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Abstract

Additive manufacturing enables the nearly uncompromised production of optimized topologies. However, due to the
overhang limitation, some designs require a large number of supporting structures to enable manufacturing. Because these
supports are costly to build and difficult to remove, it is desirable to find alternative designs that do not require support. In
this work, a filter is presented that suppresses non-manufacturable regions within the topology optimization loop, resulting
in designs that can be manufactured without the need for supports. The filter is based on front propagation, can be evaluated
efficiently, and adjoint sensitivities are calculated with almost no additional computational cost. The filter can be applied
also to unstructured meshes and the permissible degree of overhang can be freely chosen. The method is demonstrated
on several compliance minimization problems in which its computational efficiency and flexibility are shown. The current
applications are in 2D, and the proposed method is readily extensible to 3D.

Keywords Topology optimization - Additive manufacturing - Overhang - Front propagation

1 Introduction

Topology optimized designs are often complex, contain-
ing many branches or small details. In most cases, the
geometrical complexity of these designs cannot be accom-
modated with conventional manufacturing methods such
as milling or casting. Additive manufacturing on the other
hand, enables the production of complex parts, by creating
a product layer upon layer. Although additive manufactur-
ing offers greater form freedom, it also has manufacturing
limitations, such as a minimum feature size, minimum slot
distance, and a limitation on the inclination of downward
facing surfaces, the overhang limitation (Thomas 2009).
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The present study concentrates on the overhang limitation.

Most additive manufacturing processes, such as selective
laser melting (SLM), fused deposition melting and stereo
lithography, exhibit an overhang limitation. This is caused
by the fact that each layer needs a certain amount
of mechanical support or thermal conduction from the
previously built layer, which limits the distance that a
layer can extend unsupported over the layer underneath.
Manufacturability is thus controlled by the angle between a
down-facing surface and the base plate, the overhang angle,
as defined in Fig. la. The minimum overhang angle, o,
is the smallest manufacturable overhang angle. For SLM,
this angle is mostly reported around 45° (Thomas 2009), but
varies for different process conditions (Wang et al. 2013;
Cloots et al. 2013). Overhanging regions of a design with
o < op can be built by adding support structures as
displayed in Fig. 1b. However, support structures increase
the build time, add material cost, and their removal can be
a difficult and costly task, especially for internal structures
that are difficult to access.

Consequently, developing topology optimization meth-
ods that incorporate a minimum overhang angle became an
active research topic. To the best of authors’ knowledge,
Brackett et al. (2011) were the first to investigate manufac-
turing constraints for additive manufacturing in a topology
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o < Qoh

N—base plate
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Fig.1 The overhang angle is defined as the angle « that a down-facing
surface of the combined printing layers makes with respect to the base
plate (a). Down-facing surfaces below the critical overhang angle need
to be supported by support pillars, indicated with gray dashed lines (b)

optimization context. They proposed a methodology to mea-
sure the overhang angle for evolutionary topology optimiza-
tion, but this method has not been implemented. The first
actual implementation was done by Gaynor et al. (2014),
detailed in Gaynor and Guest (2016). A wedge shaped fil-
ter in combination with Heaviside projection was used to
obtain self-supporting topologies. However, due to the non-
linearity introduced by the overhang filter in combination
with Heaviside projection, the number of iterations required
for convergence was high. Subsequently, Langelaar (2017)
presented an overhang restriction that evaluates the over-
hang angle on a structured mesh, where the amount of
material below each element is used as a measure for over-
hang. Self-supporting designs were obtained in 2D as well
as in 3D (Langelaar 2016). However, the filter is only appli-
cable to rectangular structured meshes, and «, can only be
tuned by changing the element aspect ratio.

Both (Gaynor and Guest 2016) and (Langelaar 2016,
2017) evaluate the manufacturability in a global sense,
following the layer by layer fashion of the manufacturing
process. Other methods, that only constrain the overhang
angle locally, have also been presented. Both (Qian 2017)
and (Allaire et al. 2017a) proposed a geometrical overhang
constraint by constraining the angle between the normal
vector at the perimeter and the build direction. Qian (2017)
uses density-based topology optimization in combination
with a non-discreteness constraint to suppress intermediate
densities, while in Allaire et al. (2017a) level-set-based
topology optimization is used. Although both methods
reduce the overhang, unmanufacturable sawtooth patterns
are generated, due to the local nature of the methods.
Finally, Guo et al. (2017) introduced an overhang constraint
for moving morphable components and moving morphable
voids. Although a large number of iterations is required,
the resulting designs are overhang free. Unmanufacturable
sawtooth patterns are avoided by preventing voids to
overlap. Furthermore, the importance of build orientation is
shown by including orientation in the optimization.
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Besides the direct implementation of a minimum over-
hang angle as a design rule, other approaches have been pro-
posed to limit the amount of support material required for
manufacturing. Mirzendehdel and Suresh (2016) presented
a constraint on the support structure volume. However,
when no support was allowed, the discontinuous identifica-
tion of overhanging surfaces seemed to result in a casting
constraint, eliminating also the allowable overhanging sur-
faces. Although feasible, the results will most likely be
sub-optimal. Finally, Allaire et al. (2017a, b) presented a
constraint on the compliance of the intermediate shapes of
a topology during the layer-by-layer manufacturing, which
should constrain the overhang naturally. This is reflected
in the results, where the amount of overhang is reduced.
Although physics-based constraints have great potential
by, e.g., predicting distortions during and after manufac-
turing, they tend to be computationally expensive, as the
compliance of partly build designs has to be evaluated or
approximated many times per iteration.

In order for a method to be of practical use in an industrial
setting, it should meet the following requirements. First of
all, the critical overhang angle should be adjustable, since
this value varies according to the specific process conditions
and the choice of material. Second, the overhang restriction
should be able to work on unstructured meshes. In practical
situations, the design domain is rarely rectangular and
can contain holes and curved surfaces, which cannot
be discritized with a structured mesh. Furthermore, the
overhang restriction should be computationally inexpensive;
its evaluation time and sensitivity analysis time should be
of the same order, or lower, as the objective evaluation
time, and should not add an excessive amount of iterations
required to converge to the optimum layout. Finally, the
overhang restriction should not contain parameters that need
to be tuned for every optimization problem.

This article presents a method to control the angle
of overhanging regions during topology optimization
which addresses all the above mentioned requirements.
Overhanging regions are identified by mimicking the
layer upon layer manufacturing process. Instead of adding
discrete layers, the printing history is modeled as a
continuous process with an advancing front. By employing
efficient algorithms developed to solve front propagation
problems in combination with adjoint sensitivities, the
additional computation cost remains small. This method
of overhang detection was first presented in van de Ven
et al. (2018), where the overhang limitation was included
as an additional constraint. In this paper, it is enforced
through a filter, improving the robustness of the method.
The formulation of the filter based on front propagation
is dimension and mesh independent (Sethian 1996), which
allows for extension to 3D. For the sake of brevity and
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clarity of the discussion, the overhang restriction method
and examples will be presented in a 2D setting only.

