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Abstract. It has been suggested that certain antiferromagnetic topological insulators contain
axion quasiparticles (AQs), and that such materials could be used to detect axion dark
matter (DM). The AQ is a longitudinal antiferromagnetic spin fluctuation coupled to the
electromagnetic Chern-Simons term, which, in the presence of an applied magnetic field,
leads to mass mixing between the AQ and the electric field. The electromagnetic boundary
conditions and transmission and reflection coefficients are computed. A model for including
losses into this system is presented, and the resulting linewidth is computed. It is shown how
transmission spectroscopy can be used to measure the resonant frequencies and damping
coefficients of the material, and demonstrate conclusively the existence of the AQ. The
dispersion relation and boundary conditions permit resonant conversion of axion DM into
THz photons in a material volume that is independent of the resonant frequency, which
is tuneable via an applied magnetic field. A parameter study for axion DM detection is
performed, computing boost amplitudes and bandwidths using realistic material properties
including loss. The proposal could allow for detection of axion DM in the mass range between
1 and 10 meV using current and near future technology.

Keywords: axions, dark matter detectors, dark matter theory, dark matter experiments
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1 Introduction

The quantum chromodynamics (QCD) axion [1–3] solves the charge-parity (CP) problem
of the strong nuclear force [4–6], and is a plausible candidate [7–9] to compose the dark
matter (DM) in the cosmos [10]. The axion mass is bounded from above [11–13] and below [14,
15] by astrophysical constraints (for reviews, see refs. [16–19], and appendix B), placing it in
the range

1 peV . ma . 20 meV . (1.1)

The local DM density is known from stellar motions in the Milky Way [20]. Assuming
axions comprise all the (local) DM, the axion number density is given by na = ρloc/ma. Due
to the very small axion mass, the number density is very large and axions can be modelled
as a coherent classical field, φ. The field value is:

φ = Φ cos(mat) , (1.2)

where Φ is Rayleigh-distributed [21, 22] with mean
√

2ρloc/ma and linewidth ∆ω/ω ∼ 10−6

given by the Maxwell-Boltzmann distribution of axion velocities around the local galactic
circular speed, vloc ≈ 200 km/s (see e.g. refs. [21, 23]).

Axions couple to electromagnetism via the interaction L = gaγφE · B. Thus, in the
presence of an applied magnetic field, B0, the DM axion field in eq. (1.2) acts as a source
for the electric field, E. This is the inverse Primakoff process for axions, and leads to axion-
photon conversion in a magnetic field. The rate of axion-photon conversion depends on the
unknown value of the coupling gaγ and happens at an unknown frequency ω = ma ± ∆ω.
For the QCD axion (as opposed to a generic “axion like particle” [16]) the mass and coupling
are linearly related, gaγ ∝ ma, although different models for the Peccei-Quinn [1] charges
of fundamental fermions predict different values for the constant of proportionality. The
two historical reference models of Kim-Shifman-Vainshtein-Zhakarov (KSVZ) [24, 25] and
Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) [26, 27] span a narrow range, while more recent
generalisations with non-minimal particle content allow for more variation [19, 28, 29].

The axion-photon coupling gaγ is constrained by a large number of null-results from ex-
perimental searches and astrophysical considerations [20]. For experimentally allowed values
of (ma, gaγ), and accessible magnetic field strengths, the photon production rate in vacuum
is unobservably small. The power can be increased in two basic ways. If the conversion
happens along the surface of a magnetized mirror, then the produced photons can be focused
onto a detector [30]. This approach is broadband, and does not depend on the axion mass.
Reaching sensitivity to the QCD axion requires very large mirrors, very sensitive detectors,
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and control over environmental noise. Alternatively, the signal can be resonantly or coher-
ently enhanced (e.g. refs. [31–40]). These approaches are narrow band, and require tuning
to the unknown DM axion frequency.

Depending on the model of early Universe cosmology, and the evolution of the axion field
at high temperatures T � 1 MeV, the entire allowed mass range eq. (1.1) can plausibly explain
the observed DM abundance. The mass range near 1 meV (corresponding to frequencies in the
low THz) is favoured in some models of axion cosmology (see appendix B), but is challenging
experimentally due to the lack of large volume, tuneable THz resonators, and efficient, low-
noise, large bandwidth THz detectors.

In ref. [41] (Paper I) we proposed an experimental scheme to detect axion DM using
axion-quasiparticle (AQ) materials based on topological magnetic insulators (TMIs) [42],
a proposal we called “TOORAD” for “TOpolOgical Resonant Axion Detection”. Since Li
et al. [42] first proposed to realise axion quasiparticles in the antiferromagnetic topologi-
cal insulator (AF-TI) Fe-doped Bismuth Selenide, (Bi1−xFex)2Se3, the quest to realise re-
lated materials in the lab has picked up incredible pace. A currently favoured candidate
Mn2Bi2Te5 [43], is, however, yet to be fabricated successfully. AQ materials allow the possi-
bility to explore aspects of axion physics in the laboratory [44]. The AQ resonance hyrbidises
with the electric field forming an axion-polariton [42]. The polariton frequency is of order the
AF anisotropy field, with typical values O(1 meV), and is tuneable with applied static field
B [41]. This proposal opens the possibility for large volume THz resonance, easily tuneable
with an applied magnetic field, thus overcoming the first hurdle to detection of meV axions.
The proposal makes use of the current interest in manufacture of low noise, high efficiency
single photon detectors (SPDs) in THz [45]. The development of such detectors has benefits
for sub mm astronomy and cosmology, as well as application to other DM direct detection
experiments [30].

The present paper expands on the ideas outlined in Paper I with more in depth modelling
and calculations. A guide to the results is given below.

Axion quasiparticle materials

We begin with a detailed treatment of the materials science, and outline a scheme to prove
the existence of AQs in TMIs, and measure their parameters.

• We introduce the basic model for the equations coupling the electric field and the AQ.
There are two parameters that determine the model: the AQ mass, mΘ, and the decay
constant, fΘ, as summarised in section 2.1.

• Next in section 2.2, we clarify the microscopic model for AQs in TMIs. We begin with
the symmetry criteria, followed by a microscopic model based on the Dirac Hamilto-
nian. The AQ is the longitudinal fluctuataion of the antiferromagnetic order parameter
in the Hubbard model. The appendix summarises the related phenomenon of anti-
ferromagnetic resonance and transverse magnons in the effective field theory of the
Heisenberg model.

• Both mΘ and fΘ can be estimated from known material properties. We consider
(Bi1−xFex)2Se3, the candidate material from Paper I and ref. [42], and also the more
recent candidate material Mn2Bi2Te5 [43]. The results of this study are given in tables 4
and 5.
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• We next consider sources of loss. The largest sources of loss are identified to be conduc-
tive losses to the electric field, and crystal and magnetic domain induced line broadening
for the AQ. The loss model is summarised in table 6.

• Using the model thus developed, we present a computation of the transmission spec-
trum of an AQ material. The spectrum shows two peaks due to the mixing of the
electric field and the AQ, the locations of which can be used to measure the parameters
mΘ and fΘ. The width of the resonances provides a measurement of the loss param-
eters on resonance, which cannot otherwise be identified from existing measurements.
Such a measurement can be performed using THz time domain spectroscopy [46]. The
procedure is shown schematically in figure 6

Axion dark matter detection
• Axion DM acts as a source to the AQ model developed in the previous sections. Axion-

photon conversion in a magnetic field sources photons, which hybridize with the AQ
forming polaritons, and thus acquire an effective mass. It is shown that this model
can be treated in the same way as a dielectric haloscope [47]. The resonance in the
polariton spectrum leads to an effective refractive index n < 1, and an enhancement of
the axion-induced electric field, see figure 16.

• We compute the power boost amplitude, β(ω), for a range of plausible values for the
model parameters, losses, and material thickness. See, for example, figure 17.

• The power enhancement is driven by the material thickness, d, which should exceed
the wavelength of emitted photons. When losses are included, we identify a maximum
thickness above which the power enhancement decreases due to the finite skin-depth.
See figure 19.

• We perform forecasts for the limits on axion DM parameter space, (ma, gaγ), that can
be obtained for a range of plausible material and THz detector parameters. We identify
pessimistic and optimistic possibilities for the discovery reach, summarised in figure 23.

We use units ~ = c = kB = 1 throughout most of the text, in combination with SI
where appropriate.

2 Axion quasiparticle materials

2.1 General remarks
Axion quasiparticles (AQs) are defined, for our purposes, as a degree of freedom, denoted by
δΘ, coupled to the electromagnetic Chern-Simons term:

Stopo = α

π

∫
d4x (δΘ + Θ0)E ·B , (2.1)

where Θ0 is the constant electromagnetic Chern-Simons term, equal to zero in ordinary
insulators and π in topological insulators (TIs). In these materials, surface currents are
accounted for by inclusion of a non-zero value for Θ0 (the topological magneto-electric effect
due to the Hall conductivity [48, 49]). In the presence of a dynamical AQ field, δΘ, the
static vacuum value Θ0 is allowed to take on a continuum of values between 0 and π. The
total axion field is denoted by Θ = δΘ + Θ0. We review these concepts further below, for a
detailed presentation see ref. [50].
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The dynamics of the AQs are described by [42, 51]

SΘ = f2
Θ
2

∫
d4x

[
(∂tδΘ)2 − (vi∂iδΘ)2 −m2

ΘδΘ2
]
, (2.2)

where fΘ, vi and mΘ are the stiffness, velocity and mass of the AQ. The velocities vi are
of the order of the spin wave speed in typical antiferromagnets, vs ∼ 10−4c, see for example
ref. [52]. In the coupled equations of motion for the electric field and the AQ (see section 3.2),
fΘ enters in the combination1

b = α

π
√

2
Be√
εfΘ

= 1.6 meV
(25
ε1

)1/2 ( Be
2 T

)(70 eV
fΘ

)
. (2.3)

In addition to the action for the AQ we consider electromagnetic fields governed by
Maxwell’s equations in media, which depend on the complex valued dielectric function, ε̃ =
ε1 + iε2 = ε1 + iσ/ω (where σ is the conductivity), and magnetic susceptibility, χm. Where
there is no room for confusion we use ε1 = ε in some of the following. The phenomenological
model also requires the specification of a loss matrix, Γ.

2.2 Realisation in Dirac quasiparticle antiferromagnets

The idea to realise axion electrodynamics in solids was originally developed by Wilczek [44]
who, however, could not identify a magnetic solid that breaks parity and time-reversal while
preserving its combination: as we will see, necessary conditions for AQs. Recent develop-
ments in nonmagnetic and magnetic electronic topological phases of matter, and study of
the topological magnetoelectric effect associated with the Chern-Simons term in magneto-
electrics [53, 54] have led to the identification of several routes to realise axion electrodynamics
in energy bands of magnetic topological insulators and Dirac quasiparticle antiferromagnets.
The electronic, magnetic, topological energy bands can couple to spin fluctuations, and thus
generate a dynamical axion phase on the electromagnetic Chern-Simons term.

In this section we discuss the Dirac quasiparticle model of AQs in electronic energy
bands. We compare the symmetry criteria for static and dynamical axion topological anti-
ferromagnets, and discuss the most prominent material candidates.

2.2.1 Symmetry criteria for static and dynamical magnetic axion insulators
The topological Θ term is called also an axion angle as it can take any value between 0 and 2π.
The operations of charge conjugation C, parity P (known as inversion symmetry in condensed
matter, a terminology we adopt throughout this section to distinguish it from other types of
parity operation in solids), and time-reversal T are the discrete symmetries constraining the
values of Θ, and which define the properties of fundamental forces in nature via the CPT
theorem. CP breaking means that the physical laws are not invariant under combination of
interchanging particle with its antiparticle with inverting the spatial coordinates. If Θ 6= 0, π,
then CP is violated. The combined CPT symmetry is believed to be preserved (i.e. the so
called CPT theorem) and thus the violation of CP implies the violation of T symmetry, i.e.
the reversal of the time coordinate, and thus particle motion. Realisation of CP-broken theory
and axion electrodynamics with non-quantized axion angle can be achieved in materials with
broken T symmetry [44, 55, 56]. In materials, magnetic ordering can break the T symmetry.
In this section we will discuss the symmetries of magnetic axion insulators which exhibit

1Note that we use the Lorentz-Heaviside convention, where 1 T ≈ 195 eV2.
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nonzero pseudoscalar axion quasiparticle Θ (we use capital letter to label the solid state
quasiparticle axion to distinguish it from the DM axion).

The nonzero axion response can be find in subgroup of conventional and topological
magnetoelectric materials. The conventional magneto-electric polarizability tensor is defined
as [48, 57]:

αij = (∂Pi/∂Bj)E = (∂Mj/∂Ei)B . (2.4)
Here Pi, Bj ,Mj , and Ei are electric polarisation, magnetic field, magnetization, and electric
field. The magnetoelectric polarizability tensor can be decomposed as [48]:

αij = α̃ij + Θe2

2πhδij , (2.5)

where the first term is the non-diagonal part of the tensor arising from spin, orbital and ionic
contribution [58]. The second term is the diagonal pseudoscalar part of the coupling related
to the axion angle Θ.

We will now review symmetry criteria for nonzero axion quasiparticle Θ. In solid state
potentials, discrete symmetries impose severe constraint on the existence and form of the
topological axion angle [59], and provide robust insight into the topological characterisation
of the energy bands [60–63]. The topological classification assigns two insulators into the
same category as long as it is possible to connect the two corresponding Hamiltonians by
a continuous deformation without closing an energy gap and while preserving all symme-
tries [53, 54].

Three symmetry based strategies attracted great interest in recent decades. First, solid
state quantum field theory considers parity, chiral, and particle-hole symmetries, which are
relevant for rather strongly correlated states of matter such as superconductors and lead to
abstract multidimensional classification [64]. Second, more numerically feasible symmetry
analysis of Wannnier band structure. The Wannier band structure refers to mixes of real
and momentum space band structure, with hybrid Wannier charge centres, which encodes
the topological character of given states [56, 59, 65]. The formulation is particularly useful
for first-principle calculations of the axion angle. Third, we can use space group or magnetic
space group symmetries to derive symmetry indicators of single particle energy bands [59,
62, 63, 66, 67].

The E.B term is odd under time-reversal symmetry, inversion symmetry and any im-
proper rotations, e.g. mirror symmetries [59, 61]. If the crystal has such a symmetry:

Θ = −Θ. (2.6)

The symmetry constraint would force any periodic function to vanish. However, Θ is periodic
angle defined only modulo 2π and thus these symmetries enforce only

Θ = 0, or π. (2.7)

When none of these symmetries is present Θ can be still non-quantized.
Based on the magnetic symmetry classification, we can distinguish four classes of pseu-

doscalar magneto-electric axion response materials shown in figure 1. First two classes
are conventional magnetoelectrics [68] and dynamical axion insulators [42] with nonzero
pseudoscalar part of the magnetoelectric polarisability tensor (and combined PT symme-
try [66, 67] such as Mn2Bi2Te5 [43]). Second two classes are the topological insulators and ax-
ion insulators with quantized magnetoelectric response such as doped Bi2Se3 or MnBi2Te4 [42,
50, 53, 54, 57].
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 Axion quasiparticle response

Non-quantised Quantised 
Magnetoelectric point groups (Tab. 1)

(Antiferromagnetic) 
topological insulators Axion insulators 

Dynamical axion quasiparticle

Conventional diagonal 
magneto electric

Bulk Dirac quasiparticles 

Axion odd symmetry (Tab. 2)

Spin dynamics

(t)T
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Figure 1. Flowchart of generating dynamical axion quasiparticles with four building bock systems.

Components FM MPG AF MPG Material(
αxx αyy αzz

)
1 2 m′ m′m′2 (1′) (2/m′) 222 (m′m′m′) (Fe,Bi)2Se3

3 4 6 (3′) 4′ 4/m′ 6′ 6/m′(
αxx αxx αzz

)
3m′ 4m′m′ 32 (3′m′) 422 4′2m′ (4/m′m′m′) Cr2O3[69]

6m′m′ 622 6′m′2 (6/m′m′m′)(
αxx −αxx 0

)
4, 42′m′ 4′ (4′/m′), 4′22′ 4′mm′ 4m2 (4′/m′mm′)(

αxx αxx αxx
)

23, (m′3′), 432, 4′3m′ (m′3′m′)

Table 1. Table of antiferromagnetic and ferromagnetic nonquantized axion magnetoelectric symmetry
groups and candidate material. In the first column we show only the diagonal part of magnetoelectric
polarizability tensor αij . The symbols 1 and 1′ mark spatial inversion and time-reversal symmetry, re-
spectively. FM and AF MPG refers to ferromagnetic and antiferromagnetic magnetic point group [71].

The nonquantized value of Θ can be find in subset of 58 magnetic point groups allowing
for general magnetoelectric response. We summarise in table 1 only the 40 mangetic point
groups which allow for the nonzero diagonal magnetoelectric response elements [69, 70]. We
also list whether the material has allowed ferromagnetism (FM, 12 magnetic point groups) or
is enforced by the point group symmetry to be antiferromagnetic (AF, 28 point groups) [71]
together with several material examples. We see that the magnetoelectric response can be
anisotropic what was confirmed experimentally [72]. Note that the third row of the table 1
gives zero trace. This analysis excludes from pseudoscalar magnetoelectric coupling materials
which do exhibit only traceless magnetoelectric coupling. When the system breaks P and T
but preserves its combination, it can host also bulk Dirac quasiparticles [66]. We mark the
PT symmetric magnetoelectric pseudoscalar point groups by brackets in table 1.

In topological insulators, such as Bi2Se3 (the nonmagnetic phase of crystal shown in
figure 2(a)) and Bi2Te3, the presence of T symmetry in combination with nontriivial band
inversion ensures the axion angle Θ to be π [73], requires zero surface Hall conductivity, and
the topological magneto-electric effect [74]. The topological magneto-electric effect in topo-
logical insulators refers to a quantized magneto-electric response, and has been observed also
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Se

Fe,Bi

Figure 2. (a) Crystal structure of topological insulator Bi2Se3 consist from quintuple layers forming
rhombohedral unit cell. Antiferromagnetism of the magnetically doped (Fe,Bi)2Se3 breaks spatial
inversion P and time-reversal T symmetry, but preserve combined PT symmetry. (b) Crystal struc-
ture of intrinsic antiferromagnetic axion insulator MnBi2Te4. The quantized value of axion angle is
protected by the inversion symmetry P (we maek two inversion symmetry points in the lattice). The
system exhibits also partial unit cell translation t combined with time-reversal symmetry T .

by magneto-optical measurements [73]. In fact, the quantization of Θ in non-magnetic topo-
logical insulators can be taken as defining property of topological insulators [74]. Recently,
also antiferromagnetic topological insulator [75] was found in MnBi2Te4 [76]. Antiferromag-
netic topological insulator state is protected by time-reversal symmetry coupled with partial
unit cell translation t as we show in figure 2(b).

The static axion insulators are magnetic topological insulators, such as MnBi2Te4 [77,
78], which break T symmetry via the presence of a magnetic ion (in this case, Mn). However,
they exhibit axion response with Θ = π, protected by the presence of axion odd symmetries
such as inversions, see inversion centre in figure 2(b), or crystalline symmetries. The axion-
odd symmetries are the symmetries which reverse the sign of Θ and support the so called Z2
classification [60, 61, 79]. Among the additional axion-odd symmetries are improper rota-
tions, and antiunitary proper rotations (for instance rotation combined with time-reversal).
In the table 2, we list axion angle quantizing symmetry operations, g. We decompose the
symmetry operation g = g‖ ◦ g⊥ into the parts g‖ and g⊥ which are parallel and perpendic-
ular (in the surface plane) to the given surface normal ẑ [59]. We remark that we list the
point group operation, but in general we need to pay attention to the nonsymmoprhic partial
translations of the group, for details see [59].

Finally, the dynamical axion insulator allows for nonquantized dynamical axion angle.
The dynamics of the axion angle was suggested to be induced by chiral magnetic effect,
antiferromangetic resonance [43], longitudinal spin fluctuations [42] in an antiferromagnet or
spin fluctuations in paramagnetic state [80]. In figure 2(a), we show an example of lattice
with dynamical axion insulator state — Fe-doped (Bi1−xFex)2Se3 with PT symmetric crystal.
Here, the antiferromagnetism breaks the inversion and time-reversal symmetries of the Bi2Se3
crystal. The symmetry breaking is desribed by mass termM5 which corresponds to the band-
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g g‖ g⊥
Operations reversing ẑ

Mz

Mz

E
P C2
S3,4,6 C3,4,6

C̄2T MdT
Operations preserving ẑ

ET

E

ET
C2,3,4,6T C2,3,4T
Md Md

Table 2. Axion angle quantizing symmetries. E , P, Mz, Md, C2,3,4,6, S3,4,6, and T mark unitary
symmmetry operations of identity, inversion, mirror parallel and perpendicular to surface normal ẑ,
rotational axis, improper rotations, and time-reversal, respectively. Overbar marks inversion. Adapted
after [59].

gap in surface state. The combined PT symmetry is in the (Bi1−xFex)2Se3 crystal preseved
and enforces Kramers degenerate bands. This can be seen by acting PT symmetry on the
Bloch state to show that these two states have the same energy and are orthoghonal [66,
67, 81–83]. The presence of PT allows for antiferromagnetic Dirac quasipaticles [66, 67]
with plethora of unconventional and practically useful response such as large anisotropic
magnetoresistance [66, 84]. We discuss the material physics requirements for dynamical
axion insulator in the section followed by section on minimal effective model of a dynamical
axion insulator.

2.2.2 Material candidates
In this section we list requirements for a dynamical axion insulator which is also suitable
for dark axion detection [85]. In addition to constraints comming from requiring dynamical
axion quasiparticles, we need to ensure strong coupling of the Θ magneto-electric response to
the fluctuations of the magnetic order parameter. The concept was originally developed for
the longitudinal fluctuations in the Néel order parameter in magnetically doped topological
insulators ((Bi1−xFex)2Se3 in ref. [42]) and recently extended into the instrinsic antiferromag-
net Mn2Bi2Te5 [43]. This dynamical axion field is quite weak due to the low magnetoelectric
coupling and trivial electronic structure in conventional materials such as Cr2O3 [86] and
BiFeO3 [87] with Θ = 10−3 and 10−4, respectively, see table 3. The dynamical axion effect
(i.e. a large Θ response to external perturbations) can be enhanced in the proximity of the
topological phase transitions [43]. We now summarise the material criteria for a dynamical
axion quasiparticles for detecting dark matter axion:

• Nonzero dynamical axion angle. The material symmetry allows for dynamical axion
insulator state and axion spin density wave [42, 43, 80] with mass in the range of meV.
This is one of the main advantage of using axion quasiparticles in antiferromagnets for
detecting light and weakly interacting DM axions [41].

• Large bulk band-gap [55]. The material is in bulk semicondcuting or insulating with
a large bulk band-gap, without disturbing bulk metallic states. In turn its low energy
physics is governed solely by the axion coupling.
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• Topological mass term M5 should be of order of dynamical axion fluctuation mass ma

to ensure resonance with DM axion [41, 42].

• Large fluctiation in axion angle. This can be achieved close to the magnetic and topo-
logical phase transition as δΘ(r, t) = δM5/g, and 1/g ∼ 1/M(0) [43]. The topological
phase transition should be approached from the topological side. Practically, one can
tune this mass term by alloying. The alloying can effectively tune the strength of the
spin orbit interaction. However, the proximity close to the magnetic transition can
compromise narrow linewidth, see next point.

• Trade-off among narrow linewidth and sensitivity. Narrow linewidth of the axion re-
spones where the thermal fluction and scattering are supressed. This imposis tmeper-
ature constraints (i.e. T � TN , T � m5). In contrast, enhanced response close the
mangetic phase transition could enhance sensitivity.

• Robust magnetic ordering with elevated critical (Néel) temperature.

• As we will see in chapter about power output we need large spin-flop fields (> 1T)
again favouring antiferromagnetic ordering.

• Linear coupling of magnetic fluctuations to generate measurable axion polariton which
is used for the detection of the dark matter axion. Li et al. [42] has used linear coupling
of the longitudinal spin wave mode. From this perspective, the relatively streightfor-
ward generations of dynamical axion by chiral magnetic effect or (anti)ferromagnetic
resonance are not suitable. For the conventional transeversal spin waves would pro-
duce rahter quadratic coupling. This point is an open problem, however, the antifer-
romangetic spin density wave states [88] with longitudinal component are also possible
candidates at the moment.

• Magnetic and relativistic chemistry of low energy state manifold [55]: 3d states ensur-
ing magnetism and time-reversal symmetry breaking and heavy elements with strong
atomic spin-orbit interaction. Low energy states of common topological insulators are
often heavy p-states which have low correlations and do not support magnetism.

The last point can be justified by considering limitation of existing axion insulators proposals.
3d and 4d elements do have large electronic correlations but rather small spin-orbit interaction
and thus it is difficult to tune the system into/close to the topological state. 4f and 5f
elements pose heavy masses and narrow bands with excpetion of rate Kondo topological
insulators [89]. 5d pyrochlore [90] and spinel [55] elements are computationally predicted
to host axion states within relatively small window of correlations strength complicating
manufacturing the material.

To summarize, the most promissing material systems are intrinsic antriferomagnetic
axion insulators [77], magnetically doped topological insulators [42], certain conventional
magnetoelectrics [91] and heterostructures of topological insulators [92]. The PT symmetric
antiferromagnetism seems to be favourable over ferromagnetism as it naturaly provides for
Dirac quasiparticles with tunable axion quasiparticles masses, longitudinal spin waves, larger
spin-flop fields, elevated Néel temperatures, possibility to combine chemistry required for
magnetism and spin-orbit coupling in single material platform. We list some of the promiss-
ing building block materials and systems for dynamical axion quasiparticles in the table 3.
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Phase Material class TC (K) ∆ [meV] Θ

Magnetoelectric BiFeO3 643 950 0.9× 10−4 [87]
Cr2O3 343 1300 1.3× 10−3 [86]

Magnet/TIs CrI3/Bi2Se3/MnBi2Se4 >10 5.6 π [92]

Intrinsic P AFs MnBi2Te4 <25 <220 π

EuIn(Sn)2As(P)2 16 <100 π

Doped TIs Cr(Fe)-Bi2Se3 ∼10 [93] ∼30 nonquantized
Intrinsic PT AFs Mn(Eu)2Bi2Te5 6 ∼50 0.83π [92]

Table 3. Table of magneto-electric insulating material classes and candidates. FM (AF) marks
(anti)ferromagnetism, TC the critical temperature, and ∆ the bulk band gap.

Besides listing materials which are directly dynamical axion insulators we added also mate-
rials which can be used as starting configurations to build the dynamical axion insulator, for
instance, by alloying of the static axion insulators.

