
Intention Aware
Routing Sys-
tem with Variable
Station Pricing

R.M. de Britto
Heemskerk

Intention Aware
Routing System
with Variable
Station Pricing

by

R.M. de Britto Heemskerk

Student number: 4961269
Thesis committee: T. van Essen, TU Delft, supervisor

ii

Summary
Intention aware routing system is a route-planning algorithm for electric vehicles that minimizes overall
travel time by taking into consideration congestion at charging stations. This thesis extends this algo-
rithm to allow choices to be made based on prices at charging stations. The goal of this thesis is to find
a way to minimize maximum congestion while maximizing overall profit across the stations. To achieve
this an optimal price has to be calculated. To this end, a formula is devised and applied to several
graphs.

Contents

1 Introduction 1

2 Literature 3
2.1 Game theory . 3
2.2 Base model . 3

3 Model 5
3.1 Pricing extension . 5
3.2 Adjusted congestion game . 6

4 Solution methods 7
4.1 Bottleneck graph . 7

4.1.1 2-Stations . 7
4.1.2 Multiclass bottleneck . 14
4.1.3 𝑅-Stations . 15

4.2 2-Stations grid . 15

5 Results 19
5.1 Bottleneck graph . 19

5.1.1 2-stations . 19
5.1.2 Multiclass bottleneck . 21
5.1.3 𝑅-Stations . 21

5.2 2-Stations grid . 22
5.3 Precision . 24
5.4 General conclusions . 24

6 Conclusion and discussion 25

References 27

A R-Stations proof 29

B Precision results 31

iii

1
Introduction

There seems to be a common consensus in the scientific world and the vehicle industry: The future of
vehicles is going to be electric. This is great, as Electric Vehicles (EVs) play a significant role in tackling
climate change, which is one of the biggest problems of our time. EVs do not emit any greenhouse
gases, as opposed to petrol vehicles which do.
While the time has not yet arrived at which driving electric is the standard, companies like Tesla, Volk-
swagen and Renault are pushing electric vehicles to their limits, and are steadily advancing this market.
But while advances are being made in charging EVs, they are not universal. Many vehicles cannot
make use of superchargers. And even superchargers, which are supposed to be the fastest way to
charge EVs, still cannot compare to petrol vehicles. The quickest an EV can get the charge equiva-
lent to 600km is about 30 minutes, compared to a petrol vehicle where this takes about 5 minutes. If
EVs want to charge en route, any queue at the charging stations increases waiting times linearly with
the size of the queue. Considering the case where each vehicle charges for 30 minutes, on average
this will increase waiting times with 15 minutes per vehicle [2]. As such, the waiting times at charging
stations have to be taken into account while scheduling. This is not required for petrol vehicles, as the
time to refill a tank is significantly quicker.
De Weerdt et al. [2] has already attempted to tackle this issue. Their paper suggests an Intention
Aware Routing System (IARS). The basic idea is that individual vehicles share their intentions with a
central system. The system then updates the traffic information and as a result, the vehicles can then
choose a better route. One thing that is missing in this model is the pricing at the charging stations as
different stations might have different prices, and this might affect if people may want to charge or not.
Various authors suggest different ways to deal with pricing of electricity for electric vehicles, like [1], [3],
and [4]. Ban et al. [1] discuss a way to balance EVs over charging stations by setting certain prices.
Gerding et al. [3] suggest having a bidding system for charging spots. And finally, Malandrino et al.
[4] describe the game-theoretic nature of buying and selling electricity for EVs. In this thesis, aspects
from [1] and [4] are used to extend the model developed by de Weerdt et al. [2]
Adding pricing to the model then begs the question:

Assuming stations will cooperate, how can prices be set across the stations to minimize maximum
congestion while maximizing overall profit across the stations?

To aid in answering this question, we answer the following subquestions:

1. How can pricing be included in the model of de Weerdt et al. [2]?

2. How can decision policies of a distribution of EVs across the system be modelled?

3. What strategies can stations use to affect the flow of vehicles?

4. What is the optimal strategy to reduce maximum congestion?

This thesis is structured as follows. Section 2 introduces the background of the problem, and the
model from [2] which we extend. Section 3 extends the model to include pricing and draws parallels

1

2 1. Introduction

between our model and a congestion game. Section 4 introduces different solution methods to solve
the various scenarios. Section 5 demonstrates how the derived formula should be applied on a number
of graphs. In Section 6, conclusions are made based on the results, and a brief discussion on possible
improvements and future research is given on the topic.

2
Literature

This chapter gives a summary of the background literature including interesting results obtained from
it. Section 2.2 details the model, introduced in [2], which the model in this thesis uses as a base.

2.1. Game theory
The problem this thesis discusses is very closely related to a problem in game theory. This problem
is known as a congestion game. This section discusses the general idea of a congestion game, and
highlights the differences with the problem described in this thesis. A basic congestion game contains
the following components:

• 𝑁 players

• A set 𝐸 of congestible elements 𝑒

• For each player 𝑗 ∈ 𝑁, a set of strategies 𝑆𝑗 ⊆ 𝒫(𝐸) is given, where a strategy represents a
possible combination of elements the player can choose. Here, 𝒫(𝐸) is the power set of 𝐸. The
strategy each player chooses is represented by 𝑠𝑗.

• Each congestible element 𝑒 has a delay function 𝐶 associated with it. 𝐶𝑒 is a function of 𝑛𝑒, which
is the number of players that have 𝑒𝑖 in their strategy.

Each player experiences a total delay equal to the sum of the delays of the elements in their chosen
strategy. In other words

∑
𝑒∈𝑠𝑗

𝐶𝑒(𝑛𝑒).

The goal for each player is to minimize their total delay. If no player can lower their delay, by
exclusively changing their own strategy, we speak of a Nash equilibrium. The existence of a Nash
equilibrium, and how to find it, is one of the main focuses of game theory. As such, congestion games
as described above have been studied, and it has been found that for these congestion games a Nash
equilibrium can always be found. Important to note however, is that a Nash equilibrium in this case is
a local minimum.

2.2. Base model
The model used for modelling the EV routing problem was introduced in [2]. This model works on a
domain given by ⟨𝑉, 𝐸, 𝑇, 𝑃, 𝑆, 𝐶⟩, where 𝑒 = (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸 are edges, with 𝑣𝑖 ∈ 𝑉 vertices. Both roads
and charging stations are represented by these edges, but charging stations are represented by loops,
so edges where 𝑣𝑖 = 𝑣𝑗. We use the notation 𝐸𝑠𝑡𝑎𝑡𝑖𝑜𝑛 ⊂ 𝐸 and 𝐸𝑟𝑜𝑎𝑑 ⊂ 𝐸 for roads and stations,
respectively.
For each edge, there is a probabilistic distribution, which models possible waiting times. This distribu-
tion is time-dependent for a finite set of time points represented by 𝑇 = {1, 2, ..., 𝑡𝑚𝑎𝑥}. This represents

3

4 2. Literature

different moments throughout the day. To be precise, the distribution represents a probability mass
function, which for edge 𝑒 = (𝑣𝑖 , 𝑣𝑗) gives the probability P(Δ𝑡 = 𝑡𝑗 − 𝑡𝑖|𝑒, 𝑡𝑖) on taking Δ𝑡 time units to
traverse edge 𝑒 when you leave vertex 𝑣𝑖 at time 𝑡𝑖.
Since vehicles have a finite amount of charge, the model includes 𝑆 which represents the state of
charge (SoC) of a vehicle. Each 𝑆𝑖,𝑡 ∈ 𝑆 corresponds to vehicle 𝑖 having SoC 𝑆𝑖,𝑡 at time 𝑡. The domain
of 𝑆 is finite and corresponds to {0, 1, 2, ..., 𝑠𝑚𝑎𝑥}, where 0 and 𝑠𝑚𝑎𝑥 represent an empty battery, and a
fully charged battery, respectively. The values in between represent to what proportion the battery is
charged.
Finally, each edge depletes a certain amount of charge based on cost function 𝐶(𝑒), which gives the
cost of charge for each edge in the graph. For charging stations, 𝐶(𝑒) is negative to represent charging
the vehicle. Charging stations always fully charge EVs in this model.
To plan a route, this model uses a policy as opposed to a simple route. This policy is a function
𝜋 ∶ 𝑉 × 𝑇 × 𝑆 → 𝑉, which for each state, consisting of a vertex 𝑣𝑐, current time at the vertex 𝑡𝑐, and
state of charge at that vertex 𝑠𝑐, gives the next vertex 𝑤. Using this, the next edge for a current state
(𝑣𝑐 , 𝑡𝑐 , 𝑠𝑐) and a policy 𝜋 is given by 𝑒 = (𝑣𝑐 , 𝜋(𝑣𝑐 , 𝑡𝑐 , 𝑠𝑐) = 𝑤). Each vehicle calculates their own policy.
The policy used by IARS is calculated by finding a policy which maximizes the expected utility function
given by this recursive definition:

EU(𝑒𝑐 = (𝑣𝑐 , 𝑤), 𝑡𝑐 , 𝑠𝑐|𝜋) =
⎧⎪
⎨⎪⎩

−∞, if 𝑠𝑐 < 0,
∑Δ𝑡∈𝑇 𝑃(Δ𝑡|𝑒𝑐 , 𝑡𝑐) ⋅ 𝑈(𝑡𝑐 + Δ𝑡, 𝑠′), if 𝑤 = 𝑣𝑑𝑒𝑠𝑡 ,
∑Δ𝑡∈𝑇 𝑃(Δ𝑡|𝑒𝑐 , 𝑡𝑐)
⋅EU((𝑤, 𝜋(𝑤, 𝑡𝑐 + Δ𝑡, 𝑠′)), 𝑡𝑐 + Δ𝑡, 𝑠′|𝜋), otherwise.

Here 𝑠′ is the new state of charge after taking an edge. 𝑈(𝑡𝑐 , 𝑠) is the utility function, which is defined
as follows:

𝑈(𝑡𝑐 , 𝑠) = {
−∞, if 𝑠𝑐 < 0,
−𝑡𝑐 , otherwise.

