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ABSTRACT 
This paper discusses Data-Driven Modeling and 
Simulation (DDM&S) from a systems theoretical 
viewpoint. The focus is on understanding Systems 
Theory in relation with Modeling and Simulation 
(M&S) and how data may convey information about a 
system. Such an understanding could help formalizing 
the transformation process from data to systems 
knowledge and in turn offers a possibility to automate 
the process. In DDM&S, a simulation environment 
should have the ability to correctly interpret the data 
provided, extract useful information and automatically 
incorporate it into the simulation model so that changes 
in data may change the model. This flexibility could be 
achieved by representing the system not as a monolithic 
whole but as a composition of interrelated parts, and by 
the support of intelligent data analysis and model 
transformation algorithms. An example of automatic 
model generation is given to illustrate the concept. 
 
Keywords: data-driven, modeling and simulation, 
systems theory, model transformation 

 
1. TOWARDS DATA-DRIVEN MODELING 

AND SIMULATION 
The role of data in Modeling and Simulation (M&S) is 
becoming increasingly important along with the 
advances in data collection and storage technologies. 
Despite the discussions about input/output data analysis 
in literature, little is said about more comprehensive use 
of data in the M&S process. Data that can be useful for 
M&S is not limited to measurements or observations 
from real systems but can also comprise data that is 
generated from computer-aided tools such as Computer-
Aided Design, Engineering and Geographic Information 
Systems. Data may be used for different purposes such 
as model construction, configuration and calibration. 
Fully utilize data in M&S could not only benefit the 
M&S process but also better integrate M&S with its 
applications such as design, engineering and training. 

Data-Driven is not a new term in M&S but its 
earlier meaning differs from how it is understood now. 
Data-driven simulators were once those that allowed 
users to build models without programming knowledge 
(Ekere & Hannam, 1989; O'Keefe & Haddock, 1991; 
Pidd, 1992). Those programs accepted front-end entry 
data such as flow diagram or GUI input, which have 

been used since the 1950s. This is not how we conceive 
of Data-Driven Modeling and Simulation (DDM&S) 
nowadays. DDM&S discussed in this paper refers to 
M&S processes where data is used to automatically 
define, specify and/or modify model properties and 
logics. The simulation software is designed to correctly 
interpret the data provided, extract useful information 
and automatically incorporate it into the model so that 
changes in data can change the model correspondingly.  

In DDM&S, the use of data may range from model 
construction, configuration and initialization, to model 
update, estimation and calibration. Simulation models 
should be developed to allow for such automated data 
uses. The primary concern here is that we need to create 
simulation software that provides enough degrees of 
freedom to represent the set of systems in our domain of 
interest. This flexibility can be achieved by representing 
the system of interest not as a monolithic whole but as a 
composition of interrelated sub-systems (or parts). In 
this context, we can see the definition of model parts as 
the “fixed” which represents the corresponding domain 
knowledge, whereas the selection of those parts, their 
parameterization, initialization, and composition are the 
“unfixed” whose degrees of freedom are constrained by 
the corresponding domain knowledge. The unfixed 
affords the flexibility. In such cases, data can be used to 
specify the unfixed, and changes in data may change the 
unfixed. The cost of this flexibility is complexity in 
simulation software. The design choice is then often a 
compromise between flexibility and complexity.  

Although the DDM&S concept is straightforward, 
developing DDM&S software introduces complexity. 
The effort can be nonetheless beneficial for large-scale 
systems that need long-term use of simulation models. 
These models often take long to develop and modify, 
and they often need to be changed along with changes 
in the systems. Many examples can be found in supply 
chains, transportation and manufacturing among other 
domains (Kim, 2009; Qiao, Riddick, & McLean, 2003; 
Tannock, Cao, Farr, & Byrne, 2007; Wang, Chang, 
Xiao, Wang, & Li, 2011). Some systems may need 
simulation in (near) real-time so that forecasting can be 
made responding timely to crucial events. Examples can 
be found in fire forecasting, water management, critical 
infrastructure and emergency response systems where 
sensor data are often used (Darema, 2011; Hu, 2011; 
Jahn, Rein, & Torero, 2012).  



