensitivity analysis uses three different datasets: PW, without AK (NO AK) and with AK. This
analysis uses the WRF-model wind field and therefore should have minimal wind-induced error.
The results for the dataset analysis are shown in Figure 5.4. From the figure it can be seen that
the PW dataset performance well, with an average quantification within 15% of the actual WRF-
generated emissions. The NO AK dataset has a larger spread, possibly due to the worse coverage for
this dataset. The AK dataset has a good performance, with the exception of two outliers at +50% and
-43%. Keeping in mind that the highest outlier is one of the low-emission locations, the performance
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of the averaging kernel dataset with the previously determined TROPOMI filtering for AOT and HSL
is said to be good. In general, lower coverage decreases the accuracy of the quantification. The
lower sensitivity of the NO AK and AK datasets compared to the PW dataset results in a generally
lower quantification. The AK dataset will be used for the coming sensitivity analyses, since it is the
closest resemblance to the TROPOMI data.

Figure 5.4: The sensitivity analysis of the 9 locations (marked by colors) for the datasets, showing the best performance
for PW. The AK dataset is closest to the TROPOMI data. Sources above 50 Gg/a are marked by dots, sources below 50 Gg/a
are marked by a triangle.

Wind Field
The sensitivity analysis for the wind field input is carried out with the PW dataset to only observe
the effect of different wind fields on the output. All results are compared to the PW with WRF-model
wind, as shown in Figure 5.5. The GEOS-FP 10 m wind leads to an average underestimation of the
emissions. The ERA5 10 m wind leads to a strong underestimation. The ERA5 100 m wind has a sim-
ilar wind direction as the ERA5 10 m wind, albeit with generally a higher wind speed. Therefore, the
quantification estimate is more accurate than the one using the ERA5 10 m wind. Furthermore, the
wind speed filter (Wind SPeed filter (WSP)) improves the GEOS-FP 10 m estimate. The minimum
value of the GEOS-FP 10 m and ERA5 10 m leads to a similar estimate as the ERA5 10 m wind. The
maximum value of the previously named wind fields leads to a large spread in quantification and
generally a large overestimation. The combination of min and max from the GEOS-FP and ERA5 10
m winds are not feasible and will not be used any further in this research. The best performing wind
field is the ERA5 100 m wind.

As stated in the previous section, the wind speed filters improves the emission estimation for the
GEOS-FP 10 m wind. However, this filter is not used on the ERA5 10 m and 100 m wind. Therefore, an
additional analysis is carried out to test the performance of this filter on the previously mentioned
wind fields, as shown in Figure 5.6. It can be seen that the wind speed filter has worse performance
for the ERA5 10 m wind, possibly due to the amount of data that is filtered out since the wind field
includes many wind data points below 1 m/s. The wind speed filter improves the estimation for both
the GEOS-FP 10 m and the ERA5 100 m wind fields. Since the ERA5 100 m wind field was already
identified as the best performing, it is chosen as the main wind field input and will be further used
in the coming sensitivity analyses.
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Figure 5.5: Analysis results for varying wind field input, showing GEOS 10 m and ERA5 10 m and 100 m. A combination
of GEOS and ERA 5 10 m winds is shown by GE5, selecting the min or max value of both wind fields. A wind speed filter
(WSP) slightly improves the GEOS 10 m estimate. The best performing input is chosen as ERA5 100 m.

Figure 5.6: The additional sensitivity test for the wind speed filter for all individual wind fields.

TROPOMI Resolution

To test whether the TROPOMI resolution has an influence on the emission estimate, a resolution
filter is used. For this analysis, the AK dataset with the WRF-model wind is used. As can be seen
in Figure 5.7, both filter setting (Res < 0.3 and Res < 0.25) do not result in a clear improvement of
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the emission estimate. Due to the excessive data filtering, the divergence output becomes unstable
and the emission estimate becomes less reliable. Therefore, it is determined not to use a TROPOMI
resolution filter.

Figure 5.7: The analysis for the TROPOMI resolution filter, showing no clear improvement for both filter settings.

Model Resolution
The model resolution has influence on two factors: the ability to separate closely-spaced point
sources and the emission estimation. First, only the emission estimate is taken into account, of
which the results are shown in Figure 5.8.

Figure 5.8: Relative performance for varying model resolutions. The best preforming resolution for emission quantifica-
tion is chosen as 0.04°. For resolutions > 0.06°, not all model analyses resulted in a successful fit, which makes that these
resolutions show less results.
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For the highest resolution of 0.02°, the quantification is largely underestimated. This can be caused
by excessive noise due to a high model resolution, as previously shown in Figure 4.22 on page 50.
Furthermore, due to the high model resolution, the emission output shows less Gaussian behavior,
which results in an inaccurate fit. For lower model resolutions, the quantification accuracy im-
proves, with an optimum at 0.04°. When using lower resolutions (0.06° and 0.07°), some source
signals are not suitable for the Gaussian peak-fitting algorithm, since the divergence enhancements
are limited to only a few gridpoints. Therefore, the optimal resolution is 0.04°, with reasonable per-
formance for both 0.03° and 0.05°.

5.1.3. Multiple Source Domains
The model resolution directly influences the ability to separate closely-spaced point sources. For
the separation test, Duisburg is used. This single-source location can be combined with additional
source domains, which consists of the same grid as Duisburg, but with a different source. Since
multiple domains are included in the domain, the sources are individually identified and are shown
in Table 5.2.

Table 5.2: Additional sources for the multi-source domain sensitivity analysis.

Plant name Latitude Longitude Country Emissions [Gg/a]
Thyssenkrupp North 51.50 6.73 Germany 117
Thyssenkrupp South 51.49 6.71 Germany 7.3
Hüttenwerke 51.37 6.72 Germany 185

The Thyssenkrupp sources (N/S) are only 3.5 km apart. This makes it unlikely that the sources can
be separated by the divergence method, since both sources will often fall within the same TROPOMI
pixel. Furthermore, the difference in source strength is significant, which makes it even more un-
likely that the sources can be separated. Therefore, the Thyssenkrupp South plant is enhanced
by a factor 10, to make the sources more equal in strength and to make sure the source is above
the quantification limit. The Hüttenwerke plant is located approximately 13 km from the northern
sources. This makes it possible to separate the sources, since the sources will often fall within dif-
ferent TROPOMI pixels.

The Gaussian peak-fitting sequence is run for different model resolutions, starting at 0.02° up to
0.07°. For the highest resolution (0.02°), the source centers are approximately 7 gridpoints apart.
For the lowest resolution (0.07°), this separation distance is only 2 gridpoints. The fitting results are
shown in Figure 5.9. The figure shows four sequences for different resolutions: 0.02°, 0.03°, 0.04° and
0.07°. The fitting sequence starts at ‘Iteration 0’. This is the initial divergence output. The algorithm
fits a Gaussian (shown by the contours of the fit) in ‘Iteration 1’. The fitted Gaussian is subtracted
from the divergence map and the residual is used for ‘Iteration 2’, in which again a Gaussian is
fitted (shown by the contours). For both the model resolutions of 0.02° and 0.03°, the algorithm
successfully identifies both sources. However, for 0.04°, the algorithm identifies the signal as one
source, and ‘Iteration 2’ is not undertaken, since no further sources are identified by the algorithm.
For 0.07°, the sources can hardly be separated by eye, and the algorithm also is not able to separate
the sources. The two northern sources are not separated for any of the model runs.

As stated before, the optimal model resolution for emission quantification was found to be 0.04°,
with reasonable performance for 0.03° and 0.05°. However, for the source separation, it is desirable
to use the highest possible resolution of 0.02°, as shown in Figure 5.9. Since a trade-off between
source separation and emission quantification performance is necessary, the optimal model reso-
lution is chosen as 0.03°. This resolution has reasonable performance for both source separation
and emission quantification.



60 5. Results

Figure 5.9: The Gaussian peak-fitting sequence for different resolutions. Iteration 0 shows the initial divergence output.
Iteration 1 shows the first peak-fitting procedure. Iteration 2 shows the second peak-fitting procedure. The sources can
be separated up to 0.03 deg. Each contour line of the Gaussian fits in the subfigures represent a drop of 0.15 with respect
to the highest value of the normalized divergence data.

5.1.4. Uncertainty Estimation
To estimate the uncertainty of the method, the deviation from the actual WRF emissions for all nine
locations is used, as shown in Figure 5.10. This analysis uses the ideal model set-up as determined
in the previous sections. The figure shows the deviation from the actual WRF emissions (%) for
the different source strength of the WRF locations. There is no correlation observed between the
deviation from the WRF emissions and the source strength. The uncertainty of the model is taken
as the mean absolute error of the pseudo data analysis. However, since the sample size is only
n=9, the estimation cannot be determined reliable. However, since no additional WRF locations are
available, this dataset will be used for the calculation.
The mean absolute error of the dataset is calculated as

ε= 20.11 ≈ 20 (5.1)

Therefore, an uncertainty of 20% will be used for the analysis.

5.1.5. Detection and Quantification Limit
The WRF-generated pseudo data can also be used to test the detection and quantification limits
of the divergence method. The quantification limit analysis uses the AK dataset with WRF-model
wind. First, the detection limit in terms of source strength (Gg/a) can be determined as the ability of
the Gaussian peak-fitting algorithm to have a successful fit. Second of all, the quantification limit is
the ability of the algorithm to obtain an accurate fit and can be tested for various source strengths.
The fit is said to be accurate when the quantification value lies within the uncertainty limit of the
actual WRF-quantification. For this analysis, the Thyssenkrupp North plant (Duisburg) is used, af-
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Figure 5.10: Relative model performance for the emission estimation for all nine pseudo data locations.

ter which the source strength is varied for different analysis runs. The lowest source strength is
taken as 5.85 Gg/a, the highest is taken as 877.5 Gg/a. The results are shown in Figure 5.11. Two
source strength runs did not have a successful Gaussian fit: 5.85 Gg/a and 11.7 Gg/a. The detec-
tion limit is observed to be 23.4 Gg/a, as this is the weakest source with a successful Gaussian fit.
For simplicity purposes, this detection limit is set as 25 Gg/a. For the weakest sources (< 40 Gg/a),
the algorithm overestimates the emission quantification. The results converge to 20% underesti-
mation of the actual emissions. All source strengths above 50 Gg/a are observed to fall within the
[-20%, 20%] quantification uncertainty interval. Therefore, the quantification limit for reasonable
Gaussian peak-fitting performance is taken as 50 Gg/a, since it stays within limits of the model un-
certainty of the converging value.

