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Mapping Discomfort through Patient Input in
Robotic Physiotherapy

Jevon Ravenberg
Supervised by: Italo Belli and Luka Peternel

Abstract—In this work, we propose a method of processing
patient input on discomfort level during robot shoulder physio-
therapy into discomfort maps. These maps represent the patient’s
discomfort distribution throughout the range of motion of the
shoulder, interpretable by both physiotherapists and robots. This
method consists of three parts: the patient can input discomfort
with a linear push-button; a collaborative robot arm is used
to track the motion of the patient’s shoulder; and audiovisual
feedback of inputted discomfort is given to the patient and
the therapist. The method was validated in human factors
experiments simulating shoulder physiotherapy sessions, where
the subject is tasked with recreating a reference discomfort
map through an auditory reference signal that emulates this
discomfort. Here the robot also acts as the physiotherapist,
moving the subject’s shoulder. The signal is a beeping sound,
whose rate scales with the discomfort intensity at the measured
pose in the reference discomfort map. We performed experiments
with a total of 10 participants, demonstrating the viability of
our method during patient-robot interaction. The results we
collected also highlighted the presence of a time delay between the
discomfort signal and the user input, and its effect on discomfort
maps.

I. INTRODUCTION

Musculoskeletal injuries resulting from accidents, recre-
ational activities, and general wear-and-tear due to aging are
the primary contributors to disability and work impairment.
Among these injuries, a shoulder rotator-cuff (RC) tear stands
out as one of the most prevalent, with an estimated prevalence
rate of 22.1% in the general population and over 50% for
individuals aged 60 and above [2]. Restoring shoulder mo-
bility and functionality after RC injuries requires a patient to
undergo a prolonged and costly physiotherapy process.

Due to the intricate nature of the shoulder joint and a lack
of quantitative insights into the risks of re-injury, conventional
practices in RC physiotherapy tend to be conservative, even
when administered by expert physiotherapists [3]. This conser-
vative approach limits the treatment intensity in terms of range
of motion (RoM), potentially slowing down the healing pro-
cess. Increasing RoM safely, however, can enhance recovery
speed and recovery completeness [4]. Additionally, RC therapy
itself can be physically demanding for physiotherapists who
typically have to handle many patients a day, one at a time.
This is exacerbated by the growing gap between the amount of
people with rehabilitative needs and physiotherapists, caused
among others by the ageing population and decreasing growth
of medical personnel [5]. Robotic-assisted rehabilitation can
offer solutions to these problems.

These robotic platforms can help reduce physical load on
the physiotherapist by taking over the weight of the patient’s

Fig. 1: Overview of the discomfort map creation system. (a) A
KUKA LBR iiwa 7 R800 robotic manipulator [1] moves along
with the patient’s shoulder through an elbow brace and estimates
their shoulder state. (b) The push-button interface used to input the
patient’s discomfort intensity, held by the free arm. (c) The discomfort
map created by the patient. (d) The audio feedback is a beeping
sound. As the input discomfort intensity increases, the time between
beeps decreases. Note: Image (a) is mirrored for demonstration
purposes.

arm, and through telerehabilitation [6] the therapist is capable
of administering physiotherapy remotely and to multiple peo-
ple at once. Furthermore, robotic platforms can quantify the
patient’s condition and incorporate this into its control system
and communicate this to the therapist. For instance, the muscle
effort of the patient can be estimated from electromyography
(EMG) measurements [7], [8]. However, this only gives a
limited insight into the inner workings of the musculoskeletal
system, similar to how human physiotherapists have limited
insight. Using musculoskeletal models, however, can give an
accurate estimate of the actual internal properties of the human
body, such as joint loading [9], muscle fatigue [10], muscle
comfort [11], and muscle manipulability [12].
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Fig. 2: Workflow of the system for creating discomfort maps. It
consists of two main sections: patient input and feedback to the
patient. The patient input consists of their shoulder state estimated by
the robot and their discomfort intensity commanded with the push-
button. The feedback to the patient consists of their drawn discomfort
map and audio-visual feedback of their commanded intensity. When
drawing the map the patient places down blobs centered at the
shoulder state, whose shape depends on the commanded intensity.

The previous work presented in [13], [14] uses a muscu-
loskeletal model of the patient’s shoulder to estimate the safe
RoM, defined as the movement region where the strain in
the RC tendons is limited to safe levels. Rather than using
this model during operation, this safe region is pre-computed
and abstracted into “strain maps” which provide an intuitive
representation of the RC tendon strains to the physiotherapist
that can also be used for effective real-time control.

However, a major shortcoming of robot-assisted physiother-
apy is the decrease in contact and communication between the
physiotherapist and their patient. This makes it harder for the
therapist to monitor the condition of the patient, i.e., whether
they are in pain. While musculoskeletal models give insight
into musculoskeletal sources of pain, e.g., the strain maps
giving insight into muscle strain, they cannot quantify pain
itself. This is because pain can have many different sources and
the experience of pain is deeply personal and characterized by
a tremendous variability between individuals [15], thus what
makes one person feel excessive pain may not be exactly the
same for another.

Conversely, it is possible to estimate the patient’s pain. Pain
responses include changes in physiological markers such as
blood pressure, heart rate and skin conductance, which can
be measured [16]; and behavioral responses such as facial
expressions, which can be used with machine learning to
detect pain [17]. Though in literature, these methods are
most often validated through comparison with a subjective
numerical rating from the patient, e.g., the Numerical Rating
Scale (NRS) [18]. So in order to supplement the robotic system
with information about the patient’s pain distribution, the most
straightforward manner would be to simply ask the patient’s

opinion.
To address the problem of the strain maps lacking in-

formation about the patient’s pain distribution, we propose
a new method of integrating patient input on discomfort
with patient state estimation during robotic physiotherapy, in
order to create “discomfort maps”. Through a handheld push-
button interface, the patient can input their discomfort level in
real-time during the therapy session. These discomfort maps
represent the discomfort distribution experienced by the patient
over the RoM of the therapy. The main advantages of this
method are that it is intrinsically personalized to the patient
and requires a simple pipeline that outputs directly usable
quantitative information. See Fig. 1 for an overview of the
system. The discomfort maps can be used with strain maps
to not only avoid high-strain shoulder poses but also shoulder
poses the patient has deemed uncomfortable, and are especially
useful for telerehabilitation, where the physiotherapist is not
physically present to monitor the patient’s demeanor.

There is precedent for allowing the patient to input their
pain level using a handheld interface. Studies in [19] and [20]
used devices with a slider as the input interface. This allows
for precise input but requires visual attention and the use of
both hands. Studies in [21] and [22] used grip devices as the
input interface. These are single-handed and more intuitive to
use but need to be calibrated to the patient. The push-button
interface used in our proposed method combines the single-
handed, intuitive nature of the grip interfaces with the more
precise position-based and non-personalized input of the slider.
Furthermore, none of those studies were able to build state-
space maps like our approach can, since they lack a motion-
tracking component.

