

Delft University of Technology

Safer reinforcement learning for robotics

Koryakovskiy, Ivan

DOI
10.4233/uuid:7923c257-e81f-4e29-adf7-bd6014d9da6a
Publication date
2018
Document Version
Final published version
Citation (APA)
Koryakovskiy, I. (2018). Safer reinforcement learning for robotics. [Dissertation (TU Delft), Delft University of
Technology]. https://doi.org/10.4233/uuid:7923c257-e81f-4e29-adf7-bd6014d9da6a

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:7923c257-e81f-4e29-adf7-bd6014d9da6a
https://doi.org/10.4233/uuid:7923c257-e81f-4e29-adf7-bd6014d9da6a

Safer reinforcement learning for robotics

Ivan Koryakovskiy

Safer reinforcement learning for robotics

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus, prof.dr.ir. T.H.J.J. van der Hagen,
chair of the Board for Doctorates

to be defended publicly on
Monday 3 December 2018 at 15:00 o’clock

by

Ivan KORYAKOVSKIY

Master of Science in Electrical Engineering and Computer Science,
Seoul National University, Seoul, South Korea

born in Sosnoviy Bor, Russia.

This dissertation has been approved by the promoters:

Prof. Dr.-Ing. H. Vallery
Prof. dr. R. Babuška

Composition of the doctoral commiĴee:

Rector Magnificus chairperson
Prof. Dr.-Ing. H. Vallery Technische Universiteit Delft, promoter
Prof. dr. R. Babuška Technische Universiteit Delft, promoter

Independent members:
Prof. dr. M. Wisse Technische Universiteit Delft
Prof. dr. A. Kheddar Université de Montpellier
Dr. H. C. van Hoof Universiteit van Amsterdam
Prof. dr. A. Nowé Vrije Universiteit Brussel
Prof. dr. C. M. Jonker Technische Universiteit Delft, reserve member

Other member:
Dr. W. Caarls Pontifícia Universidade Católica do Rio de Janeiro

The research presented in this thesis has received financial support from the Eu-
ropean Commission’s Seventh Framework Programme (FP7-ICT-2013-10) under
grant agreement No. 611909.

Koryakovskiy I.
Safer reinforcement learning for robotics. – М.: Editus, 2018. – 170 p.

ISBN 978-5-00058-959-5

Copyright © 2018 by Ivan Koryakovskiy

All rights reserved. No part of the material protected by this copyright notice may
be reproduced or utilized in any form or by any means, electronic or mechanical,
including photocopying, recording or by any information storage and retrieval sys-
tem, without wriĴen permission of the author.

Email: I.Koryakovskiy@gmail.com

An electronic version of this dissertation is available at
http://repository.tudelft.nl/

http://repository.tudelft.nl/

Contents

Contents vii

List of symbols ix

List of abbreviations xiii

Preface xv

1 Introduction 1
1.1 Motivation . 2
1.2 Robot safety and learning . 3
1.3 Problem definition . 5
1.4 Research goal . 6
1.5 Approach . 7
1.6 Thesis outline . 8

2 Evaluation of physical damage associated with action selection strate-
gies 11
2.1 Introduction . 12
2.2 Reinforcement learning . 13

2.2.1 The Markov decision process 13
2.2.2 Action-selection methods . 14

2.3 Simulations results . 16
2.4 Discussion . 18
2.5 Conclusion . 22

3 Benchmarking model-free and model-based optimal control 25
3.1 Introduction . 26
3.2 Model-based and model-free optimal control methods 29

3.2.1 Optimal control. 29
3.2.2 Nonlinear model predictive control 29
3.2.3 Reinforcement learning . 31

3.3 Benchmark system . 32
3.4 Problem formulation . 32
3.5 Evaluation protocol. 35

3.5.1 Notations and methodology 35
3.5.2 Description of experiment and measures 36

3.6 Results on the cart-pendulum . 37
3.7 Discussion . 41
3.8 Conclusion . 44

vi Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

4 Model-plant mismatch compensation using reinforcement learning 45
4.1 Introduction . 46
4.2 Related work . 47
4.3 Background . 48

4.3.1 Problem statement . 48
4.3.2 Nonlinear model predictive control 49
4.3.3 Reinforcement learning . 49

4.4 Proposed combination approaches 50
4.4.1 Compensatory Action Learning 50
4.4.2 Model-Plant Mismatch Learning 50

4.5 Experiments . 52
4.5.1 Bipedal walking robot Leo . 52
4.5.2 Objective function and constraints. 52
4.5.3 Parameters . 53
4.5.4 Evaluation . 53
4.5.5 Simulation results . 53
4.5.6 Results on the real robot . 54

4.6 Discussion . 56
4.7 Conclusion . 59

5 Sample-efficient reinforcement learning via difference models 61
5.1 Introduction . 62
5.2 Related work . 62
5.3 Reinforcement learning . 63
5.4 Proposed method. 64

5.4.1 Notation. 64
5.4.2 Algorithm. 65
5.4.3 Training data . 65

5.5 Experiment details . 66
5.5.1 Inverted pendulum. 66
5.5.2 Bipedal walking robot Leo . 66
5.5.3 Training data and parameters 68
5.5.4 Evaluation measures . 68

5.6 Results . 69
5.6.1 Inverted pendulum. 69
5.6.2 Robot Leo . 69

5.7 Discussion . 71
5.8 Conclusion . 74

6 Multitask reinforcement learning for safer acquisition of locomotion
skills 77
6.1 Introduction . 78
6.2 Background . 81

6.2.1 Reinforcement learning . 81
6.2.2 Model-free deep reinforcement learning 82

Contents vii

6.3 Proposed method. 83
6.3.1 Curriculum learning . 83
6.3.2 Supervised learning of the task-switching network 85

6.4 Experiment details . 87
6.4.1 Systems . 87
6.4.2 Learning parameters . 88
6.4.3 Evaluation methodology . 90
6.4.4 Evaluation metrics . 91

6.5 Results . 92
6.5.1 TIM: curriculum learningwithmanual selection of time steps

to practice . 92
6.5.2 BAL: automated curriculum learningwith the duration of bal-

ancing as a task-switching indicator 97
6.5.3 RNN: automated curriculum learning with RNN-based iden-

tification of task-switching moments 98
6.6 Discussion . 99
6.7 Conclusion . 102

7 Conclusions and future directions 105
7.1 Conclusions. 106

7.1.1 Influence of exploration strategies 106
7.1.2 Safer learning with an approximate dynamical model 107
7.1.3 Safer learning without the approximate dynamical model . . . 108

7.2 Directions for future research . 109
7.2.1 Composite approach towards damage minimization. 109
7.2.2 Future directions for safer reinforcement learning research . . 110

Acknowledgements 115

A Appendix. Experimental setups 117
A.1 Bipedal walking robot Leo . 118
A.2 The inverted pendulum on a movable cart 120

B Appendix. Additional results 123
B.1 Influence of the reward shaping on the trajectory cost 124
B.2 Influence of the discount rate on learning with MPML. 124
B.3 The mass distribution of Leo and Roboschool systems vs. human. . . 126
B.4 Curriculum learning with samples obtained from different models . . 126

Bibliography 129

List of publications 143

Summary 145

SamenvaĴing 149

Curriculum Vitae 153

List of symbols

Standard math symbols
𝑥𝑂𝑦 Cartesian coordinate system with center in 𝑂
∇𝒂𝑓 gradient of function 𝑓 w.r.t. vector 𝒂
‖𝒂‖𝑝 ℓ𝑝-norm of vector 𝒂

‖𝒂‖𝐖
√

𝒂⊤𝐖𝒂, the ℓ2-norm of 𝒂 weighted with a positive definite matrix 𝐖
𝒂⊤, 𝐀⊤ transpose of vector 𝒂 or matrix 𝐀
ℝ set of real numbers
𝔼 expectation
𝑝 probablility
𝚺 covariance matrix
𝒩, ℳ random processes
𝒏, 𝒎 random variables
𝑗 vector element
𝑛 size of vector
𝑁 dataset size

Physical variables
𝑠, ̇𝑠, ̈𝑠 position (m), linear velocity (m s−1) and acceleration (m s−2)

𝜙, ̇𝜙, ̈𝜙 angle (rad), angular velocity (rad s−1) and acceleration (rad s−2)
𝒒, ̇𝒒, ̈𝒒 generalized position, velocity and acceleration
𝑭 generalized force
𝐇 mass matrix
𝑩 vector with Coriolis, centrifugal, and gravitational terms
𝑔 gravitational acceleration (m s−2)
𝑡 continuous time (s)
𝑇𝑠 sampling period (s)
𝑐 center of mass
𝑚 body mass (kg)
𝑙 length (m)

x Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

𝐽 moment of inertia (kgm2)
𝜇 viscous friction coefficient (N sm−2)
𝜅 friction area (m2)
𝜏 torque (Nm)
𝐹 force (N)
𝐸 motor work (Jm−1)
𝑆 travel distance (m)
𝐼 current (A)
𝑈 voltage (V)
𝑅 resistance (Ω)
𝐾𝜏 torque constant (NmA−1)
𝐾G gearbox ratio
𝐾hip stiffness of hip joint (Nmrad−1)
𝐶𝑢 control scale factor
𝜏knee knee temperature (°C)
𝒑 model parameters
𝝆 uncertainty in structure or model parameters

Optimal control and moving horizon estimation
𝑇 finite horizon (s)
𝒯 finite time interval
𝐿 integral (Lagrange) term of objective function
𝑀 terminal (Mayer) term of objective function
𝒚 measurement of state 𝒙
𝐖 state weighting matrix
𝐕 control weighting matrix

MDPs and RL
𝒳 continuous state space
𝒰 continuous action space
𝕌 discrete action space
𝒫 transition function
ℛ reward function
𝒙 state
�̄� reference trajectory

List of symbols xi

𝒖 action/control
Δ𝒖 control discretization step
𝑟 reward
𝑟 a reward given in absorbing states
𝐺 return
𝑅 regret
𝜋 policy
𝜋∗ optimal policy
𝑉 𝜋 state value function for policy 𝜋
𝑄𝜋 state-action value function for policy 𝜋
𝑞 value of the state-action value function
𝑘 discrete time
𝐾 number of time steps in finite horizon
𝜁 trajectory (a sequence of states and controls)
𝛼 learning rate
𝛾 reward discount factor
𝜖 exploration rate
𝜎, 𝜃, 𝒎0 Ornstein-Uhlenbeck process parameters
𝜆 target networks update weight
𝜽 a, 𝜽 c actor and critic parameters
Ω squashing function
𝜔 squashing factor
𝑃 potential function
Ψ shaping function
𝜓 shaping weight
ℐ termination indicator
𝒟 difference model
𝔹 experience replay buffer

Curriculum learning
𝜏 task
𝕋 collection of tasks 𝜏
Δ𝑟 task difference (expressed by the difference in reward)
𝑰 learning performance indicators
𝜽 s switching network parameters
𝑘w sliding window width
𝜖CE Cross-Entropy percentile

xii Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

Additional performance measures
ℒ cost of trajectory 𝜁
𝒆 model-plant mismatch
ℰ cumulative model-plant mismatch
ℱ gearbox fatigue
𝑁ℱ number of completely reversed cycles withstood before failure
𝜉 exploration intensity
Ξ cumulative mean exploration intensity

List of abbreviations

CAL Compensatory Action Learning
CE Cross-Entropy method
DDPG Deep Deterministic Policy Gradient
DNN deep neural network
DoF degree of freedom
DPG deterministic policy gradient
IMC internal model control
MHE moving horizon estimation
ML machine learning
MPML Model-Plant Mismatch Learning
MSE mean squared error
MTBF mean time before failure
NMPC nonlinear model predictive control
OC optimal control
ODE Open Dynamics Engine
OU Ornstein-Uhlenbeck noise
PADA Previous Action-Dependent Action algorithm
PD proportional-derivative controller
RBDL Rigid Body Dynamics Library
RL reinforcement learning
RMSE root mean squared error
RNN recurrent neural network

Preface

We live in a very exiting period of human history when automation has a true po-
tential to liberate human from the hardships of the labor for survival. Concurrently
with the diffusion of automation, it is important to continue developing our social
and economic systems to prevent disproportional amplification of the already ex-
isting inequalities in the society and share automation benefits with all people and
countries around the world.

Ivan Koryakovskiy
Delft, June 2018

1
Introduction

2 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

1.1 Motivation

Machine learning (ML) is an artificial intelligence discipline. Given the input and/or
output data, ML tries to discover the underlying process which generated the data.
Such knowledge usually has regularities and structure, and this is what ML strives
to find. It can substitute or augment human in areas where tedious, computation-
ally intensive or dangerous and at the same time intelligent activities are required.
Various supervised and unsupervised learning algorithms have been developed
for classification and recognition, automatic translation and web-search, content
recommendation and pharmaceutical drug development (Alpaydın, 2014). Nowa-
days, many fields of human activity with access to large amounts of data use these
algorithms to help people take faster actions of beĴer quality.

Despite its efficiency, supervised and unsupervised learning have one critical
boĴleneck – namely, they demand human-provided data. It is often difficult to
obtain training data, and data may also be subjective in cases when it is labeled
manually. Reinforcement learning (RL) is another subfield of ML which aims at
developing intelligent agents capable of making decisions, acting upon them and,
most importantly, to learn from the outcomes of these decisions. Therefore, RL
provides the self-learning framework of the underlying process.

Since their emergence in the late 1950s, the robots were controlled by classi-
cal approaches which flawlessly execute a set of commands to achieve a certain
task. Unfortunately, application of these methods is limited to controlled environ-
ments such as production lines or factories, or continuous dynamical systems, e.g.
aerospace. MLhas a great potential to expand the number of real-life applications in
robotics. Already there are intelligent robots that can autonomously clean the floor,
monitor surroundings or entertain people, e.g. Ubtech’s bipedal walker, Honda
3E-A18. There are also numerous start-up companies that aim at substituting peo-
ple working in hazardous environments (e.g. robot Talos from PAL Robotics) or
increase human productivity and safety (self-driving cars). However, simulated
environments allow to learn more complex tasks or use more complex robots. The
problem of transferring the learned policies from simulators to the real world or
learning policies from scratch in the real world is very challenging due to several
factors.

First, learning from experience involvesmakingmistakes. RL is a trial-and-error
processwhich requires a good balance between exploration and exploitation. In RL,
exploration is often achieved by adding random noise directly to the actions or in-
directly to policy parameters. A similar mechanism may be found in humans. For
example, Wu et al. (2014) showed that actively regulated biological motor variabil-
ity facilitates human motor learning. Just like with people, noisy actions may dam-
age a robot or its surroundings. Depending on the severity of the damage, repair
may be very costly. If the models of the robot and its surroundings are available, a
possible solution may be to detect dangerous situations and restrict the robot from
taking unneeded risk. This strategy guarantees a minimum damage, and therefore
it is widely used in commercially available robots mentioned above. However, for
some applications, such strategy may come at a price of greatly limiting the poten-

1 Introduction 3

tial of learning, thereby hampering the quality of service provided by the robot.
Second, the real world is stochastic and much more diverse than it is assumed

during modeling. Obtaining exact models of various physical effects such as con-
tact impacts, backlash, friction or sliding is a complicated undertaking. Moreover,
even if such models were known, simulating them would require an exceptional
processing power. When this complication is coupled with a large variety of en-
vironment realizations and external disturbances, it becomes obvious that simulat-
ing every detail of reality is simply infeasible. A typical solution to this problem
is to standardize the robot operating environment, e.g. to ensure the flatness of
the floor, fixed positions of objects and specific lighting (Sünderhauf et al., 2018).
These assumptions complicate the operation of robots in a diverse, dynamic and
unstructured environment. Therefore, the ability to generalize a control policy to
uncertainties in the environment is of high demand.

ML can achieve human-level performance in specific intelligent tasks, and in
some tasks such as playing Atari games (Mnih et al., 2015) or Go (Silver et al., 2017)
it outperforms most people. This trend is expected to continue. Thus, there is a
need to develop new approaches towards a safer learning in order to benefit from
the full potential of ML algorithms adopted in the real world.

1.2 Robot safety and learning

Garcia and Fernandez (2015) provide an in-depth overview of safe RL. Formally,
it is possible to guarantee safe learning in a very limited number of cases: one
can either predict repercussions of bad actions (Moldovan and Abbeel, 2012; Ful-
ton and Plaĵer, 2018) or have a backup policy to lead the system back to the safe
state (Hans et al., 2008; Fisac et al., 2017). The worst-case criterion (Heger, 1994)
or the risk-sensitive criterion (Howard and Matheson, 1972; Geibel and Wysoĵki,
2011) adopted from classical control approaches focus on risk-avoiding policies,
which can be very restrictive in practice. Furthermore, these methods usually re-
quire an accurate model of the system. Without such a model, learning or fine-
tuning the control policy on the real system is often necessary. In many cases, this
process is more damaging than the execution of an optimal policy; therefore, learn-
ing algorithms should account for damage to avoid system failures. The review of
literature summarizes the ideas that facilitate learning on real robots and also some
promising simulated results.

It is commonly assumed that quicker learning reduces the damage of robots. A
straightforward model-based technique is to learn the suboptimal policy in a simu-
lator and then transfer the policy directly to a real robot (Jakobi, 1998; Svinin et al.,
2001; Oßwald et al., 2010). However, in most cases, one encounters a simulation
bias which does not allow to apply the policy directly to the real robot. Therefore,
additional learning is usually required (Endo et al., 2008). Further reduction of
sample complexity may be achieved by learning the difference between the simu-
lator and the real world and incorporating the difference into the policy-learning
loop (Morimioto et al., 2003; Abbeel et al., 2006; Cutler et al., 2014; Chaĵilygeroudis
and Mouret, 2017) or nonlinear model predictive control (NMPC) loop (Ostafew

4 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

et al., 2016). Similarly, this difference can be captured by the specially developed
neural network structures called progressive nets (Rusu et al., 2017). In the model-
free seĴing, a small number of dimensions and relatively simple tasks allow to learn
the full probabilistic model of real dynamics and derive the policy from it (Deisen-
roth et al., 2015; Gal et al., 2016). The laĴer approachwas recently scaled up tomore
complex tasks and dataset sizes (Higuera et al., 2018).

Learning from high-dimensional observations often requires dimensionality re-
duction as a part of data processing. State representation aims at finding the com-
pact description of physical aspects relevant to the learning task. The efficiency
of several architectures such as deep autoencoders (Lange and Riedmiller, 2010;
Lange, 2010), robotic priors (Jonschkowski and Brock, 2015), and convolutional neu-
ral networks (Finn et al., 2015) was demonstrated in the end-to-end learning on real
robots. Furthermore, disentangled state representations facilitate the generaliza-
tion of control policies. Higgins et al. (2017) validated the possibility of transferring
the learned visual representation from a simulator to a real robot without retrain-
ing.

Alternative techniques gain computational speedup from parallelizing learning
algorithms across multiple robots (Levine et al., 2017; Gu et al., 2017). An addi-
tional benefit is that damage is also spread across all the robots. Physiological
studies of infant development inspire another technique called curriculum learn-
ing. Asada et al. (1996) and Andrychowicz et al. (2017) demonstrated how learning
could quickly progress if the robot proceeds to amore complex task after mastering
the easier one.

Another popular technique of accelerating the learning process and at the same
time reducing the damage is to parametrize controllers using smooth classes of
functions. If the structure of the system is available, it is possible to derive the
controller and then tune its parameters online (Calandra et al., 2016; Marco et al.,
2016). Otherwise, initialization from human expert demonstrations can facilitate
learning the control policy, which is especially useful for complex tasks. Reduc-
tion of the search space using a spline-based (Miyamoto et al., 1995), central paĴern
generator-based (Matsubara et al., 2006) or dynamicmovement primitive-based (Pe-
ters and Schaal, 2008; Pastor et al., 2009; Kober and Peters, 2011) parametrization of
trajectories is an effective learning technique. Demonstrations can also be used for
learning the locally correct dynamical model (Levine andKoltun, 2013) or for fiĴing
model parameters (Abbeel et al., 2010). Alternatively, experts can be substituted by
a suboptimal controller available at hand (Kohl and Stone, 2004; Schuitema, 2012;
Farshidian et al., 2014; Zhang et al., 2016). Furthermore, one can reduce the dimen-
sionality of the robot by decreasing the number of actuated joints and exploiting the
symmetry of a task (Schuitema, 2012). For dealing with even more complex tasks,
the hierarchical strategy of sequencing low-level controllers formanipulation (Stulp
and Schaal, 2011) or walking (Heess et al., 2016) has shown its effectiveness.

Even when a basic locomotion controller is available, navigation in a real-world
environment is dangerous to a robot. Traditional approaches build geometric mod-
els using depth sensors and stereo cameras (Bachrach et al., 2009; Schmid et al.,
2013). Another promising approach developed by Sadeghi and Levine (2016) is to

1 Introduction 5

avoid robot collisions with obstacles by learning to predict collisions from a simu-
lator with highly randomized images of walls and stairs.

A smaller number of approaches explicitly consider the risk of damage while
learning. Mihatsch and Neuneier (2002) and Shen et al. (2014) derive risk-sensitive
RL methods by modifying state or action value functions. Unfortunately, risk-sen-
sitive RL may have undesirable effects such as the distortion of the long-term util-
ity, overly pessimistic policies (Garcia and Fernandez, 2015), and additional pa-
rameters. Therefore, the risk-directed exploration forms an aĴractive alternative
to risk-sensitive RL. Schuitema (2012) distinguishes between positive and negative
rewards to quickly learn about dangerous states. Modifying exploration process
based on temporal-difference error as a risk measure (Gehring and Precup, 2013)
or incorporating prior assumptions about damaging actions (Meijdam et al., 2013;
Van Hoof et al., 2017b,a) demonstrates faster and/or safer learning. The model-free
approach of Mannucci et al. (2018) uses prior knowledge of fatal states and a data-
driven backup controller to avoid collisions with obstacles. Alternatively, if the dy-
namical model is available, it is possible to increase the robustness of the policy by
training it for the wide range of simulated models with varied model parameters.
Rajeswaran et al. (2017), Yu et al. (2017) and Clavera et al. (2018) implement this
approach and demonstrate the generalization of the policy beyond the observed
model parameters.

Mechanical design of robots is another important factor that contributes to safer
learning. Lightweight and small-sized walking robots reduce heel-strike or fall im-
pacts (Schuitema, 2012; Calandra et al., 2016). Impact forces can also be reduced
by compliant actuators integrated into the robot body (Albu-Schaeffer et al., 2008;
Cardona et al., 2016). High endurance industrial manipulators allow setups where
learning may last for several months (Levine et al., 2017). Finally, statically stable
mobile robots provide a secured learning platform (Lange, 2010; SuĴon et al., 2011;
Jonschkowski and Brock, 2015). Such platforms are convenient for testing RL but
also somewhat restrictive – for example, they do not allow learning intrinsically
unstable tasks such as dynamic walking.

1.3 Problem definition

Classical control techniques are usually applied in structured environments such
as research labs, factories, or Earth’s atmosphere and the space beyond. It is be-
lieved that learning can bridge the gap between unstructured human-friendly en-
vironments and robots. However, learning requires exploration actions, which are
potentially unsafe, and as such, the intention of staying safe is almost antithetical to
learning. Adventurous exploration actions increase chances of mechanical damage
because abnormal operating conditions increase the intensity of wear and tear and
can easily lead to catastrophic failures in unstructured environments. The problem
is exacerbated by the model-free learning algorithms, which usually do not con-
strain exploration and therefore may suffer from hundreds of failures before some-
thing meaningful is learned. Needless to say, each failure requires a significant
amount of resources to restore the failed system back to the operating condition.

6 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

Literature presented in the previous section sheds some light on the existing
approaches towards safety in robotics. The commonly accepted belief among com-
puter scientists is that quicker learning will prevent damage to robots and their
surroundings. In particular, developing one-shot learning approaches is the cru-
cial step in the direction towards safety. Sufficient amount of prior knowledge is
the necessary condition for one-shot learning. However, it may also hamper the
learning performance. Therefore, the study of the techniques that achieve learning
goals with the minimum of prior knowledge and damage is in high demand.

For example, an approximate model of the real system is often available. How-
ever, policies trained on it during simulation do not generalize well across similar
models or real robots. Essentially, the current status of RL is such that transferred
policies fail, often to the extent of not being able to produce any reliable control se-
quence at all. Therefore, additional learning on the real system is usually required.
More efficient and by far the most successful approach towards reducing the real
interaction time is to introduce task-dependent prior knowledge such as provid-
ing demonstrations or suboptimal controllers. However, these approaches require
skilled human operators, some knowledge of the underlying proceeds; and may
also hamper learning performance because this form of prior knowledge limits the
possibility of finding optimal solutions. Besides, they also require several adapta-
tion roll-outs performed on a real system, which againmay result in severe damage.

It is a reasonable assumption that quicker learning prevents damage, but
it should not be taken as a decided fact. It is reasonable because it minimizes
maintenance efforts, but on the other hand, it relies on the experimenter to provide
safety means during learning. Therefore, in search for the alternative techniques,
a closer look at the examples of learning in nature might be helpful. Humans are
not born self-sufficient, but aĴain maturation after a long development process as
a result of interaction with a physical and social environment. During this time,
people learn complex locomotion skills like walking or cycling, cognitive skills like
language communication, logic abilities and deductive reasoning. Several learning
paradigms are involved in mastering these skills, but undoubtedly progressive
learning plays an important role. Since the first days of life, people continuously
build up skills and knowledge on top of what is already acquired rather than try
to pursue a certain skill without any ground basis prepared. Perhaps, failure to
recognize this aspect of learning is the reason why the RL generalization results
have been poor so far.

Current problems in RL applied to realistic robot tasks can be summarized as
follows:

1. There is a lack of literature that aims at finding theminimumprior knowledge
required for achieving learning goals while minimizing the damage.

2. It is problematic to learn policies that generalize well across similar models
and robots.

3. It is unsafe to learn policies without task-dependent prior knowledge. Even
then, the safety is not guaranteed, and additionally, task-dependent prior
knowledge may hamper the final performance.

1 Introduction 7

4. Ensuring safety during learning is usually considered to be an experimenter
duty rather than accounted by the learning algorithm itself.

5. Methods that acquire new skills by gradually solving more complex tasks
received liĴle aĴention so far.

1.4 Research goal
The goal of this thesis is to discover learning strategies that are effective for real-
world robotics. Specifically, the focus is on fragile systems, because such systems
clearly establish the difference between the learning approaches suitable for sim-
ulators and the real unstructured world. In this context, the following research
questions are addressed:

1. How do exploration strategies affect the damage of a real robot?

2. How can an approximate model of a robot help to mitigate the risks of dam-
age?

3. Without having a model at hand, is it possible to reduce robot damage by
sequencing learning tasks similar to the way humans learn gradually?

1.5 Approach
Previous research conducted in Delft Biorobotics Lab provides the basis for this
work. Schuitema (2012) has developed the bipedal robot Leo specifically for learn-
ing with RL. The purpose of the development was to identify practical complica-
tions that arise from applying RL techniques to Leo. Among several complications,
the author discovered that fragility of the robot’s hardware is the crucial limit im-
posed on the real-world learning. Thiswork can be viewed as the extension towards
approaches that seek for safer learning on a fragile hardware.

Robot Leo and its simulated model are shown in Figure 1.1. The experimental
setup is designed for conducting hours of the autonomous learning. For this
purpose, the robot is connected to the boom, which prevents lateral falls, and
is equipped with a single arm to facilitate stand-up recovery after falls. See
Appendix A.1 for more details about the robot.

Dynamic bipedal walking is a challenging task due to nonlinear hybrid dynam-
ics, unilateral foot-ground interaction, statically unstable single-support phase and
susceptibility to modeling uncertainties. For these reasons, it is very difficult to cre-
ate a feasible control policy or apply human-expert demonstrations. Therefore, RL
is the appropriate tool for acquiring the walking policy. The intrinsic vulnerability
of walkers to damage further motivates the usage of Leo in this research.

The following damaging factors can be identified for the real robot Leo:

1. physical damage due to falls and backlash reengagements,

2. sample-inefficient learning,

8 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

Figure 1.1: (left) 7 degree of freedom bipedal robot Leo developed by Schuitema (2012), and (right) its
simulated model.

3. modeling uncertainties,

4. control delays.

Falls and backlash reengagements directly result in the physical damage of Leo,
while the other factors indirectly influence it. The impacts of the control delays
were already investigated by Schuitema (2012). Therefore, the first three items are
in the focus of this work. Choosing the right prior knowledge is the key to mit-
igating the damaging factors. However, the amount of knowledge can vary. To
answer the research questions, a varying amount of prior knowledge is injected,
and hence its relation to the factors listed above is identified. The balance between
prior knowledge and the system damage is the central thread of this work, which
is schematically shown in Figure 1.2.

The work in this thesis is predominantly applied to the bipedal robot Leo. Nev-
ertheless, the research results obtained in this work are generic and also apply to
other robots.