Figure 5.11: Model performance for varying Source Strength (SS). The results converge after SS = 300 Gg/a. The results
are within the bounds of uncertainty after 50 Gg/a.
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5.1.6. Alternative Numerical Differentiation Methods
The results of the numerical differentiation method sensitivity tests are shown in Figure 5.12. The
fourth-order method performs better in terms of quantification estimates for 7 out of 9 locations.
The Saarlouis and Duisburg (Thyssenkrupp North) domains yield better results for the second-order
method.

Figure 5.12: Relative model performance for the emission estimation for all nine pseudo data locations for a second-order
and fourth-order numerical method. The fourth-order outperforms the second-order method for 7 out of 9 locations.

The performance of both methods can be expressed in terms of the mean and mean absolute error
of the performance factors (P f ) for all nine WRF locations. The results are shown in Table 5.3. The
mean and error are both calculated with respect to the actual WRF-emissions. The coverage is taken
as the average grid coverage in number of pixels per gridcell.

Table 5.3: Results for the sensitivity tests of the two numerical methods.

Method Mean (µ) [-] Error (ε) [-] Coverage [pixels/gridcell]
Second-order 2.7 34.7 79
Fourth-order 4.5 20.1 65.9

Averaged over all nine WRF locations, the grid coverage of the second-order method is 20% higher
compared to the fourth-order method. Both methods tend to slightly overestimate the emission.
The mean absolute error for the second-order method is 76% higher than the error of the fourth-
order method. This is a clear indication that the second-order is less accurate than the fourth-order
method.

The second-order method can be applied in case studies where there is no successful Gaussian fit
due to coverage issues for the fourth-order method. The second-order method can increase the cov-
erage, albeit with lower accuracy. However, if no fit is possible when using the fourth-order method,
a less accurate - but successful - fit, might be desirable.
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5.2. Case Studies

Using the divergence method, optimized in section 5.1, six cases are extensively studied for TROPOMI
CO data. The locations are chosen such that they vary in geographical location, seasonal coverage
and source type and strength to test the model performance in varying environments. All locations
have multiple closely spaced sources, which vary from a distance of 3 km to 50 km. The case studies
use three years of CO data (01/July/2018 - 30/June/2021) for the model test. The case studies are
sorted in order of increasing complexity, dependent on the number of emission sources, altitude
variation, coverage and type of analysis. An additional location is studied using TROPOMI methane
data. This domain is not extensively studied, but only used to test the functionality of the methane
divergence model. The case study locations and the main reason for including the domains in this
research are shown in Table 5.4.

Table 5.4: Locations for the case studies with the main reasons for including the domains in this research.

Name Country Lat Lon Main characteristics
Duisburg Germany 51.4 6.8 Two very closely spaced steel plants, in close vicinity

of large cities.
Hebei China 39.9 118.6 No a priori information about emission sources,

strong seasonal dependence for coverage.
Jharkhand India 23.0 86.1 Multiple steel plants, large surface elevation variation,

strong seasonal dependence for coverage.
Cairo Egypt 30.1 31.2 Multiple emission sources within the city of Cairo,

coverage mostly influenced by Nile delta.
Riyadh Saudi-Arabia 24.5 46.8 Multiple sources within city limits, high coverage

year-round, ability to perform a day-to-day analysis.
Wuhan China 30.5 114.2 Multiple steel plants close to the city, ability to test

influence of Covid-19 pandemic on CO emissions.
Korpezhe Turkmenistan 38.1 54.0 Multiple oil and gas facilities, good coverage,

region is extensively studied and documented.

The case study analysis consists of five steps. First, a domain is chosen. This can be done by using
known locations of emission sources or analysing a larger domain (a country as a whole) on a low
(1°) resolution and selecting a zoomed-in domain with large concentration enhancements. Second,
the CO concentration map on a 0.07° model resolution is used to verify that the domain includes
strong CO concentration enhancements and to test whether individual sources can be identified by
using a model resolution similar to the TROPOMI resolution. This lower resolution (compared to
the optimized model resolution) is used to decrease the model run time. Third, each location will
undergo the full model analysis using the filters and resolutions specified in the methodology. The
output will identify and quantify the individual point-sources in the grid. The artefact identification
analysis (subsection 4.3.3) is carried out to verify whether the output of the Gaussian peak-fitting
algorithm are emission sources. This can be done by looking at the coverage and/or individual
days to observe plumes. Next, the unknown emission sources can be identified by using satellite
imagery or databases. Lastly, emission quantification results from the divergence method can be
compared to quantification analyses of previous research and bottom-up inventories such as REAS
(Hebei and Jharkhand), E-PRTR (Duisburg), TNO (Duisburg), DACCIWA (Cairo) and EDGAR (all lo-
cations). A flowchart showing the full case study procedure is included in the appendix (Figure C.1).
An overview of all identified sources, including emission estimates and locations, can be found in
Table C.1.
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5.2.1. Duisburg, Germany
The Duisburg location is located in the west of Germany, close to the Dutch border. The location
is characterized by the river Rhine and has no significant elevation. The grid size is taken as 1.2° ×
1.2°, centered around the city of Duisburg. This specific domain is chosen since it includes three
known steel plants around the city of Duisburg. As shown in Figure 5.13, the area has large CO
concentration enhancements. In the figure, city contours of several large cities (> 500,000 inhabi-
tants) are shown. Since no correlation between urban density and CO concentration is observed, it
is concluded that all CO concentration enhancements are caused by industry.

Figure 5.13: The Duisburg area, showing the TROPOMI CO concentration (left) and the surface elevation (right) at low
resolution (0.07°), including contours of large cities. Large CO concentration enhancements in the center of the grid can
be seen.

The coordinates and emission estimates of the known steel plants are shown in the table below, as
taken from the E-PRTR [70]. As the coordinates indicate, both Thyssenkrupp plants are located close
to each other. The distance between both plants is approximately 3.5 km. Comparing this distance
to the highest TROPOMI resolution of 7 × 5.5 km, it is likely that both plants often fall within the
same TROPOMI pixel. Therefore, it is unlikely that both sources can be separated by the divergence
method. The Hüttenwerke Krupp plant is located approximately 13 km from the Thyssenkrupp
plants.

Table 5.5: Known sources in the Duisburg area. Three steel plants are identified [70].

Name Latitude Longitude Emission estimate [Gg/a]
Thyssenkrupp North 51.50 6.74 117
Thssenkrupp South 51.48 6.71 7.3
Hüttenwerke Krupp 51.37 6.72 185

To test whether divergence enhancements might be artefact induced, the coverage (Figure C.12)
and pixel vs divergence maps can be used (Figure C.13). Both figures do not indicate any coverage
issues, so it can be assumed that all divergence enhancements are source related. Since all diver-
gence enhancements can be related to known source locations, there is no need to further study the
artefact/emission source classification, as all divergence enhancements are classified as emission
sources. Now, the results of the Gaussian peak-fitting algorithm are compared to the TNO inventory
(Figure 5.14). The locations of the model results and the TNO inventory match nicely, albeit with a
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small shift in center for the Hüttenwerke plant (as compared to the location of the marker).

Figure 5.14: Emission estimates from the divergence model per gridcell for the two identified plants in Duisburg (left),
compared to estimates from the non-gridded TNO inventory for 2017 (right).

For the Duisburg location, four quantification datasets are used: (1) the divergence method results,
(2) the EDGAR inventory, (3) the TNO inventory, and (4) the quantification values as published by
the E-PRTR. The results are shown in Figure 5.15. The EDGAR inventory also includes emissions
from other sectors besides industry, whereas the other inventories in the figure only include emis-
sions from steel plants.

Figure 5.15: Quantification estimates for the Duisburg case study. The results of the divergence model are compared to
different inventories. * Results for the divergence method are shown for 01/July/2018 - 30/June/2021.

For the Thyssenkrupp N/S plant(s), the emission estimates from the inventories are within the un-
certainty of the divergence method, with the exception of the TNO inventory. The Hüttenwerke
plant, however, sees a strong underestimation compared to the inventories (TNO and E-PRTR).
Since this source has an underestimation compared to the inventory estimates, it is excepted that
the method has data loss around the southern source, which caused the center to shift and the
estimate to be lower. However, the EDGAR quantification is just outside the uncertainty of the di-
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vergence estimate. Since the inventory also includes urban emissions, it can be expected that the
emission estimate from EDGAR for industry nicely matches the divergence results. lastly, since the
emission inventories use 2017 data, it is possible that the estimates are outdated and therefore non-
matching. Concluding, the divergence has good performance for the Thyssenkrupp N/S plants in
terms of quantification and localization.

5.2.2. Hebei, China
The east of China lacks overall information about emission source locations and quantification.
Since no a priori knowledge of source locations is present, a feasible domain cannot be determined
before the analysis. Therefore, the east of China (Hebei province) is first analysed using the diver-
gence method on a low resolution (0.5°) to identify large CO concentration enhancements. The low
resolution analysing is carried out using a 10° × 10° domain centered on (38.0, 112.0). Multiple CO
concentration enhancements can be seen in the domain (Figure 5.16). The concentration enhance-
ment around (37.0, 114.5) is located around the city of Xingtai. However, since the city of Xingtai is
one of the most polluted cities in China [72], CO concentration enhancements might be the result
of diffuse urban emissions. Therefore, the Xingtai location is not chosen as domain for the high
resolution analysis. The concentration enhancement around (39.5, 118.5) is located in the less pop-
ulated Hebei region and a domain around this location is chosen (black box, Figure 5.16) for a high
resolution analysis.