The next section introduces the overhang detection
procedure, and the implementation thereof in topology
optimization is discussed in Section 3. The numerical
implementation is shown in Section 4, and numerical
examples are presented in Section 5. Finally, conclusions
are given in Section 6.

2 Overhang detection

In this section, the overhang detection procedure based on
front propagation, as presented in van de Ven et al. (2018), is
presented. The resulting procedure is subsequently used in
the topology optimization to eliminate overhanging regions.

2.1 Overhang detection through front propagation

Front propagation methods track an initial curve or surface
Qo as it evolves in space. This has a clear resemblance
with the additive manufacturing process, where with every
added layer, the boundary of the product advances. Instead
of tracking the propagating front explicitly, the arrival time
field of the propagation is calculated. The arrival time
of a spatial point represents the time at which the front
reaches that location. The front propagation can then be
reconstructed by observing isolines of the arrival time field.
How the front propagates, is ultimately determined by a
speed function, which dictates the propagation of the front
in each direction and location.

Consider the geometry given in Fig. 2, that is to be
printed on the base plate €2¢, which coincides with the initial
position of the front. When printed in the b-direction with
aon = 45°, the shaded region will be overhanging, meaning
that it will fail during printing. Although the complete
extended region on the top-right is overhanging, from here
on we will reserve the term overhang for regions that are

VA

Qoh

b 4 L
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Fig.2 An example part which, when manufactured from the baseplate
Qo with build direction b, will have an overhanging region (shaded).
The rate at which the layers can expand without failure defines the
minimum overhanging angle oop

not manufacturable due to the overhang limitation. The
goal of the front propagation is to detect this region in a
cost effective, robust, manner. When the front, initially at
Qo, is propagated with an isotropic speed function within
this geometry, it starts to curve around corners, as can be
seen in Fig. 3a. In order to obtain an arrival time field
that represents the printing sequence of individual layers,
the speed function is modified such that the front travels
faster in directions deviating from the build direction. This
increase in speed compensates for the larger distance to be
traveled in the hanging region, so that the front stays parallel
to base plate Q2 instead of curving, as illustrated in Fig. 3b.

Finally, in order to detect overhang, the propagation
speed is decreased when the front travels in a direction
below aop, as shown in Fig. 3c. The earliest possible arrival
time, i.e. the minimum arrival time, for a point is the arrival
time of a front that has traveled straight from the base plate
toward that point, which is equal to the distance toward the
base plate divided by the propagation speed:

x-b
fb)’

where b is a unit vector parallel to the build direction,
f(b) is the propagation speed in that direction, and a - b

Tiin(X) = (0

[s]

[ TS
0 02 04

0.6 0.8 1

(a) Arrival time field (b) Arrival time field

L

(c) Arrival time field (d) Delay field

Fig. 3 Contour plots of the arrival time fields for a an isotropic
speed function, b an anisotropic speed function that gives equal arrival
times per layer, and ¢ an anisotropic speed function that delays the
propagation in overhanging regions, and d for the delay field 7, from
which the overhanging region can be identified
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denotes the inner product between vectors a and b. In all
non-overhanging regions, the arrival times are equal to the
minimum arrival times, while in overhanging regions the
arrival times exceed the minimum arrival time. Therefore,
overhang is detected by observing the delay

7(X) = T(X) — Tmin(X), ()

where 7 (x) is the arrival time obtained through front
propagation. When the delay T = 0, there is no overhang,
and when 7 > O there is overhang (Fig. 3d). This
procedure can be used on arbitrary geometries to detect
overhanging regions as will be demonstrated in Section 5.
In the following section the speed function required for the
overhang detection will be proposed. This speed function is
then used in the governing equations to obtain the arrival
time field, as discussed thereafter in Section 2.3.

2.2 Anisotropic front propagation

As discussed in the previous section, the propagation speed
is decreased when the front travels in directions below
aon- This is done by making the speed function direction
dependent. Consider a point x, whose arrival time is to
be calculated, as illustrated in Fig. 4. The arrival time is
updated from a given point X’ on the front, where the arrival
times are known. Finding x’, from where x is to be updated,
is covered in Section 2.3. The new arrival time can be
calculated with
Ix —x'I|
f@ ’
where a = (x —x')/(||x —x'||) is a unit vector pointing from
x' to x, and f(a) is the speed function, dependent on the
direction of the update. ||...|| is used throughout the paper to
denote the L? norm. The update direction is defined as o =
/2 — arccos(a - b). Let us first consider a speed function
that results in equal arrival times per layer as in Fig. 3b.
The time difference between two points should match the
distance between the points projected on the build direction,
divided by the propagation speed in the build direction fy:

T(x)=TX)+ 3

(x—x/)~b
fo

T®) - TK) = @)

x’“-:\-:-T- =T(x)

Fig.4 The calculation of arrival time for a point x from a known point
X/
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fo 1s a constant that simply scales the arrival time field and
is set to 1m/s. By combining (3) and (4), the speed function
becomes:

flx=x1_ fo

S = (x—x)-b a-b’

&)

In order to obtain an arrival time field as shown in Fig. 3c,
the propagation is delayed in overhanging regions. This is
achieved by decreasing the speed function whenever the
update direction a is below the critical overhang angle, i.e.
when ¢ < aoh Or @ > T — aop, Or equivalently a - b <
sin(aon). The speed can be decreased in numerous ways,
and for numerical reasons detailed in Section 4, the speed
function for propagation in directions below «,, is chosen
as:

fo

tan(con) || Pal|’

f2(a, aon) = (6)
where P = (I — b ® b), and a®b denotes the outer product
between the vectors a and b. It can be shown that f, < f
when a - b < sin(aep) and fi = f> when a - b = sin(«ep),
hence decreasing the speed for propagation below ap.

So far, only upwards updates, where a - b > 0, have
been considered. The speed function should also be defined
when the direction of propagation is downwards, i.e. when
a-b < 0. Downward propagation might happen in hanging
regions, which by definition are overhanging, as can be seen
in Fig. 5. The downward propagation speed can in principal
be chosen freely as long as it is greater than zero, since
there will always be a delay because the front has to cover
additional distance to reach hanging areas from within the
structure. For numerical convenience, the downward profile
is chosen identical to the upward propagation profile. The
speed function is then

[f1l a-b > sin(aop) or
a-b < —sin(agh)

f@, aop) = (N

fo  —sin(agh) < a-b < sin(aeh).