We emphasize that the bulk energy bands encode the information about the dynamical
axion insulator response, and its surface states [42]. We can see this on expression for
the intrinsic magnetoelectric susceptibility, axion coupling, can be calculated in the Bloch
representation as [42]:

Θ = − 1
4π

∫
BZ
d3kεαβγ Tr

[
Aα∂βAγ − i

2
3AαAβAγ

]
. (2.8)

Here we explictily see the axion angle relation to the non-abelian Berry connection
Aα,nm(k) = 〈unk |i∂kα |um〉 constructed from the Bloch functions |unk〉. The trace is over
occupied valence bands.

The first-principle calculations of the axion angle is reserch topic on its own [56, 59]. For
the sake of brevity we will adopt here simpler approach. We can use first-prinicple calculations
and symmetry analysis to identify and parametrize low energy effective Hamiltonian for which
the calculation of axion angle and its dynamical response is numerically less demanding.
We will now describe dynamical axion quasiparticle model which is applicable to Fe-doped
Bi2Se3 [42] and intrinsic antiferromagnet Mn2Bi2Te5 [43] and also heterostructures [92].

2.2.3 Dirac model of axion quasiparticles
We can derive the minimal model of dynamical axion insulator starting from the Dirac
quasiparticle model for the bulk states of topological insulator Bi2Se3 [94]. The low energy
physics can be captured by four-band Hamiltonian in the basis of bonding and antibonding
Bi pz states |P2−z , ↑ (↓)〉 and

∣∣P1+
z , ↑ (↓)

〉
[42, 43, 94]:

HDirac = ε0(k) +
5∑

a=1
da(k)Γa. (2.9)

Here Γa refer to the Dirac matrices representation:

Γ(1,2,3,4,5) = (σx ⊗ sx , σx,⊗sy, σy ⊗ I2×2, σz ⊗ I2×2 , σx ⊗ sz) (2.10)

in the basis (|P1+
z , ↑〉, |P1+

z , ↓〉, |P2−z , ↑〉, |P2−z , ↓〉). σ and s are orbital and spin Pauli matri-
ces. The 4× 4 matrices Γa satisfy the Clifford algebra {Γa,Γb} = 2δab with Γ5 = Γ1Γ2Γ3Γ4.
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This model can be tuned to the trivial (Θ = 0) or topological insulator state (Θ = π). To
induce nonzero δΘ and dynamical axion state we need to add P and T symmetry breaking
terms due to the antiferromagnetism.

The crystal momentum dependent coefficients take the form:

d1,2,3(k) = A1,2,3(k) +mx,y,z, (2.11)
ε0(k) = C + 2D1 + 4D2 − 2D1 cos kz − 2D2 (cos kx + cos ky) (2.12)

d4(k) =M(k) = M0 − 2B1 − 4B2 + 2B1 cos kz + 2B2 (cos kx + cos ky) (2.13)
d5(k) = M5. (2.14)

Here the fourth term M(k) controls the topological phase transition from the trivial to
topological insulator, is invariant under T , and we denoteM(k = 0) = M0. The topological
insulating phase is achieved when M,B1, B2 > 0 [94]. The symmetry breaking terms are
the masses mx,y,z and M5 (a CP-odd chiral mass term). We see that the spatial inversion
P = σz ⊗ I2x2 and time-reversal operators T = iI2x2 ⊗ syK do not commute with the
Hamiltonian, while their combination does. Here K is complex conjugation.

Only the last mass term M5 induces linear perturbations to Θ as we will show further,
and without loss of generality one can set mx,y,z = 0. In turn, the M5 term opens a surface
band gap in the surface states Dirac Hamiltonian as we show in figure 3. The A,B,C, D,
and masses M,M5 constants are material dependent and can be determined by fitting the
electronic structure calculated from the first-principles [42, 92, 94, 95]. We also remark,
that for calculating the complete response of the material we need to know the full periodic
Hamiltonian eq. (2.14).

When its sufficient to study small wavector excitations we can use continuum variant,
k,p-expansion, around momentum points Xf , where q = k −Xf :

Hf (q) = qxα1 + qyα2 + qzα3 +M0α4 +M5fα5. (2.15)

Here we use the standard Dirac equation basis:

β = α4 =
(
I 0
0 −I

)
, αi=1,2,3 =

(
0 σi
−σi 0

)
⇒ α5 =

(
0 I
I 0

)
. (2.16)

Furthermore, the subscript f denotes the valley degree of freedom in the low-energy electronic
band of the system, and can be understood as the Dirac quasiparticle flavour. In the AFI
phase of the Bi2Se3 family doped with magnetic impurities such as Fe [42], there is a single
Dirac fermion and M5,1 = M5,2 = 0, M5,3 = −(2/3)Unz. (In the AFI phase of the Fu-
Kane-Mele-Hubbard (FKMH) model [51], there are three Dirac fermions and M5,a = Una
(a = x, y, z).) Here, n = (〈SA − SB)/2 = nxex + nyey + nzez denotes the mean-field AF
order parameter (i.e., the Néel field, with SA,B the spin of ions on A and B-type lattice sites)
and U is the on-site electron-electron interaction strength (i.e. the Hubbard term, see below).
The kinetic term ∑3

µ=1 qµαµ is spin-dependent as a consequence of spin-orbit coupling.
We derive the effective action consisting of the Néel field n = n0 + δn and an external

electromagnetic potential Aµ, where n0 denotes the ground state of the Néel field and δn
denotes the fluctuation due to excitations. For this purpose, it is convenient to adopt a
perturbative method. We start with the total action of an AF insulator described by eq. (2.15)
with an external electromagnetic potential Aµ:

Seff [ψ, ψ̄,n, Aµ] =
∫
dtd3r

∑
f

ψ̄f (r, t)
[
iγµDµ −M0 + iγ5M5f

]
ψf (r, t), (2.17)
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Figure 3. (a) Minimal model energy bands of edge states (red) of dynamical axion insulator with
parity and time-reversal breaking antiferromangetic termM5 = 0.5M0, whereM0 is bulk (blue) Dirac
band-gap. The wavector corresponds to given valley index f in the text.

where t is real time, ψf (r, t) is a four-component spinor, ψ̄f = ψ†fγ
0, Dµ = ∂µ + ieAµ,

and we have used the fact that α4 = γ0, α5 = −iγ0γ5 and αj = γ0γj (j = 1, 2, 3). Here,
the gamma matrices satisfy the identities {γµ, γ5} = 0 and {γµ, γν} = 2gµν with gµν =
diag(1,−1,−1,−1). By integrating out the fermionic field ψf , we obtain the effective action
Weff for n and Aµ as

Z[n, Aµ] =
∫
D[ψ, ψ̄]eiSeff = exp

∑
f

Tr ln
[
G−1

0f (1 +G0fVf )
]

= exp

∑
f

Tr
(
lnG−1

0f

)
−
∑
f

∞∑
n=1

1
n

Tr (−G0fVf )n


≡ eiWeff [n,Aµ]. (2.18)

In order to obtain the action of the low-energy spin-wave excitation, i.e., the AF magnon,
we set the Green’s function of the unperturbed part as G0f = (iγµ∂µ −M0 + iγ5M5f )−1,
and the perturbation term as Vf = −eγµAµ + iγ5δM5f . Note that we have used iγµDµ −
M0 + iγ5(M5f + δM5f ) = G−1

0f + Vf . In the random phase approximation, the leading-order
terms read

iWeff [n, Aµ] = −1
2
∑
f

Tr
(
G0f iγ

5δM5f
)2

+
∑
f

Tr
[
(G0feγ

µAµ)2
(
G0f iγ

5δM5f
)]
, (2.19)

where the first and second terms on the right-hand side correspond to a bubble-type diagram
and a triangle-type digram, respectively.
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To compute the traces of the gamma matrices we use the following identities:

tr(γµ) = tr(γ5) = 0, tr(γµγν) = 4gµν , tr(γµγνγ5) = 0, tr(γµγνγργσγ5) = −4iεµνρσ.
(2.20)

The first term in eq. (2.19) is given explicitly by

Tr
(
G0f iγ

5δM5f
)2

=
∫

d4q

(2π)4

∫
d4k

(2π)4 tr
[
G0f (k)iγ5δM5f (q)G0f (k + q)iγ5δM5f (−q)

]
= 4

∫
d4q

(2π)4

∫
d4k

(2π)4
[kµ(k + q)µ −M2

0 +M2
5f ]δM5f (q)δM5f (−q)

(k2 −M2
0 −M2

5f )[(k + q)2 −M2
0 −M2

5f ]

≡
∫

d4q

(2π)4 Πf (q)δM5f (q)δM5f (−q), (2.21)

where k2 = gµνkµkν = kµk
µ = k2

0−k2. We have used G0f (k) = (γµkµ+M0 + iγ5M5f )/(k2−
M2

0 −M2
5f ), {γµ, γ5} = 0, and {γµ, γν} = 2gµν . After performing a contour integration, we

arrive at the action of the form∑
f

Tr
(
G0f iγ

5δM5f
)2

= i
∑
f

Jf

∫
dtd3r

[
(∂µδM5f )(∂µδM5f )−m2

f (δM5f )2
]
, (2.22)

where Jf and mf are the stiffness and mass of the spin-wave excitation mode, which are
given respectively by [42]

Jf = ∂2Πf (q)
∂q2

0

∣∣∣∣∣
q→0

=
∫

BZ

d3k

(2π)3

∑4
i=1 d

2
i

16|d|5 , (2.23)

Jfm
2
f = Πf (q)|q→0 = M2

5f

∫
BZ

d3k

(2π)3
1

4|d|3 , (2.24)

where |d| =
√∑5

a=1 d
2
a, q → 0 indicates the limit of both q0 → 0 and q → 0, and here f

denotes the flavour. Equation (2.22) is nothing but the action of the Néel field described
by the non-linear sigma model [96]. In the present low-energy effective model [eq. (2.17)],
the information on the anisotropy of the Néel field is not included. On the other hand,
many (actual) AF insulators have the easy-axis anisotropy. Hence the term ∑

f m
2
fδn

2
f will

be replaced by a term like m2(δn · eA)2 with eA denoting the easy axis. The second term
in eq. (2.19) is the triangle anomaly, which gives the Chern-Simons term. The final result
is [97, 98]

∑
f

Tr
[
(G0feγ

µAµ)2
(
G0f iγ

5δM5f
)]

= i
α

2π

∫
dtd3rδΘ(r, t)εµνρλ∂µAν∂ρAλ

= i
α

π

∫
dtd3rδΘ(r, t)E ·B, (2.25)

where [51]

δΘ(r, t) =
∑
f

tan−1
[
Mf + δM5f (r, t)

M0

]
−
∑
f

tan−1
[
Mf

M0

]
≈ −

∑
f

δM5f (r, t)
M0

. (2.26)
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From eq. (2.25) we find that the fluctuation of the γ5 mass M5f behaves just as a dynamical
axion field. From eqs. (2.22) and (2.25), we finally arrive at the action of the AQ [42, 99]:

SAQ = M2
0J
∫
dtd3r

[
(∂µδΘ)(∂µδΘ)−m2

ΘδΘ2
]

+ α

π

∫
dtd3rδΘ(r, t)E ·B , (2.27)

where have used that for systems described by the Dirac Hamiltonian (eq. (2.15)) the quantity
labelled g in the action given in ref. [42] can be set equal to the bulk band gapM0. We identify
the decay constant asM2

0J = fΘ
2/2, and note that the spin wave speed appears in the spatial

derivatives by choice of units.

2.3 AQ as longitudinal magnon

For concreteness, let us consider the AF insulator phase of (Bi1−xFex)2Se3 and Mn2Bi2Te5
such that there is a single degree of freedom with M5,1 = M5,2 = 0, and M5,3 = −(2/3)Un‖,
where n‖ is parallel to the easy-axis anisotropy. In terms of the AF order parameters the AQ
is given by expanding eq. (2.26), leading to

δΘ ≈ 2U
3M0

δn‖ . (2.28)

Thus, we see that the AQ δΘ is the longitudinal fluctuation in the AF order.
The EFT of transverse magnons is presented in appendix A.1, and is based on the

Heisenberg model. The Heisenberg model is the strong coupling limit of the Hubbard model
used to describe the AQ, but nonetheless it provides some insight into the physics, which we
discuss briefly. The EFT describes the AF order parameter, n. Let us denote the components
of n as n‖ along the easy-axis and n⊥,1,2 orthogonal to it. In the EFT we have that:

δn‖ ≈ −
δn2
⊥,1
2 −

δn2
⊥,2
2 . (2.29)

Thus the AQ is related non-linearly to the transverse magnons of the Heisenberg EFT.
In the Dirac model for the AQ, the interaction between δΘ and electromagnetism is

given entirely by the chiral anomaly, i.e. the interaction δΘE · B. On the other hand the
Heisenberg EFT contains the spin interaction Lem = µBs ·H, with s = ṅ × n at leading
order. As we have just established, however, the Heisenberg model fields are not linearly
related to the AQ in the Hubbard model with t/U � 1. We therefore neglect the interaction
Lem in our subsequent calculations based on the effective action eq. (2.27). If only the axion,
δΘ ∝ δn‖, is present, then indeed ṅ× n = 0.

However, if the AFMR fields δn⊥ are also excited, then Lem mixes the fields and leads to
the Kittel shift in the frequencies of these fields ω = µBH0 +

√
m2
s + v2k2 (see appendix A.1).

The Kittel shift would also mix the AFMR fields with the axion. It is not clear to us how
to model these two effects, the AQ and AFMR with an applied field, at the same time
because the two descriptions are valid in opposite regimes of the Hubbard model parameters.
The splitting µBH0 � ms for fields H0 ∼ 1 T, and so our subsequent results would not be
changed drastically by such an effect. Nevertheless, the splitting may be possible to observe
experimentally if it is present. This remains an open question.

We have not been able to derive an EFT for the AQ longitudinal magnon along the
same lines as the EFT of AFMR given in the appendix. One possibility for such a theory
generalises the AF-ordering to a general spin density wave ordering vector Q. In this case,
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Symbol Name (Bi1−xFex)2Se3 Mn2Bi2Te5

µBHE Exchange 1 meV [105] 0.8 meV [92]
µBHA Anisotropy 16 meV [102] 0.1 meV [92]

Vu.c. Unit cell volume 440 Å3 270 Å3

U Hubbard term 3 eV [102] 3 eV [92]
M0 Bulk band gap 0.03 eV (0.2 eV) [102] 0.05 eV [92]
t Nearest neighbour hoppinga 0.04 eV 0.04 eV
S Magnetic moment 4.99 [102] 4.59 [92]
TN Néel temperature 10 K [93] 6 Kb

ε1 Dielectric constant 25 (100) 25
a The hopping parameters t are derived from HE assuming half-filling.
b Estimated from the Liechtenstein magnetic force theorem, TN = 3µBHE/2kB [106].

Table 4. Material parameters for AQ materials. Mn2Bi2Te5 has not been experimentally realised, and
parameters in the references are calculated ab initio, rather than measured. Values in parentheses
were assumed in ref. [42]. We assume the dielectric constants for both materials are equal to the
undoped Bi2Se3 extrapolated to low energy [103, 104].

one arrives at a quadratic Lagrangian for the transverse and longitudinal magnons2 with
coupling to external sources [88]. However, in addition to these desired ingredients there are
also spinor degrees of freedom, the “holons” describing the spin-charge separation. Another
possibility, which we suggest, is to generalise the Néel order parameter to an SU(2) doublet
with the AQ a Goldstone boson associated to a Chiral U(1) subgroup under which the Dirac
quasiparticles are charged.

2.4 Parameter estimation

Three unknown quantities determine the AQ model: the mass mΘ, decay constant fΘ, and
speed vs (from the spatial derivatives, giving the wave speed). We generally work in the limit
vs � c and ignore the magnon dispersion relative to the E-field. This leaves two parameters,
mΘ and fΘ. We show in detail in section 3.1 how both mΘ and fΘ can be determined
experimentally from the polariton resonances and gap via transmission spectroscopy (related
to the total reflectance measurement proposed by ref. [42]). In this section, however, we wish
to estimate these parameters from known material properties.

We consider two candidate materials, firstly the magnetically doped TI (Bi1−xFex)2Se3
of ref. [42]. Reference [102] considered a number of different TIs doped with different mag-
netic ions, and found that only (Bi1−xFex)2Se3 is both antiferromagnetic and insulating.
(Bi1−xFex)2Se3 has been successfully fabricated. However, the magentism is fragile due to
the doping (required around 3.5%), and the region of the phase diagram exhibiting the AQ is
small. Therefore, we also consider the new class of intrinsically magnetic TIs, MnxBiyTez, of
which only Mn2Bi2Te5 is thought to contain an AQ, but has yet to be fabricated. Material
properties for both cases are listed in table 4, while the derived parameters are given in
table 5. Our estimates for the derived parameters are discussed in the following.

The microscopic model for the AQ is derived from the Hubbard model in the weak
coupling limit. In the Hubbard model, one allows hopping of spins between lattice sites. The

2Other approaches to the longitudinal mode include refs. [100, 101].
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Symbol Name Equations “Material 1” “Material 2”
mΘ AQ mass (2.35), (2.38) 2 meV 1.8 meV
fΘ AQ decay constant (2.34), (2.37) 30 eV 70 eV

Table 5. Derived AQ parameters. “Material 1” is our best approximation to (Bi1−xFex)2Se3. We
report the results of ref. [42], who assumed a cubic lattice to evaluate the band integrals, but rescaled
by our values of M0. We use a combination of normalisation to the cubic lattice result, and the
material properties in table 4 to estimate the parameters for “Material 2”, our best approximation to
Mn2Bi2Te5.

Hubbard Hamiltonian is:

H = −t
∑
〈ij〉,σ

a†iσajσ + U
∑
i

ni↑ni↓, (2.30)

where a†iσ and aiσ are the creation and annihilation operators for a spin σ at lattice site i
and the first sum is over nearest neighbour sites. ni↑ and ni↓ are the spin up and spin down
density operators for the ith lattice site. The first term describes the kinetic energy of the
system, whose scale is given by the hopping parameter t. The second term describes the
interaction between spins on the same site, with scale given by the Hubbard term U . In
the limit of half filling and U � t, the Hubbard model is equivalent to a Heisenberg model
with JH ∼ t2/U [107]. The exchange field is related to the Heisenberg Hamiltonian via
eq. (A.15) as

HE = 2SJH
gµB

, (2.31)

where S is the ion spin and g is the spectroscopic splitting factor [108] (see appendix A for
more details). This relation was used in table 4 to set the hopping parameter t given U , S
and µBHE and taking g = 2.

The electron band energies di, eqs. (2.23), (2.24), appearing in the microscopic model
are normalized with respect to t. The Brillouin zone (BZ) momentum, k, on the other
hand, is normalised with respect to the unit cell. This suggests normalizing the integrals
eqs. (2.23), (2.24) as (we consider only the case with a single Dirac fermion from now on and
drop the subscript f):

J =
∫

BZ

d3k

(2π)3

∑
i d

2
i

16|d|3 = I1
Vu.c.t3

, (2.32)

(note that this J is not Heisenberg JH , in fact JH ∝ 1/J) and

m2
ΘJ = M2

5

∫
BZ

d3k

(2π)3
1

4|d|3 = M2
5
I2

Vu.c.t3
, (2.33)

where Vu.c. is the volume of the unit cell. It then follows that the AQ mass is:

mΘ = M5

√
I2
I1

= 2SU
3

√
I2
I1
. (2.34)

Notice that for an exact Dirac dispersion for d, the integrals over the BZ vanish if the Dirac
mass, M0, vanishes, as we expect from the Gell-Mann-Oakes-Renner relation [109]. However,
these integrals should be evaluated for d’s computed in the full theory, i.e. ab initio density
functional theory for the Hubbard model.
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In the full theory, the normalized integrals I depend on the ratio t/U . In terms of the
Hubbard model parameters we have M5 = (2/3)Unz, where nz = S is the normalised AF
order. The decay constant is:

fΘ
2 = 2M2

0
I1

Vu.c.t3
. (2.35)

Using a cubic lattice model, ref. [42] computed the BZ integrals for (Bi1−xFex)2Se3. The
integrals depend on the ratio t/U , so we can also use this result for Mn2Bi2Te5 if we extract
the values of the normalised integrals.

Reference [42] report b = 0.2 meV at 2 T and mΘ = 2 meV. Ref. [42] assumed values for
the dielectric constant (taken at the gap instead of near the spin wave resonance) and bulk
band gap (taken from the model without doping [94]) of (Bi1−xFex)2Se3, which we wish to
update (in table 4, the values assumed by ref. [42] are given in parentheses). Fortunately,
both of these quantities can be factored out of the relevant expressions to arrive simply with
the normalised integrals. We find:

I1 = 4× 10−7 , I2 = 4I1 × 10−8 . (2.36)

Leading to the derived model parameters:

fΘ = 30 eV
(

M0
0.03 eV

)0.5 ( Vu.c.

440Å3

)−0.5 ( t

0.04 eV

)−1.5 ( I1
4× 10−7

)0.5
(2.37)

mΘ = 2 meV
(

S

4.99

)(
U

3 eV

)( I2/I1
4× 10−8

)0.5
. (2.38)

The derived parameters are presented in table 5, where we adopt the less committal names
“Material 1” and “Material 2” for (Bi1−xFex)2Se3 and Mn2Bi2Te5 respectively, to acknowl-
edge the limitations of our estimates.

Note that in table 4 we quote the anisotropy field µHA, but that this plays no role in
our estimation of the AQ parameters. The anisotropy field in fact determines the transverse
magnon masses (see appendix A.1), and not the mass of the longituninal AQ. In Paper I
we mistakenly assumed to use the transverse magnon mass for the AQ (along with a doping
fudge factor). The transverse and longitudinal modes turn out to have similar masses. While
we do not know of a fundamental reason for this coincidence, they are both clearly governed
by the same O(meV) magnetic energy scales.

Finally, we mention the important spin flop transition (for a detailed description and
bibliography, see ref. [110]). Large magnetic fields cause spins to align and induce net magne-
tization. The magnetization increases linearly for fields larger than the spin-flop field, HSF,
eventually destroying the AF order. The spin flop field for MnBi2Te4 is 3.5 T [76]. In easy
axis systems, the AF order is destroyed completely when the magnetization saturates. This
occurs at the spin flip transition for fields larger than the exchange field, HE . Large applied
fields that destroy AF order will also destroy the AQ. For the exchange fields given in table 4
we expect these transitions to happen in the many Tesla regime. In the following we consider
fields up to 10 T for illustration.

2.5 Damping and losses

As discussed below, the magnon and photon losses are crucial in determining how effective an
AQ material is for detection of DM. In order to detect the AQ and measure its properties, it
is essential that any experiment is carried out at temperatures below the Néel temperature.
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Type of losses Symbol Parameterisation Reference values Comments

Conductance Γρ ε2 ω 10−4 ω
Extrapolated from
optical wavelengths

Gilbert damping Γlin αG (1 + χ−1
m )ω 10−9 ω χm given in ref. [111]†

Magnon scattering Γ4m n/a Boltzmann-suppressed
for T < m

Impurities
& domains Γcryst. (δL/L)ω [10−4, 10−3]ω Typical impurity scale

L ∼ 1 µm [111]
† We thank Chang Liu for providing this result.

Table 6. Summary of the loss model. Elements of Γ are specified before diagonalising the kinetic
term (see eq. (3.28)). The only E-field loss is the conductance. The total AQ loss is given by the sum
of the remaining terms. Loss channels deemed negligible include AQ decay to photons, AQ-photon
scattering, and off-diagonal losses.

Fortunately both candidate materials have TN > 4K, and so initial measurements can be
made at more accessible liquid Helium temperatures. As we discuss below, there are at least
two sources of loss (conductance, and magnon scattering) that become less important at low
temperatures. When using AQ materials to search for DM, it could therefore be advantageous
to operate at T � ωa dilution refrigerator temperatures.

2.5.1 Resistivity and the dielectric function
Material conductance (inverse resistivity) appears in the E-field equations of motion as a
damping term Γρ = 1/ρ = 0.6 meV [ρ/Ω cm)]−1, from which we see that a resonance near
1 meV requires ρ � 1 Ω cm) for Q = ω/Γ � 1. For a resonance involving the electric field,
one requires large resistance, i.e. low conductance.

Ref. [112] measure ρ in the optical (ω ∼ 1 eV) at T ≈ 1 K of ρ = 2× 10−3 Ω cm for
undoped Bi2Se3, lowering to ρ = 5× 10−4 Ω cm with doping. However, it is shown that
annealing the TI at high T can increase ρ to be as large as 1 Ω cm. For MnBi2Te4 the
situation is similar, with two different measurements giving a longitudinal ρ ≈ 10−3 Ω cm
at T ∼ O(fewK) [113]. In the case of MnBi2Te4, resistivity can be raised by doping with
antimony (Sb) [114]. Even so, topological insulators are actually very poor insulators at
typical electronic frequencies.

The measurements of bulk ρ for both Bi2Se3 and MnBi2Te4 are taken at high energy
near the band gap around 1 eV, and far from the spin wave resonance frequency at low
energies. References [103, 104] studied the dielectric function of Bi2Se3 as a function of
probe wavelength for the trigonal and orthorhombic phases. The complex dielectric function
is ε̃(ω) = ε1 − iε2. For energies below the gap, E . 1 eV, ε1 has value around 25 at the
longest wavelenths measured and is only slowly decreasing, while ε2 tends to zero rapidly at
large wavelengths in the trigonal case (which is thus more favourable for our purposes). The
value of ε1 is considerably smaller than the ε1 = 100 estimate used in Paper I and assumed
in ref. [42]. As we show below, smaller values of ε1 are highly desirable for DM detection.

The resistivity is given by ρ(ω) = 1/[ωε2(ω)]. A narrow linewidth on resonance requires
to ε2(ω+)� 1. Measurements in ref. [104] extend to a maximum wavelength 2800 nm where
ε2 ∼ 1. A simple power law extrapolation to THz wavelengths gives ε2(1 meV) = 9.5× 10−5

(see figure 4). Thus, the resistivity on the polariton resonance at wavelengths of order 1 mm
is significantly higher than the bulk measurements in the optical. The value of ε2 is different
for different crystal structures of Bi2Se3, and we consider only the most favourable case with
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Figure 4. Bi2Se3 dielectric function, ε2, as a function of wavelength λ in the optical regime (ω ≈ 1 eV).
Measurements are from refs. [103, 104] for the more favourable trigonal case. The results are well fit
by a powerlaw, ε2 ∝ λp with p = −1.52.

the highest resistivity. We take the value ε2 = 10−4 as a reference scale, however, we do not
include any further frequency dependence, which would certainly be different for different
materials, such as Mn2Bi2Te5. The resistivity on resonance can be determined from the
linewidth as measured by THz transmission spectroscopy, as we demonstrate in section 3.2.