Figure 5.16: The low resolution (0.5°) analysis for East-China (2020), with two main concentration enhancements over
Xingtai and Hebei. The area marked by the black box is chosen for the high resolution analysis.

The Hebei domain is located close to the capital Beijing. Since no previous research is available
for the Hebei case study, there are no known emission sources in the grid. The grid size is taken as
1.2° × 1.2°. The domain has no mountain ridges throughout the grid, but sees the surface elevation
increasing gradually from south to north (Figure C.7). The domain is densely populated and con-
tains many industrial plants, including some iron and steel plants, of which the exact locations are
not known. The domain borders the Chinese Yellow Sea in the south and sees the foothills of the
Mongolian highlands in the north, with altitudes up to 750 meters. The domain is characterized by
many rivers and lakes. The divergence model analysis shows multiple divergence enhancements in
the domain, of which the strongest is observed in the center of the grid, as shown in Figure 5.17. The
divergence output indicates multiple sources.

By using the wind rose (Figure C.9), a prediction can be made about the feasibility of the divergence
enhancements. Since the windrose indicates that the Hebei area has a dominant north-western
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Figure 5.17: The Hebei area, showing the TROPOMI CO concentration (left) and the corresponding divergence (right) at
high resolution (0.03°).

wind direction, it is expected that the CO concentration has enhancements south-east of possible
sources. From Figure 5.17, it can be seen that the divergence enhancements are located in the north-
west of CO concentration enhancements. Therefore, it can be assumed that the divergence output
is realistic, according to the windrose.

To test whether divergence enhancements might be artefact induced, the coverage (Figure C.12)
and pixel vs divergence maps can be used (Figure C.13). Both figures do not indicate any coverage
issues, so it can be assumed that all divergence enhancements are source related. To further clas-
sify the output signal in source/artefact, the individual days will be observed. In Figure 5.18, two
TROPOMI observations in early 2019 are shown. The figures shows at least four clear plumes in the
grid. Therefore, it can be concluded that the grid contains emission sources.

Figure 5.18: The Hebei area, showing the TROPOMI CO concentration for January 9th, 2019 and February 6th, 2019 at
high resolution (0.03°). The black arrows indicate the ERA5 100 m wind direction and speed. Multiple plumes can be
seen, which indicate multiple emission sources.
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Next, the Gaussian peak-fitting algorithm is used to identify and quantify the emission sources in
the grid. The algorithm identifies five sources, ranging from 1,400 Gg/a to 210 Gg/a (Figure 5.19).

Figure 5.19: The Hebei area, showing the results from the peak-fitting algorithm (left). Five sources are identified (A-E).
The emission estimates can be compared to the REAS inventory (right). It can be seen that neither the locations of the
sources nor the emission estimates match. Both emission estimates (divergence method and REAS) show estimates per
gridcell.

To verify that the TROPOMI observations from Figure 5.18 and the Gaussian peak-fitting algorithm
(Figure 5.19) actually match emission sources, the locations are observed with satellite imagery. All
five locations match a steel plants in the Hebei area (Figure C.11). The quantification estimates
are shown in Table 5.6. The sources are identified using the Global Steel Plant Tracker from Global
Energy Monitor (GEM) [73].

Table 5.6: Five identified sources for the Hebei area with the locations and emission estimates from the divergence
method using TROPOMI CO data, including estimates for iron and steel production [73].

Emission estimate Crude Crude
ID Name Lat Lon [Gg/a] steel [Mt/a] iron [Mt/a]
A Qinhuangdao Hongxing 39.66 118.89 1,300 [1,000-1,500] 2.72 3.85
B Tangshan Donghai 39.63 118.42 850 [680-1,000] 5.5 5.0
C Qian’an Liangang Yanshan 39.92 118.68 1,400 [1,100-1,600] 10.0 10.0
D Hebei Jinxi 40.21 118.22 620 [500-750] 5.0 7.4
E Tangshan Ruifeng 39.47 118.26 210 [170-250] 6.245 5.817

The quantification of the model estimate can be compared to REAS and EDGAR inventories. How-
ever, this particular area is not well documented in both databases. For EDGAR, no specific point-
sources are included in the inventory. For the REAS inventory only source (C) is included. This
source strength is estimated to be 560 Gg/a by REAS, compared to 1,400 [1,100-1,600] Gg/a by the
divergence method. Furthermore, the largest source in the south-west of the REAS grid (2,181 Gg/a)
is not identified by the divergence method, but also does not show any enhancements in the CO
concentration map. This reflects the lack of reliable bottom-up data over China and shows that the
divergence method can add valuable information there.

The Global Steel Plant Tracker does not include estimates for emissions but does include estimates
for iron and steel production, shown in megatonnes per year (Mt/a), which are based on official
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reports. From Table 5.6, there is no correlation observed between the emission estimates from the
divergence method and the iron and steel production estimates. The Qinhuangdao Hongxing (A)
plant produces approximately half the amount of iron and steel of the Tangshan Ruifeng (E) plant,
but emits 6 times as much CO per year. In Figure C.8, the difference is shown visually. Based on the
emission estimates from the divergence method, it is expected that the production estimates from
the Global Steel Plant Tracker are incorrect and/or incomplete.

The Hebei case study showed to importance of the divergence method in regions where information
about emission sources (location and quantification) is scarce. The divergence method identified
and quantified five large emission sources without any a priori information about these sources,
underlining the independence of the method.

5.2.3. Jharkhand, India
The Jharkhand domain is centered on Bokaro Steel City (23.0, 86.1), which is located in the east of
India in the Jharkhand province. The area is characterized by steel production, but also has mul-
tiple coke plants in the vicinity. In total, the Jharkhand state steel production was estimated to be
1.275 Megatonnes per year in 2017, which makes up about 12% of the total steel production of India
[74]. The grid size is set as 3° × 3° around Bokaro Steel City. With a mean elevation of 250 meters
above sea level and a maximum elevation of 850 meters within the grid, there is a large variation in
surface altitude. Furthermore, the orography is characterized by mountain ridges throughout the
grid. Towards the east of the grid, the first signs of the west-Bengal river delta can be spotted. The
rest of the grid is characterized by the Indian highlands. The grid includes two rivers: Subamarekha
river in the center and Brahmani river in the south-east of the grid. The coverage has a high seasonal
dependence due to the monsoon, with low coverage in June - October (Figure C.21, Appendix C.4).

The low-resolution CO concentration and corresponding surface elevation maps show multiple
concentration enhancements and strong elevation gradients throughout the domain (Figure 5.20).
Furthermore, the concentration map shows low CO concentration values at gridcells with high sur-
face elevation. This shows the added value of an altitude correction for the Jharkhand domain.

Figure 5.20: The Jharkhand area, showing the TROPOMI CO concentration (left) and the surface elevation (right) at low
resolution (0.07°). Multiple enhancements can be spotted.
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To further identify and quantify the emission sources, the divergence method is used. To analyse the
performance of the source identification, the output is compared to previous research by Sadavarte
and Venkataraman [75].

Table 5.7: Locations and emission estimates for five known steel plants in the Jharkhand area [75].

Name Latitude Longitude Emission estimate [Gg/a]
Rourkela 22.21 84.87 299
Durgapur 23.55 87.25 249
Bokaro 23.68 86.10 600
IISCO 23.67 86.92 87
TATA 22.79 86.20 697

To conclude whether the locations of the known sources match the model results, the emission
sources from Table 5.7 are plotted in the model output (Figure 5.21). In the concentration map, it can
be seen that the concentration enhancements are not centered around the markers. For the Bokaro
plant in the northern part of the grid, the concentration enhancement is mostly distorted towards
the east. The Durgapur plant (most eastward plant of the grid) sees enhancements mostly south
of the marker. Surprisingly, the Rourkela plant (south-west) has enhancements mostly towards the
south-west of the plant.

Figure 5.21: The Jharkhand area, showing the TROPOMI CO concentration (left) and corresponding divergence (right) at
high resolution (0.03°). The markers indicate the locations of known emission sources.

These results can be explained by the wind rose, shown in Figure C.16 in Appendix C.4. From the
windrose, it can be concluded that the full grid does not have one dominant wind direction. How-
ever, the northern part of the grid has west as the dominant wind direction, the south of the grid
has south-west as the dominant wind direction and the east part of the grid has south as the domi-
nant wind direction. This matches the transported enhancements around the emission sources, as
shown in Figure 5.21. In general, if the windrose shows a dominant wind direction for a source loca-
tion, it is expected that the CO concentration enhancement is located downwind of the dominant
wind direction, as seen from the source location.
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The divergence method identified eight sources, of which three are not previously known. Plume
observation is used to verify the unknown emission sources (Figure 5.22). Plumes can be seen
emerging from the known locations, as well as other source locations in the grid. The divergence
enhancements perfectly match the plume locations. Therefore, all identified sources are identified
as emission sources.The geographical locations of these sources are observed using satellite im-
agery, as shown in Figure C.18 in Appendix C.4. Source (A) corresponds to a cement/power plant,
which is identified as the Metaliks cement and power plant. Source location (B) is located on top of
a coal mine in the Jharkhand area. Since coal production has no clear CO emissions, it is unlikely
that the coal mine is the main source of the CO emissions. Source location (C) matches the Saluja
Steel plant.

