

Delft University of Technology

A systems theoretical perspective on data-driven modeling and simulation

Huang, Y; Seck, MD; Verbraeck, A

Publication date
2014
Document Version
Accepted author manuscript
Published in
Proceedings of the 13th International Conference on Modelling & Applied Simulation

Citation (APA)
Huang, Y., Seck, MD., & Verbraeck, A. (2014). A systems theoretical perspective on data-driven modeling
and simulation. In A. Bruzzone, F. Felice, M. Massei, Y. Merkuryev, A. Solis, & G. Zacharewicz (Eds.),
Proceedings of the 13th International Conference on Modelling & Applied Simulation (pp. 95-102). Curran
Associates, Inc..
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

A SYSTEMS THEORETICAL PERSPECTIVE
ON DATA-DRIVEN MODELING AND SIMULATION

Yilin Huang(a), Mamadou D. Seck(b), Alexander Verbraeck(a)

(a) Systems Engineering and Simulation, Delft University of Technology
(b) Engineering Management and Systems Engineering, Old Dominion University

(a) y.huang@tudelft.nl, a.verbraeck@tudelft.nl (b) mseck@odu.edu

ABSTRACT
This paper discusses Data-Driven Modeling and
Simulation (DDM&S) from a systems theoretical
viewpoint. The focus is on understanding Systems
Theory in relation with Modeling and Simulation
(M&S) and how data may convey information about a
system. Such an understanding could help formalizing
the transformation process from data to systems
knowledge and in turn offers a possibility to automate
the process. In DDM&S, a simulation environment
should have the ability to correctly interpret the data
provided, extract useful information and automatically
incorporate it into the simulation model so that changes
in data may change the model. This flexibility could be
achieved by representing the system not as a monolithic
whole but as a composition of interrelated parts, and by
the support of intelligent data analysis and model
transformation algorithms. An example of automatic
model generation is given to illustrate the concept.

Keywords: data-driven, modeling and simulation,
systems theory, model transformation

1. TOWARDS DATA-DRIVEN MODELING

AND SIMULATION
The role of data in Modeling and Simulation (M&S) is
becoming increasingly important along with the
advances in data collection and storage technologies.
Despite the discussions about input/output data analysis
in literature, little is said about more comprehensive use
of data in the M&S process. Data that can be useful for
M&S is not limited to measurements or observations
from real systems but can also comprise data that is
generated from computer-aided tools such as Computer-
Aided Design, Engineering and Geographic Information
Systems. Data may be used for different purposes such
as model construction, configuration and calibration.
Fully utilize data in M&S could not only benefit the
M&S process but also better integrate M&S with its
applications such as design, engineering and training.

Data-Driven is not a new term in M&S but its
earlier meaning differs from how it is understood now.
Data-driven simulators were once those that allowed
users to build models without programming knowledge
(Ekere & Hannam, 1989; O'Keefe & Haddock, 1991;
Pidd, 1992). Those programs accepted front-end entry
data such as flow diagram or GUI input, which have

been used since the 1950s. This is not how we conceive
of Data-Driven Modeling and Simulation (DDM&S)
nowadays. DDM&S discussed in this paper refers to
M&S processes where data is used to automatically
define, specify and/or modify model properties and
logics. The simulation software is designed to correctly
interpret the data provided, extract useful information
and automatically incorporate it into the model so that
changes in data can change the model correspondingly.

In DDM&S, the use of data may range from model
construction, configuration and initialization, to model
update, estimation and calibration. Simulation models
should be developed to allow for such automated data
uses. The primary concern here is that we need to create
simulation software that provides enough degrees of
freedom to represent the set of systems in our domain of
interest. This flexibility can be achieved by representing
the system of interest not as a monolithic whole but as a
composition of interrelated sub-systems (or parts). In
this context, we can see the definition of model parts as
the “fixed” which represents the corresponding domain
knowledge, whereas the selection of those parts, their
parameterization, initialization, and composition are the
“unfixed” whose degrees of freedom are constrained by
the corresponding domain knowledge. The unfixed
affords the flexibility. In such cases, data can be used to
specify the unfixed, and changes in data may change the
unfixed. The cost of this flexibility is complexity in
simulation software. The design choice is then often a
compromise between flexibility and complexity.

Although the DDM&S concept is straightforward,
developing DDM&S software introduces complexity.
The effort can be nonetheless beneficial for large-scale
systems that need long-term use of simulation models.
These models often take long to develop and modify,
and they often need to be changed along with changes
in the systems. Many examples can be found in supply
chains, transportation and manufacturing among other
domains (Kim, 2009; Qiao, Riddick, & McLean, 2003;
Tannock, Cao, Farr, & Byrne, 2007; Wang, Chang,
Xiao, Wang, & Li, 2011). Some systems may need
simulation in (near) real-time so that forecasting can be
made responding timely to crucial events. Examples can
be found in fire forecasting, water management, critical
infrastructure and emergency response systems where
sensor data are often used (Darema, 2011; Hu, 2011;
Jahn, Rein, & Torero, 2012).