2.5.2 Magnon losses
As we have discussed, the AQ is not described by the same EFT as ordinary AF-magnons.
However, due to the relation between the AQ and the magnon fluctuation, we use the well-
studied magnon case as a means to assess the possible magnitude of the axion linewidth,
and the qualitative possibilities. Furthermore, as we will see, the dominant contribution is
estimated to be due to material impurities, which do not depend on the microscopic model
for the AQ. We split the magnon losses into different contributions:

Γm =
∑
i

Γi, (2.39)

where the index i sums over terms defined in the following subsections.
Ref. [115] gives a comprehensive account of non-linear wave dynamics relevant to the

magnon linewidth. Early works on magnon scattering and linewidth include ref. [116]. The
recent pioneering work of refs. [117, 118] showed how neutron diffraction with energy reso-
lution down to 1 µeV can be used to confirm the theoretical predictions for the AF-magnon
linewidth, and the dependence on temperature and momentum across the whole Brillouin
zone, including many of the contributions discussed in the following. We focus on a few chan-
nels for losses, by means of example, closely following ref. [118]. Scattering channels that
we have not considered include AF-magnon-ferromagnetic magnon scattering, and magnon-
phonon scattering: these are discussed in e.g. ref. [115].
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In the present work, we are only concerned with the q ≈ 0 mode at T � TN , where
many contributions can be neglected. In this regime, as we show in section 3.2, the total AQ
contribution to the linewidth can be measured using THz transmission spectroscopy.

“Linear” losses and Gilbert damping, Γlin

Losses are historically incorporated for spin waves by the introduction of the phenomenolog-
ical Gilbert damping term into the Landau-Lifshitz equation, making the Landau-Lifshitz-
Gilbert (LLG) equation. Gilbert damping is a linear loss, since it simply represents decay of
spin waves due to torque. There is not a universally accepted first principles model of Gilbert
damping. One possible model is presented in ref. [119], where Gilbert damping is shown to
arise due to spin orbit coupling in the Dirac equation (other models include refs. [120, 121]).
In this case, the damping term is written as:

Γlin = αG(1 + χ−1
m )ω . αG = eµΣs

8m2
e

, (2.40)

where me is the electron mass and χm is the dimensionless magnetic susceptibility (volume
susceptibility in SI units), and Σs = S/Vu.c.. The dimensionless prefactor αG is of order
10−12 for (Bi1−xFex)2Se3 and Mn2Bi2Te5. The value of χm was measured for MnBi2Te4 in
ref. [111] and found to be of order χm ≈ 10−3 for T < TN (see table 6). Thus the relative
width, Γ/ω, is of order 10−9, which is negligible compared to the other sources of loss in the
following. Furthermore, χm is small enough to be neglected in the magnetic permeability
(with c = 1), µm = 1 + χm, which we fix to unity.

Magnon-magnon scattering, Γ4m

Reference [118] showed that two-to-two magnon scattering is the dominant contribution to
the linewidth above ∼ 10 K in the antiferromagnets Rb2MnF4 and MnF2 as measured by
neutron scattering. The linewidth at 10 K due to this process is Γm ≈ 10µeV, falling rapidly
at lower temperatures. We will show how this behaviour arises below. Indeed, as noted
in [117], for q → 0 and T → 0, all scattering contributions to the magnon linewidth vanish.
Ref. [117] also find that this is true for scattering between the magnon and longitudinal
spin fluctuations such as the axion. We find it useful to derive in some detail the scattering
contribution to the linewidth, and demonstrate why it vanishes at low temperature, since
this is the most well understood part of our loss model.

The magnon modes obey a Boltzmann equation. Mode coupling via non-linearities
induces an effective lifetime for any initial configuration. Mode coupling arises from the
four-magnon amplitude:

δθ(k1) + δθ(k2)←→ δθ(k3) + δθ(k4) , (2.41)

which has matrix elementM(k1, k2, k3, k4), and is shown in figure 5. The state with momen-
tum k1 is the mode in the condensate of interest, k2 is a thermal magnon. Magnons k3 and
k4 are modes scattered out of the condensate, and thus losses. This matrix element appears
in the collisional Boltzmann equation for the magnon distribution function f1 ≡ f(k1) as
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Figure 5. Left: four magnon scattering. In EFT, the amplitude can be calculated as shown in
ref. [122]. As shown in ref. [118], it is the leading contribution to the magnon linewidth for T ∼ TN .
For temperatures far below the spin wave mass, this term is Boltzmann suppressed. Right: feynman
diagram for the s-channel of the process eq. (2.49) mediated by the axion term in the Lagrangian.
The parametric dependence of the vertex factors is shown in red. This process is suppressed by two
powers of α compared to the four magnon amplitude, eq. (2.45).

(see e.g. ref. [123]):

df1
dt =

∫ 4∏
i=2

dΦi(2π)4δ(3)(k1 + k2 − k3 − k4)δ(ω1 + ω2 − ω3 − ω4)

|M|2[f3f4(1 + f1)(1 + f2)− f1f2(1 + f3)(1 + f4)] , (2.42)

= −
∫ d3k2

(2π)3 f1f2|v1 − v2|σ , (2.43)

where dΦi = d3ki
(2π)3 is the non-relativistic phase space element for state with momentum ki,

the Dirac delta’s enforce energy-momentum conservation, ki represents the 3-momentum of
the ith particle, and the fi factors assume the particles are bosons. Ref. [118] caution that
when such integrals are evaluated numerically, one should be careful to include the Umklapp
processes, related to conservation of crystal momentum.v

We formulate the integral non-relativistically as the material picks out a preferred frame
for the magnons. In the second line, the first term in the square brackets represents pro-
duction of states k1, k2 (the inverse process in eq. (2.41)), while the second term represents
losses. In the last line we have assumed f3 = f4 = 0 for unoccupied final states, and used
the definition of the differential cross section (this structure is familiar from particle physics
scattering theory [124]). Ref. [115] derives an equivalent equation beginning from the LLG
equation, which also shows this non-linear loss term explicitly in terms of the four-magnon
amplitude.

Eq. (2.43) is the collisional Boltzmann equation, ∂tf1 = C[f1], where C[f1] is the scat-
tering integral. Factoring out f1 for the condensate, the scattering integral takes the form
C[f1] ∼ 1/τ and we identify the relaxation time τ for the distribution function to change
significantly from its initial state. This gives the result that:

Γ4m = 1/τ ∼ 〈σv〉 , (2.44)

where the angle brackets denote the thermal average, i.e. phase space integral with the
thermal distribution f2.
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Magnons can be described by EFT, as discussed in appendix A.1. The four magnon
amplitude is given by the equivalent of the QCD pion amplitude evaluated around non-zero
quark masses [122].

M= 1
4√ω1ω2ω3ω4

v4
m

F 2
2

{
δabδcd

( 2
v2
m

ω1ω2−2k1 ·k2 +m2
m

)

+δacδbd
(
− 2
v2
m

ω1ω3 +2k1 ·k3 +m2
m

)
+δadδbc

(
− 2
v2
m

ω1ω4 +2k1 ·k4 +m2
m

)}
, (2.45)

where a, b, c, d = 1, 2 denote the magnon polarizations, vm is the magnon velocity and mm is
the magnon mass.

This is the amplitude appropriate to a non-relativistic normalization, with 1 particle
per unit volume rather than the usual 2ω particles per unit volume in relativistic quantum
mechanics.

In this case, the cross section is related to the T-matrix above as [122]:

dσ = |M|
2

v
(2π)4δ4(k1 + k2 − k3 − k4) d

3k3
(2π)3

d3k4
(2π)3 , (2.46)

where v = |v1 − v2| is the relative velocity of the incoming particles.
We integrate over k3 and k4 to obtain the total cross section for given incoming momenta

k1 and k2:

σ(k1, k2) =
∫

d3k3
(2π)3

d3k4
(2π)3dσ =

∫
dk4

(2π)3dΩk2
4
|M|2

v
(2π)δ(ω1 +ω2−ω3−ω4))

∣∣∣∣
(k1+k2−k3−k4=0)

,

(2.47)
where ω4 =

√
k2

4v
2
m +m2

m and ω4 =
√

(k1 + k2 − k4)2v2
m +m2

m. At this point in the calcula-
tion, we might be tempted to move to the centre of mass frame. However, this would change
the magnon velocity vm, with the new magnon velocity depending on Ω, leading to a magnon
dispersion relation that depends on Ω. Therefore, it is in our best interests to remain in the
rest frame of the material. We thus obtain the differential cross section:

dσ

dΩ = 1
(2π)2

1
v

|M|2k2
4

k3
ω3

+ k4
ω4

, (2.48)

where k3, ω3, k4, ω4 are defined by conservation of energy and momentum for a given Ω.
Now let us consider the scaling of Γ4m with temperature T . We note first that the factor

of v in Γ4m is cancelled by the factor of 1
v in dσ

dΩ . We will focus first on the scaling of the line
widths measured in [118] at temperatures from 3K to 0.8TN for magnons with momentum
k1 = 0 to k1 = qZB at the edge of the zone boundary. The contributions of T to Γ4m are
as follows:

• Thermal magnons have an energy set by T . We assume that T & mm, such that
thermal magnons can be excited. We therefore take ω2 ∼ k2 ∼ T .

• The scaling of the outgoing momenta with T depends on the relative sizes of T and
ω1. The energy at the zone boundary in [118] is 6.6 meV for Rb2MnF4 and 6.3 meV for
MnF2, while the temperature ranges from 3K = 0.26 meV to 0.8TN , corresponding to
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2.6 meV and 4.6 meV respectively. Therefore both cases where T > ω1 and cases where
ω1 > T are measured. When T � ω1, the temperature provides most of the energy
in the scattering process and we have k3, ω3, k4, ω4 ∼ T . When T � ω1, the energy of
the damped magnon provides most of the energy in the scattering process and we have
k3, ω3, k4, ω4 ∼ ω1.

• The number of thermal magnons also scales with T . Assuming that there is no signifi-
cant mass gap at k2 = 0 for the magnons considered in [118], we have

∫
d3k2f2 ∼ T 3,

as for a black body.

• We have also
∫
d3k3d3k4 ∼ T 2 when T � ω1 from the factor of k2

4 in the phase space
integral.

• As T & mm, the ω1 and k1 terms inM dominate. Using the scalings above, this gives
M∼ T−1/2.
Putting these elements together, we find Γ4m ∼ T 3T 2T−1 = T 4 for ω1 � T and

Γ4m ∼ T 3T−1 = T 2 for ω1 � T . We can compare this prediction with the measured result in
figure 4 in [118]. For low magnon wavenumber q (corresponding to low ω1, we have Γ4m ∼ T 4

as expected. As q is increased, the scaling with T decreases towards Γ4m ∼ T 2 as predicted.
However, the measured Γ4m ∼ T when q = 0 case is not explained by this analysis.

We would also expect that for temperatures much lower than the magnon mass, very
few thermal magnons would be excited, and Γ4m would be exponentially suppressed. For a
magnon mass mm ∼ 1 meV, this corresponds to T < 10 K.

Starting from the Boltzman equation, we have argued that magnon-magnon scattering
decays with T , reproducing the experimentally observed trends in [118], and is then exponen-
tially suppressed at temperatures below the magnon mass. The scattering contribution to
the antiferromagnetic magnon linewidth is calculated analytically for several low T regimes
in [116]. This yields a power law fall off with T in each case.

We therefore conclude that, at low T , and particularly for temperatures below the
magnon mass, the magnon scattering contribution to the linewidth is negligible.

Axion-photon scattering, Γγm
Scattering of magnons from thermal photons contributes to the magnon line-width Γm. This
process is induced by the four particle amplitude

δθ(k1) + γ(k2)←→ δθ(k3) + γ(k4) , (2.49)

i.e. magnon/AQ-photon scattering mediated by the Chern-Simons interaction, eq. (2.1). In-
specting the Feynman diagram, figure 5 (right panel), this amplitude is suppressed by two
powers of the fine structure constant α with respect to the four magnon amplitude, and
so we do not expect magnon-photon scattering to be significant compared with magnon-
magnon scattering. The inverse process, scattering thermal magnons from the electric field,
is similarly suppressed, and thus likely to be subdominant to conductive losses to E.

Axion lifetime, Γmγγ
The Chern-Simons interaction leads to direct decay of an AQ into two photons. The contri-
bution to the width is:

Γmγγ = α2

256π3
m3
s

f2
Θ

= 6.7× 10−22 eV
(
ms

meV

)3 (100 eV
fΘ

)2
, (2.50)
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corresponding to a lifetime on the order of months. This process can be safely neglected
compared to all other scales in the problem.

Off-diagonal losses
The off-diagonal terms in the loss correspond to loss terms of the form dφk

dt ∼ 〈Ak〉 and
dAk
dt ∼ 〈φk〉. As we generically expect dφk

dt ∼ 〈φk〉 and
dAk
dt ∼ 〈Ak〉, these will all be of

the form:
dφk
dt
∼ 〈Ak〉〈φk〉, (2.51)

dAk
dt
∼ 〈Ak〉〈φk〉. (2.52)

These off-diagonal loss terms are therefore not present at linear order in the perturba-
tions Ak and φk.

Impurities and domains, Γcryst.

At low temperatures, the dominant contribution to the magnon linewidth in ref. [118] is
attributed to scattering of magnons off magnetic domains and crystal impurities, which is
T -independent.

In the simplest picture, scattering from magnetic domains leads to a lifetime:

τ ∼ Lmag.
2v(q) , (2.53)

where v(q) is the velocity of the mode with momentum q, and Lmag. is the size of the domain.
The ref. [111] crystals of MnBi2Te4 have estimated magnetic domain size Lmag. ∼ 1µm.
We require the axion-polariton to propagate at least through the thickness, d, of the sample,
and thus magnetic domains appear to strongly affect the skin depth and resonance width of
axion-quasiparticle dominated polaritons in the limit d� Lmag..

However, in the q → 0 limit the magnon wavelength exceeds the size of a domain and
eq. (2.53) ceases to apply. Furthermore we consider the limit vs = 0 and ignore the magnon
propagation compared to the electric field. It is currently unknown how scattering from
domains will affect such long wavelength mixed modes. On one hand, it may be that the
domain walls appear as small scale fluctuations that decouple from large wavelength modes.
Conversely, given that the domain walls disrupt the short range interactions that support the
small q magnons it is possible that they have non-trivial effects despite the scale separation.

A second T -independent contribution to the linewidth, which is expected to remain in
the q → 0 limit, is due to scattering from impurities. This was accounted for in ref. [118]
with the simple phenomenological model for the impurity density:

Γcryst. =
(
δL

L

)
ω(k) (2.54)

where δL is the lattice constant, and L is the spacing between impurities, thus δL/L is the
average number of lattice sites between impurities. The model eq. (2.54) accounts in the
same manner for magnetic and crystal impurities. In ref. [111] the crystal impurities occur
on the same scale as the magnetic domains, Lcryst. ∼ 1µm, while δL ∼ (Vu.c.)1/3 ∼ 6 Å
leading to:

Γcryst. = 7× 10−4ω

(
δL

6 Å

)( 1µm
Lcryst.

)
. (2.55)
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Figure 6. Proposed transmission experiment to detect the axion-polariton. Left: THz source power
spectrum. Centre: transmission experiment concept. A source field, which propagates along the
negative z-direction is incident on a TMI. An external B-field Be is applied parallel to the TMI surface.
If AQs exist in the material, the dispersion relation has a gap where no propagating modes exist, thus
altering the spectrum of the transmitted radiation. Right: theoretical transmission spectrum. The
green line corresponds to the case where a dynamical AQ is present. The gap is indicated by the
vertical green dotted lines. The width on resonance, Γres, serves to measure the polariton losses.

We estimate that crystal impurity scattering is the dominant contribution to the AQ
linewidth in the regime of interest. Given the lack of conclusive calculations or measurements
in the literature (or even, as far as we can tell, a detailed model), we regard this as a
question best resolved by experimental studies. Indeed, an understanding of the dynamics
of small q magnons and axion-polaritons is an interesting off-shoot of the studies proposed
in section 3. However, given the importance of this linewidth contribution to our proposed
dark matter search, we must adopt a reference value. We adopt the range given in table 6,
Γcryst. ∈ [10−4, 10−3] meV, corresponding to impurity separations of order 1µm.

3 Discovering the axion quasiparticle

One of the methods proposed by ref. [42] to detect the presence of AQs in TMIs was total-
reflectance measurement, and idea we explore further here. In the following we show to
compute the transmission function of TMIs using axion electrodynamics. The transmission
function is shown to display a gap, leading to total reflectance. Furthermore, by using a
wideband THz source, such a measurement can also determine the axion-polariton reso-
nant frequencies, and loss parameters. The concept of this THz transmission spectroscopy
measurement is shown in figure 6. Similar measurements have been performed on antifer-
romagents (e.g. ref. [46]), which demonstrate AFMR and determine the magnon linewidth
(losses on resonance) for an electromagnetic source.3 Such a measurement has not to date

3Crucially, for our purposes, such a measurement uses precisely the same physics (oscillating E-field source)
as occurs for dark axion detection. This is in contrast to neutron scattering of antiferromagnets (e.g. ref. [118]),
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been performed on any AQ candidate material.

3.1 Axion electrodynamics and boundary conditions

In this section, we review the axion-Maxwell equations for TMIs. We then derive a one-
dimensional model as well as the correct interface conditions for all fields involved. Based
on the one-dimensional model, we compute the reflection and transmission coefficients for
incoming THz radiation.

3.1.1 General formulation

The macroscopic axion-Maxwell equations for a three-dimensional TMI are [42]

∇ ·D = ρf −
α

π
∇(δΘ + Θ0) ·B , (3.1)

∇×H − ∂tD = Jf + α

π
(B∂t(δΘ + Θ0)−E ×∇(δΘ + Θ0)) , (3.2)

∇ ·B = 0 , (3.3)
∇×E + ∂tB = 0 , (3.4)

∂2
t δΘ− v2

i ∂
2
i δΘ +m2

ΘδΘ = ΛE ·B , (3.5)

where δΘ is the pseudoscalar axion quasiparticle (AQ) field, Θ0 ∈ [0, π] a constant, f2
Θ the

AQ decay constant, vi (with i = x, y, z) is the spin wave velocity, mΘ the spin wave mass, E
is the electric field, B the magnetic flux density, D the displacement field, H the magnetic
field strength, ρf the free charge density, and Jf the free current density, which fulfill the
continuity equation ∇ · Jf + ρ̇f = 0 as in usual electrodynamics. In what follows we often
use the linear constitutive relations

D = εE and H = µ−1B, (3.6)

where ε and µ are the scalar permittivity and permeability, respectively. Note that it is
important to include the Θ0 term in the equations above: while Θ0 is some constant in the
TMI, it is always zero in vacuum. Applying the nabla operator can therefore give a delta
function at the boundaries of the TMI, i.e. a boundary charge term.

Equations (3.1) and (3.2) can be written such that the terms including the dynamical AQ
field δΘ can be interpreted as additional contributions to polarization and magnetization, i.e.

∇ ·DΘ = ρf , (3.7)
∇×HΘ − ∂tDΘ = Jf , (3.8)

∇ ·B = 0 , (3.9)
∇×E + ∂tB = 0 , (3.10)

where we define

DΘ = D + α

π
(Θ0 + δΘ)B , (3.11)

HΘ = H − α

π
(Θ0 + δΘ)E . (3.12)

which determines the linewidth for a different excitation mechanism.
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To derive interface conditions for the electromagnetic fields, we consider two domains la-
beled 1 and 2. Both domains have different ε, µ, and Θ0. Transforming eqs. (3.7)–(3.10)
into their integral representation, and applying Gauss’s (Stokes’) theorem to an infinitesimal
volume (surface) element, leads to the following interface conditions for the electromag-
netic fields:

n× (E2 −E1) = 0 , (3.13)
n · (DΘ,2 −DΘ,1) = σS , (3.14)

n · (B2 −B1) = 0 , (3.15)
n× (HΘ,2 −HΘ,1) = JS , (3.16)

where σS and JS are free surface charge and current densities (both assumed to be zero in
what follows) and n is a unit vector pointing from domain 1 to domain 2. It is important to
stress that eqs. (3.13)–(3.16) are interface conditions, not boundary conditions.

As described above, interface conditions follow from the differential equation in their
integral form. In contrast, boundary conditions can be applied at the boundary domains for
which a partial differential equation is solved, and do not follow from the integral represen-
tation of the differential equation. This is also the reason why the interface conditions are
specified only for the electromagnetic fields, and not for the dynamical axion field δΘ. In this
section we only consider the case of a TMI surrounded by a non-topological material/vacuum
with Θ0 = 0. We then only need to impose interface conditions for the electromagnetic fields;
while they exist in both the TMI and the adjacent region, the dynamical AQ only exists in the
TMI. The AQ is therefore only subject to boundary conditions. We revisit and deepen this
discussion in section 3.2, in the context of calculating reflection and transmission coefficients
for a layer of TMI surrounded by vacuum.

3.1.2 One dimensional model
To develop a one-dimensional model, we assume that all fields only depend on the
z-coordinate and time. Furthermore, all fields are taken to be transverse fields, i.e.
Bz = Hz = Dz = Ez = 0. Then, in a domain with constant Θ0, eqs. (3.1)–(3.5) reduce to:

∂z

(
−Hy

Hx

)
− ∂t

(
Dx

Dy

)
− Jf = α

π

[(
Bx
By

)
∂tδΘ +

(
−Ey
Ex

)
∂zδΘ

]
, (3.17)

∂z

(
−Ey
Ex

)
+ ∂t

(
Bx
By

)
= 0 , (3.18)

∂2
t δΘ− v2

z∂
2
zδΘ +m2

ΘδΘ = Λ(ExBx + EyBy) , (3.19)

where we assumed that no free static charges exist, i.e. ρf = 0.4 The interface con-
ditions (3.14) and (3.15) are trivially fulfilled in the one-dimensional model since the z-
components of all electromagnetic fields vanish, and n = êz.

3.1.3 Linearization
The sources in eqs. (3.17) and (3.19) are non-linear and, therefore, finding analytic solutions is
in general not possible. However, we are interested in the special case of solving the equations

4This does not mean that Jf vanishes. Since ρf and Jf are connected via a continuity equation, Jf only
has to fulfil ∇ · Jf = 0 if ρf = 0.
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in presence of a strong, static external B-field Be = Beêy. We may therefore separate the
total B-field into a static and a dynamical part, i.e. B → Be +B(x, t). Similarly, the free
current Jf can be split into a part which sources Be, and an additional reaction current,
i.e. Jf → Jf0 + Jf . Physically, the reaction current describes losses of the electromagnetic
fields in the materials. Note that Be fulfils ∇ ×He = Jf0, and Jf0 satisfies the continuity
equation ∇ · Jf0 = 0. With these assumptions the resulting equations are:

∂z

(
−Hy

Hx

)
− ∂t

(
Dx

Dy

)
− σ

(
Ex
Ey

)
= α

π

[(
Bx
Be

)
∂tδΘ +

(
−Ey
Ex

)
∂zδΘ

]
, (3.20)

∂z

(
−Ey
Ex

)
+ ∂t

(
Bx
By

)
= 0 , (3.21)

∂2
t δΘ− v2

z∂
2
zδΘ +m2δΘ = Λ(ExBx + EyBe) , (3.22)

where we substitute the reaction current Jf with the loss term σE (Ohm’s law). When
deriving eqs. (3.20) and (3.22), we used that the external field Be is much larger than the y-
component of the reaction B-field, By. Note that it is straightforward to include an external
source field in E and B.

Let us now justify why the non-linear terms on the right-hand side in eqs. (3.20)
and (3.22) can be linearized. Consider the two distinct cases where a strong external laser
field is parallel or orthogonal to the static external B-field: first, assume that the external
laser field is parallel to Be = Beêy. Note that

Be
∂tδΘ
∂zδΘ

≈ 3× 104 V
m

(
Be
1 T

)
, (3.23)

where we approximated ∂tδΘ
∂zδΘ with a typical spin wave velocity, which is on the order of vs =

10−4 [52]. Typical THz sources have a power around P = 10−5 W, which leads to Ey = 27 V
m

for a beam surface area of 10 mm2. Equation (3.23) is therefore fulfilled for sufficiently large
external B-fields. With these considerations we see directly that Be∂tδΘ � ∂zδΘEx since
Ex is even smaller than Ey. It follows that the non-linear term in the second component on
the right-hand side in eq. (3.20) can be neglected.

Next, we consider the two source terms in the first equation in the reft-hand side of
eq. (3.20). The term Ey∂zδΘ dominates over the term Bx∂tδΘ since Ey contains the external
laser source. However, the large source term Be∂tδΘ in the term in eq. (3.20) is larger than
the dominating source in the first term: Be∂tδΘ� Ey∂zδΘ, cf. eq. (3.23). From eq. (3.21) it
is clear that ∂tBy = −∂zEx and therefore due to Hy ∼ By the source of the first component
in (3.20) sources the Ey-component. Therefore we can ignore the non-linear sources in the
first equation in (3.20) and focus only on the Ey-component, e.g. the large linear source in
the second equation in (3.20). The non-linear term ExBx in eq. (3.22) can also be neglected
since it is much smaller than the term EyBe, which includes two external fields.

Second, in the case that the external laser field is orthogonal to Be = Beêy, the dom-
inating source of the Klein-Gordon equation, cf. eq. (3.22) is the linear term EyBe. Note
that the fields Bx and Ey can only be induced by polarization rotation and are both on the
order of α

π . However, since 3× 108 V
m

(
Be
1 T

)
� Ex, we can linearize the source term of the

Klein-Gordon, cf. eq. (3.22), i.e. ExBx � EyBe. The second component of eq. (3.20) can
be linearized because any available THz lasers has an amplitude that is below the limit in
eq. (3.23). The first component of eq. (3.20) can also be linearized, i.e. the source terms are
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neglected since both source terms include electromagnetic fields that are only generated via
polarization rotation.

In summary, whether an external laser E-field is parallel or orthogonal to Be, the
equations can be linearized, and they reduce to:

∂2
zEx − n2∂2

tEx − µσ∂tEx = 0 , (3.24)

∂2
zEy − n2∂2

tEy − µσ∂tEy = α

π
µBe∂

2
t δΘ , (3.25)

∂2
t δΘ− v2

z∂
2
zδΘ +m2

ΘδΘ = ΛEyBe , (3.26)

where we explicitly use the linear constitutive relations, cf. eq. (3.6). Furthermore the re-
fractive index is given by

n2 = ε µ . (3.27)

The material properties µ, ε, mΘ, σ, Θ0, vz, and Λ are constants in the equations of mo-
tion. Regions with different material properties are linked by using interface conditions for
the fields.