1.6 Thesis outline
The remainder of the thesis is structured as follows:

Chapter 2 studies the influence of RL exploration strategies on the gearbox damage
due to backlash re-engagements and its relation to falls and the final performance
of the robot, thereby answering research question 1. This result applies to low-level
control. Hence, it holds for generic model-free RL.

Chapter 3 begins to address research question 2. The final performance of the
model-based and model-free approaches is compared in the presence of paramet-
ric and structural uncertainties. As a model-based approach, two versions of the
NMPC framework are employed: the one that satisfies real-time constraints and

1 Introduction 9

Approximate model

Task knowledge

Physics-based
assumptions

Approximate model
and a nominal controller

Safety

Prior knowledge

Ch.6

Ch.3, 4

Ch.2

No falls and
limited risky
exploration

Falls and gearbox damage
in varying proportions

Reduction
of falls

Reduced interaction
with a real robot

Ch.5

Figure 1.2: Structure of the thesis. The safety of the proposed approaches is evaluated relative to stan-
dard model-free learning.

the one that neglects them. Obtained results provide the basis for the combination
of both approaches, which is proposed in the next chapter.

Chapter 4 continues to address research question 2. Two methods of compensat-
ing model-plant mismatch using a combination of NMPC and RL are proposed.
The role of NMPC is to provide safety barriers to constrain RL exploratory actions
near dangerous state space regions. Safe learning is not guaranteed, although the
proposed approaches can be safe in practice. Moreover, the approaches can in prin-
ciple compensate any type of uncertainty that preserves the Markov property; and
without employing the time-consuming structure identification process or expert-
designed models of friction, backlash, etc. Unfortunately, NMPC requires the dy-
namic system equations, optimization objectives and constraints to be at least twice
continuously differentiablewith respect to the optimization variables, whichmakes
it difficult to apply this method to systems with hybrid dynamics. Nevertheless,
this chapter highlights the significance of the model for safer learning.

Chapter 5 suggests another way of compensating model-plant mismatch by lever-
aging an approximate forward model of the robot. Interaction time with the robot

10 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

is minimized by learning the difference between the dynamics of the robot and
its model. This approach can scale to systems with highly non-linear and contact-
rich dynamics with continuous state and action spaces, but no safety barriers are
provided. This chapter concludes the pursuit towards the answer to the research
question 2.

Chapter 6 draws aĴention to the nature-inspired method of reducing the damage
while learning, thereby answering research question 3. It is observed that often chil-
dren learn to walk by progressing through intermediate stages of siĴing, crawling
and balancing. The specific arrangement of tasks is also practiced for rehabilita-
tion of the after-stroke patients. The results of the simulations demonstrate that
the approach of scheduled tasks can significantly reduce the number of robot falls
compared to the case when the robots learns to walk immediately. Furthermore, it
shows that the task switching moments can be automatically detected based on a
set of performance indicators, which characterize the learning progress. Although
in this chapter the focus is on gradually learning the control policy, in future works,
curriculum learning can also facilitate learning of the systemmodel. Thismodel can
later be usedwith damage-reducing approaches proposed in the previous chapters.

Chapter 7 summarizes conclusions and offers recommendations for future
research.

2
Evaluation of physical damage

associated with action
selection strategies

This chapter introduces several exploration strategies and investigates their influence on the
damage and the performance of Leo, thereby providing the answer to research question 1.
The exploration strategies are studied in the context of model-free learning. Simulation
results reveal a previously unknown trade-off between the two sources of damage: gearbox
fatigue and the cumulative number of falls. Interestingly, one of the proposedmethodswith a
time-correlated noise outperforms the well-known 𝜖-greedy method. The main contribution
of this chapter is that it provides guidance towards the choice of the exploration strategy for
reinforcement learning (RL) applied to real mechanical systems.

Published in: Koryakovskiy, I., Vallery, H., Babuska, R., and Caarls, W. (2017). Evaluation of Physical
Damage Associated with Action Selection Strategies in Reinforcement Learning. IFAC-PapersOnLine,
50(1):6928 – 6933.

12 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

2.1 Introduction

Until recently, robotic applications were mostly limited to controlled and well-pre-
dictable environments such as factories or space. However, currently scientists and
engineers strive to bring robots to uncontrolled, partially observable and human-
friendly environments. Despite the existence of advanced software and hardware,
many challenges remain in the integration of robots into our society.

Machine learning techniques enable robots to dealwith unknown environments
without using explicit models or preprogrammed policies. In simulations, impres-
sive results were obtained with deep learning in the actor-critic seĴing (Lillicrap
et al., 2015). The authors use a deep neural network for learning both from low-
dimensional state descriptions and high-dimensional renderings of the environ-
ment. In both cases, they have shown the ability of their approach to scale to com-
plex tasks such as control of a seven-degree-of-freedom arm and bipedal locomo-
tion, reaching a good control policy in at most 2.5 million steps.

Figure 2.1: (left) Seven degree of freedom robot Leo
and (right) its model.

However, the application of learn-
ing on real robots can be very costly.
For example, our robot Leo, shown
in Figure 2.1, can learn to walk by
first observing a preprogrammed con-
troller and then improving the ob-
served policy using RL (Schuitema,
2012). Without the preprogrammed
controller, Leo’s gearboxes can only
withstand five minutes of learning as
a direct result of the aggressive nature
of its learning strategy, involving large
and rapidly changing motor torques (Meijdam et al., 2013). Therefore, in this chap-
ter we investigate possibilities of reducing the damage while learning.

Garcia and Fernandez (2015) give an overview of Safe RL. Perhaps the most
prominent method of limiting damage is to define specific parameterized policies
that are benign to the hardware at hand and then to learn the parameters only. This
can, for example, be done from optimal control roll-outs (Levine and Koltun, 2013)
or kinesthetic teach-in (Kober and Peters, 2011). In general, they can achieve good-
quality policies within dozens of episodes but require a few human demonstrations
for each task that needs to be learned.

An exploration method by Moldovan and Abbeel (2012) requires a model with
known uncertainty in the dynamics. It restricts a set of policies to ergodic ones,
which are policies that intrinsically encode the possibility of returning to an initial
state from any other state.

On the hardware level, multiple contact dynamics were used in order to dissi-
pate impactswith aminimumdamaging effect on the robot (Ha andLiu, 2015). This
planning strategy requires a model and explicit formulation of damage measures.

When aiming at higher robot autonomy and beĴer generalization to unknown
environments and new tasks, learning to control fragile systems in amodel-free set-

2 Evaluation of physical damage associated with action selection strategies 13

ting is essential. Only a few methods have been proposed that explicitly consider
safe exploration in this seĴing. For instance, trust region policy optimization (Schul-
man et al., 2015) generates near-monotonic improvements of a policy by choosing
sufficiently small step sizes. Unfortunately, as mentioned by Lillicrap et al. (2015),
it appears to be less data-efficient than unconstrained policies.

Another method, proposed by Gehring and Precup (2013), identifies areas of
high randomness in the rewards or transitions and avoids those during exploration.
It was shown that the approach can scale to high-dimensional problems and noisy
state information.

Finally, superior results regarding mean time before failure (MTBF) were
achieved by the Previous Action-Dependent Action (PADA) algorithm of Meijdam
et al. (2013), where the author constrained a set of possible actions to remain within
a fixed distance from a previous action. Our work can be seen as a continuation
of this research. We select four commonly-used exploration methods (Greedy,
𝜖-greedy, PADA, Ornstein-Uhlenbeck (OU)) for the comparison on the bipedal
robot Leo. Earlier experiments (Meijdam et al., 2013) indicated that robot falls and
foot impacts also contribute significantly to the MTBF. To distinguish these two
sources, we compute the cumulative number of falls in addition to calculation of
fatigue, MTBF and undiscounted return. The obtained results reveal a previously
unknown trade-off between the number of falls and gearbox fatigue. Furthermore,
by proposing four new exploration methods, we bridge the gap between the
methods mentioned above and provide a beĴer insight into the influence of
exploration on the damage of Leo. As an outcome, we provide guidance towards
a choice of exploration strategy for physical RL applications.

2.2 Reinforcement learning

2.2.1 The Markov decision process
Reinforcement learning can deal with unmodelled and noisy environments. The
dimension of the state space is 𝑛𝑥 with𝒳 ⊂ ℝ𝑛𝑥 being the set of possible states. The
dimension of the action space (the space of the control signals) is 𝑛𝑢 with 𝒰 ⊂ ℝ𝑛𝑢

being the set of possible actions. Then a Markov decision process is defined as
the quadruple ⟨𝒳, 𝒰, 𝒫, ℛ⟩, where 𝒫 ∶ 𝒳 × 𝒰 × 𝒳 → ℝ is a transition function that
defines the probability of ending in state 𝒙𝑘+1 ∈ 𝒳 after executing action 𝒖𝑘 ∈ 𝒰 in
state 𝒙𝑘 ∈ 𝒳. The reward function ℛ ∶ 𝒳 × 𝒰 × 𝒳 → ℝ gives a real-valued reward
𝑟𝑘+1 = ℛ(𝒙𝑘, 𝒖𝑘, 𝒙𝑘+1) for the particular transition between states. A Markov
decision process satisfies theMarkov property, which assumes that the current state
𝒙𝑘 provides enough information to determine an optimal action 𝒖𝑘.

A deterministic control policy 𝜋 ∶ 𝒳 → 𝒰 defines an action 𝒖𝑘 taken in a state
𝒙𝑘. The goal of learning a continuing task is to find an optimal control policy 𝜋∗ that
maximizes the discounted return,

𝐺(𝒙𝑘) = 𝔼 {
∞
∑
𝑖=0

𝛾𝑖𝑟𝑘+𝑖+1} ,

14 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

where the immediate rewards are exponentially decayed by the discount rate 𝛾 ∈
[0, 1) – rewards further in the future contribute less to the return.

The state-action value function 𝑄𝜋(𝒙𝑘, 𝒖𝑘) denotes the expected return assum-
ing that the system starts in the state 𝒙𝑘 with the action 𝒖𝑘 and then follows a
prescribed control policy 𝜋. The optimal control policy maximizes the value for
each state-action pair.

In this chapter, we solve a bipedal walking task using the well-known model-
free temporal-difference RL algorithm SARSA (SuĴon and Barto, 1998). The value
function is represented by a linear function approximator using binary features de-
fined by tile coding (Albus, 1975). A discrete action𝒖𝑘 is selected in state𝒙𝑘 accord-
ing to one of the action-selection methods, and then the value function is updated
according to

𝑄𝜋(𝒙𝑘−1,𝒖𝑘−1) = 𝑄𝜋(𝒙𝑘−1, 𝒖𝑘−1) + 𝛼(𝑟𝑘 + 𝛾𝑄𝜋(𝒙𝑘, 𝒖𝑘) − 𝑄𝜋(𝒙𝑘−1, 𝒖𝑘−1)).

We implement standard accumulating eligibility traces for speeding up the conver-
gence of SARSA.

In RL, exploration is achieved either by taking suboptimal actions with a certain
probability or by initializing the value function optimistically, that is with values
higher than the expected return. This causes visited states to become less aĴractive
than states that have not been visited yet (Matignon et al., 2006). In this chapter, we
only focus onmethods of suboptimal action selection anddonot consider optimistic
initialization.

2.2.2 Action-selection methods
All studied action-selection methods and the relations between them are summa-
rized in Figure 2.2. In the following, we explain details of each method.

Greedy
This method always takes the expected best possible action

𝒖𝑘 = arg max
𝒖∈𝕌

𝑄𝜋(𝒙𝑘, 𝒖),

where 𝕌 ⊂ 𝒰 is a discrete subset of possible actions.

𝝐 -Greedy
This method takes a greedy action most of the time, but with a small probability
𝜖 > 0 it samples a random action from a uniform distribution,

𝒖𝑘 =
⎧{
⎨{⎩

arg max
𝒖∈𝕌

𝑄𝜋(𝒙𝑘, 𝒖), with probability 1 − 𝜖
uniform(𝕌), otherwise.

PADA
Greedy and 𝜖-greedymethods choose a future action independently from the previ-
ous action. However, it was shown by Meijdam et al. (2013) that selection of a new

2 Evaluation of physical damage associated with action selection strategies 15

Greedy

𝜖-greedy
𝜖-PADA PADA

𝜖-OU OU OU-PADA

PADA-2

AC-OU

¬

®

°
±

³

¯

²

Figure 2.2: A relation between conventional (solid line) and proposed (dashed line) exploration meth-
ods. ¬ Take a random action with probability 𝜖. Select a random action within a ∆𝒖 interval. ®
Select greedy and random actions within the ∆𝒖 interval. ¯ Include 𝒖𝑘−1 ± 2∆𝒖 actions to the ac-
tion selection set. ° Add a time-correlated noise to a greedy action taken with probability 𝜖. ± Add
a time-correlated noise to a greedy action taken with probability 1. ² Add a time-correlated noise to
a greedy action constrained by the action selection set. ³ With probability 𝜖, take an action correlated
with a previous action.

action from a subset of actions defined around the previous action dramatically re-
duces the MTBF of RL. In case of Leo, the authors used a previous action and two
neighboring actions:

𝒖𝑘 =
⎧{
⎨{⎩

arg max
𝒖∈�̃�(𝒖𝑘−1)

𝑄𝜋(𝒙𝑘, 𝒖), with probability 1 − 𝜖

uniform(�̃�(𝒖𝑘−1)), otherwise,

where the set of neighboring actions is defined as

�̃�(𝒖𝑘−1) = {𝒖𝑘−1 − Δ𝒖, 𝒖𝑘−1, 𝒖𝑘−1 + Δ𝒖} ,

and Δ𝒖 is a vector with all elements equal to the discretization step of controls Δ𝑢.
In the case of the PADA-2 method, the set of neighboring actions is extended with
actions located ±2Δ𝒖 away from a previous action.

OU
Rather than taking an entirely random action such as with the 𝜖-greedymethod, the
OUprocess (Lillicrap et al., 2015) adds time-correlated noise to a greedy action. The
OU exploration term 𝒎𝑘 is the integral over a Gaussian noise signal 𝒏𝑘 ∼ 𝒩(0, 1),
but pulled towards an asymptotic mean 𝒎0,

𝒎𝑘 = 𝒎𝑘−1 + 𝜃(𝒎0 − 𝒎𝑘−1) + 𝜎𝒏𝑘
𝒖𝑘 = arg max

𝒖∈𝕌
𝑄𝜋(𝒙𝑘, 𝒖) + 𝐶𝑢𝒎𝑘.

The three parameters, 𝜃 > 0, 𝜎 > 0 and 𝒎0, influence the dynamics of the process,
and 𝐶𝑢 scales the noise to the values of admissible actions.

We establish a connection between the described methods by introducing four
new action-selection methods.

16 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

𝝐 - PADA
Themethod selects a greedy action at exploitation steps and a random actionwithin
±Δ𝒖 bound at exploration steps, therefore bridging 𝜖-greedy and PADA methods.

𝒖𝑘 =
⎧{
⎨{⎩

arg max
𝒖∈𝕌

𝑄𝜋(𝒙𝑘, 𝒖), with probability 1 − 𝜖
uniform(�̃�(𝒖𝑘−1)), otherwise.

𝝐 -OU
The method bridges the gap between 𝜖-greedy and OU by only adding the OU
process noise at exploration steps,

𝒎𝑘 = 𝒎𝑘−1 + 𝜃(𝒎0 − 𝒎𝑘−1) + 𝜎𝒏𝑘

𝒖𝑘 =
⎧{
⎨{⎩

arg max
𝒖∈𝕌

𝑄𝜋(𝒙𝑘, 𝒖), with probability 1 − 𝜖
arg max

𝒖∈𝕌
𝑄𝜋(𝒙𝑘, 𝒖) + 𝐶𝑢𝒎𝑘, otherwise.

OU -PADA
The method adds the OU process noise to the greedy action selected within ±Δ𝒖
bounds, therefore bridging OU and PADA methods.

𝒎𝑘 = 𝒎𝑘−1 + 𝜃(𝒎0 − 𝒎𝑘−1) + 𝜎𝒏𝑘
𝒖𝑘 = arg max

𝒖∈�̃�(𝒖𝑘−1)
𝑄𝜋(𝒙𝑘, 𝒖) + 𝐶𝑢𝒎𝑘

AC -OU
Inspired by the OU process, we introduce an Action-Correlated Ornstein-
Uhlenbeck (AC-OU) action-selection method. As in the 𝜖-greedy method, we
separate exploratory and greedy actions. An exploratory action is selected based
on the previous action so that it does not stress the system as much as a random
action would do. As in the OU process, we add a 𝜃-multiplied term, which works
as an action regularization,

𝒖𝑘 =
⎧{
⎨{⎩

arg max
𝒖∈𝕌

𝑄𝜋(𝒙𝑘, 𝒖), with probability 1 − 𝜖
𝒖𝑘−1 + 𝜃(𝒎0 − 𝒖𝑘−1) + 𝜎𝒏𝑘, otherwise.

Note that here 𝜎 and 𝜃 are applied on the action level and do not require scaling.
In addition to the above-described methods, we tried the Softmax action-selec-

tion method (SuĴon and Barto, 1998), but there was no temperature for which it
performed beĴer than the Greedy method.¹ For this reason, we excluded Softmax
from further investigation.

Table 2.1 gives the parameters of the methods presented. Those used for
𝜖-greedy (Schuitema, 2012) and PADA (Meijdam et al., 2013) were taken from the

¹ The temperature was kept constant throughout the experiment.

2 Evaluation of physical damage associated with action selection strategies 17

corresponding articles, while for the other methods we tested a range of values
and selected the ones that led to the highest undiscounted return. Additionally,
a SARSA learning rate 𝛼 = 0.2, a discount rate 𝛾 = 0.9962, an eligibility trace
decay rate of 0.8582 and a sampling period of 0.033 s of Leo’s controller were taken
from Schuitema (2012). The state-action value function 𝑄𝜋(𝒙𝑘, 𝒖𝑘) was initialized
with random values in the range of [0; 0.01].

2.3 Simulations results
We evaluate properties of the described action-selection methods using the Leo dy-
namics simulator. Following Schuitema (2012), we exploit the symmetry of the
bipedal walking problem to reduce the state and action space dimensions to ten
and three, respectively. Actions from a voltage range of [−10.7V, 10.7V] are dis-
cretized into seven linearly spaced values. We selected 𝐶𝑢 = 10.7V to account for
the whole range of admissible actions. Each episode lasted for 25 s or until Leo
fell. Upon termination, Leo was initialized in the initial upright position with the
right leg bent at the hip and knee joints. To make the experiment more realistic, all
joint angles of the initial position were also perturbed by values uniformly drawn
from the range of ±5 ° at the beginning of each learning episode. The reward was
constructed with the goal of promoting a fast but energy-efficient forward walking.
The simulator includes a realistic model of the Dynamixel RX-28 motor with the
last gear of the gearbox made of anodized aluminum. Torque 𝜏 applied to the last
gear is calculated from voltage 𝑈 , the motor’s torque constant 𝐾𝜏 , gearbox ratio
𝐾G, the joint velocity ̇𝜙 and the winding resistance 𝑅 by

𝜏 = 𝐾𝜏𝐾G
𝑈 − 𝐾𝜏𝐾G

̇𝜙
𝑅 .

Following Meijdam et al. (2013), we use torque amplitude to estimate the number
𝑁ℱ

𝑘 of completely reversed cycles withstood before failure.² The completely re-
versed stress cycle is the cycle with zero mean and an equal magnitude of positive
and negative stress. Assuming that each of the 45 teeth of the last gear is equally
stressed, the fatigue ℱ of the gear is calculated by

ℱ =
𝐾

∑
𝑘=1

1
45𝑁ℱ

𝑘
,

where 𝐾 is the number of gear re-engagements during learning. Note that our
measure of fatigue accounts only for the cases when the torque sign changes, and
fatigue is not influenced by falls of the robot. MTBF during learning is predicted as
the time when ℱ ≥ 1.

Figure 2.3 shows control trajectories of the left hip before and after learning.
In the final policy, the 𝜖-greedy and 𝜖-OU methods showed high-frequency os-
cillations involving a change of voltage polarity. Greedy, OU, 𝜖-PADA methods

² Note that every time 𝑘 a gear re-engagement happens, the different torque amplitude results in differ-
ent 𝑁ℱ

𝑘 .

18 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

Table 2.1: Parameters of action-selection methods.

Method Parameter values

𝜖-greedy 𝜖 = 0.050
PADA 𝜖 = 0.050 Δ𝑢 = 3.570
PADA-2 𝜖 = 0.050 Δ𝑢 = 3.570
OU 𝒎0 = 0.000 𝜃 = 0.001 𝜎 = 0.020
𝜖-PADA 𝜖 = 0.050 Δ𝑢 = 3.570
𝜖-OU 𝜖 = 0.050 𝒎0 = 0.000 𝜃 = 0.001 𝜎 = 0.020
OU-PADA 𝒎0 = 0.000 𝜃 = 0.001 𝜎 = 0.020 Δ𝑢 = 3.570
AC-OU 𝒎0 = 0.000 𝜃 = 0.100 𝜎 = 2.000 𝜖 = 0.050

showed moderate voltage oscillations, and PADA, PADA-2, OU-PADA and
AC-OU showed the least ones.

Table 2.2 summarizes the performance of the methods in terms of gearbox fa-
tigue, MTBF at the beginning of learning and final MTBF after learning (i.e., when
only greedy actions are applied), the cumulative number of falls of Leo and the
undiscounted return obtained. A careful comparison of fatigue and MTBF dur-
ing learning results of 𝜖-greedy, 𝜖-PADA and 𝜖-OU with the help of Figure 2.4a
reveals the difference between these benchmarks. The rate of fatigue accumulation
was nonlinear and slowed down after approximately 25min since the beginning of
learning. This value can be regarded as an average number of gear replacements
during learning. Therefore, fatigue gives a more accurate estimation of loss during
learning comparing to MTBF, which only accounts for a fail-free learning time at
the beginning of a simulation. To avoid cluĴer in plots, we decided to present the
curves of the five most characteristic methods, Greedy, PADA, OU, OU-PADA and
AC-OU.

PADA and OU-PADA methods resulted in a remarkably low fatigue, leaving
behind all other methods. Extending the action selection set with just two more ac-
tions (PADA-2) already increased fatigue caused by the change of a torque sign, and
most noticeably reduced final MTBF by more than four times. It also significantly
decreased the cumulative number of falls.

All action-selection methods succeeded in learning a walking gait and reach-
ing reasonable rewards, see Figure 2.4b. PADA and OU-PADA rising slopes were
slightly less steep comparing to other methods, but OU-PADA reached a much
higher level of end performance comparing to PADA. Table 2.2 shows that OU
significantly outperformed the other methods.

The cumulative number of falls encountered during learning is shown in Fig-
ure 2.4c. The smallest number of falls was achieved by the Greedy method, which
was closely followed by OU-PADA and then AC-OU. PADA and OU methods re-

2 Evaluation of physical damage associated with action selection strategies 19

−10
0

10
Greedy

0 1
−10

0
10

V
ol
ta
ge

(V
)

𝜖-greedy

0 1

PADA

0 1
Time (s)

PADA-2

0 1

OU

0 1

−10
0

10
𝜖-PADA

0 1
−10

0
10

V
ol
ta
ge

(V
)

𝜖-OU

0 1

OU-PADA

0 1
Time (s)

AC-OU

0 1

Figure 2.3: Initial (blue) and final (red) control signals. Solid dots (•) denote the beginnings of new
episodes.

sulted in approximately 2.5 and 8 times larger numbers of falls compared to the
Greedy method, respectively.

In this chapter, we do not experiment with the real robot, because that would
incur a continuing damage. Meijdam et al. (2013) demonstrated the increase of
MTBF by limiting the changes in a control signal applied to the real Dynamixel
RX-28 motor. This fact correlates well with our results.

2.4 Discussion

PADA significantly outperformed all explorationmethods in terms ofMTBF and fa-
tigue. However, during learning under this action-selection method, the simulated
Leo underwent a significant number of falls and achieved the worst performance.
While the decrease in performance was already described, the trade-off between
number of falls andMTBF was previously unknown. The explanation of this could
be the following: PADA always selects an action that is the same as or close to
the previous one. This reduces fatigue because gear re-engagements happen much

20 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

Ta
bl
e
2.
2:

M
ea
n
an
d

95
%

co
nfi

de
nc
e
in
te
rv
al

of
fa
tig

ue
,M

TB
F,

cu
m
ul
at
iv
e
nu

m
be
r
of

fa
lls

an
d
un

di
sc
ou

nt
ed

re
tu
rn

ob
ta
in
ed

by
ea
ch

st
ud

ie
d
m
et
ho

d
av
er
ag
ed

ov
er

50
in
de
pe
nd

en
tr
un

s.

M
et
ho

d
Le
ar
ni
ng

fa
tig

ue
ℱ

M
TB

F
at
st
ar
t(
in

m
in
)

Fi
na
lM

TB
F
(in

m
in
)

C
um

ul
at
iv
e
#
of

fa
lls

Re
tu
rn

G
re
ed
y

68
.68

±
34

.00
4.3

8±
0.7

2
12

.67
±

8.8
9

𝟏𝟗
𝟖𝟒

±
𝟐𝟒

𝟏
19

08
±

19
3

𝜖-g
re
ed
y

79
.13

±
21

.18
4.4

1±
0.7

1
11

.68
±

4.6
6

35
29

±
35

1
21

09
±

12
2

PA
D
A

𝟏.
𝟖𝟔

±
𝟏.

𝟏𝟏
𝟑𝟑

𝟖.
𝟕𝟑

±
𝟐𝟓

𝟎.
𝟖𝟔

𝟔𝟗
𝟗.

𝟐𝟎
±

𝟑𝟓
𝟔.

𝟔𝟓
50

99
±

39
9

18
24

±
18

0
PA

D
A
-2

4.9
2±

1.0
0

73
.33

±
36

.32
16

6.0
9±

57
.21

29
62

±
20

6
19

30
±

15
0

O
U

58
.27

±
2.2

7
5.1

9±
0.4

8
54

.36
±

27
.30

15
91

9±
14

4
𝟑𝟓

𝟎𝟏
±

𝟏𝟏
𝟎

𝜖-P
A
D
A

55
.47

±
22

.08
4.4

0±
0.6

0
18

.45
±

10
.85

24
78

±
29

4
21

93
±

12
9

𝜖-O
U

63
.24

±
30

.75
4.4

0±
0.6

8
15

.77
±

12
.29

𝟐𝟎
𝟗𝟖

±
𝟐𝟒

𝟔
20

12
±

15
4

O
U
-P
A
D
A

𝟐.
𝟗𝟒

±
𝟐.

𝟕𝟑
𝟑𝟕

𝟕.
𝟔𝟕

±
𝟐𝟗

𝟓.
𝟓𝟎

𝟏𝟐
𝟗𝟐

.𝟒
𝟏±

𝟖𝟓
𝟓.

𝟒𝟒
12

43
5±

22
7

28
11

±
17

4
A
C
-O

U
49

.73
±

21
.66

4.3
8±

0.7
0

21
.07

±
10

.87
23

48
±

28
8

19
51

±
17

6

2 Evaluation of physical damage associated with action selection strategies 21

0 10000 20000 30000
Time (s)

0

20

40

60

80
Fa
tig

ue
ℱ

(−
)

Greedy
PADA
OU
OU-PADA
AC-OU

(a) Fatigue

0 10000 20000 30000
Time (s)

0

1

2

3

4

U
nd

is
co
un

te
d
re
tu
rn
,×

10
3

Greedy
PADA
OU
OU-PADA
AC-OU

(b) Undiscounted return

0 10000 20000 30000
Time (s)

102

103

104

C
um

ul
at
iv
e
nu

m
be
ro

ff
al
ls

Greedy
PADA
OU
OU-PADA
AC-OU

(c) Cumulative number of falls

Figure 2.4: During learning three benchmarks are calculated: (a) fatigue accumulated due to gear re-
engagements, (b) undiscounted return, and (c) cumulative number of falls. Meanswith upper and lower
95% confidence limits are shown for 50 samples.

more rarely. However, the prevention of falls may require an immediate reaction,
whichmay involve a rapid change of the control signal sign. This hypothesis closely
correlates with the fact that PADA resulted in the smallest consecutive change of
control signal among all studied methods. Reducing the constraints on actions as
in PADA-2 also supports this hypothesis, because the cumulative number of falls
was reduced at the expense of larger fatigue.

However, the absence of any constraint also led to more damage, which can be
observed in the results of OU and OU-PADA. The OU explores very well in phys-
ical environments, but in the experiment it was the most demanding with respect
to hardware endurance. Constraining actions as in OU-PADA not only reduced

22 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

the fatigue, but also reduced the number of falls, at the cost of decreased walking
performance.