As such maximizing the utility function, is equivalent to minimizing arrival time.
Since the vehicles using IARS share their intentions with the rest of the vehicles in the system, this can
then be used to update the traffic information. Based on this, all vehicles recalculate their policy. How
this happens in the simulation, is that one by one each vehicle calculates a best policy for themselves
in order of arrival. After a vehicle calculated their policy, it updates the system. Then, the same thing
happens with the next vehicle. Once all vehicles have calculated their policy, the cycle restarts. Each
vehicle recalculates their policy and decides if they want to change their policy or not. A policy which
originally had seemed best, might become worse as a result of the other vehicles increasing the queue
length on their route. Based on this the vehicle may choose to adjust its policy. This process of updating
policies continues until none of the vehicles in the system decide on a different policy. This is equivalent
to a Nash equilibrium, and may be a local optimum.

3
Model

In this chapter we introduce the final model used in this thesis. Some analysis is done afterwards to
compare the model with the congestion game setting. Section 3.1 extends the model introduced in
Section 2.2 to include pricing. Section 3.2 discusses the differences between our model and a basic
congestion game and formalizes the problem of this thesis.

3.1. Pricing extension
To influence the traffic in the model based on pricing, first the model needs to be equipped to deal
with pricing. To this end, this thesis extends the IARS model to include pricing. This leads to a model
which works on a domain defined by ⟨𝑉, 𝐸, 𝑇, 𝑃, 𝑆, 𝐶,𝑀⟩. This introduces money to the model, where the
amount of money spent is represented by a value in a finite set 𝑀 = {0, 1, ..., 𝑚𝑚𝑎𝑥}, where 𝑚𝑚𝑎𝑥 is the
maximum price charged in the system. This then also affects the states of the individual EVs, which
changes from (𝑣𝑐 , 𝑡𝑐 , 𝑠𝑐) ∈ (𝑉 × 𝑇 × 𝑆) to (𝑣𝑐 , 𝑡𝑐 , 𝑠𝑐 , 𝑚𝑐) ∈ (𝑉 × 𝑇 × 𝑆 × 𝑀). The cost of charging at a
charging station is defined by

Π(𝑒) = {0, ∀𝑒 ∈ 𝐸𝑟𝑜𝑎𝑑𝑠 ,
𝑝𝑒 , ∀𝑒 ∈ 𝐸𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠 ,

where 𝑝𝑒 is a fixed station price. It is possible to make 𝑝𝑒 time dependent, but in this thesis, we consider
the impact on the period with highest possible congestion, i.e. rush hour. As such, making the price
time dependent is not necessary.
The original model worked with a utility function dependent on charge and arrival time, where the utility
function 𝑈 is given by

𝑈(𝑡𝑐 , 𝑠𝑐) = {
−∞, if 𝑠𝑐 < 0,
−𝑡𝑐 , otherwise.

To extend IARS to handle pricing, multiple different methods can be used. One possible example is as
given in [3], where 𝑈 is given by:

𝑈(𝑡𝑐 , 𝑠𝑐 , 𝑚𝑐) = {
−∞, if 𝑠𝑐 < 0,
−𝑡𝑐 − 𝛾 ⋅ 𝑚𝑐 , otherwise.

(3.1)

with 𝛾 > 0 representing a time/ money trade-off. Here 𝛾 = 10 could represent that 10 minutes of detour
is worth 1 euro of discount. In concept, the final utility function is similar, but it uses normalizing factors
both in terms of decision parameters, and based on the values in the domain.
The final utility function decided upon is:

𝑈(𝑡𝑐 , 𝑠𝑐 , 𝑚𝑐) =
⎧⎪
⎨⎪⎩

−∞, if 𝑠𝑐 < 0,
𝛾 (𝑇𝑚𝑎𝑥−𝑡𝑐

𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛
)

+(1 − 𝛾) (𝑀𝑚𝑎𝑥−𝑚𝑐
𝑀𝑚𝑎𝑥−𝑀𝑚𝑖𝑛

) , otherwise.

(3.2)

5

6 3. Model

Here, 𝛾 ∈ [0, 1] is a normalized decision parameter, used to represent the time/ money trade-off.
As such, 𝛾 = 1 represents a pure focus on arriving early, and 𝛾 = 0 represents only caring about
getting the cheapest price. 𝑇𝑚𝑖𝑛 , 𝑇𝑚𝑎𝑥 , 𝑀𝑚𝑎𝑥 , and 𝑀𝑚𝑖𝑛 are route dependent constants, that can be set
in different ways to suit the range of values expected from the utility function. They act as normalizing
factors, and are included since decisions regarding prices are usually based on relative discount.

3.2. Adjusted congestion game
For the most part, our model is quite similar to a basic congestion game, but there are some key differ-
ences.

One of the differences is the fact that we use a utility function instead of a cost function. However,
an equivalent formulation can be obtained by minimizing cost 𝐶, which is equal to minus utility 𝑈. What
is not immediately clear is that the utility function is in fact the sum of all the utilities until the end. The
final utility function can be reformulated to a form where this is more obvious:

𝑈 = 𝛾 (𝑇𝑚𝑎𝑥 − 𝑡𝑐
𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛

) + (1 − 𝛾) (𝑀𝑚𝑎𝑥 −𝑚𝑐
𝑀𝑚𝑎𝑥 −𝑀𝑚𝑖𝑛

) (3.3)

= 𝛾 𝑇𝑐𝑜𝑛𝑠𝑡 + (1 − 𝛾)𝑀𝑐𝑜𝑛𝑠𝑡 − 𝛾 (
𝑡𝑐

𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛
) − (1 − 𝛾) (𝑚𝑐

𝑀𝑚𝑎𝑥 −𝑀𝑚𝑖𝑛
) . (3.4)

Here 𝑇𝑐𝑜𝑛𝑠𝑡 and𝑀𝑐𝑜𝑛𝑠𝑡 are constants defined by 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛, and𝑀𝑚𝑎𝑥 and𝑀𝑚𝑖𝑛, respectively. The
variable 𝑡𝑐 is defined as the total time it takes to get to the final node, which is equivalent to the sum of
all the edges the vehicle took. Variable 𝑚𝑐 is the total money spent, which can be added as the cost of
a station node. As such, our formulation is equivalent to a congestion game with player-specific cost
functions.

Next to that, we use player-specific utility functions, instead of a globally defined utility function.
This is the case because of two different reasons. Firstly, the utility function depends on the 𝛾 of the
respective vehicle owner. Secondly, there is an inherent ordering to the vehicles meaning that certain
vehicles will experience less delay than others at the same station. This ordering is assigned by an ID
given to each vehicle. In the case of two vehicles arriving at the same time in the simulation, ties are
broken by which vehicle has the lower ID. In the basic congestion game, all vehicles would experience
the same congestion at the same station.

Our goal is to find the right station prices to minimize maximum congestion. Assuming all vehicles
leave at the same time, this is equivalent to finding the station prices such that in a Nash equilib-
rium each station receives the same number of vehicles. To achieve this, we first have to know that
a Nash equilibrium actually exists for this congestion game. If there were no Nash equilibrium, we
could not argue about one specific solution. Normal congestion games have been proven to have a
Nash-equilibrium due to the finite improvement property. Congestion games with player-specific cost
functions do not have this property, as such, the proof for this is not as straight-forward. However,
Milchtaich [5] has tackled this proof, and has proven that there is a pure strategy Nash equilibrium for
congestion games with player-specific cost functions.

Next, we need to find a way to calculate the station prices necessary for the vehicles to distribute
themselves equally across the stations. This is explored in the next chapter.

4
Solution methods

In this chapter, we analyze the problem and give the methods to answer the questions central to this
thesis. Section 4.1 gives an initial equation to solve this problem, and gives examples of how to apply
it to bottleneck graphs. Section 4.2 shows how to adjust this equation to apply it to grid graphs.

4.1. Bottleneck graph
For certain restricted scenarios, it is possible to directly calculate for what station prices the vehicles
split evenly across all stations. This will be referenced as an even split. This chapter introduces a
formula which does exactly that. To do this this thesis first considers the simplest of these scenarios,
the bottleneck graph. A formal definition of this graph is given in Section 4.1.1. The derived formula is
then applied in Chapter 5 on various graphs.

To derive the formula, we need to define the constants in Equation 3.2. 𝑀𝑚𝑎𝑥 represents the high-
est price available at a charging station in the system. 𝑀𝑚𝑖𝑛 is set to 0 as the highest utility should
be received from not charging at all. 𝑇𝑚𝑎𝑥 is the maximum time the vehicle is willing to arrive at the
destination, and 𝑇𝑚𝑖𝑛 is the minimum possible time to reach the destination excluding charging time.
𝑇𝑚𝑎𝑥 is set to 3⋅𝑇𝑚𝑖𝑛 as this is a reasonable upper bound on the maximum willingness to make a detour.

In Subsection 4.1.1, the case where there are 2 stations and just one class of vehicles is discussed.
Subsection 4.1.2 considers the case where there are multiple classes of vehicles. And finally, Subsec-
tion 4.1.3 generalises the 2-station scenario to the 𝑅-station scenario.

4.1.1. 2-Stations
The formula to be used is defined on a so-called bottleneck graph. This is defined as a graph with one
origin node and one destination node. Between this origin and destination node, there is one column
of stations, with connections only to the origin node and the destination node.

To determine the formula, we consider a graph with two stations, Station 1 and Station 2. Such a
graph can be seen in Figure 4.1.

7

8 4. Solution methods

Origin

Station 1

Station 2

Destination

𝑇𝑚𝑖𝑛

𝛼𝑇𝑚𝑎𝑥

Figure 4.1: Bottleneck graph with 2 stations. Edge lengths represent travel time.