]

Fig. 5 When geometries containing hanging sections, downward
propagation is required. These areas are by definition overhanging
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Fig. 6 Polar plot of the speed function f for aop = 45°, and its
components f1 and f>. The tangential axis represents propagation
direction, and the radial axis represents propagation speed

This can be rewritten as

fo

max (tan(a,n) [|Pall, [b-al)’

f@, aop) = ®)
This gives a speed function with a rectangular shape when
displayed in polar coordinates, as can be seen in Fig. 6,
suitable for overhang detection. The effect of the minimum
overhang angle on the speed function is displayed in Fig. 7:
lower minimum overhang angles widen the speed function,
increasing the anisotropy.

2.3 Governing equations

Using (3) and (8), the arrival time at a point X can be
calculated given a point X' with a known arrival time. In
order to obtain the arrival time field, each point should be
updated from the direction that results in the earliest arrival
time (i.e., the direction from which the front reaches the
point first). Therefore, (3) is minimized for all directions a €
S1, S1 = {a € R" | ||a|| = 1}, where n is the dimensionality
of the problem. By doing so and linearizing around x, the
front propagation problem can be described as a boundary

-~ 45 °

270°
v

Fig. 7 Polar plot of the speed function for «on equals 45°, 35°, and
25°. The tangential axis represents propagation direction, and the
radial axis represents propagation speed

value problem governed by the Hamilton-Jacobi-Bellman
equation, which is solved for T':

misn{(VT(X) -a)f(x,a)} =1,
EISh]
T(x) =0,

X € Q,

X € 092,

®

where €2 is the interior of the domain and 92 is the (partial)
boundary of the domain at which the front is initiated. At
the initial boundary, the arrival times are set to zero, and
from there, arrival times can be progressively calculated
throughout the domain, by which the front is advanced.
Effectively, the front is advanced by calculating for every
location the fastest path to the known front.

Instead of calculating the fastest path toward the front,
another perspective is to expand the front and calculate the
time it takes to reach each location. The front is expanded
by the speed function F (x, n), dependent on the normal
direction of the front, which is determined by the gradient of
the arrival times: n = VT /||VT||. The norm of the gradient
VT determines how fast the arrival time changes spatially,
and has to be equal to the reciprocal of the speed function.
This gives the governing equation

1
IVT| = T

(x,m)
T(x) =0,

X € Q,
X € 0.

(10)

Note that the speed function F is generally not equal to
the speed function f. For a detailed relation the reader is
referred to Vladimirsky (2001), but F can interpreted as the
speed of the front in the normal direction (semi-Lagrangian
perspective) while f is the speed for an individual particle
(Eulerian perspective), which do not coincide when the
speed function is anisotropic.

Solving either (9) or (10) yields the same result, but for
(10) a root finding problem needs to be solved locally, while
for (9) this is a minimization problem. One or the other
might be easier to solve depending on the speed functions
f and F. For the speed function given in (8), the local
minimization problem can be solved efficiently as will be
shown in Section 4. Therefore, this study will focus on
solving the front propagation with the Hamilton-Jacobi-
Bellman equation.

2.4 Interpretation of the delay field

With the speed function given in (8), the resulting delay
field has a physical interpretation. The delay at a point X is
proportional to the distance to the closest non-overhanging,
or manufacturable, point in the layer in which x is printed,
i.e. in the direction orthogonal to b. f* is a speed that relates
the delay to this distance:

T(X) = fdon(x), Y

@ Springer
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where dn is the distance from x to the closest manufac-
turable point in the same layer. For manufacturable points,
the distance to the closest manufacturable point, i.e. to itself,
don = 0, and the delay of manufacturable points is zero.

Now consider a point x that is updated from a
manufacturable point x’, as depicted in Fig. 8. The delay
7(x) is calculated with (1)—(3), and should be proportional
to doh:

lIx —x'I|
f(@)

Assuming that x’ is manufacturable gives T(x') =
Tmin(x") = X' - b/fo (1). Furthermore, Tyin(x) = X - b/fo.
Simple trigonometry gives

T(x)+ — Tin(X) = f*don 12)

don = [Px—x)|| - da (13)
N b (x—x)
[Pex—x)| — =~ (14)

Then, by combining (12) and (13) the following expression
for the speed function is obtained:

f@) = / = Xl:~|!x7x/) b-(x—x/) ° (15)
FHIPx—x)|| — frR0ox) 4 bOx)
By choosing f* = tan(wen)/ fo, this reduces to
0
f(a)= J (16)

tan(cton) [ Pal”

which is equal to the speed function for overhanging regions
(6). The delay of a point x is thus proportional to the distance
of x to the closest manufacturable point in the layer in which
X is printed.

3 Integration in topology optimization
With the overhang detection procedure outlined in the pre-

vious section, an overhang filter for topology optimization
is formulated. In van de Ven et al. (2018), this overhang

X

Fig. 8 Given a non-overhang point X', the material in the next layer
above X' is printable if the horizontal distance to X’ is not larger than d, .
Overhang is measured by the distance to the closest manufacturable
point in the same layer, indicated by d,,

@ Springer

detection procedure was used in an explicit overhang con-
straint. However, this required the introduction of several
additional parameters and constraint aggregation, resulting
in some constraint violations. Therefore in this work, ogp
will be enforced implicitly through a filter, as has been done
for the overhang constraints in Gaynor and Guest (2016)
and Langelaar (2017). The filter will be integrated in a den-
sity based topology optimization (Bendsoe and Sigmund
2003). A schematic of the optimization flowchart is given
in Fig. 9a. First, the design variables p are filtered (Bruns
and Tortorelli 2001) to control length scale and to prevent
checkerboarding (Sigmund and Petersson 1998):

pj = Zwijpi/zwij, (17)
i i

wij = max(r — [Ix; —X;|l, 0), (18)

where p7 is the filtered density at position x; and r is the
filter radius. The filtered densities p* define the geometry
on which the overhang is detected with front propagation.
This results in the printable densities &, which are used
for the objective and constraint evaluation. Finally, the
sensitivities are calculated and the design variables updated.

3.1 The overhang filter

The overhang filter, as indicated in Fig. 9b, comprises of
three steps. First, the filtered densities p* are pre-processed.
Then, the front propagation is performed which gives the
arrival time field 7. Lastly, the arrival times are post-
processed to obtain the printable densities £ (Fig. 9b). These
three steps are discussed in detail in the following sections.