This study presents the discomfort maps, demonstrates how
they are generated, and discusses insights gained from valida-
tion through human factors experiments that emulate robotic
shoulder physiotherapy. During the experiments, subjects will

Fig. 3: Overview of the coordinate systems used: the shoulder frame
(green), with the origin centered on the glenohumeral joint; DoF
of the glenohumeral joint (blue); robot’s end-effector frame (purple).
When the patient is wearing the arm brace, the elbow frame coincides
with the end-effector frame.
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Fig. 4: (a) Discomfort maps for multiple values of AR layered on
each other. (b) Cross-sectional view of the bounded area in (a). The
plane of elevation is at a fixed value of PEα. This shows how the
intensity dampens along the shoulder elevation and plane of elevation,
but also along the axial rotation.

be tasked with recreating a reference discomfort map using
only a discomfort-emulating reference signal in the form of
audio. A KUKA LBR iiwa 7 R800 collaborative robot arm [1]
will serve as the robotic physiotherapist, guiding the shoulder
through specific trajectories.

II. METHODOLOGY

The overview for our proposed method is shown in Fig. 2.
Discomfort maps represent the patient’s discomfort distribu-
tion across the entire RoM of their shoulder. They are created
by combining the patient’s shoulder state with their input
on discomfort level over time. Shoulder state estimation is
performed by a collaborative robot arm, which can also move
the patient’s shoulder through set trajectories. For inputting
discomfort level, the patient uses a push-button interface,
which is accompanied by audio-visual feedback for ease of
use.

The methodology is split into three subsections. Section II-A
details the shape and creation process of discomfort maps. Sec-
tion II-B discusses the interface used for inputting discomfort
level and explains the audio-visual feedback interface to the
patient. Finally, Section II-C describes the robot controller.
Details on the shoulder state estimation are excluded from
this section for brevity, but can be found in Section A of the
appendix.

A. Discomfort Map

The discomfort maps show the patient’s discomfort intensity
level over the entire RoM of the shoulder. Because the
discomfort maps were conceived as an addition to strain maps
from previous work [13], [14], the definition of shoulder state
and the shape of the maps are maintained. The shoulder state
is defined as the state of the glenohumeral joint, i.e., the
motion of the humerus (upper arm bone) relative to the scapula
(shoulder blade), which has 3 degrees of freedom (DoF). As
such the shoulder state vector is defined as

α = [AR PE SE], (1)

where AR∈[−90°, 90°] is the axial rotation, PE ∈ [−20°, 160°]
is the shoulder plane of elevation, and SE ∈ [0°, 144°] is the
shoulder elevation. This is also shown in Fig. 3. The state
[0°, 0°, 0°] coincides with the neutral pose where the arm
rests at the side. Similar to strain maps, the shoulder range
is discretized in 4° increments.

For visualisation purposes the 3D map of the patient’s
discomfort intensity level across AR, PE, and SE is represented
as multiple layers of 2D maps, where AR is fixed. A single
discomfort map shows the patient’s discomfort intensity across
PE and SE for a fixed AR, but by layering discomfort maps
for all values of AR the entire shoulder RoM is spanned (see
Fig. 4).

The idea behind the map creation is that the patient indicates
points of discomfort and the intensity of this discomfort. It can
be assumed that not only the indicated point, i.e., shoulder
pose, is uncomfortable, but also poses around it to a lesser
degree. This range should increase with intensity, because
a point with high intensity most likely has a larger area of
effect. So the patient places down 3D ellipsoidal “blobs” in
the discomfort maps that scale in amplitude and size with the
commanded intensity and are centered around their current
shoulder state; AR determines the layer, while PE and SE
determine the position on that layer.

This leads to the following technical implementation, where
the intensity at each point in the discomfort maps over time
is given by:

I(t,α) = max (I(t− 1,α), f(t,α)) , (2)

f(t,α) = i(t)
∏
j∈A

exp

(
−1

2

(
αj − µj(t)

σj(t)

))
,

A = {AR, PE, SE},
(3)

σ(t) = i(t)
1

4
[wAR wPE wSE ], (4)

where I(t,α) is the intensity in the discomfort maps at
shoulder state α at time t, f(t,α) describes the intensity dis-
tribution of the newest blob, i is the intensity commanded by
the patient as a percentage, µ is the estimated patient shoulder
state, and wj is the width of the blob at 100% intensity in the
j-direction, with [wAR wPE wSE ] = [60° 25° 25°].

Eq. (3) shows that the blobs are shaped like a Gaussian func-
tion, i.e., the intensity is highest at the center and decreases
to 0 at the boundary. From Eq. (4) follows that the width of
the blob is approximated as 4 times the standard deviation
of the Gaussian function1. The blob width is larger in the AR
direction due to the fact that a rotation in AR corresponds to a
relatively smaller movement of the arm compared to equivalent
rotations in PE and SE. This adjustment aims to prevent the
patient from inadvertently leaving a discomfort region through
such a minor movement. Eq. (2) describes how the discomfort
intensity in a point can only be overwritten by a blob with
higher intensity in that point. This stems from a conservative

1For a normalized Gaussian function f centered at 0, f(±2σ) ≃ 0.135. In
our software implementation, values below this threshold could be disregarded
for efficiency.
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approach that regards the highest commanded intensity in a
point as representative.

B. Patient Input and Feedback Interfaces

The interface used for inputting discomfort intensity must
enable the patient to instantly indicate not only whether and
when they experience discomfort but also to accurately specify
the level of discomfort. Furthermore, the interface should be
comfortable to hold for a long time and intuitive. That is why
for this method a handle with a spring-return push-button
is used. This device has been repurposed from [23]. The
discomfort intensity commanded to the system scales linearly
with the position of the push-button, e.g., fully pushed in is
100% and fully extended, so relaxed, is 0%. The handle is held
in the free arm, to prevent the effects of involuntary muscle
contractions due to the therapy on the button-press.

When the patient is focused on physiotherapy it can be easy
to lose track of the discomfort intensity they are commanding
to the system, decreasing accuracy. In order to resolve this
issue, visual feedback of the commanded intensity is given
through a color bar, where the pointer moves along with
the intensity, on a monitor in front of the patient. This is
also useful for the physiotherapist because they otherwise
would not be able to clearly see what the patient is inputting.
The setup also includes auditory feedback of the commanded
intensity in the shape of a beeping sound, whose rate is
proportional to this intensity. Although primarily designed for
the experiments (refer to Section III-B), this auditory feedback
can be repurposed to provide feedback to the physiotherapist
through an alternative sense when visual attention is otherwise
engaged.