It is important to note the difference between uniform noise (𝜖-greedy) and time-
correlated noise (𝜖-OU) during exploration. The results in Table 2.2 demonstrate
that time-correlated noise reduced the number of falls by more than 40%, leaving
all other benchmark values within the confidence intervals of 𝜖-greedy. 𝜖-PADA
and AC-OU showed similar results with a slight shift towards a lower fatigue, but
a higher number of falls.

Both Greedy and AC-OU showed intermediate performance. Greedy under-
went the lowest number of falls during learning, but AC-OU outperformed Greedy
in terms of fatigue and MTBF. Interestingly, AC-OU obtained the lowest MTBF
among methods that did not constrain actions during the exploitation step.

For a clear overview of the results, we summarize them in Table 2.3. First, we
note that none of the methods surpassed others in both fatigue and number of
falls of the robot. This suggests that to minimize damage from both sources, a
faster learning algorithm is required. In the context of exploration strategies, faster
learning may be achieved by a problem-driven high-level guided exploration.
Second, exploration based on time-correlated noise outperformed the 𝜖-greedy
method, therefore for actual experiments with a robot, the 𝜖-greedy strategy is not
advised. Finally, no definite conclusion can be drawn about which exploration
method is beĴer for a generic physical system. Nevertheless, some insight can
be provided. If the falls are highly damaging, then either Greedy, 𝜖-PADA, 𝜖-OU
or AC-OU should be used. On the other hand, if the robot can withstand falls,
but the gear re-engagements are damaging, then PADA, PADA-2 or OU-PADA
methods are advisable. This is the case for the robot Leo, whose gears are made
of aluminum and can easily be damaged by random exploration. Gears made of
hardened steel instead of aluminum are more robust against gear re-engagements.
Thus, when the amount of damage induced by crashes is liĴle, it would be practical
to use OU or OU-PADA, as they achieve high performance.

Further reduction of falling or fatigue can be achieved by a time-dependent de-
cay schedule applied to 𝜖 or 𝜎. We expect that such strategies will only affect the
benchmark results relatively, and our conclusions will still hold.

It is worthmentioning that in addition to the above factors, the damage depends
on the configuration of the environment, the protection of the robot, the severity of
contact impacts, and other factors. For example, visual observation of Leo’s gait
after learning with OU (Figure 2.5) exhibited high lifts of a swing leg, therefore
large steps and presumably high damage due to higher swing leg velocities right
before heel strikes, compared to 𝜖-greedy. The figures of fatigue in Table 2.2 do not
account for this source of damage. We expect that our future experiments with real
Leo will unveil the contribution of the described factors to the total damage of the
robot.

Finally, we note that there might not be a single supreme exploration strategy
when controlling physical systems, but exploration can rather be system- and task-
driven. Similar findings were made in neuroscience, where dynamic regulation of
exploration strategies has been observed in human and animals. Wu et al. (2014)

2 Evaluation of physical damage associated with action selection strategies 23

Table 2.3: A simplified overview of benchmark performances of action-selection methods.

Method Minimizes gear
re-engagements

Minimizes cumulative
number of falls

Maximizes
return

Greedy − + −
𝜖-greedy − +/− +/−
PADA + − −
PADA-2 + +/− −
OU +/− − +
𝜖-PADA +/− + +/−
𝜖-OU +/− + +/−
OU-PADA + − +
AC-OU +/− + −

0.66 ± 0.16ms−1 0.68 ± 0.24ms−1 0.87 ± 0.22ms−1

Figure 2.5: Maximum raise of the swing leg after learning with (left) 𝜖-greedy, (middle) 𝜖-OU and with
(right) OU. Swing leg velocities and standard deviations right before heel strikes obtained after five
independent learning runs are shown below each picture.

provide experimental support for the hypothesis that motor variability is centrally
driven and is regulated according to the nature of the task.

2.5 Conclusion

In this chapter, we studied properties of several conventional and newly proposed
action-selection methods in terms of their performance and the damage they cause
to motor gears on the one hand and to the overall system on the other hand. We
showed that none of the methods was capable of minimizing both sources of dam-
age. Based on the quantitative comparison, we characterized conditions required
for the selection of a certain method for learning in a physical system. Results indi-
cate that uniform exploration, commonly achieved by the well-known 𝜖-greedy ex-
ploration method, was not a good choice for learning on a physical robot. Our sim-

24 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

ulation results demonstrated that exploration based on the time-correlated noise
(𝜖-OU) achieved similar performance and fatigue levels, but additionally it reduced
the number of falls of the robot. In contrast, limiting the action set (OU-PADA) re-
sulted in beĴer performance and much less fatigue, but a larger number of falls.

3
Benchmarking model-free and
model-based optimal control

Ivan Koryakovskiy, Manuel Kudruss¹

This chapter begins to address research question 2, where the difference of a model-based
optimal control (OC) and model-free reinforcement learning (RL) is studied in the context
of parametric and structural uncertainties. Parametric uncertainties describe the uncertain-
ties observed in the values of the dynamic model parameters. Their values are not known
a priori, but can be inferred from interactions with the real system, i.e., the parameters are
observable. Structural uncertainties describe uncertainties that originate from the lack of
knowledge about the true physics of the underlying dynamic system. Results demonstrate
that nonlinear model predictive control (NMPC) has advantages over RL if uncertainties
can be eliminated through identification of system parameters. Otherwise, there exists a
break-even point after which model-free RL performs beĴer than NMPC with an inaccurate
model. These findings suggest that benefits can be obtained by combining these methods
for real systems being subject to such uncertainties. Two possible combinations of the ap-
proaches are proposed and evaluated in the next chapter.

Published in: Koryakovskiy, I., Kudruss, M., Babuska, R., Caarls, W., Kirches, C., Mombaur, K., Schloder,
J. P., and Vallery, H. (2017). Benchmarking Model-Free and Model-Based Optimal Control. Robotics and
Autonomous Systems, 92:81 – 90.
¹ M.Kudruss is with Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im
Neuenheimer Feld 205, 69120 Heidelberg, Germany.

26 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

3.1 Introduction
In robotics, one cannot expect to work with ideal models of the systems under con-
trol, or of their environments. Rather, we have to face unforeseen situations and
unknown conditions, and aim for reactions that are feasible and, ideally, optimal
with respect to given task performance criteria. A typical task is bipedal locomo-
tion, where a robot needs to maintain stability and pace on an uneven floor with
uncertain roughness and slope (Schuitema, 2012).

Two common approaches to control dynamic systems are NMPC and RL. Both
approaches can cope with uncertainties in the form of model-plant mismatch. Re-
inforcement learning has been proven suitable as a real-time closed-loop control
concept in robotics (Kober et al., 2013), and NMPC in industry (Qin and Badgwell,
2003). However, the use of NMPC in robotic applications, especially humanoid
robotics and bipedal walking, is still an open research field (Herdt et al., 2010; Erez
et al., 2013; Kuindersma et al., 2015).

In this chapter, we use a swing-up and balancing problem for a cart-pendulum
system (Barto et al., 1983; Kimura and Kobayashi, 1999) to quantitatively assess
both control approaches. Our choice of this benchmark problem ismotivated by the
fact that main features of passive dynamic walking can be modeled by an inverted
pendulum (Wisse, 2004). The same equivalence holds for the upper body of a more
detailed model of a bipedal walker. The study presented in this chapter highlights
the differences in performance of NMPC and RL under structural and parametric
uncertainties for this benchmark problem.

Nonlinear model predictive control Nonlinear model predictive control is a
closed-loop control strategy in which the control action at the current sampling
instant is computed by solving an open-loop OC problem over a finite prediction
horizon. NMPC, as a model-based optimal control method, relies on a given
mathematical model of the real-world system to be controlled. In this context,
advanced direct methods of optimal control, see the survey by Biegler (2013), are
the methods of choice for computing NMPC feedback control actions in real-time.

For NMPC, full state and parameter information of the model is required to
compute the control action. Whenever the full state is not measurable or model pa-
rameters are not exactly known, methods of on-line state and parameter estimation
have to be applied. For this purpose, extended Kalman filters (Jazwinski, 2007) or
moving horizon estimation (MHE) techniques (Muske et al., 1993; Kühl et al., 2011)
have been successfully applied. In this chapter, MHE is used to estimate uncertain
parameters in the model.

Reinforcement learning Reinforcement learning is an active research area in the
field of artificial intelligence and machine learning, with applications in control.
The most important feature of RL is its ability to learn without prior knowledge
about the system. The goal of the learning task is supplied externally in the form of
a reward function. RL is a trial-and-errormethod, which generally takesmany itera-
tions before it finds an optimal solution. To reduce the number of interactions with

3 Benchmarking model-free and model-based optimal control 27

the system, model-learning methods such as Dyna (Caarls and Schuitema, 2016),
learning from demonstration (Abbeel et al., 2010; Smart and Kaelbling, 2000), or op-
timized control policy parameterizations (Kober and Peters, 2011) can be applied.
Because RL does not require an explicitly given model, it can naturally adapt to
uncertainties of the real system. In this sense, RL can be viewed as a model-free
adaptive optimal control approach (SuĴon et al., 1992).

Related work of comparison and combination of RL and NMPC In this chap-
ter, we provide a comprehensive comparison of the performance of RL and NMPC
both for an ideal system as well as in the presence of parametric and structural
uncertainties. To our knowledge, this is the first time this is done in a systematic
and quantitative way for uncertain systems. Based on the presented comparison
results, we identify the strong and weak points of both algorithms, which suggests
a presence of mutual benefits for their combination.

A related comparative study for ideal systems can be found in (Ernst et al., 2009).
The authors highlight similarities of NMPC and RL, including optimality of meth-
ods, truncation of a time horizon, and continuous vs. discrete actions. They show
that, for an electrical power oscillations damping problem, NMPC slightly outper-
forms RL, yet both policies were essentially similar. Furthermore, the authors pro-
pose the idea of combining RL andNMPC. In an on-line (local) mode, NMPC could
start optimization from the initial guess of the optimal trajectory precomputed by
RL in an off-line (globally optimal)mode. Our conclusions go beyond the validation
of similarity of solutions or computational benefits for ideal models. We provide
numerical evidence that under uncertainties, situations may arise in which one or
the other method can be favorable for performance.

A distinction of both methods was observed and successfully realized in a hy-
brid approach, a variant of the Guided Policy Search algorithm (Levine and Koltun,
2013). The approach was able to learn obstacle avoidance policies for a quadro-
tor (Zhang et al., 2016). It adopted a collection of model predictive control roll-outs
obtainedunder full state observation and trained adeep control policy that required
only the on-board sensors of the vehicle.

A study of the influence of the RL reward function on steady-state error was
performed in (Engel and Babuska, 2014). It was shown that direct translation of a
quadratic objective function used in standard linear-quadratic regulator resulted
in a consistent, though not acceptable steady-state error. In contrast, using the
absolute-value reward function yielded a response with negligible error.

Computational study The study conducted in this chapter is set up as follows, see
Figure 3.1. In the first step (I), we establish optimal control (“OC”) solutions for the
ideal benchmark problem. Then we consider the NMPC formulation and derive
the corresponding RL formulation from it. We highlight the changes introduced in
both formulations and discuss their effects.

Subsequently, we address the strengths and weaknesses of NMPC and RL in
terms of their ability to adapt to structural and parametric uncertainties. In the sec-
ond step (II), we investigate NMPC and RL methods that are explicitly unable to

28 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

I
Optimal
reference
solutions

(no uncertainties)

II
Frozen

methods
(structural

uncertainties)

III
Adaptive
methods

(parametric
uncertainties)

MHE

Ideal
system

An ideal
system with

known
parameters

A system
with

unknown
parameters

NMPC
(iNMPC)

Baseline
(OC) RL

+5% of online
learning

NMPC
(iNMPC)

Baseline
(OC) RL

NMPC-
adapt

(iNMPC-
adapt)

Baseline
(OC) RL

An ideal
system with

known
parameters

RL-adapt

A system
with

unknown
parameters

Figure 3.1: Overview of the computational study. Step I corresponds to a verification of state and con-
trol trajectories when problem formulations are equivalent. In steps II and III uncertainties of a varied
magnitude are introduced. In the former case “NMPC”, “iNMPC” and “RL” are not equipped with an
adaptation mechanism while in the laĴer case they are. In “NMPC-adapt” and “iNMPC-adapt” adapta-
tion is accomplished by means of MHE, and for “RL-adapt” we allow 5% of additional interaction with
the real system.

3 Benchmarking model-free and model-based optimal control 29

adapt to uncertainties. We introduce the term frozen to refer to this inability. In the
third step (III), the effect of uncertainties and the ability to adapt to them is analyzed
for NMPC methods that have explicitly been equipped with the knowledge about
the uncertainties and for RL that is allowed to interact with the real system for an
additional 5% of the learning time. We introduce the term adaptive to distinguish
these from the frozenmethods.

In the remainder of the chapter, we use a single RL method denoted as “RL”,
and two NMPC versions denoted as “iNMPC” and “NMPC”. “iNMPC” is an ideal
NMPC controller that neglects computational time and returns an optimal control
signal immediately. In turn, “NMPC” represents an actual NMPC implementation
tuned for real-time feasible control.

3.2 Model-based and model-free optimal control
methods

3.2.1 Optimal control
The optimal solutions used as baseline for the comparison are the solutions of the
open-loop optimal control problem given by

min
𝒙(⋅),𝒖(⋅)

∫𝑇
0 𝐿(𝒙(𝑡), 𝒖(𝑡)) d𝑡 + 𝑀(𝒙(𝑇)) (3.1a)

s.t. �̇�(𝑡) = 𝑓(𝒙(𝑡), 𝒖(𝑡), 𝒑), 𝑡 ∈ 𝒯, (3.1b)
𝒙(0) = 𝒙0, (3.1c)

0 ≤ 𝒈(𝒙(𝑡), 𝒖(𝑡)), 𝑡 ∈ 𝒯, (3.1d)

where we strive to find a control trajectory 𝒖 ∶ [0, 𝑇] → ℝ𝑛𝑢 such that an objective
function composed of a Lagrange term 𝐿 ∶ ℝ𝑛𝑥 × ℝ𝑛𝑢 → ℝ and a Mayer term
𝑀 ∶ ℝ𝑛𝑥 → ℝ is minimized on a finite time interval 𝒯 = [0, 𝑇] ⊂ ℝ. The state
trajectory 𝒙 ∶ 𝒯 → ℝ𝑛𝑥 is characterized by the dynamic system defined by a set of
ordinary differential equations with right hand side 𝑓 ∶ ℝ𝑛𝑥 × ℝ𝑛𝑢 × ℝ𝑛𝑝 → ℝ𝑛𝑥 ,
which depends in particular on the model parameters 𝒑 ∈ ℝ𝑛𝑝 of the system. In
addition, mixed state-control path constraints 𝒈 ∶ ℝ𝑛𝑥 × ℝ𝑛𝑢 → ℝ𝑛𝑔 are imposed
on the system.

We follow a direct and all-at-once approach to optimal control and discretize
the control trajectory 𝒖(⋅) on a time grid 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝐾 < 𝑡𝐾+1 = 𝑇 by
means of basis functions parametrized by piecewise constant control parameters.
A direct multiple shooting approach to optimal control (Bock and PliĴ, 1984) then
further parametrizes the state trajectory 𝒙(⋅) by introducing 𝐾 + 1 variables and
by solving initial value problems separately on the time grid. From this discretiza-
tion and parametrization, a large but structured nonlinear programming problem
is obtained that can be solved efficiently with tailored structure-exploiting sequen-
tial quadratic programming methods. The evaluation of sensitivities requires 𝐿,
𝑀 , 𝑓 , 𝒈 in the OC problem (3.1) to be at least twice continuously differentiable with
respect to the optimization variables 𝒙 and 𝒖.

30 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

3.2.2 Nonlinear model predictive control
NMPC is a closed-loop control strategy in which the control action is computed
from the current system state by solving an open-loop optimal control problem on
a finite prediction horizon𝒯𝑁𝑀𝑃𝐶 ⊆ 𝒯 on-line, thereforeNMPC is also denoted as
receding horizon control. In contrast to objective function (3.1a) of the OC problem,
the tracking NMPC minimizes a nonlinear least-squares function composed of

𝐿(𝒙(𝑡), 𝒖(𝑡)) = ‖𝒙(𝑡) − �̄�(𝑡)‖2
𝐖 + ‖𝒖(𝑡)‖2

𝐕 , (3.2)

which minimizes the distance to given reference trajectories �̄� ∶ 𝒯𝑁𝑀𝑃𝐶 → ℝ𝑛𝑥 by
means of a weighted ℓ2-norm ‖𝒙‖𝐖 =

√
𝒙⊤𝐖𝒙 with a positive definite weighting

matrix 𝐖. Similarly, controls are regularized with a positive definite weighting
matrix 𝐕.

At the current time instant 𝑡 = 0, the full state �̂�0 ∈ ℝ𝑛𝑥 and parameter vector
�̂� ∈ ℝ𝑛𝑝 of the system are embedded into the open-loop optimal control problem
by additional constraints replacing (3.1c) of the OC problem

0 = �̂�0 − 𝒙(0), (3.3a)
0 = �̂� − 𝒑.

In contrast to the OC problem, the parameters 𝒑 ∈ ℝ𝑛𝑝 are part of the optimiza-
tion variables for the NMPC problem and we denote an estimate of the respective
quantity by .̂

State-of-the-art NMPC methods based on nonlinear programming rely on
the real-time iteration scheme due to (Diehl, 2001; Diehl et al., 2005) to compute
feedback in real-time. This is achieved by careful initialization of the sequential
quadratic programming method by separating each iteration into three phases,
i.e., 1) preparation (setup of quadratic program), 2) feedback (solution of quadratic
program) as soon as the current system information �̂�0, �̂� is estimated and 3)
transition (perform step and shifting). In this way, computationally expensive
parts can be separated from time-critical ones and the computational delay of
the feedback is reduced to the time required to solve a single quadratic program.
Advanced methods further these ideas by dividing the real-time iteration into sub
steps that can provide feedback even faster by evaluating only parts of the required
Jacobian information, c.f. Bock et al. (2007); Frasch et al. (2012), or applying
specialized iterative linear algebra, as in (Johnson et al., 2015).

Moving horizon state and parameter estimation For the state and parameter esti-
mates, i.e., �̂�0, �̂� in (3.3), we apply MHE, c.f. (Kühl et al., 2011). After the estimates
for �̂�0 and �̂� have been obtained, they are embedded in the NMPC problem via the
constraints (3.3) and are considered in the computation of the next feedback con-
trol action. In this way, model-plant mismatch and uncertainties can be tackled by
including parameters in the NMPC formulation and computing an estimate in ev-
ery pass of the control loop. Approaches similar to those used to achieve real-time
feedback control for NMPC can be used to solve the MHE problem on-line.

3 Benchmarking model-free and model-based optimal control 31

In contrast to NMPC, theMHE horizon𝒯𝑀𝐻𝐸 refers to the passed time and the
objective function minimizes the squared error between the model response ℎ and
measurements 𝒚 = ℎ(𝒙(𝒑∗), 𝒑∗) + 𝒏 from the real system defined by the true but
unknown parameters 𝒑∗, subject to an additive measurement error 𝒏 ∼ 𝒩(0, 𝚺)
with zero mean and the diagonal covariance matrix 𝚺 given by

0
∑

𝑘=−𝐾
‖ℎ𝑘(𝒙(𝑡𝑘), 𝒑) − 𝒚𝑘)‖2

𝚺−1
𝑘

.

Here, the parameters 𝒑 are part of the optimization variables and the control actions
𝒖 are fixed to the ones applied to the system in the past.

3.2.3 Reinforcement learning
A common approach in RL is to model the task as a Markov decision process. The
process is defined as a quadruple ⟨𝒳, 𝒰, 𝒫, ℛ⟩, where 𝒳 ⊂ ℝ𝑛𝑥 is a set of possible
states, 𝒰 ⊂ ℝ𝑛𝑢 is a set of possible control actions, 𝒫 ∶ 𝒳×𝒰×𝒳 → ℝ is a transition
function that defines the probability of ending up in state 𝒙𝑘+1 ∈ 𝒳 after executing
action 𝒖𝑘 ∈ 𝒰 in state 𝒙𝑘 ∈ 𝒳. The reward function ℛ ∶ 𝒳 × 𝒰 × 𝒳 → ℝ gives
a real-valued reward 𝑟𝑘+1 = ℛ(𝒙𝑘, 𝒖𝑘, 𝒙𝑘+1) for the particular transition between
states. A Markov decision process satisfies the Markov property, which assumes
that the next state 𝒙𝑘+1 depends only on the current state 𝒙𝑘 and action 𝒖𝑘, but not
on previous states or actions.

A deterministic control policy 𝜋 ∶ 𝒳 → 𝒰 defines an action 𝒖𝑘 taken in a state
𝒙𝑘. The goal of the learning process is to find an optimal control policy 𝜋∗ that
maximizes the discounted return

𝐺𝑘 = 𝔼 {
𝐾

∑
𝑖=0

𝛾𝑖𝑟𝑘+𝑖+1} ,

where immediate rewards 𝑟 are exponentially decayedby the discount rate 𝛾 ∈ [0, 1]
the further they lie in the future. The task that we consider in this chapter is a
continuing task, for which the final time step is infinite, 𝐾 → ∞. This requires the
use of 𝛾 < 1 to avoid infinite returns.

The value function 𝑉 𝜋(𝒙) denotes the expected return assuming that the system
starts in the state 𝒙 and then follows a prescribed control policy 𝜋. The optimal
control policy 𝜋∗ maximizes the value for each state. Therefore, an optimization of
the control policy is tightly coupled with the maximization of the value function in
RL.

For real-world systems, continuous control is preferred. This requires a pa-
rametrization of the policy 𝜋(𝒙), e.g. using a set of basis functions and their as-
sociated weights. The weights are usually optimized by gradient-descent meth-
ods (Williams, 1992; Bhatnagar et al., 2009; Grondman et al., 2012), or by global
gradient-free methods (Hansen and Ostermeier, 2001; Botev et al., 2013). We use a
standard gradient-descent method because the laĴer methods require a substan-
tial number of interactions with the robot which can be especially damaging in

32 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

case of walking tasks. Since the estimation of policy gradients often results in a
high variance, the policy update is often coupled with an explicit estimation of a
parametrized value function 𝑉 𝜋(𝒙). This combination is known as the actor-critic
method, where the policy is referred to as the actor, and the value function is re-
ferred to as the critic.

The method we use is the standard model-free temporal-difference-based
method described by Grondman et al. (2012). Since RL is a trial-and-error learning
method, the quality of the policy as well as the learning speed depend on the
exploration method. Exploration is commonly achieved either by perturbation
of the so far optimal action, or by optimistic initialization, or by both. Optimistic
initialization is a method of initializing the value function with a value equal to or
greater than the maximum possible value of a state. This causes the visited states
to become less aĴractive than the states that have not been visited yet (Matignon
et al., 2006). Optimistic initialization can speed up the learning in the absence of
negative rewards. For the parametrization of the policy and value-function we use
a linear in parameters tile coding approximator (SuĴon and Barto, 1998).

3.3 Benchmark system

The two-dimensional benchmark example studied in this chapter is a pendulum
aĴached to a cart (Barto et al., 1983; Kimura and Kobayashi, 1999), which is shown
in Figure 3.2. The system consists of a cart with mass 𝑚𝑀 and a pendulum that is
aĴached to the cart’s center of mass 𝑐𝑀.

The pendulum is a point mass 𝑚𝑚 aĴached at the end of a massless rod of
length 𝑙. The system has two degrees of freedom, namely the linear motion of the
cart along the 𝑥-axis, described here by the coordinate 𝑠 ∈ ℝ, and the rotary motion
of the pendulum with respect to the cart, described by the angle 𝜙 ∈ ℝ. The only
actuation is realized by a horizontal force 𝐹𝑠 ∈ ℝ acting on the cart body.

The system’s state is given as 𝒙 = [𝑠, 𝜙, ̇𝑠, ̇𝜙]⊤ ∈ ℝ4. Here, 𝑠, ̇𝑠 denote the cart
position and velocity, and 𝜙, ̇𝜙 denote the pendulum’s angle and angular velocity,
respectively. The control 𝒖 = [𝐹𝑠, 0]⊤ ∈ ℝ2 is the force acting on the cart body.

In an ideal scenario, both the cart and the pendulum can move without friction
along their respective degrees of freedom. For our second and third experiment,
we employ uncertainty in the form of viscous friction at the rotary joint, i.e., in the
pendulum joint bearing. This produces an internal torque 𝜏𝜙 = −𝜅𝜇 ̇𝜙 applied to
the pendulum, where 𝜅 is a coefficient that depends on the configuration of the
rotary joint, and 𝜇 is a viscous friction coefficient. Depending on whether or not
this friction is included in the model, uncertainty in friction can be considered as a
parametric or as a structural uncertainty.

More details of the benchmark implementation are given in Appendix A.2.

3 Benchmarking model-free and model-based optimal control 33

𝑚𝑀 𝑐𝑀
𝐹𝑠

𝑐𝑚

𝑥
𝑦

𝑠

𝜙

𝑚𝑚

𝑙

0

Figure 3.2: The inverted pendulum on a movable cart.

3.4 Problem formulation
In this section, we provide formulations of the objective function used in the OC,
NMPC and RL problems.

We investigate control scenarios for swing-upmotions of the cart-pendulum sys-
tem from the given initial state 𝒙(0) = [𝑠(0), 𝜙(0), ̇𝑠(0), ̇𝜙(0)]⊤ = [0, 𝜋, 0, 0]⊤, which
implies the system starts from rest, with the cart in the origin of the coordinate sys-
tem and the pendulum pointing downwards. The goal of the task is to swing the
pendulum up and to drive the cart back to the origin, i.e., to reach the final state
𝒙(𝑇) = [𝑠(𝑇), 𝜙(𝑇), ̇𝑠(𝑇), ̇𝜙(𝑇)]⊤ = [0, 0, 0, 0]⊤. This is realized for both the OC and
the NMPC problem by the Lagrange term in the objective function

𝐿(𝒙(𝑡), 𝒖(𝑡)) = ‖𝒙(𝑡) − �̄�(𝑡)‖2
𝐖 + ‖𝒖(𝑡)‖2

𝐕 (3.4)

as defined in (3.2), where the weights 𝐖 = diag(1, 0.5, 2, 0.2) and 𝐕 = diag(0.0005)
were chosen to scale the state elements to approximately the same range. Set-point
�̄� ≡ [0, 0, 0, 0]⊤ is set according to the definition of the task. The benchmark
constraints defined in Appendix A.2 can be directly formulated as path con-
straints (3.1d) on both states and controls, while the prediction horizon of the
NMPC controller is a subinterval of the problem horizon.

The discount rate 𝛾, which is inevitable for solving a continuing task in RL, af-
fects the obtained RL solution. Therefore, to make the NMPC and RL results com-
parable, we include the same discount rate value into the objective function of OC
and NMPC. The effect of the discount on the NMPC formulation is that it increases
the focus on the beginning of the horizon by providing a weighting over time, i.e.,
the further the event lies in the future of the horizon, the less it will be considered
for the computation of the optimal behavior.

To allow solving the control problem in real-time using NMPC alone and to-
gether with MHE, the problem formulation has to be adapted for the current al-
gorithmic setup in the optimal control software package MUSCOD-II (Leineweber
et al., 2003a,b). Due to the nonlinear behavior of the cart-pendulum system, at least
a control rate of 40Hz has to be chosen to generate sufficient contraction in the real-

34 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

time iteration scheme and to enable the standard structure exploitation for the se-
quential quadratic programming method. However, this increases the number of
shooting nodes and the computational time. Therefore, the horizon was set to 3 s.

In RL, we construct the reward from the same Lagrange term (3.4), but we addi-
tionally add a negative reward and a shaping function Ψ(𝒙𝑘, 𝒙𝑘+1):

𝑟(𝒙𝑘, 𝒙𝑘+1) = { −1000 if 𝒙𝑘+1 ∈ 𝒳 a,
−𝐿(𝒙𝑘+1, 𝒖𝑘) + Ψ(𝒙𝑘, 𝒙𝑘+1) otherwise, (3.5)

where𝒳 a is a set of absorbing states that lie outside of the cart’s position constraints
defined in Appendix A.2.