Figure 5.22: TROPOMI CO concentration at high resolution (0.03°) for March 1st and March 21st, 2019. The black arrows
indicate the ERA5 100 m wind direction and speed. Multiple plumes can be seen, which indicates multiple sources. The
signal from the unknown location does show plume-like behavior, which indicates a source.

Since no possible emission sources are identified as artefact, the sources can be compared to inven-
tories (Figure 5.23). When looking at the REAS inventory, one location stands out. According to the
REAS inventory, a CO emission source of 121 Gg/a is located at (23.625, 85.375). However, the model
does not identify the divergence signal as a possible source. Furthermore, for the Rourkela and TATA
plant, the output of the Gaussian peak-fitting algorithm does not perfectly match the marker. This
might be due to the large physical size of the plants, especially the TATA steel plant, which stretches
out over 16 km in north-south direction. The markers are taken as the center of the plant, and there-
fore do not necessarily match the emission sources of the plants.

Figure 5.24 shows that the divergence method has similar results compared to the REAS inventory.
For the Rourkela plant, the REAS estimate is lower than EDGAR, the divergence method and Sa-
davarte and Venkataraman [75]. The TATA and Metaliks plants are hugely underestimated in the
EDGAR database, compared to the other estimates. In general, the EDGAR estimates are overesti-
mated, compared to the other estimates. Since the EDGAR emission estimates also include other
emission sectors besides industry, some other anthropogenic emissions (urban, road transport) can
be included in the gridcells matching the location of the studied steel plants. This might result in a
higher estimate for EDGAR.

To conclude the case study, it is seen that the divergence method has good performance for both
emission quantification estimations as well as source localization and separation for the Jharkhand
case study. The case study also showed the importance of altitude correction.
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Figure 5.23: The identified emission sources by the Gaussian peak-fitting algorithm (left) and the REAS inventory (right).
Three unmarked sources can be seen, which indicate unknown emission sources.

Figure 5.24: Emission quantification estimates from the divergence method, previous research by Sadavarte and
Venkataraman [75] and bottom-up inventories. * Results for the divergence method are shown for 01/July/2018 -
30/June/2021.

5.2.4. Cairo, Egypt
Cairo, the capital of Egypt, is located close to the Mediterranean sea and is characterized by the Nile
delta. The Nile delta can be seen in the elevation plot (Figure 5.25), starting in the north of the grid
and merging into the river Nile. In the south-east of the grid, the foothills of the Suez mountains can
be seen. Since the elevation difference is approximately 600 meters (between the minimum and
maximum elevation), altitude correction is relevant.
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Figure 5.25: The Cairo area, showing the TROPOMI CO concentration (left) and the surface elevation (right) at low reso-
lution (0.07°). Large CO concentration enhancements in the center of the grid can be seen.

The grid size is taken as 1.2° × 1.2°, centered around the city of Cairo. The city of Cairo includes
multiple point-sources. However, it is unlikely that these sources will be individually visible for
two reasons. Firstly, they are located close to the city. Secondly, the CO concentration enhance-
ments from possible point-sources can not be distinguished from other sources (road transport, for
instance) and the background signal coming from the city. With 9.5 million inhabitants, approxi-
mately equal in size as London, the city of Cairo is expected to have significant emissions. Urban
emissions include emissions from traffic/transport, households, and industry.
When looking at the divergence output in Figure 5.26, the prediction about the separation of the
point-sources with respect to the city background is confirmed. In the figure, one large enhance-
ment can be seen along the Nile river, which is similar to the physical layout of the city. The contours
of the city of Cairo are shown in the figure, but the area around the entire Nile river is densely pop-
ulated.

Figure 5.26: The CO concentration and corresponding divergence for the city of Cairo (outline). The city center shows
large concentration and divergence enhancements. Multiple divergence enhancements can be seen east of the Nile river
and in the south-west of the grid, possible altitude-correlated.
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When looking at the divergence map, multiple scattered enhancement blobs can be spotted towards
the south-east of the grid. These enhancements are mostly located in a mountainous desert area.
Therefore, it is expected that these enhancements are altitude related and therefore can be classified
as artefacts. This can be confirmed by the Gaussian peak-fitting algorithm in a later stage. To test
whether the domain includes coverage-induced artefacts, the coverage maps are used (Figure C.24,
Figure C.24). Extreme outliers can be seen, which indicate an artefact. Emission sources normally
have a more gradual increase in divergence. Therefore, individual days should be checked to see
whether the divergence enhancement can be related to an artefact.
The Gaussian peak-fitting algorithm localizes one source, which is identified as the city of Cairo, in-
cluding multiple power plants in the vicinity of the city. The divergence enhancements towards the
south-west and the south-east of the grid are not classified as sources, as expected. The EDGAR in-
ventory matches the output from the divergence method around the city of Cairo. However, it shows
a possible emission source in the south of the grid (23.6, 31.0) where the divergence method does not
show any enhancements. Satellite imagery does show some minor industrial plants around (29.543,
30.921). Since these sources seem to be small in size, the EDGAR inventory may overestimate these
sources. Furthermore, the EDGAR inventory does show gridcells with estimated emissions above
the detection limit of 25 Gg/a, but no gridcells show emissions above the quantification limit of 50
Gg/a.

Figure 5.27: Emission estimates from the divergence method (left) and the EDGAR inventory (right). Estimates are shown
as average emissions per gridcell.

The Gaussian peak-fitting algorithm does not identify the divergence enhancement in the south-
west of the grid as an emission source. However, this might be due to the fact that the enhancement
is located at the edge of the grid. Therefore, it is necessary to re-center the grid, and zoom in on the
divergence enhancement to determine if it should be classified as artefact or not. The re-centered
and zoomed in grid is shown in Figure 5.28. The divergence enhancement does not clearly indicate
a point source. The stretched-out form of the enhancement is artefact-like. Point-sources generally
have Gaussian shaped divergence enhancements.
To further classify the enhancement as artefact, the individual days are observed. When looking
at days with different dominant wind directions, the plume signal is expected to have a different
orientation, parallel to the dominant wind direction. Artefacts show similar CO concentration en-
hancements on days with different dominant wind directions, as can be seen in Figure 5.29. The
two days with different wind directions have close-to equal CO enhancements. This indicates a
clear artefact.
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Figure 5.28: A new model run with the possible artefact location as grid center. A non-Gaussian enhancement can be
seen in the divergence.

Figure 5.29: Two individual days (August 10th and January 14th, 2019) showing CO enhancements, but no plume-like
behaviour.

Lastly, the location of the artefact is observed with satellite imagery, as shown in Figure C.26 in
Appendix C.5. The location of the divergence enhancement is just above Qaraun Lake. The darkness
of the water, combined with the brightness of the desert sand makes it likely that this location is an
artefact. Furthermore, there are no possible emission sources (industrial plants) observed in the
vicinity of the location. Therefore, it is classified as artefact.
For artefact identification, one other method can be used. When looking at the coverage map, the
previous case studies only looked at the relation between high divergence enhancements and low
coverage. However, the low coverage problem is not necessarily common when looking at artefacts.
Since the divergence method uses a 5th percentile background correction, the artefact enhance-
ment is generally not filtered out by the background correction, since it is expected to be among the
highest values in the grid. This is confirmed in the coverage map of the artefact (Figure C.27). The
high coverage enhancement in the pixelmap is the location of the artefact, which is visible due to
the background correction inability to filter out the artefact. Since emission sources have plumes
that move with the wind, the coverage map will show enhancements in various directions, which
averages out in case the grid has various wind directions throughout the time domain. Strong en-
hancements in the coverage map therefore indicate artefacts.
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The result of the Gaussian peak-fitting algorithm can now be compared to CO inventories and other
methods. For the Cairo location, EDGAR and DACCIWA are used. Furthermore, results from 2019
from the CSF and IME methods are used (personal communication with G. Leguijt). The results
are shown in Figure 5.30. The divergence method estimate (520 [420-620] Gg/a) is similar to the
DACCIWA estimate (550 Gg/a). The divergence estimate deviates 20% from both the CSF and the
IME method. The EDGAR quantification seems to be strongly underestimated.

Figure 5.30: Emission quantification estimates for the divergence method, compared to different inventories and quan-
tification methods. A strong underestimate is seen for EDGAR, while DACCIWA and IME/CSF are within the uncertainty
of the divergence estimate. * Results for the divergence method are shown for 01/July/2018 - 30/June/2021.

Concluding, the Cairo case study has multiple expected sources within the city of Cairo, which are
not separated by the divergence method. The city and the sources are identified as one source. The
quantification of the emissions is in line with estimates from other methods (CSF/IME) and bottom-
up inventories. The divergence output showed an enhancement with partly Gaussian behaviour
which was not identified as a source by the Gaussian peak-fitting algorithm. This case study has
shown that the enhancement was related to an artefact, and therefore the algorithm successfully
ignored the enhancement. This concluded that the algorithm is successful in identifying artefacts.

5.2.5. Riyadh, Saudi-Arabia
The Riyadh domain is taken as 1.2° × 1.2° around the Riyadh city center. The city is located at 500
meters of altitude, while the grid sees elevation reaching up to 1,000 meters (Figure 5.31). The city is
located in a desert area, which indicates low cloud coverage and therefore high TROPOMI coverage
year-round. The domain has no rivers or water bodies. With over 7.5 million inhabitants, the city is
expected to have significant diffuse urban emissions.

Since the Riyadh area is also taken as case study for the NOx model (section 1.2), it is possible that
the identified sources from the NOx model also are observable in the CO model. The NOx model
identified four power plants and only one cement plant. It is unlikely that power plants are visible
in the CO model, since CO is only emitted during incomplete combustion, which should not be the
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Figure 5.31: The Riyadh area, showing the TROPOMI CO concentration (left) and the surface elevation (right) at low
resolution (0.07°). Large CO concentration enhancements in the center of the grid can be seen.

case in power plants due to the limited incomplete combustion in these plants. The cement plant in
the Riyadh area could be observable. In Figure 5.32, the divergence is shown, including the known
power and cement plants.