The corresponding interface conditions are given in eqs. (3.13) and (3.16) with n = êz.
Equation (3.13) remains unchanged after linearization, while the definition ofHΘ in eq. (3.16)
changes due to the linearization to HΘ = H + α

πΘ0E.

3.1.4 Losses

Losses can appear in the linearized equations of motion (3.24)–(3.26) in case of a finite
conductivity σ. However, magnon losses, and losses that mix between magnons and photons,
are not included. We now generalize eqs. (3.24)–(3.26) to include all possible types of losses.
The equations then read:

K∂2
tX − Γ∂tX + MX = 0 , (3.28)

where we define

X =

ExEy
δΘ

 , K =

1 0 0
0 1 α

π
Be
ε

0 0 1

 , Γ =

Γρ 0 0
0 Γρ Γ×,1
0 Γ×,2 Γm

 ,

M =

 k2

n2 0 0
0 k2

n2 0
0 −ΛBe v2

zk
2 +m2

Θ

 , (3.29)

and where Γρ = σ/ε is the photon loss, Γm is the equivalent loss for magnons, and Γ×,1/2
are mixed losses that can arise when photons and magnons interact. We retain these for the
most general treatment, and set them to zero later. Note that not all Γs have the same mass
dimension since [Γρ] = [Γm] = 1, while [Γ×,1] = 3 and [Γ×,2] = −1. The approach also gives
the possibility to define different refractive indices n and photon losses Γρ for the Ex and Ey
components. However, these effects can only become important when polarization rotation
effects are discussed in detail. In the following, polarization rotation effect are computed,
however they are not discussed at a level of detail, such that including different refractive
indices for different polarizations would not change the results significantly.

The interface conditions (3.13)–(3.16) remain the same in the presence of losses, because
it is assumed that all losses are bulk losses.
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3.2 Transmission and reflection coefficients

The presence of an AQ leads to a gap in the dispersion relation, which does not include any
propagating modes. Based on this, Li et al. [42] proposed a transmission measurement (cf.
figure 6) to determine the band gap in a TMI polariton spectrum, opened by the presence
of the AQ (cf. figure 7). We now compute the transmission and reflection coefficients, and
we demonstrate how to experimentally determine the parameters of interest — in particular
the relevant terms of the loss matrix Γ.

3.2.1 Solution of linearized equations
Our strategy for solving the linearized equations is as follows: we solve the equations for
each spatial domain of constant material properties. We then apply the appropriate interface
conditions to match the solutions in the different domains.

Lossless case (Γ = 0). The dispersion relation for the Ex-component, see eq. (3.24), is
the usual photon dispersion relation:

k2 = n2ω2 ≡ k2
p . (3.30)

The Ey-component mixes with the AQ and, in the vz = 0 case, we find a typical polariton
dispersion [42, 125]:

ω2
± = 1

2

[
ω2

LO + k2

n2

]
± 1

2

(ω2
LO −

k2

n2

)2

+ 4b2 k
2

n2

1/2

, (3.31)

where we have defined

b2 ≡ α

π

ΛB2
e

ε
, (3.32)

ω2
LO ≡ b2 +m2

Θ . (3.33)

The case vz 6= 0 is discussed later since vz is on the order of the spin wave velocity 10−4 and
therefore the expected effect is small.

We show ω± as a function of the wave number k in the left panel of figure 7. The
horizontal black lines indicate the gap betweenmΘ and ωLO, where total reflection is expected.
The resulting frequencies for mΘ and ωLO are in the THz regime what makes clear why THz
sources are needed to probe the gap in the dispersion relation. ω+ converges for large k to
a photon dispersion (dashed blue line). ω− has for small k an almost photon-like dispersion
ω− = k

n
m√

b2+m2 (dashed red line).
Inverting eq. (3.31) gives:

k2 = n2ω2
[
1− b2

ω2 −m2
Θ

]
≡ k2

Θ ≡ n2
Θω

2 . (3.34)

We show k as a function of ω in the right panel of figure 7. In the limit of b→ 0, eq. (3.34)
becomes the usual photon dispersion relation. For ω2 we have two solutions, while the
solution for k2 can be described by a single function. Inside the bandgap, k2 is negative,
thus k is purely imaginary, and no propagating mode is present. In the following section it
is explicitly shown that this leads to total reflection and zero transmission.
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Figure 7. Polariton dispersion relation, arising from the mixing of AQs and photons for a spin wave
velocity vz = 0. We use typical material values for a Mn2Bi2Te5 TMI, cf. table 5 and eq. (2.3), and
n = 5 and µ = 1. The external B-field is Be = 2 T. The left panel shows the ω± mode, which
has a bandgap between mΘ and ωLO (horizontal lines). The right panel illustrates the inverse of
the dispersion relation for k. Inside the bandgap (vertical lines), k is only imaginary, and hence no
propagating modes exist.

The most general ansatz for the field evolution in a TMI medium are

Ex (z) = Ê+
x e

ikpz + Ê−x e
−ikpz , (3.35)

Ey(z) = Ê+
y e

ikΘz + Ê−y e
−ikΘz , (3.36)

δΘ(z) = δΘ̂+eikΘz + δΘ̂−e−ikΘz , (3.37)

where we omitted the time dependence e−iωt in each line. After plugging the solutions into
the equations of motion, cf. eq. (3.28) the following relations are obtained:

δΘ̂± = ΘEÊ
±
y , ΘE = ΛBe

m2
Θ − ω2 , (3.38)

or, equivalently,

Ê±y = EΘδΘ̂± , EΘ = −α
π

µω2Be
k2
p − k2

Θ
. (3.39)

In the following, the relations in eq. (3.38) are used to reduce the number of unknowns in
the ansatz (3.37):

δΘ(z) = ΘEÊ
+
y e

ikΘz + ΘEÊ
−
y e
−ikΘz. (3.40)

The remaining constants Ê±y can be determined by using the interface conditions (explicitly
shown in section 3.2.2). The AQ field δΘ is completely determined, cf. eq. (3.40), and no
boundary conditions for δΘ have to be applied when, for example, a layer of TMI surrounded
by vacuum is considered. It will become clear in the following that this is a consequence of
the vz = 0 limit.

Note that the relations in eq. (3.39) could have also been used to reduce the constants in
eq. (3.36). However, a short calculation reveals that this would result in the same outcome,
regardless whether the relations in eq. (3.38) or (3.39) was used to reduce the constants.
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Figure 8. Dispersion relation for a non-zero spin wave velocity of vz = 0.01. This exaggerated value
was chosen because for realistic value of 10−4 the effect of band crossing of the + mode is not visible.
We use typical material values for a Mn2Bi2Te5 TMI, cf. table 5 and eq. (2.3), and n = 5 and µ = 1.
The external B-field is Be = 2 T.

A finite spin wave velocity, vz 6= 0, leads a slightly modified dispersion relation:

ω2
± = 1

2
[
ω2

LO + k2(v2
z + 1

n2 )
]
± 1

2
[(
ω2

LO + k2(v2
z −

1
n2 )

)2 + 4b2 k
2

n2

]1/2
. (3.41)

Equation (3.41) is not a typical polariton dispersion relation, since the sign of vz under the
square root is positive, not negative. The dispersion relation for ω± from eq. (3.41) is shown
in the left panel of figure 8, where we used an unrealistically large vale of vz = 0.01 for
illustrative purposes. Typical values for vz are on the order of 10−4. A non-zero value of
vz leads to a gap-crossing of the ω− mode. However, due to the smallness of the spin wave
velocity compared to the speed of light, the gap crossing happens at large values of the wave
number k.

Inverting eq. (3.41) yields two modes for k2,

k2
± = 1

2v2
z

[
ω2 −m2

Θ + n2ω2v2
z ±

((
m2

Θ + ω2(n2v2
z − 1)

)2 + 4ω2n2b2v2
z

)1/2]
, (3.42)

whereas we only obtained one mode for k2 in the vz = 0 case, cf. eq. (3.34). The functional
dependence of eq. (3.42) is shown in the right panel of figure 8. The imaginary part of the
k− mode, which for vz = 0 was only present inside the gap, now keeps rising outside of
the gap for frequencies ω < mΘ. The k+ mode crosses the gap such that for ω > ωLO two
propagating modes exist. However the wavelength of the k+ mode is always much shorter
than the wavelength of the k− mode.

The most general ansatz in the case of non-vanishing spin wave velocity is:

Ex(z) = Ê+
x e

ikpz + Ê−x e
−ikpz, (3.43)

Ey(z) = Ê++
y eik+z + Ê+−

y e−ik+z + Ê−+
y eik−z + Ê−−y e−ik−z, (3.44)

δΘ(z) = δΘ̂++eik+z + δΘ̂+−e−ik+z + δΘ̂−+eik−z + δΘ̂−−e−ik−z . (3.45)

Relations for the unknown constants in the ansatz (3.43)–(3.45) can be derived in com-
plete analogy to the vz = 0 case. However, we would now need to specify boundary conditions
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for the dynamical axion in order to determine all constants. We do not perform the explicit
calculation here since we expect the difference to the vz = 0 case to be minimal, thanks to
the smallness of the spin wave velocity. To see this, consider the following argument:

Let an incoming electromagnetic wave in vacuum be described by A0eikpz. In the TMI
material with vz 6= 0, two modes are present. Around ω ∼ ωLO, the first mode ks has
a wavelength that is much shorter than kp, while the second mode kl has a much longer
wavelength than kp, i.e. |ks| � |kp| � |kl|. This is exactly the situation that we face (cf.
figure 8), where ks = k+ and kl = k−.5 Neglecting reflections, the fraction of the amplitudes
of the two modes in medium 1 are

∣∣∣∣Al1As1
∣∣∣∣ =

∣∣∣ka−kpkp−kl

∣∣∣ ≈ ∣∣∣ kskp ∣∣∣ � 1, where the index 1 refers to

medium 1. Therefore the amplitude of long wavelength mode Al1 is much larger than the
amplitude of the short wavelength mode As1. Based on these arguments, the contribution of
the k+ mode can therefore be neglected — even though it is in principle present. In what
follows, we will consequently assume that vz = 0.

Case with losses (Γ 6= 0). If material losses are included, the dispersion relations (3.30)
and (3.34) are modified. The dispersion relation of the Ex-component is

k2 = n2 ω2
(

1 + i
Γρ
ω

)
=: k2

p (3.46)

and the dispersion relation for the mixed system of Ey and δΘ is

k2
Θ ≡ k2 = n2ω2

(
1 + b2

−iΓmω +m2
Θ − ω2 + i

Γρ
ω

)

+ n2ω

 iBe
(
α
π

Γ×,2ω2

ε + ΛΓ×,1
)
− ωΓ×,1Γ×,2

−iΓmω +m2
Θ − ω2

 . (3.47)

The first part of the dispersion relation in eq. (3.47) only includes the diagonal losses Γm and
Γρ, while the second part also includes mixed losses. We argued in section 2.5 that mixed
losses are smaller than the diagonal losses Γρ and Γm. We therefore neglect mixed losses in
what follows.

Rewriting the dispersion relation (3.47) without mixed losses gives:

k2
Θ ≡ k2 = n2ω2

(
1 + (m2 − ω2)ωb2

Γ2
mω

2 + (m2
Θ − ω2)2 + i

Γmωb2
Γ2
mω

2 + (m2
Θ − ω2)2 + i

Γρ
ω

)
. (3.48)

Equation (3.48) shows that the Γρ contribution is unaffected by any other material
properties, and it stays approximately constant when ω does not vary too much. We show
an example for Γm = 0 in the left panel of figure 9. While the peak of the resonance is not
affected much by the losses, Γρ introduces an almost constant imaginary for all frequencies.
In contrast, magnon losses Γm are dominant around mΘ. This can be seen from the third
term in eq. (3.48) which represents a Lorentzian curve that peaks around ω = mΘ and has
a full width at half maximum (FWHM) of Γm. In the middle and right panels of figure 9
we show examples for Γρ = 0. The larger Γm, the larger the FWHM of the imaginary part

5Note that due to the fact that we plot k+ only up to 100 meV, the much larger values of k+ around ωLO
are not visible in the right panel of figure 8.
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Figure 9. Dispersion relation of the axion-polariton for magnon and photon losses, Γm and Γρ.
Mixed losses are neglected. Left: Γρ = 0.4 meV and Γm = 0. Photon losses introduce an almost
constant imaginary part to the dispersion relation if the chosen frequency interval is not too large.
Middle: Γρ = 0 and Γm = 0.05 meV, right: Γρ = 0 and Γm = 0.2 meV. The larger the magnon
loss, the larger the FWHM of the imaginary part in the dispersion relation. We use typical material
values for a Mn2Bi2Te5 TMI, cf. table 5 and eq. (2.3), and n = 5 and µ = 1. The external B-field is
Be = 2 T.

in the dispersion relation. In other words, frequencies away from the gap are damped more
strongly when Γm is large. Furthermore, the resonance becomes less pronounced for large
Γm. As a consequence, it will be difficult to confirm the existence of the gap in the spectrum,
and the presence of a dynamical AQ, when large losses are present. We investigate this more
quantitatively in section 3.2.3, where we calculate the reflection and transmission coefficients
for a single TMI layer.

In the presence of losses the most general solution, cf. eq. (3.35)–(3.37), is still valid.
However, the relations in the eqs. (3.38) and (3.39) are modified:

δΘ̂± = ΘEÊ
± , ΘE = ΛBe + iωΓ×,2

−ω2 +m2
Θ − iωΓm

, (3.49)

or, equivalently,

Ê±y = EΘδΘ̂± , EΘ = α

π

ω2µBe + in2ωΓ×,1
k2

Θ − k2
p

. (3.50)

It can be checked that eqs. (3.49) and (3.50) reduce to eqs. (3.38) and (3.39) in the limit of
Γ→ 0. In complete analogy to the case without losses, eq. (3.49) determines the dynamical
AQ field, cf. eq. (3.40).

3.2.2 Matrix formalism for many interfaces
In the previous section, we discussed the solutions of the one-dimensional axion-Maxwell
equations in a homogeneous TMI. Here, we consider N+1 media, separated by N interfaces,
as shown in figure 10. Let the first interface be located at z0 = z1, and the last interface at
zN . We label each medium with an index r, i.e. r = 0, . . . , N . For example, the permittivity
and permeability of medium r are thus denoted by µr and εr, respectively. Recall that, in
all media, we set vz = 0 and define the constant external B-field to be Be = Be êy.

We now develop a matrix formalism to link the solutions in different materials to each
other. This makes it possible to compute the scattering of incoming electromagnetic radiation
from a multilayer system. The simplest application is the computation of the reflection and
transmission coefficients for THz radiation that hits a layer of TMI; we discuss this case at
the end of this section.
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z0=z1 z2 z3 zr zN

Medium 0 11 2 r-1 r N

... ...

Figure 10. Multilayer system of different materials. Each medium is characterized by εr, µr, Γr,
and Θ0

r. The external B-field has the same strength and polarization in each medium.

The most general ansatz in medium r is given by:

Erx = Ê+
x,re

ikrp(z−zr) + Ê−x,re
−ikrp(z−zr) ,

Ery = Ê+
y,re

ikrΘ(z−zr) + Ê−y,re
−ikiΘ(z−zr) ,

δΘr = Θr
EÊ

+
y,re

ikrΘ(z−zr) + Θr
EÊ
−
y,re
−ikrΘ(z−zr) , (3.51)

where, compared to eqs. (3.35)–(3.37), we introduce different phase shifts zr for each medium.
The expressions for kp, kΘ, and EΘ were derived already in eq. (3.30), (3.34), and (3.38) for
the case Γ = 0 and in eq. (3.46), (3.47), and (3.49), for the case Γ 6= 0. Applying the interface
conditions (3.13) and (3.16) for the electromagnetic fields at zr yields the following system
of equations:

tr = M−1
r Mr−1 Pr−1tr−1 , (3.52)

with

tr =


Ê+
x,r

Ê−x,r
Ê+
y,r

Ê−y,r

 , Mr =


1 1 0 0
0 0 1 1
krp
ωµr

− krp
ωµr

−α
πΘ0

r −α
πΘ0

r

−α
πΘ0

r −α
πΘ0

r −
krΘ
ωµr

krΘ
ωµr

 , (3.53)

and
Pr = diag

(
ei∆

p
r , e−i∆

p
r , ei∆

Θ
r , e−i∆

Θ
r

)
. (3.54)

The phases are defined as: ∆Θ
r ≡ krΘ(zr+1 − zr) and ∆p

r ≡ krp(zr+1 − zr).
Let us define the matrix S to relate the incoming field amplitude from medium 0 to the

outgoing field amplitude in medium N :

tN = S t0 . (3.55)

For instance, for a single interface, S is given by

S = M−1
1 M0 P0 (3.56)

and, for two interfaces, S is given by

S = M−1
2 M1 P1M−1

1 M0 P0 . (3.57)
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Finally, for N interfaces, we find S to be given by

S = M−1
N MN−1 PN−1 M−1

N−1 MN−1PN−2 MN−2 · · ·M−1
2 M1 P1M−1

1 M0 P0 . (3.58)

For electromagnetic radiation coming into the system from medium 0, Ê+
x0 and Ê+

y,0 are
known and Ê−x,N = Ê−y,N = 0. The other unknown field values can be determined from the
elements of S, i.e. Sij , via

Ê+
x,N

Ê−x,0
Ê+
y,N

Ê−y,0

 =


−1 S12 0 S14
0 S22 0 S24
0 S32 −1 S34
0 S42 0 S44


−1

·


−S11Ê

+
x0 − S13Ê

+
y0

−S21Ê
+
x0 − S23Ê

+
y0

−S31Ê
+
x0 − S33Ê

+
y0

−S41Ê
+
x0 − S43Ê

+
y0

 . (3.59)

3.2.3 Layer of topological magnetic insulator

Let us now apply the matrix formalism to a system with N = 2. However, note that the
matrix approach developed here is able to describe more complicated systems, consisting
of many layers. One particular example could be a layered system of different topological
insulators with different material properties. The matrix formalism with N > 2 could be
useful in DM searches to increase the boost factor using additional layers of TMI or dielectric.

We now calculate the reflection and transmission coefficients for one TMI layer. In the
language of the matrix formalism the system has N = 2 boundaries, and hence three media.
Media 0 and 2 are vacuum while medium 1 is a TMI, hosting a dynamical AQ. The THz laser
radiation is coming from medium 0 and hits the layer of TMI. In what follows, we omit the
subscripts r that label the materials because the only non-vacuum medium is the TMI, i.e.
medium 1.

We assume that the laser polarization is oriented in the y-direction, parallel to the
external B-field. In this case, we obtain — to lowest order in α

πΘ0 — the following reflection
and transmission coefficients:

Ty = 2ik̃(
k̃2 + 1

)
sin ∆ + 2ik̃ cos ∆

+O
((

α

π
Θ0
)2
)
, (3.60)

Ry = −

(
k̃2 − 1

)
sin ∆(

k̃2 + 1
)

sin ∆ + 2ik̃ cos ∆
+O

((
α

π
Θ0
)2
)
, (3.61)

where k̃ = kΘ
ωµ ,∆ ≡ dkΘ and d = z2 − z1 is the thickness of the layer. Note that, although k̃

depends on the expansion parameter we did not expand k̃ because otherwise the expansion
for the transmission and reflection coefficients would not be valid around the resonance.
The calculated transmission and reflection coefficients are valid for both the case with and
without losses since we assume all losses to be bulk losses. Ty and Ry agree with the normal
transmission and reflection coefficients of a dielectric disk [47] if the coupling b of the AQ to
the photon is set to zero, i.e. kΘ → nω, corresponding to fΘ →∞.

We show the full functions for the reflection and transmission coefficients without losses
(Γ = 0) in figure 11. The coefficients are shown for different values of the laser frequency ω
and sample thickness d. The left column assumes the presence of a dynamical AQ, while the
figures in the right column show the case when no dynamical AQ is present. Note that in

– 36 –



J
C
A
P
0
8
(
2
0
2
1
)
0
6
6

1.5 2.0 2.5 3.0

ω [meV]

0.00

0.05

0.10

0.15

0.20

0.25

d
[m

m
]

0.0

0.2

0.4

0.6

0.8

1.0

|R
y
|

0.24 0.36 0.48 0.60 0.73
f [THz]

1.5 2.0 2.5 3.0

ω [meV]

0.00

0.05

0.10

0.15

0.20

0.25

d
[m

m
]

0.0

0.2

0.4

0.6

0.8

1.0

|R
y
|

0.24 0.36 0.48 0.60 0.73
f [THz]

1.5 2.0 2.5 3.0

ω [meV]

0.00

0.05

0.10

0.15

0.20

0.25

d
[m

m
]

0.0

0.2

0.4

0.6

0.8

1.0
|T
y
|

0.24 0.36 0.48 0.60 0.73
f [THz]

1.5 2.0 2.5 3.0

ω [meV]

0.00

0.05

0.10

0.15

0.20

0.25

d
[m

m
]

0.0

0.2

0.4

0.6

0.8

1.0

|T
y
|

0.24 0.36 0.48 0.60 0.73
f [THz]

1.5 2.0 2.5 3.0

ω [meV]

0.00

0.05

0.10

0.15

0.20

0.25

d
[m

m
]

0.0000

0.0016

0.0032

0.0048

0.0064

0.0080

|T
x
|

0.24 0.36 0.48 0.60 0.73
f [THz]

1.5 2.0 2.5 3.0

ω [meV]

0.00

0.05

0.10

0.15

0.20

0.25

d
[m

m
]

0.0000

0.0016

0.0032

0.0048

0.0064

0.0080

|T
x
|

0.24 0.36 0.48 0.60 0.73
f [THz]

Figure 11. Reflection and transmission coefficients for a laser that hits a material with (left) and
without (right) a dynamical AQ. The laser polarization is in the y-direction, parallel to the external
B-field. The materials have Θ0 = 0.8π, n = 5, and µ = 1. Typical material values for a Mn2Bi2Te5
TMI with an external B-field Be of 2 T are chosen, cf. table 5 and eq. (2.3). mΘ and ωLO are marked
with the black vertical lines. The Ry (Ty) coefficient is always close to one (zero) inside the gap if a
dynamical AQ is present. The Tx coefficient is only non-zero is a AQ is present. However the effect
of an AQ in the Ex-component is much smaller than in the Ey-component since the Ex-component
can only be induced via polarization rotation with non-zero Θ0.
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both cases Θ0 = 0.8π is assumed although the shown results for Ty and Ry do not depend
on Θ0 to lowest order, cf. equations (3.60) and (3.61).

First, we discuss the figures in the top and middle row, which show the reflection and
transmission coefficients for the Ey-components. If a dynamical AQ is present, the dispersion
relation kΘ becomes imaginary between mΘ and ωLO. The gap between these two frequencies
is marked with the two vertical lines. For large thicknesses d, all frequencies in the gap are
reflected, and none are transmitted. This is a direct consequence of the purely imaginary
kΘ in the gap. For small values of the thickness, the gap size is reduced. This happens
around ωLO, i.e. the upper part of the gap, since the imaginary part gets reduced (the skin
depth becomes larger) the more ωLO is approached from smaller frequencies, cf. right panel of
figure 7. When going away from the gap, the figures in the left and right columns agree more
and more. This is as expected since the dispersion relation kΘ differs only significantly from
a normal photon dispersion around the gap. In the case of no dynamical AQ (left panel) we
notice a clear non-zero reflection and transmission inside the gap. Comparing the figures on
the left- and right-hand side, it is clear that the AQ causes an O(1) modification of the Ty
and Ry coefficients compared to the spectrum when no dynamical AQ is present.

Next, we discuss the bottom row of figure 11, which shows the transmission coefficient
for the Ex-component. If no dynamical AQ field is present (right panel) but we have a
topological material with Θ0 = 0.8π, the transmission Tx vanishes. This may be surprising
at fist glance because there is mixing at the interface of ordinary TIs and, hence, also a
polarization rotation. However, the transmission in the x-component vanishes since the
polarization rotations at the two interfaces cancel each other. If in addition to the static
Θ0 = 0.8π a dynamical AQ is present (left panel), we get a small non-zero transmission Tx.
The signal is much smaller than in the case of the Ty coefficient. This is because the incoming
laser is polarized in the Ey component and a non-zero Ex-component can only be induced due
to a nonzero Θ0, i.e. mixing at the interfaces, which is proportional to the small parameter
α
πΘ0. In conclusion, we should first look for the AQ by studying the Ey-component because
the AQ modification of this component is much larger than for the Ex-component.

However, once the AQ is found, one can also use the Ex-component to determine, for
example, Θ0 of the material by reflection and transmission measurements. Is is also possible
to study the influence of non-linear effects with the x-components. In eq. (3.20) it was shown
that the laser sources the x-component in a non-linear fashion. This effect is neglected here
because the equations are linearized.

Figure 12 shows the transmission coefficient Ty for different losses. The figures are
produced for our benchmark material Mn2Bi2Te5 with n = 5, µ = 1 and Θ0 = 0.8π. In the
top row we illustrate the influence of photon losses Γρ for a TMI with a dynamical AQ (left
panel) and for a normal TI (right panel). The transmission at large layer thicknesses becomes
smaller independently of the resonance. This is due to the fact that Γρ appears in the
dispersion relation (3.48) as an additional term which is approximately constant in the small
shown frequency interval. The skin depth is of the order of Γ−1

ρ . It is therefore advantageous
to have thin material samples for distinguishing between the case of a DA (left panel) and no
DA (right panel). However, should not be too thin. For very small thicknesses the frequencies
inside the gap lead to a transmission coefficient Ty that is not very small anymore. Note that
the effect of losses for large d becomes more pronounced for larger refractive indices n.

In the bottom row of figure 12 photon losses are zero and the effect of magnon losses
Γm is illustrated. We do not show the case without an AQ because without AQ there are no
magnon losses and one should compare to the already existing figure 11 (middle row, right).

– 38 –



J
C
A
P
0
8
(
2
0
2
1
)
0
6
6

1.5 2.0 2.5 3.0

ω [meV]

0.00

0.05

0.10

0.15

0.20

0.25

d
[m

m
]

Γρ =10−1 meV

0.0

0.2

0.4

0.6

0.8

1.0

|T
y
|

0.24 0.36 0.48 0.60 0.73
f [THz]

1.5 2.0 2.5 3.0

ω [meV]

0.00

0.05

0.10

0.15

0.20

0.25

d
[m

m
]

Γρ =10−1 meV

0.0

0.2

0.4

0.6

0.8

1.0

|T
y
|

0.24 0.36 0.48 0.60 0.73
f [THz]

1.5 2.0 2.5 3.0

ω [meV]

0.00

0.05

0.10

0.15

0.20

0.25

d
[m

m
]

Γm =10−1 meV

0.0

0.2

0.4

0.6

0.8

1.0
|T
y
|

0.24 0.36 0.48 0.60 0.73
f [THz]

Figure 12. Transmission coefficients for the Ey-component (parallel to the external B-field) for
exaggerated photon and magnon losses, Γρ and Γm. We show the results for when a dynamical AQ
field (left) and if no dynamical AQ is present; (right). In both cases we have Θ0 = 0.8π. We use
typical material values for a Mn2Bi2Te5 TMI, cf. table 5 and eq. (2.3), and n = 5 and µ = 1. The
external B-field is Be = 2 T. mΘ and ωLO are marked with the black vertical lines.

