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Gaze-Guided 3D Hand Motion Prediction for Detecting Intent in
Egocentric Grasping Tasks

Yufei He, Xucong Zhang, and Arno H. A. Stienen

Abstract— Human intention detection with hand motion pre-
diction is critical to drive the upper-extremity assistive robots.
However, the traditional methods relying on physiological signal
measurement are restrictive and often lack environmental context.
We propose a novel approach that integrates gaze information,
historical hand motion sequences, and environmental object data
to predict future sequences of intended hand poses, adapting dy-
namically to the assistive needs of the patient without prior knowl-
edge of the intended object for grasping. Specifically, we propose
to use a vector-quantized variational autoencoder for robust hand
pose encoding with an autoregressive generative transformer for
effective hand motion sequence prediction. We demonstrate the
usability of these novel techniques in a pilot study with healthy
subjects. To train and evaluate the proposed method, we collect
a dataset consisting of various types of grasp actions on different
objects from multiple subjects. Through extensive experiments, we
demonstrate that the proposed method can successfully predict
sequential hand movement. Especially, the gaze information shows
significant enhancements in prediction capabilities, particularly
with fewer input frames, highlighting the potential of the proposed
method for real-world applications.

Index Terms— Intention Detection, Hand Motion Genera-
tion

I. INTRODUCTION

Upper extremity movement disorders due to conditions like stroke,
traumatic brain injury, and nerve damage can severely restrict the
ability of individuals to perform daily tasks [1], [2]. Upper extremity
assistive robots are designed to support arm and hand functions,
enhancing the reacquisition of motor function through structured
and adaptive exercises [3]. These robots provide targeted, intensive,
and repetitive [1] training tasks that effectively mimic activities of
daily living [4], thereby facilitating effective assistance. Intention
detection is crucial for operating robots because it enables the robot
to understand the user’s desired actions, allowing it to provide cus-
tomized assistance [5]. It becomes more important when transitioning
from clinic-based rehabilitation robots, which use visual targets for
user interaction, to home assistive robots that support everyday tasks
like washing dishes or dressing. These domestic settings challenge
robots to quickly understand and assist with the user’s intentions.
Conventional methods such as surface electromyography (sEMG) and
electroencephalography (EEG) have been used for intention detection,
which can directly measure physiological signals [6]. However, these
methods usually have restricted movement and require frequent re-
calibrations. Moreover, these methods lack the sense of environmental
context around the user, which is vital for analyzing interactions.
Additionally, these signals in post-stroke conditions are also disturbed
[7], [8] and thus become hard to correlate with movement. Recent
developments in computer vision have made vision signals useful
as direct or supplementary sources for intention interpretation [9].
Vision-based techniques can enable robots to learn from natural hu-
man behaviors and observe how people interact with the environment,
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significantly enhancing the robot’s ability to assist in a manner that
aligns closely with human needs.

Gaze information is important for revealing user intent by identify-
ing areas of interest before physical actions and is effectively used in
assistive robots to predict human motion [10]–[13]. However, these
applications often focus only on classification tasks and may suffer
from inaccuracies due to false positives [9]. For instance, external
distractions can divert attention away from primary objectives. In-
tegrating egocentric-view visual signals can provide a more robust
environmental context, enhancing the interpretation of user intentions
through cues like human poses and object shapes. Although research
has utilized egocentric signals [14]–[16], or combined them with gaze
data [17], [18], the focus has generally been on semantic predictions
rather than predicting explicit future hand motions. Developing this
capability is essential for assistive robots to offer effective assistance
throughout training. Studies for hand motion prediction often only
include the interactive object [19]–[24], or have limited hand move-
ment with fixed start and end positions [19]–[24]. Consequently, these
methods have not been studied in driving assistive robot applications.

In response to this challenge, we propose a novel task for intention
detection: given a set of potential grasping objects and initial hand
movements, we want to predict intended future hand motions. This
task focuses on two fundamental aspects: 1) utilizing only implicit
environmental context, and 2) producing explicit hand motion outputs
represented by 21 hand key points. To tackle this task, we have
developed a method that employs gaze and egocentric-view visual
signals to predict future hand motions. This setting is practical for
assistive robot applications because the user can operate the robot
with the head-mounted device. This approach integrates three critical
types of information: gaze data from an eye-tracker, historical hand
motion records, and object details captured through egocentric video.
We demonstrate the practical usability of our novel method in a pilot
study with healthy subjects. To train and verify our approach, we col-
lect a dataset from these subjects, containing various grasping types
and objects. Before each grasping process, the positions of objects are
randomized to ensure the robustness of the model against variations
in object placement, thereby enhancing its ability to generalize across
different real-world scenarios.

We developed a method consisting of a Vector-Quantized Vari-
ational AutoEncoder (VQ-VAE) and an auto-regressive generative
transformer. The VQ-VAE is used for encoding hand pose, allow-
ing for capturing in-distribution features from history for accurate
motion prediction. The transformer is used for future hand motion
sequence generation based on any given input frame. We also have
a feature fusion architecture, which comprises several linear layers
and could transform the dimensions of gaze and object features and
fuse them with encoded hand motion embeddings. We validated the
generalizability of our model in our self-collected dataset across
different subjects and motions, and we explored the impact of various
gaze fusion methods on model performance. Our findings indicate
robust generalization across diverse validation settings, particularly
in distance accuracy. Notably, the model with gaze integration sig-
nificantly outperforms the no-gaze model, especially as the number
of input frames decreases, highlighting the value of gaze information
when historical data is limited. Furthermore, our model demonstrates1
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Egocentric-view Intention Detection

Fig. 1: Overview of gaze-guided human intention detection. Left: We equip the user with wearable eye-tracking glasses to obtain the
gaze fixation point (blue ray), the initial hand motion indicated (green arrow), and object locations as the input. The positions of objects
are randomized before each grasping process. Right: We aim to use the egocentric-view data to predict a sequence of hand motions leading
up to the final grasping action on the object indicated as the purple arrow. The developed system can be used to drive the upper-extremity
assistive robot.

enhanced noise resistance compared to the no-gaze model. The results
show that, compared with the no-gaze model, our model has the
potential to provide accurate and timely predictions in real-time
situations.

In summary, our paper introduces a novel approach to hand motion
prediction that enhances hand movements in interactive tasks. The
main contributions are:

1) We propose a new task of explicit hand motion sequence
prediction given implicit environmental context towards the
goal of driving upper extremity assistive robots.

2) We introduce a novel method that combines gaze data with
egocentric visual signals for hand motion prediction.

3) We validate that our model generalizes effectively to the
grasping behaviors of both new subjects and objects, illustrating
its broad applicability.

II. RELATED WORKS

A. Human Motion Generation

Motion generation is the process of creating natural, human-like
motion from multimodal inputs such as text [25], [26], speech [27],
[28], and motion history [29]–[35]. 3D human motion prediction,
which uses the motion sequence history as a condition, is one of the
most important motion generation tasks.

Recurrent Neural Networks (RNNs) and Graph Convolution Net-
works (GCNs) have been two popular methods used to capture
temporal and spatial relationships in human movement. Fragkiadaki
et al. [29] developed the Encoder-Recurrent-Decoder (ERD) network.
It incorporates nonlinear encoder and decoder networks and a Long
Short-Term Memory (LSTM) network to predict future human mo-
tion. Jain et al. [30] introduced a Structural-RNN that segments
the skeletal hierarchy into clusters to encode semantic similarities
among different body parts, taking spatio-temporal information into
consideration. Extending beyond action-specific models, Martinez et
al. [31] developed a method for multi-action contexts. They integrated
residual connections in the decoder to model velocities, thereby
enhancing the smoothness and accuracy of motion prediction. Addi-
tionally, GCNs have been employed to grasp the spatial relationships
among joints. Mao et al. [32] proposed the DCT-GCN model, which
utilizes the Discrete Cosine Transform (DCT) to encode temporal
pose information in trajectory space, while graph convolutional layers
with residual connections learn spatial relationships.

With the advancement of transformers, studies have leveraged
attention mechanisms to enhance motion prediction tasks. To improve
previous works, Mao et al. [33] integrate an attention mechanism
that assesses the similarity between current motion contexts and
historical motion sub-sequences. Aksan et al. [34] introduced a
dual attention concept, incorporating spatial and temporal attention
modules that operate in parallel. This design enables the model to
simultaneously access current and past information, enriching its
contextual understanding. Cai et al. [35] developed a transformer-
based approach with a progressive decoding strategy to predict
DCT coefficients, focusing on central to peripheral extensions based
on structural connectivity. This method also uses a memory-based
dictionary to preserve and utilize global motion patterns from the
training data, enhancing prediction accuracy.

B. Hand-Object Motion Generation
Recent advancements in hand motion generation have attracted

significant research interest, with hand-object interaction being a
particularly popular area. A variety of datasets capturing both hand
and object interactions have been developed [36]–[42], enabling
studies on grasp generation [43]–[45]. For example, Jiang et al. [43]
refined grasping gestures using contact maps on objects. However,
these studies have been limited to generating static gestures. While
some efforts have extended to creating motion sequences, these often
depend on explicit conditions such as the geometry or position of the
object [19]–[24], initial or final hand positions [19]–[24], trajectories
[46], or textual descriptions [19]. Christen et al. [23] introduced a
method for synthesizing diverse hand motions based on the start and
end poses of an object.

Although effective in generating accurate hand motions, the pre-
vious works do not fully capture the underlying human intentions.
In this work, we explore the integration of gaze data, a strong
indicator of human intention, with hand motion to predict future hand
movements. We also aim to predict the grasping process under a
more naturalistic condition by presenting multiple potential grasping
objects instead of a single predetermined one, thereby enhancing the
adaptability and realism of the motion prediction.