In literature, e.g., Banks, Carson, Nelson, & Nicol 
(2010); Law (2007), the steps in a simulation study and 
data analysis within are well discussed. Many discuss 
data from a statistical perspective. In this paper, as a 
complement to statistical views, we discuss data from a 
systems theoretical perspective. We believe this could 
help formalize transformation processes from data to 
systems knowledge and could in turn offer a possibility 
to automate the processes.   

We first present the theoretical foundation, namely 
how knowledge is understood in Information Science 
(IS) and Systems Theory and how model composition is 
relevant in this context. Then we discuss DDM&S from 
a systems theoretical perspective where transformations 
of data-information-knowledge can be performed at 
different systems epistemological levels. An example of 
DDM&S used in component-based automatic model 
generation in light-rail domain is given to illustrate the 
concept. 

 
2. THEORETICAL FOUNDATIONS 
DDM&S brings together the two fields of IS and M&S. 
To root its concept on solid theoretical grounds, we 
revisit two hierarchies that concern knowledge: (1) the 
Knowledge Hierarchy widely recognized by the IS 
community to contextualize data, information and 
knowledge (Rowley, 2007), and (2) the Epistemological 
Hierarchy of Systems which explains knowledge from a 
systems theoretical viewpoint (Klir & Elias, 2003).  
 
2.1. Data-Information-Knowledge Hierarchy 
In the knowledge hierarchy, data, information and 
knowledge are arranged from the low to high levels in a 
pyramid. They are three fundamental and interrelated 
concepts still with debates about their nature, definition 
and relation. We present the basic ideas based on 
(Checkland & Holwell, 1998; Rowley, 2007; Ulrich, 
2001; Zins, 2007). 

Data comprises sets of symbols recorded in or on a 
medium. As such, data is unstructured, unprocessed and 
invariant. Checkland & Holwell (1998) also introduced 
the term capta in between data and information to refer 
to the subset of data that we select for attention.  

Information is data (or capta) that are enriched 
with contextual “meaning attribution”. It is done in a 
context that may well be shared by some but may also 
be unique to an individual. What machines cannot do, in 
a strict sense, is to generate unequivocal information; 
what they can do is merely to process capta into useful 
forms that can imply (or match) certain prescribed 
categories of information (Checkland & Holwell, 1998). 
Information can be inferred from data. This process is 
not viable without semiotic clarifications, namely 
syntactic clarity (comprehensibility), semantic clarity 
(meaning) and pragmatic clarity (relevance).  

Knowledge is propositional. It is a “justified belief 
substantiated by compelling reasons” (Ulrich, 2001). 
Knowledge is structured and organized information 
expected to have greater longevity than a collection of 
many items of information that are only ephemerally 

meaningful and relevant. It is the general understanding 
and awareness garnered from accumulated information 
tempered by experience, enabling new contexts to be 
envisaged. Knowledge exists in the human mind but can 
be given physical representations.  
 With data we yet know nothing, with information 
we know what (and/or who, when, where), and with 
knowledge we know how (Ackoff, 1989; Zeleny, 1987). 
Understanding supports the transformation process from 
a lower level to the next (Rowley, 2007). If we consider 
a simulation model as a representation of the relevant 
knowledge of a system, then the transformation from 
data to knowledge for a given context is what one wants 
to achieve in DDM&S. For the transformation, we have 
to understand what data is available and what type of 
systems knowledge it can represent.  
 
2.2. Epistemological Hierarchy of Systems 
In M&S, a system being modeled can be called referent. 
Understanding what we know about the referent is 
essential in modeling.  Simon (1962) roughly defined a 
complex system as one made up of a large number of 
parts that interact in a non-simple way. Generally, a 
system can be viewed as a pair of two orthogonal sets 
that are extremely rich in content: (1) a set of things 
(thinghood) and (2) a set of relations among things 
(systemhood) (Klir, 2001; Klir & Elias, 2003). 
Modeling (in computer simulation) is the activity to 
capture the thinghood and systemhood of interest in a 
computational form and study their evolvement for the 
purpose of understanding and/or prediction. Based on 
different levels of knowledge about the systemhood, 
Klir & Elias (2003) established an epistemological 
hierarchy of systems, as shown in Figure 1. Each level 
in the hierarchy implies the profoundness of our system 
knowledge.  
 