In literature, e.g., Banks, Carson, Nelson, & Nicol
(2010); Law (2007), the steps in a simulation study and
data analysis within are well discussed. Many discuss
data from a statistical perspective. In this paper, as a
complement to statistical views, we discuss data from a
systems theoretical perspective. We believe this could
help formalize transformation processes from data to
systems knowledge and could in turn offer a possibility
to automate the processes.

We first present the theoretical foundation, namely
how knowledge is understood in Information Science
(IS) and Systems Theory and how model composition is
relevant in this context. Then we discuss DDM&S from
a systems theoretical perspective where transformations
of data-information-knowledge can be performed at
different systems epistemological levels. An example of
DDM&S used in component-based automatic model
generation in light-rail domain is given to illustrate the
concept.

2. THEORETICAL FOUNDATIONS
DDM&S brings together the two fields of IS and M&S.
To root its concept on solid theoretical grounds, we
revisit two hierarchies that concern knowledge: (1) the
Knowledge Hierarchy widely recognized by the IS
community to contextualize data, information and
knowledge (Rowley, 2007), and (2) the Epistemological
Hierarchy of Systems which explains knowledge from a
systems theoretical viewpoint (Klir & Elias, 2003).

2.1. Data-Information-Knowledge Hierarchy
In the knowledge hierarchy, data, information and
knowledge are arranged from the low to high levels in a
pyramid. They are three fundamental and interrelated
concepts still with debates about their nature, definition
and relation. We present the basic ideas based on
(Checkland & Holwell, 1998; Rowley, 2007; Ulrich,
2001; Zins, 2007).

Data comprises sets of symbols recorded in or on a
medium. As such, data is unstructured, unprocessed and
invariant. Checkland & Holwell (1998) also introduced
the term capta in between data and information to refer
to the subset of data that we select for attention.

Information is data (or capta) that are enriched
with contextual “meaning attribution”. It is done in a
context that may well be shared by some but may also
be unique to an individual. What machines cannot do, in
a strict sense, is to generate unequivocal information;
what they can do is merely to process capta into useful
forms that can imply (or match) certain prescribed
categories of information (Checkland & Holwell, 1998).
Information can be inferred from data. This process is
not viable without semiotic clarifications, namely
syntactic clarity (comprehensibility), semantic clarity
(meaning) and pragmatic clarity (relevance).

Knowledge is propositional. It is a “justified belief
substantiated by compelling reasons” (Ulrich, 2001).
Knowledge is structured and organized information
expected to have greater longevity than a collection of
many items of information that are only ephemerally

meaningful and relevant. It is the general understanding
and awareness garnered from accumulated information
tempered by experience, enabling new contexts to be
envisaged. Knowledge exists in the human mind but can
be given physical representations.
 With data we yet know nothing, with information
we know what (and/or who, when, where), and with
knowledge we know how (Ackoff, 1989; Zeleny, 1987).
Understanding supports the transformation process from
a lower level to the next (Rowley, 2007). If we consider
a simulation model as a representation of the relevant
knowledge of a system, then the transformation from
data to knowledge for a given context is what one wants
to achieve in DDM&S. For the transformation, we have
to understand what data is available and what type of
systems knowledge it can represent.

2.2. Epistemological Hierarchy of Systems
In M&S, a system being modeled can be called referent.
Understanding what we know about the referent is
essential in modeling. Simon (1962) roughly defined a
complex system as one made up of a large number of
parts that interact in a non-simple way. Generally, a
system can be viewed as a pair of two orthogonal sets
that are extremely rich in content: (1) a set of things
(thinghood) and (2) a set of relations among things
(systemhood) (Klir, 2001; Klir & Elias, 2003).
Modeling (in computer simulation) is the activity to
capture the thinghood and systemhood of interest in a
computational form and study their evolvement for the
purpose of understanding and/or prediction. Based on
different levels of knowledge about the systemhood,
Klir & Elias (2003) established an epistemological
hierarchy of systems, as shown in Figure 1. Each level
in the hierarchy implies the profoundness of our system
knowledge.

Level 3
Structure System Relations between models at Level 2

Level 2
Generative System Models that generate data at Level 1

Level 1
Data System Observations or desirable states of Level 0

Level 0
Source System A source of empirical data

Figure 1: Hierarchy of epistemological levels of
systems (based on Klir & Elias, 2003)

The bottom level of the hierarchy (Level 0) is the
“primitive understanding” of a system, known as a
source system. At this level, we know which variables
and states we are interested in. The source system is (at
least potentially) a source of empirical data. At the next
level is the data system (Level 1) where data of the
variables (or states) are obtained from observation or
measurement, or are defined as desirable states. This is
often the level where a system is accessible from the
outside. Above the data system is the generative system
(Level 2) where we acquire the knowledge to define the
translation rules that are able to generate the observed

or hypothetical (unobservable and/or internal) data of
the system. At Level 3, the structure system describes
systems knowledge as a set of generative systems that
interact with each other in some way. At this level we
understand the system as an interactive whole that has
generative systems as parts. (Thus generative systems
are often referred to as sub-systems.) This level of
knowledge is also known as the knowledge of systems
or structured sub-systems.