While within the simulation the lengths of the edges between the origin node and the stations are
defined, they are not individually relevant to the solution. Only the sum of the length of two subsequent
edges on a route are relevant. Without loss of generality, the route via Station 1 is shorter than the
route via Station 2, and is denoted by 𝑇1 = 𝑇𝑚𝑖𝑛. The time it takes to travel to the destination node
via Station 2 is considered to be a fraction of 𝑇𝑚𝑎𝑥 = 3𝑇𝑚𝑖𝑛. This time is denoted by 𝑇2 = 𝛼𝑇𝑚𝑎𝑥, with
𝛼 ∈ [13 , 1]. This domain is to ensure that 𝑇𝑚𝑖𝑛 ≤ 𝑇2 ≤ 𝑇𝑚𝑎𝑥. To ensure that results can be calculated,
we assume that all vehicles leave at 𝑇 = 0. We consider one class of vehicles with 𝛾 ∈ [0, 1]. Since
𝑇1 ≤ 𝑇2, the price at Station 2 needs to be lower than the price at Station 1. As such, we set the price at
Station 1 equal to 𝑝1 = 𝑀𝑚𝑎𝑥. The price at Station 2 is a fraction of 𝑀𝑚𝑎𝑥 and is given by 𝑝2 = 𝛽𝑀𝑚𝑎𝑥,
with 𝛽 ∈ [0, 1]. This setup allows for the formulation of a direct formula to calculate what 𝛽 should be.

A Nash equilibrium occurs when the utility of switching to another option is lower than the current
option for all players. This means that for an even split to be achieved, the utility of having an even split
needs to be higher than not having an even split, for vehicles at both stations. This translates to

𝑈1,𝑁2
≥ 𝑈2,𝑁2 +1

𝑈2,𝑁2
≥ 𝑈1,𝑁2 +1

, (4.1)

where 𝑈𝑖,𝑗 is the utility of taking the route via station 𝑖 when it has 𝑗 vehicles. 𝑁 refers to the total number
of vehicles in the system.
These conditions turn out to be sufficient for the nash equilibrium to correspond to the even split in the
2-station bottleneck case. In particular, for convergence to occur, we need that for every scenario that
is not an even split, the best option for any individual vehicle is to switch in favor of an even split. This
means that the utility for switching from the station with more vehicles should be higher than for staying.
This leads to what needs to be proved being:

𝑈1,𝑁2 −𝑘
≥ 𝑈2,𝑁2 +𝑘+1

∀𝑘 ∈ ℕ0
𝑈2,𝑁2 −𝑘

≥ 𝑈1,𝑁2 +𝑘+1
∀𝑘 ∈ ℕ0. (4.2)

It is trivial that considering the same route, a longer queue means a lower utility. Expressed in formula
this gives:

𝑈𝑖,𝑘 ≥ 𝑈𝑖,𝑗 ∀𝑖, ∀𝑗 ≥ 𝑘 (4.3)

Now assume the conditions set at (4.1). Applying (4.3) to this assumption, (4.2) follows immediately.

4.1. Bottleneck graph 9

Now that we know that the system of inequalities in Equation (4.1) lead to an even split, we can
solve them for 𝛽. For this, we introduce variable 𝑇𝑞,𝑚, which represents the waiting time caused by the
queue for 𝑚 vehicles. Using that, we get that the utility function for the path via Station 1 is

𝑈1,𝑚 = 𝛾
𝑇𝑚𝑎𝑥 − 𝑇1 − 𝑇𝑞,𝑚
𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛

+ (1 − 𝛾) 𝑀𝑚𝑎𝑥 − 𝑝1
𝑀𝑚𝑎𝑥 −𝑀𝑚𝑖𝑛

(4.4)

= 𝛾𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛
− 𝛾

𝑇𝑞,𝑚
𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛

+ (1 − 𝛾)𝑀𝑚𝑎𝑥 −𝑀𝑚𝑎𝑥𝑀𝑚𝑎𝑥 −𝑀𝑚𝑖𝑛
(4.5)

= 𝛾 − 𝛾
𝑇𝑞,𝑚

𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛
. (4.6)

Following the same logic, the utility function for the path via Station 2 is

𝑈2,𝑚 = 𝛾
𝑇𝑚𝑎𝑥 − 𝑇2 − 𝑇𝑞,𝑚
𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛

+ (1 − 𝛾) 𝑀𝑚𝑎𝑥 − 𝑝2
𝑀𝑚𝑎𝑥 −𝑀𝑚𝑖𝑛

(4.7)

= 𝛾𝑇𝑚𝑎𝑥 − 𝛼𝑇𝑚𝑎𝑥
𝑇𝑚𝑎𝑥 −

1
3𝑇𝑚𝑎𝑥

+ (1 − 𝛾)𝑀𝑚𝑎𝑥 − 𝛽𝑀𝑚𝑎𝑥𝑀𝑚𝑎𝑥
− 𝛾

𝑇𝑞,𝑚
𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛

(4.8)

= 𝛾3(1 − 𝛼)2 + (1 − 𝛾)(1 − 𝛽) − 𝛾
𝑇𝑞,𝑚

𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛
. (4.9)

Transforming the domain of 𝛼 from [13 , 1] to [0, 1] using

𝛼 = (23𝛼𝑛𝑒𝑤 +
1
3)

gives

𝑈2,𝑚 = 𝛾
3 − 3 (23𝛼𝑛𝑒𝑤 +

1
3)

2 + (1 − 𝛾)(1 − 𝛽) − 𝛾
𝑇𝑞,𝑚

𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛
(4.10)

= 𝛾2 − 2𝛼𝑛𝑒𝑤2 + (1 − 𝛾)(1 − 𝛽) − 𝛾
𝑇𝑞,𝑚

𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛
(4.11)

= 𝛾(1 − 𝛼𝑛𝑒𝑤) + (1 − 𝛾)(1 − 𝛽) − 𝛾
𝑇𝑞,𝑚

𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛
. (4.12)

This 𝛼𝑛𝑒𝑤 is defined in such a way, that 𝛼𝑛𝑒𝑤 = 0 corresponds to 𝑇𝑚𝑖𝑛 and 𝛼𝑛𝑒𝑤 = 1 to 𝑇𝑚𝑎𝑥. So we
get

𝛼𝑛𝑒𝑤 =
𝑇2 − 𝑇𝑚𝑖𝑛
𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛

.

𝛼𝑛𝑒𝑤 is referred to as 𝛼 from now on.
Now we attempt to solve the inequalities of (4.1) for 𝛽. Working out the first of the two gives:

𝑈1,𝑁2
≥ 𝑈2,𝑁2 +1

(4.13)

𝛾 − 𝛾
𝑇𝑞,𝑁2

𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛
≥ 𝛾(1 − 𝛼) + (1 − 𝛾)(1 − 𝛽) − 𝛾

𝑇𝑞,𝑁2 +1
𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛

(4.14)

𝛼𝛾 + 𝛾
𝑇𝑞,𝑁2 +1

− 𝑇𝑞,𝑁2
𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛

≥ (1 − 𝛾)(1 − 𝛽) (4.15)

This
𝑇
𝑞, 𝑁2 +1

−𝑇
𝑞, 𝑁2

𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛
term will appear more often. It is useful to define explicitly:

𝑇𝑞,𝑁2 +1
− 𝑇𝑞,𝑁2

𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛
= 𝜖𝑁

2
. (4.16)

10 4. Solution methods

Replacing then gives:

𝛾(𝛼 + 𝜖𝑁
2
) ≥ (1 − 𝛾)(1 − 𝛽) (4.17)

𝛽 ≥ 1 −
𝛾 (𝛼 + 𝜖𝑁

2
)

1 − 𝛾 (4.18)

Similarly the second inequality gives:

𝑈2,𝑁2
≥ 𝑈1,𝑁2 +1

(4.19)

𝛾(1 − 𝛼) + (1 − 𝛾)(1 − 𝛽) − 𝛾
𝑇𝑞,𝑁2

𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛
≥ 𝛾 − 𝛾

𝑇𝑞,𝑁2 +1
𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛

(4.20)

(1 − 𝛾)(1 − 𝛽) ≥ 𝛼𝛾 + 𝛾
𝑇𝑞,𝑁2

− 𝑇𝑞,𝑁2 +1
𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛

(4.21)

(1 − 𝛾)(1 − 𝛽) ≥ 𝛾(𝛼 − 𝜖𝑁
2
) (4.22)

𝛽 ≤ 1 −
𝛾 (𝛼 − 𝜖𝑁

2
)

1 − 𝛾 (4.23)

Combining these gives that:

1 −
𝛾 (𝛼 + 𝜖𝑁

2
)

1 − 𝛾 ≤ 𝛽 ≤ 1 −
𝛾 (𝛼 − 𝜖𝑁

2
)

1 − 𝛾 . (4.24)

This means that there is a range of 𝛽 for which the conditions are right for there to be an even split.
As any value within this range should lead to an even split, we choose the maximum value, as this
corresponds to the highest price. As such we define 𝛽∗ =min(max(𝛽), 1), or explicitly:

𝛽∗ =min⎛⎜

⎝

1 −
𝛾 (𝛼 − 𝜖𝑁

2
)

1 − 𝛾 , 1⎞⎟

⎠

(4.25)

The 𝜖𝑁
2
in this equation represents the difference between the expected waiting times at the two

queues. The expected waiting time is equal to the average waiting time at a queue, since the vehicles
have no way of knowing where in the queue they arrive if they arrive at the same time. As such:

𝐸𝑊𝑛 =
1
𝑛

𝑛

∑
𝑖=1
𝑇𝑖 ,

where 𝐸𝑊𝑛 is the expected waiting time for any vehicle in an 𝑛 vehicle queue, 𝑇𝑖 is the waiting time
for the 𝑖𝑡ℎ vehicle in the queue and 𝑛 is the total number of vehicles in the queue. 𝑇𝑖 increases as 𝑖
increases, in fact 𝑇𝑖 can be seen as 𝑄 times an arithmetic series, where 𝑄 represents the capacity at
a charging station. For the first 𝑄 vehicles, there is no waiting time, for the next 𝑄 vehicles the waiting
time is equal to the charging time 𝑇𝑐 in minutes, the next 𝑄 vehicles have waiting time equal to 2𝑇𝑐 etc.
If 𝑛 mod 𝑄 = 0, this is exactly equivalent to 𝑄 times an arithmetic series. However, if 𝑛 mod 𝑄 ≠ 0, we
have 𝑛 mod 𝑄 vehicles which we have to consider separately. These vehicles each contribute ⌊𝑛𝑄 ⌋ 𝑇𝑐

4.1. Bottleneck graph 11

to the waiting time. Combining all of these terms gives

𝐸𝑊𝑛 = 𝑄
⌊𝑛𝑄 ⌋ (⌊

𝑛
𝑄 ⌋ − 1)𝑇𝑐
2𝑛 +

(𝑛 mod 𝑄) ⌊ 𝑛𝑄 ⌋ 𝑇𝑐
𝑛

=
𝑇𝑐 ⌊

𝑛
𝑄 ⌋
𝑛 (

𝑄 (⌊ 𝑛𝑄 ⌋ − 1)
2 + 𝑛 mod 𝑄) .