2 Filtering

Objective &
constraints
evaluation

Sensitivities

df,dg
Optimization
p

(a)

Fig. 9 Implementation of the overhang filter. The overhang filter (b)
is added after the density filter, and all subsequent steps are performed
on the printable densities & (a)

no

e e - —-—-——
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3.1.1 Pre-processing and front propagation

In density based topology optimization, the topology is
defined by a pseudo-density field that determines the
amount of material at every location. In order to capture
this topology in the front propagation, the propagation speed
is scaled by the local filtered density p*. Furthermore, a
lower bound for the scaling, vyeig, is introduced to prevent
infinite arrival times in void regions. For simplicity, a linear
interpolation is used, which gives the speed scaling field

¢ (X) = vyoid + (1 — Vyoia) P (%), 19)

where typically vyoig = 0.1 is used. The speed function (8)
is, again for simplicity, linearly scaled by this field giving

fs(@(X), a, aon) = ¢ (X) f(a, cton). (20)

The front propagation is performed with this scaled speed
function.

3.1.2 Post-processing

After the front propagation is conducted, the delay field (2)
can be constructed, given by

) = T00 - 22— 79 - X2 @1
f(b) fo
The delay is zero for manufacturable regions and larger than
zero for overhanging regions. In order to compare printable
densities with the original densities, a dimensionless field is
required that is 1 for manufacturable regions and between
0 and 1 for overhanging regions. Therefore, the following
function is used to map the arrival time delay to printability:

E(x) =27FT®), (22)

where k[s~!] controls how rapidly printability decreases
with an increasing delay. It is defined as follows:

k= fo/B. (23)

Because of the negative power of 2 in (22), f[m] can be
interpreted as the typical length after which the printable
density of an overhanging part is halved. The relation
between £ and 7 for different values of k is displayed in
Fig. 10. By increasing k, sharper edges and finer details

0.75
_ ke,
|
w PN s \
e ) NS
025 £ Ny \
&
0
0 0.5 1 15 2 2.5

Fig. 10 The relation between the delay field r and the printable
densities & for different values of k

are obtained, lower values of k can result in smoother
convergence. B is typically chosen as /1 /4, where h is the
typical element length.

3.1.3 Initial condition for the front propagation

The arrival times are initialized at the base plate for the
preferred building direction. Although the boundary on the
base plate is manufacturable, as it is completely supported
by the base plate, the arrival times are not initialized at 0,
but with a slight offset 7Ty proportional to the density:

T(x) = (1 - p*(x)To, X € 0Q. 24)
Without this offset, the delay t on the bottom layer will be 0,
regardless of the density value. The printable densities £ on
the base plate will then be 1 (22), resulting in a permanent
layer of material on the base plate. With this offset, the
initial arrival times are dependent on the local densities, and
when the densities are 0, the delay T = Tj. Tp is chosen such
that a sufficiently small printable density is obtained when

the local density is zero. For example, Tp = 8/k, results in
an acceptable & = 0.0039 when p* = 0 (22).

4 Numerical implementation

Efficient evaluation of the front propagation problem and
its sensitivities is of paramount importance for its feasi-
bility as an overhang filter. Fortunately, the directionality
of the front propagation problem allows for a fast calcu-
lation of the arrival time field: because the arrival time
at one location can only influence locations with a higher
arrival time, the arrival times can be calculated using single-
pass methods. These methods start at the boundary, and
propagate the front by calculating arrival times in ascend-
ing order from the boundary. In principal, the arrival time
at every location only needs to be evaluated once, hence
the name single-pass. For the evaluation of an arrival
time only a local problem is solved, resulting in a close
to linear scaling of the algorithm with a computational
complexity of O(N log N). For isotropic speed functions,
the Fast Marching Method has been developed (Sethian
1996), which is commonly used in, among others, the
level-set method (Sethian and Wiegmann 2000), but also in
other optimization settings (e.g. van Keulen et al. 2008).
The Fast Marching Method has been expanded into the
Ordered Upwind Method (OUM) (Sethian and Vladimirsky
2003) for anisotropic speed functions. Furthermore, iter-
ative methods have been developed, called fast-sweeping
methods, and mixtures of marching and sweeping methods.
Additionally, parallelized methods are available. However,
since the performance of the OUM is sufficient and its

@ Springer
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implementation is straightforward, no alternatives have been
considered.

4.1 Ordered upwind method

For the sake of completeness, the OUM will be briefly
explained, following Sethian and Vladimirsky (2003). From
here on we consider a 2D setting with triangular elements.
Consider a discretized domain with N nodes. Node i is
located at x;, and field quantities at node i are denoted with
a subscript, e.g. p;. In the OUM, each node is labeled as
being either Far, Considered or Accepted. Initially, all the
nodes are labeled Far, except for the initial boundary nodes
which are labeled Accepted. Each iteration can be divided
into three steps:

1. Move all the nodes that are in Far and adjacent to an
Accepted node to Considered.

2. Evaluate the arrival times of the nodes in Considered,
using the Accepted nodes.

3. Move the node in Considered with the earliest arrival
time to Accepted.

This process is repeated until all the nodes are in
Accepted. In Step 2, the arrival times of Considered nodes
are calculated using the current front. The current front is
defined in 2D as the set of line segments XXy, for which
x; and x; are adjacent to each other, in Accepted, but also
adjacent to one or more Considered nodes. Nodes that fulfill
these three requirements are said to be in the AcceptedFront
(AF). In order to calculate the arrival time of a Considered
node X;, the current front is scanned to see for which
location on the front the travel time to the node in question is
the shortest, as displayed in Fig. 11. Only a small part of the
current front, which is close enough to x; to possibly provide
the earliest arrival time, needs to be considered. This is the
so-called near front (NF) of x;:

NF(x;) = {x;x € AF| 3X on X;x;
s.tlX — x| <hG2/Gy }, (25)

""" Candidate update

Fig. 11 The arrival time of node x; in a triangular mesh is updated
from the AF. On each line segment on the AF, the point ¢ that gives the
fastest arrival time is determined, and the lowest arrival time resulting
from the points ¢ is accepted
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where £ is the typical mesh diameter, and G| and G
are the lower and upper bound of the speed function f;,
respectively. G2/ G is a measure for the anisotropy of the
speed function. The arrival time at x; is updated from the
segment of NF(x;) that gives the lowest arrival time:

T = min  Vyx(X), (26)

X jx; €ENF(x)
where VXij (x;) is the upwind approximation of 7; when
calculated from line segment X;X. ijxk(xi) can be
evaluated from either the semi-Lagrangian (9) or the
Eulerian (10) perspective. As stated in Section 2.3, the semi-
Lagrangian perspective is used in this work, but similar
results can be achieved using the Eulerian perspective.
Following Sethian and Vladimirsky (2003), Vx;x, (X;) is
approximated with:

S omin | X©
ijyxk(xl) - ;rerg(])fll] {fy((ﬁi,a{, Oloh)

T+ (1 =T } @0
where x(¢) =[x —e¢c], and a; = (xi —¢) /x(©).