Level 3  
Structure System Relations between models at Level 2 

Level 2 
Generative System  Models that generate data at Level 1 

Level 1 
Data System Observations or desirable states of Level 0 

Level 0 
Source System A source of empirical data 

 
Figure 1: Hierarchy of epistemological levels of 
systems (based on Klir & Elias, 2003) 
 

The bottom level of the hierarchy (Level 0) is the 
“primitive understanding” of a system, known as a 
source system. At this level, we know which variables 
and states we are interested in. The source system is (at 
least potentially) a source of empirical data.  At the next 
level is the data system (Level 1) where data of the 
variables (or states) are obtained from observation or 
measurement, or are defined as desirable states. This is 
often the level where a system is accessible from the 
outside.  Above the data system is the generative system 
(Level 2) where we acquire the knowledge to define the 
translation rules that are able to generate the observed 



or hypothetical (unobservable and/or internal) data of 
the system. At Level 3, the structure system describes 
systems knowledge as a set of generative systems that 
interact with each other in some way. At this level we 
understand the system as an interactive whole that has 
generative systems as parts. (Thus generative systems 
are often referred to as sub-systems.) This level of 
knowledge is also known as the knowledge of systems 
or structured sub-systems. 

A higher epistemological level entails that the 
knowledge attained at the lower levels is known and it 
contains additional knowledge that is not available at 
the lower levels. The process of climbing the 
epistemological hierarchy transforms the notion of 
systems knowledge from primitive to more meaningful 
in order to specify a generative or a structure system 
that can reproduce the data at Level 1. Problems of this 
type fall into the category of Systems Modeling, and this 
category can be further divided into Systems Inference 
and Systems Design depending on whether the system is 
in existence (Klir, 1988; Zeigler, Praehofer, & Kim, 
2000). Systems analysis, on the other hand, is the 
process of using the generative or structure system to 
produce data; computer simulation is an example of this 
type (Zeigler, Praehofer, & Kim, 2000). In DDM&S, 
we have data about a system that we want to model at 
the generative and structure levels. This requires 
knowledge about system decomposition and model 
composition that we discuss in the following section. 

 
2.3. System Decomposition and Model Composition 
Approaching systems complexity, we habitually divide 
a system into less complex parts, and analyze the parts 
and their interrelations that are more comprehensible. 
This approach is well grounded in systems theory and 
systems thinking literature (Checkland, 1999; Klir & 
Elias, 2003; Simon, 1996). Systems decomposition also 
has another advantage. What one knows about a 
complex system is often partial, i.e., a subset of the 
parts and interrelations in a system may be known to 
some experts. Adequate decomposition of a system can 
provide a systemic structure to aggregate and merge the 
knowledge about different parts and interrelations. The 
decomposition can be recursive until an elementary 
level of sub-systems is reached (Simon, 1996).  
 The word “system” in Greek means composition in 
its literary sense. Model components are basic parts (or 
building blocks) in model construction. If components 
and their interactions are designed to represent some 
distinguishable objects and relations in a real system, 
modelers and domain experts may easily identify and 
use the components to construct larger models and to 
validate them. The domain knowledge can be integrated 
into the model by terminology and definition of the 
components (Valentin & Verbraeck, 2002). Using 
components, changes of the model can be limited to 
some components instead of the whole model. Domain 
ontology and mapping between the ontology and 
simulation components are useful in this context.  