Using 𝑛 mod 𝑄 = 𝑛 − 𝑄 ⌊𝑛𝑄 ⌋, we can rewrite 𝐸𝑊𝑛 to:

𝐸𝑊𝑛 =
𝑇𝑐 ⌊

𝑛
𝑄 ⌋
𝑛 (𝑛 −

𝑄 (⌊𝑛𝑄 ⌋ + 1)
2) .

The expected waiting time for a vehicle in an 𝑛 + 1 queue is:

𝐸𝑊𝑛+1 =
𝑇𝑐 ⌊

𝑛+1
𝑄 ⌋

𝑛 + 1 ((𝑛 + 1) −
𝑄 (⌊𝑛+1𝑄 ⌋ + 1)

2) .

This leads to the expected increase in waiting time for an extra vehicle added to an 𝑛 vehicle queue

12 4. Solution methods

being :

𝐸𝑊𝑛+1 − 𝐸𝑊𝑛 =
𝑇𝑐 ⌊

𝑛+1
𝑄 ⌋

𝑛 + 1 ((𝑛 + 1) −
𝑄 (⌊𝑛+1𝑄 ⌋ + 1)

2) −
𝑇𝑐 ⌊

𝑛
𝑄 ⌋
𝑛 (𝑛 −

𝑄 (⌊ 𝑛𝑄 ⌋ + 1)
2)

= 𝑇𝑐 (⌊
𝑛 + 1
𝑄 ⌋ − ⌊ 𝑛𝑄 ⌋) −

𝑄𝑇𝑐
2 (

⌊𝑛+1𝑄 ⌋ (⌊𝑛+1𝑄 ⌋ + 1)
𝑛 + 1 −

⌊𝑛𝑄 ⌋ (⌊
𝑛
𝑄 ⌋ + 1)
𝑛)

= 𝑇𝑐 (⌊
𝑛 + 1
𝑄 ⌋ − ⌊ 𝑛𝑄 ⌋) −

𝑄𝑇𝑐
2
⎛

⎝

⌊𝑛+1𝑄 ⌋
2
+ ⌊𝑛+1𝑄 ⌋

𝑛 + 1 −
⌊𝑛𝑄 ⌋

2
+ ⌊𝑛𝑄 ⌋
𝑛

⎞

⎠

= 𝑇𝑐 (⌊
𝑛 + 1
𝑄 ⌋ − ⌊ 𝑛𝑄 ⌋) −

𝑄𝑇𝑐
2
⎛
⎜

⎝

𝑛(⌊𝑛+1𝑄 ⌋
2
+ ⌊𝑛+1𝑄 ⌋) − (𝑛 + 1) (⌊𝑛𝑄 ⌋

2
+ ⌊𝑛𝑄 ⌋)

𝑛(𝑛 + 1)
⎞
⎟

⎠

= 𝑇𝑐 (⌊
𝑛 + 1
𝑄 ⌋ − ⌊ 𝑛𝑄 ⌋) −

𝑄𝑇𝑐
2
⎛
⎜

⎝

(⌊𝑛+1𝑄 ⌋
2
+ ⌊𝑛+1𝑄 ⌋) − (⌊𝑛𝑄 ⌋

2
+ ⌊𝑛𝑄 ⌋)

(𝑛 + 1)
⎞
⎟

⎠

+⎛

⎝

𝑄𝑇𝑐
2
⌊𝑛𝑄 ⌋

2
+ ⌊𝑛𝑄 ⌋

𝑛(𝑛 + 1)
⎞

⎠

= 𝑇𝑐 (⌊
𝑛 + 1
𝑄 ⌋ − ⌊ 𝑛𝑄 ⌋) −

𝑄𝑇𝑐
2
⎛
⎜

⎝

(⌊𝑛+1𝑄 ⌋
2
− ⌊𝑛𝑄 ⌋

2
) + (⌊𝑛+1𝑄 ⌋ − ⌊𝑛𝑄 ⌋)

(𝑛 + 1)
⎞
⎟

⎠

+⎛

⎝

𝑄𝑇𝑐
2
⌊𝑛𝑄 ⌋

2
+ ⌊𝑛𝑄 ⌋

𝑛(𝑛 + 1)
⎞

⎠

.

This expression can be simplified by proving that the first part is equal to 0 for all cases. So we prove
that:

𝑇𝑐 (⌊
𝑛 + 1
𝑄 ⌋ − ⌊ 𝑛𝑄 ⌋) −

𝑄𝑇𝑐
2
⎛
⎜

⎝

(⌊𝑛+1𝑄 ⌋
2
− ⌊𝑛𝑄 ⌋

2
) + (⌊𝑛+1𝑄 ⌋ − ⌊𝑛𝑄 ⌋)

(𝑛 + 1)
⎞
⎟

⎠

= 0.

This can be proven by looking at the expression in two cases:

1. (𝑛 + 1) mod 𝑄 ≠ 0,

2. (𝑛 + 1) mod 𝑄 = 0.

Useful for this is seeing that

⌊𝑛 + 1𝑄 ⌋ − ⌊ 𝑛𝑄 ⌋ = {
0 (𝑛 + 1) mod 𝑄 ≠ 0,
1 (𝑛 + 1) mod 𝑄 = 0,

assuming 𝑛 and 𝑄 are integer. This is the case for our system, since we do not deal with fractional

4.1. Bottleneck graph 13

vehicles or fractional capacity charging stations. Now we consider the expression in both cases.

𝑇𝑐 (⌊
𝑛 + 1
𝑄 ⌋ − ⌊ 𝑛𝑄 ⌋) −

𝑄𝑇𝑐
2
⎛
⎜

⎝

(⌊𝑛+1𝑄 ⌋
2
− ⌊𝑛𝑄 ⌋

2
) + (⌊𝑛+1𝑄 ⌋ − ⌊𝑛𝑄 ⌋)

(𝑛 + 1)
⎞
⎟

⎠

=

𝑇𝑐 (⌊
𝑛 + 1
𝑄 ⌋ − ⌊ 𝑛𝑄 ⌋) −

𝑄𝑇𝑐
2 (

(⌊𝑛+1𝑄 ⌋ + ⌊𝑛𝑄 ⌋) (⌊
𝑛+1
𝑄 ⌋ − ⌊𝑛𝑄 ⌋) + (⌊

𝑛+1
𝑄 ⌋ − ⌊𝑛𝑄 ⌋)

(𝑛 + 1))

For the first case, it is trivial that this expression is 0, since all expressions in the numerator have a
term (⌊𝑛+1𝑄 ⌋ − ⌊𝑛𝑄 ⌋).

The second case requires some closer inspection. We know that all (⌊𝑛+1𝑄 ⌋ − ⌊𝑛𝑄 ⌋) terms will be equal
to 1. This means that we can simplify the expression to this:

𝑇𝑐 −
𝑄𝑇𝑐
2 (

⌊𝑛+1𝑄 ⌋ + ⌊𝑛𝑄 ⌋ + 1
(𝑛 + 1)) .

Rewriting shows that for (𝑛 + 1) mod 𝑄 = 0 we have that ⌊𝑛+1𝑄 ⌋ = ⌊𝑛𝑄 ⌋ + 1. This means we can
simplify again:

𝑇𝑐 −
𝑄𝑇𝑐
2 (

2 ⌊𝑛+1𝑄 ⌋
(𝑛 + 1)) .

Because (𝑛 + 1) mod 𝑄 = 0, we have that ⌊𝑛+1𝑄 ⌋ = 𝑛+1
𝑄 so:

𝑇𝑐 −
𝑄𝑇𝑐
2 (

2 ⌊𝑛+1𝑄 ⌋
(𝑛 + 1)) = 𝑇𝑐 −

𝑄𝑇𝑐
2 (

2𝑛+1𝑄
(𝑛 + 1)) = 0.

Since this expression is always 0, we have that

𝐸𝑊𝑛+1 − 𝐸𝑊𝑛 =
𝑄𝑇𝑐
2
⎛

⎝

⌊𝑛𝑄 ⌋
2
+ ⌊𝑛𝑄 ⌋

𝑛(𝑛 + 1)
⎞

⎠

.

Since the above expression represents a difference in time, it still needs to be normalized by dividing
by 𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛. So the final expression for 𝜖𝑛 is:

𝜖𝑛 =
𝑄𝑇𝑐
2
⎛

⎝

⌊𝑛𝑄 ⌋
2
+ ⌊𝑛𝑄 ⌋

𝑛(𝑛 + 1)
⎞

⎠

1
𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛

. (4.26)

Filling in 𝜖𝑁
2
in Equation (4.25), gives:

𝛽∗ =min
⎛
⎜
⎜
⎜

⎝

1 −

𝛾(𝛼 − 𝑄𝑇𝑐
2 (

⌊ 𝑁2𝑄 ⌋
2
+⌊ 𝑁2𝑄 ⌋

𝑁
2 (

𝑁
2 +1)

) 1
𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛

)

1 − 𝛾 , 1
⎞
⎟
⎟
⎟

⎠

. (4.27)

14 4. Solution methods

This formula gives some interesting results. When the two routes have the same length, correspond-
ing to 𝛼 = 0, the function gives 𝛽 = 1, meaning that the price should be the same at both stations.
This makes sense, since the distances are the same, the algorithm would evenly split vehicles across
the station based on the time aspect. Making one of the two stations cheaper would increase the utility
function for that route, skewing the distribution towards that station. For 𝛾 = 0, once again we have
𝛽 = 1. This is due to the fact that for 𝛾 = 0, the algorithm only looks at the price to determine the route.
If there were even a small difference in price, all vehicles would go to one station.