¢; = ¢X; + (1 — )X, which is a point on the segment
X;x; determined by ¢. For example, in order to calculate
T; for a Considered point x;, as displayed in Fig. 11, the
lowest possible arrival time for each segment on the AF is
determined by solving (27). Then, the update that gives the
earliest arrival time is accepted (26). Due to the anisotropy
of the speed function, this is often not the closest point
and the update might even cross several elements (as is,
for example, the case for the update from ¢; and c¢3 in
Fig. 11). Nonetheless, the speed function f; is assumed
to be constant, as its only spatially varying argument, the
speed scaling field ¢, is only evaluated at the target location
Xx; (27). No instabilities have been observed related to
this approximation, but one could make a more precise
approximation by interpolating ¢ over the update path.
However, (27) will become more difficult to solve, and the
sensitivities will be less local as the arrival time will then
depend on the densities of all the nodes from the elements
that are crossed.

Although (27) is evaluated for every segment in the near
front, the eventual arrival time 7; will only depend on the
earliest upwind approximation ij,xk (x;). Therefore, T; is
only a function of the arrival times that appear in ij,xk (x;),
and the speed scaling field at x;, ¢;. For brevity, (26) is
written as

def
T = VT, T, ¢i) = Vi. (28)

The minimization problem given in (27) needs to be
solved multiple times for every node that is updated. There-
fore, solving it efficiently is crucial for a computationally
fast overhang filter. The second and third term of (27) are
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linear with ¢. With the speed function given in (20), the first
term of (27) can be rewritten as

_x®
fs(¢i, ac, con)
)max (tan(aoh)HPag b - 3§|)

bi
~ max (tan(aon) [P(x — eI, [b - (x = ¢¢)])
éi

with only ¢; linearly dependent on ¢. In two dimensions,
the arguments of the maximum function are piecewise linear
functions of ¢. The other terms in (27) are also linear
functions of ¢. Consequently, (27) is piecewise linear in ¢,
and the minimum will be either at the edges of the domain
(¢ = 0or ¢ = 1), or at the intersection points of two
piecewise linear sections. This will only occur when the two
arguments of the maximum function are equal:

= x( , (29)

. (30

tan(eton) [[P(X — )| = [b - (x —¢;)] €29

In two dimensions, this gives two possible intersection
points:

= tan(aton) [P(xx —X)|| = b - (X — X) 32)
tan(cto) [P(x; —x0)[l +b - (X — xk)

— tan(aop) [P(xx —X)[| +b - (X — %)

— 33
= Gn@om P& — %0l —b- () — %) 33

Therefore, the minimum in (27) is efficiently obtained
by simply evaluating the minimization problem at
¢ =(0,1,¢1, &), and accepting the minimum value that
lies on the interval (i.e. 0 < ¢ < 1).

Summarizing, in each iteration of the algorithm, the node
with the lowest arrival time is added to the set of Accepted
nodes, and its neighboring nodes’ arrival times are updated.
The arrival time of a node is updated by scanning the front
within a certain radius of that node for the shortest arrival
time (26). The minimum arrival time on a segment is found
by solving (27), which can be done by probing the line
segment at four locations. In 3D, the front is represented
by a surface, and the arrival time of a node is updated
from a surface instead of a line. The minimization problem
presented in (26) is therefore more complex, and will be
elaborated in a separate paper.

4.2 Sensitivities

The sensitivities are derived from the descritized equations
as outlined in (25)-(32). By doing so, the computational
effort for the sensitivities becomes negligible; only one
loop over all the nodes is required as will become clear in
Section 4.3. The sensitivities are given for a general function
g which is a function of the printable densities &. This
could be either the objective or a constraint function. The

sensitivities with respect to the arrival times follow directly

from the chain rule:
g 0g 0§ 0t
= =22 __ = 2 (—kIn(2 34
oT, ~ 9% 95 0T, 8&,( n(2)§). (34

In order to obtain the derivatives of the arrival times 7 with
respect to the velocity field ¢, the state (28) is added to g
for every node, multiplied by an adjoint field A:

N
g =g+ 1 (T = V). (35)
j=1

Deriving with respect to the velocity field gives

dg* & [ dg dT]} l [ (dT,- de>:|
B W B feA (==L -=L)|. 36
do; g aT; do; * Jz_; T\d¢i  dg (%6)

The summation can be combined and the term dV;/d¢;
expanded:

dg* dg dT;  dT;
i Z[BT o Mg
N rov; dr;
(a¢, +;[ﬁ£m
37)

Since the last term consists of two nested summations, both
from 1 to N, the indices k and j can be swapped:

N
dg* dg dT; dT; aV;
; =Z[—g—’“f Mg

de; aT; de; do; 0o;

j=1
N
Vi dT;
_ Z[ ka_de_H (38)
P bi

Now all the terms containing d7’; /d¢; can be combined:

dg* X v, dg N[ avk] dr;
- —x; T pypads . (39
d¢i 12_;{ Jd¢ ( J kXZ: k d¢l ( )

By choosing the adjoint such that the terms between
brackets becomes zero, dT;/d¢; does not need to be
evaluated. Therefore, the following condition has to be
satisfied:

N
a—?+xj—2[,\ka—v’f}= . (40)
k

Finally, the sensitivities become

d¢, _Z ’aqz “h)

@ Springer
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However, 0V;/0¢; is only nonzero when j = i, which
simplifies the sensitivities to

dg* 9V
dgr — agi

(42)

The sensitivities with respect to the densities follow from
the chain rule:

dg*  dg* a¢; dpj
dp;  dg; Ipy dp;”

(43)

where, from (19), E)q},-/B,o}k = (1 — vyoiq), and dp}‘.‘/dpi is
the derivative of the density filter. Note that for the nodes
on 92, the derivatives are slightly different due to the
initialization (24):

dg* dp;
a@ == To—j,

X; € 9S2. (44)
dp; dp; '

4.3 Evaluating the adjoint

Equation (40) can be rearranged to obtain a recursive
expression for the adjoint variables:

aV ad
3 = [xk_k} _Js (45)
k=1

The second term on the right-hand side can be evaluated
directly with (34). For the first term on the right-hand side,
the adjoint variables A; of the nodes k whose arrival time
has a dependence on the node j in consideration, i.e. when
0Vi/0T; # 0, must be known. By evaluating the adjoint in
the opposite order as in which the arrival times have been
calculated during the front propagation, it is guaranteed that
the adjoint variables are evaluated before they appear in
the first right-hand side term for another adjoint variable:
clearly, dV;/0T; # 0O only when T} is based on, and
thus calculated after, 7; (note that the partial derivative
dVy /0T, = 0). However, a variable number of arrival times
T; can depend on arrival time 7. Therefore it is more
convenient to index on which arrival times 7; depends,
since every arrival time depends on exactly two other arrival
times (28), except for the nodes on 9€2(, whose arrival times
depend only on the local density (24).