C. Robot Control

The robot arm is not only used to estimate the shoulder state
of the subject through encoder measurements, but also to move
the subject’s shoulder through set trajectories. For this, an

Fig. 5: Visual interface for the experiments. The left pane shows the
subject’s estimated shoulder state as a black circle in the map. This
pane can also display the discomfort map created by the subject, the
reference discomfort map, and the corresponding reference shoulder
trajectory (as is currently shown in pink). The right pane shows
the color bar for feedback on the subject’s commanded discomfort
intensity, the pointer (white triangles) move to the right as intensity
increases.

impedance controller is used, which takes the desired motion
of the robot end-effector as an input and outputs the robot
joint torques based on mass-spring-damper equations [24].
This means the impedance is characterized by virtual inertia,
stiffness, and damping terms. Unlike fully stiff conventional
position-controlled robots, the torque-controlled robot with an
end-effector impedance controller can be complaint, which
is crucial for safe human-robot interaction. The robot end-
effector force and corresponding torques that generate that
force are calculated with:

F = K(Xr −X)−D(Ẋr − Ẋ) (5)

τ = JTF (6)

where F ∈ R6 is the output force, K ∈ R6×6 is the Cartesian
stiffness matrix, D ∈ R6×6 is the Cartesian damping matrix,
Xr ∈ R6 is the Cartesian reference end-effector pose, X ∈ R6

is the current end-effector pose of the robot, J ∈ R6×7 is
the robot Jacobian, which describes the relationship between
end-effector velocities and joint velocities, and τ ∈ R7 is
the commanded robot joint torques. The system is critically
damped so D = 2

√
K [25].

The robot arm has 7 joints, thus 7 DoF, while the end-
effector has 6 DoF. This means that the robot arm has
redundant joints and as a result, it can have the same end-
effector pose in many different joint configurations. To ensure
repeatability, a null space controller is also employed [26],
which makes it so the robot will always have a proclivity
for a selected joint configuration. The null space controller is
described by:

τ += (I − JTJ+T )(PN (qr − q)−DN (q̇)) (7)

where I ∈ R7×7 is the identity matrix, J+ ∈ R7×6 is the
Moore-Penrose pseudo-inverse of the Jacobian J , PN ∈ R7×7

is the proportional gain of the controller, DN ∈ R7×7 is
the derivative gain (damping), qr ∈ R7 is the reference joint
configuration, and q ∈ R7 is the current joint configuration of
the robot. The system is critically damped so DN = 2

√
PN .

III. EXPERIMENTS AND RESULTS

The presented research was approved by the TU Delft
Human Research Ethics Committee (HREC). The experiments
can be separated into two main parts:

• the functionality test (Section III-C), with the goal of
demonstrating the discomfort map creation process;

• the human factors experiments (Section III-D), with the
goal of analysing the practicality of the proposed method
on untrained subjects.

For HREC approval, we could not inflict actual (physical)
discomfort on the subjects to generate discomfort maps in
the human factors experiments. Instead, the subject is asked
to recreate a reference discomfort distribution translated to a
discomfort map, using the proposed method in a simulated
physiotherapy session, where their shoulder is moved by the
robot arm. The subject is not able to see the reference map, but
is instead given a reference signal based on this map, which
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Fig. 6: Demonstration of discomfort map creation using the proposed method, with snapshots taken at specific timestamps A to E. The first
row shows the robot and subject poses at these timestamps. The second row shows the discomfort map at these timestamps, with the current
shoulder state marked as a filled red dot and the previous as a non-filled circle. The third row shows the discomfort intensity commanded
by the subject over time, i.e., how much the push-button is pressed. The fourth row shows the PE and SE angles over time. AR is missing
from this overview, because for this demonstration the estimated AR is locked to 0. Note: The images in the first row are mirrored for
demonstration purposes.

emulates discomfort. This signal was chosen to be a beeping
sound pattern, further explained in Section III-B. The results of
the human factors experiments are discussed in Section III-E.
For these experiments, 10 healthy participants, 8 male and 2
female, in the age range of 20-30 were selected. As required
by the HREC approval, all participants had to give informed
consent beforehand.

A. Experimental setup

The general setup for the experiments is the same (see
also Fig. 1): the subject is seated in a chair, adjustable in
height, with their left elbow fitted in the elbow brace attached
to the end-effector of the robot arm. This brace locks the
elbow in a 90° bend. The starting shoulder state for every
experiment is [AR PE SE] = [0° 0° 90°], where the bent arm
is parallel to the horizontal plane (see picture I in Fig. 6). The
elbow brace is made of a soft molded thermoplastic attached
to a solid 3D-printed base. As a safety measure, these two
parts detach with enough force. The robot arm used is a
KUKA LBR iiwa 7 R800 collaborative robot arm [1]. The
arm is impedance controlled, details of which were discussed
in Section II-C. The discomfort intensity input interface is the
push-button as described in Section II-B. The subject receives
visual feedback on their estimated shoulder state, the robot’s
reference trajectory, and their commanded discomfort intensity
through a monitor (see Fig. 5). This window is created in

Pygame and runs at 60 FPS on average. The subject receives
the auditory signal on discomfort intensity through Bluetooth
headphones with unnoticeable latency.

For all the experiments, AR was locked to 0°, unless stated
otherwise. This means the discomfort map related processes
were restricted to a single layer, significantly reducing the
complexity of the experiments. Furthermore, the RoM was
restricted to PE≤60° and SE≥30°, because the robot could not
physically follow the subject’s arm for shoulder states beyond
these limits.

B. Discomfort-emulating Auditory Signal Protocol

As stated before, for the human factors experiments the
subject is given a signal that emulates the reference discom-
fort intensity from the reference discomfort map. The most
appropriate medium for conveying this signal was determined
to be auditory over visual or tactile, from the following
considerations:

• the average simple reaction time, i.e., the reaction time
in experiments where there is only one stimulus and
one response, is longest for visual stimuli with 180-200
ms and shortest for auditory stimuli with 140-160 ms
[27]–[29]. Touch stimuli is intermediate with 155 ms
[30]. This difference persists when the subject is asked
to give more complex responses [31], [32]. Though our
experiments here cannot be classified as simple reaction

6



Fig. 7: System workflow for human factors experiments, where the subject is tasked with recreating a reference discomfort map. The
system consists of four main sections: subject input, reference generation, discomfort map creation, and feedback to the subject. The subject
input consists of their shoulder state estimated by the robot and their discomfort intensity commanded with the push-button. The reference
discomfort intensity is generated from the intensity in the reference map at the current estimated shoulder state. This reference intensity is
modulated to an audio signal: faster beeping for higher intensity. The feedback to the subject consists of this audio signal and visual feedback
of the subject’s commanded intensity. When drawing the discomfort map the user places down blobs centered at their current estimated
shoulder state, whose shape depends on the commanded intensity. The drawn discomfort map is not shown to the subject.

experiments, it can be concluded that the reaction time in
our experiments would be lowest for auditory and tactile
signals.