III. METHOD
Our method performs intention detection via 3D hand motion

prediction from the input of user eye gaze, historical hand motions,
and object information. To perform the task, our method consists of2
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Fig. 2: Overview of our framework for hand motion prediction. The framework consists of two main components: (a) Hand-Motion
VQ-VAE, which encodes hand motion into codebook indices, C represents codebook, S represents the encoded hand motion indices; and
(b) Hand Motion Generator, which contains feature Fusion layers and a transformer. In feature fusion layers, the encoded hand motion S is
integrated with eye-gaze and object features G and O, together forming fused feature X . The transformer predicts future hand motion indices
in an auto-regressive manner using a transformer architecture. These indices are subsequently decoded using the VQ-VAE decoder to obtain
the predicted hand motions.

two modules, including the hand motion VQ-VAE for discrete hand
pose codebook learning and the hand motion generator to predict
the sequence of hand motions. In this section, we first describe the
problem in formulation and then introduce each module individually.

A. Problem Formulation
The intention detection can be formulated as a model M that

predicts a sequence of future 3D hand motion Ĥ based on an initial
sequence of 3D hand motion H, a corresponding sequence of eye
gazes G, and the representation of the possible interactive objects O
in the first frame. The task is formally defined as:

Ĥ = M(H,G,O). (1)

H = {ht}τ
t=1 is a sequence of input hand motion, where τ is the

input frame number. The 3D hand pose at frame t, denoted by ht ∈
R126, is defined by the positions of 21 3D hand joint locations (x,y,z)
for both hands. This configuration includes 20 finger joints and one
wrist position per hand, according to the Mediapipe framework [47],
resulting in a total dimension of 126 = 21× 2× 3. Similarly, G =
{gt}τ

t=1 is a sequence of eye gaze fixation points, represented as gt ∈
R3, is characterized by the 3D eye fixation point (x,y,z) in the world
coordinate system. Objects in the scene are represented by maximum
four of 3D points O = {ok}, where ok ∈ R12. For instance, a sheet
of paper is described using the positions of its four corners, while a
pen is represented by the positions of its tip and bottom, reflecting
their distinct shapes. The predicted sequence 3D hand motion Ĥ =
{ĥt}T

t=τ+1 consists of 3D hand pose at frame t, ĥt ∈R126, maintains
the same dimension as the input hand pose ht while are in the future
sequence, starting from frame τ +1 until the end frame T .

B. Hand Motion VQ-VAE
Hand poses have a large space of movements that is difficult to

model. A similar problem exists in the human body pose modeling,
where the VQ-VAE [48] has been proposed to encode the continuous
body movements into discrete classes within a latent space [49].
We utilize the VQ-VAE to learn multiple hand poses, which can
be represented as discrete classes in the motion generation phase.
Specifically, given the input sequence of hand motion H, our goal is
to encode this sequence into discrete embeddings using an encoder
E coupled with a learnable codebook C, and then reconstruct the
sequence via a decoder D. An overview of the Hand Motion VQ-VAE
model is presented in Fig. 2 (a). The encoded features serve as inputs
for the hand motion generation network. The codebook is defined as
C = {ci}K

i=1, where each ci belongs to RDc , K represents the size

of the discrete latent space, and Dc is the dimensionality of each
embedding vector. The sequence is encoded as E(H) = {et}

⌊T/l⌋
t=1 ,

with each embedding e∈RDc and l denoting the downsampling scale.
The discrete embeddings Q = {qt}

⌊T/l⌋
t=1 and indices S = {st}

⌊T/l⌋
t=1 for

each frame are computed as:

qt = arg min
ci∈C

∥et − ci∥2 (2)

st = argmin
i

∥et − ci∥2 (3)

1) Network Architecture: Inspired by previous work [25], we
integrated a convolutional architecture featuring a combination of
convolution layers, residual blocks, and ReLU activation functions
in developing the encoder and decoder in our model. Specifically,
the encoder utilizes two convolutional layers with a stride of two
for temporal downsampling, reducing the temporal length by a factor
of four. This approach not only minimizes computational demands
but also reduces noise within the input data. In contrast, the decoder
employs nearest-neighbor interpolation for upsampling, facilitating
the reconstruction of the complete hand motion sequence.

2) Optimization Strategy: To optimize the VQ-VAE model, the
loss function Lvq consists of reconstruction loss, embedding loss, and
commitment loss, detailed as follows:

Lrecon =

{
0.5(ht − ĥt)

2/β , if |ht − ĥt |< β

|ht − ĥt |−0.5β , otherwise
(4)

Lembed = ∥sg[et ]−qt∥2
2 (5)

Lcommit = γ∥et − sg[qt ]∥2
2 (6)

where β and γ are hyper-parameters that influence reconstruction loss
and commitment loss, respectively. “sg” represents the stop-gradient
operator, which prevents the back-propagation of gradient, treating
the variable as a constant during the optimization process. The total
loss is written as Lvq = Lrecon +Lembed +Lcommit .

C. Hand Motion Generator

With a trained hand-motion VQ-VAE model, the input hand-motion
sequence H = {ht}

Tg
t=1 is encoded into a sequence of quantized in-

dices S = {st}
Td
t=1, where Td = ⌊Tg/l⌋. As demonstrated in Fig. 2 (b),

these indices are fused with gaze features G and conditioned on object
features O, serving as inputs X to the hand-motion generator. This
generator operates in an autoregressive manner, producing predicted
hand motion indices Ŝ = {ŝt}

Td+1
t=1 . Given the combined features3
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Fig. 3: Data Collection Procedure. This flowchart outlines the sequence of activities involved in the experiment, with activities differentiated
by color: orange for researcher tasks, blue for participant tasks, and purple for joint tasks. The procedure begins with the researcher setting
up the experiment, followed by obtaining informed consent. The researcher then sets up the eye-tracking glasses for the participant, selects
a target object and randomizes the positions of all objects. Participants perform the target object pick-up task five times, each in a newly
randomized position, across a total of six objects.

up to the previous frame Xt−1, the probability of each code book
index being selected for the next frame hand-motion is calculated as
pi(st |Xt−1). The next-frame hand-motion index is determined by:

ŝt = argmax
i

pi(st |Xt−1) (7)

The sequence of indices is mapped to the learned codebook
embeddings, forming Q̂= {q̂t}

Td+1
t=1 , where each q̂t corresponds to cŝt

from the codebook. This encoded sequence Q̂ is then processed by the
decoder D, which reconstructs the predicted hand motion sequence
Ĥ = {ĥt}

Tp
t=1.

1) Feature Combination: One of the key components of the
proposed model is a feature combination of hand and eye gaze. The
hand-motion indices are represented using a lookup table as token
embeddings, resulting in a hand embedding sequence S′ = {s′t}

Td
t=1,

with each s′t ∈ Dh. To align the dimensional differences between
gaze features and hand-motion token embeddings, the gaze features
are expanded using a linear layer, producing G′ = {g′t}

Td
t=1 where

each g′t ∈ Dg. These embeddings are then concatenated and passed
through a linear feature fusion layer followed by a ReLU function,
resulting in the combined hand-eye embeddings F(S,G) = { ft}

Td
t=1,

where each ft ∈ RDx . Notably, we do not apply out-of-shelf object
detection here, due to the existence of well-established methods for
accurate real-time object detection, allowing us to focus on other
aspects of our study. Instead, we manually extract object positions
from the first frame and transform via a linear layer to match Dx,
forming O′ ∈ RDx , which acts as a conditioning input. The object
embeddings are concatenated at the start of the sequence to create
X = Concat(O′,F) = {xt}

Td
t=0, with each xt ∈ RDx .

2) Decoder-only Transformer Architecture: In the hand-motion
generator, we employ decoder-only transformers with masked self-
attention layers similar to [25] for human pose generation, enabling
the model to sequentially learn the input tokens. The masked self-
attention is calculated as follows:

Q = XW Q;K = XW K ;V = XWV (8)

Att(Q,K,V ) = softmax
(

QKT −M√
Dx

)
V (9)

Mi, j =

{
0 if i ≥ j,
−∞ if i < j.

(10)

W Q, W K , and WV ∈ RDx×Dx represent the linear projection weights
for queries, keys, and values, respectively. Att is the soft attention

TABLE I: Summary of Motions and Interactions

Motion Grasping Type [51] Involved Object Num. Hands

Pick up a bottle Type A Bottle 1
Move a piece of paper Type B Paper 1
Pick up a book Type C Book 1
Pick up a phone Type C Phone 1
Pick up a pen Type D Pen 1
Pick (an) earphone(s) Type D Earphone(s) 1 or 2
Write on paper Type B, D Paper, Pen 2

operation. M is the mask ensuring predictions for a position do not
depend on the following positions.

3) Optimization Strategy: The loss for the transformer model
is computed as a classification task that the predicted probabilities
of each index are compared against the actual hand-motion indices.
To emphasize the significance of the predictions for future positions,
particularly the last output embedding, we assign a higher weight to
the last index in the sequence. The loss is calculated as follows:

Ltrans f ormer =−
N

∑
t=1

wt · log(p(ŝt |Xt−1)), (11)

where wt is the weight assigned to each index, and N is the length of
the learned sequence. Specifically, wN , the weight for the last index,
is greater than the weights assigned to other indices.

D. Dataset Collection
We utilize the Project Aria Glasses from Meta [50] to capture eye-

tracking data and an egocentric view of grasping procedures. For
this study, 15 volunteers were recruited to participate in the data
collection process. Prior to the experiments, participants received
comprehensive instructions detailing the tasks and procedures, and
each object was associated with a specific grasping type [51], as
shown in Table I. The dataset collection was approved by our ethical
committee.

1) Experiment Procedure: The entire experimental procedure is
depicted in Fig.3. Participants, already equipped with eye-tracking
glasses, are seated at a table with their hands placed palms down.
An instructor randomly positions a target object on the table for
grasping alongside other objects to simulate a real-life scenario.
The table measures 1.15 meters in length and one meter in width,
all objects being within easy reach of participants who may lean4
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Fig. 4: Data processing pipeline. This figure illustrates the sequence
of steps applied to process egocentric video data for analysis: (a)
Raw 2D images are captured from an egocentric-view video. (b)
Throughout the entire sequence, the Mediapipe framework and Aria
MPS are utilized to extract 3D hand motion, while Aria MPS extracts
3D gaze points. (c) The object representation is manually annotated
on the first frame of the video. (d) A world coordinate is employed to
integrate the hand-gaze sequence with the object representation into
a unified 3D world frame.

forward slightly to grasp them. Participants are instructed to pick up
the object with their preferred hand using a predetermined type of
grasp. Each object is grasped five times by each participant from
randomly determined positions, totaling thirty grasping attempts.
With the exception of earphones—which may be placed singly or
in pairs, requiring bimanual coordination if paired—all objects can
be grasped with one hand. Additionally, a bimanual task—writing on
paper—is included and performed once per participant.