Thus, during the front propagation, the order in which
arrival times are accepted is stored in an array o, and the
indices of the two nodes on which the accepted arrival
times depend are registered in arrays ¢! and ¢2. The adjoint
variable can then be evaluated in a single loop, as outlined in
Algorithm 1. Note that 0V /dT is a sparse matrix with two
entries per row and 9V /d¢ has only entries on its diagonal.

@ Springer

Algorithm 1 Adjoint evaluation

1: Input:

dg/dT,dV/dT,dV/dgp,c!, c?, 0,x, N
2: Initialize:

A <«—0,i=1,....,N

3: fork=Ntoldo

4: Jj <« o

5: Aj < Aj —0g/0T;

6:  dg™/dp; < —1;jdV;/0¢;
7: if x; ¢ 020 then

8: XC} <~ kc} +Aj8Vj/8TC}_
9: XL? <—)LC§+)LJ'8VJ'/3TC§
10:  endif

11: end for

5 Results

In this section, the newly developed overhang filter is
demonstrated on a given geometry, and on three cases where
the compliance is minimized. The optimization problem
reads as follows:

min lel

s.t. K(&)u=H, (46)
V(&) Vim—1=<0,
0<p=1

Here f and u denote the load and displacement vector,
respectively. K(&) is the element stiffness matrix evaluated
on the printable density field &. V(&) is the total volume,
also evaluated on the printable densities, and Vjj, denotes
the maximum permitted volume. The sensitivities of the
objective and constraint w.r.t. the printable densities can be
found in e.g. Bendsoe and Sigmund (2003).

The first test case that is presented is the cantilever
problem, which is well known and therefore allows for
a clear interpretation of the results. The second case is a
tensile test case, which has a sharp contrast between the
objective and obtaining an overhang-free design. Finally,
the capability to detect overhang on an unstructured mesh is
demonstrated on the optimization of a crane hook. On the
test cases, the filter is tested for several overhang angles,
filter sizes and volume fractions. Finally, the computational
cost is evaluated.

Unless stated otherwise, the following parameters are
used in the upcoming examples. The Young’s modulus
E is set to 1 and 1- 107° Nm~2 for material and void,
respectively, and the Poisson ratio v = 0.3. The applied
force F = IN. RAMP penalization is used with ¢ = 10
(Stolpe and Svanberg 2001). The optimizations are run
for 100 iterations with the Method of Moving Asymptotes
(MMA) optimizer (Svanberg 1987), in order to test different
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cases with roughly the same computational time, as this is
often limiting factor in a practical environment. Standard
increase and decrease parameters of respectively 1.2 and
0.7 are used. The Portable and Extendable Toolkit for
Scientific Computing (PETSc) (Balay et al. 1997, 2016) is
used to parallelize the FEM assembly and solve (not the
front propagation), in combination with the Multifrontal
Massively Parallel sparse direct Solver MUMPS (Amestoy
et al. 2001, 2006). All the presented examples can be run on
a single desktop, therefore, the implementation of PETSc is
mainly intended for future 3D cases.

T|[s]

_
-
L

(b) Arrival time field. Iso-lines in blue.

(c) Delay field. Iso-lines in blue.

(d) Printable density field.

Fig. 12 The process of obtaining the printable densities (d) for a given
topology (a), by performing a front propagation (b) and evaluating the
delay field (c)

5.1 Overhang detection

Consider a typical material distribution one might encounter
during a topology optimization on an unstructured mesh, as
given in Fig. 12a. The overhang filter is applied as follows.
First, front propagation with oo, = 40° is performed on the
given geometry, resulting in the arrival time field as shown
in Fig. 12b. Due to the numerical implementation of the
front propagation, there is slight rounding of the corners
of the arrival time field iso-contour lines. The rounding
causes a small overestimation of the critical overhang angle,
and can be reduced with mesh refinement. However, this
is generally not necessary as the error is small, for this
particular case in the order of 2°. From the arrival time
field the delay field is calculated, as shown in Fig. 12c. In
this field the non-overhanging area with r = 0 (no delay)
is already clearly visible. The printable densities are then
evaluated with (22), resulting in the material distribution
given in Fig. 12d. Compared to the original density field, the
overhanging regions are removed, and the top-right member
that is close to printable has intermediate densities. During
the optimization, penalization of intermediate densities will
limit the emergence of intermediate density values in the
optimized topologies.

5.2 Cantilever test case

The overhang filter is first applied to the cantilever case,
where compliance is minimized on a rectangular domain,
as illustrated in Fig. 13. The domain length a = 1.0m,
and the domain is fully clamped on the left side and a
vertical point force acts on the right side. The domain is
discretized with a structured triangular mesh, comprised of
30 000 elements, with an average element edge length of
4.6mm. Furthermore, a density filter is applied with a filter
radius of 20mm, and the volume is constrained at 50% of the
design domain. The optimal design without overhang filter
is depicted in Fig. 14a. Its final objective, Cref = 70.087J, is
used as a reference for the overhang-free designs. Although
this design is printable when rotated 90° counter-clockwise,
the overhang filter is applied to make the designs printable

A
Al

base plate

Fig. 13 The cantilever test case, mechanically supported on the left
side and with build direction b

@ Springer
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(a) Without overhang filter.
C = Cyop = 70.087J.

(b) With overhang filter. C = 1.12Cpt.

(c) Without overhang filter and continuation.
C =1.09C,.

Fig. 14 Optimized designs for the cantilever case

when the build direction coincides with the y-axis, with
aon = 45°. The overhang filter parameters are chosen as
k = 500, Tp = 0.02 and vyeig = 0.1. With overhang filter, a
discrete, overhang-free design is obtained, as can be seen in
Fig. 14b. The initially overhanging members are supported,
and most down-facing edges make a 45° angle with the
base plate, lying exactly on the limit. The objective of the
printable design is 12% higher than the conventional design,
due to the added manufacturability filter. It can be observed
that the edges of the filtered design are crisper than in the
original design, which is controlled by the value of k. Lower
values of k will decrease the crispness.

Compared to the constraint implementation presented in
van de Ven et al. (2018), the cusps at the topside of the
small holes depicted in Fig. 14b are crisper, with almost no
overhang present when the filter approach is implemented.
With the constraint implementation, overhang was not
completely eliminated in small holes (van de Ven et al.
2018). The cost per iteration of both methods is roughly

@ Springer

T T T T

7
6t —8—no continuation | |
—e— continuation
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G 3r j
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’
7

’ [y
7 £y
0 1

0 1 1 1 1
0 20 40 60 80 100

Iteration
Fig.15 Convergence behavior for the cantilever case with and without
continuation. The snapshots are taken at iteration 10, 25, 50 and
100, from the optimization without continuation. Note that without
continuation, the optimization starts from a completely filled design,
hence the high performance in the first few iterations when the volume
constraint is not yet satisfied

equal, since front propagation and the corresponding
sensitivity calculation are identical in both approaches.