 In M&S, composability is defined as the capability 
to select and assemble simulation components in 
various combinations into valid simulation systems to 
satisfy specific user requirements (Petty & Weisel, 
2003). Although component-based modeling is widely 
promoted and encouraged for its considerable benefits, 
it is shown difficult to apply (Szabo & Teo, 2007; Tolk, 
Diallo, King, Turnitsa, & Padilla, 2010; Yilmaz, 2004). 
Model composability shows many characteristics that 
are similar to those of software composability and 
systems design (Baldwin & Clark, 2000; Braude & 
Bernstein, 2010; Hofmann, 2004; Pidd & Robinson, 
2007; Sommerville, 1996) whose design principles can 
be learnt from. Designing composable models should 
start at the conceptualization phase.   
 To design composable and reusable simulation 
models, the design goal needs to be at least one level 
higher than the design of any specific application of the 
model components. How the components may operate 
with other components and how other designers can 
make use of the components are the higher-level goals, 
which make standardization in model component design 
particularly important. This is not only meant for 
interface definition (as one does, e.g., for composable 
software) but also for model definition at a conceptual 
level (Tolk, Diallo, King, Turnitsa, & Padilla, 2010; 
Tolk & Muguira, 2003; Yilmaz, 2004). Systems 
decomposition determines the model composition and 
interaction. Designers should aim at conceptually 
decomposing a system into parts and relations such that 
they capture the essence in a system to serve the 
intended simulation goal and at the same time provide 
the flexibility for other composite combinations to 
represent a set of systems in the domain of interest. In 
general, domain knowledge can be separated in two 
classes, the fixed and the unfixed (as mentioned in 
Section 1). The fixed can be defined by model 
components at the generative level. The unfixed can be 
handled by the selection, configuration and composition 
of the components. In DDM&S, data is used to infer the 
unfixed. Systems decomposition is thus critical in the 
sense that it determines possible model structures and 
configurations in model composition.  

 
3. A SYSTEM THEORETICAL APPROACH OF 

DDM&S 
For a given M&S purpose, a modeler's understanding of 
the referent follows an epistemological hierarchy 
(Section 2.2). The transformation of data-information-
knowledge (Section 2.1) in DDM&S is supported by 
modelers’ systems understanding associated to the 
epistemological levels.  
 
3.1. Data and the Epistemological Hierarchy 
Data at Level 1 (L1) is the empirical data obtained by 
observations and/or measurements performed on the 
referent. It is sets of samples on some observables 
including input, output and state variables. Having the 
data as a starting point, the effort of modeling is to 
specify a generative or a structure system (L2/L3) that 



can produce some data that agree with the empirical 
data. Can the L2/L3 knowledge be obtained solely 
through transformation of L1 data? This can be 
achieved, e.g., by using a regression model. But if we 
can obtain domain knowledge about the dynamics and 
the structure of the referent (L2/L3), then the L2 and L3 
knowledge of the model is not necessarily derived 
directly from the L1 data. In practice, the elicitation of 
L2/L3 knowledge in M&S relies heavily on (human) 
domain expertise. The L2/L3 knowledge of the referent 
often can be obtained from other systems.  
 Take a public transportation system (say, System 
T) as an example (the referent). Its L3 knowledge is, 
e.g., the design of the infrastructure network, and the 
design is the outcome of some design process, which 
can be conceived of as another independent system 
(say, System D). The design process produces design 
documents (L1 of System D) according to which the 
infrastructure network (L3 of System T) is built. These 
documents, therefore, correspond to some knowledge at 
L3 of System T. When modeling System T, we may use 
the design documents to determine some L3 knowledge 
about the model of System T. In other words, we need 
to find a function that transforms L1 of System D into 
some L3 of System T.  
 The knowledge of a referent at a certain level may 
be generated from more than one system, and similarity, 
one system may generate knowledge about the referent 
at different epistemological levels. The knowledge 
hierarchy (and transformation) in IS can be applied to 
each of the epistemological levels. A certain type of 
data after correct analysis and interpretation may deliver 
certain information of the referent. In DDM&S, 
designers should explore different possibilities of using 
various types of data and try to transform them into 
information and eventually into knowledge at different 
epistemological levels. The transformation is meant in a 
computational sense where machines (and software) can 
only interpret data in a predefined way. When carefully 
designed, they can efficiently process data into certain 
structure that can match some prescribed categories of 
information and knowledge. As modelers we also need 
to carefully design these prescribed categories in order 
to satisfy the flexibility needs of the simulation 
software. 
 