The larger the magnon losses, the more pronounced is the widening of the gap. This can be
understood by looking at the dispersion relation in eq. (3.48). Magnon losses Γm introduce
a Lorentzian shaped imaginary part to the dispersion relation. The width of the Lorentzian
is proportional to Γm. Due to the Lorentzian shape of the damping imaginary part in the
dispersion relation also frequencies that are not directly in the gap — but close to the gap —
can become highly damped. This effect becomes more pronounced the thicker the sample is.

From the previous discussion it becomes clear that finding the AQ will depend very
sensitively on the losses and thickness of the material. The losses that we show in figure 12
are exaggerated and in reality we expect them to be much smaller. Therefore from figure 12
we find that with a layer thickness on the order of 0.03 mm and 0.3 mm AQ can be most
effectively be detected.

Once the AQ is detected the characterization of the parameters of the TMI is of huge
importance. In section 4 and 5 it is shown how a TMI can be used as dark matter axion
detector. To estimate the induced photon signal from a DA, AQ and photon mixing the
parameters of the TMI have to be known precisely. In the following we demonstrate that
fitting measurements to the presented results can determine the parameters of the TMI.
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Figure 13. Transmission coefficient Ty for a layer of TMI with thickness d = 0.03 mm for different
B-fields (colours) are shown. Panels vary the losses Γρ (from left to right) and Γm (from top to
bottom). The vertical black line indicates the value of mΘ = 2 meV, while the other vertical lines
indicate the value of ωLO for different values of the external B-field. The larger the external B-field,
the larger the gap between mΘ and ωLO. We use typical material values for a Mn2Bi2Te5 TMI, cf.
table 5 and eq. (2.3), and n = 5 and µ = 1. The dashed black line shows the result when no dynamical
AQ δΘ is present, while the solid coloured lines are for the case with a dynamical AQ.

In figure 13, photon losses Γρ are varied between Γρ = 3× 10−4 meV and 0.3 meV, and
magnon losses between Γm = 3× 10−4 meV and 0.3 meV. The layer thickness is fixed to
d = 0.03 mm. In each figure, we show three different external B-field values. The values of
mΘ and ωLO are marked with a vertical black and coloured lines, respectively. The weaker
the external B-field, the smaller the gap.

Figure 13 makes again clear that the larger the losses the harder it is to distinguish
the case where a dynamical AQ is present (solid coloured curves) from the case that not
dynamical AQ (dashed black line) is present. For relatively small losses, the distinction
between the curves is very clear. We therefore conclude that comparing these results to
future measurements will make it possible to explicitly determine the material parameters,
i.e. losses, refractive index, Θ0, and the parameters that enter the AQ mass mΘ and the gap
size parameter b.
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We now investigate further the resonance around ωLO, cf. figure 13. When the losses in
figure 13 are small the resonance frequency fres = ωres

2π corresponds to ωLO. However, with
higher losses, the resonance frequency ωres moves to higher frequencies, i.e. fres >

ωLO
2π . With

increasing losses, the resonance smears out until it vanishes completely. Figure 13 allows us
to directly read off the amount of losses that would still be acceptable AQ detection (for a
sample of thickness d = 0.03 mm). The resonance peaks to the right of ωLO in figure 13 are
not symmetric. We therefore define the width of the resonance peak, Γres, as two times the
frequency interval that ranges from the frequency at the transmission maximum down to the
smaller frequency at half the transmission maximum.

The ratio fres
Γres

is called the Q-factor. It describes the quality of the resonance in the
sense that large Q-factors give rise to a well-defined resonance, whereas low Q-factors show
that the resonance is highly damped. In figure 14, the Q-factor is shown with respect to the
applied external B-field for different losses. We consider the case of dominant conductive
losses (red) and dominant magnon losses (blue). The largest Q-factor is observed at small
external B-field, and the low magnon losses lead to the largest Q. This is consistent with
the intuition that at low B-field the polariton is largely magnon-like. For larger external B-
fields the difference between the two cases becomes small, as both sources of loss contribute
almost equally.

4 Axion dark matter and axion quasiparticles

4.1 Dark axion, axion quasiparticle and photon mixing
Paper I proposed using dynamical AQs in TMIs to detect DAs. This is possible since DAs
can mix resonantly with axion polaritons. Compared to Paper I, we work out a more de-
tailed calculation for the emitted photon signal by taking into account the correct interface
conditions and material losses. This, in turn, allows us to present a more rigorous calculation
of the sensitivity reach for DA searches using TMIs.

As a starting point, we use the three-dimensional equations of motion, eqs. (3.1)–(3.5).
We linearize these and derive a one-dimensional model in analogy to section 3.1.3. In what
follows, the one-dimensional model is used to derive the photon signal generated by DAs
passing through a magnetized TMI that hosts dynamical AQs.

4.1.1 General formulation
To describe the threefold mixing between AQs, DAs, and photons, we need to add the Klein-
Gordon equation for DAs, which is sourced by the electromagnetic fields, to eqs. (3.1)–(3.5).
Additional source terms, arising due to the presence of DAs, have therefore to be added to
eqs. (3.1) and (3.2). Doing so results in the following equations of motion:

∇ ·D = ρf −
α

π
∇(δΘ + Θ0) ·B − gaγ∇a ·B , (4.1)

∇×H − ∂tD = Jf + α

π

[
B∂t(δΘ + Θ0)−E ×∇(δΘ + Θ0)

]
+gaγ (B∂ta−E ×∇a) , (4.2)

∇ ·B = 0 , (4.3)
∇×E + ∂tB = 0 , (4.4)

∂2
t δΘ− v2

i ∂
2
i δΘ +m2

ΘδΘ = ΛE ·B , (4.5)
(∂2
t −∇2 +m2

a) a = gaγ E ·B , (4.6)
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Figure 14. TMI Quality factor, Q = fres/Γres, for different losses, with respect to the external
B-fields. fres is the frequency of the maximal transmission peaks around ωLO, cf. figure 13. The TMI
layer has a thickness of d = 0.03 mm.

where a is the pseudoscalar DA field, gaγ is the DA-photon coupling, and ma is the DA mass,
in addition to the other variables already defined in eqs. (3.1)–(3.5).

In section 3.1.1 we already noted that one cannot obtain interface conditions from the
Klein-Gordon equation for an interface between media with and without AQs. However,
DAs are expected to permeate any medium due to the necessarily feeble interactions of dark
matter, and their presence in the Galaxy. Therefore, for two media that both contain DAs,
eq. (4.6) can be used to derive an interface condition for the DA field.

Consider an infinitesimal volume element between two media, say, between medium 1
and medium 2. We integrate over this infinitesimal volume element and apply the divergence
theorem. It follows that the normal derivative of the DA field between two interfaces has to
be continuous,

n · (∇a1 −∇a2) = 0 . (4.7)
Furthermore, we require that the DA field be continuous over the interface:

a1 − a2 = 0 . (4.8)

We stress that the continuity of the axion field in eq. (4.8) does not follow from the axion-
Maxwell equations, but is a reasonable approximation. In other words, as DAs only interacts
with matter through very small couplings, and we are interested in the conversion of axions
to photons again by a very small coupling, any modification due to the axion interacting
with the interface is at higher order, and thus negligible.

4.1.2 Linearized one-dimensional model
Let us again assume the presence of a strong and static external B-field, Be. Without loss
of generality, let Be be polarized in the y-direction, i.e. Be = Be êy. Then, similar steps as
in sections 3.1.2 and 3.1.3 lead to the following linearized equations of motion:(

∂2
z − n2∂2

t − σµ∂t
)
Ey = µBe∂

2
t

(
α

π
δΘ + gaγa

)
, (4.9)(

v2
z∂

2
z − ∂2

t −m2
Θ
)
δΘ = −ΛBeEy, (4.10)(

∂2
z − ∂2

t −m2
a

)
a = −gaγBeEy . (4.11)
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The photon signal in the Ex-component, induced by DAs, is always an order απΘ0 smaller
than the Ey-component. This is due to the fact that only the Ey-component mixes with DAs
and AQs. The Ex-component can only be generated due to the mixing at the interface, which
is proportional to α

πΘ0. The main photon signal is therefore polarized parallel to the external
B-field in experimental DA searches, i.e. in the Ey-component. Due to the suppression of
the Ex-component, it will be even more challenging to detect a signal in the Ex-component.
This justifies neglecting the Ex-component in what follows.

In addition to the linearization assumptions made in section 3.1.3, we further assume
that the non-linear terms, which include the DA, can also be linearized. This assumption is
justified because of the small coupling and non-relativistic nature of Galactic DAs, for which
∂ta/∂za ≈ 10−3.

The interface conditions for the electromagnetic fields after linearization are obtained
with the linearized fields DΘ = D + α

π (Θ0 + δΘ)Be and HΘ = H − α
πΘ0E. In the one-

dimensional model, the conditions n · (DΘ2 −DΘ1) = 0 and n · (B2 −B1) = 0 are always
fulfilled, since transverse waves are assumed to vanish, i.e. Bz = 0 and Ez = 0. The only
non-trivial interface conditions are:

n× (HΘ,2 −HΘ,1) = 0 , (4.12)
n× (E2 −E1) = 0 , (4.13)

where n = êz and it is assumed again that no free surface charges and currents are present.
Including bulk losses in the one-dimensional model does not change the interface condi-

tions. The magnon losses Γm, photon losses Γρ, and mixed losses Γ×,1 and Γ×,2 are included
in complete analogy to section 3.1.4. The resulting equations of motion are:

K ∂2
tX − Γ ∂tX + MX = 0 , (4.14)

where we define

X =

EyδΘ
a

 , K =

1 α
π
Be
ε

gaγBe
ε

0 1 0
0 0 1

 , Γ =

 Γρ Γ×,1 0
Γ×,2 Γm 0

0 0 0

 ,

M =

 k2

n2 0 0
−ΛBe v2

zk
2 +m2

Θ 0
−gaγBe 0 k2 +m2

a

 . (4.15)

No losses for the DA are included since a valid DM candidate must, by necessity, have an
astronomically long lifetime (indeed, the QCD axion in the mass range of interest satisfies
this constraint by many orders of magnitude).

4.2 Dark matter signal calculation
In this section, we solve the linearized equations of motion (4.14). We first consider the
lossless case and then generalize the solutions to include losses. Material properties are
always considered piecewise homogeneous, We introduce a matrix formalism to calculate
emitted photon and axion power from an experimental setup with multiple TMI layers.
We apply the matrix formalism to our benchmark setup, a single-TMI layer surrounded
by vacuum. Using a multi-layer might be able to boost the signal, similar to multi-layer
proposals for the MADMAX haloscope [47], although the higher frequencies considered here
would lead to significant mechanical challenges if any tuning was required. Note that we set
vz = 0 in our calculations, cf. section 3 for an explanation.
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4.2.1 Solution of the one-dimensional model
Lossless case (Γ = 0). We first focus on the case without losses. The dispersion relation
implied by eq. (4.14) is: (

k2 − k2
a + k2

Θ
2

)2

= b2ak
2
p +

(
k2
a − k2

Θ
2

)2

, (4.16)

where b2a = g2
aγB

2
e

ε was defined in analogy to b2 = α
π

ΛB2
e

ε . The dispersion relations, up to
leading order in the DA-photon coupling, therefore are

k+ = kΘ +O(g2
aγ) , (4.17)

k− = ka +O(g2
aγ) . (4.18)

The most general ansatz for the fields is:

E = Ê++eikΘz + Ê+−e−ik+z + Ê−+eik−z + Ê−−e−ik−z ,

δΘ = δΘ̂++eik+z + δΘ̂+−e−ik+z + δΘ̂−+eik−z + δΘ̂−−e−ik−z ,

a = sâ++eik+z + â+−e−ik+z + â−+eik−z + â−−e−ik−z . (4.19)

In the following, we focus on the DA zero-velocity limit, i.e. ka = 0. This is an appropriate
approximation for dark matter and the most general ansatz in eq. (4.19) reduces to:

E = Ê++eikΘz + Ê+−e−ik+z + Ê−,

δΘ = δΘ̂++eik+z + δΘ̂+−e−ik+z + δΘ̂− ,
a = â++eik+z + â+−e−ik+z + â− , (4.20)

where we omit the y index of the E-field since we ignore the Ex-component. The case of
finite axion velocity was explored in ref. [126].

Plugging eq. (4.20) into the equations of motion, eqs. (4.9)–(4.11), we obtain relations
between the constants in the general ansatz. After plugging these relations back into the
ansatz (4.20), we obtain: E

δΘ
a

 = Ê++

 1
Θ+
E

a+
E

 eik+z + Ê+−

 1
Θ+
E

a+
E

 e−ik+z + â−

E−aΘ−a
1

 , (4.21)

where the following variables were defined:

ΘE = ΛBe
m2

Θ − ω2 , aE = gaγBe
k2 , (4.22)

Ea = ω2µgaγBe
k2 − k2

Θ
, Θa = ΘEEa . (4.23)

From eq. (4.21) it becomes clear that the dynamical AQ is completely determined by fixing
the variables Ê++, Ê+−, and â−. In the next section we show that these variables can be
fully determined by using the interface conditions for the electromagnetic and DA fields.
Therefore no boundary conditions for the AQ need to be applied.6

6If we were to consider a finite spin wave velocity, we would obtain three modes k2
1,2,3. In this case, the

most general ansatz would have six unknowns per field, and we would have to specify boundary conditions
for the AQ.
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The case with losses (Γ 6= 0). When losses are included, the full dispersion relation k2
±

takes on a more complicated form. However, in the limit gaγ → 0 we find that k2
− → k2

a and
k2

+ → k2
Θ, where k2

Θ is given by eq. (3.47). In what follows, aE and Ea are needed also in the
case of losses. aE in eq. (4.22) does not get modified in the case of losses, and Ea has the
same form as in eq. (4.23). However, we now require the full form of kΘ from eq. (3.47).

4.2.2 Matrix formalism

In the previous section, we described the solution of the linearized equations in a homogeneous
medium. Here, we discuss solutions for the fields in a multilayer system that consists of N+1
media, cf. figure 10. We use the same labels for the media as in section 3.2.2. There are
N interfaces, which we label by r = 0, . . . , N . The first interface is at z0 = z1 and the last
interface is at zN . The material properties in eq. (4.21) of each medium are labeled with
the corresponding index r as a subscript. The constant Θ0 does not influence the emitted
photon signal at lowest order and is therefore neglected in the following. We further introduce
a phase similar to the case of AQ-photon mixing is introduced in the ansatz, cf. eq. (3.51).
The external B-field Be is the same in all media and is polarized in the y-direction. Recall
that we consider the DA zero-velocity limit with a zero spin wave velocity.

Applying the interface conditions for the electromagnetic fields, cf. eq. (4.12), (4.13),
and (4.13) and for the DA, cf. eq. (4.7), at zr between medium r − 1 and r we obtain the
following system of equations:

tr = M−1
r Mr−1 Pr−1 tr−1 , (4.24)

with

Mr =

 1 1 E−a,r
kr+
µr
−kr+
µr

0
a+
E,r a

+
E,r 1

 , tr =

Ê++
r

Ê+−
r

â−r

 (4.25)

and, defining ∆+
r ≡ kr+(zr+1 − zr) ,

Pr = diag(ei∆
+
r , e−i∆

+
r , 1) . (4.26)

In complete analogy to section 3.2.2 the S-matrix, which relates the states in media 0
and N to each other, is defined via

tN = S t0 . (4.27)

The expressions for one, two, . . . , N interfaces are the same as in eqs. (3.56)–(3.58).
The unknown fields can be calculated from the S-matrix as follows:Ê

++
N

Ê+−
0
â−N

 = −â−0

−1 S12 0
0 S22 0
0 S32 −1


−1

·

S13
S23
S33

 , (4.28)

where the amplitude of the DAs is known and, has to lowest order the same magnitude
in each medium |â−0 | = |â−r | for all r = 1, . . . , N . The emitted E-field in medium N that
propagates in the positive z-direction is called Ê++

N . The emitted E-field that propagates in
the negative z-direction is called Ê+−

0 .
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4.2.3 Layer of topological insulator
Let us now consider the case of a single TMI layer (hosting a dynamical AQ) surrounded by
vacuum. Dark axions are present in the form of an background field that oscillates in time
with a frequency that is determined by the DA mass, ma. The DAs mix with the AQs and
photons. In terms of the matrix formalism, there are two interfaces (N = 2), with media 0
and 2 are vacuum, and medium 1 is a TMI of thickness d. The TMI has constant refractive
index n2 = ε,7 and losses Γ. The external B-field is present in all media. The DAs have the
same magnitude in each medium, which is determined by the axion dark matter density ρa:
|â−0 |2 = |â−r |2 = 2ρa/m2

a.
The three-way mixing between DAs, AQs, and photons produces a photon at the bound-

ary, which propagates away from the TMI layer. Note that, since we neglect the spin wave
velocity, the system behaves essentially as a two-level system of massive photons and DAs.
The emitted E-fields in media 0 and 2 are denoted by Ê+−

0 and Ê++
2 , respectively. Recall

that Ê+−
0 is the E-field amplitude that is emitted in negative z-direction in medium 0 and

Ê++
2 is the emitted photon signal emitted in the positive z-direction in medium 2. We assume

that the DA particles are effectively at rest. In this limit there is no preferred direction and
the magnitudes of Ê++

2 and Ê+−
0 are the same.

Lossless case (Γ = 0). The full formula for Ê++
2 from the matrix formalism is impractical.

We therefore quote the result first order in the DA-photon coupling, which, assuming that
gaγ is sufficiently small, should be a good approximation:

Ê++
2 = â−0

sin(∆/2)
(
n2

Θ − 1
)

nΘ (nΘ sin(∆/2) + i cos(∆/2)) gaγ Be +O
(
(gaγ Be)2

)
, (4.29)

where we define the phase depth ∆ = dkΘ = dωnΘ (where kΘ is the lossless solution to the
dispersion relation, eq. (3.34)) and the effective refractive index is

n2
Θ = n2

(
1− b2

ω2 −m2
Θ

)
. (4.30)

Furthermore, we used in the language of the matrix formalism, such that a+
E,0 = gaγ Be

ω2 = a+
E,2,

E−a,0 = −gaγ Be = Ea,2, and a+
E,1 = gaγ Be

n2
Θω

2 , E−a,1 = −gaγ Be
n2

Θ
. From now on, terms of the order

O
(
(gaγ Be)2) are omitted to simplify the expressions. We also normalize the field amplitude

Ê++
2 to the DA-induced field in vacuum, E0 = gaγ Be a

−
0 ,

Ê++
2
E0

= − sin(∆/2)
(
1− n2

Θ
)

nΘ (nΘ sin(∆/2) + i cos(∆/2)) . (4.31)

Note that eq. (4.31) has the same form as in the case of fields emitted from as a dielec-
tric disk [47], with the effective refractive index nΘ, which is equivalent to introducing a
photon mass.

From analysing eq. (4.31), it becomes clear that a resonance occurs if the condition

∆ = ∆j = nΘ(ωj)ωjd = (2j + 1)π , j ∈ N0 , (4.32)
7A nontrivial permeability, µ 6= 1, can be incorporated straight-forwardly into the matrix formalism, de-

scribed in the previous sections. However, we set µ = 1 for simplicity and because this is a good approximation
for the TMI materials discussed in section 2.4.
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is fulfilled. Here, ωj are the resonance frequencies, which are located at

ω2
j = ω2

LO

2 +

√
ω4

LO

4 + ∆2
j

b2

n2d2 = ω2
LO + δω2

j +O
(

4∆2
jb

2

n2d2ω4
LO

)
, (4.33)

where we have defined
δω2

j ≡
∆2
jb

2

n2d2ω2
LO
. (4.34)

From eq. (4.33), it is evident that — in the lossless limit — the resonance frequencies are
always larger than ωLO, i.e. ωLO < ω0 < ω1 < . . .. As the thickness of the TMI increases,
d→∞, the resonant frequencies converge to the limiting value, i.e. ωj → ωLO. Furthermore,
eq. (4.33) implies that the resonance frequency ωj can be tuned via the external B-field, since
b ∝ B. In section 5.1 we investigate the frequency and, equivalently, DA mass range that
can be scanned with our benchmark materials and realistic external B-fields.

To understand why the frequencies defined via eq. (4.32) are indeed resonance frequen-
cies, consider the following: equation (4.32) implies that cos ∆j = 0 and, hence, the emitted
field in eq. (4.31) is Ê++

2 ∼ 1/n2
Θ − 1 ∼ 1/n2

Θ for small nΘ. In fact, the smaller nΘ the more
pronounced the resonance and, from figure 7, we can see that this is the case when ωj ∼ ωLO.
Consequently, resonances that are further away from ωLO (i.e. j > 0) have less pronounced
peak values, such that the maximal value of Ê++

2 is always obtained for j = 0. Further-
more, eq. (4.33) reveals that resonances are more pronounced for larger sample thickness d
of a given TMI. We now investigate the resonances in more detail and provide analytical
expressions for their widths and maximum values.

Around the resonances we have |nΘ| � 1, and eq. (4.31) can be approximated as:

Ê++
2
E0

= − 1
n2

Θ + i nΘ cot
(

∆
2

) . (4.35)

Expanding n2
Θ around ω2

j yields, to lowest order,

n2
Θ = n2 δω

2
j

b2
, (4.36)

where we require that b2 > δω2
j . The expansion of cot(∆/2) leads, to lowest order, to

cot
(∆

2

)
= −1

2
ωjdn

2

2nΘ(ωj)b2
(
ω2 − ω2

j

)
. (4.37)

The emitted fields in eq. (4.35) can then be approximated about the resonances as follows:

Ê++
2
E0

= − iAj
iγjωj + (ω2 − ω2

j )
, (4.38)

with

γj = 4
d

ω2
j − ω2

LO

ω2
j

≈
4∆2

jb
2

n2d3ω4
LO
, (4.39)

Aj = 4b2
n2ωjd

≈ 4b2
n2ωLOd

, (4.40)

where we used that in a resonant case ωj is close to ωLO.

– 47 –



J
C
A
P
0
8
(
2
0
2
1
)
0
6
6

The power output on resonance is:

P = |E0|2

2 β2A , (4.41)

where A is the surface area of the TMI layer and where we used that the Poynting vector in
z-direction has magnitude 1

2 |Ê
++
2 |2. The power boost factor β2 is defined as

β2 =
∣∣∣∣∣Ê++

2
E0

∣∣∣∣∣
2

. (4.42)

Following ref. [47], we refer to the unsquared β as the boost factor.
The full width at half the maximum value (FWHM) of β2 about the resonance ωj is

given by γj . The highest value at the resonance, the peak amplitude, ωj is given by

β2(ωj) =
A2
j

γ2
jω

2
j

≈
(
dωLO

∆j

)4

≈ 1
nΘ(ωj)4 . (4.43)

With eq. (4.43) it now becomes explicitly clear that the higher modes have a lower
maximum resonance value, since ∆j < ∆j+1. Also large layer thicknesses d increases the
maximal emitted E-field on resonance. Therefore to achieve a certain amount of signal boost
from one layer of TMI a relatively large layer thickness d > 1/ω is needed. Equation (4.39)
tells us the necessary information about the width of the resonance. First note, that going to
larger modes j or larger b will increase the FWHM γj . Relatively thick TMI layers, i.e. large
d, yield a very narrow resonance. Therefore a good balance for d has to be found because
d should be relatively large to reach a high resonance value. The refractive index n does
not affect the maximum value of the resonance, cf. eq. (4.43). However large n makes the
FWHM γj very small. We therefore conclude that it is advantageous to have low n materials
fro broadband response.

In figure 15 the boost amplitude β is shown for our benchmark material Mn2Bi2Te5 for
four different layer thicknesses. For the thinnest case, d = 0.2 mm, no clear enhancement of
the boost factor is reached, since for this relatively small thickness we obtain a resonance
frequency ω0 (dashed vertical line) that is too far away from ωLO (solid vertical line) such that
nΘ(ω0) is not much smaller than unity. For d = 2 mm we have a resonance at ω0. A larger
width, but a lower maximum value, is realized at the second resonance peak ω1. According
to eq. (4.39), the width of the resonance around ω1 should be broader by a factor of about
(∆1/∆0)2 = 9 than the resonance width around ω0.

For thicker samples still, d = 5 mm, d = 10 mm the resonant boost at ω0 increases
further. In particular from eq. (4.43) we find that the peak heights scale as (d1/d2)2. Fur-
thermore, the width of the peak around ω0 shrinks as d increases. From eq. (4.39) we can
directly read off that the width shrinks by a factor (d2/d1)3. For d = 10 mm the linewidth of
β is on the order of the DA linewidth, 10−6ma. Without taking into account material losses
the linewidth of the power boost factor is larger that the axion linewidth if

γj > 10−6ωj ≈ 10−6ωLO. (4.44)

Equation (4.44) tells us the requirements for the material parameters such that the power
boost factor bandwidth is larger than the axion linewidth.
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Figure 15. Effect of material thickness, d, on the boost factor. In the lossless limit for one layer β is
given by eq. (4.31). We assume zero DA velocity (vDM = 0, valid when the resonance is wide compared
to the DA linewidth). Typical material values for Mn2Bi2Te5 TMI with an external B-field Be of
2 T are chosen, cf. table 5 and eq. (2.3). Vertical lines mark the frequencies ωLO and the resonance
frequencies ωj . The resonance boost increases, and bandwidth decreases, as the thickness d increases.