• the haptic system for tactile signals can be designed in a
way to closely mimic the discomfort that may arise during
real shoulder physiotherapy, however this is much more
difficult to implement than auditory (and visual) signals.

In order to convey changes in reference intensity, the
auditory signal can vary in frequency, volume or rate. Volume
modulation is not appropriate, because humans do not perceive
loudness linearly, and rate modulation is significantly easier
to implement than frequency modulation. Thus, the auditory
signal is implemented as a repeating 1 kHz beep sound. The
time between beeps is inversely proportional to the reference
intensity:

t = (1− ir) + t0 (8)

where t is the time between beeps, t0 is duration of the beep
itself, with t0 = 0.3 seconds, and ir is the reference intensity
as a percentage. This reference intensity is the intensity in the
reference map at the current estimated shoulder state.

C. Functionality Test
The goal of the functionality test is to demonstrate the

discomfort map creation process of our method in AR, PE
and SE directions. Fig. 2 gives an overview of the system.
For the functionality test the robot is fully compliant, i.e.,
K = PN = 0 (see Eqs. (5) and (7)), and because there is no
reference map in this case, the auditory signal is controlled
by the subject’s commanded intensity instead, i.e., ir = i (see
Eq. (8)).

Fig. 6 shows a demonstration of the discomfort map creation
functionality of the proposed method. This figure however

is limited to a single layer, i.e., it only shows the motion
tracking of the system in the PE and SE directions, and AR
is explicitly locked to 0°, meaning the map is locked to a
single layer. Appendix B shows a similar demonstration, but
without an AR lock, focusing on movement in AR instead,
while keeping PE and SE steady. It can be seen that as AR
changes, the map-drawing continues on a new layer. Video of
these demonstrations is shown in [33]. The demonstrations
show how the method can be used to produce discomfort
maps, depicting the discomfort intensity across the DoF of
the glenohumeral joint: AR, PE, and SE.

D. Human Factors Experiments
The goal of the human factors experiments is analysing

the practicality of the proposed method on untrained subjects.
Fig. 7 gives a general overview of the system. In order to
manage the complexity of the experiments, AR was locked
to 0°, meaning analysis is restricted to a single discomfort
map. Because we cannot inflict real discomfort on subjects,
they are instead asked to recreate a reference discomfort map
without being able to see it, from the reference auditory
signal described in Section III-B, in a simulated robotic
physiotherapy session.

The experiments were split into two tasks:
• Task I, where the robot arm is omitted, instead the

subject’s shoulder trajectory is simulated by the reference
trajectory, and the subject is only asked to follow the
reference auditory signal with the push-button;

• Task II, where the robot arm guides the subject’s shoulder
through a reference trajectory and the subject is asked
to correct errors in the robot’s trajectory while simulta-
neously following the reference auditory signal with the
push-button.

7



Fig. 8: The reference maps used for the human factors experiments and their accompanying trajectories.

TABLE I: Structure of human factors experiments ordered from left
to right.

Reference A1 A2 B C D
Task I I II II II

# Trials 3 3 5 5 5
Average trial
duration (s) 30 30 13 20 20

The purpose of Task I is to study the tracking of the auditory
reference signal in isolation and to prepare the subjects for
Task II. The purpose of Task II aligns more closely with the
goal of the human factors experiments, which is to study the
practicality of the proposed method in a simulated robotic
physiotherapy session.

The experiments are structured as follows. It starts with a
familiarization period, where the subject can freely use the
push-button. Here, the auditory signal is controlled by their
button-press. This way they can develop a mapping between
the button-press, the color bar for visual feedback, and the
beeping speed of the signal. This is necessary for the rest of
the experiment, where the subject needs to match their button-
press to the signal instead. The subject is allowed as much
time as they require for familiarization. This is followed by
Task I, then Task II. The reference maps and corresponding
trajectories (henceforth collectively referred to as “reference”)
used for the tasks are shown in Fig. 8, labeled A1, A2, B, C,
and D. The structure for the rest of the experiment is shown in
Table I. It can be seen that in Task II the references gradually
increase in complexity. Multiple references are used and the
number of trials per reference is limited to prevent the subjects
from simply memorizing the reference signal. For Task II the
subject is allowed breaks between trials, if necessary. The
duration of one entire experiment is 20-25 minutes

Here follows the instructions given to the subjects for
the experiments. For the familiarization period the subject is
instructed to develop a mapping between their button-press,
the color bar for visual feedback, and the beeping speed of the
auditory signal. They are also told that in the following task
(Task I), the auditory signal will change on its own and they
will need to match their button-press to this signal. Before

the start of Task II, the subject is linked to the robot and
is given a more in-depth explanation on the visual interface,
i.e., the reference shoulder trajectory and how the displayed
shoulder state depends on their movement. They are then told
that the robot will guide their shoulder through the shown
trajectory, but not perfectly, and that they will have to correct
these errors through slight adjustment, while simultaneously
doing the same signal tracking as in the previous Task I. They
are also instructed to keep still and only move their shoulder.
The subjects are never shown the reference discomfort maps
or their own during the experiment, only afterwards will they
be made aware that they were trying to recreate a reference
map.

For safety reasons, the robot controller gains K and PN

are tuned such that the robot can move the subject’s arm,
while ensuring that the subject can still easily overpower it.
Furthermore, we carefully supervised the subjects, with the
robot’s emergency stop button at hand.

E. Results

Here, we present and assess the outcomes of the human
factors experiments. We begin with a qualitative evaluation,
followed by a more quantitative analysis.

For the qualitative evaluation of the results, the difference
of the average subject created discomfort maps and subject
commanded intensities with the references is analysed. This
comparison is shown in Figs. D.1 and E.1 in the appendix.
Abridged versions of these figures are shown in Figs. 9 and 10,
where the results for references A1 and D can be considered
representative for Task I and Task II respectively.

Fig. 10 clearly shows that the subjects lag behind the
reference signal. The consequence of this lag is clearly visible
in Fig. 9, where the subjects’ map for A1 is similar to the
reference but rotated clockwise, along the reference trajectory.
A similar pattern exists for the other references (see Fig. D.1).
Aside from this lag however, the average shape of the discom-
fort maps is quite similar to the reference.

To estimate the lag the subject commanded intensity is time-
shifted relative to the reference intensity. The time-shift where
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Fig. 9: The average discomfort maps created by the subjects on the
top row and the reference maps on the bottom row, for references
A1 and D. The overview for all references is shown in Fig. D.1.

TABLE II: Average lag for each reference.