3.2. Using Data in Modeling 
Data is used in every simulation study. They can be 
gathered, e.g., from systems design (e.g., CAD data), 
planning and operation (e.g., scheduling and ERP data). 
Simulated data from other models may also be a data 
source if the results are validated. Some data sources 
typically contain information that can be mapped into 
different levels of model knowledge. Making these 
relations explicit to the modelers help them design the 
simulation software.  
 Modeling concerns two worlds, the world of the 
“real” where our interests are situated, and the world of 
the “virtual” where the models of the “real” are built. 
The tough questions in modeling are about constructing 

viable passages from the real to the virtual. In a strict 
sense, what is obtainable from a “real system” is only 
data. When one observes a system of interest (as a 
referent), one always chooses a perspective and tries to 
get or give some rational explanations of the system. A 
modeler tries to express these explanations (many of 
which are domain knowledge) by means of a model. 
When the modeler uses data for this purpose, he or she 
often needs the domain expertise to know how to 
correctly interpret the data. When manual analysis and 
interpretation of the data become too cumbersome and 
time-consuming, we may consider formalizing the 
existing know-how and encoding this into automated 
processes.  
 
4. DATA-DRIVEN MODEL GENERATION: AN 

EXAMPLE 
In this section, we discuss a data-driven approach for 
automatic simulation model generation where prebuilt 
and validated model components are used as building 
blocks. We view this approach as an automated reuse of 
model components. Automation is the execution by a 
machine agent (usually a computer) of a function that 
was previously carried out by a human (Parasuraman & 
Riley, 1997). When we, as human modelers, want to 
construct a model from model components, we need to 
know what components to use, and how to configure 
and structure them together. For an automated process, 
the same types of information are required which are 
derived from the provided data. 

 
4.1. Case Description  
The modeling case is in the domain of urban public 
light-rail transportation. It is a long-term project in 
cooperation with a public transportation company in the 
Netherlands. At the beginning of the project, the scales 
of the models developed were relatively small, e.g., 
modeling an intersection or a specific area in a city to 
assess the control and operation strategies (Kanacilo & 
Verbraeck, 2006; Kanacilo & Verbraeck, 2006; 
Kanacilo & Verbraeck, 2007). The models (i.e., the 
components and structures) were defined by humans in 
XML files that were then converted into models. After a 
number of simulation studies, the organization decided 
to use the simulation models more extensively. Larger 
models were needed, e.g., a complete light-rail service 
line or the network of a whole city. This was when 
problems arose because manual definition of the model 
became unmanageable. In a later study (Huang, Seck, & 
Verbraeck, 2010; Huang, Verbraeck, Oort, & Veldhoen, 
2010), the XML definition contained thousands of 
nodes and dozens of levels and attributes per node on 
average. The problem lies not only in the amount of 
effort and time but also in the fact that the manual 
procedure turned out to be increasingly error-prone 
which caused difficulties in the debugging process.  
 Automation seemed to be a solution but it was 
unclear by then how it could be done. Our approach was 
threefold. First, the existing models (and model 
components) were investigated with experiences in how 



they were constructed. A computational procedure with 
the data structure and algorithms were designed and the 
necessary information requirement for model generation 
was specified. Second, the available data sources that 
could deliver the required information were identified, 
and the plan of how to obtain the missing data was 
made. Third, the model components were adapted and 
completed so that they can be easily used for automated 
composition and configuration. These three major tasks 
were carried out in parallel and the outcome of one 
influenced another.  
 
4.2. The Model Component Library 
The model component library has been gradually 
developed for the light-rail transportation simulation 
project. Some components have been adapted and added 
for the purpose of model generation. The library is 
called LIBROS (Library for Rail Operations 
Simulation). It follows the DEVS formalism (Zeigler, 
Praehofer, & Kim, 2000) for model component 
specifications. Railway operational elements such as 
vehicles, tracks, and sensors are specified as atomic 
models, each of which represents one functional aspect 
of the rail infrastructure or as required by the simulation 
model. They can be used to create more complex rail 
components such as stations and block sections, which 
in turn can be further composed until a complete 
representation of the modeled system is formed. The 
DEVS simulator underlying LIBROS is ESDEVS (Seck 
& Verbraeck, 2009). It implements the parallel DEVS 
and dynamic structure DEVS (Barros, 1995) on top of 
DSOL (Distributed Simulation Object Library) (Jacobs, 
2005; Jacobs, Lang, & Verbraeck, 2002) which is a 
general-purpose event-scheduling based simulator. To 
enable model identification, configuration and coupling, 
different types of coupled models are defined in forms 
of meta-models in the library.  
 