Next to that, the formula shows the cases where it is impossible to create an even split. Setting
𝛾 = 0.6, we find that for 𝛼 − 𝜖𝑁

2
> 2

3 , 𝛽 < 0. From the perspective of drivers, it make sense that certain
scenarios would not be solvable. There is amaximal detour which drivers would find acceptable, though
how large that detour is depends on the individual driver. This shows that even considering the most
simplistic scenario, there are cases which cannot give an even split.

4.1.2. Multiclass bottleneck
Extending this scenario to two classes of vehicles adds another dimension to this problem. If we
generalize the problem, we have two classes of vehicles 𝑉1 and 𝑉2 with 𝛾1 and 𝛾2, respectively, where
𝛾1 ≥ 𝛾2 without loss of generality. Assuming there are the same number of vehicles of both classes in
the system, it is possible to do the following. As we are trying to reach an even split, the easiest way
to solve the problem would be to have all vehicles of one class go to one station, and all of the other
class to the other station. For this, define 𝑈𝑖,𝑗,𝑚 as the utility function for class 𝑖, for the route via station
𝑗 with 𝑚 vehicles.
To get all vehicles of one class to one station, and all vehicles of the other class to the other station,
we want

𝑈1,1,𝑁2
≥ 𝑈1,2,𝑁2 +1

𝑈2,2,𝑁2
≥ 𝑈2,1,𝑁2 +1

. (4.28)

This was done because by assumption 𝑉1 has a preference for the shorter route, so it is easiest to
let them keep choosing that route. These inequalities are basically equivalent to the ones used to
formulate Equation (4.25), except here the gamma changes. From the first inequality we get:

𝛽 ≥ 1 −
(𝛼 + 𝜖𝑁

2
) 𝛾1

1 − 𝛾1
.

The second then gives

𝛽 ≤ 1 −
(𝛼 − 𝜖𝑁

2
) 𝛾2

1 − 𝛾2
.

These inequalities for 𝛽 give the conditions for all the vehicles from class 𝑉1 to choose the route via
station 1, and all the vehicles from class 𝑉2 to choose the route via station 2. Combining this gives:

1 −
(𝛼 + 𝜖𝑁

2
) 𝛾1

1 − 𝛾1
≤ 𝛽 ≤ 1 −

(𝛼 − 𝜖𝑁
2
) 𝛾2

1 − 𝛾2
.

This means that for all 𝛽 in this range, the vehicles from class 𝑉1 choose route 1, and the vehicles from
class 𝑉2 choose route 2. Since both classes have the same number of vehicles, this leads to an even
split. Seeing as we want to find the highest such 𝛽, we set 𝛽∗ =min (1 − (𝛼−𝜖)𝛾2

1−𝛾2
, 1). This is equivalent

to applying (4.25), using the lower 𝛾2.

While this works for situations where there are two classes, and both classes have an equal number
of vehicles in the system, this is a too restricted scenario. Also, this cannot directly be applied to graphs
with more than 2 stations, as at some point it becomes infeasible to calculate a 𝛽 which assigns one
class to each station. As such, we should find an alternative for an approximate solution, but this was

4.2. 2-Stations grid 15

considered out of scope for this thesis.

4.1.3. 𝑅-Stations
Another extension to the bottleneck scenario, is adding more stations to choose. Intuitively, we call a
bottleneck graph with 𝑅 stations, an 𝑅-station bottleneck graph. This changes the number of vehicles
that each station needs to have from 𝑁

2 to 𝑁
𝑅 . This has as added condition that 𝑁 mod 𝑅 = 0. Once

again we fix the price of one station, the most popular station if all prices were equal. Without loss of
generality, we define this station to be station 1. Moreover, we define a 𝛽𝑖 for every other station. This
means that we have to solve the system to find the 𝛽𝑖 value for 𝑅 − 1 stations. The conditions for this
scenario are a generalisation of (4.1), considering more stations. This gives:

𝑈𝑖,𝑁𝑅
≥ 𝑈𝑗,𝑁𝑅+1

∀𝑖, 𝑗. (4.29)

Solving these inequalities gives 𝑅 − 1 ranges for each 𝛽𝑖. However, all 𝛽𝑖 will be bounded using the
utility of station 1, since 𝑈1,𝑁𝑅+1

does not depend on any variable. As a result, for every route, we can
use Equation (4.25) which gives:

𝛽∗𝑖 =min
⎛
⎜

⎝

1 −
(𝛼𝑖 − 𝜖𝑁

𝑅
) 𝛾

1 − 𝛾 , 1⎞⎟

⎠

(4.30)

Here, 𝛼𝑖 is calculated using the relevant edge lengths for its respective route.

To prove that 𝛽∗𝑖 suffices, we have to prove that filling in 𝛽∗𝑖 in the utility functions in inequalities
(4.29), leads to it being satisfied. The proof of this can be found in Appendix A.

4.2. 2-Stations grid
The other scenario considered is the 2-stations grid. This graph is defined by having two origin nodes,
two stations and two destination nodes. A generic example of such a graph can be seen in Figure 4.2
below.

Station 1

Station 2

Origin 1

Origin 2

Dest 1

Dest 2

a

b

c

d

e

f

g

h

Figure 4.2: 2-stations grid graph with 2 stations. Edge lengths represent travel time.

Vehicles are equally divided over origin and destination nodes. This means that there are four
unique origin node, destination node (O-D) pairs. Each origin node is connected to both Station 1 and
Station 2, and so are the destination nodes. As such, for every O-D pair, a vehicle can either choose to
take the route via Station 1 or the route via Station 2. The fact that each unique O-D pair has different
routes available, means that each O-D pair also has its own unique 𝑇𝑚𝑖𝑛. For the previous scenarios,

16 4. Solution methods

only one situation had to be considered. For this problem, however, 4 unique cases have to be con-
sidered. To be as concise as possible, graphs are represented by [𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ], where the index
in the list represents the respective edge in the graph.

• The first case has 𝑎 = 𝑏, 𝑐 = 𝑑, and 𝑒 − 𝑔 arbitrary. In this case, the destination decides the
relevant travel times.

• The second case has 𝑎 < 𝑏 and 𝑐 > 𝑑, or has 𝑎 > 𝑏 and 𝑐 < 𝑑, with 𝑒 − 𝑔 arbitrary. In this case,
each origin node has a station at which the vehicles arrive earliest.

• The third case has 𝑎 = 𝑏 or 𝑐 = 𝑑 with the remaining edges arbitrary. So at one of the stations,
vehicles from both origin nodes can arrive at the same time, but at the other station, vehicles from
one of the origin nodes arrives earlier.

• The fourth and final case has 𝑎 < 𝑏 and 𝑐 < 𝑑, or has 𝑎 > 𝑏 and 𝑐 > 𝑑, with 𝑒 − 𝑔 arbitrary. This
means that vehicles starting at one of the origin nodes arrive earlier at both stations.

This covers all the different types of graphs. More distinctions could be made, but these would be
subcategories of the given 4 cases. In this thesis, we only handle the first case. This is because the
asymmetry introduced in the other cases complicates the solution.

In this first case, vehicles from both origin nodes arrive at Station 1 at time 𝑎, and arrive at Station
2 at time 𝑐. This means that in practice there are only 2 unique O-D pairs: One which goes to Destina-
tion 1, and the other which goes to Destination 2. The routes going to Destination 1 have travel times
(𝑎 +𝑒, 𝑐 +𝑓) and the routes going to Destination 2 have travel times (𝑎 +𝑔, 𝑐 +ℎ), where the first entry
uses Station 1 and the second entry uses Station 2. Note that if 𝑒 = 𝑔 and 𝑓 = ℎ, both route pairs have
exactly the same travel times, which means this situation would be equivalent to a bottleneck graph.
If 𝑎 + 𝑒 < 𝑐 + 𝑓 and 𝑎 + 𝑔 > 𝑐 + ℎ or the other way around, then each O-D pair has a preference for a
separate station, and the price at both stations can be the same. For the remaining sub-cases, we can
assume without loss of generality that 𝑎 + 𝑒 < 𝑐 + 𝑓 and 𝑎 + 𝑔 < 𝑐 + ℎ. This means that both unique
O-D pairs then prefer Station 1. As a result, the lower price should be at Station 2. You could consider
this problem as two bottleneck graphs which are linked, one for each O-D pair. Using this approach,
both O-D pairs can be used to calculate a range of 𝛽𝑖 for an even split, where 𝛽𝑖 is the range of 𝛽 con-
sidering the O-D pair with destination 𝑖. These 𝛽𝑖 ’s come from taking the inequalities which ensure an
even split for an individual O-D pair. Taking these together, for an entire 2-stations grid system we have:

𝑈1,1,𝑁2
≥ 𝑈1,2,𝑁2 +1

(4.31)

𝑈1,2,𝑁2
≥ 𝑈1,1,𝑁2 +1

(4.32)

𝑈2,1,𝑁2
≥ 𝑈2,2,𝑁2 +1

(4.33)

𝑈2,2,𝑁2
≥ 𝑈2,1,𝑁2 +1

(4.34)

These inequalities are exactly the same as inequalities (4.1), repeated for each destination. As such,
looking at the set of inequalities for each station individually, we know that the first inequalities, so in-
equalities (4.31) and (4.33), represents the lower bound for the respective 𝛽𝑖. The second inequalities,
(4.32) and (4.34), then represent the upper bounds for the respective 𝛽𝑖. If Station 2 were preferable
for both O-D pairs, these roles would be flipped. We refer to the lower and upper bound for 𝛽𝑖 as 𝛽𝑚𝑖𝑛𝑖
and 𝛽𝑚𝑎𝑥𝑖 , respectively. As a result, we know that 𝛽𝑖 ∈ [𝛽𝑚𝑖𝑛𝑖 , 𝛽𝑚𝑎𝑥𝑖]. This means that we can consider
the following cases, visually represented in Figure 4.3.