Reference A1 A2 B C D
Average Lag (s) 1.50 1.79 1.15 1.30 1.31

Std. dev. (s) 0.338 0.414 0.576 0.568 0.592

the error between them is minimal is the lag. The average
estimated lag for each reference is shown in Table II. This is
approximately 1.4 seconds, which is quite large. The average
lag is smallest for B and largest for A2 and A1. The lag for
C and D are the same and are intermediate. So the average
lag for Task I is larger than for Task II, which is surprising,
since the subject has to juggle two assignments at once in
the latter. However, the variance in the data is too large to
conclude anything statistically significant. Besides the lag, the
figures also show, that the subjects’ commanded intensity is
generally lower than the reference intensity, especially for Task
II. This means the subjects are more conservative with their
button-press in these trials.

For the quantitative analysis of the results two metrics are
designed:

• the map score, which describes how well the subject’s
drawn discomfort map matches the reference map;

• the intensity score, which describes how well the subject’s
commanded intensity matches the reference intensity.

The scores are computed as

score = 1− RMSE(subject, reference)
RMSE(baseline, reference)

, (9)

so the score is the root-mean-square-error (RMSE) between
the subject and the reference compared to the RMSE between
a baseline and the reference. For the map score, the subject

Fig. 10: Plots of the average discomfort intensity commanded by the
subjects and the average reference intensity over normalized time
for references A1 and D. For reference A1 the reference intensity is
the same for all trials, so the time is normalized with the duration of
the reference. For D, the reference intensity is different for every trial
and every trial has a different duration, because the subjects’ shoulder
movement is not consistent. So instead the data is normalized with
the duration of the trial, then averaged. This is why there is variability
in the reference intensity as well. The overview for all references is
shown in Fig. E.1.

error is defined as the RMSE between their drawn map and the
reference map. The baseline error is the RMSE between the
reference map and a baseline map, in this case a blank map.
For the intensity score, the subject error is the RMSE between
the intensity signal created by the subject and the reference
signal. The baseline error is the RMSE between the reference
signal and a baseline signal of zero. A score of 0 means that
the intensity signal or drawn map is as good as the baseline
of zero. A score of, for instance, 0.5 means it is 50% better
than the baseline and a score of -0.5 means it is 50% worse.

The average scores are shown in Table III and in more
detail in Table C.1 in the appendix. From these tables2 it can
be seen that for references A1 and A2 performance is about
equal. The scores for C and D are also about equal, which
coincides with the average lags. Performance for reference B
is the best out of all references, which makes sense as it is
the simplest trajectory. This also coincides with B having the
lowest average lag. This difference between references is more
pronounced in the map scores, which are quite low for C and
D.

All scores are greater than 0, meaning the subjects perform
better than the baseline. However, the intensity scores hover
around 0.4 and the map scores around 0.2, excluding the

2For Task I, map scores are omitted. Normally the map scores would also
contain information about the subject’s shoulder movement, but for Task I
the exact same simulated movement is used for every trial. Since no new
information is obtained, these map scores are redundant.
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scores for B which are especially high. This would mean
that for the intensity the subjects perform around 40% above
baseline and for the maps only 20%. This is quite low and
does not represent our understanding of the results from the
qualitative analysis. This discrepancy is most likely caused
by the significant lag between the subjects and the reference.
This has a more pronounced effect on the discomfort maps,
affecting the map scores more than the intensity scores.

TABLE III: Average intensity and map scores.

Intensity Score Map Score
Reference A1 A2 B C D B C D

Min 0.343 0.353 0.330 0.313 0.271 0.117 0.086 0.058
Max 0.482 0.495 0.698 0.516 0.538 0.643 0.333 0.299

Average 0.415 0.420 0.558 0.400 0.408 0.427 0.189 0.192
Std. dev. 0.043 0.047 0.115 0.059 0.097 0.166 0.093 0.082

IV. DISCUSSION

There are several key benefits to the presented approach.
It enables patients to quickly and accurately convey points
of discomfort and their intensity to the physiotherapist, sur-
passing the speed of verbal communication and the precision
of body language. Furthermore, the push-button interface for
discomfort input presented here improves upon similar devices
from the studies in [19]–[22] by being single-handed, precise,
and not requiring personalization. Moreover, when integrated
with a patient movement tracking system, it becomes possible
to map their discomfort distribution based on the patient’s
pose. Though this study only addresses shoulder physiotherapy
with a collaborative robot arm, this method could easily be
adapted to other parts of the body or different types of robots,
like exoskeletons.

Revisiting the topic of strain maps [13], [14]: the strain
maps are personalized to the patient and the severity of their
injury, however discomfort maps allow for further personaliza-
tion that even accurate biomechanical models cannot provide.
For instance, the discomfort maps also consider sources of
discomfort unrelated to rotator cuff tendon strain, such as in-
flammation in the shoulder, and can take sensitivity to muscle
strains into account. Furthermore, as therapy progresses and
the patient is able to move in a greater RoM without pain, this
change can easily be captured by the discomfort maps. In this
way discomfort maps can show progress in the therapy and
allow adjustment to the strain maps based on this.

The human factors experiments identified important insights
for the practical use of the proposed method. This is the
significant time delay between the subject and the discomfort-
emulating reference beeping signal of around 1.4 seconds (see
Fig. 10 and Table II). This is most likely due to the subject first
having to recognize whether the beeping speed has changed
and by how much, then calculating how much they should
press the push-button based on this. Using frequency modula-
tion for the reference auditory signal instead, would allow for
faster detection of changes, thus smaller delay. Nevertheless,
the delay would most likely be significantly lower, when the
subject reacts to actual discomfort and optimisations can be
done to the setup to further reduce the delay, but completely

Fig. 11: The average discomfort maps created by the subjects for
references A1 and D. The lag-compensated maps are formed by
recreating the discomfort map with the same shoulder trajectory, but
the commanded intensity is shifted back in time with the estimated
time delay for each trial. These maps are then averaged. See Fig. F.1
for all references.

eliminating it is physically impossible. As a consequence, at
the time of indicating a discomfort point, the patient will
have already moved past this point, so discomfort points in
the discomfort maps will be drawn further along the patient’s
trajectory than they should.

This means that the discomfort maps have the compensate
for this delay to be accurate. This can be done by shifting
indicated discomfort points back along the patient’s trajectory
with the delay, either during operation or in post-processing for
the next session. An effect of this delay compensation is shown
for references A1 and D in Fig. 11, and for all references in
Fig. F.1 in the appendix. The lag could result in a situation
where at the time of indicating a discomfort point, the patient
will have already moved to a more uncomfortable pose, before
the robotic system or physiotherapist can react. This problem
can be minimized by restricting the movement speed of the
robot during the therapy.