Before we discuss the influence of material losses we want to give a clearer physical
picture of the observed resonances. In figure 16 we consider three domains. The middle
domain is a TMI layer with thickness d and with an effective refractive index nΘ = 1

2 . The
two outer domains are vacuum with n = 1. The axion induced field, which is shown in blue,
is one in vaccum and enhanced inside the TMI, cf. eq. (4.22). The enhancement of the axion
induced field in the TMI layer is proportional to 1

n2
Θ
. Consider now the interface between

the TMI and the left vacuum. To fulfil the continuity requirement of the total electric field,
propagating modes (red) are emitted to both sides. One can check that this is indeed the case
by adding the red and blue amplitudes at the interface. The emitted amplitude in vacuum
is one, while the propagating fields inside the TMI are enhanced, since they are proportional
to 1

n2
Θ
. The outlined scenario happens at both interfaces of the TMI. Let us first consider

the emitted radiation that propagates inside the TMI from left to right. The radiation hits
the right interface. The transmission and reflection coefficients determine the fraction of
the radiation, which is transmitted to the outside or reflected. For plane waves we have
T = 2nΘ

1+nΘ
and R = nΘ−1

1+nΘ
. The important point is that the transmitted radiation is added in

phase (T > 0) to the radiation which is emitted from the right interface to the outside. The
part of radiation which is reflected at the right interface receives a phase shift since R < 0.
Therefore the reflected radiation is coherently added to the radiation which is emitted from
the right surface to the left in the TMI. A similar scenario happens at the left interface.
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Figure 16. Physical understanding of the resonant enhancement of the emitted electromagnetic
fields from the mixing between DAs, AQs and photons. The TMI layer (gray) of thickness d has an
effective refractive index nΘ = 1

2 < 1 and is surrounded by vacuum. The axion induced field (blue) is
enhances inside the TMI and since the total electric field has to be continuous over the two interfaces
propagating modes (red) are emitted off both interfaces. The E-fields are given in units of the axion-
induced field in vacuum, E0. Due to the smallness of nΘ around the resonance the transmission
coefficient for the fields which propagate inside the TMI is small, while the reflection coefficient is
large. Therefore effectively the TMI works as a cavity. After bouncing many times between the two
interfaces the effective emitted field is proportinal to β � 1. In the specific example of nΘ the emitted
field is four times larger than the axion induced field in vacuum (β = 4). A more detailed description
can be found in the text.

Now since nΘ � 1 the transmission coefficient is small and the reflection coefficient is large.
Therefore the radiation bounces many times between both interfaces. After each bounce a
small fraction of the radiation is transmitted to the outside. This is exactly how a cavity
works and due to the fact that the transmitted fields to the outsides are all added coherently
the total emitted field is enhanced by the boost factor β = 1/n2

Θ. The total emitted field
is shown in green in figure 15. With this physical picture in mind we can also understand
why larger thicknesses d lead to larger β’s on resonance. To fulfill the resonance condition
nΘ(ωj)ωjd = π we need a smaller nΘ(ωj) the larger we make d. However making nΘ(ωj)
smaller leads to a larger axion induced field and therefore also to a larger total emitted field.

Case with losses (Γ 6= 0). In the case of losses we can use that gaγ is a relatively small
coupling and therefore k+ → kΘ, where kΘ now includes losses, cf. eq. (3.47). k− → ka = 0 in
the axion zero velocity limit. Furthermore we have shown in section 4.2.1 that the relations
for aE and Ea still hold when we include the losses into the effective refractive index. In
conclusion we can use eq. (4.31) also if losses are present. The only thing that we have to do
is to use the effective refractive index which includes losses:

n2
Θ = n2

(
1 + b2

m2
Θ − ω2 − iωΓm

+ i
Γρ
ω

)
. (4.45)

We subsequently neglect mixed losses.
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Figure 17. Effect of losses on the boost factor. TMI layer of thickness d = 1 mm. Other parameters
are as figure 15. Left: varying magnon losses Γm, with Γρ = 0. Right: varying photon losses Γρ
with Γm = 0.

We begin by expanding the boost factor around the resonance frequencies ωj , which
remain unmodified by the losses, cf. eq. (4.32). Then an expansion can be done in complete
analogy to the lossless case. For |1 − n2

Θ(ωj)| ≈ 1 the emitted field takes the same form as
in the lossless case, cf. eq. (4.35), where nΘ is given now by eq. (4.45). We now expand the
two terms, n2

Θ and cot
(

∆
2

)
, that appear in the denominator in eq. (4.35). We find

n2
Θ(ωj) = n2

(
δω2

j

b2
+ iΓ̃2

j

)
(4.46)

with Γ̃2
j ≡

Γρ
ωj

+ ωjΓm
b2 . In deriving eq. (4.46) we have assumed that b2 > δω2

j and b2 > ωjΓm.
If such a condition is not fulfilled, the material is likely too lossy to be useful in DA detection.
Next we consider the nearly lossless limit, i.e. δω

2
j

b2 > Γ̃2
j . In this case the relevant expressions

for us are nΘ(ωj) = n
δωj
b

(
1 + i1

2
Γ̃2
j

δω2
j
b2
)

and n2
Θ(ωj) = n2 δω

2
j

b2 , where we have written down

only the important leading order terms. Next we expand the cot
(

∆
2

)
term:

cot
(∆

2

)
= cot

(∆
2

)
ω2=ω2

j

+
[
∂

∂ω2 cot
(∆

2

)]
ω2=ω2

j

(
ω2 − ω2

j

)
+ · · · (4.47)

where we approximate ω ≈ ωj for the linear dependencies and the dots represent higher
order terms, which we do not have to consider for a reasonable expansion. The expansion
in eq. (4.47) can be simplified in the small thickness limit, Im [∆(ωj)] < 1. Equation (4.47)
then simplifies to:

cot
(∆

2

)
= −i Im [∆(ωj)]

2 − 1
4

∆j

δω2
j

(
ω2 − ω2

j

)
(4.48)

Putting everything together we obtain — as in the lossless case, cf. eq. (4.38) — a Lorentzian
shaped functional dependence around the resonance frequencies. The width of the curve
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Figure 18. Effect of losses on the higher resonance peaks. TMI layer of thickness d = 5 mm. Other
parameters are as figure 17. The value of β at ω0 without losses is around β ≈ 500, cf. figure 15
(bottom left). Therefore the relative reduction due to losses at the resonant frequencies is larger at
ω0 than at ω1.

receives an additional term in the presence of losses:

γj =
4b2∆2

j

n2ω4
LOd

3 +
(

Γm + b2

ω2
LO

Γρ
)
, (4.49)

and the amplitude Aj remains unchanged with respect to the lossless case.
In figure 17 we show the boost factor β around the first resonance ω0 for a layer thick-

nesses of d = 1 mm for different values of the loss parameters Γρ and Γm. We observe that
each loss parameter has a similar quantitative effect on redicing the boost factor peak, with
magnon losses being only slightly more important. This is due to the fact that Γm directly
enters the resonance, cf. eq. (4.45), while photon losses Γρ only enter via an additional term
that is added to the other terms of the dispersion relation.

Next let us discuss the effect of losses on the higher resonance frequencies. In figure 18
we show the first two resonance peaks at ω0 and ω1 for d = 5 mm. In the lossless case we
have β(ω0) ≈ 500, cf. figure 15. The reduction of the ω0 resonance is therefore more severe
than the resonance at ω1. This is simply the case because the system is more resonant at
ω0 and losses lead to a larger reduction. We conclude that losses may lead to a scanning
strategy in the end that uses a higher resonance mode j > 0. However, the final scanning
strategy can only be given when the losses are determined experimentally.

We can see from eq. (4.49) that the point where losses dominate is a function of the
refractive index, thickness of the material and intrinsic losses. While, in the lossless case,
increasing the thickness of the layer increases the resonance, we can see that this is limited
by the losses, which give a width independent of d. Looking at the height of the resonance
in the loss dominated limit is quite revealing

β(ωj) = Aj
γjωj

= 4b2
n2ω2

LOd

1
4b2∆2

j

n2ω4
LOd

3 + b2
ωLO

(
ωLOΓm
b2 + Γρ

ωLO

) loss dom.≈ 4

dn2
(
ω2

LO
b2 Γm+Γρ

) . (4.50)
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Figure 19. Maximal boost factor β on resonance at ω0 with respect to the TMI layer of thickness d
for different levels of loss. Material parameters correspond to Mn2Bi2Te5 with B = 2 T. The bands
show variation of the refractive index from n = 3 (upper curve of the bands) to n = 7 (lower curve of
each band).

Unlike the lossless case, increasing d now hinders the resonance height, if not its width.
Similarly, while n does not effect γj , again the height is significantly reduced on resonance,
further discouraging high n materials. Once the loss term of a material is known, the optimal
thickness can be found by requiring that losses do not dominate.

To get an idea of the scale of the maximum losses that still allow for useful DA detection,
we plot the maximum of β at the first resonance ω0 as a function of d in figure 19. The
different colours indicate different losses. We also vary the refractive index around our best
guess value, n = 5: the upper band for each colour corresponds to n = 3, while the lower to
n = 7. Lower values of n lead to greater boost factor maxima.

From figure 19 we can read off that for given material parameters there is an optimal
thickness, which maximizes β on resonance. Analytically one can show

dopt = 2
ωLO

(∆j

n

) 2
3

 1
Γρ
ωLO

+ ΓmωLO
b2

 1
3

. (4.51)

Note that the otimal thickness dopt gives a thickness that is consistent with the small d limit

that we have used in the expansion only if 2
(
n2Γ̃2

j∆j

) 1
3 < 1. This inequality is fulfilled for

the cases that we are interested in. In the zero loss limit the optimal thickness dopt diverges.
However it is important to stress that in this limit γj → 0 and our optimal thickness has to
be understood as the thickness that maximizes β on resonance. Which thickness will be the
optimal one with respect to a scanning strategy and sensitivity reach will be discussed in the
next section. If the losses are finite they enter with the third root. Also note that scanning
different frequencies changes ωLO and therefore in principle for each scanning frequency a
different optimal layer thickness is needed. It is not possible to change the layer thickness for
each scanning frequency, and therefore the true optimal thickness will depend on the details
of the frequencies to be scanned and the scan strategy.

Note that in figure 19 we are approximating the boost factor as a resonance. However,
as β → 1 the boost factor is no longer well described by a Lorentzian. For the purposes of
an experiment, all advantage over say a dish antenna is then lost. To estimate the highest

– 53 –



J
C
A
P
0
8
(
2
0
2
1
)
0
6
6

allowable losses, we can note that the strongest resonance occurs when δj = Pi and d = dopt.
By requiring that β � 1 we then find the requirement

Γρ
ωLO

+ ΓmωLO
b2

� 1
2n2 . (4.52)

Thus the highest allowable losses are actually set by the refractive index of the material, at
least in order to ensure a resonance occurs.

5 Dark matter discovery potential

In this section, we review the suitability of TMIs hosting AQs for DA detection. We system-
atically investigate the discovery reach of the proposed single-TMI-layer benchmark experi-
ment, and the necessary requirements for THz detectors. Astrophysical limits on the axion
mass and coupling, and motivation for axion DM in the milliectronvolt range, is reviewed in
appendix B.

5.1 Scanning range

Before considering THz detection technology and the reach of the proposed experiment in
terms of the DA coupling, gaγ , we first determine the range of DA masses that can in
principle be accessed using TMIs. Recall from section 4.2.3 that the resonance frequencies of
the experiment, ωj , can be tuned by changing the external magnetic field, Be. To estimate
the resulting range, we look at the first resonance ω0 since |β(ω0)| > |β(ωj)| for all j > 0.
Doing so, we find that

ω0(Be) ≈ ωLO(Be) =
√
m2

Θ + b2(Be) , (5.1)

where mΘ is the AQ mass and b is given by eq. (2.3). In the limit of Be → 0 we simply
have ω0 → mΘ, while for very strong B-fields of Be = 10 T and our benchmark parameters
in table 8 (our best approximation to Mn2Bi2Te5), we find that

1.8 meV = mΘ < ω0 < 8.2 meV . (5.2)

As of now, the DA mass is unknown, so it is desirable to cover a wide range of axion
masses with a given TMI crystal. Since typical magnetic fields in the lab are restricted to
the order of a few tesla, we cannot arbitrarily increase Be and hence need to maximise the
relative response of the AQ to Be, viz.

1
mΘ

db
dBe

= α

π
√

2
1√

εfΘmΘ
≈ 0.46

T

(25
ε

)1/2 (70 eV
fΘ

)(1.8 meV
mΘ

)
. (5.3)

This means that smaller fΘ, mΘ, or ε are beneficial for a TMI in order to cover a larger range
of frequencies for a given maximum possible value of the applied B-field.

A large relative AQ response in eq. (5.3) is only beneficial if the applied B-field value
can be controlled to sufficiently high accuracy over the course of the measurement. This is
because fluctuations in Be will translate into fluctuations in ω0, which might result in the
resonance around ω0 fluctuating in and out of the bandwidth of the detector. The magnet
design for TOORAD will thus require relatively precise control of the B-field, and could be
a limitation in cost, field strength, or total volume.
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Detector type Fundamental noise limit Metric
Amplifiers &
heterodyne mixers quantum noise ~ω [127, 129, 130] TQ

Bolometers thermal fluctuations
√

4GthkBT0 [45, 128] NEP

Calorimetric SPDs energy resolution
for finite bandwidth

√
CthkBT 2

0 [131, 132] dark count rate

Table 7. Comparison of detector technologies for searching dark matter using quasiparticle axions.
See the main text for explanations of the symbols.

5.2 Detectors for THz radiation

Searching for dark DAs is challenging because the resultant photon signal is very weak and
can be hidden in wide range of frequencies, since the DA mass in unknown. To improve
our chance of success, we need to understand the intrinsic and extrinsic background noise
of our photon detection system, coupling efficiency of photon detectors to our proposed
experimental setup, and scalability in collecting more photons from the material that hosts
the AQ. In earlier sections, we have discussed the generation of electromagnetic radiation
in the THz (millimeter wave) regime using AQs for DA detection. We will focus here to the
available technology to detect these photons with energies from 0.01 to a few THz.

Detectors that have high sensitivity for the search of DAs in our frequency range of inter-
est include amplifiers, heterodyne mixers, bolometers, and single-photon detectors (SPDs).
We shall consider experiments performing at temperatures much lower than the frequency,
i.e. T � ω to avoid the thermal photons from the blackbody radiation and to focus on the
fundamental limit of photon detection [127–130]. Since amplifiers and heterodyne mixers,
e.g. superconductor-insulator-superconductor (SIS) and hot-electron bolometric mixers, are
sensitive to the voltage or the electric field of the signal, we can put them into one category,
while bolometers and SPDs go into another. We present a comparison of all detector types
discussed in what follows in table 7.

State-of-the-art amplifiers and mixers can detect a very weak signal from as little as
a few photons by parametric amplification or non-linear mixing processes. As the signal-
to-noise ratio is given by the ratio of the number of photons in the signal to that in the
amplifier noise, the amplifier noise can be quantified naturally in units of photon quanta,
i.e. ~ω, or amplifier noise temperature, i.e. TQ = ~ω/kB. For the linear, phase-preserving
amplification, the minimum amplifier noise is one quanta [127, 129, 130]. Half of this comes
from the quantum fluctuation from the parametric pumping port used in modulation for
the amplification gain, whereas another half from the quantum noise in the signal port.
At lower microwave frequencies, quantum noise-limited amplifiers have been achieved based
on parametric effects [133–135] and, at higher frequencies, in SIS detectors [129, 136], hot
electron bolometric mixers [137, 138], and plasmonic mixers [139]. However, the insertion
loss and insufficient first amplification gain may degrade the overall performance, resulting
in a higher system noise temperature Tsys ≥ TQ. For a total measurement time, tmeas, and
measurement bandwidth, BW, the average noise is given by the Dicke radiometer formula,

Noise = Tsys√
BWtmeas

(5.4)
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Instead of amplifying the voltage, bolometers are high-sensitivity, square-law detec-
tors that measure the power of microwave and far-infrared radiation. They operate by first
absorbing the incident radiation and subsequently inferring the radiation power from the
temperature rise due to the increase of its internal energy. The bolometer sensitivity is
quantified by noise equivalent power (NEP), measured in units of W/

√
Hz, i.e. the power

fluctuations of the bolometer in absence of any incident power during a 1-second averag-
ing window. Previous experiments project NEP values as low as 10−21 W/

√
Hz [140]. The

sensitivity of this technique is not limited by quantum fluctuations, but rather by the fun-
damental thermal fluctuations [45, 128]. This fundamental-fluctuation-limited NEP is given
by
√

4GthkBT0 with Gth being the thermal conductance of the bolometric material to the
thermal bath, and T0 is the bolometer (bath) temperature. Therefore, bolometers for DA
detection will require to operate at the lowest achievable temperatures with the least thermal
conductance to its surrounding.

In addition to power detection by bolometer, single-photon detectors (SPD) is another
viable option to capture the photons generated from DAs. Efficient DA searches will re-
quire the SPD to have simultaneously a high quantum efficiency to register every precious
photon, and a low dark count rate to minimize the false positive signal. Naturally, these
two requirements are competing against each other because a higher quantum efficiency also
means the detector can be triggered by noises to produce a count in the absence of photons.
Fortunately at cryogenic temperatures, we can employ superconductors to detect photons
efficiently and accurately. When the photon energy is larger than the superconducting gap
energy, ∆S, the incident photons can break Cooper pairs and produce a sizable number,
ηd~ω/∆S, of quasiparticles, with ηd < 1 being the energy downconversion efficiency [141].
These quasiparticles can then transduce into a readout signal of resistance, temperature, ki-
netic inductance, or excess current in SPDs such as superconducting nanowire SPD [142, 143],
transition edge sensor [144], microbolometer [140, 145], Josephson junction SPD [146], ki-
netic inductance detector [141], and superconducting tunneling junction detector [147]. SPDs
based on this mechanism have been highly successful especially in the near infrared domain
when the relatively high photon energy can produce a considerable amount of quasiparti-
cles. Single-photon detection in THz regime is a lot more challenging. Microbolometers
based on the superconducting nanowire have demonstrated experimentally energy-resolved,
single-photon detection down to 38 THz [145] and projection give energy resolutions as low as
0.12 THz [140]. Recently, quantum capacitance detector [148] has demonstrated the detection
of 1.5 THz by sensitively sensing the change of quantum capacitance from the quasiparticle
through a resonator.

Since the photon detection mechanism depending on Cooper pair breaking will in-
evitably become more and more challenging at lower millimeter wave frequencies, we can
also exploit the giant thermal response in graphene [132, 149–151] to absorb the incident
photon first before measuring the temperature rise. The concept of calorimetric SPDs has
been developed for x-ray detection and superconducting SPDs [131, 152]. In contrast to
bolometers, single photon detection not strictly limited by thermal fluctuations if a large
enough detection bandwidth and high sensitivity temperature transducer is available. Intu-
itively, this is because when the photon impinges into the detector, SPDs produce a sharp
rising signal that can be observed with a wide-bandwidth detector. Quantitatively, this is
due to the improvement of signal-to-noise ratio through a matched filter that is tailored to
the shape of the expected signal from a single photon. Nevertheless, the energy resolution,
∆ε =

√
CthkBT 2

0 with Cth being the thermal heat capacity of the calorimeter, is still a good
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benchmark for calorimeter SPDs. When the NEP is white-noise limited, we can use [152]

∆ε = NEP
√
Cth
Gth

(5.5)

to compare the sensitivity with bolometers. For DA searches in wide frequency bandwidth,
graphene-based single photon detection also has an advantage in wide bandwidth photon
coupling by impedance matching the input to the photon absorber with an antenna. Spiral,
log-periodic, and bow-tie antennas have been implemented for graphene detectors [153, 154].
As graphene-based bolometers have been demonstrated recently in the microwave regime [45,
155] with energy resolution projections to a few 10 GHz, it can potentially complement SPDs
by operating at millimeter wave frequencies.

In addition to superconductor-based and calorimeter SPD, superconducting qubits and
quantum dots can also detect single photons [156, 157]. These nano fabricated devices have
discrete energy states and can serve effectively as artificial atoms. When incident photons
promote the qubit or quantum dot to an excited state, they can be detected by measuring
the state of the artificial atoms. Detection of single photons has been demonstrated us-
ing superconducting qubits at microwave frequencies [158, 159] and using quantum dots as
low as 1.5 THz [157] with photon coupling through superconducting resonators and dipole
antenna, respectively.

Table 7 compares the fundamental limit of detectors that will be useful for dark matter
detectors; since the quantum noise rises linearly with frequency, SPDs will have an advantage
over amplifiers for the search of higher axion mass [160]. A dark count rate λd ∼ 1 mHz has
been demostrated experimentally [157, 161] for a quantum dot detector. Note, however, that
the realised experimental efficiency for that detector was only η = 0.01 [157, 161]. Overall,
it is desirable to obtain a detector with the optimal combination of low dark count rate and
high efficiency, as this will ultimately determine the sensitivity of TOORAD. Detectors that
feature a better efficiency typically have a worse dark count rate than the detector from
ref. [157] considered above. We will therefore define a pessimistic (optimistic) scenario by
setting λd ∼ 1 mHz with a detection efficiency of η = 0.01 (η = 1).

Last but not least, we shall consider how to put the photon detector together with the
material that hosts the AQs. The efficiency of the dark matter search relies on this system
integration. The goal is to maximize the photon coupling as the axion quasiparticle material
scales up. Therefore we will need to design an antenna that can collect the photons emitted
from the AQs to the detector with the least inert loss. This will be an important factor to
select a potential detector technology to develop. Ultimately, to detect a small signal from
DA, the detector metric should be the total experimental averaging time for an experiment to
reach a statistical significance and will depend on both efficiency and sensitivity. To improve
our chance of detecting dark matter, we need more research on detector technologies, which
are also be useful in other applications including radio astronomy, spectroscopy, and medical
imaging [148, 162, 163].

5.3 Experimental sensitivity and forecasts
As discussed above, the signal from the DA-polariton-photon conversion may be detected
using an SPD, which is superior compared to heterodyne power detection in THz. In this
section we quantify the sensitivity and discovery reach for a photon-counting experiment.

The detection of individual photon events is governed by Poisson statistics i.e. the
likelihood of detecting N photons given model parameters x (the set of DA and material
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properties) is given by

p(N|x) = (η ns + nd)N

N! e−η ns−nd , (5.6)

where ns = λsτ and nd = λdτ are the number of expected signal and dark count events,
respectively, as calculated from their respective rates, λs and λd, and total observation time τ .
The parameter η describes the total detector efficiency i.e. takes into account the intrinsic
efficiency of the detector as well as any other imperfections in the experimental setup. Note
that eq. (5.6) assumes that there are no external backgrounds present. While we do not use a
likelihood approach based on eq. (5.6) directly for our estimates, it should be noted that the
form above is a better approach than the asymptotic, approximate equations used in what
follows. For the case of a single-bin Poisson distribution without any nuisance parameters —
i.e. assuming that the material and detector properties are perfectly known — we performed a
Monte Carlo simulation to check the validity of the asymptotic formulae that we employ. We
found them to be conservative and, hence, suitable for the purpose of estimating TOORAD’s
sensitivity. For an actual analysis of experimental data, however, a likelihood-based approach
should be used.

5.3.1 Sensitivity
In order to compute the sensitivity, we assume that no significant signal over background is
found. The significance is S = 2(

√
ns + nd −

√
nd), where ns is the number of signal events

and nd the number of dark count events [164–166]. Then the exclusion limit at 95% C.L.
for photon counting based on Poisson statistics (eq. (5.6)) is obtained from S < 2, i.e. λs <
1
τ +2

√
λd
τ , where λd is the dark count rate, λs the signal rate and τ the measurement time. For

a discovery one would require S > 5. In section 5.2 we argued that λd = 1 mHz is reasonable.
In the following we estimate the sensitivity in two scenarios. The case 1

τ < 2
√

λd
τ can be

achieved for sufficiently long measurement times and is called the background dominated
scenario, i.e. τ > 1

4λd
= 250 s. If the measurement time is short τ < 1

4λd
= 250 s then it is

not background dominated.
First, we investigate the case that the measurement is not background dominated. The

number of signal photons per measurement time is λs = η |E0|2
2ω Aβ2 where A is the surface area

of the TMI, η the photon counting efficiency and ω = ωj ≈ ωLO is the resonance frequency
where the power boost factor peaks. The power boost factor is the emitted electromagnetic
field normalized to the axion induced field E0, which is determined by the local axion dark
matter density ρa, the axion photon coupling gaγ and the strength of the external B-field:
E0 = gaγBea

−
0 ' gaγ

√
2ρa
ma

Be . Putting everything together we obtain the sensitivity estimate:

gaγ > 4.4× 10−11 GeV−1
(0.01

η

) 1
2
(2 T
Be

) (100
β

) ((0.2 m)2

A

) 1
2 (4 min

τ

) 1
2

×
(

0.3 GeV
cm3

ρa

) 1
2 ( ma

2.83 meV

) 3
2
, (negligible backgrounds, τ < λ−1

d ) (5.7)

where an axion mass ma = 2.83 meV corresponds to the scanned axion mass with a 2 T
external B-field under the assumption of the benchmark material (n = 5, fΘ = 64 eV and
mΘ = 2 meV). The reference area in eq. (5.7), A = (0.2 m). 0.2 m, is around half of the
square de Broglie wavelength for an axion with velocity v = 10−3c and mass 2.83 meV. Single
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crystals of MnBi2Te4 grown in ref. [111] are on the order of cm2. Reaching large surface area
will thus require tiling and machining many crystals together. Tiling is known to introduce
significant complications for dielectric haloscopes like MADMAX [167, 168]. Further, as the
axion gives an opening angle of v ∼ 10−3 the collecting area of the THz detector must be
large. We anticipate that this problem can be overcome with the correct antenna.

When there are finite losses, we can use the peak value from eq. (4.50) to eliminate β
and obtain:

gaγ > 4.95× 10−11 GeV−1
(0.01

η

) 1
2
(2 T
Be

) ((0.2 m)2

A

) 1
2 (4 min

τ

) 1
2
(

0.3 GeV
cm3

ρa

) 1
2

×
(2.83 meV

ma

) 1
2
(∆j

π

)2 (2 mm
d

)2
× Σ, (5.8)

where we have defined in the dimensionless quantity:

Σ ≡ 1 + 2
(

d

dopt

)3

. (5.9)

We did not plug in any specific value for Σ in the sensitivity estimate because when the
thickness is chosen to be close or equal to the optimal thickness Σ is of the order one.
The losses, AQ decay constant, fΘ, and refractive index, n, all appear implicitly via the
determination of dopt, the optimal material thickness.

Compare the sensitivity eq. (5.8) to that obtained with heterodyne detection. In this
case we use the Dicke radiometer equation with noise temperature T . The signal over noise
ratio is given by SNR = Ps

Tsys

√
τ

∆νa , where ∆νa = 10−6ma is the DA linewidth, and Ps. If the
physical system temperature is low enough, cf. section 5.2, Tsys is limited by the standard
quantum limit (SQL) Tsys = ω = ma. The resulting sensitivity is:

gaγ > 1.1× 10−9 GeV−1
(SNR

2

) 1
2
(

ma

2.83 meV

) 7
4
(2 T
Be

) (0.3 GeV
cm3

ρa

) 1
2

×
(100
β

) ((0.2 m)2

A

) 1
2 (4 min

τ

) 1
4

(heterodyne SQL). (5.10)

The sensitivity is worse than the SPD, cf. eq. (5.7), by approximately an order of magnitude.
This is as expected since for high frequencies the SQL pushes T to large values. The SQL
can, however, be overcome by “squeezing” [37].