Figure 5.32: The city of Riyadh (outline), showing the TROPOMI CO concentration (left) and the divergence (right) at high
resolution (0.03°). The markers indicate emission sources identified by the NOx model.

None of the known emitters can be matched with enhancements in the divergence map due to the
fact that four out of five emitters represent power plants, which have very limited incomplete com-
bustion processes. The most centered marker represents the cement plant. However, this plant is
located in close vicinity of the city center. The area around the marker does show some divergence
enhancements, which is most likely due to the excessive background signal from the city of Riyadh.
Therefore, it cannot be directly related to the cement plant.

When looking at the coverage maps (Figure C.31 and Figure C.33), no artefact indications are ob-
served. The coverage map does show some enhancements towards the south of the grid, but these
are not directly related to enhancements in the concentration map. These enhancements can be
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classified as noise. Since no individual sources are identified, the Riyadh area is analysed as one
(urban) source. The emission quantification is again analysed by using the Gaussian peak-fitting
algorithm. The results are shown in Figure 5.33. The location of expected emissions from EDGAR
nicely matches with the results from the Gaussian peak-fitting algorithm. The estimate from the
divergence method is slightly higher than the EDGAR estimate, but within the uncertainty of the
model: 250 [200-300] Gg/a versus 200 Gg/a.

Figure 5.33: The resulting emissions estimate for the divergence method (left) and the EDGAR inventory estimate (right).
The divergence output perfectly matches the city outline, while the spatial allocation of emissions for EDGAR shows a
slight mismatch.

The result can be compared to other methods and inventories (Figure 5.34). Both the CSF and IME
quantification estimates fall within the uncertainty of the divergence estimate.

Figure 5.34: Emission quantification estimates for the divergence method, compared to the EDGAR emission inventory
and results from the IME/CSF quantification methods. All emission estimates are within the uncertainty of the divergence
estimate. * Results for the divergence method are shown for 01/July/2018 - 30/June/2021.
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Lastly, the daily coverage is used to determine whether the Riyadh location shows any seasonality
in terms of grid coverage. As can be seen in Figure C.33 in Appendix C.6, Riyadh has near-perfect
coverage in the summer months. During the winter months, worse coverage is observed. However,
this degradation in grid coverage is minimal. Overall, the Riyadh location has good coverage year-
round.
Since Riyadh has good coverage year-round with very little seasonal variability, this case study can
be used to observe the seasonality of the CO concentration and CO emissions in the grid for the
year 2020. Since the divergence method needs more than one day of data for a sufficient analysis,
an interval of 90 days is used as a running window. For the analysis of March 1st, the time domain
[January 16th, April 15th] is used. To analyse every day in the year separately, 366 model runs with
a total of 456 days are used (2020 is a leap year) to calculate the mean CO concentration of the time
domain, where every model run uses 90 days of data. Furthermore, the Gaussian peak-fitting al-
gorithm is used to estimate the emissions from the time domain. Using only 90 days of data may
be insufficient for the algorithm to reach a stable output. However, since Riyadh has good coverage
year-round, it is expected that each gridpoint in the grid reaches the coverage threshold of 20 data
pixels for 90 days of data. The day-to-day analysis is used to explore the limits of the divergence
model for CO, and the output of the analysis is not expected to be fully reliable for all days.

The results for the 2020 analysis are shown in Figure 5.35. Two things can be concluded from the
figure. First, the background-corrected CO concentration has a slight variation throughout 2020.
The highest concentration is observed in the spring, with a yearly low during the summer months,
which is consistent with findings from research by Té et al. [76]. This research found that CO sur-
face concentration has a maximum around February and a minimum around July. The maximum
concentration in February can mainly be explained by the Planetary Boundary Layer (PBL) height
being at its maximum and OH oxidation being at its weakest. For July, the opposite is found. Second,
the emission estimate by the divergence method clearly shows a large dip in the emission estimate
for the city of Riyadh for the months February - March. The figure shows an anti-correlation be-
tween emissions and concentration in 2020. Since CO has a lifetime of 3 months (chapter 2), the
summertime emissions can lead to the increase in CO concentration up to October.

Figure 5.35: Mean background-corrected CO concentration (red) and estimated CO emissions (blue) for Riyadh in 2020
using a 90-day running mean. The blue band shows the uncertainty for the emission estimate. The strong dip around
February might be due to coverage issues.
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The dip in emissions can have multiple explanations. First of all, the Government of Saudi-Arabia
issued a nation-wide lockdown in March 2020, which could have resulted in lower CO emissions and
concentrations in that time period [77]. Due to this lockdown, it is expected that emissions from the
city of Riyadh decrease after March 2020. Due to the lifetime of CO of 1-3 months, it is expected that
the CO concentration in the domain decreases between April-June, following a lockdown starting
in March. From the figure, it can be seen that the CO emission estimate dips early March, while the
CO concentration dips after spring, which might be lockdown-induced.
Second, city of Riyadh consists of multiple sources, ranging from individual cars to cement plants
in the vicinity of the city. However, the Gaussian peak-fitting algorithm identifies the city as one
source. Therefore, the city often does not show a plume (like the sources in Jharkhand), but has a
steady urban CO concentration due to the emissions from multiple sources. Due to this steady en-
hancement over the city of Riyadh, the divergence quantity is highly dependent on the wind speed.
Strong winds at point-sources result in the emissions being dissipated as a plume. A stronger wind
will result in a plume with a lower concentration, which averages out in the divergence calculation.
However, in case a source has a steady concentration, the wind speed has a strong influence on the
divergence around the source.
Third, the emission estimate by the peak-fitting algorithm can be influenced by low coverage. To
quantify the coverage, the average pixels per gridcell are calculated. A day with perfect coverage will
result in every gridcell having one pixel as coverage.
To explain the varying emission estimates, the grid coverage and wind speeds for the Riyadh lo-
cation are observed, as shown in Figure 5.36. The overall grid coverage is good, with the lowest
coverage in the winter months. The lowest coverage is seen to be well above the coverage limit of
20 pixels. The summer months experience the best coverage. Next, the wind speed shows minor
variations, with a maximum around April and a minimum around September. However, both the
minimum and maximum are within 1 m/s from the mean. Therefore, it is unlikely that the large
variations in emission quantification are mainly due to the varying mean wind speeds. The lower
coverage around the non-summer months might influence the performance of the Gaussian fit.
Since higher coverage is assumed to be better, the estimation in the summer months can be taken
as more reliable. The dip shown in Figure 5.35 can now be explained due to the lower grid coverage
in the winter months. Since the yearly analysis uses a running mean with a window of 90 days, the
difference in coverage between January - March and March - May might result in unreliable results.

Figure 5.36: The daily mean wind speed (gray) and grid coverage (green) for the domain of the Riyadh case study in 2020.
A strong seasonality for grid coverage can be seen. The wind speed varies slightly.
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To test the validity of the results of 2020 and to see if there are any Covid-19 related issues, the data
for 2019 is studied as well. The results are shown in Figure C.34 and Figure C.35 in Appendix C.6. The
emission plot shows a similar anti-correlation between emissions and concentration for the Riyadh
area in 2019. Furthermore, the wind speed and grid coverage have a similar pattern as the 2020 data.

To better observe the differences between the two years, a relative emission and concentration plot
is used (Figure 5.37). The figure shows that CO concentrations in 2020 were higher than in 2019 up
until March (2020). From early April, CO concentrations in 2019 were higher. This might be due
to the effect of the Covid-19 related lockdown. This imbalance shifted in early fall, when 2020 saw
higher CO concentrations. The emissions in 2020 were higher than 2019 up until early August. From
early fall, the observed emissions are closely similar, with the exception of early winter, where 2019
emissions were higher. The divergence method calculated an emission surplus of 29 Gg for 2020 as
compared to 2019.

Figure 5.37: The emission (blue) and concentration (red) difference between 2020-2019 using a 90-day running mean. A
positive value means larger emissions and higher concentrations in 2020. A dip in relative concentrations can be clearly
seen after March 2020.

Concluding, the Riyadh case study has multiple known sources in the grid, as taken from the study
by Beirle et al. [1]. However, since most of these sources are power plants, it is expected that these
sources do not turn up in the divergence map. As can be seen in Figure 5.32, none of the marked
locations are identified by divergence method. The Gaussian peak-fitting algorithm identifies one
source, which is the city of Riyadh. The emission quantification from the divergence method is
in line with other methods (IME/CSF) and the EDGAR inventory. The divergence method has good
performance in terms of emission quantification for the Riyadh case study. Furthermore, the Riyadh
case study showed that 90 days of data with good coverage is sufficient for the divergence method to
have a stable output for the Gaussian peak-fitting algorithm. The case study showed that emission
changes due to a Covid-19 lockdown are possible to detect with the divergence model.
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5.2.6. The Influence of the Covid-19 Pandemic on CO Emissions in Wuhan
To investigate the sensitivity of the divergence method to changing CO emissions, Wuhan is stud-
ied. This case study will mainly focus on the emissions estimated from the divergence model for
2019 and 2020. As the city of Wuhan went in lockdown early 2020, the steel plants in the area were
not closed down. However, due to a decrease in demand for the remainder of 2020, the production
was scaled down [78]. Therefore, it is expected that the divergence method will detect CO emissions
from steel plants in the Wuhan area for both 2019 and 2020, albeit with a lower estimate for 2020.

The CO concentration and divergence maps (Figure 5.38) show three possible emissions sources,
which match the locations of known steel plants in the area. The plants are identified as the Qinshan
plant, the Echeng plant and the Huangshi plant. All three plants belong to the Wuhan Iron and Steel
Corporation (WISCO), which was ranked 11th in the 2015 world raking by volume [79].