It was observed that the best-performing subject, subject
5 (see Table C.1), took more time during the familiarization
step of Task I. As such, a longer familiarization period, as
well as allowing for periodic re-familiarization throughout
the experiments, could improve the overall accuracy. Other
factors contributing to differences in scores between subjects,
excluding individual responsiveness, may include age, sex, and
handedness: Age is associated with an increase in reaction
time, although this difference should be negligible within the
studied age range of 20-30 [34]. Sex has also been shown to
be associated with reaction time; men generally have shorter
reaction times than women [35]. However, this trend is not
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reflected in the results, as the second-best-performing subject
(subject 2) was female, and the performance of the other
female participant (subject 7) was intermediate. Handedness
could have effected subject performance as well. During the
experiments, the left elbow was linked to the robot, while the
right hand operated the push-button interface. Right-handed
subjects may exhibit greater dexterity in operating the push-
button interface, potentially leading to higher intensity and
map scores. On the other hand, left-handed subjects might
demonstrate greater precision in following the reference shoul-
der trajectory, which would only contribute to higher map
scores. Since information about the subjects’ handedness was
not documented, no conclusive statements can be made about
its influence on the results.

Future work should focus on validating the method for
all shoulder DoF, so AR as well, and testing performance
when actual discomfort is involved, rather than a quantitative
representation of it. If the delay between experiencing discom-
fort and inputting it remains substantial, practical strategies
for implementing the suggested lag compensation should be
explored. Additionally, the combination of strain maps and
discomfort maps should be further studied.

V. CONCLUSION

We present a robotic physiotherapy system enabling patients
to input poses and their level of discomfort in real-time,
generating discomfort maps. These maps represent the pa-
tient’s discomfort distribution throughout the range of motion,
interpretable by both physiotherapists and robots. Through
human factors experiments, we have demonstrated the viability
of our method during patient-robot interaction. The results also
highlight the presence of time delay between the patient feel-
ing and inputting discomfort, and its effect on the generated
discomfort maps.
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APPENDIX A
SHOULDER STATE ESTIMATION

Fig. A.1: Kinematic model of the right arm used for calculating the robot end-effector pose needed to move the shoulder to a commanded
state and for estimating the shoulder state from the measured robot end-effector pose. Two frames are drawn: the shoulder frame S with
origin OS and the elbow frame E with origin OE . Also drawn are the DoF of the glenohumeral joint: axial rotation (AR), plane of elevation
(PE) and shoulder elevation (SE). The values l and r are the length and radius of the upper arm respectively, Peb is the back of the elbow.
The model for the left arm is the same, but mirrored in the xSzS-plane.

The robot arm holds onto the elbow of the patient with a custom L-shaped brace. This keeps the elbow at a 90° angle, but
more importantly aligns the frame of the robot end-effector with that of the patient’s elbow, see Fig. 3. This allows the shoulder
state of the patient to be estimated from the robot end-effector pose using a simple kinematic model, shown in Fig. A.1.
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This model is used to predict the pose of the robot end-effector given a certain shoulder state (forward kinematics) and
the reverse, i.e., to estimate the shoulder state from the robot end-effector pose (inverse kinematics). The forward and inverse
kinematics allow you to move the patient’s arm to a given configuration using the robot, and estimate their state based on the
robot position, respectively. The right shoulder is used as reference, using the right-handed convention.

The following frames are considered:
• the world frame W ;
• the shoulder frame S: centered at the the right humeral head of the patient with xS parallel to the sagittal plane and

pointing forward, zS is also parallel to the sagittal plane but points upward. yS lies in the frontal plane of the patient and
points to the left shoulder;

• the elbow frame E: assumes the elbow is locked at a 90° angle, xE points along the lower arm, and zE points to the
shoulder along the upper arm. In a resting position, i.e., AR = PE = SE = 0, this frame is parallel to the shoulder frame;

• the robot end-effector frame R, which is aligned to the elbow frame E.

A. Forward Kinematics

In order to predict the robot end-effector pose given a shoulder state, the goal is to compute the transformation from the
world frame to the robot frame TW→R from the transformation of the shoulder frame to the elbow frame TS→E when shoulder
state α and everything else is known.

The shoulder is modeled as a sequence of three rotational joints; a ZXZ Euler-angle sequence with PE, (-)SE, and AR
respectively. TS→E is then given by these rotations followed by a translation of −l (length of the upper arm) along the
resultant z-axis. From this follows:

TW→R ≡ TW→E = TW→S · TS→E , (10)

with which the robot end-effector pose in the world frame for commanding to the robot can be computed

B. Inverse Kinematics

In order to estimate the shoulder state from the robot end-effector pose, the goal is to find the transformation from the
shoulder frame to the elbow frame TS→E , when α is unknown, but everything else is known. The difference with the forward
kinematics is that this transformation cannot be directly computed, however TW→E is already known from reading out the
robot encoders.

The robot end-effector position Pee in the world frame is first transformed to the shoulder frame. For this, the a priori
knowledge that the robot end-effector and the shoulder are kinematically linked by the upper arm of the patient is used: P S

ee is
first mapped to the closest point on the sphere with radius l centered at the base of the shoulder OS

S , this point is P̄ S
ee. PE is

estimated from the angle between this vector projected unto the xSyS-plane and the -yS-axis, SE is estimated from the angle
between P̄ S

ee and the zS axis.
Finally, to calculate AR the measured elbow frame is compared to the elbow frame in the case of AR is zero E0, which is

calculated using the PE and SE calculated above, analogous to the forward kinematics. The rotation between these two frames
is of course equal to AR. To analyse this rotation an arbitrary known point on the plane perpendicular to the axis of rotation
zE in the elbow frames has to be studied. Here the back of the elbow is chosen, which is defined as

PE
eb ≡ [−r 0 0]E , (11)

where r is the upper arm radius. This point is compared to the back of the elbow in case AR is zero:

PE0

eb0 ≡ [−r 0 0]E0 . (12)

The angle between these two points in (either) elbow frame is AR as it represents the angle between the real elbow frame and
the predicted elbow frame when AR=0, under the assumption that these frames have the same origin.

In order to compare these two points, they have to first be expressed in the same frame. As stated before frame E is
unknown, i.e., TW→E and TS→E are unknown. However PW

eb is known in the world frame through encoder measurements
and TS→E0

was just calculated. PW
eb can be transformed to PE0

eb with

TW→E0
= TW→S · TS→E0

. (13)

AR is then the angle between PE0

eb and PE0

eb0.
Derivation of the forward and inverse kinematics is the same for the left shoulder, except everything is mirrored in the

xSzS-plane.
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APPENDIX B
FUNCTIONALITY TEST AR DEMO

Fig. B.1: Demonstration of discomfort map creation using the proposed method, with snapshots taken at specific timestamps A to E. The first
row shows the robot and subject poses at these timestamps. The second row shows the discomfort map at these timestamps, with the current
shoulder state marked as a filled red dot. The third row shows the discomfort intensity commanded by the subject over time, i.e., how much
the push-button is pressed. The fourth row shows the AR angle over time. PE and SE are missing from this overview for brevity, because
they are approximately constant at 0° and 90° respectively. Note: The images in the first row are mirrored for demonstration purposes.

Fig. B.2: PE-AR projection of the discomfort map created from the demonstration in Fig. B.1 at a fixed shoulder elevation of 86°.
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APPENDIX C
SUBJECT SCORE OVERVIEW

TABLE C.1: Average intensity and map scores for every subject.