This study primarily focuses on the reaching phase of the grasping
process. We hypothesize that participants enter the experiment with
preconceived notions regarding the position, size, and shape of the
object, which influence their initial gaze direction. It is therefore
hypothesized that the gaze of the participant is directed specifically
toward the intended object. Upon the start of the recording, the gaze
of the participant is expected to shift toward this object, resulting in
prolonged fixation. For data augmentation during the training process,
the positions of non-grasping objects are randomized based on our
hypothesis that the participant gaze is only related to the grasping
object.

2) 3D Eye-Hand-Object Data Acquisition: The data acquisition
procedure, illustrated in Fig. 4, utilizes only 2D information directly
available from the video footage due to device limitations. To
convert this into 3D data, we initiate a 2D-to-3D mapping process.
Initially, we extract relative 3D hand joints from the 2D video
using MediaPipe [47]. Subsequently, using the Project Aria Machine
Perception Service (MPS), we obtain 3D wrist positions and gaze
data from an egocentric viewpoint. By assuming uniform joint-to-
wrist lengths across participants, we project these relative 3D joints
into a global 3D space based on the known 3D wrist positions. For
object positioning, we manually identify their exact locations in the
video and map these into 3D space using the plane function defined

by the table surface. The 3D eye gaze point is provided by the Aria
glasses. Lastly, we synchronize the hand motion, gaze, and object
data within a unified coordinate system origin at 1.15 meters to the
right and 0.5 meters from the bottom of the table plane.

IV. EXPERIMENTS AND RESULTS
A. Evaluation Metric and Baseline

We calculate the Euclidean distance of the palm positions as
position errors between the predicted motion and the ground truth.
We also calculate the pose errors after correcting the position errors.

Position Error: The position error quantifies the deviation in palm
position between the prediction and the ground truth as follows:

eposition =
1
T

T

∑
t=1

∥pt − p̂t∥2, (12)

where pt and p̂t are the ground truth and predicted palm positions
at each frame t, and T is the total number of frames.

Pose Error: The pose error is computed by first correcting the
predicted palm positions for the distance error and then calculating
the average across all joints J:

ĥ′t, j = ĥt, j − (p̂t − pt), (13)

epose =
1

T × J

T

∑
t=1

J

∑
j=1

∥ht, j − ĥ′t, j∥2, (14)

where ht, j and ĥ′t, j represent the ground truth and adjusted predicted
joint positions at each frame t for each joint j, and J denote the
number of joints.

For the upper extremity assistive robot applications, we are par-
ticularly concerned about the prediction of the final grabbing pose
given the current input. It has practical usage in giving signals to
assistive robots early. To reflect the ability of early prediction, we
computed the position and pose error only on the final grabbing pose
as End-Pose error, which we consider only the last frame (t = T ),
where pt = pT , p̂t = p̂T ; ht, j = hT, j , ĥ′t, j = ĥ′T, j .

We establish a baseline model that only takes hand motion se-
quences and object embeddings as input, i.e. without the eye-gaze
feature. The model architecture remains the same as our proposed
model. With this baseline, we want to investigate the effectiveness of
the eye gaze feature for the human intention detection task.

B. Cross-Subject and Motion Generalization
To evaluate the generalization capability of the proposed method in

terms of subjects and motions, we designed three evaluation settings.
Two specific actions, “pick up a book” and “write on a piece of
paper”, were selected for motion validation that had always been
removed from any training procedure. The first evaluation setting is
cross-subject (CS), where we performed the five-fold cross-subject
evaluation on the 15 subjects from our self-collected dataset. Note
that the subjects are different in the training and test sets, while hand
actions are the same in this setting. The second evaluation setting is
cross-motion (CM), where we train and test on the same groups of
subjects while testing only on the “pick up a book” and “write on
a piece of paper” actions that were not presented in the training set.
Note that the subjects are the same in the training and test sets, while
the hand actions are different in this setting. The third evaluation
setting is across both subjects and motions, where we performed the
five-fold cross-subject evaluation while only testing on the “pick up a
book” and “write on a piece of paper” actions. Note that both subjects
and hand actions are different in this setting.

All results reported were derived from this comprehensive cross-
validation strategy. Position and pose errors were evaluated across a5
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Fig. 5: Position Errors (in m) across Various Input Frames and Time (in s). This figure displays the end-pose (first row) and average
(second row) position errors within the CS, CM, and CSM groups across different numbers of input frames and time. Red lines represent
results with gaze, and green lines represent results without gaze.

TABLE II: Position error Comparison of End-Pose by Fusion Type. This table displays the position error (in m) for end-pose across
different input frames, comparing various fusion types within the CS, CM, and CSM groups.

Validation Type Fusion Type Input Frames
8 12 16 20 24 28 32 36 40 44

CS

w/o Gaze 0.4074 0.3841 0.3806 0.3265 0.3220 0.3014 0.2805 0.2480 0.2396 0.1899
Linear 0.3071 0.3070 0.2911 0.2779 0.2636 0.2610 0.2629 0.2508 0.2240 0.1898

Convolution 0.3320 0.3195 0.3417 0.3044 0.2765 0.2819 0.2705 0.2635 0.2344 0.1954
Summation 0.4149 0.3265 0.3171 0.3199 0.2829 0.2715 0.2611 0.2425 0.2260 0.1967

CM

w/o Gaze 0.3840 0.3637 0.3085 0.3297 0.3405 0.2520 0.2389 0.2308 0.2073 0.1575
Linear 0.3004 0.2741 0.2677 0.2549 0.2425 0.2341 0.2284 0.2212 0.1838 0.1590

Convolution 0.3427 0.2988 0.3041 0.2934 0.2810 0.2719 0.2629 0.2475 0.2222 0.1822
Summation 0.3494 0.3223 0.3146 0.2988 0.2656 0.2561 0.2295 0.2007 0.1882 0.1624

CSM

w/o Gaze 0.4068 0.3593 0.3468 0.3687 0.2828 0.2701 0.2179 0.2287 0.2039 0.1959
Linear 0.3202 0.2880 0.2883 0.2566 0.2337 0.2470 0.2407 0.2168 0.1962 0.1828

Convolution 0.3479 0.3233 0.3309 0.3108 0.2681 0.2665 0.2458 0.2349 0.2210 0.1863
Summation 0.3315 0.3067 0.2980 0.2805 0.2783 0.2706 0.2245 0.2146 0.2139 0.1713

6



HE et al.: GAZE-GUIDED 3D HAND MOTION PREDICTION FOR DETECTING INTENT IN EGOCENTRIC GRASPING TASKS 7

8 12 16 20 24 28 32 36 40 44
Input Frames

0.036

0.040

0.044

0.048

Po
se

 E
rro

r (
m

)

CS Group

8 12 16 20 24 28 32 36 40 44
Input Frames

CM Group

8 12 16 20 24 28 32 36 40 44
Input Frames

CSM Group
0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20

Time (s)
0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20

Time (s)
0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20

Time (s)

(a) End-Pose Pose Error

8 12 16 20 24 28 32 36 40 44
Input Frames

0.028

0.032

0.036

0.040

0.044

Po
se

 E
rro

r (
m

)

CS Group

8 12 16 20 24 28 32 36 40 44
Input Frames

CM Group

8 12 16 20 24 28 32 36 40 44
Input Frames

CSM Group
0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20

Time (s)
0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20

Time (s)
0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20

Time (s)

(b) Average Pose Error

Fig. 6: Pose Errors (in m) across Various Input Frames and Time (in s). This figure displays the end-pose (first row) and average (second
row) pose errors within the CS, CM, and CSM groups across different numbers of input frames and time. Red lines represent results with
gaze, and green lines represent results without gaze.

range of input frames from 8 to 44 (a range of time from 0.4 seconds
to 2.2 seconds), increasing in increments of four to show the early
prediction of the proposed method.

We show the results of end-pose error and average position error in
Fig. 5. Across all evaluation settings, the position errors demonstrated
a decreasing trend as the number of input frames increased for
both end-pose and average position errors. Models integrating gaze
information generally exhibited lower errors across CS, CM, and
CSM settings, although there were exceptions. All three settings
exhibited similar position error patterns, indicating that the model
generalizes well across different settings. Notably, the disparity in
position errors between models with and without gaze became more
pronounced with fewer input frames. Gaze-enhanced models showed
smaller errors, suggesting the potential of gaze-enhanced models
to provide more accurate and immediate corrections in real-time
applications where rapid response is crucial.

The average error across the entire grasping process was evaluated
similarly to the end-pose error, as depicted in Fig. 5 (b). All
groups—CS, CM, and CSM—demonstrated consistent trends where
models with gaze information outperformed those without. This
indicates that gaze information plays a critical role in guiding the
movement process. The performance gap between the gaze and no-
gaze models became more pronounced as the number of input frames
decreased, suggesting that gaze information is particularly beneficial
in the early stages of input where less historical data is available to
aid prediction.

As shown in Fig. 6, for pose error, the CS group shows a similar but
less pronounced improvement with the integration of gaze, suggesting
that gaze contributes positively but more modestly to pose accuracy.
However, in the CM and CSM groups, pose errors showed no
significant differences with respect to gaze usage. The CS group
exhibited the lowest pose errors compared to the CM and CSM
groups, suggesting that gaze integration is more effective in motion
settings where the validation conditions closely match the training
conditions.

C. Ablation Study on Gaze Fusion Techniques

The gaze information is shown to be critical for hand motion
prediction in our previous experiments. To investigate the optimal
way of integrating gaze information into the model, we compared
our linear feature integration with two simple yet effective gaze-
fusion methods convolutional fusion and direction summation. For
the convolutional fusion method, we incorporated convolution layers
equipped with 1×1 kernels. In the direct summation method, we first
expanded the gaze feature to match the dimensionality of the hand
motion features before adding them together. These methods were
tested following the procedures described in the previous experiment
settings. We analyzed the results based on the end-pose error. The
results for position and pose errors are validated across the CS, CM,
and CSM groups, as depicted in Tab. II.