A higher epistemological level entails that the
knowledge attained at the lower levels is known and it
contains additional knowledge that is not available at
the lower levels. The process of climbing the
epistemological hierarchy transforms the notion of
systems knowledge from primitive to more meaningful
in order to specify a generative or a structure system
that can reproduce the data at Level 1. Problems of this
type fall into the category of Systems Modeling, and this
category can be further divided into Systems Inference
and Systems Design depending on whether the system is
in existence (Klir, 1988; Zeigler, Praehofer, & Kim,
2000). Systems analysis, on the other hand, is the
process of using the generative or structure system to
produce data; computer simulation is an example of this
type (Zeigler, Praehofer, & Kim, 2000). In DDM&S,
we have data about a system that we want to model at
the generative and structure levels. This requires
knowledge about system decomposition and model
composition that we discuss in the following section.

2.3. System Decomposition and Model Composition
Approaching systems complexity, we habitually divide
a system into less complex parts, and analyze the parts
and their interrelations that are more comprehensible.
This approach is well grounded in systems theory and
systems thinking literature (Checkland, 1999; Klir &
Elias, 2003; Simon, 1996). Systems decomposition also
has another advantage. What one knows about a
complex system is often partial, i.e., a subset of the
parts and interrelations in a system may be known to
some experts. Adequate decomposition of a system can
provide a systemic structure to aggregate and merge the
knowledge about different parts and interrelations. The
decomposition can be recursive until an elementary
level of sub-systems is reached (Simon, 1996).
 The word “system” in Greek means composition in
its literary sense. Model components are basic parts (or
building blocks) in model construction. If components
and their interactions are designed to represent some
distinguishable objects and relations in a real system,
modelers and domain experts may easily identify and
use the components to construct larger models and to
validate them. The domain knowledge can be integrated
into the model by terminology and definition of the
components (Valentin & Verbraeck, 2002). Using
components, changes of the model can be limited to
some components instead of the whole model. Domain
ontology and mapping between the ontology and
simulation components are useful in this context.

 In M&S, composability is defined as the capability
to select and assemble simulation components in
various combinations into valid simulation systems to
satisfy specific user requirements (Petty & Weisel,
2003). Although component-based modeling is widely
promoted and encouraged for its considerable benefits,
it is shown difficult to apply (Szabo & Teo, 2007; Tolk,
Diallo, King, Turnitsa, & Padilla, 2010; Yilmaz, 2004).
Model composability shows many characteristics that
are similar to those of software composability and
systems design (Baldwin & Clark, 2000; Braude &
Bernstein, 2010; Hofmann, 2004; Pidd & Robinson,
2007; Sommerville, 1996) whose design principles can
be learnt from. Designing composable models should
start at the conceptualization phase.
 To design composable and reusable simulation
models, the design goal needs to be at least one level
higher than the design of any specific application of the
model components. How the components may operate
with other components and how other designers can
make use of the components are the higher-level goals,
which make standardization in model component design
particularly important. This is not only meant for
interface definition (as one does, e.g., for composable
software) but also for model definition at a conceptual
level (Tolk, Diallo, King, Turnitsa, & Padilla, 2010;
Tolk & Muguira, 2003; Yilmaz, 2004). Systems
decomposition determines the model composition and
interaction. Designers should aim at conceptually
decomposing a system into parts and relations such that
they capture the essence in a system to serve the
intended simulation goal and at the same time provide
the flexibility for other composite combinations to
represent a set of systems in the domain of interest. In
general, domain knowledge can be separated in two
classes, the fixed and the unfixed (as mentioned in
Section 1). The fixed can be defined by model
components at the generative level. The unfixed can be
handled by the selection, configuration and composition
of the components. In DDM&S, data is used to infer the
unfixed. Systems decomposition is thus critical in the
sense that it determines possible model structures and
configurations in model composition.

3. A SYSTEM THEORETICAL APPROACH OF

DDM&S
For a given M&S purpose, a modeler's understanding of
the referent follows an epistemological hierarchy
(Section 2.2). The transformation of data-information-
knowledge (Section 2.1) in DDM&S is supported by
modelers’ systems understanding associated to the
epistemological levels.