Figure 5.38: The Wuhan area, showing the concentration map (left) and the corresponding divergence map (right) with
the contours of the city of Wuhan (centered) and smaller lakes. Three individual sources can be seen.

The results from the Gaussian peak-fitting algorithm can be compared to the REAS inventory, for
which the emission estimates are shown in Industry and Total (Figure 5.39). According to REAS, the
majority of the CO emissions in the Wuhan region are due to industry. The divergence method re-
sults in a lower estimate than the REAS inventory, unlike the Jharkhand case where the divergence
method and REAS were consistent.

The REAS inventory is using estimates from the year 2015. The Chinese government has been reduc-
ing steel production nation-wide since 2016 [80]. Since the divergence method uses data from 2019
and 2020, it is likely that the plants emitted less CO due to limited steel production as compared to
the year 2015. Furthermore, WISCO cut production of iron and steel by a total of 4.42 million metric
tonnes after heavy net losses in 2015. The lower emission estimates from the divergence model as
compared to the REAS inventory can be explained due to this production cut [81].

Furthermore, Figure 5.39 shows that the emission estimates for 2019 are higher for the Qingshan
and Huangshi plants as compared to the year 2020. However, the quantifications are within the
uncertainty bounds for all estimates. The mean emissions for 2020 are 13% lower than the mean
emissions for 2019. The emission estimate for the Qinshan plant is 21% lower than the estimate
for 2019. Since this is on the outer edge of the uncertainty interval, it is likely that the plant actu-
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Figure 5.39: Emission quantification estimates for different sources in the Wuhan area for 2019 and 2020 (divergence
method) and 2015 (REAS). The REAS estimates are divided into Industry and Total. The divergence estimates are signifi-
cantly lower than the REAS estimates.

ally emitted less CO in 2020. The divergence method results confirm that the plants have not been
closed in the year 2020. Also, it is likely that the plants produced less steel in 2020 due to a decrease
in demand due to the ongoing Covid-19 pandemic.

Concluding, the divergence method successfully confirmed that the steel plants in the Wuhan area
were not, or only partly, shut down during the lockdown in 2020. It showed a stable output for only
one year of data, which confirms that yearly emission analyses for point-sources are feasible.

5.2.7. Testing the Methane Model for Korpezhe, Turkmenistan
To verify whether the divergence model is functional for methane, a domain in Turkmenistan is
analysed. Since the methane model is not optimized and tuned, the model uses settings from
the CO model: ERA5 100 m for wind input, a background correction, no altitude correction and
an AOT filter τ < 0.1 [82]. The location is chosen since the Korpezhe oil field is extensively stud-
ied. The case study is used to test whether the methane model is functional and is able to identify
methane sources without being optimized. The locations of identified sources can then be used as
input for high-resolution instruments, such as Hyperspectral PRecursor of the Application Mission
(PRISMA). PRISMA has a higher resolution than TROPOMI (30 × 30 m) but a single scene size of 30
× 30 km, and therefore can be guided by TROPOMI observations to select a proper scene.

The domain for the analysis is chosen as 1.5° × 1.5°, centered at (38.1, 54.0). In Figure 5.40, the
divergence model output is shown. In the concentration map (left), the high background value of
methane due to the long lifetime in the atmosphere can be clearly seen. When looking at the CO case
studies, concentration enhancements of 1.5 g m−2 with a background of 1 g m−2 were often seen.
For methane, similar concentration enhancements are seen (0.5 g m−2), but with a background of
10 g m−2. This lower relative enhancement (50% for CO versus 5% for methane) makes methane
more challenging for a divergence analysis, as compared to CO.

The Gaussian peak-fitting algorithm identifies three possible sources in the divergence map (Fig-
ure 5.40). However, since the algorithm was not able to successfully fit a Gaussian to the data, it
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is not known whether the divergence enhancements can be identified as emission sources. This
can be explained due to the lack of Gaussian behavior of the divergence enhancements. When
using previous research about emission sources in the Korpezhe region, the sources can be iden-
tified. The enhancements in the divergence map all match known emission sources from research
by Irakulis-Loitxate et al. [82]. The locations, as identified by the divergence method, are shown in
Table 5.8.

Figure 5.40: The Korpezhe region (Turkmenistan-West), showing methane concentration (left) and the corresponding
divergence (right) for 2019 and 2020. Since no sources are quantified by the Gaussian peak-fitting algorithm, known
locations of emission sources are shown by ‘×’ [82].

Table 5.8: Three methane emission sources as localized by the divergence method (lat, lon). Since the model was not able
to successfully fit a Gaussian to the data, no emission estimates are included. The sources are identified using research
from Irakulis-Loitxate et al. [82].

Field Latitude Longitude Source type Number of sources
Korpeje 38.48 54.19 Ground flare 7
Gamyshlja Gunorta 38.37 54.06 Pit flare 2
Keymir 37.93 53.92 Ground flare/pipeline 3

To verify whether the divergence method can be used to guide high-resolution remote-sensing in-
struments, PRISMA observations are used around one identified source location (38.48, 54.19). A
clear plume is detected in 2020 (Figure 5.41), being emitted from a methane pipeline in the Kor-
pezhe region (personal communication with P. Bijl). The output is plume-masked, which results in
only the plume being visible. The methane background is filtered out. This result shows the added
value of the divergence method in combination with high-resolution instruments for methane. Fur-
thermore, it can be concluded that the methane model is functional in terms of identifying diver-
gence enhancements, but the Gaussian peak-fitting algorithm is not able to detect all emission
sources based on these enhancements. The output can be improved by optimizing the methane
model in a similar fashion as the CO model.
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Figure 5.41: A PRISMA methane observation on July 21st, 2020, showing a clear plume from a ground flare at (38.56,
54.20). The red arrow denotes the GEOS-FP 10 m wind direction (personal communication with P. Bijl).

5.2.8. Conclusions from Case Studies
The case studies are used to test the performance of the divergence method with TROPOMI data
on various locations around the world, and can therefore be used to answer the research question
(section 3.2). In Table 5.9, the main findings from each case study are shown, which are used in
chapter 6 to conclude whether the research question has been answered.

Table 5.9: The case studies with demonstrated performance conclusions.

Name Country Conclusions from case studies
Duisburg Germany Source separation up to 13 km in distance demonstrated,

quantification results in accordance with inventories.
Hebei China Shown the value of the divergence method in regions like China,

where limited information about sources is available.
Jharkhand India Performance of altitude correction demonstrated,

quantification results in accordance with inventories.
Cairo Egypt Successful artefact identification,

cities can be identified as a single source.
Riyadh Saudi-Arabia Ability to perform a day-to-day analysis demonstrated,

all inventory/quantification estimates within uncertainty of model.
Wuhan China Ability to compare yearly emissions,

lower CO emissions in Wuhan in 2019/2020 compared to 2015.
Korpezhe Turkmenistan Divergence model for methane is functional, divergence method

can be used to guide high resolution instruments.





6
Conclusion

The main research question of this thesis, as introduced in section 3.2, is:

"How can the CTM-independent emission quantification and localization method for
NO2 by Beirle et al. [1] be adapted for carbon monoxide so it can be used for identifi-
cation of closely-spaced emission sources and how can this model be optimized and
utilized?”

It can be concluded that the research question for this research has been answered. A fully function-
ing model for CO and methane has been developed, where the CO model is fully optimized using
pseudo data. It is concluded that the model is able to successfully identify and separate closely-
spaced emission sources. The sub-questions are answered below.

The three trace gases (NOx, CO and methane) are different in mixing ratio and lifetime. The short
lifetime for NOx mainly resulted in a low global background mixing ratio (compared to CO and
methane) with strong enhancements over emission sources. The corresponding divergence of these
enhancements is found to be large, which results in a strong output in the divergence map. This
strong signal makes it fairly easy for the Gaussian peak-fitting algorithm to detect sources. The
lower enhancements for CO make that the CO divergence model experiences more trouble in iden-
tifying the source. However, even though the divergence map shows a weaker output, the Gaussian
peak-fitting algorithm is still able to identify emission sources. Furthermore, the higher background
for CO results in the CO model needing a background and altitude correction. Lastly, the CO model
uses a land-mask filter, since CO measurements above waterbodies are hard to interpret.
The combination of large enhancements for the NOx model and uncertainties in the wind direc-
tion of the ERA5 data make that the NOx model’s main error source is stripes in the divergence.
This decreases the signal-to-noise ratio of the divergence output and leads to erroneous divergence
values. Furthermore, it leads to an incorrect emission estimate. The case studies showed that the
main error source for the CO model is the inaccuracies in altitude correction. These inaccuracies
lead to artefacts in the divergence output. Lastly, the CO model showed noise due to stripes in the
divergence. However, this is found not to be as significant as for the NOx model, due to the lower
enhancements of CO.

The method by Beirle et al. [1] has two main error sources: (1) inaccuracies due to the numerical
differentiation method, and (2) inaccuracies due to the Gaussian peak-fitting algorithm. The algo-
rithm that Beirle uses results in errors due to the many ways to fit a curve to data. The algorithm
uses bounds for width and center to ensure a peak-fitting procedure. However, this decreases the

87



88 6. Conclusion

accuracy of the fit since it often leads to an overestimation of the data. Since the derivative of the
flux can only be numerically estimated, an error for the flux calculation cannot be prevented.
Uncertainties in the meteo data consist of two parts: uncertainties in the wind speed and uncertain-
ties imatch n the wind direction. If the direction of a plume does not match the direction of the wind,
this results in a stripe-like pattern in the divergence output. This erroneous stripe pattern influences
the signal-to-noise ratio of the divergence, which decreases the performance of the Gaussian peak-
fitting algorithm. Uncertainties in the wind speed result in erroneous emission quantifications. The
meteo data is especially uncertain below 1 m/s wind speed. Therefore, these values are filtered out
by the model. Wind speeds above 10 m/s lead to broken-up plumes, which causes dipoles in the
divergence. Therefore, these values are also filtered out.