5.3 Initial configuration, convergence
and continuation

The optimization with overhang filter converges smoothly,
and after 50 iterations the design hardly changes, as can
be seen in Fig. 15. The objective is autonomously low at
the start as an initial density field of p = 1 is imposed,
implying a completely filled domain and resulting in a
violation of the volume constraint. After 10 iterations, when
the volume constraint is satisfied, the objective decreases
monotonically. The choice of a completely filled initial
configuration is necessary to allow the optimizer to place
material freely throughout the complete domain in the first
few iterations. If the optimization starts with a density
distribution in accordance with the volume constraint, i.e.
p = 0.5, most of the domain is detected as overhanging
and therefore does not contribute to the overall stiffness.
Consequently, the design grows from the base-plate in
the build direction, with slower convergence behavior and
results in a far-from-optimal local minimum, as can be seen
in Fig. 16.

Fig. 16 Design obtained with overhang filter using a conventional
initial design. To obtain good results, starting with a fully solid design
is recommended. C = 1.69C ¢
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aon = 10° aon = 20° aon = 30°

Ooh = 40° Ooh = 50° Ooh = 60°

(@)

(b)

(©

Fig. 17 Resulting designs for the cantilever case with various minimum overhang angles optimized a without continuation, b with continuation

over 25 iterations, and ¢ with continuation over 100 iterations

However, also with the completely filled initial config-
uration, like every nonconvex topology optimization prob-
lem, the optimization with overhang filter is susceptible
to converge to inferior local optima. As can be seen in
Fig. 14b, not all the material contributes to the stiffness of
the structure: the supporting leg on the bottom right has no
mechanical function as the bottom of the domain is mechan-
ically unconstrained. Although it is expected that enforcing
printability decreases the overall performance, it seems that
this member could have been placed under a 45° angle
to add support as well as stiffness, instead of only sup-
port. From the optimization history it becomes clear that
this member is formed early in the optimization to allow
material around the point where the force acts, and is not
repositioned later on.

A common method to avoid inferior local optima is
to apply continuation. In order to activate the overhang
constraint in a gradual manner, the physical densities &, are
linearly interpolated between the filtered densities p* and
the printable densities &:

& =nE + (1 —n)p*, 47)

where the objective and constraint evaluations are now
performed on the physical densities &, and n € [0, 1] is
the continuation parameter. In the remaining examples in
this paper, when continuation is applied, n is continuously
increased from O to 1 over the first 25 iterations of the
optimization.

The resulting design with continuation is displayed in
Fig. 14c, and its convergence behavior is plotted in Fig. 15.
When continuation is used, the initial configuration can
be chosen as a uniform density distribution of p =
0.5, resulting in a higher initial objective as compared to
the optimization without continuation but satisfying the
volume constraint. In the first 25 iterations the objective
decreases, but not monotonically due to the ramp up of the
continuation parameter 1. Generally, when continuation is

used an improvement is observed in the final objective, as
compared to the value of the final objective attained without
continuation.

5.4 Variable overhang angle

The novel overhang detection method based on front
propagation can filter out overhangs with any value of
oon. However, for very large angles (aon > 60°), the
optimization does not converge well as it becomes harder
to find topologies that meet such a stringent manufacturing
constraint. Since such high overhang angles are usually
printable with modern printers, a parameter study for 10° <
aon < 60° is performed. For every angle three calculations
are performed: without continuation, with continuation as
described in Section 5.3, and with extra long continuation
where 71 is continuously increased from O to 1 over the
course of 100 iterations and the optimization is run for 400
iterations. The results are shown in Fig. 17, and the final
objective values are plotted in Fig. 18.

%x10
1.6 120
. . 4
—e—no continuation ’
1.4 1 |—e continuation / a15

--@:long continuation

C/Cref
Volume constraint

Minimum overhang angle [degrees]

Fig. 18 The final objective and volume constraint values as a function
of the minimum overhang angle. The objective increases with the
overhang angle, as more material has to be used for supporting
purposes. Furthermore, it can be seen that continuation does not always
lead to a lower objective. The volume constraint is overall satisfied
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r = 15mm

X0 XD

r=6mm

r = 10mm

XD O

r = 20mm

r = 40mm

Fig. 19 The influence of density filter radius on the resulting topology. Smaller filter radii allow thin supports, reducing the cost of the overhang
filter on the objective. For r = 3mm, a zigzagging support can be observed (encircled in red)

As expected, lower overhang angles result in designs
similar to designs obtained without activating the overhang
filter as shown in Fig. 14a. For higher overhang angles, more
material is required for support, and the objective increases.
Furthermore, as observed in the previous sections, the
optimizations without continuation contain a higher fraction
of material that does not contribute to the stiffness, but is
only in place to satisfy the overhang limitation. Except for
aon = 60°, the extra long continuation does not seems to
contribute to better designs. This can also be seen in the final
objective values, which are plotted in Fig. 18. Interestingly,
although the designs with continuation look visually more
appealing than the designs without continuation, their
overall objective values are only slightly lower for several
overhang angles.

5.5 Filter size

The final parameter to be investigated on the cantilever case,
is the density filter radius. For this parametric study, the
optimizations are performed on a finer mesh comprised of
180 000 elements, in order to accommodate smaller radii.

CiC

0.9 L L L
0 10 20 30 40

Filter size [mm]
Fig. 20 The final objective as a function of filter radius. Lower radii

allow for thinner supports, and consequently result in lower objective
values
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The average edge length is 1.9mm, and the filter is varied
from 3mm to 40mm. The resulting designs are displayed
in Fig. 19. It is clear that the filter radius has an effect on
the feature size, as smaller features appear for smaller radii.
For these smaller radii, supporting structures hardly cost
any volume. Therefore, the main structure can resemble the
original design closely, resulting in a lower objective value,
as can be seen in Fig. 20, where the final objective values
are plotted. Although oscillatory boundaries develop under
the main structural beams for small density filter radii, the
presence of these detailed features is not a manifestation of
the sawtooth patterns observed when the overhang is only
locally evaluated (Allaire et al. 2017a; Qian 2017): in our
results the cusps of any sawtooth are at all times sufficiently
supported, and thus manufacturable.

Exact control over the length scale is lost, since members
can be positioned such that they are partially overhanging,
resulting in thinner members in the overhang filtered design.
In order to impose an exact minimum feature size, one
should apply an additional filter after the overhang filter.
Because a linear weighted average filter would reintroduce
overhang in sharp corners, a dilate filter could be used
Sigmund (2007).