3.1. Data and the Epistemological Hierarchy
Data at Level 1 (L1) is the empirical data obtained by
observations and/or measurements performed on the
referent. It is sets of samples on some observables
including input, output and state variables. Having the
data as a starting point, the effort of modeling is to
specify a generative or a structure system (L2/L3) that

can produce some data that agree with the empirical
data. Can the L2/L3 knowledge be obtained solely
through transformation of L1 data? This can be
achieved, e.g., by using a regression model. But if we
can obtain domain knowledge about the dynamics and
the structure of the referent (L2/L3), then the L2 and L3
knowledge of the model is not necessarily derived
directly from the L1 data. In practice, the elicitation of
L2/L3 knowledge in M&S relies heavily on (human)
domain expertise. The L2/L3 knowledge of the referent
often can be obtained from other systems.
 Take a public transportation system (say, System
T) as an example (the referent). Its L3 knowledge is,
e.g., the design of the infrastructure network, and the
design is the outcome of some design process, which
can be conceived of as another independent system
(say, System D). The design process produces design
documents (L1 of System D) according to which the
infrastructure network (L3 of System T) is built. These
documents, therefore, correspond to some knowledge at
L3 of System T. When modeling System T, we may use
the design documents to determine some L3 knowledge
about the model of System T. In other words, we need
to find a function that transforms L1 of System D into
some L3 of System T.
 The knowledge of a referent at a certain level may
be generated from more than one system, and similarity,
one system may generate knowledge about the referent
at different epistemological levels. The knowledge
hierarchy (and transformation) in IS can be applied to
each of the epistemological levels. A certain type of
data after correct analysis and interpretation may deliver
certain information of the referent. In DDM&S,
designers should explore different possibilities of using
various types of data and try to transform them into
information and eventually into knowledge at different
epistemological levels. The transformation is meant in a
computational sense where machines (and software) can
only interpret data in a predefined way. When carefully
designed, they can efficiently process data into certain
structure that can match some prescribed categories of
information and knowledge. As modelers we also need
to carefully design these prescribed categories in order
to satisfy the flexibility needs of the simulation
software.

3.2. Using Data in Modeling
Data is used in every simulation study. They can be
gathered, e.g., from systems design (e.g., CAD data),
planning and operation (e.g., scheduling and ERP data).
Simulated data from other models may also be a data
source if the results are validated. Some data sources
typically contain information that can be mapped into
different levels of model knowledge. Making these
relations explicit to the modelers help them design the
simulation software.
 Modeling concerns two worlds, the world of the
“real” where our interests are situated, and the world of
the “virtual” where the models of the “real” are built.
The tough questions in modeling are about constructing

viable passages from the real to the virtual. In a strict
sense, what is obtainable from a “real system” is only
data. When one observes a system of interest (as a
referent), one always chooses a perspective and tries to
get or give some rational explanations of the system. A
modeler tries to express these explanations (many of
which are domain knowledge) by means of a model.
When the modeler uses data for this purpose, he or she
often needs the domain expertise to know how to
correctly interpret the data. When manual analysis and
interpretation of the data become too cumbersome and
time-consuming, we may consider formalizing the
existing know-how and encoding this into automated
processes.

4. DATA-DRIVEN MODEL GENERATION: AN

EXAMPLE
In this section, we discuss a data-driven approach for
automatic simulation model generation where prebuilt
and validated model components are used as building
blocks. We view this approach as an automated reuse of
model components. Automation is the execution by a
machine agent (usually a computer) of a function that
was previously carried out by a human (Parasuraman &
Riley, 1997). When we, as human modelers, want to
construct a model from model components, we need to
know what components to use, and how to configure
and structure them together. For an automated process,
the same types of information are required which are
derived from the provided data.

4.1. Case Description
The modeling case is in the domain of urban public
light-rail transportation. It is a long-term project in
cooperation with a public transportation company in the
Netherlands. At the beginning of the project, the scales
of the models developed were relatively small, e.g.,
modeling an intersection or a specific area in a city to
assess the control and operation strategies (Kanacilo &
Verbraeck, 2006; Kanacilo & Verbraeck, 2006;
Kanacilo & Verbraeck, 2007). The models (i.e., the
components and structures) were defined by humans in
XML files that were then converted into models. After a
number of simulation studies, the organization decided
to use the simulation models more extensively. Larger
models were needed, e.g., a complete light-rail service
line or the network of a whole city. This was when
problems arose because manual definition of the model
became unmanageable. In a later study (Huang, Seck, &
Verbraeck, 2010; Huang, Verbraeck, Oort, & Veldhoen,
2010), the XML definition contained thousands of
nodes and dozens of levels and attributes per node on
average. The problem lies not only in the amount of
effort and time but also in the fact that the manual
procedure turned out to be increasingly error-prone
which caused difficulties in the debugging process.
 Automation seemed to be a solution but it was
unclear by then how it could be done. Our approach was
threefold. First, the existing models (and model
components) were investigated with experiences in how

they were constructed. A computational procedure with
the data structure and algorithms were designed and the
necessary information requirement for model generation
was specified. Second, the available data sources that
could deliver the required information were identified,
and the plan of how to obtain the missing data was
made. Third, the model components were adapted and
completed so that they can be easily used for automated
composition and configuration. These three major tasks
were carried out in parallel and the outcome of one
influenced another.