4.3. Model Generator: The Concept 
Some model generators used formal model definitions 
for model generation (Balci, Nance, Derrick, Page, & 
Bishop, 1990; Foeken & Voskuijl, 2010; Kang, 1997; 
Son, Jones, & Wysk, 2000; Son, Wysk, & Jones, 2003). 
We prefer the data-driven approach for the reasons 
stated in Section 4.1. More recent works are inclined 
towards this approach (Bergmann & Strassburger, 2010; 
Jeong & Allan, 2004; Lucko, Benjamin, Swaminathan, 
& Madden, 2010; Shephard, Beall, O'Bara, & Webster, 
2004; Tannock, Cao, Farr, & Byrne, 2007; Wang, 
Chang, Xiao, Wang, & Li, 2011). Some of those works 
discussed the concept or built a prototype. Some used 
data (or data models) that contained logical relations 
represented the model structure, or the model structure 
is generated in a parameterized way. In our work, the 
model structure is generated from data that do not 
directly contain logical relations. The generator can 
create the model structure from the data sources.  The 
algorithm constructs models from selecting, structuring 
and configuring model components. Model selection 
heuristics that represent the domain knowledge of 

which components are relevant to the modeling goal are 
used to guide the component identification and the 
composite (Lee & Zobel, 1996), i.e., they are used to 
define the data inferential rules.  
 In some cases, if the modeled system has a simple 
structure then the model may be directly generated from 
the data. However, in many cases, the system is 
complex and the data that describe the system do not 
contain the relational logic that can be directly applied 
to the desired model structure. In such cases, several 
steps are necessary in the model generation procedure 
and intermediate data structures are employed to 
incrementally construct a relational representation of the 
system structure that in turn can be transformed into the 
corresponding model composite structure.  
 As mentioned earlier, different data sources may 
provide systems knowledge at different levels.  The data 
may come from design, operation scheduling, resource 
allocation, etc. Starting from these data sources, the data 
analysis results shall eventually reflect the structural 
and behavioral preconditions that are the basis of 
constructing the (initial) model structure and initializing 
the model state. The transformation from the data 
source to the model structure is often too complex to be 
accomplished in one go. It can be generally divided into 
three steps.  Assume that after pre-processing the data 
can be correctly interpreted describing the system in a 
primitive format without logical relations, e.g., a list of 
numerical or textual descriptions.  
 At the first step, a relational graph is created from 
the data based on its descriptive content. The data 
inference may involve some common sense rules or 
some basic domain knowledge. In both cases, the 
information needed to create the relational graph is self-
contained by the data sources, i.e., no extra supporting 
information is required. The relational graph may be 
created incrementally for the convenience of 
structuring. For example, we may first identify that 
entities a, b, c are related to form A, and entities x, y, z 
are related to form B; at a later round of structuring, A 
and B may be grouped together to form C, and so forth 
until the desired level of structure is reached. The 
relational graph represents the structure of the data 
content. At the second step, we can discover the 
systems structure it represents with the help of a domain 
ontology map. By searching the ontology space, a 
match in patterns of entity attributes or relations 
ascertains what that part of the data structure represents 
within the overall systems structure.  At the third step, 
the systems structure is transformed into corresponding 
model structure according to a model counterpart table. 
A model counterpart table specifies a mapping relation 
between a systems entity and its counterpart in the 
model. The mapping relation maybe one to one or one 
to more, i.e., a systems entity may have more than one 
version of models. For instance, a rail vehicle can be 
modeled with one physical entity or several segmented 
physical entities. Depending on the available data detail 
and the desired model detail, one model counterpart can 
be chosen for model generation. Additionally, the 