4.2. 2-Stations grid 17

𝛽𝑚𝑖𝑛2 𝛽𝑚𝑎𝑥2 𝛽𝑚𝑖𝑛1 𝛽𝑚𝑎𝑥1 𝛽𝑚𝑖𝑛1 𝛽𝑚𝑎𝑥1 𝛽𝑚𝑖𝑛2 𝛽𝑚𝑎𝑥2

𝛽𝑚𝑖𝑛2 𝛽𝑚𝑎𝑥2𝛽𝑚𝑖𝑛1 𝛽𝑚𝑎𝑥1𝛽𝑚𝑖𝑛1 𝛽𝑚𝑎𝑥1𝛽𝑚𝑖𝑛2 𝛽𝑚𝑎𝑥2

𝛽𝑚𝑖𝑛2 𝛽𝑚𝑎𝑥2𝛽𝑚𝑖𝑛1 𝛽𝑚𝑎𝑥1 𝛽𝑚𝑖𝑛1 𝛽𝑚𝑎𝑥1𝛽𝑚𝑖𝑛2 𝛽𝑚𝑎𝑥2

Figure 4.3: Visual representation of the bounds given by inequalities (4.31), (4.32) and (4.33), (4.34). Parentheses represent
𝛽𝑚𝑖𝑛1 and 𝛽𝑚𝑎𝑥1 , square brackets represent 𝛽𝑚𝑖𝑛2 and 𝛽𝑚𝑎𝑥2 .

What Figure 4.3 represents is all possible ways the bounds can fit on the number line. For the sake
of clarity, we represent 𝛽𝑚𝑖𝑛1 and 𝛽𝑚𝑎𝑥1 with the parentheses, and 𝛽𝑚𝑖𝑛2 and 𝛽𝑚𝑎𝑥2 with the square brack-
ets. The right cases are equivalent to the left cases by symmetry. As such without loss of generality,
we can consider only the left cases, or 𝛽𝑚𝑎𝑥1 > 𝛽𝑚𝑎𝑥2 . In words, these cases can be explained in the
following way. In the first case, there is no overlap between the ranges. In the second case, one range
is a subset of the other range. And in the final case, there is overlap, but neither range is a subset of
the other.

If a 𝛽 is chosen in the rangewhere there is overlap between the two ranges, we know that inequalities
(4.31)-(4.34) all hold. By definition, then we have that there will be an even split. Both O-D pairs have
an incentive to swap stations in favor of an even split. As a result, as long as there is an even split,
vehicles from either O-D pair have no further incentive to swap.
The interesting cases lie where 𝛽 is chosen in only one of the ranges. What happens then is that some
of the inequalities do not hold. Assume we are in the following case:

𝛽𝑚𝑖𝑛1 ≤ 𝛽 ≤ 𝛽𝑚𝑖𝑛2 . (4.35)

Then, all the inequalities hold except for (4.33). Instead, we get the following:

𝑈1,1,𝑁2
≥ 𝑈1,2,𝑁2 +1

, (4.36)

𝑈1,2,𝑁2
≥ 𝑈1,1,𝑁2 +1

, (4.37)

𝑈2,1,𝑁2
< 𝑈2,2,𝑁2 +1

, (4.38)

𝑈2,2,𝑁2
≥ 𝑈2,1,𝑁2 +1

. (4.39)

Looking at Inequalities (4.38) and (4.39), this shows a clear preference for vehicles heading to Destina-
tion 2 to favor Station 2. Since, even in an even split, it is beneficial to switch from Station 1 to Station
2 for these vehicles. However, as Inequalities (4.36) and (4.37) still hold, considering the fact that the
vehicles are distributed equally across O-D pairs, there still will be an even split. This is because it
remains beneficial for vehicles heading to Destination 1, to switch stations to create an even split.
If we find ourselves in the inverse case,

max (𝛽𝑚𝑖𝑛1 , 𝛽𝑚𝑎𝑥2) ≤ 𝛽 ≤ 𝛽𝑚𝑎𝑥1 , (4.40)

then instead Inequality (4.34) does not hold. Taken together we get:

𝑈1,1,𝑁2
≥ 𝑈1,2,𝑁2 +1

, (4.41)

𝑈1,2,𝑁2
≥ 𝑈1,1,𝑁2 +1

, (4.42)

𝑈2,1,𝑁2
≥ 𝑈2,2,𝑁2 +1

, (4.43)

𝑈2,2,𝑁2
< 𝑈2,1,𝑁2 +1

. (4.44)

In this case by a similar argument as before, there will be an even split. However, this time the vehicles
heading to Destination 2 prefer Station 1.

18 4. Solution methods

Considering the inequalities that are satisfied, based on where the 𝛽 is chosen, we can group the cases
in the way shown in Figure 4.4.

Figure 4.4: Visual representation of the bounds given by Inequalities (4.31)-(4.34). The colors represent areas in which the same
inequalities are satisfied.

The case not discussed here, represented by black in Figure 4.4, is where Inequality (4.31) is not
satisfied, but (4.32)-(4.34) are. This gives:

𝑈1,1,𝑁2
< 𝑈1,2,𝑁2 +1

, (4.45)

𝑈1,2,𝑁2
≥ 𝑈1,1,𝑁2 +1

, (4.46)

𝑈2,1,𝑁2
≥ 𝑈2,2,𝑁2 +1

, (4.47)

𝑈2,2,𝑁2
≥ 𝑈2,1,𝑁2 +1

. (4.48)

This indicates that the vehicles heading to Destination 1 prefer taking Station 2. However, once again,
as the vehicles are distributed evenly over the O-D pairs, and the vehicles heading to Destination 2
benefit from an even split, there will be an even split. The end result is all vehicles heading to Destination
1 taking station 2 and all the vehicles heading to Destination 2 taking station 1.
The final case to consider, is when we are between the two ranges in the first case. Here, we have that
two of the four inequalities hold, namely:

𝑈1,1,𝑁2
< 𝑈1,2,𝑁2 +1

,
𝑈1,2,𝑁2

≥ 𝑈1,1,𝑁2 +1
,

𝑈2,1,𝑁2
≥ 𝑈2,2,𝑁2 +1

,
𝑈2,2,𝑁2

< 𝑈2,1,𝑁2 +1
.

(4.49)

In this case, the vehicles heading to Destination 1 prefer Station 2, and the vehicles heading to Destina-
tion 2 prefer Station 1. As the vehicles are equally distributed across O-D pairs, this ends up balancing
out, meaning there is an even split once again.
Having handled all cases, this shows that any 𝛽 ∈ [𝛽𝑚𝑖𝑛 , 𝛽𝑚𝑎𝑥] suffices, where 𝛽𝑚𝑖𝑛 =min (𝛽𝑚𝑖𝑛1 , 𝛽𝑚𝑖𝑛2)
and 𝛽𝑚𝑎𝑥 = max (𝛽𝑚𝑎𝑥1 , 𝛽𝑚𝑎𝑥2). Seeing as we want to maximize profits, we can use 𝛽𝑚𝑎𝑥. Meaning
that as a final result we get that:

𝛽∗ =min(1,max(𝛽𝑚𝑎𝑥1 , 𝛽𝑚𝑎𝑥2)). (4.50)

5
Results

In this chapter, results from Chapter 4 are verified with the help of a simulation of the model. Since the
model worked on all examples tried, for each case a representative graph was chosen to demonstrate
the hypothesized behavior. Section 5.1 discusses the bottleneck graph. Next, Section 5.2 discusses
the grid graphs. Section 5.3 discusses the validity of the results. Finally, Section 5.4 gives a general
conclusion of the results.

5.1. Bottleneck graph
In Subsection 5.1.1 an example is given of the case where there are 2 stations and just one class of
vehicles. Subsection 5.1.2, handles the case where there are multiple classes of vehicles. And finally,
Subsection 5.1.3 discusses the 𝑅-station scenario.

5.1.1. 2-stations
To verify the method used in Section 4.1, we demonstrate how it works on a concrete example. Figure
5.1 shows an instance of the 2-stations bottleneck graph. As the shortest route goes through Station
2, we instead have to calculate the optimal price at Station 1. First, it is necessary to calculate the 𝛼
from the values in Figure 5.1.

Origin

Station 1

Station 2

Destination

10

3

12

5

Figure 5.1: Specific instance of a bottleneck graph with 2 stations. Edge lengths represent travel time.

For this example we use parameters, the total number of vehicles 𝑁 = 10, the capacity at the
stations 𝑄 = 2, the time it takes to charge 𝑇𝑐 = 3 and the choice parameter 𝛾 = 0.6. From the graph,
we have 𝑇𝑚𝑖𝑛 = 8 resulting in 𝑇𝑚𝑎𝑥 = 3𝑇𝑚𝑖𝑛 = 24, and the route via Station 1 takes a total of 22minutes.
This gives 𝛼 = 22−8

24−8 =
14
16 = 0.875. The vehicles used in this example was 10. Using Equation (4.26)

19

20 5. Results

for 𝑁2 = 5 vehicles, gives 𝜖5 =
2⋅3
2 (

⌊ 52 ⌋
2
+⌊ 52 ⌋
5⋅6) 1

16 =
3
80 . Filling this in, in Equation (4.25) gives

𝛽 = 1 −
(78 −

3
80) ⋅ 0.6

1 − 0.6 = − 41
160 .

The formula gives 𝛽 < 0, which means it is impossible to get an even split for this graph, if all vehicles
have 𝛾 = 0.6. Doing the same however for 𝛾 = 0.4 gives

𝛽 = 1 −
(78 −

3
80) ⋅ 0.4

1 − 0.4 = 53
120 ≈ 0.442 .

With 𝑝2 = 𝑀𝑚𝑎𝑥 = 10, this gives 𝑝1 = 4 as the model uses integer values for prices.
Figure 5.2 shows a bar graph of how the 10 vehicles, with 𝛾 = 0.6 distribute themselves for different
prices at Station 1.

Figure 5.2: Bar Graph showing different numbers of visits across the stations for various 𝑝1 with 𝛾 = 0.6

The distribution for 𝛽 = 0 is also shown, even though the price is unrealistic. This was done to show
that even with the lowest price possible, vehicles still prefer Station 2 because of the shorter travel time.
The distributions for 𝑝1 ≥ 4 is not shown as all vehicles are already choosing Station 2. Raising the
price further would only lower the utility, making it less likely for vehicles to choose this route.
Figure 5.3 shows a bar graph of how the vehicles distribute themselves for different prices at Station
1, this time the vehicles have 𝛾 = 0.4.