4.2. The Model Component Library
The model component library has been gradually
developed for the light-rail transportation simulation
project. Some components have been adapted and added
for the purpose of model generation. The library is
called LIBROS (Library for Rail Operations
Simulation). It follows the DEVS formalism (Zeigler,
Praehofer, & Kim, 2000) for model component
specifications. Railway operational elements such as
vehicles, tracks, and sensors are specified as atomic
models, each of which represents one functional aspect
of the rail infrastructure or as required by the simulation
model. They can be used to create more complex rail
components such as stations and block sections, which
in turn can be further composed until a complete
representation of the modeled system is formed. The
DEVS simulator underlying LIBROS is ESDEVS (Seck
& Verbraeck, 2009). It implements the parallel DEVS
and dynamic structure DEVS (Barros, 1995) on top of
DSOL (Distributed Simulation Object Library) (Jacobs,
2005; Jacobs, Lang, & Verbraeck, 2002) which is a
general-purpose event-scheduling based simulator. To
enable model identification, configuration and coupling,
different types of coupled models are defined in forms
of meta-models in the library.

4.3. Model Generator: The Concept
Some model generators used formal model definitions
for model generation (Balci, Nance, Derrick, Page, &
Bishop, 1990; Foeken & Voskuijl, 2010; Kang, 1997;
Son, Jones, & Wysk, 2000; Son, Wysk, & Jones, 2003).
We prefer the data-driven approach for the reasons
stated in Section 4.1. More recent works are inclined
towards this approach (Bergmann & Strassburger, 2010;
Jeong & Allan, 2004; Lucko, Benjamin, Swaminathan,
& Madden, 2010; Shephard, Beall, O'Bara, & Webster,
2004; Tannock, Cao, Farr, & Byrne, 2007; Wang,
Chang, Xiao, Wang, & Li, 2011). Some of those works
discussed the concept or built a prototype. Some used
data (or data models) that contained logical relations
represented the model structure, or the model structure
is generated in a parameterized way. In our work, the
model structure is generated from data that do not
directly contain logical relations. The generator can
create the model structure from the data sources. The
algorithm constructs models from selecting, structuring
and configuring model components. Model selection
heuristics that represent the domain knowledge of

which components are relevant to the modeling goal are
used to guide the component identification and the
composite (Lee & Zobel, 1996), i.e., they are used to
define the data inferential rules.
 In some cases, if the modeled system has a simple
structure then the model may be directly generated from
the data. However, in many cases, the system is
complex and the data that describe the system do not
contain the relational logic that can be directly applied
to the desired model structure. In such cases, several
steps are necessary in the model generation procedure
and intermediate data structures are employed to
incrementally construct a relational representation of the
system structure that in turn can be transformed into the
corresponding model composite structure.
 As mentioned earlier, different data sources may
provide systems knowledge at different levels. The data
may come from design, operation scheduling, resource
allocation, etc. Starting from these data sources, the data
analysis results shall eventually reflect the structural
and behavioral preconditions that are the basis of
constructing the (initial) model structure and initializing
the model state. The transformation from the data
source to the model structure is often too complex to be
accomplished in one go. It can be generally divided into
three steps. Assume that after pre-processing the data
can be correctly interpreted describing the system in a
primitive format without logical relations, e.g., a list of
numerical or textual descriptions.
 At the first step, a relational graph is created from
the data based on its descriptive content. The data
inference may involve some common sense rules or
some basic domain knowledge. In both cases, the
information needed to create the relational graph is self-
contained by the data sources, i.e., no extra supporting
information is required. The relational graph may be
created incrementally for the convenience of
structuring. For example, we may first identify that
entities a, b, c are related to form A, and entities x, y, z
are related to form B; at a later round of structuring, A
and B may be grouped together to form C, and so forth
until the desired level of structure is reached. The
relational graph represents the structure of the data
content. At the second step, we can discover the
systems structure it represents with the help of a domain
ontology map. By searching the ontology space, a
match in patterns of entity attributes or relations
ascertains what that part of the data structure represents
within the overall systems structure. At the third step,
the systems structure is transformed into corresponding
model structure according to a model counterpart table.
A model counterpart table specifies a mapping relation
between a systems entity and its counterpart in the
model. The mapping relation maybe one to one or one
to more, i.e., a systems entity may have more than one
version of models. For instance, a rail vehicle can be
modeled with one physical entity or several segmented
physical entities. Depending on the available data detail
and the desired model detail, one model counterpart can
be chosen for model generation. Additionally, the

model counterpart table also specifies if any other
model parts shall be added to a given systems entity. In
railway simulation, e.g., different types of intersections
may have different control rules. These rules are not a
part of the data but defined as a configurable sub-
component in the intersection model. For an identified
type of intersection, the model counterpart table
specifies which control unit shall be added. With the
identified component counterparts and the added
components, the entire model structure is fully fledged.
The simulation model can then be constructed,
configured and initialized accordingly using the
available model components in the library.
 Limited by the length of this paper, we cannot give
detailed examples of the model generation method and
algorithms. Readers of interest may refer to Huang,
Seck, & Verbraeck (2011) for a short example, or to
Huang (2013) for a more complete example.