The shaping function denoted by Ψ(𝒙𝑘, 𝒙𝑘+1) leaves the target objective un-
changed but allows to reduce steady-state error. Due to the quadratic terms in the
definition of 𝐿(𝒙𝑘+1, 𝒖𝑘), rewards become small for balancing states where all ele-
ments of the state are close to zero, except possibly the cart position 𝑠𝑘. This effect
has previously been described by Engel and Babuska (2014), where authors noticed
that the quadratic reward, the ℓ2-norm, penalized large velocities much more than
small steady-state errors. They solved the issue by showing that the absolute value
reward, the ℓ1-norm, yielded a response with negligible errors. This solution is not
directly applicable here, because our aim is to obtain results as similar to OC as pos-
sible, which uses a quadratic cost function. Instead, inspired by Engel and Babuska
(2014), we introduce a potential-based shaping function (Ng et al., 1999) encoded
as Ψ(𝒙𝑘, 𝒙𝑘+1) = 𝛾𝑃(𝒙𝑘+1) − 𝑃(𝒙𝑘), where potential 𝑃(𝒙𝑘) = 𝜓 ‖𝐖𝒙𝑘‖1 is the
sum of absolute values of weighted state elements multiplied by a shaping weight
𝜓. The purpose of this shaping function is to provide a stronger guidance towards
𝒙 = [0, 0, 0, 0]⊤ in the region of the state space where the quadratic reward function
fails to do so. Influence of the shaping function is analyzed in Appendix B.1.

It is possible to include hard constraints directly into the OC formulation by
equation (3.1d). However, in the RL formulation, they have to be reformulated as
soft constraints, which is done by including them directly in the reward function in
the form of a negative reward as in (3.5). This essentially changes the original op-
timization problem by introducing a trade-off between receiving positive rewards
and avoiding negative ones. For example, once a very large negative reward is re-
ceived, it will force the system to never violate this constraint again, even at a price
of obtaining lower positive rewards. On the contrary, a small negative reward will
allow infrequent violation of the constraint, which will slow down learning and
may even damage a real-world system. In this benchmark example, the trade-off
has a mild effect, because the cart position constraints are rather loose. While con-
straints are violated a few times in the process of learning, the final result is free of
constraint violations.

For the cart-pendulum benchmark, the optimal combination of parameters can
be found in Table 3.1. For NMPC, the tolerances were chosen according to best
practices, the horizon length as well as the sampling period were chosen such that
“iNMPC”uses the same formulation as “OC” and that “NMPC” computes feedback
in less than 5ms. The discount rate 𝛾 was chosen according to the RL formulation.
For RL, we found the parameters using the exhaustive grid search. It generated tu-

3 Benchmarking model-free and model-based optimal control 35

ples of candidate parameters by selecting them from a set of predefined parameter
values commonly used in the actor-critic literature, c.f. Grondman et al. (2012).

For the RL policy and value function approximation, we used tile coding with
16 tilings, each of size [2.5, 0.1𝜋, 2.5, 0.5𝜋]⊤. However, pendulum states close to the
state 𝒙 = [0, 0, 0, 0]⊤ ∈ ℝ𝑛𝑥 require a finer resolution of the function approximator.
Therefore, before projecting a state on the tiles, we rescale each state element to the
interval [−1, 1], and then apply a squashing function with the parameter 𝜔 = 5:

Ω(𝑥𝑗, 𝜔) = (1 + 𝜔)𝑥𝑗
1 + 𝜔|𝑥𝑗| , ∀𝑗 ∈ {1, … , 𝑛𝑥} ,

where 𝑥𝑗 denotes a scaled element. This effectively controls resolution by a mul-
tiplier that varies continuously, from (1 + 𝜔)−1 in the downward position of the
pendulum, to 1 + 𝜔 in the balancing state 𝒙 = [0, 0, 0, 0]⊤.

3.5 Evaluation protocol

3.5.1 Notations and methodology
As summarized in Figure 3.1, we use the “OC” notation to denote the optimal so-
lution obtained by off-line optimal control. The cost of this solution serves as a
baseline for all subsequentmethods. As structural uncertainties, we consider uncer-
tainties that originate from the lack of knowledge about the true physics of the un-
derlying dynamic system. Examples in walking robots might include model-plant
mismatch due to uneven floor, friction in joints, softness of the ground, etc. Being
unaware of possible uncertainties in a system, the following three frozen methods
are not explicitly equipped with an ability to adapt to the system:

• “iNMPC”denotes an idealNMPC controller that neglects computational time
constraints and returns an optimal control signal immediately.

• “NMPC” denotes anNMPC controller tuned to real-time performance for the
specific task.

• “RL” denotes an RL controller that plays the optimal policy 𝜋∗ after having
learned on an ideal system.

Neither “iNMPC” nor “NMPC” apply MHE for state and parameter estimation.
As parametric uncertainties, we consider parameters which are included in the

dynamic model of the system and whose values are not known a priori, but can
be inferred from interactions with the real system, i.e., the parameters are observ-
able. Accordingly, by the term adaptivewe denote methods that have (in the case of
NMPC) been explicitly equipped with knowledge about the uncertainties and an
algorithm to adapt to them, or that are (in the case of RL) given additional time to
interact with the system:

• “iNMPC-adapt” denotes a controller of a combination of both MHE and
NMPC. The controller is able to estimate a specified unknown parameter of
a model and adjust its control signal accordingly.

36 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

Table 3.1: Parameters of OC, NMPC and RL for the cart-pendulum problem. The first group of parame-
ters is relevant to OC and NMPC, where the value in brackets is given for real-time NMPC. The second
group of parameters is relevant only to RL.

Parameter Value

OC/NMPC:
Horizon length 𝑇 5 s (3 s)
Discount rate 𝛾 0.99

Sampling period 𝑇 OC
𝑠 0.05 s

KKT-Tolerance 10−7

Integration accuracy 10−6

RL:
Episode length 𝑇 5 s
Discount rate 𝛾 0.99
Sampling period 𝑇 RL

𝑠 0.05 s

Number of learning episodes 2.0 ⋅ 105

Additional learning episodes 5%
Eligibility discount rate 0.65

Exploration variance 0.202 𝑢2
max

Critic learning rate 𝛼c 0.10
Actor learning rate 𝛼a 0.01

• “NMPC-adapt” denotes a combination of bothMHEandNMPC tuned to real-
time performance for the specific task.

• “RL-adapt” denotes the RL controller that is initialized using the optimal pol-
icy 𝜋∗ learned by “RL” on the ideal system. To cope with uncertainties in
the system, we allow “RL-adapt” to learn for an additional small number of
episodes, c.f. Table 3.1.

Note that the NMPC approach requires explicit specification of the parameters to
be estimated in the model, while RL can cope with them without explicit consider-
ation.

3.5.2 Description of experiment and measures
For the benchmark problem, we provide a comprehensive comparison of the de-
scribed methods for an ideal system, and for a system with structural and paramet-
ric uncertainties.

3 Benchmarking model-free and model-based optimal control 37

First, we investigate whether the three frozen methods produce similar trajecto-
ries on our benchmark system. For that we employ the coefficient of determination,
𝑅2, as a similarity measure of trajectories. The measure quantifies the deviation of
the trajectories obtained by “RL”, “iNMPC”, and “NMPC” from an optimal tra-
jectory. Denoting a trajectory 𝜁 as a sequence of states and controls, 𝜁 = {𝜁𝑘},
0 ≤ 𝑘 ≤ 𝐾 and 𝜁𝑘 = (𝒙⊤

𝑘, 𝒖⊤
𝑘)⊤, we measure similarity between corresponding

components by means of 𝑅2. Formally, the 𝑅2 measure is defined as

𝑅2 = 1 −
∑𝐾

𝑖 (𝜁‡
𝑖 − 𝜁OC𝑖)2

∑𝐾
𝑖 (𝜁‡

𝑖 − ̄𝜁)2
, ̄𝜁 = 1

𝐾
𝐾

∑
𝑖

𝜁‡
𝑖 ,

where ‡ is a wildcard for one of {“RL”, “RL-adapt”, “iNMPC”, “iNMPC-adapt”,
“NMPC”, “NMPC-adapt”}. For the “RL” method, which exhibits variability in tra-
jectories, we compute both the 𝑅2 measure of the mean trajectory, and the mean of
𝑅2 values obtained across individual trajectories.

Second, after the similarity of the methods is verified, we employ regret as a
measure to evaluate the performance of the methods against uncertainty 𝝆 which,
in our experiments, is the viscous friction coefficient at the rotary joint, 𝝆 = [𝜇]. Re-
gret is commonly used in evaluation of online machine learning and optimization
methods (Shalev-Shwarĵ, 2012; Kaelbling et al., 1996). It quantifies the amount of
additional cost which is incurred due to suboptimal actions taken by a controller
with respect to the optimal control actions. Lower values of regret indicate a con-
troller, whose behavior is closer to the optimal one. Since the optimal controller
has zero regret, it becomes convenient to plot regrets of the methods instead of the
direct costs.²

We compute the regret 𝑅‡(𝜁; 𝝆), defined as the difference between ℒ‡(𝜁), the
total cost of the method denoted by the wildcard ‡, and the baseline ℒOC(𝜁; 𝝆), i.e.,

𝑅‡(𝜁; 𝝆) = ℒ‡(𝜁) − ℒOC(𝜁; 𝝆),

where we use the NMPC cost (3.2) for all methods directly,

ℒ(𝜁) =
𝐾

∑
𝑖=0

𝛾𝑖𝐿(𝒙𝑖, 𝒖𝑖)𝑇𝑠. (3.6)

By means of 𝑇𝑠, we take into account the possibly different sampling periods of
the methods. Note that all of the tested methods are unaware of the true extent of
the uncertainty introduced. In this chapter, we pursue a generic comparison across
methods and benchmarks. Therefore, we do not include specific stability measures,
such as Lyapunov stability, orbital stability, or gait sensitivity norm, but rather stick
to a general notion of the cost of trajectories.

Due to the stochastic nature of RL, we plot a mean value of the regret averaged
over 50 runs. If a run for a given uncertainty 𝝆 is prematurely terminated due to
the violation of constraints, then the corresponding value is not drawn.

² Note that for “RL” and “RL-adapt” methods the regret is calculated during the assessment run, i.e.,
after the learning or adaptation has been completed.

38 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

3.6 Results on the cart-pendulum

In order to assess the similarity of the frozen methods, we analyze their perfor-
mance for the cart-pendulum system without uncertainties. The resulting trajec-
tories and the 𝑅2 measure results are shown in Figure 3.3 and Table 3.2, respec-
tively. All three methods show a qualitatively similar behavior and are successful
in swinging the pendulum up and balancing it there. An overall similarity between
“RL” and “iNMPC” of more than 90.3% was achieved in terms of the 𝑅2-measure.
Comparing the 𝑅2 values of a mean trajectory with the mean of 𝑅2 values of the
individual trajectories of “RL”, we observe that the mean trajectory is closer to
“iNMPC”, while the individual trajectories exhibit some variability around their
mean. The control trajectories 𝐹𝑠 of “iNMPC” and “RL” differ in a small time de-
lay and are otherwise comparable. However, after approximately 1.0 s, we find that
“RL” demonstrates variability between control trajectories compared to “iNMPC”.
Due to differences in control actions, the state trajectories start to differ slightly af-
ter approximately 0.5 s and recover from that after approximately 2.0 s; only the
“RL” cart position 𝑠 remains to show small steady-state errors. “NMPC” results de-
viate more from “iNMPC”, and an overall similarity of approximately 48.2% was
achieved in terms of the 𝑅2-measure.

Next, we show the behavior of both frozen and adaptive methods under the
effect of uncertainties. Simulation results against variations of the friction param-
eter 𝜇 are shown in Figure 3.4. To indicate the scale of the plot, we employ three
filled markers at 𝜇 = 0Nsm−2 that correspond to the trajectories in Figure 3.3. A
further reference for interpretation of the scale: If the cart stood still and the pen-
dulum hung down, then the regret of the solution would be equal to 11.73. In the
absence of friction, “iNMPC” does not reach zero regret due to numerical approxi-
mations. All of “RL”, “iNMPC” and “NMPC” show a similar asymptotic behavior
in reaction to the variation of the friction coefficient. “iNMPC” shows the lowest
regret for low values of viscosity and “NMPC” regret is the largest. Larger values
increase the regret, and for the value of 𝜇 = 0.09Nsm−2, “RL” yields a lower re-
gret than “iNMPC”. All three frozenmethods violate the position constraints of the
cart. For “RL”, this happens at 𝜇 = 0.12Nsm−2 and for “iNMPC” and “NMPC” at
𝜇 = 0.18Nsm−2 and 𝜇 = 0.19Nsm−2, respectively.

The adaptive methods, “RL-adapt”, “iNMPC-adapt”, and “NMPC-adapt”,
show a different reaction to the variation of the friction coefficient. Both
“iNMPC-adapt” and “NMPC-adapt” show a constant performance under the
effect of the variation of friction. Note the logarithmic scale; the variances in perfor-
mance of “iNMPCadapt” and “NMPC-adapt” are similar, but appear differently
due to the logarithmic scale. “RL-adapt” performs beĴer than “NMPC-adapt”
for smaller uncertainties of up to 0.07Nsm−2 and is then outperformed by
NMPC. “RL-adapt” regret is an order of magnitude higher than the regret of
“iNMPC-adapt”, and the RL performance deteriorates with higher friction. For
friction coefficients larger than 0.09Nsm−2, “RL-adapt” shows a much higher
variance in regret than for lower friction.

Comparing “RL-adapt”with the frozenmethod “iNMPC”, the graphs show that

3 Benchmarking model-free and model-based optimal control 39

0 1 2
𝑡 (s)

3 4 5
−200

0

200

𝐹 𝑠
(N

)

0 1 2
𝑡 (s)

3 4 5
−2
0
2
4

𝜙(
ra
d)

0 1 2
𝑡 (s)

3 4 5

−0.5
0.0

𝑠(
m

)
“RL” “NMPC” “iNMPC”/“OC”

0 1 2
𝑡 (s)

3 4 5
−3.0
−1.5
0.0
1.5

̇𝑠(
m
s−

1)

0 1 2
𝑡 (s)

3 4 5
−8
−4
0
4

̇ 𝜙(
ra
d
s−

1)

Figure 3.3: State and control trajectories obtained by the frozen methods for the cart-pendulum system
without uncertainties. For “RL” the mean and standard deviation of 50 trajectories is shown. 𝑌 -axes
variables 𝑠, ̇𝑠denote the cart position and velocity and𝜙, ̇𝜙 are the respective quantities of the pendulum.
𝐹𝑠 is the force acting on the cart body.

40 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

Viscous friction coefficient 𝜇 (Nsm−2)

Re
gr
et

𝑅‡ (
𝝆)

0 0.05 0.10 0.15 0.20
10−4

10−3

10−2

10−1

100

101

“RL”
“RL-adapt”
“NMPC”
“NMPC-adapt”
“iNMPC”
“iNMPC-adapt”

Figure 3.4: The graph of regrets for the cart-pendulum system that shows the optimal performance
of the described methods. The means with the upper and lower 95% confidence limits are shown for
controllers with a stochastic component (50 samples per viscous friction coefficient were used).

3 Benchmarking model-free and model-based optimal control 41

Table 3.2: Similarity of the cart-pendulum trajectories in terms of the coefficient of determination (𝑅2).
For RL we first report similarity of the mean trajectory, and second we report the mean of 𝑅2 values.

Methods 𝑠 𝜙 ̇𝑠 ̇𝜙 𝐹𝑠

“RL”- “OC”, 𝑅2 mean
trajectory

(%) 98.1 99.8 96.4 98.4 92.9

“RL”- “OC”, mean 𝑅2 (%) 93.9 99.8 95.3 98.2 90.3
“NMPC”- “OC” (%) 56.6 98.6 66.7 86.9 48.2
“iNMPC”- “OC” (%) 100.0 100.0 100.0 100.0 100.0

“iNMPC” cannot compete with RL after the break-even point at 0.04Nsm−2. This
viscous friction coefficient value corresponds to 6.1% of the difference in energy
consumed by the ideal (0.00Nsm−2) and disturbed (0.04Nsm−2) system. Com-
pared to all three frozenmethods, “RL-adapt” performsmuch beĴer after the break-
even point, and the gap grows with larger uncertainties.

A summary of the main results of comparison is presented in Table 3.3.

3.7 Discussion

Our results demonstrate that, with a proper formulation of the optimal control task,
it is possible to obtain similar results for the three frozen methods on an ideal sys-
tem. For the cart-pendulum benchmark example, a good similarity between “RL”,
“OC” and “iNMPC” was achieved. However, for “NMPC”, the expected deviation
from the optimal solution due to the tuning towards a real-time feasible controller
is observed in Figure 3.4. We have to stress that this is a problem of the implementa-
tion and not of the approach. A speed-up of the implementation by using a multi-
level real-time iteration scheme (Bock et al., 2007; Kirches et al., 2012), by using
a state-of-the-art sequential quadratic programming method tailored for multiple-
shooting (Janka et al., 2016) and replacing the quadratic program solver (Schork,
2015) could address the current time limitations. With a speed-up of the compu-
tations, a theoretical coverage of the area between the curves of “iNMPC” and
“NMPC” is therefore possible. This will however not influence the already found
break-even points, because the asymptotic behavior of the frozenNMPCmethods is
determined through “iNMPC” as the best possible outcome. Considering this, only
an improvement for smaller variations of the friction coefficient is to be expected.

The adaptivemethods successfully avoid constraint violations and substantially
reduce regret compared to their frozen counterparts over thewhole range of viscous
friction coefficients. Interestingly, when the coefficient is not present in the system
or has low values, “iNMPC-adapt” results in a higher regret than “iNMPC”, and
the same holds for the fast versions of NMPC. The reason for this is that the com-
bination of NMPC and MHE in the form of “iNMPC-adapt” and “NMPC-adapt”
starts with an initial guess of the parameter that is adapted during the actual run

42 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

of the system. Any mismatch between measurements and values predicted by the
model will lead to adaption of the parameters inMHE. This is a crucial difference to
RL, which adapts to the uncertainty through multiple trials prior to an assessment
run, while NMPC is unaware of the mismatch at first. The cart-pendulum task is
very sensitive to changes during movement initiation. Therefore, a wrongly identi-
fied parameter in the beginning can already cause substantial differences in terms
of regret, which is seen in Figure 3.4. This effect is amplified for “NMPC-adapt”
through the mentioned performance loss due to the real-time feasibility tuning. A
speed-up of the computations would lead to a theoretical coverage of the area be-
tween the curves of “iNMPC-adapt” and “NMPC-adapt”, boosting performance.

In the absence of uncertainties, “iNMPC-adapt” performs superior to both “RL”
and “RL-adapt”. This does not come as a surprise, as NMPC methods were run-
ning off-line, they were using the model of the correct system and, moreover, the
uncertain parameter was defined explicitly. However, “iNMPC” outperforms RL
methods only for small values of uncertainties. In case of medium and large un-
certainties, there exist break-even points after which “RL” and “RL-adapt” obtain
lower regret. We remark that the estimation of the difference between ideal and un-
certain systems in terms of energy is ad hoc, and more generic measures for model
uncertainties should be used in the future.

In the non-ideal seĴing, performance of NMPC becomes comparable to
RL. Nonetheless, one cannot directly report similarity of “NMPC-adapt” and
“RL-adapt”; while regret of “NMPC-adapt” is almost constant for the whole range
of uncertainties, the regret of “RL-adapt” significantly increases. The explanation
for this effect is twofold. First, for any value of uncertainty, “RL-adapt” was
learning for a fixed additional 5% of time. The larger the value of uncertainty,
the more time “RL-adapt” requires to adapt to a new parameter value. This can
be supported by the fact of an increasing variance of RL regret, which indicates
that the actor-critic algorithm simply did not have enough time to converge in
areas of high uncertainties. Second, for large uncertainties, it might be necessary
to significantly change the control strategy, i.e., to learn a new policy rather than
adapt an ideal one. This will probably requiremore learning efforts, to first unlearn
the initial policy, and then to learn a realistic one.

Several issues were encountered while formulating the benchmark problem
with the aim of obtaining identical results. These issues are known to OC and RL
communities, but, to the best of our knowledge, they were never explained in the
same context before.

OC-related issues:

1. In contrast to RL, the derivative-based methods of optimization used to solve
the discretizedOC problem require a continuously differentiable formulation
of the problem.

2. The performance of the ideal NMPC-MHE combination (“iNMPC-adapt”),
for which computational time was neglected, is the order of magnitude beĴer
in terms of regret than the corresponding real-time version, mainly caused by
a shortened prediction horizon used in the laĴer.

3 Benchmarking model-free and model-based optimal control 43

Table 3.3: Summary of results.

Category Findings

Achieved similarity of “iNMPC” and “RL” methods
on the ideal system

more than 90.3%

Break-even point: the difference in energy consumed
by ideal and noisy systems after which “RL-adapt”
performance becomes beĴer then “iNMPC”

6.1%

Best performing algorithm under parametric
uncertainties

“iNMPC-adapt”

Best performing algorithm under structural
uncertainties

“iNMPC” before the
break-even point and
“RL-adapt” after the
break-even point

RL-related issues:

1. In this chapter, we use a model-free RL method, which means that transition
model of a system is unknown a priori.

2. Learning a solution with a quality comparable to OC takes many episodes.

3. Constraints in the original OC problem are included into the RL formulation
by means of negative rewards received for violating the constraints.

4. For the benchmark example, the OC objective function has been modified.
Formulating a reward function by simply negating the OC objective results
in a) a very slow learning in cases when no negative reward is used, b) an
inability to learn or even a divergence of the value function if 𝛾 = 1.

5. For symmetrical problems, RL can use state space reduction techniques. For
example, for the cart-pendulum example it is possible to wrap the pendulum
angle to the [−𝜋, 𝜋) interval, which results in two equally possible optimal
trajectories under our objective function. OC generally does not allow imple-
mentation of such techniques if they violate the smoothness assumptions.

6. When learning with a quadratic objective function, which is often used in OC,
it is useful to implement learning techniques that are able to reduce steady-
state error while leaving the objective function unchanged, for example re-
ward shaping.

The presented quantitative comparison is particularly important for our future
plans of combining RL and NMPC to control a more complex system with a high
number of degrees of freedom. One possible combination could be that RL learns a
real model for NMPC, while NMPC provides a backup of an RL exploratory policy.

44 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

Another scheme could be that RL receives a control signal fromNMPC as a sugges-
tion. Initially RL passes this suggestion to the actuators, but at a later stage it takes
over in state space areas where it is confident. Independently of the chosen com-
bination strategy, for value function-based RL it is important to retain the Markov
property, which may impose restrictions on the NMPC controller as well. For ex-
ample, such RLmethods usually avoid time as a state, hence, the trajectory-tracking
NMPC should not be used in the suggestion-based scheme.

3.8 Conclusion
In this chapter, we provided an extensive comparison of model-free RL and model-
based NMPC methods. We began with finding a proper formulation of NMPC
and RL problems tackling the same task of a swing-up and balancing motion of a
cart-pendulum system. The benchmark is standard and well-known in literature.
To facilitate follow-up research, we provide the freely available source code of the
benchmark online (Caarls, 2015).

We showed that both methods were capable of solving the benchmark problem
and that the resulting trajectories for states and controls were similar in terms of
the coefficient of determination and regret.

In our experiments considering uncertainties, we showed that ideal NMPCwith
MHE is superior to RL for the whole range of uncertainties, but the realistic NMPC
withMHE is comparable toRL. Themajor achievement is a quantification of a break-
even point after which learning in a model-free seĴing becomes more beneficial
than nonlinear model predictive control with an inaccurate model.

We expect that a proper combination of these methods will open the door to
novel control strategies. In particular, we plan to develop a hybrid NMPC-RL con-
troller and test it on a real seven-degree-of-freedom walking robot, specifically de-
signed for the purpose of learning with RL.

4
Model-plant mismatch
compensation using

reinforcement learning

This chapter further addresses research question 2, where the proposed combination ofmodel-
based optimal control (OC)/nonlinear model predictive control (NMPC) and model-free re-
inforcement learning (RL) is implemented. To compensate for the model-plant mismatch,
two combination approaches are studied in simulation. The first approach learns a com-
pensatory control action that minimizes the same performance measure as is minimized by
NMPC. The second approach learns a compensatory signal from the difference of the state
transition predicted by the NMPC internal model and the actual state transition. A the-
oretical justification of the approaches is provided. In simulated experiments, the second
approach showed a beĴer performance, and therefore it was verified on the real robot Leo.
The exploration strategy was chosen according to the results obtained in Chapter 1. Even
though safety is not guaranteed by the proposed approaches, the results demonstrate the use-
fulness of NMPC, which provides safety barriers to constrain RL exploration actions near
dangerous state-space regions.

Published in: Koryakovskiy, I., Kudruss, M., Vallery, H., Babuska, R., and Caarls, W. (2018). Model-Plant
Mismatch CompensationUsing Reinforcement Learning. IEEERobotics and Automation LeĴers, 3(3):2471–
2477.

46 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

4.1 Introduction

Mechanically and electronically, robotics have advanced to the point where cog-
nitive abilities have become the main limiting factor. While robots can flawlessly
execute a set of commands to achieve a task, these commands are mostly encoded
or tuned by hand. RL allows to find an optimal sequence of commands without
any prior assumption about the world. However, the application of pure learning
to real systems is very limited due to intrinsically damaging exploratory policies.
For example, when learning from scratch the robot Leo depicted in Figure 4.1 can
withstand only five minutes of operation due to large and rapidly changing motor
torques and frequent falls (Schuitema, 2012).

Usually, the dynamics of physical systems are known, but various uncertain-
ties do not allow achieving optimal performance with model-based control meth-
ods, see Chapter 3. Whereas for the estimation of parametric uncertainties moving
horizon estimation (MHE) techniques (Kühl et al., 2011) can often be employed, for
structural uncertainties, such as backlash, Coulomb friction or wear and tear, this
is not easily possible. Nevertheless, model-based methods can predict the evolu-
tion of the system for a short horizon, thus enabling the implementation of safety
barriers to limit risky exploration in dangerous state space regions.

By safety, we mean the prevention of actions that cause damage to the system.
For example, in a bipedal robot, safety is particularly related to the robot not falling.
Falls result in impact forces applied to the limbs and gearboxes, and some robots
cannotwithstand even a single fall. Inmodel-based control, it is natural to constrain
the angles and velocities to remainwithin an admissible range, and to enforce static
stability constraints such that the center of mass projection is some distance away
from the support polygon border. These constraints help prevent falls, but a mo-
mentary violation of them does not necessarily result in the one. In RL, it is possible
to consider angle and velocity constraints by means of negative rewards. However,
to learn avoiding such constraints, they need to be violated multiple times in dif-
ferent robot configurations. Random exploration exacerbates the problem and can
lead to a very large number of falls.

Therefore, we propose to combine RL and NMPC in one framework that allows
RL to gather the required experiencewithout damaging amany-degree-of-freedom
system. The experience is used by RL to compensate the difference between the
internal model of the system and the real one. Anymodel-based nominal controller
is suitable, but the choice of NMPC is particularly motivated by the complexity of
the robot.

We propose two different approaches shown in Figure 4.2. Similarly to Bayiz
and Babuska (2014), the first approach learns a compensatory control action, but
instead of a proportional-derivative (PD) controller, we use NMPC, which intro-
duces an additional optimization problem. Since both NMPC and RL optimize sim-
ilar performance measures, the obtained policy is optimal with respect to the real
system. The second approach learns a compensatory signal from the difference of
transitions predicted by the internal model and the actual transition. In this case,
RL uses a different optimization goal, which does not divert NMPC from reaching

4 Model-plant mismatch compensation using reinforcement learning 47

Figure 4.1: Robot Leo performs up and down motions. Root point is shown by the circle with black and
white sectors.

its objective. As a result, themodel-plant mismatch is eliminated by forcing the real
system to behave as if it has no uncertainties.

We conduct simulated and real experiments with Leo and demonstrate the ad-
vantage of our proposal in the presence of temperature- and torque-dependent
Coulomb friction.

4.2 Related work
From a control theoretic viewpoint, our approaches can be compared to adaptive
internal model control (IMC) (DaĴa and Xing, 1998). The implementation requires
an explicit model of the plant to be used as part of the controller. However, in
adaptive IMC, the structure of the unknown system is determined offline, while its
parameters can be inferred by online parameter estimation (Kühl et al., 2011). A
particular shortcoming is that the structure needs to be identified precisely; other-
wise a model-plant mismatch remains. The proposed approaches require neither
precise identification of the structure nor of the parameters.

As a learning controller, we employ model-free on-policy deterministic policy
gradient (DPG) by Silver et al. (2014). In principle, any model-free RL algorithm
can be used, e.g. Kakade (2002); Schulman et al. (2015, 2016, 2017). However, lack
of safetymeasures and sample complexity of the algorithms limits their application
to real systems.

Learning the forward model of the system demonstrates the lowest number of
interactions with it (Kamthe and Deisenroth, 2017; Gu et al., 2016). Learning the
inverse model (Kawato, 1990; Christiano et al., 2016; Gamboa Higuera et al., 2017)
assumes that the model can connect successive states prescribed by the nominal
controller.