The performance of the model is tested by using pseudo data, generated by the WRF-chem CTM.
The emission estimate from the divergence method using the pseudo data as input can be com-
pared to the actual emissions that were used in generating the pseudo data. A sensitivity analysis
is used to test the performance of the model for different filter settings, after which the optimal
settings can be selected. This resulted in an optimal model. The sensitivity analysis resulted in six
conclusions. (1) A filter on aerosol optical thickness AOT<0.5 must be used. (2) A filter on height
scatting layer HSL<5 km must be used. (3) The optimal model resolution for emission quantifica-
tion is 0.04°. (4) The optimal model resolution for source separation is 0.02°. (5) The optimal wind
field is ERA5 100 m with a wind speed filter on <1 and >10 m/s, and (6) a filter on TROPOMI resolu-
tion is not included, since it does not improve the performance of the model.
The model resolution has influence on two main aspects of this research: the ability to separate
closely-space emission sources, and the quantification of these sources. A sensitivity analysis is
used to test the performance of different model resolutions on the emission quantification. It is
concluded that the optimal resolution for emission quantification is 0.04°, which is higher than the
TROPOMI resolution. Second, a test for the ability to separate closely-spaced emission sources re-
sulted in the conclusion that the source separation performance is directly related to the model
resolution. The model performs best for the highest possible model resolution, which was found to
be 0.02°. Therefore, the optimal resolution for both source separation and emission quantification
is found to be 0.03°.
The pseudo data analysis concluded that worse coverage results in a worse performance for the di-
vergence method. The near-perfect coverage for NOx makes that the divergence model has a stable
output for a limited number of data days. Influence of coverage is mainly related to the number
of data days that are needed for the divergence to obtain a stable output. For the CO model, the
lower coverage (compared to NOx) resulted in the model needing at least 20 individual days with
high coverage to obtain a stable signal in the divergence map. The case studies showed that the
coverage of CO has a large seasonal dependence. This makes that quarterly (or monthly) analyses
of the divergence data are infeasible, simply because the coverage for such a limited time interval
is insufficient. The Riyadh case study showed that a period of 90 days is sufficient. For the analysis
the have a stable output, however, this 90-day period does need to include at least 20 high coverage
days, which is the case for the Riyadh study. From this, it can be concluded that for worse-coverage
locations, even more days need to be used for a satisfying result.
To estimate the uncertainty of the model, the pseudo data with the optimal model parameters is
used. This test showed that the model has a slight overestimation for the emission quantification,
with a standard deviation of 20%. Therefore, the deviation of 20% is used as uncertainty for the
model.
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Two numerical methods are tested. The fourth-order central finite difference methods results in
lower grid coverage, but is more accurate. The second-order central finite difference method re-
sults in better grid coverage, but with lower accuracy. It is concluded that the fourth-order method
is preferable due to the better accuracy. However, for low-coverage domains, the second-order
method is preferable. A domain is said to be low-coverage if the Gaussian peak-fitting algorithm
does not result in a successful fit due to coverage issues.

From the case studies, it is concluded that the Gaussian peak-fitting algorithm performed well in
identifying individual emission sources. The pseudo data analysis showed that the quantification
limit for accurate emission estimations is 50 Gg/yr, which makes it able to detect a large num-
ber of emission sources world-wide. The algorithm does, however, detect artefacts in rare cases.
Therefore, it is necessary to check the geographical locations of identified sources with emission
inventories and/or satellite imagery. Furthermore, the case studies demonstrated that the Gaussian
peak-fitting algorithm can separate sources up to 13 km in distance. When translating this to the
TROPOMI pixel resolution, this would be equal to approximately 2 pixels in distance. Therefore,
it is concluded that the divergence method, in combination with the Gaussian peak-fitting algo-
rithm, performs very well. Lastly, the divergence method successfully identified five large emission
sources in the Hebei region without any a priori information on possible source locations, showing
the added value of the divergence method in regions where limited information on emission source
locations and quantifications is available.

This thesis successfully developed and optimized a divergence model for carbon monoxide. The
use of this model, in combination with TROPOMI atmospheric trace gas measurements, can be an
effective tool in climate change mitigation. With the rising global mean temperature due to increas-
ing greenhouse gas and air pollutant emissions, it gets increasingly important to accurately quantify
and localize emission sources, as the significant reduction of these emissions can be the decisive ac-
tion in slowing and ultimately reversing the process of global warming.





7
Recommendations

From the report, it is concluded that the research objective has been met. However, the research
showed imperfections in the model and the results showed promising future applications for the
divergence method. This chapter describes the recommendations for future research and the rec-
ommendations for possible applications, which have not been included in this research.

7.1. Recommendations for Future Research
The divergence method uses an altitude correction to correct for the correlation between CO con-
centration and surface elevation. This correction procedure uses the CO concentration at different
surface altitudes for individual days, after which linear regression is used to find a correction factor.
To include seasonality in this factor, a sine function is fitted to the individual daily correction fac-
tors. As the case studies showed, this correction improves the divergence output. However, as the
Jharkhand case study showed, the correction does not fully solve the problem. The domain showed
divergence enhancements that could be related to altitude differences. The seasonality plots of
the altitude correction factor showed large variations between the daily altitude correction factors.
Therefore, it is recommended to improve the linear regression procedure, to decrease the variation
in daily correction factors. This will also improve the seasonality fit, which increases the accuracy of
the altitude correction.
Currently, the method requires that every new grid location first needs a separate model run to
determine the altitude correction factors. This is due to the fact that there is no global altitude
correction map for CO. As this has previously been done by Chen [83], it is recommended to design
a similar map for CO. This will decrease the workload for the divergence model and will allow the
possibility to make a global CO emission map by using the divergence method.
The divergence method uses a Gaussian for the peak-fitting algorithm. This research concluded that
the Gaussian fit is robust for the identification of emission sources. However, this research did show
an overfit when using the Gaussian for many case study locations. Therefore, it is recommended to
research other methods. Two suitable options for peak fitting are the Lorentzian and the Voigt func-
tion. Since the Gaussian has a limit in separating point-sources due to the width of the Gaussian,
the Lorentzian function might also be better performing in separating closely-spaced point-sources,
due to the steeper slope of the Lorentzian function.
The divergence method currently researched two numerical differentiation methods: the second-
order and fourth-order central finite difference. However, no combination of numerical methods
is investigated. To improve grid coverage, a combination of forward and backward Euler methods
can be used, in combination with the central finite difference methods. This will be feasible in low-
coverage locations, where grid coverage outweighs model accuracy.
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This research used three different wind fields for the analysis: GEOS-FP 10 m, ERA5 10 m and ERA5
100 m (altitude) winds. However, it is recommended for future research to investigate the perfor-
mance of the model for different wind altitudes, especially the 300 m and 450 m winds. Since the
divergence method mainly is concerned about the initial start location of a plume, the 10 m and 100
m are viable options. However, plumes can reach higher than 100 m in the atmosphere. Therefore,
it must be investigated how different wind altitudes relate to noise in the grid, as well as how the
different wind fields perform in source identification.
The CO model is tuned by using WRF-generated pseudo data. However, only one domain included
closely-spaced point sources. The WRF pseudo data resulted in only nine feasible analysis loca-
tions. Therefore, it is recommended to tune the divergence model with a lager number of pseudo
data locations, as well as using locations that vary in coverage, source strength, orography and cli-
mate. This makes the pseudo data analysis more robust and the conclusions from the analysis more
reliable.

The CO model is fully tested and optimized, after which it is used to research six case studies.
The methane model, however, is fully functional but not optimized. The functionality is tested by
analysing a domain in Turkmenistan. It is recommended that future research will investigate the
need for albedo and aerosol corrections (similar to the CO altitude correction) for the methane di-
vergence model. Furthermore, the methane model needs to be extensively tested and optimized in
a similar manner as the CO model. This can be done by using pseudo data and various sensitivity
analyses to test the model performance for different model settings.

7.2. Recommendations for Applications
Since the divergence method is able to identify, quantify and separate point-sources, it can be used
to build an inventory of emission sources. With TROPOMI’s daily global coverage, the divergence
method can be used to establish a world-wide inventory of emission sources. Since the divergence
method has a run time of approximately 23 minutes for a year of CO data using a regular 40 × 40 grid
on a 4-core computer, many domains can rapidly be analysed. When using a supercomputer, like
Snellius (4,608 cores), a similar grid can be analysed in under a second. This opens up possibilities
of rapidly analysing world-wide grids. As the case studies pointed out, the locations of estimated
emissions in the inventories (especially EDGAR and REAS in China) are not always correct. Fur-
thermore, many sources in China were not included in the databases. Therefore, the divergence
method can help identifying missing sources, and can be used to obtain an order of magnitude of
emissions of these sources. The divergence method can be used to tune the bottom-up inventories,
as is done in this research for the case studies. Since the divergence method can use a large variation
of grid sizes, it can be used to analyse the full globe for CO emissions. Therefore, it is recommended
that future research investigates the ability of the divergence method to run large grids, for instance
continents, in one model run.
As mentioned in the introduction, the rising temperatures on Earth make it increasingly important
to accurately monitor and control the emission sources of greenhouse gases and other pollutants.
The divergence method can improve the process of monitoring global emissions. Therefore, the
divergence method can play an important role in climate change mitigation. The method can be
combined with high-resolution instruments, for instance the PRISMA instrument. The divergence
method is able to identify large grids of emissions, which can be used to guide the high resolu-
tion instruments, which have a higher spatial resolution (up to 30m2) but a smaller spatial domain
(around 30 km2). This low-high resolution instrument combination has previously been researched
by Varon et al. [84] for methane. This research recommends to investigate the possibility of com-
bining the TROPOMI divergence method with high resolution CO instruments.