4.4. Some Remarks
Component-based modeling or component-based
engineering in general is founded on a paradigm
common to many engineering disciplines: complex
systems can be obtained by assembling components
(Gössler & Sifakis, 2005). Recursively constructing
more complex components from simpler ones is a
useful concept because it tackles incomprehensible
problems from tangible bases. The simplicity of the
concept makes it powerful. Component-based model
generation automates the model composition for a given
modeling objective. It is useful or may be the only
solution if the model scale drastically increases and
using simpler models is not an alternative. Once
developed, the software has appealing long-term
benefits.
 The completeness of data used for model
generation is important because the model generator
cannot deal with unanticipated incompleteness. Such
problems need to be solved prior to model generation.
A straightforward solution is to complete the missing
data when possible. In the light-rail model generation
case, some contents that were not indicated in the
original data were added manually for model
transformation. If it is impossible to complete missing
data, implementing rules in the generator, the model
counterpart table or in the model components can be
alternatives. In the case discussed, some data was not
available but according to domain experts, the
information may be inferred from the data that was
available. Therefore, additional rules were added into
the model counterpart table to generate the part of
information that was missing.

5. CONCLUSIONS
This paper presented a broad view of DDM&S that is
not limited to the use of observed data from the system
of interest but encompasses various categories of data
such as design and engineering documents. This view is
motivated by the fact that more and more data becomes
available along with the advances in data collection and

storage technologies. Model-based approach in systems
development provides different data sources that may
be useful for inferring information about systems
structure and behavior. To use these data in M&S, a
comprehensive approach with understanding the data in
relation with Systems Theory is necessary in addition to
statistical procedures.
 To explain the concept, we reviewed the data-
information-knowledge hierarchy in IS and the
epistemological hierarchy in Systems Theory. Based on
these theories, we showed how multiplicity of data
sources can be associated to different epistemological
levels of systems, and how data may be transformed to
the related systems knowledge. Using data in M&S has
heavily relied on human intervention. However, when
the manual process is well understood (especially at a
systems theoretical level), the relevant domain
knowledge and modeling knowledge may be embodied
into an automated process. These processes can be
beneficial for many systems such as those that have
long-term or real-time needs for simulation models. The
automation may also better integrate M&S with other
technologies or applications such as optimization,
design and engineering. Because of the variation in
systems knowledge and the diversity in simulation
goals, we may decompose the system such that the
“fixed” parts (parts that are unlikely to change) are
represented by pre-developed model components and
the “unfixed” parts to be represented by model
configuration and composition. The decomposition of a
system into parts and relations should capture the
essence in a system to serve the intended simulation
goal, and at the same time provide the flexibility for
other composite combinations to represent a set of
systems in our domain of interest. This flexibility is
supported by data analysis and transformation
algorithms that infer data with certain structures that can
match some prescribed categories of systems
knowledge. The example provided in the last section
explained an automated process of model generation
using different data sources. The research in DDM&S
is rich in content. It often requires knowledge in many
disciplines. This interdisciplinary nature predestines the
application of systems engineering approaches in
developing such simulation software.

REFERENCES
Ackoff, R. L. (1989). From data to wisdom. Journal of

Applied Systems Analysis, 16, 3-9.
Balci, O., Nance, R. E., Derrick, E. J., Page, E. H., &

Bishop, J. L. (1990). Model generation issues in a
simulation support environment. In Proceedings of
the 1990 Winter Simulation Conference (pp. 257-
263).

Baldwin, C. Y. & Clark, K. B. (2000). The Power of
Modularity. MIT Press.

Banks, J., Carson, II, J. S., Nelson, B. L., & Nicol, D.
M. (2010). Discrete-Event System Simulation
(5th). Pearson Education.

Barros, F. J. (1995). Dynamic Structure Discrete Event
System Specification: A new Formalism for
Dynamic Structure Modeling and Simulation. In
Proceedings of The 1995 Winter Simulation
Conference (pp. 781-785).

Bergmann, S. & Strassburger, S. (2010). Challenges for
the Automatic Generation of Simulation Models
for Production Systems. In Proceedings of the
2010 Summer Simulation Multiconference,
Ottawa, Canada, 2010 (pp. 545-549).

Braude, E. J. & Bernstein, M. E. (2010). Software
Engineering: Modern Approaches (2nd). John
Wiley & Sons.

Checkland, P. (1999). Systems Thinking, Systems
Practice: Includes a 30-Year Retrospective. John
Wiley & Sons.

Checkland, P. & Holwell, S. (1998). Information,
Systems and Information Systems - making sense
of the field. John Wiley & Sons.

Darema, F. (2011). {DDDAS} computational model
and environments. Journal of Algorithms and
Computational Technology, 5(4), 545-560.