Next we focus on the case that the measurement is background dominated (λs < 2
√

λd
τ ).

For our benchmark dark count rate of λd this gives τ > 250 s. Long measurement times on
a fixed frequency could be adopted in a “hint” scenario where the axion mass is thought to
be known by some other means (for example, an astrophysical hint, or highly accurate relic
density prediction), and a resonant DM search is required to verify the hint. To consider
this scenario, we take the measurement time on each frequency to be τ = 3yr, i.e. an entire
experimental campaign. The sensitivity in this case is:

gaγ > 1.63× 10−12 GeV−1
(0.01

η

) 1
2
(2 T
Be

) (100
β

) ((0.2 m)2

A

) 1
2 ( λd

10−3 Hz

) 1
4
(3 yr
τ

) 1
4

×
(

0.3 GeV
cm3

ρa

) 1
2 ( ma

2.83 meV

) 3
2

(background dominated). (5.11)
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Using now again the maximum peak value from eq. (4.43) to eliminate β in the previous
equation we obtain the sensitivity estimate

gaγ > 1.94× 10−12 GeV−1
(0.01

η

) 1
2
(2 T
Be

) ((0.2 m)2

A

) 1
2 ( λd

10−3 Hz

) 1
4
(3 yr
τ

) 1
4

×
(

0.3 GeV
cm3

ρa

) 1
2 (2.83 meV

ma

) 1
2
(∆j

π

)2 (2 mm
d

)2
× Σ . (5.12)

To complete our discussion we also estimate the sensitivity for bolometric detectors
whose performance is specified by the NEP. The minimal detectable signal power which
such a detector can detect is Ps > NEP/

√
τ . Evaluating this leads to the sensitivity:

gaγ > 9.7× 10−13 GeV−1
(

NEP
10−21W/

√
Hz

) 1
2
(

(0.2 m)2

A

) 1
2 (3 yr

τ

) 1
4

×
(

ma

2.83 meV

) (0.3 GeV
cm3

ρa

) 1
2 (100

β

)
(5.13)

The sensitivity estimate in eq. (5.13) has a similar order of magnitude as the SPD sensitivity,
cf. eq. (5.11) but a slightly different scaling with the axion mass.

5.3.2 Scanning strategies

We now compute forecasts for the baseline parameters of “Material 2” (best approximation
to Mn2Bi2Te5, with refractive index n = 5 and µ = 1), and consider three possibilities for
the losses,8 Γm/ω = Γρ/ω = 10−5, 10−4, 10−3.

Assuming a fixed ratio Γ/ω is consistent with our model for the impurity based losses,
and assumes ε2 is approximately constant in the relevant range. For fixed ratio Γ/ω, there
are larger losses at higher frequencies. We first assumed SPD efficiency of η = 0.01 and dark
count rate λd = 10−3 Hz, which has been demonstrated. We also show a more optimistic
sensitivity estimate with η = 1 (dotted line) for Γρ/ω = Γm/ω = 10−4. The surface area of
the TMI layer is fixed to be A = (0.2 m)2, where 0.2 m is on the order of half of the de Broglie
wavelength. Furthermore we use the main resonance j = 0 for the sensitivity estimate.

We consider two different scanning scenarios, with B-field values from 1T to 10T:

• Scanning I. We begin at the highest frequency with the largest B-field where the base
power is largest and the QCD band is at the largest gaγ . We scan to the top of the QCD
band. We then move by the width γ0 on to the next frequency at lower B, and repeat
for a total scan time of 3 years.9 Figure (20,a). We compute the optimal thickness with
the largest axion mass within the scanned region.

8Note that we now take into account the frequency scaling of the losses which we have found in section 2.5.
In all previous results of this paper we did not take into account this scaling since it was not necessary in
order to understand the physical picture. However, here we want to estimate a realistic sensitivity of a DA
search and therefore we take the frequency scaling of the losses into account.

9Note that we assume the peak power is achieved over the width γ0. While this is less conservative than
assuming the minimal value (i.e., half the maximum), note that power also exists outside of γ0, which would
still be integrated over during the scan. As this is an estimate, rather than a detailed exclusion limit of an
experiment, the final limit would likely fall somewhere between the two.
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Figure 20. Sensitivity for “Material 2” baseline parameters (see text for details) for various loss
values Γ. Top row: η = 0.01. Bottom row: η = 1. We fix the dark count rate λd = 10−3 Hz. The
yellow band shows QCD axion models, and the dashed blue line the CAST exclusion on gaγ . The
scanning scenarios are defined in the text.

• Scanning II. We scan for a fixed time set equal on all frequencies and repeat for a total
scan time of 3 years. In each step we move in frequency by the width γ0, figure 21
(eq. (4.49)). We compute the optimal thickness with the axion mass that is in the
middle of the scanned interval.

In each case the limit is found for signal to noise equal to two, 95% C.L. exclusion.
In the Scanning II case we assume that each individual scan takes the same amount

of time τ . Then with the bandwidth from eq. (4.49) (figure 21) we can calculate the total
number of scans. From this we then calculate the scan time for each individual scan such
that the total scanning time for each case is tscan = 3years. Depending on the individual
scan time τ we calculate the sensitivity in the right limit, cf. eq. (5.8) and (5.12).

In the Scanning I scenario for η = 0.01, we find that a wide range of the QCD band
can only be covered in the case with extremely small losses, Γ/ω = 10−5. With this scanning
strategy, η = 1 detection efficiency allows a wide range of the top of QCD band to be scanned
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Figure 21. Linewidth of the boost parameter for “Material 2” baseline parameters (see text for
details) for various loss values Γ.

for all loss parameters. In the Scanning II scenario the QCD band cannot be reached with
η = 0.01. However, with η = 1 we find that a reasonable portion of the upper part of the
QCD band can be scanned with Γ/ω = 10−4. With very low losses Γ/ω = 10−5 and η = 1 the
Scanning II scenario reaches almost KSVZ sensitivity across a wide range of masses. We also
considered the intermediate case η = 0.1, which allows some sensitivity to the QCD axion
band with Γ/ω = 10−4. We conclude that a successful QCD-sensitive experiment requires
high efficiency SPDs.

5.4 Parameter study

We now wish to investigate how the sensitivity and scan range depend on the yet unknown
material parameters of the TMIs. In this section we consider only the scanning II scenario.
In table 8 we list the unknown parameters, and reasonable ranges they might take in different
materials within our rough approximations to the theoretical uncertainties. The ranges for
the parameters have been motivated in section 2.4.

In figure 22 we study the effect of varying the AQ decay constant fΘ and the refractive
index n on the scan range and sensitivity (we do not vary the AQ mass, since this has
the trivial effect of changing the lower limit of the scan range). The sensitivity and other
parameters are fixed as described in the previous subsection. Let us first discuss the scanning
range. The smaller n and fΘ the larger is the axion mass range that can be probed. This is
because the upper range of the scanned axion mass is determined by eq. (5.1).

To understand the effect of n and fΘ on the sensitivity, it is enlightening to study the
behaviour of the sensitivity estimates in the limit that the external B-field is very large, i.e.
ma ≈ ωLO ≈ b ∼ Be

nfΘ
. Both sensitivity estimates in the background dominated, cf. eq. (5.11),

and in the non-background dominated limit, cf. eq. (5.8), are proportional to gaγ ∼ 1
Be

1
d2

opt
,
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Parameter name & symbol Range Benchmark
TMI parameters
Decay constant fΘ [50, 200] eV 70 eV
AQ mass mΘ ∼ O(meV) 1.8 meV
Permittivity ε [9,49] 25
Magnetic permeability µ ∼ O(1) 1
Magnon losses Γm [10−5, 10−3] meV
Specific conductance Γρ [10−5, 10−3] meV
Area of crystal face A (0.2 m)2

Thickness d dopt, cf. eq. (4.51)
Experimental parameters
External B-field Be [1, 10] T 2 T
Detection effciency η [0.01, 1] 0.01
Dark count rate λd & 1 mHz 1 mHz

Table 8. Parameter reference values and ranges. Our benchmark material is “Material 2”, based on
Mn2Bi2Te5.

where we have assumed that Σ does not vary too much.10 Plugging in the optimal thickness
we obtain the scaling behaviour:

gaγ ∼
( 1
Be

) 1
6
( 1
fΘ

) 5
6 √

n. (5.14)

The strongest scaling is induced by the AQ decay constant fΘ. This view is also confirmed
by the plots in figure 22. However increasing fΘ also leads to a smaller scanning interval such
that the reached Caγ in the QCD band is almost constant. The refractive index n enters in
the sensitivity only weakly with a square root dependence. However for fixed fΘ it is visible
from the plots in figure 22 that decreasing n gives a slightly better limit on the DA-photon
coupling. Furthermore, the scaling in eq. (5.14) only applies so long as the approximation
ma ≈ ωLO ≈ b ∼ Be

nfΘ
holds. At large fΘ this approximation breaks down for suitable values

of Be (either the experimental maximum, or spin flop field, whichever is lower).
With these effects in mind, we revisit the candidate AQ material (Bi1−xFex)2Se3 (“Ma-

terial 1”), considered in Paper I. We estimate that this material has slightly smaller fΘ, and
will thus have a slightly worse sensitivity to gaγ than the alternative Material 2, although it
will have a narrower possible scan range. To be more optimistic with Material 1, we adopt
n = 3 for presentation (although this has a very small effect). Our results are collected in
figure 23.11

10Remember that Σ would be exactly 3, if we would choose for each axion mass that is scanned the exact
optimal thickness. However, in a scanning scenario this will for practical reasons not be possible and we
choose d to be the optimal thickness that corresponds to the axion mass that is in the center of all axion
masses that are scanned. As a consequence Σ can also be slightly larger than 3 in the whole axion mass that
is being scanned.

11Appendix B gives more details about the QCD axion model assumptions indicated in this figure.
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Figure 22. Sensitivity estimate for the DA-photon coupling gaγ varying the external B-field from
1 T to 10 T. The surface area is fixed to A = (0.2 m)2. The thickness d is set to the optimal thickness,
cf. eq. (4.51). We assume each frequency is scanned for the same amount of time, and the total
scanning time is tscan = 3years. For the detector nb = 10−3 Hz and efficiency η = 1. The yellow
band represents the QCD band with Caγ = 12.75 · · · 0.25, cf. eq. (B.3) for the definition of Caγ . The
dashed blue line shows the CAST limit.
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Figure 23. The projected TOORAD sensitivity for Material 1 [(Bi1−xFex)2Se3-inspired] and Ma-
terial 2 (Mn2Bi2Te5-inspired) for different losses and detector sensitivities. See table 8 for all other
benchmark parameter values. We show limits and forecasts [169] for CAST [170, 171], IAXO [172],
and various haloscopes [31, 37, 168, 173–180] (for ρloc = 0.3 GeV/cm3) as well as the bounds from hot
dark matter constraints [181], energy loss arguments in SN1987A [13]. The preferred regions cold dark
matter [182] in the realignment scenario, and with the latest cosmic string decay calculations [183]
are also indicated as horizontal arrows. The QCD axion band encompasses all “preferred” KSVZ-type
axion models as defined in ref. [29], in addition to the original KSVZ and DFSZ models.

– 65 –



J
C
A
P
0
8
(
2
0
2
1
)
0
6
6

6 Discussion and conclusions

6.1 Summary of results

The present work has developed the theory of axion quasiparticles in topological magnetic
insulators, and how such materials can be used to detect axion dark matter.

Model of axion quasiparticles. We first presented in some detail the symmetry criteria
for the existence of axion quasiparticles, and the Dirac model for their realisation in topo-
logical magnetic insulators. While already known in the literature (e.g. refs. [42, 43, 50, 51]),
these have not been shown in detail in relation to axion DM, and provide important back-
ground to the subsequent results. We laid out carefully the symmetry criteria necessary for
a material to posses an AQ. Our exploration of the model sheds light on the nature of the
AQ as a longitudinal magnon, i.e. a spatially and temporally varying AF spin fluctuation. It
is non-linearly related to the transverse magnons of ordinary AFMR.

In order to estimate the parameters fΘ and mΘ of the model, we used the result of the
ab initio calculation given in ref. [42] for (Bi1−xFex)2Se3 on a cubic lattice. We rescaled the
results to use updated values of the material parameters of (Bi1−xFex)2Se3, and Mn2Bi2Te5,
for which there is not a result available in the literature. More accurate ab initio calcula-
tions of the parameters for both (Bi1−xFex)2Se3 and Mn2Bi2Te5 are highly desirable. We
considered multiple possible sources of loss in these materials, and attempted to estimate
the contributions to the polariton linewidth. This often involved extrapolation of results ob-
tained at different frequencies and only measured in related materials. Direct spectroscopic
measurement of all these parameters is thus necessary.

Axion quasiparticle detection. We computed explicitly the transmission function of AQ
materials. This transmission function displays a magnetic field-dependent gap, and a series
of resonances, which depend on the size of the loss terms. By measuring the frequency of the
upper and lower ends of this gap, and the linewidths of the resonances, one could determine
the parameters of the model directly. Furthermore, the gap in the polariton spectrum, and
the scaling of the gap size with field strength, demonstrate directly the existence of the AQ
and its coupling to the electromagnetic field via a Chern-Simons interaction. Thus, THz
transmission spectroscopy can be used to discover the AQ.

The considered material candidates that can host an AQ are all antiferromagnets. An-
tiferromagnets exhibit an antiferromagnetic resonance (AFMR) with typical resonance fre-
quencies in the THz regime. This raises the question how one can distinguish the AFMR
from the axion-polariton resonance in the transmission spectrum. It is well known how the
AFMR frequency scales with a non-zero external B-field [125, 184, 185]. This scaling is dis-
tinct from that of the axion-polariton resonance, which consists of a fixed resonance at mΘ,
and a second one near ωLO =

√
m2

Θ + b20(B/B0)2 (where b0 = b(B0) and B0 is a reference
scale). We expect transmission spectra of the AF axion insulator MnBi2Te4 to show the
single AFMR, while the AQ material Mn2Bi2Te5 will show both the axion polariton reso-
nances and AFMR. Comparing results for both materials and the B-field dependence will
help isolate the effect of the AQ.

Axion dark matter detection. We developed the computation of the power output of an
AQ material in the presence of axion DM. The system bears many similarities to dielectric
and plasma haloscopes, and is characterised by a boost amplitude, β(ω). The boost amplitude
increases with thicker sample sizes, and the height and width of the boost are affected by
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magnon and photon losses. The power is amplified by β2 compared to a magnetized mirror,
and for realistic models of the loss 102 . β2 . 103 with a bandwidth of order 10−4 to 10−3.

Figure 23 shows our best estimates for the discovery potential of TOORAD compared
to other constraints on axion dark matter, and proposals for future experiments. The present
best estimate shows that TOORAD, using a material similar to Mn2Bi2Te5 could scan an
O(1) range in the upper half of the QCD axion model band if the SPD efficiency is very
good, η ≈ 1. In the best case scenario with low dark count rate detectors the KSVZ band
can be reached.

The primary difference between the two material candidates considered lies in the esti-
mated value of fΘ, with slightly higher values being favourable in the scan depth, but having
a slightly narrower total range. If the spin flop transition of the material is lower than the
maximum 10 T field assumed, then the scans would begin at lower frequencies, and span a
slightly smaller range of masses.

6.2 Discussion

Comparison to other axion detection proposals. We have considered detecting the
dark matter axion via the axion-photon coupling, gaγ , combined with the mixing between
the photon and the AQ. It is interesting to note that if the dark matter axion also possess
a coupling to electrons, gae, then this can excite AFMR in the TMI via the “axion wind”
derivative interaction [186] (this interaction has been successfully constrained with nuclear
magnetic resonance [187] and ferromagnetic resonance [40, 188]). The AFMR axion wind
interaction opens the possibility that AQ materials could measure both couplings, gaγ and
gae, with the same material by tuning to different resonant modes. This could be used
to perform model discrimination between the KSVZ model, with loop suppressed electron
coupling, and the DFSZ model, with leading order electron coupling. This would be an
interesting line of future research.

Similarly to dielectric and plasma haloscopes, TOORAD aims to avoid the Compton
wavelength limits imposed in traditional cylindrical cavities. Most experiments try to avoid
this limit through breaking translation invariance on roughly half Compton wavelength scales.
Examples include dielectric haloscopes [33] like MADMAX [189] and LAMPOST [190], mul-
ticavity arrays [191, 192] such as RADES [35, 193] and hybrid approaches using dielectric
loaded resonators [194, 195] such as Orpheus [196]. In contrast, TOORAD aims to give the
photon an effective mass (in the low spin wave momentum limit). In this sense, the most
similar analogue in axion experimental design is a plasma haloscope [179], which directly
gives the photon a mass in the form of a plasma frequency.

The THz regime represents a unique challenge for axion detection, as it represents
an intermediate regime between scales and technologies. Dielectric haloscopes have been
proposed at lower [189] and higher [190] frequencies. THz represents a middle ground between
the use of discrete, movable disks and O(1000) layer deposited thin films implying unique
engineering challenges to cover the available parameter space.

Dish antennas [30] are the simplest structure to target THz, due to their broadband
nature, however they lack resonant enhancement that could allow a more targeted search at
higher signal to noise. Currently the only proposed dish antenna in this range is BRASS [197].

A more recent idea in the meV range is to use the axion’s coupling to phonon polaritons
or magnons [198], however the resonance frequency in this proposal is not easily tuned, which
makes scanning axion masses difficult. To cover a range of axion masses, different materials
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of high quality would need to be measured. Further, the single quanta measurement of such
particles remains challenging [198].

As the field of THz axion detection is still very young, and each approach has different
material or engineering challenges, it is important to have a wide range of ideas in order have
a chance to look in this well motivated, but very difficult, parameter space.

Materials science. In terms of material research we have revealed there is a stark con-
trast between conventional strong dynamical axion response in solids and dynamical axion
quasiparticle response suitable for DM detection discussed here.

• The axion quasiparticles for DM detection favour longitudinal spin waves with linear
coupling to photons. In contrast, the heterogeneous dynamical axion field present in
the chiral magnetic effect or antiferromagnetic resonance of the standard transversal
spin modes does not provide within minimal models for such a coupling [43].

• While conventional large axion response can be achieved close to the magnetic phase
transition [43], a DM search favours lower temperatures, ensuring sharper resonance
linewidth free of thermal and scattering disorder.

• The static quantised axion insulators are protected by axion odd symmetries such as
spatial inversion (parity). Our dynamical axion quasiparticles favour PT symmetric
systems: PT allows for Dirac quasiparticles enhancing the (dynamical) nonquantized
AQ response by allowing tunability close to the topological phase transition.

Antiferromagnetism is favourable in many ways for axion DM detection. Reasons for this
include its compatibility with tunable axionic Dirac quasiparticles [66], availability of semi-
conducting band-structure with potentially large band-gaps, high critical temperatures, and
large spin-flop fields. Furthermore, multi-sublattice systems can provide for a combination of
separated heavy atomic elements with strong spin-orbit interaction and lighter magnetic el-
ements.

Materials wishlist. We close with stating the desirable properties of an AQ material for
axion DM detection.

• Longitudinal spin wave mass, mΘ, in the meV range. The goal is to detect the QCD
axion in this mass range. With much smallermΘ there are already existing technologies,
while for much larger values the QCD axion is already excluded.

• Decay constant, fΘ, in the 10 to 100 eV range.12 For fΘ much larger than 100 eV the
AQ is not strongly coupled enough to the Θ term for efficient mixing. Another way to
express this requirement is that the polariton gap for fields of order 1 T should be of
order mΘ.

• Low refractive index (n . 5) and high resistivity (ρ > 103 meV−1) in THz, preferably
measured from the axion-polariton spectrum resonance.

• Low impurity density: impurity separation scale of microns or larger.

• High spin flop field. This should definitely exceed 1 T for sufficiently large power
output. Larger spin flop fields permit a wider scan range.

12Recall that in the Dirac model f2
Θ = 2M2

0J where M0 is the bandgap and J is the spin wave stiffness.
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• High Néel temperature. The experiment can be operated in a dilution refrigerator with
T � 4 K. However, the further this is below the Néel temperature, the better, since
we expect magnon losses to decrease for T � TN .

• Ability to manufacture samples with thickness in excess of 1 mm. Ultimately one must
also machine multiple samples together into a large surface area disk.

We have shown that, with plausible assumptions, Mn2Bi2Te5 and (Bi1−xFex)2Se3 both satisfy
many of these requirements, although we expect the AQ phase of Mn2Bi2Te5 to be more
stable, since it does not require magnetic doping. If it can be proven that any material
satisfies the above requirements, then, in combination with existing detector and magnet
technology, such a material can be used to make an effective search for axion dark matter in
the theoretically well-motivated mass range near 1 meV.
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A Antiferromagnetic resonance and magnons for particle physicists

A.1 Effective field theory of AFMR

We follow refs. [122, 199], and present the effective field theory of antiferromagnetic reso-
nance (EFT of AFMR), which we believe is illuminating, especially from a particle physics
perspective.

The EFT of AFMR considers the dynamics of the AF magnetization n considered as
a field in the continuum limit of the Heisenberg model of the magnetic lattice, which is
equivalent to the Hubbard model in the half-filling limit, as discussed in section 2.4. The
magnetic lattice consists of A sites and B sites, with spins SA and SB at each site, and
n = (SA − SB)/2. The symmetry group G = SO(3) is related to the internal rotations of
n (not spatial rotations). This symmetry is broken by the groundstate AF order, 〈n〉 =
(〈SA〉 − 〈SB〉)/2 (which can be normalised to unity) and is invariant under the group H =
SO(2) of rotations about the axis. Magnetic order implies that the groundstate breaks
time translation invariance, T , which flips the spin orientations. However, the groundstate
preserves an effective time translation invariance T̃ = T S, where S swaps the A lattice sites
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for the B lattice sites. This leads, as we shall see, to a “relativistic” dispersion relation for
AF spin waves. Spin-orbit effects (finite electron mass corrections) lead to explicit breaking
of SO(3), which can be considered as a perturbation, and leads to a preferred “easy axis”
related to a direction in the crystal lattice.

The Lagrangian for fluctuations in n must be invariant under the coset space G/H,
which has the symmetry group of rotations on the surface of the two-sphere, S2, and imposes
the restriction n · n = 1. This restriction can be imposed as a constraint and expanded for
small perturbations in Cartesian coordinates for n, which is sufficient to derive the normal
modes and dispersion relation. More generally, the constraint can be imposed by the correct
choice of coordinates and metric, in this case the SO(3) invariant metric on S2, and leads
to the full non-linear model in polar coordinates. We begin with the first case, since we can
align the coordinates with the spacetime directions and arrive at well known results quickly,
while the second case is illuminating since it preserves the symmetries manifestly, and leads
to insights into the nature of the longitudinal mode.

A.1.1 AFMR in Cartesian coordinates
The Lagrangian at leading order in derivatives is:

L = F 2
1

2 ṅ · ṅ−
F 2

2
2 ∇n · ∇n , (A.1)

where F 2
1 is the spin wave stiffness, and F 2

2 = v2F 2
1 with v the spin wave speed. The external

fields are the applied field, H0, the probe photon with fields Eγ , Hγ and wavevector kγ , and
the anisotropy field, HA, which defines the easy-axis in the material. In the simplest AFMR
geometry we consider the applied field to be parallel to the z-axis, which is also parallel to the
anisotropy field. We further consider the probe photon (RF-field) moving along the positive
z-axis, polarised in the y-direction. The fields are thus:

kγ = (0, 0, k) ,
Hγ = (Hγ , 0, 0) ,
Eγ = (0, Eγ , 0) ,
H0 = (0, 0, H0) ,
HA = (0, 0, HA) . (A.2)

For ordinary AFMR, the photon electric field is decoupled from the system.
The applied field H0 and the photon magnetic field are coupled into the Lagrangian

eq. (A.1) by replacing the derivatives with SO(3) ∼= SU(2) covariant derivatives:

∂µna → Dµna = ∂µna + εabcfµbnc , (A.3)

where na are the directions in the SO(3) group space, µ = 0, 1, 2, 3 as subscript is the
spacetime index (which should not be confused with the Bohr magneton µB), εabc is the
antisymmetric symbol in three dimensions with ε123 = 1 (i.e. the structure constants of
SU(2)), and fµb is the applied field. For an applied magnetic field we have µBHi = f0i which
allows us to relate the group space index a to the spacetime axis i = 1, 2, 3. At lowest order in
the applied fields, this result can be understood by appealing to the interaction Lagrangian:

Lem = −µBs ·H , s = F 2
1 (ṅ× n) ,

⇒ Lem = µBF
2
1 εijkṅiHjnk , (A.4)
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where the spin density s follows from the leading order term in the derivative expansion of
the Noether current due to the SO(3) invariance.

The anisotropy field is included in the Lagrangian via a perturbation of the form ∆L =
Oana and for our field geometry is given by:

∆L = µBΣsHAn3 (A.5)

where Σs = S/Vu.c. is the “staggered magnetization”, (SA − SB)/2, in the unit cell.
In order to derive the dispersion relation (the propagator), we only require the quadratic

Lagrangian. Anticipating the well-known Keffer-Kittel result for the AFMR polarisa-
tions [184] we use n1 and n2 as coordinates, and Taylor expand for small n3 using the
constraint, i.e. n3 = (1 − n2

1 − n2
2)1/2. Momentum conservation demands that k = kγ , and

with the given geometry this simplifies the problem to effectively one-dimensional along the
z(3)-axis. After some basic algebra, the quadratic Lagrangian is found to be:

L= F 2
1

2
[
ṅ2

1 + ṅ2
2
]
− F

2
2

2
[
(∂zn1)2 +(∂zn2)2

]
(A.6)

−F 2
1 µBHγ [ṅ2 +µBH0n1]+F 2

1 µBH0[ṅ2n1− ṅ1n2 +µBH0(n2
1 +n2

2)]− µBΣsHA

2 (n2
1 +n2

2) .

The first line is the kinetic term, and the second line includes the effects of the external
fields. The photon field has been considered a perturbation, and thus couples linearly to the
fields ni in the Lagrangian. The photon field thus acts as an oscillating source term in the
equations of motion. On the other hand H0 and HA couple to quadratic combinations of ni,
and affect the dispersion relation.