4 A

¢ 3/8a
Ik

base plate

Fig. 21 The tensile test case case, mechanically supported on the left
side and with build direction b
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V =10% V =20% V =30% V =40% V =50%

SRR R (e e leanaas
YT T P e

Fig. 22 Results for the tensile test case for various volume fractions available to support the design, and the optimizations fail to converge
and for a a 20mm filter radius, and b a 7.5mm filter radius. For small to a black and white design
volume fractions, dependent on the filter radius, not enough material is

5.6 Tensile test case 30% and higher, fully dense supports are created for both
filter sizes. With decreasing volume fraction, the material
An extreme test for the overhang filter is the tensile test  available to increase the stiffness diminishes. Consequently,
case. The case is similar to the cantilever case except that the for 20%, the larger filter size is unable to converge to a black
force acts in the horizontal direction and is applied closer  and white design, and for 10%, neither converges to a black
to the top side, as displayed in Fig. 21. Without overhang  and white design.
filter, the optimal design is a beam connecting the force Furthermore, it can be seen that there are some supports
to the fixed side. For the purpose of testing our algorithm,  that “zigzag” downwards, instead of a more volume efficient
we disregard the possibility to translate the beam to the  straight line. This behavior can also be seen in Fig. 19, for
base plate. The bottom side of this beam will be completely ~ r = 3mm. However, the influence on the objective is usually
overhanging, and therefore supports need to be generated to ~ minute, as this is mostly observed for thinner supports.
connect the base plate to the beam. These supports will have
no mechanical function, and thus completely counteract the 5.7 Crane hook case
objective with volume constraint. Therefore, it is a good test
to see if the overhang filter is able to generate fully dense  For the final case, the compliance of a crane hook is
supports, that have no function other than supporting the = minimized in order to demonstrate the overhang filter on a
design. domain that is not easily meshed with a structured mesh,
The tensile test case is optimized for several volume  as is often the case in industrial practice. The domain
fractions, ranging from 10% to 50%, and for a20mm and a  and boundary conditions are displayed in Fig. 23. The
7.5mm filter radius, as displayed in Fig. 22, without the use =~ domain is mechanically clamped at the top and a vertical
of continuation. It can be seen that for volume fractions of  distributed load of 1N/m is applied on the inside of the hook.
The compliance is minimized subject to a 40% volume
constraint. The domain is meshed with 4000 elements with
an average edge length of 46mm, and a density filter with
A R Rt RO a 75mm radius is applied and continuation on the overhang
o filter is used. Without overhang filter, the resulting design
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Fig. 23 The crane hook case with unstructured mesh. The domain is
clamped at the shaded region on the top, and a distributed load is
applied as indicated by the red arrows, representing a hoist load. The Fig. 24 The optimized design for the crane hook without overhang
overhang filter is applied with build direction b constraint
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(a) (b)

Fig. 25 Overhang free designs for the crane hook case on a the mesh
as displayed in Fig. 23, and b a 4x finer mesh

resembles a typical hook, as displayed in Fig. 24. When
the overhang filter with ao, = 45° is applied, the design
changes as can be seen in Fig. 25a. A clear, overhang
free, design is obtained. Due to the relatively coarse mesh,
the final design contains some rough edges. With mesh
refinement, this disappears as can be seen in Fig. 25b, where
the domain is meshed with 16 000 elements.

5.8 Computational efficiency

Since the computational complexity of the OUM used
by the overhang filter is of O (N log N) worst case, it is
expected that the computational cost is small as compared
to the objective and sensitivity evaluation for a compliance
problem. The scaling of the computational cost of the
compliance evaluation (excluding the time spent on the
overhang filter), the overhang filter, and the full sensitivity
analysis related to the overhang filter, with respect to
element number is plotted in Fig. 26. A power function is
fitted to the measured CPU times, which are given for a
single core computation on a 3.4Ghz Xeon E3-1240 V2.

102

10"

-
o
o

Compliance evaluation
Overhang filter
Overhang sensitivities

CPU time [s]
>

102

10*  10°%  10°

# DOFs
Fig. 26 Average computational cost of the overhang filter and
corresponding sensitivities w.r.t. the compliance evaluation (excluding
the overhang filter) for a single core calculation. The errorbars indicate
=+ the standard deviation of the CPU times
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Compared to the compliance evaluation, which is primarily
dominated by solving the system of linear equations, the
overhang filter is significantly faster, and scales close to
linear with the number of DOFs. Furthermore, it can be
seen that the sensitivity calculation for the overhang filter is
negligible in terms of computational cost.

Note that although the overhang filter sensitivity analysis
only requires a single loop over all the nodes, it does
not scale linearly. Because there are only few calculations
in each iteration, the sensitivity calculation is memory
bandwidth bound instead of compute-bound. In every
iteration, non-contiguous entries of several arrays are
accessed (see Algorithm 1), making it difficult for the
compiler to load the correct part of the array to cache.
Careful ordering of the arrays and prefetching are therefore
important to control the scaling of the sensitivity analysis.

6 Conclusions

In this work a novel overhang filter based on front
propagation is presented. Front propagation proves capable
of detecting overhanging regions in a density-based
topology by the use of an anisotropic speed function.
By delaying the propagation in overhanging directions, a
delay field can be constructed where overhanging regions
have positive delay time while printable regions have 0
delay. This overhang detection procedure is incorporated
as a filter into the topology optimization loop, and
adjoint sensitivities are derived consistently. As such, the
optimization algorithm can correct for unsupported regions
by either removing or supporting them.

The Ordered Upwind Method is used to perform the front
propagation, as it is computationally efficient and handles
propagation with anisotropic speed functions. Furthermore,
adjoint sensitivities are evaluated with a single loop over
the elements, at low computational cost. The presented
numerical results show various aspects of the overhang
filter. It is shown that the overhang filter works for
an arbitrary minimum overhang angle, that fully dense
supports are generated when the volume constraint permits,
and that the filter can handle unstructured meshes. In order
to avoid inferior local optima, continuation is used. It is also
observed that the supports that are generated are not always
the shortest possible supports but sometimes “zigzag”. This
is most likely related to the path of the sensitivities in the
front propagation, and is a topic of further research.

Overall, the overhang filter performs well for the
demonstrated 2D examples, and the front propagation is
extensible to 3D as its formulation is mostly dimension
independent. Although the specifics of the front propagation
(Section 4.1) require adaptation for 3D, the Ordered Upwind
Method will have the same computational complexity and
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hence the same scaling as the 2D algorithm evaluated in
Section 5.8 (c.f. Fig. 26). In a practical setting, the complete
removal of overhanging regions might not be necessary, but
only in inaccessible locations. This also remains a topic of
further research.

Finally, this paper introduces a new way to use
front propagation algorithms within topology optimization.
Because of the computational efficiency of the front
propagation, it is an attractive algorithm to include in
additional constraints or filters, if they can be modeled by
a propagating front. Further research will focus on the use
of front propagation to model more aspects of the printing
process, and to include these into topology optimization.
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