The linear combination method in our model generally surpasses
other methods in reducing position error across the CS, CM, and7
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CSM groups, although there are a few exceptions. Specifically, for
shorter input sequences ranging from 4 to 28 frames, the linear
combination consistently delivers superior performance compared
to other methods. As the length of the input sequences increases,
providing a longer historical context, the performance of the other
methods becomes comparable. This means, under conditions of
limited historical data, our linear combination method demonstrates
enhanced effectiveness.

D. Effect of Noise on Hand Joint

In our previous experiments, data was corrected and smoothed to
ensure a noise-free environment. However, noise is inherently present
in the dataset collection process. The hand motion data was captured
using Aria Glasses RGB camera, which produces a fish-eye output.
This, combined with the camera’s narrow field of view and instances
where the subject moves their head, often results in parts of the
hands being occasionally missing or appearing at the very edges
of the frame, which can lead to extensive distortion. Additionally,
mapping the hand motion into 3D involves significant coordinate
transformations, which can influence the reliability and accuracy of
hand motion detection. These factors collectively pose challenges
to the accuracy of applying such methods in real-time prediction
scenarios.

To simulate high noise levels in hand motion estimation, we
introduced per-joint Gaussian noise to the system. This noise level
and its distribution were chosen based on previous research [52].
We applied Gaussian noise with mean errors of 0.1 m, 0.15 m, 0.2
m, 0.25 m, and 0.3 m, calculating the associated Gaussian standard
deviations using the mean of the Chi distribution as follows:

σ = e
√

π

8
(15)

This noise was independently applied to each joint for every frame. To
ensure consistency, the same noise was applied for both models with
and without gaze integration at the same timestep. We specifically
analyzed the impact of this noise on the shortest input sequence of
8 frames. The results of this analysis are presented in Fig. 7.

As the noise level rises from 0.1 m to 0.3 m, a consistent increase
in both position and pose errors is observed. The integration of
gaze information consistently reduces these position errors across all
groups, demonstrating its effectiveness in noisy conditions. Notably,
when the input noise level is below 2.0 m, the position error
closely approximates the error observed without noise, illustrating the
robustness of the gaze-enhanced model. This indicates the resilience
of the gaze-applied model. The benefit of gaze integration becomes
more significant with larger noise levels in all groups, contributing
significantly to the stability and accuracy of the system in noisy
environments. For pose errors, a similar but less pronounced trend
is evident. Gaze-enhanced models outperform non-gaze models in
the CS group, yet demonstrate a reduced effect in mitigating pose
errors within the CM and CSM groups. This suggests that in
scenarios involving cross-motion validation, the gaze information is
less beneficial for unknown pose accuracy.

V. DISCUSSION
In this study, we developed a gaze-guided method for human

intention detection, utilizing a hand pose VQ-VAE for encoding
motion and a decoder-only transformer for hand motion sequence
prediction. This article aims to prove the concept that the gaze-
enhanced model is effective for real-time intention detection. We
have shown that gaze guidance not only significantly improves
distance accuracy, particularly in the initial stages of prediction These

characteristics underscore the suitability of our method for real-time
applications. While we currently use manual object annotation, this
method could be replaced with real-time object detection techniques
to further boost the real-time functionality of the system.

We employed the VQ-VAE in our method, which utilizes a learned
codebook to select features. This characteristic ensures robustness, as
the model primarily generates learned, in-distribution motion patterns.
Consequently, the decoded hand motions are likely to reflect patterns
observed during the training process, thus avoiding the generation of
unrealistic motions. The “pick-from-codebook” nature of VQ-VAE
inherently reduces noise by aligning the hand features with the nearest
embeddings in the codebook, serving as a natural filter for anomalies.
Moreover, the model downsampling design in its encoder and decoder
effectively smooths raw motion data. Despite these advantages, it is
important to acknowledge that the VQ-VAE can sometimes introduce
inaccuracies into the generated motions. This issue typically arises
when the model encounters data points that deviate significantly from
the training distribution, challenging the model’s ability to accurately
reproduce those motions.

In the results, the cross-motion validation group trained with the
gaze model did not show an improvement in pose error compared
to the non-gaze model. Such shortcomings could be attributed to
inadequate object representation, where only a few points were used
to annotate each object. This could result in the model’s limited capa-
bility in generalizing motion and object interactions. Additionally, the
limited variety of objects involved in the training is also a reason.
Consequently, the model fails to effectively learn the relationship
between specific grasping types and object geometry. To address this
issue, a more detailed and accurate object representation, such as a
3D mesh or point cloud, may be required. A potential generalization
method could involve using ”Segment Anything” [53] to segment the
objects, then transfer points in the segmented sections into 3D point
clouds. This would allow the creation of 3D affordance maps, which
indicate which sections of an object are suitable for specific types of
grasps.

In the context of implementing assistive robots, the occurrence of
larger errors in the initial frames may initially seem problematic.
However, this is mitigated by the dynamic capabilities of these
robots, which are designed to continuously adjust based on real-
time feedback. This feature allows for the correction of any initial
inaccuracies in assistance as more precise motion data becomes
available in subsequent frames. The ability to recalibrate and refine
assistance forces ensures that the robot remains functional and
effective, even when starting with less accurate predictions. Regarding
the acceptability of an error margin of approximately 16 cm, as
detailed in Fig. 5 of our experiments, this level of precision is
sufficient for assistive robots to approximate the direction toward
the intended target. This margin allows the robot to guide the
user’s hand movements within a close range of the object, after
which the user can make finer adjustments manually if necessary.
This degree of accuracy supports effective interaction with various
objects without requiring the robot to perform with absolute precision,
thereby simplifying the technological requirements and enhancing the
system’s practicality for everyday use.

VI. CONCLUSION

This study presents an intention detection method that effectively
integrates gaze data and egocentric visual cues to predict hand motion
sequences, particularly in grasping tasks. By incorporating a VQ-
VAE and an auto-regressive generative transformer, our approach
not only predicts future hand poses with a high degree of accuracy
but also demonstrates robustness against significant noise levels8
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Fig. 7: End-Pose Position and Pose Error (in m) across Different Noise Levels. This figure displays end-pose position error (a) and pose
error (b) in CS, CM, and CSM groups with 8 input frames (0.4 seconds). Red lines represent results with gaze, and green lines represent
results without gaze. Gray dashed lines indicate, with 8 input frames, the end-pose position and pose errors when using a gaze-inclusive
model without noise, applied for the corresponding group.

and adaptability to different subjects and objects. These findings
underscore the efficacy of our gaze-enhanced model, facilitate its
application in real-time interactive environments where rapid and
reliable intention detection is critical.
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Extremity Gesture Recognition and Intention

Detection Using Artificial Intelligence
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Abstract—Upper-extremity gesture recognition is an important
research area in assistive robotics, allowing for the interpretation
of human nonverbal communication. Intention detection and
early motion prediction emerge as important extensions of
learning human gesture features. This aspect of assistive robotics
goes beyond simply recognizing and responding to gestures; it
also includes anticipating human behaviors before they occur,
allowing for more proactive and timely robot responses. Using
advances in computer vision and artificial intelligence, robots
can observe and interpret a wide range of human movements.
This review systematically explores the application of artificial
intelligence in upper extremity gesture recognition and intention
detection. It examines various AI technologies, for example,
Convolutional Neural Networks and Long Short-Term Memory
networks, to understand their efficacy in different scenarios like
hand or object detection, pose estimation, gesture recognition,
and intention detection. The review aims to identify the most
suitable AI approaches for each context, highlighting the ad-
vancements and challenges in this rapidly evolving field.

Index Terms—gesture recognition, intention detection, artificial
intelligence, computer vision, upper extremity

I. INTRODUCTION

Human-robot interaction (HRI) is becoming increasingly
important in the evolving dynamic between humans and ma-
chines, with applications in a wide range of fields, including
healthcare. In this sector, HRI finds profound application
in assistive technologies, especially in the context of upper
limb rehabilitation. Robots equipped with HRI capabilities
are transforming the way rehabilitation is conducted, aiding
patients in regaining mobility and strength in their shoulders,
arms, hands, and fingers [1]. This focus on upper limb move-
ment and usage is vital, as these parts of the human body are
central to both expressive and functional human gestures and
intentions [2]. The ability of robots to accurately interpret and
respond to these gestures and intentions is critical in the field
of rehabilitation, allowing for a more effective and customized
collaboration between patients and therapeutic machines [3].

Advancements in artificial intelligence (AI) result in great
enhancements in HRI. AI incorporates robots with cognitive
abilities that enable a comprehensive understanding and in-
terpretation of human behaviors and conditions. By analyzing
data from computer vision, AI facilitates precise movement
recognition, analysis, and prediction, tailoring a more per-
sonalized form of interaction. Deep learning models like
Convolutional Neural Networks (CNN) and Long Short Term
Memory (LSTM) models are particularly effective in these
applications. The integration of AI into HRI is revolutionary,

opening up new possibilities in various functionalities while
improving the accuracy, effectiveness, and wisdom of the
device [3], [4].

Upper-extremity gesture recognition is an important re-
search area in assistive robotics and human-computer interac-
tions (HCI), enabling the interpretation of human non-verbal
communication [5]. Advances in computer vision and AI have
enabled robots to observe and understand a broad range of
human movements [6]. Hand gestures are extensively studied
due to their universality in conveying diverse expressions and
commands and their natural use in daily human activities,
making them an intuitive method for robot interaction with
touchless control [7]. By analyzing hand movements, patterns,
and interactions with objects, assistive robots gain a thorough
understanding of current poses and can make insightful obser-
vations about human intentions. This comprehension improves
HRI’s ability to perform in a natural and convenient manner.