Ekere, N. N. & Hannam, R. G. (1989). Evaluation of
approaches to modelling and simulating
manufacturing systems. International Journal of
Production Research, 27(4), 599-611.

Foeken, M. J. & Voskuijl, M. (2010). Knowledge-based
simulation model generation for control law
design applied to a quadrotor UAV. Mathematical
and Computer Modelling of Dynamical Systems,
16(3), 241-256.

Gössler, G. & Sifakis, J. (2005). Composition for
component-based modeling. Science of Computer
Programming, 55(1-3), 161-183.

Hofmann, M. (2004). Criteria for decomposing systems
into components in modeling and simulation:
Lessons learned with military simulations.
Simulation, 80(7-8), 357-365.

Hu, X. (2011). Dynamic Data Driven Simulation. SCS
M&S Magazine, 5, 16-22.

Huang, Y. (2013). Automated Simulation Model
Generation. Ph.D. dissertation, Delft Univeristy of
Technology.

Huang, Y., Seck, M. D., & Verbraeck, A. (2010). The
Architecture and Components of LIBROS:
Strengths, Limitations, and Plans. In Proceedings
of The 2010 European Simulation and Modelling
Conference, Hasselt, Belgium, 2010 (pp. 80-87).
Eurosis-ETI.

Huang, Y., Seck, M. D., & Verbraeck, A. (2011). From
Data to Simulation Models: Component-based
Model Generation with a Data-driven Approach.
In Proceedings of the 2011 Winter Simulation
Conference, Phoenix, AZ, 2011 (pp. 3724-3734).

Huang, Y., Verbraeck, A., van Oort, N., & Veldhoen,
H. (2010). Rail Transit Network Design Supported
by an Open Source Simulation Library: Towards
Reliability Improvement. In Transportation
Research Board 89th Annual Meeting

Compendium of Papers, Washington, DC, USA,
2010. TRB.

Jacobs, P. H. M. (2005). The {DSOL} simulation suite -
Enabling multi-formalism simulation in a
distributed context. Ph.D. dissertation, Delft
University of Technology.

Jacobs, P. H. M., Lang, N. A., & Verbraeck, A. (2002).
D-SOL: A Distributed Java Based discrete event
simulation architecture. In Proceedings of the 2002
Winter Simulation Conference (pp. 793-800).
IEEE.

Jahn, W., Rein, G., & Torero, J. L. (2012). Forecasting
fire dynamics using inverse computational fluid
dynamics and tangent linearisation. Advances in
Engineering Software, 47(1), 114-126.

Jeong, K.-Y. & Allan, D. (2004). Integrated system
design, analysis and database-driven simulation
model generation. In Proceedings of the IEEE
Annual Simulation Symposium (pp. 80-85).

Kanacilo, E. M. & Verbraeck, A. (2006). Decision
Support for Control Design of Rail Infrastructures.
In SIMTECT 2006 - Simulation: Challenges and
Opportunities for a Complex and Networked
World.

Kanacilo, E. M. & Verbraeck, A. (2006). Simulation
services to support the control design of rail
infrastructures. In Proceedings of the 2006 Winter
Simulation Conference (pp. 1372-1379). IEEE.

Kanacilo, E. M. & Verbraeck, A. (2007). Assessing
tram schedules using a library of simulation
components. In Proceedings of the 2007 Winter
Simulation Conference (pp. 1878-1886). IEEE.

Kang, S. (1997). Knowledge based automatic
simulation model generation system. IEE
Proceedings: Circuits, Devices and Systems,
144(2), 88-96.

Kim, B.-I., Kim, Jeong, S., Shin, J., Koo, J., Chae, J.,
and Lee, S. (2009). A layout- and data-driven
generic simulation model for semiconductor fabs.
IEEE Transactions on Semiconductor
Manufacturing, 22(2), 225-231.

Klir, G. J. (2001). Facets of Systems Science (2nd).
Kluwer Academic/Plenum Publishers.

Klir, G. J. (1988). The Role of Uncertainty Principles in
Inductive Systems Modelling. Kybernetes, 17(2),
24-34. Klir, G. J. & Elias, D. (2003). Architecture
of Systems Problem Solving (2nd). Kluwer
Academic/Plenum Publishers.

Law, A. M. (2007). Simulation Modeling and Analysis
(4th). McGraw-Hill.

Lee, C. H. & Zobel, R. N. (1996). Representation of
simulation model components for model
generation and a model library. In Proceedings of
the IEEE Annual Simulation Symposium (pp. 193-
201).

Lucko, G., Benjamin, P. C., Swaminathan, K., &
Madden, M. G. (2010). Comparison of manual and
automated simulation generation approaches and
their use for construction applications. In

Proceedings of the 2010 Winter Simulation
Conference (pp. 3132-3144).

O'Keefe, R. M. & Haddock, J. (1991). Data-driven
generic simulators for flexible manufacturing
systems. International Journal of Production
Research, 29(9), 1795-1810.