When the approximatemodel of the system is available, it is possible to pre-train
the initial policy, which can speed up learning. The two-step sequential approach
is proposed by Farshidian et al. (2014). First, an iterative linear-quadratic-Gaussian
algorithm is used to design an initial policy. Then, the policy is refined using the
PI² algorithm on the real system. Another approach is to iteratively learn the differ-
ence model of the measured state and the state obtained on the approximate model

48 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

RL

NMPC System

�̄�

𝒙�̂�

𝒖RL

𝒖+
+

RL

NMPC System

Model

�̄�

𝒙

�̂�

�̂�

𝒖RL

𝒆

𝒖++

+−

Figure 4.2: (top) Compensatory Action Learning, and (boĴom) Model-Plant Mismatch Learning.

and adopt this difference model for improving the policy (Ha and Yamane, 2015;
Saveriano et al., 2017). Finally, Rajeswaran et al. (2017) use an ensemble of slightly
perturbed model parameters to learn a robust policy.

Learning involving off-line planning or human-expert demonstrations (Schuite-
ma, 2012; Abbeel et al., 2010; Peters et al., 2010; Levine and Koltun, 2013; Zhang
et al., 2016) constrains the problem space, thus reducing hardware damage. This
option requires either a hand-coded suboptimal policy or a skilled human operator.

For a bipedal robot where any failure can be catastrophic, the above methods
are not suited even given a good starting policy, because it is likely that RL will
result in at least several failures during subsequent policy improvement episodes.

It is possible to guarantee safe learning when one can either predict repercus-
sions of bad actions (Moldovan and Abbeel, 2012) or has a backup policy to lead
the system back to safe states (Hans et al., 2008; Fisac et al., 2017). Here, we do not
guarantee safe learning, though the proposed approaches in practice can be safe.

Our contribution is twofold. First, we propose approaches that can in principle
compensate any type of uncertaintywhich preserves theMarkov property, without
a time-consuming structure identification process and expert-designed models of
friction, backlash, etc. The approaches can be implemented on top of an existing
model-based controller which makes it easier to integrate into the various fields of
engineering, such as robotics, chemistry or computer science. Second, we demon-
strate successful learning results on a real robot.

4.3 Background

4.3.1 Problem statement
Consider the nonlinear time-invariant system in the form of

�̇�(𝑡) = 𝑓(𝒙(𝑡), 𝒖(𝑡), 𝝆) (4.1)

4 Model-plant mismatch compensation using reinforcement learning 49

where 𝒙(𝑡) ∈ ℝ𝑛𝑥 the system state at time 𝑡, 𝒖(𝑡) ∈ ℝ𝑛𝑢 is the control vector of
joint motor voltages applied to the system at time 𝑡, and 𝝆 is an unknown struc-
tural uncertainty. The presence of uncertainty causes the model-plant mismatch 𝒆
which is formulated as the difference between the real system state 𝒙 and the sim-
ulated state of the model �̂�, see Figure 4.2. We do not make any assumption on
how the uncertainty enters the equations. Thus it represents the general concept of
mismatch.

4.3.2 Nonlinear model predictive control
The nominal feedback is provided by NMPC, a closed-loop control strategy in
which the control action is computed from the current system state by solving an
open-loop optimal control problem on a finite prediction horizon [0, 𝑇] online,

min
𝒙(⋅),𝒖(⋅)

∫
𝑇

0
𝐿(𝒙(𝑡), 𝒖(𝑡)) d𝑡 (4.2a)

s.t. �̇�(𝑡) = 𝑓(𝒙(𝑡), 𝒖(𝑡), 0), (4.2b)
𝒙(0) = 𝒙0,
𝒈(𝒙(𝑡), 𝒖(𝑡)) ≥ 0. (4.2c)

Here we strive to find a control trajectory 𝒖(𝑡) such that an objective function com-
posed of a Lagrange term 𝐿 ∶ ℝ𝑛𝑥 × ℝ𝑛𝑢 → ℝ is minimized. The state trajectory
𝒙(𝑡) is characterized by the dynamic system (4.1). In (4.2b), we assume the idealized
model, 𝝆 = 0, because nothing is known about the uncertainties in the real system.
In addition, we impose mixed state-control path constraints 𝒈 ∶ ℝ𝑛𝑥 × ℝ𝑛𝑢 → ℝ𝑛𝑔

such as constraints on joint angles ensuring the static stability of the robot together
with constraints formulating limits on the maximum motor input voltage.

In the simulated experiment, we use a nominal NMPC scheme that is based on
direct multiple shooting (Bock et al., 2007). Controls 𝒖 are approximated as piece-
wise constant functions. The cost of some discretized trajectory 𝒙0, 𝒖0, 𝒙1, 𝒖1, ...
obtained using policy 𝒖𝑘 = 𝜋(𝒙𝑘) is denoted as ℒ = ∑𝑘 𝐿(𝒙𝑘, 𝒖𝑘).

To achieve real-time control on the robot, we implement a parallelized version
of the NMPC scheme proposed by Kudruss et al. (2018), where one controller pro-
vides a fast feedback by efficiently reusing control problem linearizations of the last
iteration, while the second controller prepares the next nonlinear step.

4.3.3 Reinforcement learning
RL is a trial-and-error method which does not require an explicitly given model,
and can naturally adapt to uncertainties in the real system (SuĴon and Barto, 1998).
RL assumes the system is stochastic, and thus it maximizes the expected discounted
return

𝐺𝛾
𝑘 = 𝔼 {

∞
∑
𝑖=0

𝛾𝑖𝑟(𝒙𝑘+𝑖, 𝒖𝑘+𝑖, 𝒙𝑘+𝑖+1)} (4.3)

𝑟(𝒙𝑘, 𝒖𝑘, 𝒙𝑘+1) = {−𝐿(𝒙𝑘+1, 𝒖𝑘) if 𝒈(𝒙𝑘+1, 𝒖𝑘) ≥ 0
𝑟 a otherwise.

(4.4)

50 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

Here 𝑟(𝒙𝑘, 𝒖𝑘, 𝒙𝑘+1) is the scalar reward given for a transition from 𝒙𝑘 to 𝒙𝑘+1
caused by the control signal 𝒖𝑘 = 𝜋(𝒙𝑘) + 𝒏𝑘, 𝒏𝑘 ∼ 𝒩 chosen from some policy
𝜋. Discount rate 𝛾 ∈ [0, 1) is required for integrability of the infinite sum. Its role is
similar toNMPChorizon 𝑇 . Constraints (4.2c) are established bymeans of the large
negative reward 𝑟 a. Subsequently, the episode is terminated, and the system is
restarted in state 𝒙0. Usually, RL requires at least several repetitions to estimate the
return (4.3) correctly. These repetitions are obtained by adding exploration noise
𝒏𝑘 to control signals𝒖𝑘 at every time step. The outcome of repetitions is not known
in advance and therefore may be damaging to the system.

An important aspect of learning is the preservation of the Markov property,
which assumes that the next state 𝒙𝑘+1 depends only on the current state 𝒙𝑘 and
action 𝒖𝑘, but not on previous states or actions (SuĴon and Barto, 1998).

We solve problem (4.3) using DPGwith linear function approximation and com-
patible features, chosen for its ability to optimize continuous control policies and
fast convergence.

4.4 Proposed combination approaches

4.4.1 Compensatory Action Learning
In the proposed combination schemes shown in Figure 4.2, we use �̂�notation for the
output of the NMPC controller and 𝒖RL notation for the output of the RL controller.

Compensatory Action Learning (CAL) approach learns a compensatory control
action added to the control input computed by nominal NMPC. For learning, we
use the NMPC-inspired reward (4.4), which establishes similar optimization goals
for both controllers. Due to small differences in formulation and function approxi-
mations in RL, the obtained policy might be suboptimal compared to NMPC.

4.4.2 Model-Plant Mismatch Learning
In the Model-Plant Mismatch Learning (MPML) approach, RL maximizes return
(4.3) where the reward is given by

𝑟(𝒙𝑘, 𝒖𝑘, 𝒙𝑘+1) = − ‖𝒆𝑘+1‖2 = − ‖𝒙𝑘+1 − �̂�𝑘+1‖2 . (4.5)

Cumulative model-plant mismatch along some trajectory is calculated as the nega-
tive value of the undiscounted return ℰ = ∑𝑘 ‖𝒆𝑘‖2.

In the following, we prove two theorems. The first one explains the behavior of
the system when the model-plant mismatch is minimized by RL. The subsequent
corollary considers the case when the cumulative return (𝛾 > 0) is useful for dis-
covering a beĴer control policy. The second theorem specifies conditions under
which the system retains the Markov property. If the property is preserved, then
RL will not diverge, and the mismatch can be minimized. In this case, the MPML
performance depends on the RL learning capability.

Theorem 1. The outcome of the control policy approaches the outcome of the optimal policy
with respect to the idealized model iff the model-plant mismatch 𝒆𝑘 → 0 when 𝑘 → ∞.

4 Model-plant mismatch compensation using reinforcement learning 51

Proof. Writing the mismatch as 𝒆𝑘 = 𝒙𝑘 − �̂�𝑘 → 0 results in 𝒙𝑘 → �̂�𝑘. Assuming
the nominal controller can reach the setpoint on the model, �̂�𝑘 → �̄�𝑘, implies that
the system state will also approach the setpoint, 𝒙𝑘 → �̄�𝑘. Since the mismatch 𝒆𝑘
is minimized in every point of the reference trajectory �̄�𝑘, we arrive at the proof of
the theorem. The same logic holds for the reverse.

Corollary 1. If there is a time step 𝑘 such that 𝒆𝑘 ≠ 0 ∀𝒖𝑘, then min𝜋|𝛾=0 ℰ ≥
min𝜋|𝛾>0 ℰ. When the mismatch is eliminated along the reference trajectory, strict equal-
ity holds.

The corollary is based on the RL result that larger 𝛾 improves the quality of the
policy (Jiang et al., 2015). However, if there exists a control action which achieves
zero mismatch in every state, then maximizing immediate rewards (𝛾 = 0) is desir-
able because the problem becomes computationally easier.

In the following theorem, we assume that the system (4.1) can be discretized as
𝒙𝑘+1 = 𝑓(𝒙𝑘, 𝒖𝑘, 𝝆) and the setpoint �̄� can be included into the state 𝒙 for simplic-
ity.

Theorem 2. The system controlled by the nominal controller is Markov w.r.t. RL¹ if (a)
the system itself is Markov w.r.t. RL, 𝒙𝑘+1 = 𝑓(𝒙𝑘, 𝒖𝑘, 𝝆); (b) the internal model is
Markov w.r.t. the nominal controller, �̂�𝑘+1 = 𝑓(𝒙𝑘, �̂�𝑘, 0); and (c) the nominal controller
response �̂�𝑘 ≡ �̂�(𝒙𝑘) + 𝒎𝑘, 𝒎𝑘 ∼ ℳ is stochastic with some stationary distribution
ℳ.

Proof. First, by looking at the boĴom diagram of Figure 4.2 we write the condition
(a) and show that the distribution of states 𝒙𝑘+1 is defined by the current state 𝒙𝑘

𝒙𝑘+1 = 𝑓(𝒙𝑘, �̂�𝑘 + 𝒖RL
𝑘 , 𝝆) = 𝑓(𝒙𝑘, �̂�(𝒙𝑘) + 𝜋(𝒙𝑘) + 𝒎𝑘 + 𝒏𝑘, 𝝆).

Next, we show that the reward is also defined by 𝒙𝑘.

𝑟(𝒙𝑘, 𝒖𝑘, 𝒙𝑘+1) = − ‖𝒙𝑘+1 − �̂�𝑘+1‖2 = − ‖𝒙𝑘+1 − 𝑓(𝒙𝑘, �̂�(𝒙𝑘) + 𝒎, 0)‖2

The expected return averages the sum of discounted rewards over the distribution
of states and controls. Since both the dynamics and the return are predictable from
the current state 𝒙𝑘, we conclude that the system controlled by the nominal con-
troller is Markov with respect to RL.

Note that the real system does not have to be Markov with respect to NMPC,
which means that any uncertainty 𝝆 can be compensated. We use this observation
in the real example where 𝝆 depends on motor temperature which does not enter
the model, but is used in RL as an extra state variable.

¹ The notation of some system or its model being Markov with respect to a controller means here that
both the next state 𝒙𝑘+1 and the cost of this transition 𝒙𝑘 → 𝒙𝑘+1 do not depend on how the system
arrived at state 𝒙𝑘.

52 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

In the special case of an affine system (4.1) w.r.t. controls, 𝒙𝑘+1 = 𝑓𝑥(𝒙𝑘, 𝝆) +
𝑓𝑢(𝒙𝑘, 𝝆)𝒖𝑘, a perfectly learned RL control, i.e., 𝒆 = 0, is explicitly given by

𝒖RL
𝑘 = (𝑓𝑢(𝒙𝑘, 𝝆)⊤𝑓𝑢(𝒙𝑘, 𝝆))−1 𝑓𝑢(𝒙𝑘, 𝝆)⊤

× [𝑓𝑥(𝒙𝑘, 0) − 𝑓𝑥(𝒙𝑘, 𝝆) + (𝑓𝑢(𝒙𝑘, 0) − 𝑓𝑢(𝒙𝑘, 𝝆)) �̂�𝑘],

where 𝑓𝑥(𝒙𝑘, 𝝆) ∈ ℝ𝑛𝑥×1 and 𝑓𝑢(𝒙𝑘, 𝝆) ∈ ℝ𝑛𝑥×𝑛𝑢 are terms independent of 𝒖𝑘.
As expected, the control 𝒖RL captures the model-plant mismatch caused by 𝝆.

4.5 Experiments

4.5.1 Bipedal walking robot Leo
Robot Leo is depicted in Figure 4.1. We focus on the task of reaching upper and
lower setpoints which together realize a squaĴing motion. For this purpose, the
robot is fixed to the groundplate below its feet. Falling situation is recognizedwhen
absolute torso angle becomes larger than 57.3 °. Leo has seven degrees of freedom
(DoFs) driven by Dynamixel XM430 servo motors, three in each leg at ankle, knee
and hip and one motor in the shoulder. Gearboxes are subject to Coulomb friction
dependent on motor temperature and torque.

The robot state 𝒙 = [𝝓, ̇𝝓, ℎ̄𝜙, 𝜏knee]⊤ is defined as a vector of all but
shoulder joint angles 𝝓, corresponding angular velocities ̇𝝓, setpoint height
ℎ̄𝜙 ∈ {0.28m, 0.35m} and mean temperature of knee motors 𝜏knee.

Exploiting the symmetry of Leo, we apply the same control voltages to both
legs. The shoulder is actuated using a PD controller. The setpoints are switched
over when the robot root point appears to be within ±0.01m away from it. In the
simulated experiment, we add shoulder angle and velocity to the state, and the
shoulder voltage is also learned. The robot is initialized in a setpoint chosen ran-
domly at the beginning of every episode. The idealized model is made such that
no friction in joints is present. For the realistic model, we add Coulomb friction
𝒖fr = −0.2 tanh(2000 ̇𝝓) in all joints.

The control delay of 13.0±1.7ms comprises measurement, computation and ac-
tuation delays. A sampling period of 33.3ms is chosen to be larger than the control
delay.

4.5.2 Objective function and constraints
The NMPC objective function is defined by (4.2a) with

𝐿(𝒙, 𝒖) =0.05 (ℎ𝑒𝑖𝑔ℎ𝑡(𝝓) − ℎ̄𝜙)2 + 0.10(𝑥𝑐(𝝓) − 𝑥𝑐,0)2

+ 0.05 (𝑝𝑜𝑠𝑒(𝝓) − 0.3)2 + 0.003 ̇𝝓⊤ ̇𝝓.

Here, the first term accounts for the vertical distance ℎ𝑒𝑖𝑔ℎ𝑡(𝝓) to a setpoint ℎ̄𝜙 =
ℎ𝑒𝑖𝑔ℎ𝑡(�̄�), the second term maintains the horizontal position of the center of mass
𝑥𝑐(𝝓) close to predefined value 𝑥𝑐,0, the third term containing 𝑝𝑜𝑠𝑒(𝝓) = 𝜙ankle +
𝜙knee + 𝜙hip is used as a regularization term improving the stability of the robot,
and the last term favors small velocities.

4 Model-plant mismatch compensation using reinforcement learning 53

We formulate static stability as a constraint 𝒈(𝒙, 𝒖) = (𝑥𝑡 −𝑥𝑐(𝝓), 𝑥𝑐(𝝓)−𝑥ℎ)⊤,
where 𝑥𝑡, 𝑥ℎ denote the position of the tip and the heel of robot feet. Additionally,
robot angles and controls are subject to constraints

⎡⎢
⎣

−1.57
−2.53
−0.61

⎤⎥
⎦

≤ 𝝓 ≤ ⎡⎢
⎣

1.45
−0.02

2.53
⎤⎥
⎦

{|𝑢𝑗|, |�̂�𝑗|, |𝑢RL
𝑗 |} ≤ 10.0V

𝑗 ∈ {ankle, knee, hip}.

For MPML approach the reward (4.5) is calculated based on the joint angles
𝑟(𝒙𝑘, 𝒖𝑘, 𝒙𝑘+1) = − ∥𝝓𝑘+1 − ̂𝝓𝑘+1∥

2
.

4.5.3 Parameters
The time horizon𝑇 forNMPCoptimization is selected to be 1 s. One learning or test-
ing episode lasts for 15 s. Advantage function, state value function and actor learn-
ing rates are chosen to be 0.01, 0.10 and 0.01, respectively. Additional parameters
include discount rate 𝛾 = 0.97, and an eligibility trace decay rate of 0.65. We rely on
NMPC to avoid falls of the robot, therefore negative reward 𝑟 a is not used. Explo-
ration is achieved by Ornstein-Uhlenbeck (OU) noise Δ𝒖𝑘+1 = 0.5Δ𝒖𝑘 + 𝒩(0, 𝜎)
with 𝜎 = 0.005. For the real experiment, we select a higher advantage learning rate
of 0.06 and increase exploration by using 𝜎 = 0.01.

4.5.4 Evaluation
For quantitative assessment, we evaluate objective (4.2a) separately for reaching
upper and lower setpoints ℒ{u,l} = ∑ 𝐿(𝒙, 𝒖). Second, we evaluate the minimiza-
tion of model-plant mismatch ℰ{u,l} = ∑ ‖𝒆‖2 for reaching both setpoints separately.
Third, we calculate root mean squared error (RMSE) between transitions obtained
by both approaches and NMPC executed on the idealized model. Finally, to ex-
perimentally demonstrate safety barriers imposed by NMPC, we calculate the cu-
mulative number of falls and violation of NMPC constraints at multiple levels of
exploration noise 𝜎 for two proposed approaches and DPG.

For qualitative assessment, we calculate the number of squats the robot per-
forms during the testing episode. This measure should be accounted only as a
learning progress indicator since it is not included in the optimization objective.

4.5.5 Simulation results
In Figure 4.3 and Table 4.1, we demonstrate a significant difference in the perfor-
mance of standalone NMPC on the idealized and realistic models. On the ideal-
ized model, NMPC realizes three squats. On the realistic model, NMPC can reach
neither upper nor lower switching points, which results in the inability to squat
and high costs ℒ. This result motivates the need for an adaptive component in the
controller.

To compare the performance of the proposed approaches to the baseline perfor-
mance of NMPC, we perform learning for 106 time steps. The time was enough for
CAL andMPML to converge, while DPG required about hundred timesmore steps.
Thus, its results were excluded from the comparison.

54 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

0.5

1.0
NMPC

ℒu

CAL MPML CAL
𝛾 = 0.97 𝛾 = 0.97 𝛾 = 0.99

0 5 10
0
3
6

Sq
ua

ts

0 5 10
Time (h)

0 5 10 0 5 10

0.4

0.8
ℒl

Figure 4.3: Learning to reach (top row) upper and (middle row) lower setpoints in simulation. Number
of squats is given in the boĴom row. DoĴed and solid lines show learning on the idealized and realistic
models, respectively. Means with upper and lower 95% confidence limits are shown for 10 runs.

We notice that on the idealized model the performance of both approaches be-
comes slightly worse than the baseline performance of NMPC. For CAL𝛾=0.97, we
observe deviation from the optimal policy which is seen in the increase of ℒ cost.
Yet, the approach is able to keep the number of squats close to the baseline value.
For MPML, costs ℒ do not change, but the number of squats increases by 0.5 which
indicates that the approach reaches the upper setpoint right before the episode ends.
Deviation of the learned trajectory from the idealized one is captured by RMSE
which is nonzero for both approaches. For the CAL and MPML approaches the
mean RMSE is 68.6% and 91.7% below the reference of 20.4 ± 0.2 which is RMSE
of NMPC trajectory obtained on the realistic model.

Results of the realistic model experiment show that both approaches improve
the performance of NMPC. The decrease of the ℒ cost is at least 35.2% and 41.9%
for CAL𝛾=0.97 andMPML approaches, respectively. In terms of squats, both learn-
ing approaches overshoot the NMPC baseline of 3 squats and then continuously
reduce the number towards the baseline. RMSE increases comparing to the ideal-
ized model experiment, but still remains significantly below the reference value.

To find the reason of CAL𝛾=0.97 performance decrease on the idealized model,
we test the approach with a discount rate of 𝛾 = 0.99. Increasing 𝛾 leads to a
longer planning horizon which makes RL return (4.3) more similar to NMPC objec-
tive (4.2a). It turns out that CAL𝛾=0.99 obtains lower ℒ costs not only comparing
to CAL𝛾=0.97 but also comparing to the baseline NMPC. We believe the reason of
this is due to the early switching of setpoints described above. While CAL𝛾=0.99

can learn this fact, NMPC is not aware of it.
In Figure 4.4, we plot the number of falls and NMPC constraint violations ac-

cumulated over 106 time steps. Here, we prematurely stopped DPG for the sake
of results comparability. The proposed approaches are almost identical. Both ap-
proaches prevent the robot from falling, while constraints get violated at 𝜎 > 0.1. A

4 Model-plant mismatch compensation using reinforcement learning 55

Table 4.1: Final performance of methods. Significant width of the confidence interval is shown in brack-
ets.

Method ℒu

×10
ℒl

×10
Number
of squats

RMSE
×104

Idealized model
NMPC 5.2 𝟒.𝟎 𝟑.𝟎 𝟎.𝟎
CAL𝛾=0.97 5.4 4.4 3.0(0.1) 6.4(1.5)
MPML 5.2 𝟒.𝟎 3.5 1.7(0.1)
CAL𝛾=0.99 𝟓.𝟏 𝟒.𝟎 3.5 11.8(4.0)
Realistic model
NMPC 9.3 7.1 0 20.1
CAL𝛾=0.97 5.6 4.6 2.5 10.4(0.5)
MPML 𝟓.𝟒 𝟒.𝟏 𝟑.𝟐(𝟎.𝟏) 𝟒.𝟑(𝟏.𝟐)
CAL𝛾=0.99 𝟓.𝟒 𝟒.𝟏 3.9(0.2) 13.2(1.2)
Real robot
NMPC 38 °C 22.0(2.1) − 0
MPML 𝟕.𝟗(𝟐.𝟗) 𝟒.𝟒(𝟏.𝟖) 𝟑.𝟑(𝟏.𝟏) 𝟗𝟒.𝟗(𝟐𝟔.𝟓)

different picture is seen in DPG results. The smallest number of falls and constraint
violations is achieved for the value of 𝜎 = 0.02. Smaller 𝜎 reduces the learning pace,
while larger values increase chances of fall.

The results of the influence of the discount rate 𝛾 on the ability of MPML to
minimize the mismatch is given in Appendix B.2.

MPML learns almost twice as fast as CAL and does not exhibit deviating behav-
ior, which are the main reasons for testing the approach on the real robot.

4.5.6 Results on the real robot
Results of standaloneNMPCon Leo are shown in Figure 4.5. While on the idealized
model NMPC successfully reaches switching points, on the real robot the controller
is not able to do so. The reason is due to Coulomb friction in gearboxes, which
depends on motor temperature and the applied torque. Modeling these effects is
possible but requires a precise identification of the underlying physical processes.

To circumvent this problem, we apply the proposed MPML approach. In Fig-
ure 4.5, results of three independent runs are shown. MPML successfully realizes
squaĴing by learning the compensation signal. The variation of motor temperature
leads to noticeable differences in the trajectories. The trajectory obtained in the 3rd
run is less noisy and squaĴing is faster than the one achieved in the 1st and 2nd runs.
In particular, the gradient of the downwards motion in the 3rd run is very similar to
the idealizedNMPC run, except for the later part where the slow approach towards
the setpoint diminishes.

Variation ofmotor temperature also leads to differences in the learning progress,
see Figure 4.6. The 1st and 2nd runs require substantially longer time before the

56 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

0.0

2.5

Fa
lls
,

×1
04

DPG CAL MPML

0.00 0.05 0.10 0.15 0.20 0.25
Noise 𝜎

0.0

5.0

V
io
la
tio

ns
,

×1
05

Figure 4.4: (top) The number of falls and (boĴom) NMPC constraint violations as functions of 𝜎. Means
with upper and lower 95% confidence limits are shown for 10 runs.

0 5 10 15
Time (s)

0.29

0.34

H
ei
gh

t(
m

)

NMPC (idealized model)

NMPC (robot) @ 38 °C
1st 2nd 3rd MPML run (robot)

Figure 4.5: Robot root point trajectories obtained after learning.

squaĴing cycle is observed. This is due to the increase of motor temperature above
40.0 °C which requires additional exploration of the state space. Nevertheless, all
runs successfully aĴain a stable squaĴing cycle after 7.25h.

Model-plant mismatch ℰu and ℰl is minimized to about 0.5 and 0.8 for reach-
ing upper and lower setpoints, respectively. As it was expected, minimization
of model-plant mismatch leads to minimization of the nominal controller objec-
tive (4.2a) shown by plotsℒu andℒl. The smallest final costs are incurred by the 3rd
run because it was stuck the least due to temperature fluctuations, while the largest
costs are incurred by the 1st run which was stuck the most.

RMSE after learning is calculated in Table 4.1. RMSE of MPML trajectories is
much higher than for the realistic model, and it also exhibits more variability. Un-
fortunately, it is not possible to obtain the reference RMSE value of the real robot.

Figure 4.7 shows the MPML knee control signal and the RL compensation
component of it. For reference, NMPC control on the idealized model is also
shown. MPML controls are very oscillatory comparing to NMPC. Nonetheless,
the robot neither fell down, nor were its motors damaged, which is a significant
result, cf. Schuitema (2012). As is expected with Coulomb friction compensation,

4 Model-plant mismatch compensation using reinforcement learning 57

0

2

4

ℰu

1st

2nd

3rd run
(robot)

0
2
4
6

ℰl

0
2
4
6

ℒ
u

0
2
4
6

ℒ
l

0

2

4

Sq
ua

ts

0 2 4 6 8
Time (h)

20
30
40
50

𝜏 k
ne
e
(°C

)

1.0
1.5

0.50
0.75

Figure 4.6: Learning progress of three independent runs. (upper two) Model-plantmismatch, (middle two)
nominal controller objective, number of squats and the mean temperature of knee motors obtained dur-
ing three real learning experiments. Measurements of ℰl and ℒl are missing when the upper switching
point is not reached.

58 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

RL learned to apply positive and negative controls for the upward and downward
motions, respectively.

4.6 Discussion

Even though the final CAL policy is optimal with respect to the real system, the
policy is suboptimal with respect to the objective of the nominal controller (4.2a).
This result can be explained by the fact that RL and NMPC objectives are not ex-
actly same. While NMPC optimizes the undiscounted cost up to horizon 𝑇 , RL
optimizes 𝛾-discounted reward on the infinite horizon. All in all, RL views the sys-
tem and the nominal controller as a hybrid entity and the obtained policy becomes
optimal with respect to the RL objective. This observation also explains the inability
of CAL𝛾=0.97 to reach the optimal performance on the realistic model, even though
it can significantly improve the performance of the nominal controller. The longer
prediction horizon used by CAL𝛾=0.99 aĴains a beĴer performance.

Another problem of CAL is the slow convergence which is probably caused by
the fact that the reward constructed from the quadratic objective function of the
nominal controller results in small gradients, see Chapter 3 for details. This hy-
pothesis is supported by the fact that DPGwith a quadratic cost function learns the
task extremely slowly. To mitigate this, the RL cost function can be modified. The
downside of it can be the difficulty of predicting the outcome of such modification,
e.g. robot velocity may change drastically.

The MPML approach is free from these complications. However, it should be
emphasized that MPML optimizes policy with respect to the internal model, that
is RL forces the system to behave like the idealized model. In principle, a large
mismatch may pose a problem because the obtained policy will be less optimal
with respect to the real system and control constraints may prevent the necessary
compensation to be applied. However, in our experiments, this is not a problem.
Minimization of the model-plant mismatch ℰ closely follows minimization of the
nominal controller cost ℒ. MPML successfully learns to compensate the unknown
Coulomb friction as well as its dependency on motor temperature and torque.

TheMPML approach obtains the lowest RMSE. This does not come as a surprise,
as MPML directly minimizes the mismatch by the specifically constructed reward
function. CAL alsominimizes RMSE, even though its primary goal is not defined in
terms of suchminimization. Arguably, in order for NMPC to successfully complete
the task, the realistic model should resemble the idealized one which is achieved
by learning with RL in both approaches.