Figure 5.3: Bar Graph showing different numbers of visits across the stations for various 𝑝1 with 𝛾 = 0.4

5.1. Bottleneck graph 21

As can be seen, if 𝑝1 = 1, all vehicles choose for Station 1. As 𝑝1 increases, more vehicles start
choosing for Station 2, until for 𝑝1 ≥ 7 all vehicles choose Station 2. The even split occurs when 𝑝1 = 4,
just as hypothesized.

5.1.2. Multiclass bottleneck
The calculations for the Multiclass bottleneck case are the exact same as for the case in Section 5.1.1.
The only difference is that you choose the lowest 𝛾 to calculate 𝛽∗. As a result the behavior is very
similar to the behavior shown in 5.1.1.

5.1.3. 𝑅-Stations
The calculations for the 𝑅-stations bottleneck graph are the exact same as for the 2-stations bottleneck
graph. An example is shown for the 3-stations case, based on Figure 5.4. As parameters we use, the
total number of vehicles 𝑁 = 15, the capacity at the stations 𝑄 = 2, the time it takes to charge 𝑇𝑐 = 3
and the choice parameter 𝛾 = 0.6 = 3

5 which leads to 𝛾
1−𝛾 =

3
2 .

Origin

Station 1

Station 2

Station 3

Destination

6

3

4

5

8 3

Figure 5.4: Specific instance of a bottleneck graph with 3 stations. Edge lengths represent travel time.

First we identify the shortest route from the origin to the destination, this is the route through Station
3, which gives 𝑇𝑚𝑖𝑛 = 8. Calculating the 𝛼𝑖 gives:

𝛼1 =
10 − 8
24 − 8 =

1
8

𝛼2 =
11 − 8
24 − 8 =

3
16

In this case we need 𝜖𝑁
3
. However, since 𝑁 = 15, we use 𝜖5 =

2⋅3
2 (

⌊ 52 ⌋
2
+⌊ 52 ⌋
5⋅6) 1

16 =
3
80

Which gives:

𝛽∗1 = 1 −
(18 −

3
80) ⋅ 0.6

1 − 0.6 = 139
160 ,

and,

𝛽∗2 = 1 −
(316 −

3
80) ⋅ 0.6

1 − 0.6 = 59
80

22 5. Results

5.2. 2-Stations grid
The final scenario, while seemingly very similar to the two station bottleneck problem, immediately
becomes significantly more complex. Firstly, the utility functions for vehicles with different O-D pairs is
different, even for vehicles within the same class. This is due to the fact that 𝑇𝑚𝑖𝑛 can differ for each
unique O-D pair. And secondly, instead of considering two possible routes, we have to consider two
routes for each O-D pair. This leads to a total of 8 routes to consider.

The 2-stations grid scenario is split into 4 scenarios to describe how to solve for an even split. These
scenarios are described in Section 4.2. However, all but the first of these were considered too complex
for this thesis. As a result, only results will be shown for the first scenario: 𝑎 = 𝑏,𝑐 = 𝑑.

While certain parameters for calculation are dependent on the graph, a number of them were set
globally for these graphs. These are, the total number of vehicles 𝑁 = 120, the capacity at the stations
𝑄 = 2, the time it takes to charge 𝑇𝑐 = 3 and the choice parameter 𝛾 = 0.6 = 3

5 which leads to 𝛾
1−𝛾 =

3
2

Following the steps described Section 4.2, a worked example is given using values shown in Figure
5.5.

Station 1

Station 2

Origin 1

Origin 2

Dest 1

Dest 2

5

5

8

8

5

7

3

7

Figure 5.5: 2-stations grid graph with 2 stations. Edge lengths represent travel time. Shortened representation: [5,5,8,8,5,7,3,7]

In this example, all O-D pairs have a smaller distance for the route via Station 1. As such, the price
at Station 2 must be lower to counteract this. For this, we calculate the 𝛽 for the O-D pair to Dest 1
(𝛽1), and the O-D pair to Dest 2 (𝛽2). This can be calculated using (4.25).

𝜖60,1 =
2 ⋅ 3
2
⌊602 ⌋

2
+ ⌊602 ⌋

60 ⋅ 61
1

2 ⋅ 10 =
93
2440

𝛼1 =
15 − 10
2 ⋅ 10 = 1

4

𝛽1 = 1 − (
1
4 −

93
2440)

3
2 =

3329
4880

𝜖60,2 =
2 ⋅ 3
2
⌊602 ⌋

2
+ ⌊602 ⌋

60 ⋅ 61
1
2 ⋅ 8 =

93
1952

𝛼2 =
15 − 8
2 ⋅ 8 = 7

16

𝛽2 = 1 − (
7
16 −

93
1952)

3
2 =

1621
3904

Of these 𝛽s we find that the maximum is 𝛽∗1 =
3329
4880 . Setting the price at Station 2 to 𝛽∗1 ⋅ 𝑝1, gives an

even split.

5.2. 2-Stations grid 23

To test the hypothesis that the preferred station changes as the 𝛽 changes as described in Section
4.2, we look at the graph given in Figure 5.6. The parameters used are the same as the ones used for
Figure 5.5

Station 1

Station 2

Origin 1

Origin 2

Dest 1

Dest 2

3

3

5

5

9

9

3

2

Figure 5.6: 2-stations grid graph with 2 stations. Edge lengths represent travel time. Shortened representation: [3,3,5,5,9,9,3,2]

The preferred station is Station 1 for both O-D pairs, so Station 2 should receive the lower price.
Using the utility functions and equation (4.25), we can find 𝛽𝑚𝑖𝑛1 , 𝛽𝑚𝑎𝑥1 and 𝛽𝑚𝑖𝑛2 , 𝛽𝑚𝑎𝑥2 . In doing so we
find:

𝛽𝑚𝑖𝑛1 ≈ 0.827,
𝛽𝑚𝑎𝑥1 ≈ 0.923,
𝛽𝑚𝑖𝑛2 ≈ 0.780,
𝛽𝑚𝑎𝑥2 ≈ 0.970.

Thus, [𝛽𝑚𝑖𝑛1 , 𝛽𝑚𝑎𝑥1] ⊂ [𝛽𝑚𝑖𝑛2 , 𝛽𝑚𝑎𝑥2]. Because of this what we expect to happen, is that when 𝛽 < 𝛽𝑚𝑖𝑛2 ,
there is no even split. When 𝛽𝑚𝑖𝑛2 ≤ 𝛽 ≤ 𝛽𝑚𝑖𝑛1 , we expect all vehicles heading to Destination 1 to
prefer Station 2, and all vehicles heading to Destination 2 to prefer Station 1. When 𝛽𝑚𝑖𝑛1 ≤ 𝛽 ≤ 𝛽𝑚𝑎𝑥1 ,
there will be an even split, but no conclusion can be drawn about the distribution at the stations. When
𝛽𝑚𝑎𝑥1 ≤ 𝛽 ≤ 𝛽𝑚𝑎𝑥2 , there will once again be an even split, but this time vehicles heading to Destination
1 prefer Station 1, and vehicles heading to Destination 2 prefer Station 2. And finally, for 𝛽𝑚𝑎𝑥2 < 𝛽
there will not be an even split. Running the simulation for 𝛽 ∈ (0.7, 0.8, 0.9, 0.95, 1.0) showcases these
separate cases. The result of those runs can be seen in Figure 5.7.

Figure 5.7: Bar Graph showing different numbers of visits across the stations for various 𝛽. For each beta, the left bar shows
number of visits to Station 1, while the right bar shows visits to Station 2. Dark blue represents vehicles heading to Destination
1, while light blue represents vehicles heading to Destination 2.

Figure 5.7 is evidence that the model works the way we hypothesized in Section 4.2.

24 5. Results

5.3. Precision
In the previous sections of this chapter, the behavior expected was verified. However, no real argument
was made about the validity of the results in numerical terms. While overall the simulation for the model
performs well, there is a certain flaw in it. The simulation only takes fractional values for the price, and
the runtime and memory usage depends on the magnitude of the denominator of the price. As a result,
the only way to check the validity of the calculated 𝛽∗ is to run the model twice. One run with the internal
𝛽 such that 𝛽 < 𝛽∗, and one run with internal 𝛽 such that 𝛽∗ < 𝛽. By choosing these 𝛽’s close to 𝛽∗
we can be fairly confident that 𝛽∗ is correct. The plot shown in Figure 5.8 shows the size of the range
within which 𝛽∗ could lie. The smaller the number, the more confidence we have in the result being
correct.

Figure 5.8: Scatter graph showing the maximal range of the beta for the respective graph.

These results are also shown in a table present in Appendix B. The smallest range was achieved
for the sixth graph, for which the range was only 2.4 ∗ 10−5. Seeing as the influence 𝜖 on 𝛽 is usually
in the order of magnitude 10−2, we can be fairly confident that the calculated 𝛽∗ is correct.

5.4. General conclusions
Having seen these examples, a few conclusions can be made. For bottleneck scenarios, Equation
(4.25) (see Chapter 4.1) can be used to calculate even splits. This formula can be further adjusted
to handle multiple classes, and an increase in stations. However, finding a direct solution for the grid
scenario proved more difficult. Both due to an increase in O-D pairs, as the added difficulty of dealing
with different arrival times. However, limiting ourselves to the ”𝑎 = 𝑏, 𝑐 = 𝑑” case, makes it possible to
once again solve the relevant equations.

6
Conclusion and discussion

In this thesis, the IARS model introduced in [2] was extended to adjust to station prices. This was
done to find a way to calculate prices to minimize maximum queue size across the stations, while
maximising profit. Minimizing queue size is achieved by splitting the vehicles evenly across all stations.
To simultaneously maximize profits, Equation (4.25) was derived by setting the Nash Equilibrium at an
even split. This Equation was subsequently applied to different graphs. Further research will have to
be done to see if a feasible solution can be found for other graphs.