Intention detection and early motion prediction emerge as
crucial extensions of learning human gesture features [8], [9].
This aspect of assistive robotics goes beyond simply recogniz-
ing and responding to gestures; it involves predicting human
behaviors before they occur, allowing for more proactive and
timely robot responses [10]. For example, in a scenario where
a person intends to grab an object from a table cluttered
with multiple items, the robot can determine which object
the person aims to reach before the action is performed and
give targeted help. As shown in Figure 1, classical methods of
intention detection, such as surface electromyography (sEMG)
and electroencephalography (EEG), focus on measuring elec-
trical muscle activities [11]. While robust, these wearable-
device-based approaches can impede movement, cause fatigue,
and require frequent calibrations [3]. Most importantly, these
methods could not provide information about the environment.
Conversely, vision-based techniques avoid these drawbacks
and enable robots to observe not only human motion but
also the interaction with objects. This predictive capability
is powered by advanced AI models that analyze patterns of
movement, environmental context, and large historical inter-
action data to infer probable future actions. Such foresight
in robotics opens up possibilities for offering assistance even
before a request is explicitly made, thus aligning closely with
human behavior and expectations.

This literature review aims to examine the advancements in
upper-extremity gesture recognition and intention detection,
with a specific focus on diverse AI techniques. It explores
and compares various methodologies for how advances in AI
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Fig. 1. Classical motion intention detection methods [12].

and computer vision have improved robots’ ability to interpret
and anticipate human action. The review will highlight current
achievements and identify challenges, ultimately contributing
to assistive robotic technologies for improved patient care.

II. METHOD

A. Search Strategy

For a systematic and organized methodology in conducting
this literature review, the guidelines of Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA)
were followed. PRISMA offers a structured framework for
reporting on systematic reviews and meta-analyses, outlining
essential elements that ought to be incorporated in such
reviews [13].

In order to comprehensively gather relevant literature in
the field of upper-extremity gesture recognition and intention
detection, this review primarily utilized two databases: Scopus
and Web of Science. These databases were selected for their
extensive coverage of scientific and technical research articles.

The search queries were carefully designed to cover the
breadth of research on the topic: upper-extremity gesture
recognition and intention detection using computer vision in
the context of AI and assistive robotics. To ensure compre-
hensive coverage of this topic, the queries were structured to
include several key areas: upper extremity, intention detection,
artificial intelligence, computer vision, and applications in
assistive robotics. In each category, relevant keywords were
carefully selected and linked using the ”OR” operator to
capture any of the terms within a single category. The ”AND”
operator was then employed between these categories to ensure
that the retrieved articles addressed all aspects of the research
area. The following keywords and boolean operators were used
to construct the search query:

Utilization of keywords should ensure the inclusion of
research covering all aspects of upper body parts.

• Upper Extremity: ”upper limb” OR ”upper extremity” OR
”hand” OR ”finger” OR ”arm” OR ”upper body” OR
”shoulder”.

To cover a broad spectrum of non-verbal communication
studies, a variety of keywords were applied. These keywords
are essential to capturing research that detects human gestures
and their implications.

• Gesture/Intention: ”intent” OR ”intention” OR ”gesture”
OR ”motion” OR ”pose”.

• Detection: ”classification” OR ”detection” OR ”estima-
tion” OR ”prediction” OR ”recognition”.

To capture studies focusing on artificial intelligence and
computer vision techniques, relevant keywords were applied.

• AI: ”AI” OR ”artificial intelligence” OR ”deep learning”
OR ”neural network”.

• Computer Vision: ”computer vision”.
To refine the focus on assistive robotics within the research

context, specific terms were chosen. These terms ensure that
the research retrieved is directly relevant to the development
and use of robots in aiding human activities, particularly in
the rehabilitation field.

• Assistive Application: ”rehabilitation” OR ”assist*” OR
”exoskeleton” OR ”help*” OR ”robot*”.

The final inclusion search queries are shown in Table I.
To refine the search and guarantee its relevance to the

specific research topic, a set of exclusion keywords was strate-
gically defined. This method aimed to filter out search results
that did not align with the study’s primary focus. Articles
falling outside the scope of the study, specifically those related
to the lower extremity and electromyography (EMG)-related
approaches, were systematically excluded. In each category,
the keywords were linked via the ”OR” operator. The ’NOT’
operator was used between categories, effectively separating
these unrelated terms from the primary search queries. The
following keywords and boolean operators were used to con-
struct the exclusion query:

• Lower extremity: ”lower limbs” OR ”leg” OR ”lower
AND body” OR ”feet” OR ”lower AND extremity” OR
”hip” OR ”gait” OR ”walk”.

• EMG-related: ”EMG” OR ”electromyography” OR
”sEMG”.

The search results were automatically restricted to publi-
cations from the past five years and those written in English.
Furthermore, a manual search was conducted. A reason is that
some papers use ”vision” as a keyword in the title and abstract
instead of ”computer vision”. The other reason is that intention
detection has received less attention in the literature than ges-
ture recognition. These studies were derived from the citations
of papers identified through Web of Science and Scopus that
are on the topic of intention detection. Zotero, a reference
management software, was employed for the organization and
categorization of the final search results. Additionally, Zotero’s
functionality for automatic duplicate removal was utilized to
facilitate the efficient aggregation of papers.

B. Selection Criteria

The initial phase of article screening involved a thorough
review of only the titles and abstracts of the papers. This
preliminary evaluation was conducted to quickly assess the
relevance of each study to the research topic. The selection of
studies at this stage was based on the following criteria:

• Paper Type: Eligible studies must be original scientific
articles rather than reviews, surveys, or datasets.
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Upper Extremity Gesture/Intention Detection AI Computer Vision Assistive Application
upper extremity

AND

intention

AND

detection

AND

AI

AND

computer vision

AND

rehabilitation
OR OR OR OR OR

upper limb intent classification artificial intelligence assist*
OR OR OR OR OR

upper body gesture estimation deep learning exoskeleton
OR OR OR OR OR

hand motion prediction neural network help*
OR OR OR OR

finger pose recognition robot*
OR
arm
OR

shoulder
TABLE I

SEARCH QUERIES DIVIDED BY CATEGORY

• Content Relevance: The content of the articles must
be directly related to gesture recognition and intention
detection using an AI approach, aligning closely with the
core focus of this review.

• Body Part Specificity: The studies should specifically
involve the upper limb (shoulders, arms, hands, and
fingers) for gesture recognition and intention detection.

• Focus on Algorithm Design: The primary emphasis of
the articles should be on the development and innovation
of algorithms, as opposed to hardware implementation.

• Computer Vision as a Primary Source: The selected stud-
ies should mainly focus on computer vision information.

• Purpose of the Article: The article should aim to develop
new methods in the field rather than evaluating or com-
paring existing methods.

In the secondary phase of screening, a more detailed ex-
amination of the paper content was undertaken. During this
phase, each paper was carefully assessed for its relevance and
alignment with the review’s objectives. Papers were rejected
based on specific criteria listed as follows:

• Scope of Study: Excludes research focused on body parts
other than the upper extremity.

• AI Approach Specificity: Excludes papers that do not
provide a detailed description of AI methodologies.

• Sensor Information Relevance: Papers that predominantly
involved sensor information other than cameras were
excluded to maintain a focus on computer vision-based
approaches.

• Content Relevance: excludes studies centered on engi-
neering application. Those who focus on how to ap-
ply gesture recognition to interactive robots rather than
designing gesture recognition algorithms, for example,
should be excluded. The articles that have limited rel-
evance to gesture recognition and intention detection
should also be excluded.

C. Data Categorization

The finalized articles included in this review were system-
atically organized based on their specific purposes and gesture
types. This organization involves two primary categorization
criteria:

• Nature of Detected Gestures: Articles were classified
based on whether the gestures are ’static’ or ’dynamic’.

• Research Purpose: The articles were further categorized
according to their objectives, including ’hand or object
detection’, ’pose estimation’, ’gesture recognition’, and
’intention prediction’, to distinguish between the various
applications and focuses of each study.

This structured classification aids in providing a clear
overview of the research landscape. In the following section,
the results will be discussed in these categories.

III. RESULT

A. Study Selection

The literature review’s study selection process is outlined
in Figure 2. A total of 195 articles were initially identified
from various sources, with 180 from the Web of Science and
15 identified manually. The ineligible papers were removed
afterwards, leaving 161 articles remaining. A screening of
titles and abstracts further narrowed the selection to 79 articles
for full-text screening. Of these, 4 were not retrievable, and 42
were excluded based on specific criteria, resulting in 33 papers
being included in the review. Table II shows an overview of
all included papers and their key approaches.

Fig. 2. Flowchart of study selection using PRISMA method.
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Author Object and body part Purpose Detection type
(static/dynamic) Model

Yin et al. [14] hand
pose estimation;
gesture recognition dynamic

Resnet: feature extraction;
Transformer: hand-object interaction;
Stacked hourglass model: hand keypoints pinpointing;
CNN: mesh regression;
Temporal convolution: gesture recognition

Mazhar et al. [15] upper body
hand detection;
gesture recognition static and dynamic

Spatio attention: hand region cropping;
CNN: subtle hand movement distinguishing;
LSTM: dynamic gesture recognition

Wang et al. [16] hand
hand detection;
pose estimation dynamic

YOLO-SH: real-time hand detection;
CNN: keypoint extractor;
Differential adaptive kalman filter: hand position tracking

Liu et al. [17] hand
gesture recognition;
intention recognition dynamic

HRnet: feature extraction as a heatmap
GCN: multi-scale action recognition;
Bidirectional CNN and bidirectional LSTM: intention recognition

Iglesias et al. [18] hand gesture recognition dynamic Small CNN (Darknet-based): fast detection;

Serj et al. [19] hand gesture recognition dynamic
CNN and LSTM-based model;
Time-distributed layer

Dutta et al. [20] hand gesture recognition static
CenterNet architecture with attention:
Encoder-Decoder network with DA-Net module;
CNN for detection branches

Santavas et al. [21] hand pose estimation static
DenseNet-based:
Inverted residual blocks: information maintenance;
Attention: focusing on relevant parts

Chanda B. et al. [22] hand
hand detection;
gesture recognition static

U-Net: semantic segmentation;
CNN: classification

Liu et al. [23] hand intention prediction dynamic CNN- and LSTM-based model

Zhang et al. [24] hand pose estimation
Hourglass module: feature extractor;
Plane regression module (CNN-based): heatmap generation;
Depth regression module (CNN-based): local offset maps generation