Data Availability

TROPOMI CO data are available at https://s5phub.copernicus.eu/dhus/#/home.
TROPOMI CH4 data are available at https://ftp.sron.nl/open-access-data-2/TROPOMI/tropomi/
ch4/14_14_Lorente_et_al_2020_AMTD/.

GEOS-FP wind data can be downloaded at gmao.gsfc.nasa.gov/GMAO_products.
ECMWF ERA5 wind data can be downloaded at https://cds.climate.copernicus.eu.

EDGAR v5.0 emissions are available at edgar.jrc.ec.europa.eu/overview.php?v=50_GHG.
REAS v3.2 emissions are available at https://www.nies.go.jp/REAS/index.html#data%20sets.
E-PRTR emissions are available at https://industry.eea.europa.eu/download.
TNO emissions are available at https://atmosphere.copernicus.eu/catalogue#/.
DACCIWA emissions are available at http://baobab.sedoo.fr/DACCIWA/.

The developed models and model output are available upon request via email:
L.R.Foorthuis@sron.nl / L.R.Foorthuis@gmail.com (author) or
J.D.Maasakkers@sron.nl (supervisor)
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A
Flowchart for the Divergence Method

Figure A.1: Flowchart for the divergence method.
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B
WRF Pseudo-data Locations

Table B.1: All locations included in the WRF-chem pseudo data. Only non-coastal domains are used for the analysis.

Identifier Latitude Longitude Emissions [Gg/yr]
11 45.437668 27.977934 62.5
13 51.176716 3.8143601 94.2
21 40.516666 17.2 68.5
28 65.56349 22.20601 8.69
30 51.5679 -3.75946 123.0
37 46.943314 18.940529 20.5
42 49.357174 6.754137 101.0
55 52.154766 10.403075 75.0
59 43.45 4.9 74.8
12 52.47656 4.59217 50.8
20 45.61722 13.766944 5.16
27 47.03378 15.067806 71.1
29 53.5812 -0.620021 68.0
36 48.617783 21.198324 114.0
39 43.55611 -5.91113 89.8
45 52.16614 14.617682 38.8
56 53.12494 8.6867285 52.1
61 51.03 2.36 164.0
91 51.50369 6.7359076 117.0
92 51.485516 6.7091227 7.3
93 49.795868 18.305779 50.4
95 50.080334 20.092361 8.66
96 50.34338 19.281864 137.0

103





C
Case Studies

This section shows the procedure for the case study analysis, the identified emission sources and
additional figures that are the result of the case studies.

Figure C.1: The case study procedure, showing all necessary steps to study a location.
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C.1. Identified sources

Table C.1: Identified emission sources by the divergence method for selected case studies

Case study Source name Source type Lat Lon Emission quantification [Gg/a]
Duisburg Thyssenkrupp N/S Industrial 51.49 6.73 160 [130-190]
Duisburg Hïttenwerke Industrial 51.37 6.72 90 [70-110]
Hebei Qinhuangdao Hongxing Industrial 39.66 118.89 1,300 [1,000-1,500]
Hebei Tangshan Donghai Industrial 39.63 118.42 850 [680-1,000]
Hebei Qian’an Liang Yanshan Industrial 39.92 118.68 1,400 [1,100-1,600]
Hebei Hebei Jinxi Industrial 40.21 118.22 620 [500-750]
Hebei Tangshan Ruifeng Industrial 39.47 118.25 210 [170-250]
Jharkhand Rourkela Industrial 22.21 84.87 280 [220 - 330]
Jharkhand Durgapur Industrial 23.55 87.25 400 [320-480]
Jharkhand Bokaro Industrial 23.68 86.10 390 [310-470]
Jharkhand IISCO Industrial 23.67 86.92 260 [210-310]
Jharkhand TATA Industrial 22.79 86.20 450 [360-540]
Jharkhand Metaliks Industrial 22.38 87.28 120 [100-140]
Jharkhand Unknown B Unknown 23.80 86.38 740 [600-900]
Jharkhand Saluja Industrial 24.14 86.34 190 [150-230]
Cairo Cairo Urban 30.04 31.24 520 [420-620]
Riyadh Riyadh Urban 24.61 46.72 250 [200-300]

Wuhan Qingshan Industrial 30.64 114.46
540 [430-650] (2019)
450 [360-540] (2020)

Wuhan Echeng Industrial 30.40 114.86
270 [220-320] (2019)
290 [230-350] (2020)

Wuhan Huangshi Industrial 30.07 114.92
130 [100-160] (2019)
100 [80-120] (2020)
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C.2. Duisburg, Germany

Figure C.2: Wind rose for the Duisburg area, showing wind direction and speed.

Figure C.3: The different latitudinal and longitudinal wind speeds for the Duisburg area. The ’+’ markers indicate outliers.
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Figure C.4: Average grid coverage for the Duisburg area. The coverage is a shown as the average TROPOMI pixels used for
every gridcell for both the concentration and the divergence. The percentage above the divergence pixelmap indicates
the data loss due to the numerical derivative.

Figure C.5: Divergence and numpix values for every gridpoint. High divergence at low numpix indicates an artefact. No
artefacts are observed.
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Figure C.6: Average grid coverage for the full time domain. The coverage is a percentage of the gridpoints with a value for
the concentration. The domain has reasonable coverage year-round.



110 C. Case Studies

C.3. Hebei, China

Figure C.7: The Hebei area, showing the TROPOMI CO concentration (left) and the surface elevation (right) at low reso-
lution (0.07°). Multiple concentration enhancements can be spotted.

Figure C.8: Emission estimates (red) from the divergence method for the five plants in Hebei versus the crude iron and
steel production for 2020 (blue) [73].
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Figure C.9: Wind rose for the Hebei area, showing wind direction and speed.

Figure C.10: The different latitudinal and longitudinal wind speeds for the Hebei area. The ’+’ markers indicate outliers.
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Figure C.11: The five resulting sources from the Hebei model run. All location match a steel/power plant in the Hebei
area. Images are taken from Bing maps.

Figure C.12: Average grid coverage for the Hebei area. The coverage is a shown as the average TROPOMI pixels used for
every gridcell for both the concentration and the divergence. The percentage above the divergence pixelmap indicates
the data loss due to the numerical derivative.
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Figure C.13: Divergence and numpix values for every gridpoint. High divergence at low numpix indicates an artefact. No
artefacts are identified.
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Figure C.14: Average grid coverage for the full time domain. The coverage is a percentage of the gridpoints with a value
for the concentration. The monsoon season with high cloud coverage can be clearly seen during the summer months.
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C.4. Jharkhand, India

Figure C.15: The Jharkhand area, showing the CO concentration (left) and the divergence (right) at high resolution (0.03°)
without altitude correction. The markers indicate the locations of known emission sources. Multiple altitude-induced
artefacts can be spotted.

Figure C.16: Wind rose for the Jharkhand area, showing wind direction and speed.
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Figure C.17: The different latitudinal and longitudinal wind speeds for the Jharkhand area. The ’+’ markers indicate
outliers.

Figure C.18: The two unknown locations from the Jharkhand model run. (A) is identified as the Metaliks cement and
power plant. (B) is still unidentified. (C) is identified as the Saluja steel plant. Images are taken from Bing maps.
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Figure C.19: Average grid coverage for the Jharkhand area. The coverage is a shown as the average TROPOMI pixels used
for every gridcell for both the concentration and the divergence. The percentage above the divergence pixelmap indicates
the data loss due to the numerical derivative.

Figure C.20: Divergence and numpix values for every gridpoint. High divergence at low numpix indicates an artefact. No
artefact indicates are observed.
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Figure C.21: Average grid coverage for the full time domain. The coverage is a percentage of the gridpoints with a value
for the concentration. The monsoon season with high cloud coverage can be clearly seen during the summer months.
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C.5. Cairo, Egypt

Figure C.22: Wind rose for the Cairo area, showing wind direction and speed.

Figure C.23: The different latitudinal and longitudinal wind speeds for the Cairo area. The ’+’ markers indicate outliers.
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Figure C.24: Average grid coverage for the Cairo area. The coverage is a shown as the average TROPOMI pixels used for
every gridcell for both the concentration and the divergence. The percentage above the divergence pixelmap indicates
the data loss due to the numerical derivative.

Figure C.25: Divergence and numpix values for every gridpoint. The isolated large negative divergence values around
300-350 might indicate an artefact.
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Figure C.26: The location of the artefact, as identified by the divergence method.

Figure C.27: The numpix map for the artefact location. A clear numpix enhancement can be seen in the center of the grid.
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Figure C.28: Average grid coverage for the full time domain. The coverage is a percentage of the gridpoints with a value
for the concentration. The grid has low coverage during the winter months, with high coverage in the summer.
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C.6. Riyadh, Saudi-Arabia

Figure C.29: Wind rose for the Riyadh area, showing wind direction and speed.

Figure C.30: The different latitudinal and longitudinal wind speeds for the Riyadh area. The ’+’ markers indicate outliers.



124 C. Case Studies

Figure C.31: Average grid coverage for the Riyadh area. The coverage is a shown as the average TROPOMI pixels used for
every gridcell for both the concentration and the divergence. The percentage above the divergence pixelmap indicates
the data loss due to the numerical derivative.

Figure C.32: Divergence and numpix values for every gridpoint. High divergence at low numpix indicates an artefact.
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Figure C.33: Average grid coverage for the full time domain. The coverage is a percentage of the gridpoints with a value
for the concentration. The domain has good coverage year-round.
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Figure C.34: Mean background-corrected CO concentration (red) and estimated CO emissions (blue) for Riyadh in 2019
using a 90-day running mean. The blue band shows the uncertainty for the emission estimation.

Figure C.35: The average wind speeds and grid coverage for the Riyadh 2019 analysis. A strong seasonality for grid cover-
age can be seen. The average wind speed only slightly differs.
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