For both proposed approaches, a liĴle deviation caused by RL exploration leads
to an immediate setback reaction fromNMPC. Our simulated experiment reveals a
wide range of admissible exploration noise 𝜎 for which the number of NMPC con-
straint violations and robot falls is zero. This result demonstrates the role of NMPC
which provides safety barriers to constrain RL exploratory actions near dangerous
state space regions. However, there are disadvantages. First, the formulated task
demands deliberate control learning which is difficult in the presence of Coulomb
friction. If the robot starts moving after a slight overshoot caused by RL explo-

4 Model-plant mismatch compensation using reinforcement learning 59

2
4
6
8

𝑢 k
ne
e(V

) NMPC (idealized model) MPML (robot)

0 5 10 15
Time (s)

−2

0

2

𝑢R
L kn
ee

(V
) RL compensation signal (robot)

Figure 4.7: (top) Knee control signal of NMPC applied to the idealized model and of MPML applied to
the real robot after learning. (boĴom) Compensation signal learned by MPML.

ration, this immediately causes the decrease of friction (Stribeck effect), and at the
next sampling moment, the system displacement appears to be too large. NMPC
counteracts, so that resulting trajectories appear to be oscillatory. The other reason
of oscillations is due to the large control delay. Given the results, it is hard to as-
sess the role of NMPC counter-reaction in the oscillatory trajectories, but we expect
that reduction of sampling time and control delay will reduce oscillations. Second,
NMPC can drive the system very close to constraint boundaries. For some systems
violation of constraints can be very critical, however, this is not true in our case.

We note that the success of model-plant mismatch compensation depends on
the learning capabilities of RL on the hybrid system mentioned above. Whether
there is a decrease or increase of computational complexity of that system against
the original system remains an open problem.

It is common to compensate for a steady-state error in a task completion by
adding an integral term to the objective that is tuned by experimental data. Learn-
ing the actual model-plant mismatch with MPML goes far beyond cost tuning. It
allows to predict the outcome of executed actions since the learned trajectory is
expected to be optimal with respect to the idealized model.

4.7 Conclusion
We proposed two learning approaches to compensate model-plant mismatch.
Our simulation results demonstrated the feasibility of both approaches. We
implemented the beĴer one on a real robot affected by torque and temperature
dependent friction and autonomously learned a squaĴing task. Trying to achieve a
similar performance with the standalone nominal controller would require tedious
identification of the law of such a dependency. During learning, the robot did not
fall.

Several avenues can be explored in future. First, one may reduce learning time
by using different function approximators or RL algorithms. Awide range of recent
model-free RL can be utilized in a straightforward way. Second, it is important to
validateMPML onmore challenging tasks. It is also a relatively straightforward im-

60 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

plementation if the nominal controller is already set up, andRL actions are bounded
so that the nominal controller can always compensate them.

5
Sample-efficient reinforcement
learning via difference models

Ivan Koryakovskiy, Divyam Rastogi¹

The combination of the nonlinear model predictive control (NMPC) and reinforcement
learning (RL) methods studied in the previous chapter is currently not applicable to walking
tasks because it requires a different type of the online NMPC controller that can properly
handle hybrid dynamics. To the best of our knowledge, such a controller does not exist
yet. Therefore, this chapter suggests another way of compensating model-plant mismatch
by leveraging only the approximate forward model of Leo. This chapter provides: (1) an
iterative RL approach that can scale to systems with highly non-linear and contact-rich dy-
namics with continuous state and action spaces, and (2) sample complexity analysis. The
approach reduces the demand for real samples by only learning the difference in regions of
the state space that are essential for completing the task. This chapter concludes the pursuit
towards aĴaining the answer to research question 2.

Shortened version published in: Rastogi, D., Koryakovskiy, I., Kober, J. (2018). Sample-Efficient Reinforce-
ment Learning via Difference Models, The Third Machine Learning in Planning and Control of Robot Motion
Workshop at ICRA 2018, Brisbane, Australia.
¹ D.Rastogi is currently with Robotics and Biology Lab, Department of Computer Engineering and Mi-
croelectronics, TU Berlin, Marchstraße 23, 10587 Berlin, Germany.

62 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

5.1 Introduction

Learningwith no or liĴle prior knowledge about the environment is becomingmore
popular among control researchers. The reason is that learning provides a generic
toolbox for solving complex high dimensional tasks possibly subject to discontinu-
ities. A good example of such task is bipedal locomotion. The intrinsic vulnerability
of bipedal walking platforms limits the amount of possible real experience, thereby
making it very expensive to obtain. Therefore, data-driven methods require the
development of measures which reduce their sample complexity and speed up the
learning. The consequence is that these methods lack generality and hence become
applicable to specific types of robots (Morimoto et al., 2004; Mori et al., 2004; Mat-
subara et al., 2006; Tedrake et al., 2004; Schuitema et al., 2005; Endo et al., 2008).

In the light of the recent success of deep RL methods for control of high dimen-
sional systems (Schulman et al., 2016; Lillicrap et al., 2015; Schulman et al., 2015),
we study the applicability of neural network representations to learning on the real
bipedal robot Leo (Schuitema et al., 2010). Deep RL methods require more than
105 samples for their convergence (Duan et al., 2016). This limits the application
of such methods only to simulated systems. Due to the discrepancy between the
model and the real system, the reality gap, policies that perform optimally in sim-
ulation fail to perform adequately in the real world, particularly when applied to
high degree of freedom (DoF) systems like bipedal robots. Therefore, a possible
solution is to pre-train a policy in a simulator, and then warm-start learning on the
real system.

A substantial amount of work can be done to beĴer match the simulated sys-
tem with the real-world system. This involves improving the contact models, fric-
tion and also improving the physical identification of quantities like masses, joint
lengths and friction coefficients (Ljung, 1999). Apart from being a tedious and time-
consuming process, it also has a drawback of complicating and over-describing the
model, making the simulation slow and finding a feasible policy more challenging.

In this chapter, our main contribution is the proposal of learning a difference
model using a deep neural network (DNN). We assume that an idealized simulator
of Leo is provided and that the real system resembles the model to some extent.
We expect that the accurate representation of the difference between systems can
mitigate the reality gap. Since the reality gap only maĴers in regions of the state
space explored by the policy, the difference model only needs to be accurate in
those parts of the state space. We compare the performance of our method against
warm-started and cold-started (from scratch) learning on two simulated examples:
1-DoF inverted pendulum and 7-DoF bipedal robot Leo.

5.2 Related work

RL is an established technique and has already been successfully applied to learn
a variety of robotic tasks (Kober et al., 2013). However, a limited number of ap-
proaches tackle the bipedal walking problem. Most of these approaches try to in-
corporate a certain level of prior knowledge into training. For example, they do

5 Sample-efficient reinforcement learning via difference models 63

this by using a pre-structured policy (Mori et al., 2004; Matsubara et al., 2006), or
by reducing the dimensionality of the controlled system using the symmetry of the
robot (Endo et al., 2008; Schuitema et al., 2010).

More recentmodel-free approaches focus on generic solutions achieved by train-
ing neural network representations (Heess et al., 2016; Schulman et al., 2016). The
methods demonstrate remarkable performance on highly challenging 3D locomo-
tion tasks but require a large number of training samples and are therefore limited
to simulated environments.

There has been a large body of work which belong to the class of model-based
RL methods which tackle the issue of high sample complexity. In these methods,
the policy training is either interleaved with a forward model learning (Deisenroth
and Rasmussen, 2011; Hester et al., 2012) or it is done concurrently (Caarls and
Schuitema, 2016). These methods start with no knowledge about the model and
aim for learning it by interaction with the real system.

However, usually an idealized model of the physical system is known but vari-
ous uncertainties do not allow achieving optimal performance of the policy trained
on this idealized model. To correct the discrepancy between the system and the
model, Christiano et al. (2016), Gamboa Higuera et al. (2017) and Hanna and Stone
(2017) learn the inverse model directly from the physical system. These methods
assume that the inverse model can connect successive states prescribed by the nom-
inal controller. The approach taken by Abbeel et al. (2006) is free from this assump-
tion because it learns an additive component of the forward model. The approach
allows to compensate both parametric and structural uncertainties, but cannot scale
to systems with discontinuities. A similar approach was proposed by Ha and Ya-
mane (2015). Unfortunately, it uses Gaussian processes for modeling the reality
gap which limits its application to high DoF systems (Lillicrap et al., 2015). The
approach proposed by Farchy et al. (2013) scales to high DoF systems and envi-
ronmental discontinuities but requires expert guidance to select parameter sets to
investigate after each model update. The approach proposed in Chapter 4 works
in combination with NMPC which allows it to provide safety barriers on RL ex-
ploration depending on the severity of the mismatch. The approach can scale to
high DoF systems with parametric and structural uncertainties but requires an ad-
ditional controller at hand.

In this chapter, our contribution is twofold. First, we propose an iterativemodel
learning approach which scales to high DoF contact-rich systems and does not re-
quire human supervision. We assume that an idealized model of a system is pro-
vided and that the real system resembles themodel to some extent. We approximate
the difference with a DNN which allows us to apply our method to high dimen-
sional continuous systems. We expect that the accurate representation of the differ-
ence between systems can mitigate the reality gap. Second, we provide a detailed
sample complexity analysis by comparing the performance of our method against
warm-started and cold-started (from scratch) learning on two simulated examples:
1-DoF inverted pendulum and 7-DoF bipedal robot Leo. To our knowledge, such
analysis is currently missing in the literature. Since the reality gap only maĴers in
regions of the state space explored by the policy, the difference model only needs

64 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

to be accurate in those parts of the state space. This helps us to reduce sample com-
plexity further since the model only needs samples in regions which are important
for the task.

5.3 Reinforcement learning
We consider a standard reinforcement learning problem formulation. The learning
is formalized by Markov decision process which is the tuple ⟨𝒳, 𝒰, 𝒫, ℛ⟩, where
𝒳 is a set of 𝑛𝑥-dimensional states 𝒙 ∈ ℝ𝑛𝑥 , 𝒰 is a set of 𝑛𝑢-dimensional actions
𝒖 ∈ ℝ𝑛𝑢 , 𝒫 ∶ 𝒳 × 𝒰 × 𝒳 → ℝ is a transition function which defines a probability of
ending up in state 𝒙𝑘+1 after taking action 𝒖𝑘 in state 𝒙𝑘. Here 𝑘 denotes discrete
time steps of the system. Reward function ℛ ∶ 𝒳×𝒰×𝒳 → ℝ gives a scalar reward
𝑟(𝒙𝑘, 𝒖𝑘, 𝒙𝑘+1) for particular transitions between states.

The goal of the learning agent is to maximize the discounted expected return

𝐺𝛾
𝑘 = 𝔼 {

∞
∑
𝑖=0

𝛾𝑖𝑟(𝒙𝑘+𝑖, 𝒖𝑘+𝑖, 𝒙𝑘+𝑖+1)} (5.1)

where 𝛾 ∈ [0; 1) is the discount factor which ensures integrability of the infinite
sum.

The control policy, or the actor, 𝜋 ∶ 𝒳 → 𝒰 is a deterministic function which
selects action 𝒖𝑘 in state 𝒙𝑘. Exploration is achieved by adding random noise sam-
pled from some process 𝒩. When solving continuous control problems, it is conve-
nient to evaluate the quality of the policy by the action-value function𝑄𝜋 ∶ 𝒳×𝒰 →
ℝ, or critic. It describes the expected return after taking an action 𝒖𝑘 in state 𝒙𝑘 and
thereafter following policy 𝜋.

We use a particular realization of RL, the off-policy Deep Deterministic Policy
Gradient (DDPG) algorithm of Lillicrap et al. (2015) with DNN function approxima-
tion and compatible features, chosen for its ability to optimize continuous control
policies for high DoF systems. The value function and policy are parametrized by
the network weights denoted as 𝜽 c and 𝜽 a.

5.4 Proposed method

5.4.1 Notation
In this chapter, we work only with simulated models. Therefore, we create two
models called idealized and true. Ourmethodminimizes the gap between thesemod-
els by learning the difference model. Schematically, the proposed method is shown
in Figure 5.1.

The idealized model

𝑓 idl(𝒙𝑘, 𝒖𝑘) = 𝒙idl
𝑘+1

is a forward dynamics (usually first principles) model based on a certain idealized
configuration of the robot. We denote the policy trained on this model as 𝜋idl.

5 Sample-efficient reinforcement learning via difference models 65

Reward

Difference

System
𝒟(𝒙𝑘, 𝒖𝑘)

𝒙𝑘

𝑟𝑘

𝒖𝑘Agent

𝒙idl
𝑘+1

model

Figure 5.1: Proposed framework.

The true model

𝑓 true(𝒙𝑘, 𝒖𝑘) = 𝒙true
𝑘+1

is a forward dynamics model based on the real configuration of the robot. The
corresponding policy trained on this model is denoted as 𝜋true.

The difference model

𝒟(𝒙𝑘, 𝒖𝑘) = 𝒙true
𝑘+1 − 𝒙idl

𝑘+1 (5.2)

predicts the difference in the transition states given an initial state and action. The
policy trained using the difference model is denoted as 𝜋𝒟.

5.4.2 Algorithm
We beginwith the algorithm overview presented in Figure 5.2. The algorithm starts
by pre-training the initial policy 𝜋idl and the corresponding value function using the
idealized model of the robot. The policy behaves sub-optimally when applied to
the true model due to the reality gap. To eliminate the gap, we propose an iterative
approachwhich consists of three distinctive steps. In the first step, we collect a num-
ber of real samples through interaction with the truemodel and save them in buffer
𝔹. In the second step, we use the whole buffer to learn the difference model repre-
sented by the DNN. The difference model predicts the difference in states between
the idealized model and the true model. In the third step, DDPG is used to learn
a new policy 𝜋𝒟 with this difference model. The newly obtained policy is likely to
perform beĴer on the truemodel. However, if the initial reality gap is large, the new
policy may still not perform satisfactory. Thus, we iterate the process of updating
the difference model and the policy until a certain number of iterations is reached.
To keep the successive DDPG training time short, we bootstrap parameters of the
policy and the value function from the ones used in the previous iteration.

The complete algorithm is given inAlgorithm1. In line 5,𝑁 trajectories {𝜁𝑛}𝑁
𝑛=1

are collected by executing the obtained policy on the true model. Each trajectory
𝜁𝑛 = (𝒙𝑛

1 , 𝒖𝑛
1 , … , 𝒙𝑛

𝐾, 𝒖𝑛
𝐾, 𝒙𝑛

𝐾+1) records the sequence of states and actions for
some predefined time 𝑇 or until the system fails the task. While obtaining the trajec-
tories, a certain amount of random exploratory noise 𝒏 ∼ 𝒩 is added to the policy
to ensure a good exploration of the state space around the previously learned policy.
Obtained trajectories are saved into the buffer 𝔹 = {(𝒙true,𝑛

1∶𝐾 , 𝒖true,𝑛
1∶𝐾 , 𝒙true,𝑛

2∶𝐾+1)}𝑁
𝑛=1.

66 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

Run policy on the true model
to collect transitions

Update 𝒟(𝒙, 𝒖)

Learn policy 𝜋idl

Stop𝑖 ≤ 𝑁I

yes

Learn new policy 𝜋𝒟

Figure 5.2: Algorithm overview.

In lines 6 to 9, the {(𝒙true,𝑛
1∶𝐾 , 𝒖true,𝑛

1∶𝐾)}𝑁
𝑛=1 pairs are applied to the idealizedmodel

in order to calculate the difference (5.2). In line 10, supervised learning (Duchi et al.,
2011) is used for training the difference model 𝒟(𝒙𝑘, 𝒖𝑘). Finally, DDPG learns a
new policy in line 12.

5.4.3 Training data
The data used for training the difference model is obtained by running the previ-
ously obtained policy on the true model several times. Let this policy be denoted
by 𝜋(𝒙; 𝜽 a

𝑖−1). The action to be taken is calculated as

𝒖 = 𝜋(𝒙; 𝜽 a
𝑖−1) + 𝒏.

The particular advantage of using policy from the previous iteration is that it pro-
gressively matches the distribution of training transitions to those required for the
successful completion of the task. Since DDPG is used to learn a new policy af-
ter every update of the difference model, the replay buffer from the first update of
the policy is saved and used in every following update. This helps to reduce the
number of iterations required to find a good policy at each step and increases the
diversity of samples.

5.5 Experiment details

5.5.1 Inverted pendulum
Figure 5.3 shows the inverted pendulum of mass 𝑚 = 0.055 kg which rotates
around the fixed point 𝑂 located 𝑙 = 0.042m away from the center of mass of the
pendulum. The pendulum state 𝒙 = [𝜙, ̇𝜙]⊤ is composed of pendulum angle 𝜙
and angular velocity ̇𝜙. The control input 𝑢 ∈ [−3V, 3V] is the voltage applied to
the motor located at 𝑂. The voltage is bounded to prevent the pendulum from
performing a swing-up in one go. The pendulum is initialized in state 𝒙0 = [𝜋, 0]⊤,

5 Sample-efficient reinforcement learning via difference models 67

Algorithm 1 Proposed algorithm

1: Initialize training data buffer 𝔹 = {∅} and the difference model 𝒟(𝒙, 𝒖) = 0
2: Learn the 𝑄-function and the policy parametrized by 𝜽 c

0 and 𝜽 a
0 using DDPG

on the idealized model
3: for 𝑖 = 1, 𝑁I do
4: Initialize random process 𝒩
5: Execute policy 𝜋𝒟(𝒙; 𝜽 a

𝑖−1) + 𝒩 on the true model to obtain transitions
(𝒙true

𝑘 , 𝒖true
𝑘 , 𝒙true

𝑘+1)
6: for each (𝒙true

𝑘 , 𝒖true
𝑘) pair do

7: Calculate 𝒙idl
𝑘+1 = 𝑓 idl(𝒙true

𝑘 , 𝒖true
𝑘)

8: Add training data to the buffer
𝔹 ← 𝔹 ⋃ (𝒙true

𝑘 , 𝒖true
𝑘 , 𝒙true

𝑘+1 − 𝒙idl
𝑘+1)

9: end for
10: Update 𝒟(𝒙, 𝒖) using 𝔹
11: Initialize critic and actor networks with weights 𝜽 c

𝑖−1 and 𝜽 a
𝑖−1

12: Learn a new 𝑄-function and a policy parametrized by 𝜽 c
𝑖 and 𝜽 a

𝑖 where
𝒙𝑘+1 ← 𝒙idl

𝑘+1 + 𝒟(𝒙𝑘, 𝒖𝑘)
13: end for

and the agent has to learn to swing up the pendulum and balance it until the end
of the 20 s episode. The reward function is given by

𝑟 = −5𝜙2 − 0.1 ̇𝜙2 − 0.01𝑢2.

Sampling period is 𝑇𝑠 = 0.05s.
The true model has a higher pendulum mass shown in Table 5.1.

5.5.2 Bipedal walking robot Leo
Leo (Schuitema et al., 2010) is a 2Dbipedal robot developed by theDelft BioRobotics
Lab shown in Figure 5.4. The robot is aĴached to a boom which prevents it from
lateral falls. Leo is modeled using Rigid Body Dynamics Library (RBDL) (Felis,
2017b) with the boom mass added to the torso.

Leo has 7 actuators, two for each hip, knee, and ankle, and the last one for the
shoulder. All joints and the torso-to-boom connection are equipped with encoders
which provide real-time measurements. The learning state space of Leo comprises
of 18 dimensions which consist of the angles 𝜙 and the angular velocities ̇𝜙 of all
but shoulder joints, and the torso linear positions and velocities. The action space
of Leo consist of voltages applied to each actuator except the shoulder which is
actuated using a proportional-derivative (PD) controller.

The reward function awards the agent 300m−1 for everymeter of forwardmove-
ment of the robot. The agent is penalized by a−1.5 additional reward for every time
step and by a −2 J−1 reward for every Joule of electrical work done. Premature ter-
mination of the 20 s episode due to a fall is punished by the negative reward of −75.
Sampling period is 𝑇𝑠 = 0.03s.

68 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

𝜙

𝑚

𝑙
𝑂

Figure 5.3: Inverted pendulum. Figure 5.4: Leo: the model and the real robot.

The true Leomodel has higher torsomass and viscous friction added to all actua-
tors. These differences affect the performance of the idealized policy when applied
to the true model, occasionally leading to oscillations and eventual fall of the robot.
The change in parameters is shown in Table 5.1.

5.5.3 Training data and parameters
All parameters are kept the same for both systems. The DDPG critic and actor net-
works consist of 2 hidden layers with 300 and 400 neurons, respectively. Learning
rates of 0.001 and 0.0001 are chosen for the critic and the actor. Additional parame-
ters include a target network update rate of 0.001 and the discount rate 𝛾 = 0.99. Ex-
ploration is achieved by Ornstein-Uhlenbeck (OU) noise with parameters 𝜎 = 0.12
and 𝜃 = 0.15 used during warm-start learning and learning with the difference
model. For cold-start learning noise parameters are slightly higher.

The difference model consists of 3 hidden layers with 400 neurons in each layer.
The activation function for each of the hidden layers is ReLUwhile the output layer
has a linear activation function. To reduce over-fiĴing to the training data, we use
dropout (Srivastava et al., 2014) with probability 0.3. Dropout is only applied to the
hidden layers and is the same for all layers. Before each model update, 3750 data-
points are collected by running the previously obtained policy on the true model
which are saved to a buffer that has not limits on size. We train the network using
AdaGrad (Duchi et al., 2011) which is a variant of stochastic gradient descent. The
advantage of using AdaGrad over normal stochastic gradient is the ability to adapt
the learning rates based on the training data. This implies that the initial learning
rate does not have much impact on the performance of the algorithm.

5.5.4 Evaluation measures
For quantitative assessment, we evaluate performance of the proposed method in
terms of the undiscounted return (5.1). Additionally, for the Leo robot we evaluate
the walked distance 𝑆 and the motor work 𝐸 normalized to the walked distance
given by

𝐸 = 𝑇𝑠
𝑆

𝑛𝑢

∑
𝑗=1

𝑈𝑗
𝑈𝑗 − 𝐾𝜏 ̇𝜙𝑗

𝑅

5 Sample-efficient reinforcement learning via difference models 69

Table 5.1: Difference in physical parameters between idealized and true model.

Parameter Idealized model True model

Inverted pendulum
Pendulum mass 𝑚 (kg) 0.055 0.090

Robot Leo
Torso mass (kg) 0.942 1.250
Viscous friction coefficient (Nsm−2) 0.000 0.030

where 𝑈𝑗 is the voltage applied to the motor 𝑗, 𝐾𝜏 is the motor’s torque constant,
and 𝑅 is the winding resistance.

We evaluate the quality of the differencemodel by calculating themean squared
error (MSE) between the transitions obtained on the true model and the idealized
model enhanced by the difference model

1
|𝔹|

|𝔹|
∑
𝑘=1

∥𝑓 true(𝒙𝑘, 𝒖𝑘) − (𝑓 idl(𝒙𝑘, 𝒖𝑘) + 𝒟(𝒙𝑘, 𝒖𝑘))∥2
2 .

For qualitative assessment, we also show system trajectories obtained by each
method.

5.6 Results

5.6.1 Inverted pendulum
Figures 5.5 and 5.6 show the return and final trajectories obtained by the policies
evaluated on the true model. Policy trained on the idealized model is not capable
of balancing the pendulum and therefore obtains the lowest return of −15508. On
the contrary, the proposed method of learning the difference model can cross the
reality gap. After one model update, the policy reaches the return of −660.0 which
is similar to the one obtained by the policy 𝜋true trained on the true model. This
number of updates corresponds to 3.125min of interaction with the true model.
The cold-started method requires around 75min to converge.

Comparing the final state and control trajectories in Figure 5.6, we notice the
similarity between policies 𝜋true and 𝜋𝒟. Although policies are not exactly same,
the difference model captures the mismatch which is crucial for the successful pen-
dulum balancing.

Table 5.2 compares results of learning on the true model obtained by DDPG
learning from scratch (cold start), initializing the value function and the policy by
learning on the idealized model (warm start) and by the proposed method. Given
the budget of 15000 true model samples, the proposed method obtains the high-
est return. Alternatively, it requires 6 times fewer samples than the warm-started
learning to reach the target return of −1000.0.

Finally, we evaluate the quality of the difference model by calculating MSE. Re-

70 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

0 1 2 3 4
Diference model updates

−15000

−10000

−5000

0

5000

Re
tu
rn
,𝐺

1

Policy 𝜋true Policy 𝜋𝒟 Policy 𝜋idl

Figure 5.5: Comparison of results by evaluating the performance of different policies on the true model
for the inverted pendulum. The results with the difference model are averaged over 5 runs and ploĴed
with 95% confidence interval.

Table 5.2: Pendulum sample complexity and performance comparison for the proposed method versus
cold and warm starts.

Method Sample budget Return, 𝐺1

Fixed budget
Cold start 15000 −20507.6 ± 2801.9
Warm start 15000 −14087.2 ± 235.6
Difference model 15000 −657.2 ± 22.9

Fixed return
Cold start 82164 ± 7498 −1000.0
Warm start 23383 ± 2357 −1000.0
Difference model 3750 −1000.0

sults in Table 5.3 show that the error between the true and the idealized model
enhanced by the difference model is negligible compared to the case when the dif-
ference model is not used.

5.6.2 Robot Leo
The results of learning the policy with the difference model are presented in Fig-
ure 5.7. Here all policies are evaluated on the true model. Initial updates of the
difference model show a high standard error, which is reduced in later updates.
After 7 updates, the proposed method reaches the mean return of 2297.46 which is
within 10% of the return obtained by learning directly from the true model. This
number of updates corresponds to about 13min of interaction with the true system,
while the cold-started method requires 200min to converge.

5 Sample-efficient reinforcement learning via difference models 71

0
3
6

𝜙(
ra
d)

−30
0

30

̇ 𝜙(
ra
d
s−

1)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (s)

−3
0
3

𝑢(
V

)
Policy 𝜋true Policy 𝜋𝒟 Policy 𝜋idl

Figure 5.6: State trajectories and control input for policies learned on different models and evaluated on
the true model.

Table 5.3: MSE without the difference model and with the difference model.

System Without the
model

With the model Decrease (%)

Inverted pendulum 5.9276 0.0118 99.80
Robot Leo 1.3734 0.8064 41.28

The corresponding final performance of policies evaluated on the true model
is shown in Table 5.4. In both benchmarks, the policy trained on the idealized
model performs the worst. Enhancing the idealized model by learning the dif-
ference model improves the performance. In particular, this policy in the mean
provides 38.3% improvement in the walked distance (see Figure 5.8) and 4.8% re-
duction in the energy consumption compared to the policy 𝜋idl.

Figure 5.9 shows gait examples the robot learns with the policies. Visually, all
trajectories display some irregularity of the walking cycle. As expected, the 𝜋idl

policy performs worst, and its gait exhibits small step sizes and a tendency to lift
the swing knee very high. This results in a slowwalking gait. The difference model
improves the idealized model. Therefore, the 𝜋𝒟 policy leads to a higher walking
speed due to the reduction of the swing knee lifts.

Table 5.5 compares results of learning on the truemodel from scratch (cold start),
initializing the value function and the policy by learning on the idealized model
(warm start) and by the proposed method. Compared to the inverted pendulum,
we increase the samples budget to 33750 truemodel samples. The proposedmethod
obtains the highest return. Alternatively, it requires about 5 times fewer samples

72 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

0 1 2 3 4 5 6 7 8 9
Diference model updates

500

1000

1500

2000

2500

3000

Re
tu
rn
,𝐺

1

Policy 𝜋true Policy 𝜋𝒟 Policy 𝜋idl

Figure 5.7: Comparison of results by evaluating the performance of different policies on the true model
for Leo. The results with the differencemodel are averaged over 5 runs and ploĴedwith 95% confidence
interval.

Table 5.4: The comparison of different policies performance evaluated on the true model.

Policy Distance walked, S (m) Motor work, E (Jm−1)

𝜋idl (idealized) 9.2 ± 2.4 111.4 ± 11.1
𝜋𝒟 (difference) 14.9 ± 0.5 106.0 ± 3.8
𝜋true (true) 14.8 ± 0.5 98.2 ± 6.7

than the warm-started learning to reach the target return of 2300. Compared to
the cold-started learning, the proposed method requires 20 times fewer samples to
reach the target.

The quality of the learned difference model is evaluated in Table 5.3. It can be
seen that with the difference model MSE decreases by 41.28% which is less com-
pared to the inverted pendulum.