Gao et al. [25] hand
hand detection;
pose estimation;
gesture recognition

dynamic
Faster RCNN with attention: hand detection;
OpenPose-based: 3D pose estimation;
3DCNN and ConvLSTM: gesture classification

Li et al. [26] hand gesture recognition static CNN-SVM: gesture classification

Güler et al. [27] hand gesture recognition static
CCNN:
Capsule networks: different angular values recognition;
Dynamic routing: updating weights

Zhang et al. [28] hand
pose estimation;
gesture recognition static

Bidirectional pyramid structure: pose estimation;
Asymmetric convolution structure: high-resolution heatmap generation;
Deconvolution structure: keypoints and larger heatmap generation
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Adebayo et al. [29]
hand,
eye fixation,
object

hand tracking;
intention prediction dynamic

Mediapipe: hand traker;
YOLO v5: object detection;
Bidirectional LSTM: intention detection

Tan et al. [30] hand gesture recognition static
ViT (transformer-based):
Linear projection;
Transformer encoder: global dependencies capture

Korkmaz et al. [31] hand
hand detection;
gesture recognition dynamic

SSD: hand detection;
CNN: gesture classification

Wang et al. [32] hand, object intention prediction dynamic

RNN-based generative model: action plot prediction;
GMM: object location distribution;
Faster RCNN: object-bounding box finding;
FCN: hand detection;
LSTM: action segmentation (generating action label for each frame)

Tang et al. [33] hand gesture recognition static and dynamic
SSD: hand position locating;
CNN: classification

Amit et al. [34] hand gesture recognition dynamic LSTM
Mohammed et al. [35] hand gesture recognition static CNN (SqueezeNet and MobileNet-based)
Baumgartl et al [36] hand gesture recognition static CNN (MobileNet-based)

Bodla et al. [8]
upper body included,
object intention prediction dynamic

RNN: human-object sequence prediction;
MLP: human-object relation reasoning

Koppula et al. [9]
upper body included,
object intention prediction dynamic Structural SVM

Hu et al. [37]
upper body included,
object intention prediction dynamic

Fast RCNN: object region detection
GNN: spatial messages being conducted;
Temporal-gated Conv: temporal dynamic of actions obtaining;
CNN: spatio-temporal feature processing

Khan et al. [38] hand hand detection static Mask-RCNN: hand segmentation

Bo et al. [39] hand hand detection static
Deeplabv3 with Resnet-50: encoder;
Dense Attention Mechanism;
SqueezeNet: decoder;

Sahoo et al. [40] hand gesture recognition static DRCAM
Ting et al. [41] hand pose estimation static 3DCNN

Jafari et al. [42] hand gesture recognition static
HOG: feature extraction;
CNN: classification

Zhu et al. [43] hand pose estimation static
SE-Hourglass: feature map generation;
CNN: spatial relationship predicting

Hou et al. [44] hand gesture recognition dynamic
TCN;
Attention branch: mask generation

TABLE II: Results of article properties and key findings
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Purpose static dynamic
Hand detection 4 4
Pose estimation 5 4
Gesture recognition 12 9
Intention prediction - 6

TABLE III
ARTICLE CATEGORIZATION RESULTS

The included papers in the literature review were cate-
gorized based on their research purposes. The distribution
was as follows: 8 papers focused on hand (object) detection,
9 on pose estimation, 21 on gesture recognition, and 6 on
intention prediction. Furthermore, within each of these purpose
categories, the detected gestures were classified as either static
or dynamic. Dynamic gestures are known for their variety
and expressive nature, while static gestures, in contrast, are
characterized by their simplicity and specific positions [5].
Detailed numbers for each category and classification are
provided in Table III. These topics will be further discussed
in the subsequent sections.

B. Object and Hand Detection

In the realm of hand and object detection, two predominant
methods are frequently employed: bounding box detection
and segmentation, as shown in Figure 3. The choice of
method, particularly for segmentation, is largely influenced
by the quality of the images and the gesture types [5]. The
segmentation method is better suited for static hand gestures.
Bounding box detection, on the other hand, shows versatility
as it can be effectively applied to both dynamic and static
gestures.

Fig. 3. Different hand detection methods. (a) Hand detection using bounding
boxes [22]; (b) Hand segmentation [33].

Despite advancements, object and hand detection methods
encounter significant challenges. One major difficulty is the
variability of image backgrounds and skin tones, which can
greatly affect the accuracy of detection algorithms [45]. Other
factors, such as lighting conditions, occlusions, and the angle
of hand positioning, also contribute to the complexity of

accurately detecting hand gestures [45]. These challenges
highlight the need for sophisticated and versatile AI models to
effectively handle the diverse scenarios encountered in hand
gesture recognition.

1) Static Gesture: Chanda B. et al. [22], Bo et al. [39] and
Khan et al. [38] have implemented distinct neural network
architectures for hand segmentation. Chanda B. et al. used a U-
Net [46] architecture for semantic segmentation, focusing on
binary classification to differentiate between image foreground
and background. This involves processing input images into
RGB and grayscale segments using an encoder-decoder struc-
ture with convolutional blocks. Bo et al. introduced DenseAt-
tentionSeg, an attention-based network using Deeplabv3 [47]
with Resnet-50 [48] for encoding and SqueezeNet [49] for
decoding, enhanced by a Dense Attention Mechanism for
feature adjustment. Mask-RCNN, which uses a ResNet-50 as
its backbone, was used by Khan et al. for hand segmentation.
It also contains a region proposal network for bounding box
generation and a RoI align layer for mask prediction.

Mazhar O. et al. [15] used a spatial attention module for
the cropping of the hand region. The technique begins with
the use of OpenPose to extract key points and the skeleton of
the hands. These coordinates, derived from the hand skeleton,
are then utilized to crop the hand images accurately, with the
assistance of hand depth estimators. This approach proves to
be versatile, as it is effective for both static and dynamic hand
gesture analysis, demonstrating its utility in various gesture
recognition contexts.

2) Dynamic Gesture: In dynamic gesture recognition,
bounding box detection is widely employed. You Only Look
Once (YOLO) [50] models are particularly effective. Wang
et al. [16] utilized YOLO v3 with ShuffleNet [51] (YOLO-
SH) as the backbone for real-time hand detection, where
ShuffleNet’s grouped convolution aids in parameter reduction
and ensures effective information fusion. Adebayo Samuel
et al. [29] employed YOLO v5 for object detection through
transfer learning.

Faster regional convolutional neural network (Faster-
RCNN) [52] is also prevalent. Gao et al.’s [25] approach
involved Faster RCNN with a bi-stream attention module,
outperforming the traditional Faster RCNN with VGG-16 in
hand image feature extraction. Hu et al. adopted faster RCNN
with a ResNet-50 backbone for object region detection.

Additionally, Tang et al. [33] and Korkmaz et al. [31] used
Single Shot MultiBox Detector (SSD) [53], based on VGG-16
[54] but with convolutional layers replacing fully connected
layers, striking a balance between speed and accuracy for
dynamic gesture detection.

C. Pose Estimation

Pose estimation plays a vital role in recognizing gestural
behavior by extracting information on hand and body posture
from images or video streams. The two main methods in
this field are regression-based and heatmap-based estimation,
both relying on CNNs for effective visual data analysis
[55]. Regression-based techniques focus on pinpointing the
coordinates of key body points directly, while heatmap-based
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methods generate pixel scores to indicate the likelihood of
being key points on the human body. The heatmap-based
method is currently prominent in the field of pose estimation,
an example of which is shown in Figure 4.

Fig. 4. Hourglass model: an example of a heatmap-based method for pose
estimation. (a) Example output produced by hourglass model [56]; (b) The
skeleton of hand pose estimation resulting from Hourglass model [14].

Pose estimation encounters several difficulties due to the
intricate nature of human gestures and the environment. The
difficulties of varying foregrounds and backgrounds that are
encountered in hand detection can also cause problems in the
pose estimation process. Despite these, factors such as the
complexity of hand morphology and occlusions created by in-
teractions with objects also significantly increase the challenge
[57]. Additionally, compared to lower body poses, upper body
poses usually possess finer structure, subtler differences, and
a lower range of motion, requiring more accurate keypoint
localization. For example, the complexity of hand poses, due
to the numerous joints in each hand, requires the precise
identification of over 20 keypoints per hand to accurately
interpret these subtle variations.

1) Static Gesture: In the field of static pose estimation,
various approaches related to CNNs have been employed. Ting
et al. [41] employed a 3DCNN model for gesture recognition.
Santavas N. et al. [21] developed a DenseNet- [58] based
model, integrating unique architectural features like inverted
residual blocks with concatenated skip connections for better
information preservation. Additionally, it includes attention-
augmented inverted bottleneck blocks, focusing the network
more effectively on pertinent elements of the input. Zhang
et al. [28] utilized a bidirectional pyramid structure with
convolutional layers, focusing on reducing feature loss and
enhancing the extraction of small target features. Their use
of an asymmetric convolution structure further facilitated the
generation of high-resolution heatmaps.

The hourglass model is popular among various CNN-
based models. Zhang et al. [24] implemented a dual-module
strategy, employing an Hourglass module [56] for feature
extraction, followed by a CNN-based plane regression module
for heatmap generation, and another for depth regression to
create local offset maps. Zhu et al. [43] also adapted the
Hourglass model in their approach but replaced the standard
residual block with the SE-residual block. This block incor-
porates a squeeze-and-excitation (SE) module into the resid-
ual block, enhancing the network’s ability to utilize feature
information by focusing on the interdependencies between
channels. Following this, a CNN-based network is employed to

predict a dense representation of spatial relationships between
pixels and hand keypoints using the features extracted by the
modified Hourglass module.

2) Dynamic Gesture: CNN-based models are also com-
monly used in dynamic gestures. Wang et al.’s approach [16]
uses CNN-based methods for feature extraction and keypoint
regression, focusing on the relative positions within feature
structures. Liu et al. [17] implemented a CNN-based HRNet
[59] to generate heatmaps for feature extraction, merging
multi-channel data for final keypoint visualization. Gao et
al. [25] adopted an OpenPose-based hand pose estimation,
utilizing Part Conference Map (PCM) and Part Affinity Fields
(PAFs) models to derive hand pose points and subsequently
construct the hand skeleton.