model counterpart table also specifies if any other 
model parts shall be added to a given systems entity. In 
railway simulation, e.g., different types of intersections 
may have different control rules. These rules are not a 
part of the data but defined as a configurable sub-
component in the intersection model. For an identified 
type of intersection, the model counterpart table 
specifies which control unit shall be added.  With the 
identified component counterparts and the added 
components, the entire model structure is fully fledged. 
The simulation model can then be constructed, 
configured and initialized accordingly using the 
available model components in the library.  
 Limited by the length of this paper, we cannot give 
detailed examples of the model generation method and 
algorithms. Readers of interest may refer to Huang, 
Seck, & Verbraeck (2011) for a short example, or to 
Huang (2013) for a more complete example.  
 
4.4. Some Remarks 
Component-based modeling or component-based 
engineering in general is founded on a paradigm 
common to many engineering disciplines: complex 
systems can be obtained by assembling components 
(Gössler & Sifakis, 2005). Recursively constructing 
more complex components from simpler ones is a 
useful concept because it tackles incomprehensible 
problems from tangible bases. The simplicity of the 
concept makes it powerful. Component-based model 
generation automates the model composition for a given 
modeling objective. It is useful or may be the only 
solution if the model scale drastically increases and 
using simpler models is not an alternative. Once 
developed, the software has appealing long-term 
benefits.   
 The completeness of data used for model 
generation is important because the model generator 
cannot deal with unanticipated incompleteness. Such 
problems need to be solved prior to model generation. 
A straightforward solution is to complete the missing 
data when possible. In the light-rail model generation 
case, some contents that were not indicated in the 
original data were added manually for model 
transformation.  If it is impossible to complete missing 
data, implementing rules in the generator, the model 
counterpart table or in the model components can be 
alternatives. In the case discussed, some data was not 
available but according to domain experts, the 
information may be inferred from the data that was 
available. Therefore, additional rules were added into 
the model counterpart table to generate the part of 
information that was missing. 

 
5. CONCLUSIONS 
This paper presented a broad view of DDM&S that is 
not limited to the use of observed data from the system 
of interest but encompasses various categories of data 
such as design and engineering documents. This view is 
motivated by the fact that more and more data becomes 
available along with the advances in data collection and 

storage technologies. Model-based approach in systems 
development provides different data sources that may 
be useful for inferring information about systems 
structure and behavior.  To use these data in M&S, a 
comprehensive approach with understanding the data in 
relation with Systems Theory is necessary in addition to 
statistical procedures.  
 To explain the concept, we reviewed the data-
information-knowledge hierarchy in IS and the 
epistemological hierarchy in Systems Theory. Based on 
these theories, we showed how multiplicity of data 
sources can be associated to different epistemological 
levels of systems, and how data may be transformed to 
the related systems knowledge. Using data in M&S has 
heavily relied on human intervention. However, when 
the manual process is well understood (especially at a 
systems theoretical level), the relevant domain 
knowledge and modeling knowledge may be embodied 
into an automated process. These processes can be 
beneficial for many systems such as those that have 
long-term or real-time needs for simulation models. The 
automation may also better integrate M&S with other 
technologies or applications such as optimization, 
design and engineering.  Because of the variation in 
systems knowledge and the diversity in simulation 
goals, we may decompose the system such that the 
“fixed” parts (parts that are unlikely to change) are 
represented by pre-developed model components and 
the “unfixed” parts to be represented by model 
configuration and composition. The decomposition of a 
system into parts and relations should capture the 
essence in a system to serve the intended simulation 
goal, and at the same time provide the flexibility for 
other composite combinations to represent a set of 
systems in our domain of interest. This flexibility is 
supported by data analysis and transformation 
algorithms that infer data with certain structures that can 
match some prescribed categories of systems 
knowledge. The example provided in the last section 
explained an automated process of model generation 
using different data sources.  The research in DDM&S 
is rich in content. It often requires knowledge in many 
disciplines. This interdisciplinary nature predestines the 
application of systems engineering approaches in 
developing such simulation software.  
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