Intensity Score Map Score
Reference A1 A2 B C D B C D
Subject 1 0.375 0.402 0.411 0.357 0.377 0.414 0.224 0.249
Subject 2 0.482 0.426 0.698 0.449 0.511 0.616 0.243 0.224
Subject 3 0.343 0.379 0.330 0.353 0.271 0.117 0.092 0.058
Subject 4 0.369 0.353 0.634 0.376 0.298 0.380 0.121 0.072
Subject 5 0.463 0.483 0.661 0.516 0.538 0.643 0.253 0.299
Subject 6 0.424 0.441 0.542 0.443 0.402 0.463 0.127 0.230
Subject 7 0.403 0.365 0.534 0.397 0.419 0.251 0.333 0.225
Subject 8 0.446 0.495 0.580 0.313 0.506 0.350 0.102 0.183
Subject 9 0.416 0.412 0.540 0.367 0.292 0.438 0.086 0.120

Subject 10 0.430 0.447 0.646 0.425 0.462 0.595 0.305 0.260
Min 0.343 0.353 0.330 0.313 0.271 0.117 0.086 0.058
Max 0.482 0.495 0.698 0.516 0.538 0.643 0.333 0.299

Average 0.415 0.420 0.558 0.400 0.408 0.427 0.189 0.192
Std. dev. 0.043 0.047 0.115 0.059 0.097 0.166 0.093 0.082

APPENDIX D
AVERAGE SUBJECT DISCOMFORT MAPS

Fig. D.1: The average discomfort maps created by the subjects on the top row and the reference maps on the bottom row.
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APPENDIX E
AVERAGE SUBJECT COMMANDED INTENSITY

Fig. E.1: Plots of the average discomfort intensity commanded by the subjects and the average reference intensity over normalized time. For
references A1 and A2 the reference intensity is the same for all trials, so the time is normalized with the duration of the reference. For B, C
and D, the reference intensity is different for every trial and every trial has a different duration, because the subjects’ shoulder movement is
not consistent. So instead the data is normalized with the duration of the trial, then averaged. This is why there is variability in the reference
intensity as well
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APPENDIX F
AVERAGE LAG-COMPENSATED SUBJECT DISCOMFORT MAPS

Fig. F.1: The average discomfort maps created by the subjects compensated for time delay. The lag-compensated maps are formed by
recreating the discomfort map with the same shoulder trajectory, but the commanded intensity is shifted back in time with the estimated
time delay for each trial. These maps are then averaged.
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APPENDIX G
DETAILED RESULTS PER SUBJECT

Starting from the following page, an overview of the results for the human factors experiments for all 10 subjects is
shown. This includes the drawn discomfort map, the subject commanded intensity and reference intensity (from 0% to

100%) over time, and the intensity and map scores for all trials. For illustration, the reference maps are also shown and
accompanied by a “perfect example”, which shows the reference intensity when the reference trajectory is followed perfectly.

However, references A1 and A2 do not show a perfect example, because the shoulder movement is then simulated by the
reference trajectory, thus the reference intensity is already “perfect”.
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A. Subject 1

Fig. G.1: Discomfort maps and plots of reference intensity vs subject commanded intensity over time for subject 1.

TABLE G.1: Intensity and map scores for subject 1.

Intensity Map
Reference A1 A2 B C D B C D

Trial 1 0.349 0.386 0.556 0.216 0.3 0.49 0.136 0.192
Trial 2 0.373 0.386 0.267 0.405 0.428 0.164 0.249 0.2
Trial 3 0.403 0.436 0.356 0.351 0.429 0.478 0.262 0.297
Trial 4 - - 0.357 0.418 0.362 0.438 0.299 0.257
Trial 5 - - 0.518 0.395 0.369 0.501 0.172 0.297

Min 0.349 0.386 0.267 0.216 0.3 0.164 0.136 0.192
Max 0.403 0.436 0.556 0.418 0.429 0.501 0.299 0.297

Average 0.375 0.402 0.411 0.357 0.377 0.414 0.224 0.249
Std. dev. 0.027 0.029 0.122 0.083 0.054 0.142 0.067 0.051
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B. Subject 2

Fig. G.2: Discomfort maps and plots of reference intensity vs subject commanded intensity over time for subject 2.

TABLE G.2: Intensity and map scores for subject 2.

Intensity Map
Reference A1 A2 B C D B C D

Trial 1 0.466 0.41 0.373 0.322 0.49 0.612 0.178 0.262
Trial 2 0.452 0.39 0.734 0.362 0.467 0.488 0.173 0.258
Trial 3 0.528 0.479 0.733 0.513 0.517 0.618 0.274 0.242
Trial 4 - - 0.778 0.507 0.487 0.622 0.226 0.118
Trial 5 - - 0.87 0.542 0.593 0.742 0.364 0.24

Min 0.452 0.39 0.373 0.322 0.467 0.488 0.173 0.118
Max 0.528 0.479 0.87 0.542 0.593 0.742 0.364 0.262

Average 0.482 0.426 0.698 0.449 0.511 0.616 0.243 0.224
Std. dev. 0.04 0.047 0.19 0.1 0.049 0.09 0.079 0.06
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C. Subject 3

Fig. G.3: Discomfort maps and plots of reference intensity vs subject commanded intensity over time for subject 3.

TABLE G.3: Intensity and map scores for subject 3.

Intensity Map
Reference A1 A2 B C D B C D

Trial 1 0.232 0.316 0.158 0.442 0.342 0.199 0.239 0.118
Trial 2 0.43 0.316 0.2 0.148 0.231 -0.177 -0.005 0.006
Trial 3 0.369 0.505 0.486 0.383 0.253 0.178 -0.109 0.104
Trial 4 - - 0.507 0.302 0.33 0.261 0.096 0.128
Trial 5 - - 0.3 0.489 0.2 0.126 0.239 -0.068

Min 0.232 0.316 0.158 0.148 0.2 -0.177 -0.109 -0.068
Max 0.43 0.505 0.507 0.489 0.342 0.261 0.239 0.128

Average 0.343 0.379 0.33 0.353 0.271 0.117 0.092 0.058
Std. dev. 0.101 0.109 0.161 0.134 0.062 0.172 0.152 0.086

24



D. Subject 4

Fig. G.4: Discomfort maps and plots of reference intensity vs subject commanded intensity over time for subject 4.

TABLE G.4: Intensity and map scores for subject 4.