5.7 Discussion
The presented results demonstrate that learning the difference model for the in-
verted pendulum is easier than for Leo. This is an expected result because the di-
mensionality of the pendulum is much lower, and there are no discontinuities in
trajectories. For the pendulum, a single model update is enough to generalize well
in the unseen parts of the state space. However, for Leo, this is not the case. The
mismatch between the true and idealized models affects the whole state space of
the robot, and we need more than one model update to compensate for it. The very
high standard error for the initial updates of the difference model is due to the occa-
sional failures of 𝜋𝒟 on the true model. A possible reason for this could be that the
𝜋𝒟 policy explores regions of the state space where the difference model is not yet

5 Sample-efficient reinforcement learning via difference models 73

Figure 5.8: This figure illustrates the performance of 𝜋idl (yellow), 𝜋𝒟 (green), and 𝜋true (blue) on the true
model. The policy learned with the difference model achieves almost the same walking distance while
only requiring 6.5% of interaction time compared to the cold-started method. Also see supplementary
video.

−0.12
−0.06
0.00 Policy 𝜋idl

−0.12
−0.06
0.00

To
rs
o
he
ig
ht

(m
)

Policy 𝜋𝒟

0 2 4 6 8 10 12 14 16−0.12
−0.06
0.00 Policy 𝜋true

Distance walked, 𝑆 (m)

Figure 5.9: Torso trajectory for policies 𝜋true, 𝜋idl and 𝜋𝒟 evaluated on the true model. Each walking
trial lasts for 20 s.

accurate enough. This can happen because there are no constraints on the policy
update, and the policy is free to divert into the regions of the state space where liĴle
or no data is available.

To further investigate the reason for the failure, we show in Figure 5.10a the
distributions of states with the policy evaluated on the difference model and the
true model. Initially, these distributions are entirely different, which implies that
the difference model makes errors in predictions. Therefore, when the same policy
is applied to the true model, the policy diverts into regions with liĴle training data
available, see hip trajectories in Figure 5.10a. The problem is further aggravated by
the fact that the torso is heavier than the legs. This reduces the stability region for
the robot and implies that there is a very small difference between successful and
unsuccessful policies. However, the difference model gets more accurate with the
number of updates, as new samples are collected in previously unexplored regions.

74 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

Table 5.5: Leo sample complexity and performance comparison for the proposed method versus cold
and warm starts.

Method Sample budget Return, 𝐺1

Fixed budget
Cold start 33750 −42.9 ± 12.1
Warm start 33750 1782.1 ± 247.4
Difference model 33750 2434.1 ± 111.1

Fixed return
Cold start 309766 ± 35282 2300.0
Warm start 84326 ± 6287 2300.0
Difference model 15750 ± 7648 2300.0

The correctedmodel predictions reduce the probability of the learned policy failing
on the truemodel, thus reducing the standard error of the return. This hypothesis is
supported by Figure 5.10b, where the distribution of data for the difference model
and the true model is roughly the same. The resulting hip trajectories are slightly
misaligned in timewhich implies that thewalking speed is different, but the overall
paĴern looks similar.

Ideally, the difference model should eliminate the error between the 𝒙true and
𝒙idl + 𝒟(𝒙𝑘, 𝒖𝑘). Experiments with the inverted pendulum demonstrate that it
is possible to greatly reduce MSE. The remaining inaccuracies are due to function
approximations and regularization. In Leo, these inaccuracies are aggravated by
the larger state-action space and discontinuities.

Finally, we note that learning with the difference model allows to reduce ex-
ploration noise on the true model compared to the cold-start learning. This is an
important property for learning on real robots as lower noise can potentially reduce
system damage.

5.8 Conclusion

In this chapter, we develop amethod of reducing the sample complexity of learning
on a real robot by iterative updates of the difference model. We compare the per-
formance of our method with cold-started and warm-started learning on two sim-
ulated platforms: 1-DoF inverted pendulum and 7-DoF robot Leo. The proposed
method achieves significantly higher returns given the same exploration budget on
the true model, or it achieves the same return but with a much smaller number of
true model samples.

Sample diversity is a known boĴleneck of neural networks, which also holds
true for learning the difference model. However, our method is successful due to
the fact that the difference model needs to be accurate only in the region of the state
space which is essential for walking.

5 Sample-efficient reinforcement learning via difference models 75

−2 −1 0 1 2 3 4
𝜙 l,hip (rad)

0.00
0.25
0.50
0.75
1.00

Pr
ob

ab
ili
ty

0 1 2 3 4 5
Time (s)

−1
0
1
2
3

𝜙 l
,h
ip

(ra
d)

(a) Update 1

−2 −1 0 1 2 3 4
𝜙 l,hip (rad)

0.00
0.25
0.50
0.75
1.00

Pr
ob

ab
ili
ty

0 1 2 3 4 5
Time(s)

−1
0
1
2
3

𝜙 l
,h
ip

(ra
d)

Policy 𝜋𝒟 @ true model
Policy 𝜋𝒟 @ difference model

(b) Update 9

Figure 5.10: Distributions of left hip angles after (a) the first and (b) the last update of the difference
model is shown in top plots. Note that policy 𝜋𝒟 is evaluated on the true model (blue) and on the
idealized model enhanced by the difference model (red). Histogram height is scaled to fit the ordinate
limit. (boĴom) Trajectories of the left hip.

The proposedmethod is generic and can be utilized for a wide variety of robotic
systems. A next possible step is to learn the difference model on the real robot Leo.

6
Multitask reinforcement learning

for safer acquisition of
locomotion skills

Inspired by nature, this chapter revisits the reduction of robot falls in the case when the
approximate model of Leo is not available, thereby providing the answer to research ques-
tion 3. The chapter begins by drawing aĴention to the records of children learning to walk
and clinical rehabilitation studies, which indicate that people tend to learn balancing be-
fore walking. Applied to robots, this suggests that the particular arrangement of learning
tasks can reduce the number of falls compared to the cases when the final task is learned
directly. This hypothesis is verified in a set of experiments performed on four robot mod-
els and two dynamic simulators. Provided analysis reveals that (1) learning the balancing
task is quicker and safer than learning the walking task, and (2) the acquired balancing skill
averts unsafe exploration actions during the walking task. For the model of the real robot
Leo, scheduling several tasks results in a 31.8 % reduction in falls compared to the direct
learning. Apart from learning the control policy, the proposed curriculum learning strategy
can also learn the model of Leo. This model can be combined with the approaches presented
in Chapters 4 and 5 to further reduce the risks of hardware damage.

Prepared for journal submission

78 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

6.1 Introduction
Motivation. The fundamental goal of reinforcement learning (RL) in the field of
robotics is an algorithm that learns to perform a wide range of tasks with the least
human involvement. The acquisition of a new skill that solves a task should be
reasonably quick, safe for the robot and people, and the learned skill should be
robust to perturbations and environmental uncertainties. Modern RL algorithms
require more than 105 samples for their convergence (Duan et al., 2016), and the
number increases with system complexity. Therefore, ensuring safety during such
a long learning time is the highest priority when one is interested in model-free
learning on real robots.

By safety, we mean the prevention of actions that cause damage to the robot.
Ensuring safety is particularly important for legged robots, for which possibly un-
stable locomotion phases can lead to severe damage due to unexpected robot falls.
The falls result in impact forces applied to the limbs and gearboxes, and some robots
cannot withstand even a single fall. In RL, to prevent the robots from falling, it is
common to punish contacts of the robot body parts other than feet with the ground
by means of negative rewards. However, to learn recognizing such situations, they
need to be repeated multiple times in different robot configurations. Moreover, in
the real world, it is hard to predict the damage severity of the falling robot because
it largely depends on the structure of the environment. Random exploration exacer-
bates the problem and can lead to a very large number of falls. Therefore, reducing
robot falls is an important objective.

To reduce the number of robot falls during learning, we draw inspiration from
infants learning towalk andpost-stroke individualswho re-establish their impaired
locomotion skills. In the following, we review RL approaches towards safer learn-
ing, curriculum learning in the context of RL, and the neuromechanical studies of
infants and post-stroke individuals.

Reinforcement learning approaches towards safer learning. A small number
of approaches consider damage reduction during model-free learning. Existing
techniques include modification of state or action value functions (Mihatsch and
Neuneier, 2002; Shen et al., 2014), or the modification of the exploration process
based on some risk measure (Gehring and Precup, 2013; Meijdam et al., 2013;
Koryakovskiy et al., 2017). Unfortunately, these approaches are usually sensitive
to hyperparameters and may have undesirable effects such as the distortion of a
long-term utility and overly pessimistic policies (Garcia and Fernandez, 2015). To
avoid such modifications, Schuitema (2012) proposed to identify dangerous states
based on reward values and learn two value functions with different resolutions.
This approach requires tuning the parameters of the function approximators and
the proper selection of the reward threshold.

Curriculum learning for control. Table 6.1 summarizes applications of curricu-
lum learning to control problems in artificial intelligence. Each approach either
improves the learning performance in terms of a learning speed or a quality of the

6 Multitask reinforcement learning for safer acquisition of locomotion skills 79

Table 6.1: The summary of the control-related curriculum learning variations found in literature. We
denote everything not related to the actuated system embodiment as environment.

Category Reference articles

Changes in the starting or
goal distributions

Improve learning: Andrychowicz et al. (2017),
Asada et al. (1996), Zaremba and Sutskever (2015)

Changes in the
environment

Improve learning: Yin et al. (2008), Wu and Tian (2017),
Sukhbaatar et al. (2015), Heess et al. (2017)
Improve robustness: Tesauro (1995), Silver et al. (2017),
Bansal et al. (2017),

Changes of tasks
(reward functions)

Improve learning: Karpathy and van de Panne (2012),
Tessler et al. (2017)

final policy, or improves the policy robustness in terms of their ability to counteract
stronger opponents or external perturbations.

Improve learning. The ability to learn from sparse or binary rewards is an aĴrac-
tive property of RL because it allows avoiding reward engineering efforts. Curricu-
lum learning was found useful in such situations. Asada et al. (1996) suggested a
method called Learning from EasyMissions that reduced the learning time from ex-
ponential to almost linear order in the size of the state space. The authors divided
the task of shooting a ball into the gates from an arbitrary position into subtasks de-
pending on the distance to the goal. The robot was trained to shoot the ball from the
closest positions first, and the transition to further positions was made according
to some human-selected performance threshold. A similar approach was recently
applied to robotic manipulator tasks (Andrychowicz et al., 2017). Experimental re-
sults demonstrated the acquisition of complicated control policies in a simulator
and the successful policy transfer to a physical robot. First-person shooter games
are another example of environments with sparse rewards, for whichWu and Tian
(2017) developed a state-of-the-art learning framework.

Tasks that usually require non-sparse rewardsmay also benefit from curriculum
learning. Yin et al. (2008) and Heess et al. (2017) demonstrated quicker learning of
sophisticated locomotion skills by gradually increasing the terrain difficulty. At
first, agents solved a basic locomotion task on flat terrains or terrains with easy ob-
stacles such as low hurdles, stairs or short gaps in the ground. Once agents learned
a feasible gait, they proceeded to more difficult terrains with very tall hurdles and
stairs or very long gaps.

Finally, life-long learning benefits from curriculum learning of multiple related
skills. Karpathy and van de Panne (2012) tuned the parameters of several separate
skills which they progressivelymerged at later stages. Similarly, Tessler et al. (2017)
developed a framework that solved composite tasks after learning to solve relatively
simple sub-tasks.

Improve robustness. While in the referenced articles the curriculum is hand-

80 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

crafted¹, self-play provides an automatic and natural way of increasing environ-
ment difficulty (Tesauro, 1995). In the self-play seĴing, one realization of RL
competes with another realization of a similar level. In the discrete domain, Silver
et al. (2017) trained a Go player that achieved performance beyond human capabil-
ities. In the continuous domains, Bansal et al. (2017) demonstrated learning robust
control policies in very simple environments.

The proposed hypothesis in relation to the curriculum learning literature. Wehypothe-
size that there is another benefit of curriculum learning – namely that it can increase
the safety of learning by reducing the number of robot falls. Before explaining the
proposed approach and contributions, we briefly overview the literature related to
the locomotion development of infants and post-stroke individuals.

Neuromechanical studies of infants and post-stroke individuals. People start
learning locomotion skills from the early days of their lives and aĴain desired skills
after a considerable amount of practice. A remarkable feature of locomotor devel-
opment is that walking is not practiced immediately but is learned by changing
tasks and gradually increasing their difficulty (Adolph and Robinson, 2013). Long
before infants canwalk, they spontaneously alternate legs in a cycling paĴernwhen
lying on their backs or held in mid-air. Later, infants practice rhythmic crawling in
a wide variety of forms as well as upright supported standing, which is later ex-
changed for upright locomotion forms such as walking on knees, or walking with
the support of furniture, or their parents. Finally, from the age of 8 to 17 months
infants start to enjoy walking on their own (Berger et al., 2007). However, there is
no universal development paĴern because in infants some stages can precede the
others (Adolph et al., 2011). Nevertheless, individual stages are important because
they focus on different aspects of walking (Adolph and Robinson, 2013). For exam-
ple, crawling builds up leg and armmuscles. Upright walking with support begins
withmuchweight applied to the arms. Later, improved body balance allows infants
to face forward and use only one hand for their support. Interestingly, parenting
that involves practices like massaging, siĴing and standing, bouncing, and gravity
resisting sling carrying reduce the time until infants can do their first steps. Some
infants can even skip the crawling stage due to these nursing activities (Hopkins
and Westra, 1990).

Similar but more methodical approaches are used for rehabilitation of individu-
als post-stroke with the goal of reducing recovery time (Veerbeek et al., 2014). Com-
monly practiced tasks during rehabilitation include siĴing balance combined with
reaching tasks, standing up and siĴing down, standing balance, and walking. A
physical therapist decides proper recovery strategies for patients, monitors their
performance, and adjusts the strategies so that the difficulty of tasks increases with
patients’ progress (Winstein and Kay, 2015). From the literature, it is difficult to
give a definite answer to the question of whether one task influences the success
rate of the other tasks. For example, the siĴing or standing balance tasks are prac-
ticed so that the patient can independently perform daily activities such as eating,
reaching and dressing, and it is not known if they reduce thewalking recovery time.

¹ Andrychowicz et al. (2017) work is a noticeable exception.

6 Multitask reinforcement learning for safer acquisition of locomotion skills 81

Nevertheless, we hypothesize that from the patients’ safety perspective learning to
balance before learning to walk is less detrimental than learning to walk immedi-
ately.

Proposed experiments and contribution. To validate the proposed hypothesis,
we conduct a set of locomotion learning experiments on four physical systems us-
ing Rigid Body Dynamics Library (RBDL) (Felis, 2017b) and OpenAI Roboschool
simulator². For all systems, falls are recognized by the torso angle or center of mass
exceeding some thresholds, or by the contacts of the body parts other than feet with
the ground. Figure 6.1 shows the experiments conducted. Although the connection
between the balancing and walking skills was discovered earlier in the research of
passive dynamic walkers (Mochon and McMahon, 1980; Wisse, 2004), is not obvi-
ous that learning to balance should help to learn walking. One possible pitfall can
be that thewell-trained balancing policywill avoid actions that imbalance the robot,
thereby obstructing the walking controller from learning.

Our contribution is twofold. First, using a manually-defined number of time
steps for each task, we investigate if 2-task and 3-task curricula reduce the num-
ber of falls while keeping the policy performance similar to a direct learning. The
upper-body balancing task in the 3-task curriculum is motivated by its relevance to
post-stroke gait recovery (Veerbeek et al., 2011). For practical purposes, switching
at a manually defined number of time steps may lack generality, e.g. the policy
can perform worse when this strategy is applied to a real robot. Therefore, our sec-
ond contribution is the comparison of the time-based switching strategy to another
two strategies that switch the tasks automatically. One of the strategies uses a suc-
cess rate of balancing to determine the task-switching moment. Another strategy
incorporates two more performance indicators and uses trained recurrent neural
network (RNN) to recognize the next task to practice.

6.2 Background

6.2.1 Reinforcement learning
The goal of a RL agent is to find a control policy 𝜋 which maximizes the expected
discounted return,

𝐺𝛾
𝑘 = 𝔼 {

∞
∑
𝑖=0

𝛾𝑖𝑟(𝒙𝑘+𝑖, 𝒖𝑘+𝑖, 𝒙𝑘+𝑖+1)} , (6.1)

where 𝑘 is a discrete time step, 𝒙𝑘 ∈ ℝ𝑛𝑥 is a continuous 𝑛𝑥-dimensional state
of the system, 𝒖𝑘 ∈ ℝ𝑛𝑢 is a continuous 𝑛𝑢-dimensional control action and
𝑟(𝒙𝑘, 𝒖𝑘, 𝒙𝑘+1) is a scalar reward the agent receives upon transition. The discount
factor 𝛾 ∈ [0, 1) conveys the increasing uncertainty about the future (SuĴon and
Barto, 1998). Walking and balancing are continuing tasks for which 𝛾 < 1 ensures
the integrability of the infinite sum.

² https://github.com/openai/roboschool

https://github.com/openai/roboschool

82 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

Locomotion

Locomotion

balancingbalancing
Whole-bodyUpper-body

Locomotion rewardBalancing reward

Locomotion modelModel with very high
lower body inertia

Locomotion
balancing

Whole-body

Direct learning

2-task curriculum

3-task curriculum

Switching strategies Options

- direct

TIM, BAL, RNN

TIM, BAL, RNN

ѝѣ, џя, џџ,
ѝѣ⋅џя, ѝѣ⋅џџ

ѝѣ, џя, џџ,
ѝѣ⋅џя, ѝѣ⋅џџ

Figure 6.1: Illustration of locomotion learning experiments with direct learning, the 2-task curriculum
that learnswhole-body balancing first and then locomotion, and the 3-task curriculum that learns upper-
body balancing, then whole-body balancing and only then it learns locomotion. Curriculum switching
strategies include (1) the time-step-based switching strategy, TIM, (2) the successful-balancing-based
switching strategy, BAL, and (3) the recurrent-neural-network-based switching strategy, RNN. Corre-
sponding options applied at the switching moments are listed on the right-hand side of the figure and
explained later in the article.

We consider learning the deterministic control policy 𝒖 = 𝜋(𝒙). The value func-
tion 𝑄𝜋(𝒙, 𝒖) of the policy 𝜋 denotes the expected return after taking action 𝒖 in
state 𝒙 and then following 𝜋. The optimal control policy 𝜋∗ maximizes the value
function for each state. Therefore, the optimization of the control policy is tightly
coupled with the maximization of the value function.

The Bellman equation defines a recursive relation between the value function
at the current time step and the value function at the next time step (SuĴon et al.,
2011),

𝑄𝜋(𝒙𝑘, 𝒖𝑘) = 𝔼{𝑟(𝒙𝑘, 𝒖𝑘, 𝒙𝑘+1) + 𝛾𝑄𝜋(𝒙𝑘+1, 𝜋(𝒙𝑘+1))}. (6.2)

For real-world systems, continuous control is usually preferred. This requires a
parametrization of the policy 𝜋(𝒙; 𝜽 a) using neural networks or a set of basis func-
tions, and associated weights 𝜽 a. The weights are usually optimized by gradient
descent methods (Williams, 1992; Bhatnagar et al., 2009; Grondman et al., 2012), or
by global gradient-free methods (Hansen and Ostermeier, 2001; Botev et al., 2013).
Because the estimation of policy gradients results in a high variance, the policy up-
date is often coupled with an explicit estimation of the state-action value function
𝑄𝜋(𝒙, 𝒖; 𝜽 c) parametrized by its own set of parameters 𝜽 c. This combination is
known as the actor-critic method, where the policy is referred to as the actor, and
the value function is referred to as the critic.

6.2.2 Model-free deep reinforcement learning
Linear-in-parameters approximators of complex control policies and correspond-
ing value functions, e.g. tile-coding (SuĴon and Barto, 1998), require millions of
parameters. A deep neural network (DNN), which is a global nonlinear function
approximator, is used in this work to parametrize the control policy and the value
function. It allows to significantly reduce the number of parameters but poses train-
ing difficulties such as value function divergence, the inherent difference of physi-

6 Multitask reinforcement learning for safer acquisition of locomotion skills 83

cal units in the state vector, correlated data and non-stationary distributions. In the
DeepDeterministic Policy Gradient (DDPG) algorithm (Lillicrap et al., 2015), which
we use in this thesis, these problems are solved by soft updates of the critic and ac-
tor network copies called target networks, batch normalization (Ioffe and Szegedy,
2015) and experience replay (Lin, 1993).

Every time step, a minibatch of 𝑁 transitions is sampled from the experience
replay buffer 𝔹. Then DDPG calculates the predictions of the value function 𝑞𝑛 for
each minibatch transition 𝑛 using the right-hand side of the Bellman equation (6.2),

𝑞𝑛 = 𝑟𝑛+1 + 𝛾�̂�(𝒙𝑛+1, ̂𝜋(𝒙𝑛+1; ̂𝜽 a); ̂𝜽 c), (6.3)

where target networks �̂� and ̂𝜋 are parametrized by their own parameters ̂𝜽 c and
̂𝜽 a. The𝑄-value function is then updated via stochastic gradient descent on the loss

function,
𝑁

∑
𝑛

(𝑞𝑛 − 𝑄(𝒙𝑛, 𝒖𝑛; 𝜽 c))2 + ‖𝜽 c‖2
𝐖 , (6.4)

where ‖𝜽 c‖𝐖 is the ℓ2 critic regularization term with positive definite weighting
matrix 𝐖. Next, the policy 𝜋 is updated using the sampled policy gradient (Silver
et al., 2014),

∇𝜽 a𝐺 = 1
𝑁

𝑁
∑

𝑛
∇𝒖𝑄(𝒙, 𝒖; 𝜽 c)|𝒙=𝒙𝑛,𝒖=𝜋(𝒙𝑛)∇𝜽 a𝜋(𝒙; 𝜽 a)|𝒙=𝒙𝑛

.

Finally, the target network parameters are updated by the target network update
weight 𝜆 ≪ 1,

̂𝜽 c ← 𝜆𝜽 c + (1 − 𝜆) ̂𝜽 c, ̂𝜽 a ← 𝜆𝜽 a + (1 − 𝜆) ̂𝜽 a.

Algorithm 2 shows the DDPG loop. The termination indicator ℐ initialized in
line 3 identifies the moment when the learning loop is terminated. In the original
version of DDPG, the indicator is simply the difference between the current time
step and the number of time steps until termination. Other indicators are proposed
in the next section. For the rest of the article, it is important to notice that in line 5 all
encountered experience is stored in the experience replay buffer 𝔹, while policies
and value functions are updated using the minibatches of experience. The network
parameters and the replay buffer are returned in line 8.

6.3 Proposed method

6.3.1 Curriculum learning
Even though the ultimate goal for the learning agent is to acquire the locomotion
skill, we propose to learn the skill by sequencing several tasks. Algorithm 3 shows
the proposed curriculum learning setup. In the beginning, we provide boolean
variables ѝѣ, џя, and џџ that specify the task-to-task transfer options.

84 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

Algorithm 2 Deep Deterministic Policy Gradient loop

1: function DDPG(̂𝜽 c, ̂𝜽 a, 𝜽 c, 𝜽 a, 𝔹, 𝜏)
2: Setup environment according to task 𝜏
3: Initialize termination indicator ℐ = 0
4: while ℐ ≤ 0 do
5: Execute a single DDPG step // Update the replay buffer and

network parameters
6: Update indicator ℐ
7: end while
8: return ̂𝜽 c, ̂𝜽 a, 𝜽 c, 𝜽 a, 𝔹
9: end function

• ѝѣ denotes the transfer of the policy and value function parameters, ̂𝜽 c, ̂𝜽 a,
𝜽 c, 𝜽 a.

• џя denotes the transfer of the replay buffer 𝔹.
• џџ denotes the transfer of the replay buffer with samples reevaluated accord-

ing to the current task 𝜏𝑖.

Options ѝѣ and џя/џџ can be jointly and independently applied to each task. The
combination of several options is denoted by the ⋅ symbol. In the case of the 3-task
curriculum, two independent sets of options are provided; andnotation+ separates
them in the text.

In line 4, the algorithm picks the task 𝜏𝑖 from the enumerated list of tasks 𝕋. De-
pending on the executed curriculum, starting task is either the upper-body balanc-
ing or the whole-body balancing, see Figure 6.1. The difference in the task rewards,
if available, is obtained in line 5. Option џџ assumes that we know the difference
between the rewards of tasks 𝜏𝑖−1 and 𝜏𝑖, which is not available in the model-free
learning. In the experiments, we study both possible situations – when the differ-
ence is available and when it is not.

Note that keeping samples in the replay buffer without reevaluation does not
pose a serious problem to DDPG. According to equation (6.3), old predictions 𝑞𝑛
for the new task are wrong. However, the value function update in (6.4) is based
on the minibatch of samples. The proportion of wrong samples in the minibatch
diminishes with more correct samples added. Therefore, the џя option provides a
smooth transition of gradient from the previous task to the new one.

After applying the provided options, we execute DDPG on the picked task 𝜏𝑖.
The DDPG algorithmmonitors indicator ℐ to decide when to terminate the current
task. The switching moment is determined by the curriculum.

• TIM denotes the strategy that forces DDPG to return based on the number of
manually defined time steps.

• BAL denotes the strategy that monitors the number of successfully accom-
plished balancing episodes and forces DDPG to return when a predefined

6 Multitask reinforcement learning for safer acquisition of locomotion skills 85

Algorithm 3 Curriculum learning
Input: Boolean variables ѝѣ, џя, џџ
1: Initialize a collection of tasks 𝕋
2: Initialize experience replay buffer 𝔹 = {∅}
3: for 𝑖 = 1, 𝑁I do
4: Pick a task 𝜏𝑖 ∈ 𝕋 according to some curriculum
5: If available, pick the difference Δ𝑟𝑖 of tasks 𝜏𝑖 and 𝜏𝑖−1 rewards
6: if not ѝѣ or 𝑖 = 1 then
7: Initialize critic and actor weights 𝜽 c and 𝜽 a randomly
8: Initialize target weights ̂𝜽 c ← 𝜽 c and ̂𝜽 a ← 𝜽 a

9: end if
10: if џџ then
11: �̃� = {∅}
12: for each (𝒙𝑛, 𝒖𝑛, 𝑟𝑛+1, 𝒙𝑛+1) ∈ 𝔹 do
13: 𝑟𝑛+1 ← 𝑟𝑛+1 + Δ𝑟𝑖(𝒙𝑛, 𝒖𝑛, 𝒙𝑛+1)
14: Store transition �̃� ← �̃� ∪ (𝒙𝑛, 𝒖𝑛, 𝑟𝑛+1, 𝒙𝑛+1)
15: end for
16: 𝔹 ← �̃�
17: else if not џя then
18: Initialize experience replay buffer 𝔹 = {∅}
19: end if
20: Call DDPG(̂𝜽 c, ̂𝜽 a, 𝜽 c, 𝜽 a, 𝔹, 𝜏𝑖) from Algorithm 2

Collect new parameters ̂𝜽 c, ̂𝜽 a, 𝜽 c, 𝜽 a, and the replay buffer 𝔹
21: end for

number is reached. BAL1 denotes a single successful episode, while BAL2,
BAL5 and BAL10 denote two, five and ten successful episodes, respectively.

• RNN denotes the strategy that monitors several performance indicators
and forces DDPG to return when a new task has been proposed by the
task-switching RNN.

Performance indicators are evaluated every testing episode during which no explo-
ration noise is applied to the policy. After the task switching, the next predefined
task is picked by the curriculum, except for the RNN strategy which executes the
task proposed by RNN.

6.3.2 Supervised learning of the task-switching network
Dataset collection
A naive approach to dataset collection could be to randomly sample durations of
each task 𝜏 , perform a single TIM learning run, and collect the number of falls in-
curred by each run. Finally, runs with the number of falls smaller than some per-
centile could be added to the dataset. However, this approach quickly becomes
inefficient with more tasks in the curriculum, because optimal task durations are

86 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

unlikely to appear during the random sampling. Therefore, we employ a combina-
torial rare event optimization method known as a Cross-Entropy (CE) method (Ru-
binstein, 1997), see Figure 6.2a. The method is particularly suitable for noisy sam-
ples and time-consuming learning runs.

At each iteration, the CE method estimates the importance sampling density of
rare events. In our case, the rare event corresponds to a well-performing run, i.e.,
the well-performing order of tasks and their durations which is illustrated in Fig-
ure 6.2a by yellow, blue and green color. The performance of each run is first eval-
uated, and then the best 𝜖CE-percentile of them is selected to update the sampling
density, which is parametrized by some parameter vector 𝒑CE. Here, we calculate
the performance as the negative number of falls occurred during each runwhen the
run reached the (1−1/𝑒) ≈ 63%of the total return obtainedwithout the curriculum.
Described steps are iterated multiple times, see the work of Rubinstein (1997) for
more details. The sampling density, which is modeled as themultivariate Bernoulli
density, allows updating the parameter vector 𝒑CE analytically. The final dataset is
composed of the same 𝜖CE of all learning runs that achieved the minimum number
of falls and 63% of the total return of a run that learns to walk directly.