The hourglass model can also be employed for dynamic
gestures. Yin et al. [14] developed a spatio-pose estimation
method using CNN, comprising two models: a 2D keypoint
localization network and a mesh regression network. The
former network employs a stacked hourglass network for
pinpointing hand keypoints, while the latter combines four
CNN layers with three fully connected layers.

D. Gesture Recognition

Gesture recognition technology facilitates the interpretation
and replication of human hand and body movements, an
example of which is shown in Figure 5. Utilizing advanced
technologies like CNN, LSTM, and GCN, this field has
significantly evolved, focusing on accurately identifying and
classifying gestures from various inputs. Researchers have
developed sophisticated algorithms and network architectures,
such as combining CNN with LSTM or using graph convolu-
tion networks, to enhance recognition capabilities.

Fig. 5. An example of gesture recognition result [20].

1) Static Gesture: In the domain of static gesture recog-
nition, Convolutional Neural Networks (CNNs) are predomi-
nantly used. Chanda et al. [22] employed a fully connected
CNN. Jafari et al. [42] used the Histogram of Oriented
Gradients (HOG) feature extraction method and CNN for
classification. More sophisticated architectures are utilized
by other researchers: Mohammed et al. [35] implemented
SqueezeNet- and MobileNet- [60] based CNN architectures,
while Baumgartl et al. [36] used a MobileNet-based CNN
architecture, achieving end-to-end gesture classification.

Researchers have integrated additional modules to enhance
CNN’s capabilities. Li et al. [26] integrated CNN with a
Support Vector Machine (SVM) model, forming a CNN-SVM
framework. In this setup, CNN effectively extracts features,
which are then classified in a high-dimensional space by SVM.
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The SVM component constructs an optimal classification
surface in this space, enabling the effective segregation of
samples into multiple classes, thus providing a more nuanced
and precise gesture recognition capability.

Sahoo et al. [40] developed a CNN architecture with
attention named the Densely Connected Residual Channel
Attention Module (DRCAM). The Residual Channel Atten-
tion Module (RCAM) combines residual units with channel
attention modules for multiscale representation. The deeper
CNN architecture is realized using a cascading structure of
RCAM, which focuses on learning the distinct aspects of hand
gestures. This architecture benefits from dense connectivity in
its cascading structure, ensuring information flow and feature
reuse.

Güler et al. [27] have utilized a convolutional capsule neural
network (CCNN) model, which combines the strengths of
CNNs and capsule networks [61], particularly excelling in
handling images from various angles. The model initially uses
a CNN to generate a detailed feature map from the image se-
quence, employing multiple convolution kernels. These scalar
outputs from the CNN are then fed into the capsule network. In
the capsule network, scalar outputs are transformed into vector
output capsules, enhancing the model’s ability to recognize and
interpret different angular values of the images.

Dutta et al. [20] implemented the CenterNet architecture
[62], integrated with an Attention module, specifically the
Dual Attention Network (DA-Net). This system features an
encoder-decoder network with a unique two-way attention
mechanism. The encoder transforms the input image into a
low-resolution feature map, which is then processed by DA-
Net to establish a contextual relationship between local and
global features. The output from the attention network is
then upsampled and directed into three convolutional detection
branches, which are responsible for predicting the center point,
width, height, and offsets of the center point in the images.

Beyond CNN, the transformer model can also be used
for gesture recognition. Tan et al. [30] employed the Vision
Transformer (ViT) [63], a model adapted from the traditional
Transformer architecture. Distinct from conventional CNNs,
the ViT treats an image as a sequence of tokens, similar to the
way Natural Language Processing (NLP) handles text. This
method enables the ViT model to effectively process larger
image sizes and exhibit enhanced generalization capabilities
across various tasks, all without the need for task-specific
architectural modifications.

2) Dynamic Gesture: In dynamic gesture recognition re-
search, various CNN architectures are utilized. Tellaeche Igle-
sias et al. [18] modified a small CNN architecture from
DarkNet, while Korkmaz et al. [31] and Tang et al. [33]
used simple, fully connected CNNs for classification. Yin et
al. [14] innovatively designed a gesture recognition network
employing temporal convolution for dynamic feature extrac-
tion in gesture sequences. To enhance this, they incorporated
dilated convolution into the time convolution process, effec-
tively maintaining time resolution and expanding the receptive
field. This approach allows for more effective capture of key
information across different time scales.

Hou et al. proposed Spatial-Temporal Attention Res-TCN

(STA-Res-TCN), which consists of a main branch for fea-
ture processing and an attention mask branch. The Temporal
Convolution Network (TCN) is built from stacked units of 1-
dimensional convolution across the temporal domain, acting
as the main branch. The attention branch generates the same-
size masks at each layer, which softly weight the feature maps
extracted by the main branch. It helps the model to adaptively
focus more on the informative frames and features.

LSTMs [64], known for their proficiency in processing
temporal information, widely used for temporal feature ex-
traction. Amit et al. [34] combined LSTM with a multi-layer
perception (MLP) structure for gesture recognition. LSTM, a
type of recurrent neural network, could selectively remember
patterns over extended periods, model sequential data, and
understand complex human behavior dynamics. Meanwhile,
the MLP functions as the recognizer, interpreting the data
processed by the LSTM.

A combination of CNN and LSTM has also been explored.
Mazhar et al. [15] employed this approach for dynamic gesture
recognition, fine-tuning the Inception V3 model on a dataset of
background-substituted hand gestures. This fine-tuned model,
serving as the CNN block, learns to focus on pixels exclusively
occupied by hands, effectively acting as a feature extractor.
The features extracted by this CNN block are then processed
over time using LSTM networks, enabling the detection of
dynamic gestures in video sequences.

Serj et al. [19] developed a novel architecture, TD-CNN-
LSTM, for hand gesture recognition. This deep architecture
integrates four TD (time-distributed) blocks as distinct layers.
The first three blocks each comprise a convolutional layer
followed by a max-pooling layer, which reduces the width
and height of the feature maps. The final TD block includes
a flattening layer and two LSTM layers, designed to decrease
the output sizes.

Gao et al. [25] created a network framework for gesture
recognition that combines 3DCNN and ConvLSTM. Con-
vLSTM is adept at learning long-term spatio-temporal fea-
tures, whereas the 3DCNN module captures short-term spatio-
temporal features efficiently. The framework also incorporates
2DCNNs after ConvLSTM to learn high-level spatio-temporal
features.

The Graph Convolution Network (GCN) is another effective
approach for real-time human action recognition. Liu et al.
[17] developed a GCN-based network capable of integrating
both local and global information from different graph struc-
tures, enhancing the accuracy of human action recognition.
This network employs graph convolution operations to produce
outputs for specific time instances, effectively capturing the
complex dynamics of human movements.

E. Intention Detection

In intention detection, unlike hand detection, pose estima-
tion, or gesture recognition, gestures can only be dynamic,
relying on a sequence of movements for inference. Despite
its importance, the use of computer vision in upper extremity
intention detection is still underexplored. Consequently, some
of the approaches mentioned below are not focused on the
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upper extremities only, but they contain upper body gestures.
This area presents a valuable opportunity for further research
and development, as computer vision could offer insights into
human intentions by analyzing visual interactions between
humans and environments.

Liu et al. (2019) developed the Motion Recognition and
Prediction (MRP) network for predicting human intentions in
tasks like computer disassembly. The network comprises two
parts: a foundational CNN and an LSTM network. The CNN,
based on the first 13 layers of VGG-16, extracts spatial motion
features. Following this, the LSTM network identifies temporal
motion patterns, enabling the system to predict actions before
they occur. The LSTM’s temporal memory features are used
for offline training, while online predictions are made using
test data.

Bodla et al. [8] developed a method that also involves simi-
lar temporal-sequence prediction and spatio-relation reasoning,
but with a different arrangement. The method first learns each
object’s sequences separately using RNN. Following this, the
Human-Object Relational Network (HORN) takes these pose
and object features from the sequence prediction stage and
further enhances them by learning the complex relationships
between humans and objects.

Eye fixation can also be added as a visual clue for intention
detection. Adebayo et al. [29] designed a method for predicting
human intentions using hand movement, eye fixation, and
object interaction. A bidirectional LSTM was chosen for
motion inference. It learns sequential features by alternating
between forward and backward passes, resulting in faster and
more accurate networks. Each layer is made up of two LSTMs,
one for each direction. Their neural network has seven layers,
three of which are bidirectional LSTM layers and four of
which are fully connected layers with a softmax activation
function for classification.

Wang et al. [32] developed a series of models to predict
human-object interactions. The action plot used in this method
for a single time step contains the action label, the action
duration, the set of active objects participating, the object
states, and the end position. The approach begins with an
action plot RNN generative model that forecasts action plots
for the next time step. Then, Gaussian mixture models are
used to learn about object arrangements and their distribution
representations. Action segmentation is required to identify the
start and end times of each action in order to generate action
labels for each frame in our videos. A VGG-16-based CNN
model is used for video segmentation. It extracts meaningful
image features for each frame and then uses an LSTM model
to classify action labels based on the extracted features.
Finally, the actions that are likely to occur in the near future
can be predicted using the predicted labels and the Action
Plot RNN. Figure 6 illustrates an example of the process. The
hand-object interactions can be captured and interpreted by
an action plot (Fig. 6 a). It also shows the prediction of likely
future actions based on these interactions (Fig. 6 b).

Hu et al. [37] developed a scene-aware spatio-temporal
graph neural network (SA-STGNN) to model spatio-temporal
interactions, along with a few-shot early action predictor for
future action labeling. This model uses a temporal-gated CNN

Fig. 6. intention prediction approaches developed by Wang et al. [32]. (a) To
encode actions, the action plot is used to describe the participating objects and
the object states. (b) The approach could predict the actions that are likely to
happen in the future.

to capture action dynamics over time and a graph neural
network (GNN) for spatial message processing, effectively
combining these elements for advanced action recognition.