The equations of motion are:

n̈1 − 2µBH0ṅ2 +
(
v2k2 + µBΣsHA

F 2
1

− µ2
BH

2
0

)
n1 = µ2

BHγH0 , (A.7)

n̈2 − 2µBH0ṅ1 +
(
v2k2 + µBΣsHA

F 2
1

− µ2
BH

2
0

)
n2 = µBḢγ . (A.8)

To derive the dispersion relation, we consider the homogeneous equation with the right hand
side set equal to zero, and move to frequency space by Fourier transforming t → ω. The
system is diagonalised by the complex fields n± = n1 ± in2 leading to the system:

ω2
± ∓ 2µBH0ω± −

(
v2k2 + µBΣsHA

F 2
1

− µ2
BH

2
0

)
= 0 , (A.9)

which is solved by

ω+ = µBH0 ±
√
v2k2 + µBΣsHA

F 2
1

,

ω− = −µBH0 ±
√
v2k2 + µBΣsHA

F 2
1

. (A.10)

The dispersion relation, eq. (A.10) for the fields n± = n1 ± in2 displays all the well-
known properties of AFMR. The two modes n± = n1 ± in2 correspond to clockwise and
anticlockwise precession of the Néel vector [184]. The resulting spin wave is depicted in
figure 24. The constraint |n|2 = 1 leads to an oscillation of n3 accompanying the precession.
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H0

z
x

y

Figure 24. AFMR spin wave, with |n|2 = 1, indicating the higher order change in n3 associated
with the spin precession.

As shown in appendix A.2, n3 in this case oscillates with a frequency twice that of the AFMR.
However, if |n|2 = 1, then n3 in not an independent polarisation and its fluctuation does not
change the length of the Néel vector.

In the absence of HA, the dispersion relation is linear in k. The application of HA

induces a “mass term”, i.e. a term inducing a gap and leading order quadratic piece in the
dispersion relation near k = 0:

m2
s = µBΣsHA

F 2
1

(A.11)

Rearranging, we find
m2
sF

2
1 = µBΣsHA , (A.12)

which has the form m2
sF

2
1 = (spontaneous) × (explicit) symmetry breaking, and is the AF

analogue of the Gell-Mann-Oakes-Renner relation [109] for pions [122] (and also the QCD
axion). Furthermore, since F 2

1 ∝ Σs this fits with the microscopic interpretation of F 2
1 as

arising from the staggered magnetization angular momentum per unit cell mentioned above.
The applied field H0, rather than leading to a mass term, instead induces a linear shift

in the frequency, the “Kittel shift”, which arises from an effective (anti-)damping term and
“negative mass squared” in the equations of motion for n±.

The exchange field, HE , is not incorporated directly in our treatment of EFT. However,
as noted in ref. [122], we should fix the EFT parameters with reference to a microscopic theory.
The microscopic theory (e.g. ref. [200]) gives the spin wave mass from the energy gap:

m2
s = µ2

BHA(2HE +HA) , (A.13)

where HE is the exchange (or Weiss) field. The second term of eq. (A.13) is not present in
the EFT, which is linear in HA. Indeed, EFT is valid in the limit HA/HE � 1, and breaks
down for large anisotropy fields [122]. Comparing eq. (A.12) with the first term of eq. (A.13)
we identify HE = Σs/2µBF 2

1 leading to:

F 2
1 = Σs

µBHE
= S

µBHEVu.c.
. (A.14)
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The EFT of AFMR is based on the mean field Heisenberg model. The Heisenberg model
is the strong coupling limit of the Hubbard model (the fundamental model on which our
theory of the AQ is based), with different perturbative degrees of freedom. In the Heisenberg
model with nearest neighbour interactions the Hamiltonian is:

H = JH
∑
<ij>

σi · σj −D
∑
i

(σzi )2 (A.15)

where the first sum is over the spins σi and σj on adjacent lattice sites. The anisotropy
field is given by HA = 2SD

gµB
. The anisotropy field arises due to the spin orbit coupling which

explicitly breaks the SO(3) symmetry of the Heisenberg model due to finite electron mass
corrections. The Heisenberg EFT is valid for weak spin orbit coupling HA � HE .

A.1.2 AFMR in polar coordinates

In the following we explicitly follow the treatment of ref. [199], and use the field geometry:

kγ = (k, 0, 0) ,
Hγ = (0, 0, Hγ) ,
Eγ = (0, Eγ , 0) ,
H0 = (H0, 0, 0) ,
HA = (HA, 0, 0) . (A.16)

In terms of polar coordinates, we have

n1 = sin θ cosφ , n2 = sin θ sinφ , n3 = cos θ . (A.17)

AF order breaks the SO(3) internal symmetry of the spins down to the coset space
SO(3)/SO(2) which has the geometry of S2. The dynamics of the Goldstone modes can
be expressed using the polar coordinates. The easy axis has coordinates θ0, φ0, and we
normalise the order parameter to unity. The Goldstone mode Lagrangian at lowest order in
derivatives is:

L = F 2
1

2 γabϑ̇
aϑ̇b − F 2

2
2 γab∇ϑa · ∇ϑb , (A.18)

where a, b = θ, φ and the metric γab is the round metric on the sphere, γab = diag[1, sin2 θ].
The dynamics is easiest to express choosing n1 to be the easy axis, θ0 = π/2, φ0 = 0. We
then find trivially that, at leading order in fluctuations:

n1 = 1− δθ2

2 −
δφ2

2 , n2 = δφ , n3 = −δθ . (A.19)

The longitudinal fluctuation, i.e. the change in n projected along the direction of travel
of the spin wave, n1 in this case, is quadratic in the Goldstone modes, while the transverse
fluctuations are linear. Note, however, that in these coordinates we always have explicitly two
polarizations and no change in the length of the Néel vector. The anisotropy field perturbs
the Lagrangian as above, ∆LA = µBΣsHAn1, and induces a mass term for δθ and δφ. The
interaction with applied fields follows exactly as in the Cartesian case using the relations in
eq. (A.17).
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A.1.3 Longitudinal spin waves in the Heisenberg model
The AQ is related to longitudinal fluctuations of the Néel vector (i.e. those in the direction
of the anisotropy field), but this is not equivalent to a third longitudinal polarisation that
changes the length of the vector. Such a “true” longitudinal mode is the mode that breaks
SO(3) giving rise to AF order, i.e. the Higgs-like radial mode (see also refs. [201, 202]). When
writing down the model, we need to be careful that it respects all the symmetries. The field
~φ = (〈SA〉 − 〈SB〉)/2 is the total (staggered) magnetization, the Néel vector, and we can
write it as:

~φ = ρ(x)(n1(x), n2(x), n3(x)) = ρ(x)n . (A.20)

The field ρ is the longitudinal polarization, while n is the AFMR field introduced above with
|n|2 = 1. There is a maximum magentization given by the spin density, and a minimum value
pointing in the opposite direction. In our conventions, φ is dimensionless and normalized to
a maximum of unity, thus |φ|2 ≤ 1 [96].

The constraint |φ|2 ≤ 1 can be enforced naturally by considering the EFT given by the
SO(3) invariant metric on S3 with unit radius. We use the field coordinates:

~ϕ = (α, θ, φ) , (A.21)

where θ, φ are the AFMR variables in polar coordinates introduced above, and α is a third
polar angle. The metric is

ds2 = gABdϕ
AdϕB = dα2 + sin2 αdΩ2 , (A.22)

where A,B = α, θ, φ, and dΩ2 = γabdϑ
adϑb is the round metric on S2, and ~ϑ = (θ, φ) as

above. We see that the polar angle α gives the radius of the S2 submanifold of S3, as desired
and with the correct normalisation, ρ = sinα. We can interpret α as the angle between the
spins in a “bending mode”.

The Lagrangian in the absence of external fields is:

L = F 2
1

2 gABϕ̇
Aϕ̇B − F 2

2
2 gAB∇ϕA∇ϕB . (A.23)

Specifying the anisotropy field allows us to identify the polar axis as n1 as above. The
anisotropy field introduces explicit symmetry breaking and a potential for α, V (α) ∝ −n1 ∝
− sinα, which is minimized at α = π/2. To consider the fluctuations, we write α = π/2− σ
and σ is the angular field giving rise to the fluctuation in ρ, i.e. the third magnon polarization.
It has quadratic Lagrangian:

L = F 2
1

2 σ̇2 − F 2
2

2 ∇σ
2 − µBΣsHA

σ2

2 , . (A.24)

The field σ couples to the other AFMR fields via the metric gAB:

L = cos2 σ

[
F 2

1
2 γabϑ̇

aϑ̇b − F 2
2

2 gab∇ϑa∇ϑb
]
. (A.25)

Expanding cos2 σ = 1−σ2 for the quadratic Lagrangian we see that at leading order we obtain
the angular AFMR theory from above, and σ is decoupled. Similarly, σ is decoupled from the
external fields in the quadratic Lagrangian, since the spin density, s = F 2

1 φ̇×φ, only contains

– 74 –



J
C
A
P
0
8
(
2
0
2
1
)
0
6
6

σ at cubic order. Thus, in this S3 EFT of the Heisenberg model, the σ degree of freedom
corresponding to changes in the length of the Néel vector is stabilised by the anisotropy field,
and is neither excited by external fields nor mixes with the transverse AFMR polarisations.
Could this mode be the AQ? We take the general expression for δΘ in eq. (2.26) and expand
nA in the angular fields. Once again, δΘ is quadratic in all the variables of this model,
including σ. We have not been able to obtain a quadratic kinetic term for δΘ from an SO(3)
invariant EFT including only the Néel order parameter.

The preceding discussion suggests a possible solution to the problem of the EFT of the
AQ. We notice that S3 is in fact the spin group Sp(1) = Spin(3) = SU(2). Furthermore
SU(2) ∼= SO(3)/Z2, and for the AQ we are concerned with models that break the discrete
symmetries P and T . This suggests using a complex field φ in the fundamental 2-dimensional
representation of a chiral SU(2) to represent the AF order parameter, which now has four real
degrees of freedom. Thus, after SSB this would give three goldstone modes: two “charged”
goldstones, giving the transverse magnons, and one “neutral” goldstone, which we assume
will be the longitudinal magnon. Each goldstone corresponds to a U(1) subgroup of SU(2).
The neutral goldstone is a pseudoscalar, and thus this U(1) group is itself chiral, i.e. a Peccei-
Quinn symmetry. The Dirac fermions in the band structure should be charged under this
symmetry, such that they acquire chiral rotations (“m5” mass) governed by the longitudinal
mode. Just like the axion and the neutral pion, this new goldstone mode can now couple to
E ·B via the chiral anomaly. We have not, unfortunately, been able to work out this theory
completely.

A.2 The Landau-Lifshitz equations

In this appendix, following refs. [203, 204], we describe an antiferromagnetic resonance
(AFMR) state using the Landau-Lifshitz equation. We consider the action of the Néel field
described by the non-linear sigma model [96],

SAF = g2J
∫
dtd3r

[
(∂µn) · (∂µn)−∆2

0n
2
]
. (A.26)

In order to implement a little more realistic condition in eq. (A.26), we take into account
a small net magnetization m satisfying the constraint n ·m = 0 with |n| = 1 and |m| �
1. Furthermore, we assume the case of AF insulators with easy-axis anisotropy. Then a
modification of eq. (A.26) gives the free energy of such AF insulators as [205, 206]

FAF =
∫
d3r

a
2m

2 + A

2
∑

i=x,y,z
(∂in)2 − K

2 n
2
z −H ·m

 , (A.27)

where a and A are the homogeneous and inhomogeneous exchange constants, respectively,
and K is the easy-axis anisotropy along the z direction. The fourth term is the Zeeman
coupling with H = gµBB being an external magnetic field.

In the case in which a dc magnetic field H0 and an ac magnetic field (i.e., RF field)
h(t) are applied to the AF insulator, the total magnetic field in eq. (A.27) is

H = H0 + h(t), (A.28)

where H0 = gµBBez with B being much weaker than both the AF exchange coupling and
easy-axial anisotropy and h(t) = hRFe

−iω0t. Here, ez is the unit vector parallel to the easy
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axis of the AF order. Now we study the dynamics ofm and n phenomenologically, i.e., based
on the Landau-Lifshitz-Gilbert (LLG) equation [203, 204, 206]. From the free energy of the
system FAF, the effective fields for n and m are given by

fn = −δFAF
δn

= An× (∇2n× n) +Knzez − (n ·H)m,

fm = −δFAF
δm

= −am+ n× (H × n). (A.29)

The LLG equation is given by

ṅ = (γfm −G1ṁ)× n,
ṁ = (γfn −G2ṅ)× n+ (γfm −G1ṁ)×m, (A.30)

where γ = 1/~ and G1 and G2 are dimensionless Gilbert damping constants. For the purpose
of deriving the AFMR state, we may neglect the Gilbert damping constants. Then, the LLG
eq. (A.30) is simplified as

ṅ = γ(−am+H)× n, (A.31a)
ṁ = γKnzez × n+ γH ×m, (A.31b)

where we have assumed that n is spatially uniform, and we have used |n|2 = 1 and an
identity for matrices A × (B × C) = (A · C)B − (A · B)C. After some straightforward
matrix algebra, we arrive at the following equation for the Néel field:

n× n̈+ ωKωanzez × n− γ2(n ·H)H × n+ 2γ(n ·H)ṅ+ γ(n · Ḣ)n = γḢ. (A.32)

To obtain the AFMR state, where all the spins are fluctuating uniformly, we assume
the dynamics of the Néel vector and the total magnetization around the easy axis as

n(t) = ez + δn(t) and m(t) = δm(t), (A.33)

denoting that δn(t) and δm(t) are the small fluctuation components with |δn|, |δm| � 1.
Substituting this form into eq. (A.32), and then linearizing and Fourier transforming δn(t) =∫
δñ(ω)e−iωtdω/(2π), eq. (A.32) reduces to [203, 204]

2iωHωδñ/ωa +
[(
ω2 + ω2

H

)
/ωa − ωK

]
ez × δñ = Dδ(ω0 − ω), (A.34)

where ωH = γgµBB, ωa = γa, ωK = γK, and ω0 is the frequency of the RF field [h(t) =
hRFe

−iω0t]. In eq. (A.34), D = −iγω0(hxRFex + hyRFey) is understood as the “driving force”
vector causing the AFMR. Equation (A.34) is rewritten in the matrix form[

2iωωH −
(
ω2 − ωaωK + ω2

H

)
ω2 − ωaωK + ω2

H 2iωωH

] [
δñx(ω)
δñy(ω)

]
= ωaδ(ω0 − ω)

[
Dx
Dy

]
. (A.35)

Multiplying the inverse matrix from the left hand side, we obtain[
δñx(ω)
δñy(ω)

]
=
[
χ1(ω) χ2(ω)
−χ2(ω) χ1(ω)

] [
Dx
Dy

]
, (A.36)
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where the susceptibility is defined as[
χ1(ω) χ2(ω)
−χ2(ω) χ1(ω)

]
= ωaδ(ω0 − ω)

(ω2 − ω2
+)(ω2 − ω2

−)

[
2iωωH ω2 − ωaωK + ω2

H

−
(
ω2 − ωaωK + ω2

H

)
2iωωH

]
. (A.37)

Here,

ω± = ωH ±
√
ωaωK (A.38)

are the resonance frequencies. Note that these frequencies do not depend on the parameters
of the driving force D.

Along with eq. (A.34), the following equation is obtained from 2γ(n ·H)ṅ+ γ(n · Ḣ)n
in eq. (A.32), which describes the “longitudinal” AFMR state:

2ωHδṅzez = iγω0e
−iω0t(hxRFδnx + hyRFδny)ez. (A.39)

Fourier transforming this equation and substituting the solution for δnx and δny [eq. (A.36)]
into it, we have

δñz(ω) ∝ hxRFδñx(ω − ω0) + hyRFδñy(ω − ω0) ∝ δ(2ω0 − ω)
[(ω − ω0)2 − ω2

+][(ω − ω0)2 − ω2
−] , (A.40)

which indicates that the resonance frequencies of the longitudinal AFMR are ω = 2ω0 = 2ω±.
Eq. (A.40) reveals that the longitudinal mode is quadratic in the RF field, i.e., a second-order
response to the RF field, while the transverse mode [eq. (A.36)] is a linear response to the
RF field.

B Axion dark matter and the millielectronvolt range

Since their initial proposal as a solution for the Strong CP problem more than 40 years ago [1–
3, 207], (QCD) axions have seen phases of growing interest due to a number of breakthroughs.
The first was the realisation that axions are excellent dark matter candidates [7–9, 208], and
that there are several ways to search for them experimentally [32, 209–211]. Recently, there
has been a huge growth of new ideas for axion searches (see ref. [18] for a review), which
includes the present proposal (“Paper I”) using topological insulators [41].

The QCD axion was originally proposed as the pseudo-Goldstone boson of a sponta-
neously broken global U(1) symmetry, which couples to chiral fermions charged under the
strong nuclear force, SU(3)c gauge symmetry (i.e. quarks). Such a global symmetry is known
as a Peccei-Quinn (PQ) symmetry, U(1)PQ. More generally, QCD axions can be regarded as
pseudo-Goldstone bosons coupled to the QCD anomaly term, schematically GG̃, where G is
the gluon field strength tensor, and G̃ its dual.

The PQ symmetry breaking scale, vPQ, is not predicted by the theory, although it is
expected to be below the reduced Planck scale, MPl = 2.4× 1018 GeV [212]. The symmetry
breaking scale sets the axion mass, which arises due to the axion’s coupling to the QCD
topological charge via SU(3)c instantons, and which reaches its zero-temperature value at
temperatures lower than the QCD crossover temperature of around 157 MeV [213, 214]. The
axion mass at such temperatures is given by [215]

ma =
√
χ0
fa

= 5.69(5) meV
(

109 GeV
fa

)
, (B.1)
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where χ0 is the zero-temperature QCD topological susceptibility, fa = vPQ/N , and N is
the SU(3)c anomaly of U(1)PQ. The value of χ0 can be calculated from chiral perturbation
theory [2, 215, 216] while, at higher temperatures, it can be calculated using lattice quantum
field theory (see e.g. ref. [217]), or using instanton methods [218, 219].

The QCD axion couples to the EM Chern-Simons term via two means. Firstly, by its
model-independent mixing with pions, and secondly via the (model-dependent) electromag-
netic anomaly (E) of fermions charged under U(1)PQ. The coupling is [e.g. 216]

∆L = gaγ aE ·B , (B.2)

where a ≡ fa θ is the canonically normalised axion field and gaγ is the axion-photon coupling,
which is given by

gaγ = α

2πfa
Caγ = α

πfa

[ E
N
− 1.92(4)

]
, (B.3)

where N is the SU(3)c anomaly of the PQ symmetry, and is equal to unity in the KSVZ
model, while for the DFSZ model N = 6. The value of E/N depends on the PQ charges
and gauge group representations of fermions. We define the QCD model band according to
the “preferred” models of ref. [29], which corresponds to 5/3 < E/N < 44/3. Experiments
constrain |gaγ |, and so this band and encompasses the original KSVZ (E/N = 0) and DFSZ
(E/N = 8/3) models. For a generic “axion-like particle”, the coupling gaγ is taken as a free
parameter independent of ma.

The QCD axion mass is bounded from above and below by astrophysical constraints.
The existence of BHs with masses of order ten solar masses with high spins, stable over as-
trophysical timescales, would be impossible if the QCD axion existed and ma . 10−12 eV [14,
15, 220]. In such a case, the axion Compton wavelength is resonant with the size of the BH
ergoregion, causing axions to be abundantly created from vacuum fluctuations, and rapidly
draining the spin of the BH. On the other end of the mass scale, the QCD axion with
ma & 0.02 eV is excluded by observations of neutrinos coinciding with the galactic supernova
SN1987A [11, 12]. The QCD axion couples to nuclei in the supernova, and axions are emitted
by nuclear bremsstrahlung, cooling the supernova more rapidly and shortening the neutrino
burst if the axion-nucleon coupling (proportional to ma) is too large. Since there is no statis-
tically rigorous bound associated with SN1987A, we also mention that a looser upper limit
on ma can be derived from constraints on the relativistic energy density in the early Universe
(parameterised as a hot DM component). Hot QCD axions are produced by their interaction
with pions. The amount of hot axions produced is in conflict with the cosmic microwave
background anisotropies as measured by the Planck satellite [10, 182] if ma & 0.3 eV (see e.g.
refs. [19, 181]).

In the mass range of interest for TOORAD, the axion-photon coupling is mostly con-
strained by axion helioscopes [171] and cooling of Horizontal Branch (HB) stars through the
ratio of HB and Red Giant Branch stars [221, 222], which both lead to limits of the order
gaγ . 10−10 GeV−1. This is far above the coupling for typical QCD axion models.

Assuming that the QCD axion indeed composes the observed DM with cosmic density
parameter Ωdh

2 = 0.12 [182], it is possible to analyse the value of ma further (for a review,
see ref. [16]). If the maximum temperature of the Universe exceeds the PQ phase transition
temperature, TPQ ∼ vPQ, or if the Hubble scale during inflation HI > 2πvPQ, then the
PQ symmetry is unbroken at the end of inflation. When it subsequently breaks, the Kibble
mechanism leads to a network of topological strings that persists as the Universe expands
and, when the axion mass becomes cosmologically relevant ma ∼ H (where H is the Hubble
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parameter) domain walls form [223–225]. Such defects emit DM axions, and eventually decay
when H � ma. In this case, if N = 1 (which imnolies the domain wall network is unstable,
then the DM abundance is in principle calculable and depends only on ma. However the
dynamics of the strings and domain walls are complex and the axion abundance can only
accurately be determined by numerical simulations. This computation cannot be performed
at the physical scale separation (between the string thickness and the Hubble length, which in
turn sets the string tension), and so the results must be extrapolated. In the case N > 1, the
DM abundance depends on an additonal biasing parameter required such that the domain
wall network decays [226].

When N = 1, recent simulations [183] have placed a lower bound on the QCD axion
mass ma & 0.5 meV by considering axions emitted by the string network prior to the axion
mass becoming relevant, a well controlled extrapolation to the physical scale separation, and
a computation of non-linear effects after the network decays.13 This work also estimates
the bound ma & 3.5 meV when N > 1, in agreement with the general expectation that
the axion mass should be larger in this scenario [226, 229, 230]. One issue for axion direct
detection in the post inflation scenario is the existence of axion “miniclusters” [231–233].
Recent simulations of structure formation in this scenario suggest that a large fraction of
the DM (50% or more at the solar radius in the Milky Way) is bound in dense, low mass
objects [234–237]. These objects have a low collision cross section with the Earth, and reduce
the effective value of the local DM density for a direct detection experiment.

In the alternative scenario for axion production, the PQ symmetry is broken in the
very early Universe during the hypothetical period of inflation [238–240], and axions are
subsequently produced when the initial vacuum state of the axion decays, in a process called
“realignment”. This scenario has more free parameters than just ma, and it is not possible to
predict the axion mass based on the observed DM abundance. This scenario is incompatible
with a large energy scale of inflation, and would be ruled out if primordial gravitational waves
were observed [241]. If the initial vacuum value of θ is assumed to be of order 1 the axion
mass in the pre-inflationary scenario is bounded to ma & 0.7 µeV [242]. However, anthropic
pressure due to the need for DM to form galaxies can allow for much lower or higher values
of the mass in this scenario [243, 244]. Limits on the mass in this case are only imposed
with additional assumptions on the energy scale of inflation, which limit the allowed level of
tuning on the free parameter.

C Comparison to earlier results

The forecasts shown in figure 23 differ in many respects from those in Paper I, and we explain
briefly why, see figure 25, which shows the same projection alongside those of Paper I. For the
detector, Paper I assumed a coupling factor equivalent to efficiency η = 0.01, and the same
dark count rate as in the present work. The difference in the scan depth arises because the
power output in Paper I was computed in analogy to a resonant cavity, and this formula is
incorrect for a medium with a polariton resonance. Allowing for a few translations, however,
the results can be compared. All in all, however, we stress that the power formula in Paper I
was far too simplistic, and so should not be used.

Our present corrected calculations have shown that the power does not scale with the
material volume as assumed in Paper I: rather it depends separately on the surface area and
the material thickness. Losses lead to a maximum useful thickness, an effect which was not

13Other extrapolations to the physical scale separation lead to lower bounds on the mass [227, 228].
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Figure 25. Comparison between the forecasts made in Paper I (gray) and those in the present work
(coloured lines).

accounted for in Paper I. For the models presently considered, this leads to a total useful
material volume around 40 cm 3. Thus for comparison, we show the Paper I estimates for
“Stage I”, which used a total volume of material 1 cm3, and ‘Stage II”, which used a total
volume of material 100 cm3, equivalent to d ≈ 1mm in the present case. The “Stage III”
volume considered in Paper I is inaccessible due to the finite skin depth induced by realistic
O(µeV) losses.

Paper I included losses only by a rough estimate for the bulk quality factor, which was
taken as Q = 105, roughly Γ = 10−5 meV (this assumed power law decreases in Γm at low T
as discussed in the present work, but neglected the impurity and conductance contributions).
On the other hand, Paper I assumed that the power was reduced by a polariton mode
mixing factor, f+, which is absent in the present treatment (mode mixing mostly affects the
width of the resonance). Together, these amount to an assumed β2 ≈ 104 for some baseline
parameters. Comparing to figure 19, using the correct computations from the present paper,
such a large β could only be achieved with losses Γ = 10−5 meV. These many considerations
explain the different depth of the constraints in terms of gaγ in the present work compared
to Paper I.

The difference in the scanned mass range in the present work compared to Paper I is
more useful and necessary to explain. It arises from the adopted values of mΘ and fΘ. In the
present work we take our preferred material as Mn2Bi2Te5, while Paper I uses (Bi1−xFex)2Se3.
Even so, there are differences to the (Bi1−xFex)2Se3 parameter estimates in Paper I compared
to the present work. In Paper I we erroneously assumed that mΘ was equal to the AFMR
frequency of the transverse magnon polarisations (with a reduction due to the doping required
in (Bi1−xFex)2Se3 ) leading to mΘ = 0.6 meV, and thus a lower minimum value of ma in the
Paper I treatment. Paper I also incorrectly included the Kittel shift to mΘ. As discussed,
the longitudinal magnon is not simply related to the transverse modes and Paper I should
have used the value of mΘ computed by ref. [42], as we do in the present work. However,
as we have noted, ref. [42] used a square lattice approximation to compute mΘ. We do not
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know the error induced by this assumption on the lower limit of the scannable mass range
also in the present work.

Furthermore, Paper I assumed fΘ for (Bi1−xFex)2Se3 directly from ref. [42]. In the
present work we corrected this value using more up to date estimates of the bulk band
gap of (Bi1−xFex)2Se3 including the effects of magnetic doping, leading to the “Material 1”
parameter estimates with lower fΘ. The lower value of fΘ in the present work allows for a
wider range of masses to be scanned for the same range of B-field strengths.
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