Intensity Map
Reference A1 A2 B C D B C D

Trial 1 0.377 0.366 0.66 0.301 0.195 0.268 0.128 0.091
Trial 2 0.39 0.409 0.608 0.48 0.204 0.491 0.194 0.011
Trial 3 0.341 0.283 0.73 0.395 0.265 0.582 -0.023 0.022
Trial 4 - - 0.452 0.321 0.419 -0.075 0.051 0.19
Trial 5 - - 0.719 0.384 0.41 0.636 0.256 0.046

Min 0.341 0.283 0.452 0.301 0.195 -0.075 -0.023 0.011
Max 0.39 0.409 0.73 0.48 0.419 0.636 0.256 0.19

Average 0.369 0.353 0.634 0.376 0.298 0.38 0.121 0.072
Std. dev. 0.025 0.064 0.113 0.071 0.109 0.291 0.111 0.072
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E. Subject 5

Fig. G.5: Discomfort maps and plots of reference intensity vs subject commanded intensity over time for subject 5.

TABLE G.5: Intensity and map scores for subject 5.

Intensity Map
Reference A1 A2 B C D B C D

Trial 1 0.474 0.463 0.545 0.348 0.391 0.589 0.199 0.169
Trial 2 0.456 0.496 0.687 0.512 0.469 0.688 0.199 0.263
Trial 3 0.458 0.489 0.616 0.553 0.609 0.669 0.296 0.274
Trial 4 - - 0.76 0.624 0.571 0.671 0.343 0.361
Trial 5 - - 0.697 0.543 0.651 0.596 0.228 0.429

Min 0.456 0.463 0.545 0.348 0.391 0.589 0.199 0.169
Max 0.474 0.496 0.76 0.624 0.651 0.688 0.343 0.429

Average 0.463 0.483 0.661 0.516 0.538 0.643 0.253 0.299
Std. dev. 0.01 0.018 0.083 0.102 0.106 0.047 0.064 0.099
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F. Subject 6

Fig. G.6: Discomfort maps and plots of reference intensity vs subject commanded intensity over time for subject 6.

TABLE G.6: Intensity and map scores for subject 6.

Intensity Map
Reference A1 A2 B C D B C D

Trial 1 0.468 0.447 0.507 0.429 0.367 0.422 0.066 0.252
Trial 2 0.399 0.446 0.657 0.544 0.394 0.605 0.242 0.147
Trial 3 0.406 0.43 0.614 0.546 0.532 0.651 0.26 0.336
Trial 4 - - 0.467 0.295 0.416 0.459 0.01 0.199
Trial 5 - - 0.467 0.399 0.301 0.181 0.057 0.214

Min 0.399 0.43 0.467 0.295 0.301 0.181 0.01 0.147
Max 0.468 0.447 0.657 0.546 0.532 0.651 0.26 0.336

Average 0.424 0.441 0.542 0.443 0.402 0.463 0.127 0.23
Std. dev. 0.038 0.009 0.088 0.106 0.084 0.185 0.115 0.07
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G. Subject 7

Fig. G.7: Discomfort maps and plots of reference intensity vs subject commanded intensity over time for subject 7.

TABLE G.7: Intensity and map scores for subject 7.

Intensity Map
Reference A1 A2 B C D B C D

Trial 1 0.421 0.346 0.427 0.346 0.187 0.271 0.313 0.002
Trial 2 0.387 0.344 0.47 0.436 0.408 0.229 0.336 0.301
Trial 3 0.401 0.406 0.566 0.425 0.491 0.303 0.346 0.323
Trial 4 - - 0.607 0.369 0.45 0.097 0.387 0.203
Trial 5 - - 0.6 0.409 0.561 0.357 0.28 0.296

Min 0.387 0.344 0.427 0.346 0.187 0.097 0.28 0.002
Max 0.421 0.406 0.607 0.436 0.561 0.357 0.387 0.323

Average 0.403 0.365 0.534 0.397 0.419 0.251 0.333 0.225
Std. dev. 0.017 0.035 0.081 0.038 0.142 0.098 0.04 0.133
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H. Subject 8

Fig. G.8: Discomfort maps and plots of reference intensity vs subject commanded intensity over time for subject 8.

TABLE G.8: Intensity and map scores for subject 8.

Intensity Map
Reference A1 A2 B C D B C D

Trial 1 0.458 0.519 0.401 0.194 0.385 0.257 -0.136 0.127
Trial 2 0.425 0.482 0.468 0.399 0.512 0.176 0.112 0.256
Trial 3 0.455 0.483 0.671 0.259 0.549 0.497 0.106 0.236
Trial 4 - - 0.616 0.364 0.54 0.336 0.184 0.188
Trial 5 - - 0.742 0.351 0.543 0.485 0.241 0.106

Min 0.425 0.482 0.401 0.194 0.385 0.176 -0.136 0.106
Max 0.458 0.519 0.742 0.399 0.549 0.497 0.241 0.256

Average 0.446 0.495 0.58 0.313 0.506 0.35 0.102 0.183
Std. dev. 0.018 0.021 0.142 0.084 0.069 0.14 0.144 0.066
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I. Subject 9

Fig. G.9: Discomfort maps and plots of reference intensity vs subject commanded intensity over time for subject 9.

TABLE G.9: Intensity and map scores for subject 9.

Intensity Map
Reference A1 A2 B C D B C D

Trial 1 0.35 0.401 0.72 0.324 0.38 0.506 0.156 0.176
Trial 2 0.464 0.426 0.39 0.347 0.257 0.252 -0.076 0.144
Trial 3 0.435 0.409 0.555 0.34 0.318 0.428 -0.0 0.12
Trial 4 - - 0.441 0.422 0.216 0.317 0.161 0.032
Trial 5 - - 0.595 0.401 0.286 0.685 0.189 0.128

Min 0.35 0.401 0.39 0.324 0.216 0.252 -0.076 0.032
Max 0.464 0.426 0.72 0.422 0.38 0.685 0.189 0.176

Average 0.416 0.412 0.54 0.367 0.292 0.438 0.086 0.12
Std. dev. 0.059 0.013 0.131 0.042 0.062 0.169 0.117 0.054
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J. Subject 10

Fig. G.10: Discomfort maps and plots of reference intensity vs subject commanded intensity over time for subject 10.

TABLE G.10: Intensity and map scores for subject 10.

Intensity Map
Reference A1 A2 B C D B C D

Trial 1 0.475 0.484 0.572 0.434 0.384 0.536 0.348 0.207
Trial 2 0.421 0.418 0.601 0.388 0.484 0.549 0.219 0.239
Trial 3 0.395 0.44 0.699 0.452 0.422 0.642 0.352 0.364
Trial 4 - - 0.663 0.357 0.499 0.649 0.312 0.203
Trial 5 - - 0.693 0.494 0.521 0.599 0.296 0.288

Min 0.395 0.418 0.572 0.357 0.384 0.536 0.219 0.203
Max 0.475 0.484 0.699 0.494 0.521 0.649 0.352 0.364

Average 0.43 0.447 0.646 0.425 0.462 0.595 0.305 0.26
Std. dev. 0.041 0.033 0.056 0.054 0.057 0.052 0.054 0.067
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