For future work, more research could be done regarding the grid scenario. Expanding the num-
ber of O-D pairs, and researching the influence of adding more stations to the graphs. However, the
complexity of the problem grows exponentially based on adding more nodes. Next to that, the current
model makes assumptions which need to be relaxed to make it more realistic. The two main ones are
that both charge time and money spent at a charging station are not charge dependent. In reality, you
have to pay for the amount of charge, and charging an battery to 80% capacity, goes a lot quicker than
charging to full.
The most interesting result would come from generalizing the test cases to allow for vehicles to leave
at different start times. However, for this to be done in a reasonable amount of time, some changes
have to be made to the code. The main fix that has to be made is that the runtime is not dependent
on the magnitude of the price, but instead be dependent on the number of different prices at the sta-
tions. Finally, research could be done into approximations for optimal pricing. Since it is unlikely that
a direct equation for the price can be found which takes into account all the relevant parameters, an
approximation could be a good alternative.

25

Bibliography
[1] Daehyun Ban, George Michailidis, and Michael Devetsikiotis. Demand response control for phev

charging stations by dynamic price adjustments. In 2012 IEEE PES Innovative Smart Grid Tech-
nologies (ISGT), pages 1–8, 2012.

[2] Mathijs M. de Weerdt, Sebastian Stein, Enrico H. Gerding, Valentin Robu, and Nicholas R. Jen-
nings. Intention-aware routing of electric vehicles. IEEE Transactions on Intelligent Transportation
Systems, 17(5):1472–1482, May 2016.

[3] E. Gerding, S. Stein, V. Robu, D. Zhao, and N. R. Jennings. Two-sided online markets for electric
vehicle charging. AAMAS Conference on Autonomous Agents and Multi-Agent Systems, pages
989–996, May 2013.

[4] Francesco Malandrino, Claudio Casetti, and Carla-Fabiana Chiasserini. The role of its in charging
opportunities for evs. In 16th International IEEE Conference on Intelligent Transportation Systems
(ITSC 2013), pages 1953–1958, 2013.

[5] Igal Milchtaich. Congestion games with player-specific payoff functions. Games and Economic
Behavior, 13(1):111–124, Mar 1996.

27

A
R-Stations proof

In this appendix, we give a supplementary proof to Section 4.1.3.

𝑈𝑖,𝑁𝑅
≥ 𝑈𝑗,𝑁𝑅+1

gives

𝛾 (1 − 𝛼𝑖) + (1 − 𝛾) (1 − 𝛽𝑖) − 𝛾
𝑇𝑞,𝑁𝑅

𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛
≥ 𝛾 (1 − 𝛼𝑗) + (1 − 𝛾) (1 − 𝛽𝑗) − 𝛾

𝑇𝑞,𝑁𝑅+1
𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛

(1 − 𝛾) (1 − 𝛽𝑖) − (1 − 𝛾) (1 − 𝛽𝑗) ≥ 𝛾 (1 − 𝛼𝑗) − 𝛾 (1 − 𝛼𝑖) − (𝛾
𝑇𝑞,𝑁𝑅+1

𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛
− 𝛾

𝑇𝑞,𝑁𝑅
𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛

)

(1 − 𝛾)(𝛽𝑗 − 𝛽𝑖) ≥ 𝛾 (𝛼𝑖 − 𝛼𝑗 − 𝜖𝑁
𝑅
)

(𝛽𝑗 − 𝛽𝑖) ≥
𝛾 (𝛼𝑖 − 𝛼𝑗 − 𝜖𝑁

𝑅
)

1 − 𝛾
By using Equations (4.30), we get four cases:

𝛽∗𝑗 = 1, 𝛽∗𝑖 = 1

𝛽∗𝑗 < 1, 𝛽∗𝑖 < 1
𝛽∗𝑗 < 1, 𝛽∗𝑖 = 1
𝛽∗𝑗 = 1, 𝛽∗𝑖 < 1

The first (𝛽𝑗 = 1, 𝛽𝑖 = 1) gives:

(𝛽𝑗 − 𝛽𝑖) = 0 ≥
𝛾 (𝛼𝑖 − 𝛼𝑗 − 𝜖𝑁

𝑅
)

1 − 𝛾

Since 𝛽∗𝑖 =min(1 −
(𝛼𝑖−𝜖𝑁

𝑅
)𝛾

1−𝛾 , 1), 𝛽∗𝑖 = 1 implies that

1 −
𝛾 (𝛼𝑖 − 𝜖𝑁

𝑅
)

1 − 𝛾 ≥ 1

29

30 A. R-Stations proof

which gives

𝛾 (𝛼𝑖 − 𝜖𝑁
𝑅
)

1 − 𝛾 ≤ 0

so
𝛼𝑖 ≤ 𝜖𝑁

𝑅
.

From this, the inequality follows directly.
The second (𝛽𝑗 < 1, 𝛽𝑖 < 1) gives:

(𝛽𝑗 − 𝛽𝑖) = 1 −
𝛾 (𝛼𝑗 − 𝜖𝑁

𝑅
)

1 − 𝛾 − ⎛⎜

⎝

1 −
𝛾 (𝛼𝑖 − 𝜖𝑁

𝑅
)

1 − 𝛾
⎞
⎟

⎠

=
𝛾 (𝛼𝑖 − 𝛼𝑗)
1 − 𝛾 ≥

𝛾 (𝛼𝑖 − 𝛼𝑗 − 𝜖𝑁
𝑅
)

1 − 𝛾

Since 𝜖𝑁
𝑅
> 0, this follows directly.

The third (𝛽𝑗 < 1, 𝛽𝑖 = 1) gives:

(𝛽𝑗 − 𝛽𝑖) = 1 −
𝛾 (𝛼𝑗 − 𝜖𝑁

𝑅
)

1 − 𝛾 − 1 =
𝛾 (−𝛼𝑗 + 𝜖𝑁

𝑅
)

1 − 𝛾

Since 𝛽𝑖 = 1, 𝛼𝑖 ≤ 𝜖𝑁
𝑅
and because of this 𝛼𝑖 − 𝜖𝑁

𝑅
≤ 0 and also 𝛼𝑖 − 2 ⋅ 𝜖𝑁

𝑅
≤ 0 .

𝛾 (−𝛼𝑗 + 𝜖𝑁
𝑅
)

1 − 𝛾 ≥
𝛾 (−𝛼𝑗 + 𝜖𝑁

𝑅
+ (𝛼𝑖 − 2 ⋅ 𝜖𝑁

𝑅
))

1 − 𝛾 =
𝛾 (𝛼𝑖 − 𝛼𝑗 − 𝜖𝑁

𝑅
)

1 − 𝛾

So the third case also works correctly.
The final case (𝛽𝑗 = 1, 𝛽𝑖 < 1) gives:

(𝛽𝑗 − 𝛽𝑖) = 1 −
⎛
⎜

⎝

1 −
𝛾 (𝛼𝑖 − 𝜖𝑁

𝑅
)

1 − 𝛾
⎞
⎟

⎠

=
𝛾 (𝛼𝑖 − 𝜖𝑁

𝑅
)

1 − 𝛾

Since 𝛼𝑗 ≥ 0 (by definition), we have the following:

(𝛽𝑗 − 𝛽𝑖) =
𝛾 (𝛼𝑖 − 𝜖𝑁

𝑅
)

1 − 𝛾 ≥
𝛾 (𝛼𝑖 − 𝛼𝑗 − 𝜖𝑁

𝑅
)

1 − 𝛾

Which was what we wanted to prove.

B
Precision results

This appendix contains a table with results used for Figure 5.8. The number corresponds to the number
in the figure. Graph shows the shortened representation of the 2-stations grid graph used in the simu-
lation. The 𝛽∗ column shows the exact calculated 𝛽∗ for the respective graph. The internal parameters
used were 𝑁 = 120, 𝑄 = 2,𝑇𝑐 = 3 and 𝛾 = 3

5 . The upper and lower columns represent the internal
upper and lower bound beta’s used to verify 𝛽∗. For the upper case, the resulting distribution then
would not be an even split, and for the lower case, the resulting distribution would be an even split.
The final column was calculated by subtracting the lower column from upper. This is what was plotted
against the graph number in Figure 5.8.

31

32 B. Precision results

graph 𝛽∗ upper lower range

1 [3,3,10,10,2,8,8,8] 3085
5368

50
87

27
47 0.000244559

2 [10,10,2,2,8,10,3,6] 1313
1952

37
55

39
58 0.00031348

3 [10,10,8,8,10,5,10,10] 2777
2928

92
97

55
58 0.00017746

4 [4,4,2,2,9,9,9,5] 4915
5368

76
83

65
71 0.000169693

5 [2,2,2,2,3,2,7,6] 3817
3904

44
45

307
314 0.000070771

6 [10,10,9,9,9,3,7,3] 1435
1952

161
219

136
185 0.000024682

7 [3,3,3,3,10,9,10,5] 1923
1952

199
202

66
67 0.000073888

8 [4,4,6,6,8,4,8,5] 5281
5368

61
62

182
185 0.000087184

9 [5,5,10,10,3,2,6,5] 4183
5368

113
145

60
77 0.000089566

10 [4,4,4,4,3,10,6,8] 4427
4880

88
97

342
377 0.000054691

11 [4,4,3,3,6,4,9,8] 4915
5368

76
83

358
391 0.000061628

12 [2,2,3,3,10,10,6,7] 1923
1952

199
202

66
67 0.000073888

13 [7,7,9,9,6,9,7,8] 859
976

257
292

22
25 0.000136986

14 [6,6,2,2,8,8,10,3] 739
976

290
383

53
70 0.0000373

15 [9,9,6,6,9,8,3,5] 5281
5368

61
62

182
185 0.000087184

Table B.1: Table containing results for 5.8

	Introduction
	Literature
	Game theory
	Base model

	Model
	Pricing extension
	Adjusted congestion game

	Solution methods
	Bottleneck graph
	2-Stations
	Multiclass bottleneck
	R-Stations

	2-Stations grid

	Results
	Bottleneck graph
	2-stations
	Multiclass bottleneck
	R-Stations

	2-Stations grid
	Precision
	General conclusions

	Conclusion and discussion
	References
	R-Stations proof
	Precision results