Parasuraman, R. & Riley, V. (1997). Humans and
automation: Use, misuse, disuse, abuse. Human
Factors, 39(2), 230-253. Petty, M. D. & Weisel, E.
W. (2003). A composability lexico. In Proceedings
of the Spring 2003 Simulation Interoperability
Workshop (pp. 181-187).

Pidd, M. (1992). Guidelines for the design of data
driven generic simulators for specific domains.
Simulation, 59(4), 237-243.

Pidd, M. & Robinson, S. (2007). Organising insights
into simulation practice. In Proceedings of the
2007 Winter Simulation Conference, Piscataway,
NJ, USA, 2007 (pp. 771-775). IEEE Press.

Qiao, G., Riddick, F., & McLean, C. (2003). Data
driven design and simulation system based on
XML. In Proceedings of the 2003 Winter
Simulation Conference (pp. 1143 - 1148 vol.2).

Rowley, J. E. (2007). The wisdom hierarchy:
representations of the {DIKW} hierarchy. Journal
of Information Science, 33(2), 163-180.

Seck, M. D. & Verbraeck, A. (2009). {DEVS} in
{DSOL}: Adding {DEVS} operational semantics
to a generic Event-Scheduling Simulation
Environment. In Proceedings of the 2009 Summer
Computer Simulation Conference.

Shephard, M. S., Beall, M. W., O'Bara, R. M., &
Webster, B. E. (2004). Toward simulation-based
design. Finite Elements in Analysis and Design,
40(12), 1575-1598.

Simon, H. A. (1962). The Architecture of Complexity.
Proceedings of the American Philosophical
Society, 106(6), 467-482.

Simon, H. A. (1996). The Sciences of the Artificial
(3rd). MIT Press.

Sommerville, I. (1996). Software Engineering (5th).
Addison-Wesley.

Son, Y. J., Jones, A. T., & Wysk, R. A. (2000).
Automatic generation of simulation models from
neutral libraries: An example. In Proceedings of
the 2000 Winter Simulation Conference (pp. 1558-
1567).

Son, Y. J., Wysk, R. A., & Jones, A. T. (2003).
Simulation-based shop floor control: Formal
model, model generation and control interface. IIE
Transactions, 35(1), 29-48.

Szabo, C. & Teo, Y. M. (2007). On Syntactic
Composability and Model Reuse. In Proceedings
of the International Conference on Modeling and
Simulation (pp. 230-237). IEEE Computer Society
Press.

Tannock, J., Cao, B., Farr, R., & Byrne, M. (2007).
Data-driven simulation of the supply-chain --
Insights from the aerospace sector. International
Journal of Production Economics, 110, 70-84.

Tolk, A. & Muguira, J. A. (2003). The Levels of
Conceptual Interoperability Model. In Proceedings
of the 2003 Fall Simulation Interoperability
Workshop. IEEE CS Press.

Ulrich, W. (2001). A Philosophical Staircase for
Information Systems Definition, Design and
Development: A Discursive Approach to
Reflective Practice in ISD (Part 1). Journal of
Information Technology Theory and Application
(JITTA), 3(3), 55-84.

Valentin, E. & Verbraeck, A. (2002). Guidelines for
designing simulation building blocks. In
Proceedings of the 2002 Winter Simulation
Conference, San Diego, CA., 2002 (pp. 563-571).
IEEE.

Wang, J., Chang, Q., Xiao, G., Wang, N., & Li, S.
(2011). Data driven production modeling and
simulation of complex automobile general
assembly plant. Computers in Industry, 62(7), 765-
775.

Yilmaz, L. (2004). On the Need for Contextualized
Introspective Models to Improve Reuse and
Composability of Defense Simulations. The
Journal of Defense Modeling and Simulation:
Applications, Methodology, Technology, 1(3),
141-151.

Zeigler, B. P., Praehofer, H., & Kim, T. G. (2000).
Theory of Modeling and Simulation: Integrating
Discrete Event and Continuous Complex Dynamic
Systems (2nd). Elsevier/Academic Press.

Zeleny, M. (1987). Management Support Systems:
Towards Integrated Knowledge Management.
Human Systems Management, 7(1), 59-70. Zins,
C. (2007). Conceptual approaches for defining
data, information, and knowledge. Journal of the
American Society for Information Science and
Technology, 58(4), 479-493.

AUTHORS BIOGRAPHY
Yilin Huang is a Postdoctoral Researcher at the Section
Systems Engineering and Simulation, Faculty of
Technology, Policy and Management, Delft University
of Technology, Netherlands.
Mamadou D. Seck is an Assistant Professor at the
Department of Engineering Management and
Systems Engineering, Old Dominion University,
USA.
Alexander Verbraeck is a Full Professor at the Section
Systems Engineering and Simulation, Faculty of
Technology, Policy and Management, Delft University
of Technology, Netherlands, and a part-time full
professor in supply chain management at the R.H.
Smith School of Business of the University of
Maryland, USA.