IV. DISCUSSION

A. Artificial Intelligence
Using AI in gesture recognition offers significant advan-

tages, such as improved accuracy, the ability to process
complex or occluded gestures [14], and real-time analysis
capabilities [17], [18], [31], [34]. AI models can learn from
vast datasets, leading to a more comprehensive understanding
and responsiveness to various human movements in different
environmental contexts. Compared to traditional image pro-
cessing steps, deep learning models often provide end-to-end
solutions [20], [23], offering simpler and more direct pro-
cessing steps for users. This streamlined approach facilitates
ease of use, making these models particularly appealing for
various applications. However, these systems also face chal-
lenges like requiring large amounts of training data and high
computational demands. Hence, selecting and creating datasets
and tailoring AI models to specific applications is crucial.
Modern methods employ CNNs for spatial feature extraction
and RNNs, especially LSTM networks, for analyzing temporal
aspects. This evolution has expanded applications into more
efficient and accurate HCI.

B. Convolutional Neural Network
CNNs are widely used in various applications due to their

exceptional ability to capture features in images. They are
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particularly effective in target detection, semantic segmen-
tation, and feature extraction. The design and structure of
CNNs, however, need to be carefully tailored according to
the specific application at hand. This customization ensures
optimal performance and accuracy in extracting and processing
the relevant features from images for different tasks.

1) Semantic Segmentation: In semantic segmentation, clas-
sical models typically consist of an encoder and a decoder
structure. Unlike fully convolutional networks (FCNs) with a
single decoder layer, more advanced methods place greater
emphasis on decoder innovation. The decoder, crucial for seg-
mentation, uses up-sampling and deconvolution layers to ex-
tract more effective and abstract features. It also complements
information and maintains the resolution of images, playing
a key role in the overall performance of the segmentation
process.

2) Object detection: In object detection, three architectures
are usually used, including YOLO, Faster R-CNN and SSD.
YOLO uses anchor boxes for detection, which are predeter-
mined bounding boxes of specified height and width placed
at each input image location [20]. This unique approach
to processing the entire image in a single stage offers a
substantial speed advantage. Due to the lack of regional
sampling, YOLO has relatively good performance in extracting
global information but shows limitations for detecting local
and small objects. SSD is a kind of model that balances both
accuracy and speed. Similar to the architecture and concept
of YOLO, it is also a one-stage approach [20]. It employs
several convolutional layers to produce progressively smaller
feature maps, enabling it to detect objects of various sizes.
Hence, similar to Faster R-CNN, it can focus on learned region
proposals [31], [33].

Faster R-CNN is renowned for its high accuracy in object
detection, attributed to its region proposal networks (RPN) and
the refinement of these proposals in subsequent stages [18].
It excels in complex or small object detection scenarios [25],
compared to YOLO and SSD. The primary drawback of faster
R-CNN is its slower inference speed, resulting from the two-
step process involving region proposal and object detection
[20]. This, coupled with its higher computational resource
requirement, renders it less suitable for real-time applications
when compared to YOLO and SSD.

In the context of gesture recognition, YOLO could provide
sufficient accuracy, particularly due to its efficiency in ex-
tracting larger features. This capability is especially relevant
when the primary goal is to detect the rough position of
human hands. In many hand gesture datasets, the hands are
typically positioned centrally and occupy a large portion of
the image, making YOLO an ideal choice for such scenarios
where detailed precision is less critical. However, when it
comes to intention detection involving object interactions, the
requirements can be more demanding. For these applications, a
method that focuses on the detailed status of smaller objects is
necessary. For instance, when the task involves discerning de-
tailed aspects of small objects, such as determining whether a
cup is filled, a more precise and intricate analysis is necessary.
In these scenarios, methods capable of detecting fine details
in small objects are essential. Thus, employing architectures

like faster R-CNN or SSD becomes advantageous.
3) Pose Estimation: Pose estimation focuses on identifying

the position and orientation of body parts, requiring neural net-
works to either directly regress keypoints or generate heatmaps
for specific body parts. The main methods discussed in this
article, including the Hourglass model, HRNet and OpenPose
are all heatmap-based methods. CNN emerges as the predomi-
nant tool in the reviewed studies for pose estimation, owing to
its efficacy in spatial feature analysis. The addition of attention
mechanisms in some approaches underscores the focus on
relevant parts of the input, enhancing accuracy. Notably, the
methods applied do not significantly differ between static and
dynamic gestures, as both primarily concentrate on spatial
features instead of temporal relations.

The Hourglass Model and OpenPose represent state-of-the-
art deep learning models in pose estimation. OpenPose excels
in real-time, multi-person 2D pose estimation, particularly for
large-scale poses like full-body or upper-body. However, it
shows limitations in the accuracy of hand gestures and requires
adaptations for 3D pose estimation [25]. The stacked Hour-
glass model, using a combination of top-down and bottom-up
processing within each unit and relying on residual modules,
captures spatial features at multiple scales [24], [43]. It can
effectively identify both local features, such as those of the
hands, and global features of the entire body, making it
more suitable for local human pose estimation compared to
OpenPose.

4) Gesture Recognition: Gesture recognition, which in-
volves interpreting human body language, requires neural
networks to accurately classify a set of features. In this field,
popular lightweight models like Inception, SqueezeNet, and
MobileNet aim to reduce the number of parameters without
compromising efficiency. Inception employs multiple filter
sizes in the same layer, allowing for diverse feature observa-
tion. It also employs strategies to decrease computational com-
plexity, making it suitable for dynamic gesture recognition.
SqueezeNet’s fire module combines different filter sizes to re-
duce parameters significantly [35]. MobileNet uses a different
methodology to reduce computational complexity by using
depthwise separable convolutions [35], [36]. It substantially
reduces parameters while increasing operational speed, making
it efficient for mobile and embedded applications. Although
SqueezeNet and MobileNet have been primarily used for static
gesture recognition in the examined article, their capabilities
extend to classifying dynamic gestures as well. Both models
have comparable accuracy and speed, with SqueezeNet being
faster and mobilenet being more accurate [35].

In conclusion, the versatility of the CNN model makes it
suitable for a wide range of applications, with different ar-
chitectural designs catering to specific use cases. For instance,
pose estimation often involves a combination of downsampling
and upsampling to capture spatial hierarchies effectively. In
contrast, gesture recognition typically employs small kernels
in deep convolutional networks for detailed feature extraction.
It is important to carefully design the model and select the
appropriate backbone. Even within the same application, vary-
ing focus points necessitate architectural adjustments. Take
pose estimation as an example: if the goal is to produce a
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high-resolution heatmap, a standard downsampling process
might not be ideal, as it could reduce the detail level required
for accurate representation. This underscores the need for a
tailored approach in CNN architecture to meet the specific
demands of each application effectively.

C. Recurrent Neural Network

RNNs are extremely effective in dynamic gesture recogni-
tion due to their ability to capture time-series features. This
makes them particularly well-suited to recognizing dynamic
gestures, where the temporal sequence of movements is criti-
cal. This aspect becomes even more important in the context
of intention detection, as dynamic gestures are a fundamental
component of all intention detection scenarios. Nonetheless,
RNNs face challenges, most notably the vanishing gradient
problem. This issue arises during backpropagation in deep
RNNs, where gradients can shrink exponentially, making it
difficult to learn and retain information from earlier inputs.
LSTM, a special kind of RNN, addresses this by introducing
gates that regulate the flow of information, allowing them to
preserve long-term dependencies. Hence, it is very popular and
extensively used in gesture recognition and intention detection.

The integration of RNNs with other models, such as CNNs,
has led to significant advancements in gesture recognition.
This hybrid approach combines CNNs’ proficiency in extract-
ing spatial features from images with RNNs’ ability to analyze
temporal sequences. In many advanced models, LSTM layers
are strategically placed after CNNs. CNNs can first process
image frames to extract spatial features, which are then fed
into an RNN to understand the progression of gestures over
time and provide a comprehensive understanding of motion
and intention. This combination harnesses the strengths of both
architectures, resulting in more robust and accurate gesture
recognition systems.

A novel application of RNN is in the creation of action
plots, as detailed in Wang et al. [32]. An action plot is
essentially a sequence of actions performed by a human hand
that leads to a state change in the scene. Utilizing RNN,
transition probabilities can be learned and future actions can be
predicted. As a result, RNN can be used to not only recognize
given sequences but also predict the unknown future from
them, giving the model a strong capability in the field of
intention detection.

D. Application Areas

Vision-based techniques for upper extremity gesture recog-
nition and intention detection are transforming many fields,
with healthcare being one of the most prominent. In the
healthcare domain, these technologies play a crucial role in
rehabilitation and physical therapy. These technologies enable
the creation of systems that assist patients in their recovery
by predicting their next movements and providing targeted
assistance. For instance, a rehabilitation system or exoskeleton
could apply specific forces to aid patients in achieving certain
movements based on accurate predictions. Additionally, these
systems offer valuable feedback to both patients and thera-
pists, ensuring the effectiveness and correctness of recovery

exercises. This not only enhances the quality of care but also
accelerates the recovery process.

Beyond healthcare, vision-based gesture recognition finds
applications in virtual reality (VR) and augmented reality
(AR), enhancing user experiences in gaming and training
simulations. In the automotive industry, gesture recognition
can be used in vehicle control systems, allowing drivers to
interact with infotainment systems or other in-car technology
through simple hand movements, reducing distractions. In
smart homes, gesture recognition offers a convenient and
intuitive way of interacting with various home appliances.
These diverse applications underscore the versatility of vision-
based gesture recognition and intention detection, opening
up new possibilities for interaction and accessibility across
multiple areas.

V. CONCLUSION

In conclusion, this review has highlighted the significant
role of AI in advancing upper-extremity gesture recognition
and intention detection within the field of assistive robotics.
It shows the effectiveness of technologies such as CNNs,
LSTMs, and GCNs in a variety of scenarios, ranging from
hand and object detection to pose estimation, gesture recogni-
tion, and intention detection. The findings show that CNNs
excel at extracting spatial features, which are critical for
accurate gesture recognition, whereas LSTMs excel at pro-
cessing temporal features, making them highly effective for
dynamic gestures. The findings also highlight the importance
of selecting appropriate AI approaches tailored to specific
applications. The review also identifies a gap in research
regarding intention detection using computer vision, indicating
the need for additional research. This exploration paves the
way for further innovations in AI, enhancing human-robot
interaction, and expanding the capabilities of assistive robotics.
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