While collecting the dataset, we assume a monotonic succession of tasks such
as “upper-body balancing → whole-body balancing → walking”. Depending on
the sampled task durations, the actual curriculum can skip one or even both tasks.
By definition of the task reward functions given in the next section, the curriculum
without walking cannot reach a high return. For this reason, it does not participate
in the sampling density update.

Training the network
The choice of RNN is motivated by the fact that the history of the performance in-
dicators expresses more than their single observation. This property is particularly
relevant to the bipedal walking task, where policy performance is very uneven. For
example, several updates of a working policy can result in large negative rewards
due to robot falls or due to the robot being trapped in a double support phase.

Figure 6.2b shows the training process. Using the CEmethod, we collect a train-
ing dataset of learning runs, which records the performance indicators 𝑰 and the
corresponding tasks 𝜏 . The recurrent network 𝑓(𝑰; 𝜽 s) takes the set of indicators
and outputs the estimated task probabilities 𝒑 = [𝑝1, 𝑝2, … , 𝑝|𝕋|]. RNN parameters
𝜽 s are learned by gradient-based minimization of the CE loss − ∑ 𝝉⊤ log 𝑓(𝑰; 𝜽 s),
where 𝝉 is the one-hot vector transformation of task 𝜏 , and the logarithm is taken
for each output of the network. For the current task 𝜏 , the switchingmoment is then
detected by testing the termination indicator ℐ = max𝜏′ 𝑝𝜏′ − 𝑝𝜏 in Algorithm 2.

Performance indicators
The performance of each task can be evaluated by various performance indicators
𝑰 , not necessarily the same for all systems and tasks. However, to make our re-
sults applicable to many tasks and systems, we suggest three universal indicators
independently proposed in literature.

6 Multitask reinforcement learning for safer acquisition of locomotion skills 87

Sorted runs

time steps

𝜖CE
𝒑CE

𝑰 𝑰

𝝉

RNN

One-hot

𝜽 s

b) Training RNNa) Cross-entropy method

𝝉

Figure 6.2: a) Visualization of the CE method for database collection. b) Supervised training of RNN.
Yellow, blue and green color corresponds to the upper-body, whole-body balancing and walking tasks.

1. Testing episode length normalized to themaximum episode length. This indi-
cator is related to the confidence of a patient performing some task (Veerbeek
et al., 2014) and is also used by the BAL switching strategy.

2. Mean absolute temporal-difference error as a measure of a state-action value
uncertainty proposed by Gehring and Precup (2013),

𝔼(𝒙𝑛,𝒖𝑛,𝑟𝑛+1,𝒙𝑛+1)∼𝔹 {∣𝑟𝑛+1 + 𝛾�̂�(𝒙𝑛+1, ̂𝜋(𝒙𝑛+1; ̂𝜽 a); ̂𝜽 c) − �̂�(𝒙𝑛, 𝒖𝑛; ̂𝜽 c)∣} .

The indicator is usually high at the beginning of learning a new task but re-
duces to smaller values during convergence.

3. The network complexity estimated as the critic regularization term ‖𝜽 c‖2
𝐖.

This indicator is inspired by the ℓ2 regularization gain proposed by Graves
et al. (2017), which is the difference between two regularization terms before
and after training. We found that for our purpose the regularization term
works beĴer than the regularization gain of Graves et al. (2017).

The indicators are evaluated every testing episode and then concatenated into a
single indicator 𝑰 . Later 𝑰 is used for supervised training of the task-switching
RNN 𝑓(𝑰; 𝜽 s). Alternatively, the trained RNN is used for classifying the next task
to practice based on the current run performance described by 𝑰 .

6.4 Experiment details

6.4.1 Systems
Weuse four systems to experimentwith the curriculum learning, see Figure 6.3. The
systems are initialized with the torso being upright except Halfcheetah-v1³ which
is initialized with the torso being horizontal to the ground. Small random noise is
added to the initial joint angles. The goal for each system is to find the locomotion
strategy which maximizes (6.1) with locomotion reward function 𝑟l defined in Ta-
ble 6.2. In the case of the 2- and 3-task curriculum, balancing rewards 𝑟b are used.
Episodes are terminated either due to timeout, which is 20 s for Leo and 16.5 s for

³ For brevity, we omit -v1 suffix for the rest of the paper.

88 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

other systems, or due to the robot falling. Falls are recognized by certain config-
urations of the body height, pitch and limb contacts specified in Table 6.3 as an
absorbing set 𝒳 a. Upon termination, the systems are reset to their initial positions.

Bipedal robot Leo is the real 7-degree of freedom (DoF) 2Dwalking robot specif-
ically developed for conducting RL experiments (Schuitema, 2012). Pictures of the
robot and its model are shown in Figure 6.3a. The robot is small (50 cm) in size and
light-weight (1.7 kg). Foam bumpers are aĴached on both sides of the torso top and
between the hipmotors to secure the robot fromdamage due to falls in awide range
of configurations. Elastic couplings are added for the built-in protection of motor
gearboxes. Leo is connected to the boom at the hip with power provided through a
freely rotating joint. The on-board embedded computer communicates with 7 ser-
vomotors, three in each leg at the ankle, knee, and hip as well as one motor in the
shoulder joint. A single arm facilitates preprogrammed stand up motion thereby
delivering a completely autonomous learning platform. Motors actuate the joints
in voltage control mode (max. voltage 10.8V) and communicate back their position
and temperature. The joint velocities are calculated using a finite difference and a
subsequent filtering of the angular positions.

In the experiments, we use fourmodels of Leo created using RBDL (Felis, 2017b)
and simulated using Generic Reinforcement Learning Library (Caarls, 2015). The
first model we call idealized because it has a normal torsoweight. The secondmodel,
which we call perturbed, has an added torso mass within the range of ±60%. It is
used for testing the generalization properties of the switching strategies. Alterna-
tively, bothmodels are referred to as thewhole-bodymodels. In the case of the 3-task
curriculum, we additionally use upper-bodymodels that are derived from thewhole-
body models by increasing the inertia of the lower body such that ankle and knee
joints become immovable. The upper-body models allow to keep the state and ac-
tion spaces the same for balancing and walking tasks. In all models, the arm joint
is actuated by a proportional-derivative (PD) controller, and the actuation of the
other joints is learned using DDPG.

Hopper, Halfcheetah and Walker2d are modeled using the Bullet Physics En-
gine⁴. These systems are commonly-used RL benchmarks but are not based on any
existing hardware prototype. The systems use torque-based actuation and more
complex reward functions. Duan et al. (2016) have previously shown poor DDPG
performance on Hopper andWalker2d systems. We modified the original rewards
to encourage more exploration by giving small negative penalties every time step,
see Table 6.2. The large negative penalty is given at the absorbing states 𝒳 a when
the systems fall on the ground. With thesemodifications, DDPG regularly succeeds
in learning locomotion.

Additionally, we found that when Hopper and Walker2d learn to balance, they
tend to tilt the torso so much that its pitch almost exceeds the threshold. This hap-
pens because the models are not realistic: their torso mass is too small compared to
the lower-bodymass, see Appendix B.3 for a comparison with human anatomy. To
avoid excessive torso tilting, we accommodate an extra term that penalizes postures

⁴ https://github.com/bulletphysics/bullet3

https://github.com/bulletphysics/bullet3

6 Multitask reinforcement learning for safer acquisition of locomotion skills 89

that deviate toomuch from the upright posture. Near-absorbing sets𝒳 s implement
these penalties, see Table 6.3 for details.

6.4.2 Learning parameters
For each system, we selected a fixed total number of learning time steps which
are equal to 300000, 600000, 600000, and 700000 for Leo, Hopper, Halfcheetah, and
Walker2d, respectively.

We keep algorithm-related parameters the same for all systems and experiments.
The DDPG⁵ critic and actor networks consist of 2 hidden layers with 300 and 400
neurons, respectively. Hidden layers use ReLU activation functions, while the out-
put layers use linear and tanh functions for critic and actor, respectively. Learning
rates of 𝛼c = 0.001 and 𝛼a = 0.0001 are chosen for the critic and actor. Additional
parameters include the target network update weight 𝜆 = 0.001, the discount rate
𝛾 = 0.99, the minibatch size 𝑁 = 64, and the critic regularization weight 𝐖, which
is an identity matrix multiplied by 0.001. Before the first policy update by DDPG, it
is preferable to collect an initial batch of samples. Preliminary hyperparameter sen-
sitivity test suggested that 1000 samples in the replay buffer is an optimal number.
After collecting the initial batch of samples, single gradient decent step is performed
every time step. Exploration is achieved by an Ornstein-Uhlenbeck (OU) noise 𝒩
with parameters 𝜎 = 0.15 and 𝜃 = 0.20. Every thirty-first episode is the testing
episode, during which the noise is not applied.

The CE method iterates 6 times, each time recording data of 96 runs. The best
𝜖CE = 10% of runs are used to update the CE parameters 𝒑CE with smoothing of 0.8.
The final dataset consists of 10% of the best runs, 70% of which are used for train-
ing and the rest is used for validation. The network consists of one hidden gated
recurrent unit layer with 6 neurons and tanh activation function. The softmax output
layer with 3 neurons indicates the task probabilities: upper-body balancing, whole-
body balancing, or walking. The network is trained with learning rate of 0.01, and
a dropout with a keep rate of 0.7 is applied to the hidden layer.

6.4.3 Evaluation methodology
We begin experimenting with the TIM strategy for which we manually define the
number of time steps to practice. For the 2-task curriculum, balancing time equals to
17% of the total learning time for all systems except Walker2d for which balancing
time equals to the 29% of the total time.

We hypothesize that Roboschool systems will not perform differently on the 2-
and 3-task curricula due to their light upper body. For this reason, we perform
the 3-task curriculum experiment for Leo only. Leo learns the upper-body and the
whole-body balancing for 7% and 10% of total time allocated for learning. The
2- and 3-task curriculum parameters were selected after several pilot experiments
with the systems, and may not be the optimal parameters for damage reduction.

In the 2-task curriculum, reevaluation is used to fix the discrepancy between the
samples originating from different tasks but same systems. In the 3-task curricu-

⁵ Our implementation of DDPG and RNN is available online at https://github.com/
ikoryakovskiy/curriculum_learning.git

https://github.com/ikoryakovskiy/curriculum_learning.git
https://github.com/ikoryakovskiy/curriculum_learning.git

90 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

(a) Leo and its model (b) Hopper (c) Halfcheetah (d) Walker2d

Figure 6.3: Illustration of systems used in the experiments.

Table 6.2: Reward functions used for learning. SI metric system with omiĴed units is used for all vari-
ables. Control signal𝒖 is voltage for Leo and torque for other systems, ̇𝑠 and �̇� are the forward velocities
of the models and angular velocities of their motors, respectively. The number of DoFs is denoted as
𝑛 (3 for Hopper and 6 for Halfcheetah/Walker2d) with 𝑛lim being the number of DoFs locked at their
limits. 𝒳 a and 𝒳 s are the absorbing and near-absorbing sets described in Table 6.3. Notation [⋅] means
the Iverson brackets. The difference between the locomotion and balancing rewards is shown in blue.

System Task Reward

Robot Leo
Balancing 𝑟b = −0.014 ‖𝒖‖2

2 − 75 [𝒙 ∈ 𝒳 a]
Locomotion 𝑟l = 𝑟b + Δ𝑟 = 𝑟b + 10 ̇𝑠 − 1.5

Hopper
Halfcheetah
Walker2d

Balancing
𝑟b = − 2

𝑛𝒖⊤ ̇𝝓 − 0.1
𝑛 ‖𝒖‖2

2 − 0.2𝑛lim − 5 [𝒙 ∈ 𝒳 s]
− 75 [𝒙 ∈ 𝒳 a]

Locomotion 𝑟l = 𝑟b + Δ𝑟 = 𝑟b + 3 ̇𝑠 − 1.5

lum, the upper-body balancing task is performed on the upper-body model of Leo
with high inertia of the lower body. Hence, the discrepancy between the samples
cannot be eliminated by the buffer reevaluation. For this reason, and also to limit
the number of options tested during the transfer from the whole-body balancing to
walking, we exclude the џџ option in the 3-task curriculum experiments.

The experience replay buffer is organized as a queue of a fixed size. Because
we know the duration of each task, the size of the queue is set to the number of
time steps in the current task. This ensures that samples from the previous task
are completely removed from the queue at the end of the current task. Note that
the standalone ѝѣ option potentially may increase the number of falls encountered
in a new task because DDPG waits for 1000 replay buffer samples before the first
policy update. However, the previously learned and transferred policy can prevent
a robot from falling.

Based on the TIM strategy outcome, we narrow down the number of investi-
gated options in the subsequent experiments with BAL and RNN strategies. Since

6 Multitask reinforcement learning for safer acquisition of locomotion skills 91

Table 6.3: Definition of the absorbing 𝒳 a and near-absorbing 𝒳 s state sets. Note that 𝒳 s is used only
by Hopper and Walker2d systems. The body height above the ground is calculated by the ℎ𝑒𝑖𝑔ℎ𝑡(𝒙)
function, and the body pitch relative to the vertical axis is calculated by the 𝑝𝑖𝑡𝑐ℎ(𝒙) function. Indicators
𝑐𝑜𝑛𝑡𝑎𝑐𝑡_𝑠ℎ𝑖𝑛 and 𝑐𝑜𝑛𝑡𝑎𝑐𝑡_𝑡ℎ𝑖𝑔ℎ prevent ground contacts of body parts other than feet.

System Definition

Robot Leo 𝒳 a =
{𝒙 | ℎ𝑒𝑖𝑔ℎ𝑡(𝒙) ≤ 0.15m ∨ |𝑝𝑖𝑡𝑐ℎ(𝒙)| ≥ 1.0 rad ∨ |𝝓ankle| ≥ 1.1 rad}

Hopper
Walker2d

𝒳 a =
{𝒙 | ℎ𝑒𝑖𝑔ℎ𝑡(𝒙) ≤ 0.60m ∨ |𝑝𝑖𝑡𝑐ℎ(𝒙)| ≥ 1.5 rad ∨ 𝑐𝑜𝑛𝑡𝑎𝑐𝑡_𝑡ℎ𝑖𝑔ℎ}
𝒳 s = {𝒙 | ℎ𝑒𝑖𝑔ℎ𝑡(𝒙) ≤ 0.80m ∨ |𝑝𝑖𝑡𝑐ℎ(𝒙)| ≥ 1.0 rad}

Halfcheetah 𝒳 a = {𝒙 | |𝑝𝑖𝑡𝑐ℎ(𝒙)| ≥ 1.0 rad ∨ 𝑐𝑜𝑛𝑡𝑎𝑐𝑡_𝑠ℎ𝑖𝑛 ∨ 𝑐𝑜𝑛𝑡𝑎𝑐𝑡_𝑡ℎ𝑖𝑔ℎ}

for both strategies the switching time is not known in advance, we simply keep all
samples in the replay buffer.

6.4.4 Evaluation metrics
Throughout the experiments, we compare the options and strategies listed in Fig-
ure 6.1 in terms of the undiscounted return 𝐺1, the cumulative number of falls,
and locomotion distance 𝑆. We use ANOVA test to determine a statistically signifi-
cant differences between the means of options and post-hoc TukeyHSD test to label
options not significantly different from the options with the minimum number of
falls (family-wise error rate 𝛼 > 0.05). For each curriculum strategy or option 16
independent runs are used unless we mention a different number.

To investigate the reasons behind the success or failure of a certain curriculum,
we additionally calculate the number of falls until a certain value of a cumulative
mean exploration intensity Ξ is reached. Calculating the number of falls in this
way allows comparing the falls-averting properties of the current control policy 𝜋
with respect to the amount of exploration conducted by this policy. As a measure
of the exploration intensity, we take the average distance to a previously observed
nearest-neighbor for each learning time step 𝑘,

𝜉𝑘 = 1
𝑘w

𝑘+𝑘w

∑
𝑖=𝑘

min
𝑗=0..𝑘−1

∥(𝒙𝑖 − 𝒙𝑗)𝚺−1∥
2

,

where 𝑘w = 30 is a sliding window and 𝚺 is a diagonal matrix with the estimated
standard deviations of corresponding state elements. Essentially, 𝚺−1 ensures that
angles and angular velocities are scaled to approximately similar range. At the be-
ginning of every task, the exploration intensity is usually very high. After a reason-
able policy is acquired, the exploration intensity goes down, which indicates the
policy fine-tuning with a random noise applied.

The falls-averting property analysis is conducted in two distinctive periods that
correspond to the balancing and walking periods of the 2-task curriculum learning.

92 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

Each period starts at the beginning of each task and runs until the time step 𝐾 at
which the cumulative mean exploration intensity Ξ = ∑𝐾

𝑘 𝜉𝑘 reaches a predefined
threshold. In the case of the direct learning, each period starts at the precisely same
moments as in the case of the 2-task curriculum learning and runs until the same
threshold. Note that the cumulativemean exploration intensity and the cumulative
number of falls are reset to zero at the beginning of each period.

Finally, we investigate the difference between the locomotion and balancing
tasks by evaluating the difference between controls applied by corresponding poli-
cies in every state of a single state trajectory (𝒙0, 𝒙1, 𝒙2, …). For this comparison,
the locomotion and balancing policies are learned independently from each other.

6.5 Results

6.5.1 TIM: curriculum learning with manual selection of time steps
to practice

Two-task curriculum
Figure 6.4 shows the locomotion learning results by the TIM strategy and various
curriculum options. The common deep RL pitfall is that learning does not always
succeed even when the starting parameters are held the same across independent
runs (Henderson et al., 2017). The only difference between the runs in our experi-
ments is the random-seed value, which we sample uniformly before learning. The
results of the failed runs often appear as outliers in figures, but they are not ex-
cluded from the performance calculation unless we state the opposite.

By looking at the number of falls, we notice that for all systems exceptWalker2d
there are curriculum options that significantly reduce the number of falls compared
to direct locomotion learning. In particular, transferring the policy and the value
function using the ѝѣ option is essential for reducing the number of falls. Possible
reasons for why curriculum learning does not significantly improve the Walker2d
results will be discussed in Section 6.6.

The results vary across systems if both ѝѣ and џя options are applied. For in-
stance, the minimum number of falls for Leo is incurred by the ѝѣ⋅џя option. In-
terestingly, while standalone ѝѣ and џя options perform somewhat poorly on Leo,
their combination performs exceptionally well.⁶ However, the ѝѣ⋅џя option per-
forms worse than ѝѣ on Hopper and Halfcheetah. While significantly reducing the
number of falls, corresponding ѝѣ⋅џя and ѝѣ options maintain the total return and
locomotion distance similar to direct learning.

The worst result in this series of experiments is aĴained by transferring only
the replay buffer. For all four systems, the single џя option results in either unsatis-
factory reward, falls or locomotion distance. The reevaluation of the replay buffer
with option џџ improves the performance compared to џя, but does not result in a
significant advantage. Notably, reevaluation of the replay buffer with option ѝѣ⋅џџ
bridges the gap between ѝѣ⋅џя and ѝѣ by always aĴaining not significantly different

⁶ Although not revealed by TukeyHSD test, the ѝѣ⋅џя option consistently outperformed all other options
in our experiments with Leo.

6 Multitask reinforcement learning for safer acquisition of locomotion skills 93

0

2

Re
tu
rn
,×

10
3

10

3

6

20

Fa
lls
,×

10
3

direct ѝѣ ѝѣ⋅џя ѝѣ⋅џџ џя џџ
Curriculum option

0

10

D
is
ta
nc
e

𝑆
(m

)

(a) Leo

2

4

Re
tu
rn
,×

10
3

10

3
4
6

Fa
lls
,×

10
3

direct ѝѣ ѝѣ⋅џя ѝѣ⋅џџ џя џџ
Curriculum option

10

20

30

D
is
ta
nc
e

𝑆
(m

)

(b) Hopper

0

1

2

Re
tu
rn
,×

10
3

2
3
4
6

Fa
lls
,×

10
3

direct ѝѣ ѝѣ⋅џя ѝѣ⋅џџ џя џџ
Curriculum option

10

20

D
is
ta
nc
e

𝑆
(m

)

(c) Halfcheetah

0

2

Re
tu
rn
,×

10
3

1

10

Fa
lls
,×

10
4

direct ѝѣ ѝѣ⋅џя ѝѣ⋅џџ џя џџ
Curriculum option

0

20

D
is
ta
nc
e

𝑆
(m

)

(d) Walker2d

Figure 6.4: Results of the 2-task curriculum learning on four systems. Outliers are ploĴed as individual
diamond-shaped points. Red triangles label median performance of options not significantly different
(𝛼 > 0.05) from the options with the minimum number of falls (ѝѣ⋅џя for Leo, ѝѣ for other systems).

94 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

results from the best option for each system.
Table 6.4 compares the best curriculum options with direct learning. Here, we

record the time required to reach ≈ 63% of the total return obtained without a cur-
riculum, and the corresponding number of falls incurred during this time. Learning
runs that could not reach the specified return were excluded from the calculations.
Since Leo is the only model of a real robot, it is particularly useful to note that
learning time has increased by 47.9% in exchange for a 26.4% reduction in falls
compared to learning without the curriculum. For Roboschool systems, learning
time has increased by at least 19.1% while the number of falls has reduced by at
least 21.1%.

Sensitivity to the number of balancing samples
Figure 6.7 on page 98 shows the performance of the 2-task curriculumwith a varied
number of balancing samples applied to Leo. Undertraining, which happens when
the number of balancing samples is less than 50 × 103, results in an increased num-
ber of falls. However, it does not influence the total return or the walking distance.
Overtraining, which happens when the number of balancing samples is more than
50 × 103, results in a slightly increasing trend in falls and slightly decreasing trend
in the total return and the walking distance. This result means that Leo continues
to balance more often in spite of the new walking reward being applied. Figure 6.7
suggests that 50 × 103 balancing samples before walking is the optimal training
duration.

Three-task curriculum
Figure 6.5 shows results of the 3-task curriculum used for Leo to learn walking.
Option ѝѣ⋅џя+ѝѣ⋅џя aĴains a number of falls that is significantly lower compared to
direct learning. The total return and the walking distance appear to be at least as
good as for the direct learning. However, themajority of options is not significantly
different from this option. Therefore, we group the results by color. The results in
the blue group transfer the policy and the value function every time the task changes.
The results in the yellow group transfer the policy and the value function only from
the second to the third task. In the similar situation, the final green group of results
transfers only the replay buffer.

We observe that the ѝѣ option applied before the walking task has a major posi-
tive influence on reducing the number of falls. The number of falls obtained in the
blue and yellow groups are mostly lower compared to the green group. The џя op-
tion also appears to reduce the number of falls, e.g. compare ѝѣ+ѝѣ with ѝѣ+ѝѣ⋅џя,
ѝѣ⋅џя+ѝѣ with ѝѣ⋅џя+ѝѣ⋅џя, џя+ѝѣ with џя+ѝѣ⋅џя, ѝѣ+ѝѣ⋅џя with ѝѣ⋅џя+ѝѣ⋅џя, and fi-
nally ѝѣ+џя with ѝѣ⋅џя+џя.

Table 6.4 shows the number of robot falls in comparison to the direct and 2-
task curriculum learning. Although not significantly, the number of falls incurred
by the 3-task curriculum is lower compared to the 2-task curriculum. Compared to
learningwithout the curriculum, learning time has increased by 40.5% in exchange
for a 31.8% reduction in falls. A beĴer performance could be potentially achieved
with a beĴer tuning of the task durations.

6 Multitask reinforcement learning for safer acquisition of locomotion skills 95

Table 6.4: Learning time and the cumulative number of falls the systems require to reach (1−1/𝑒) ≈ 63%
of their total return obtained without the curriculum. The combination of options with the least number
of falls is selected for the 2- and 3-task curricula. Runs that could not reach the target return are excluded
from the calculations, and their success rate is adjusted accordingly.

System Curriculum Return Time (h) # of falls Success
(%)

Robot Leo Direct learning > 526 𝟏.𝟐𝟏±𝟎.𝟏𝟗 4132±337 93.75
2-task curriculum > 526 1.79±0.13 𝟑𝟎𝟏𝟕±𝟑𝟒𝟒 93.75
3-task curriculum > 526 1.70±0.08 𝟐𝟖𝟐𝟎±𝟏𝟗𝟐 90.63

Hopper Direct learning > 1253 𝟏.𝟑𝟏±𝟎.𝟐𝟏 2407±300 100.00
2-task curriculum > 1253 1.56±0.17 𝟏𝟐𝟒𝟑±𝟏𝟕𝟒 100.00

Halfcheetah Direct learning > 807 𝟏.𝟔𝟗±𝟎.𝟐𝟑 2830±277 100.00
2-task curriculum > 807 2.10±0.23 𝟐𝟎𝟐𝟕±𝟑𝟑𝟕 100.00

Walker2d Direct learning > 925 𝟐.𝟎𝟕±𝟎.𝟒𝟑 2345±493 87.50
2-task curriculum > 925 3.38±0.23 𝟏𝟖𝟓𝟎±𝟐𝟕𝟔 87.50

In-depth study of the curriculum and the direct locomotion learning
In this section, we show additional results for the 2-task curriculum learning and
the direct locomotion learning. These results reveal the reasons of the damage re-
duction when curriculum learning is used.

The number of falls incurred by the direct and 2-task curriculum learning while
reaching the same cumulativemean exploration intensity in the aforementioned pe-
riods (cf. Section 6.4.4) is shown in Table 6.5. During the first period, the balancing
task of the 2-task curriculum always incurs a smaller number of falls compared to
the walking task of the direct learning. The number of falls is reduced by at least
22.5% in this period. During the second period, for all systems except Walker2d,
curriculum learning achieves a similar or lower number of falls compared to direct
learning.

Finally, we investigate the similarity of the balancing and walking policies. Fig-
ure 6.6 shows the exemplar trajectories of a single leg. The black color of trajecto-
ries demonstrates that Leo, Hopper, and Halfcheetah use similar actuation while
walking and balancing, particularly at the moments of touchdown. In contrast,
Walker2d does not use the same actuation. In fact, the opposite hip and knee ac-
tuation paĴerns are observed in Leo and Walker2d.

Selection of options
Reevaluation of the replay buffer fails to outperform all other options, even though
the reevaluated samples correspond to the true reward function. Because of the bal-
ancing task, the samples originate from a small region of the state space. However,
learning locomotion requires samples from a much wider region. We hypothesize

96 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

0

2
Re

tu
rn
,×

10
3

10

3
6

20

Fa
lls
,×

10
3

direct ѝѣ
ѝѣ

ѝѣ
ѝѣ⋅џя ѝѣ⋅џя

ѝѣ
ѝѣ⋅џя
ѝѣ⋅џя џя

ѝѣ
џя

ѝѣ⋅џя ѝѣ
џя

џя
џя

ѝѣ⋅џя
џя

Curriculum option

0

10

D
is
ta
nc
e

𝑆
(m

)

Figure 6.5: Results of the three-task curriculum on the idealized model of Leo. Outliers are ploĴed as
individual diamond-shaped points. Red triangles label options not significantly different (𝛼 > 0.05)
from the ѝѣ⋅џя+ѝѣ⋅џя option with the minimum number of falls. The first and second rows of 𝑥-axis
labels specify options used for switching from the upper-body balancing to the whole-body balancing
and then to walking. Means with upper and lower 95% confidence limits are shown for 64 samples.

that any system that is able to balance can explore this wider region, thereby reach-
ing a total return and locomotion distance similar to the options with the buffer
reevaluation. We exclude the џџ option from further consideration given the fact
that reevaluation 1) requires the knowledge of the task difference Δ𝑟, 2) is impracti-
cal for modified system dynamics, and 3) results in an unsatisfactory improvement.

Experiments in the next sections are applied to Leo only. Both 2- and 3-task
curricula use the ѝѣ⋅џя option. Note that while in this section at the end of a current
task the replay buffer transitions from a previous task are completely discarded,
in the next sections we keep all transitions in the replay buffer. This simplifies
the automated task-switching strategies since the task-switching moments are not
known in advance.

6.5.2 BAL: automated curriculum learning with the duration of
balancing as a task-switching indicator

Figure 6.8 shows the results of the curriculum, in which the switching moment
is detected based on the number of episodes that achieved a successful balancing
duration over 5 s. Because balancing requires a static pose, 5 s is usually enough
for determining successful task completion. The red dashed line shows the median
performance of the optimal run taken from Figure 6.7. Here, neither the 2- nor 3-task
curriculum could reach a number of falls as low as the TIM strategy with 50 × 103

6 Multitask reinforcement learning for safer acquisition of locomotion skills 97

Table 6.5: Comparison of the cumulative number of falls incurred by the direct and 2-task curriculum
learning. Two-task curriculum: the number of falls is calculated since the beginning of each task and until
the cumulativemean exploration intensityΞ reaches a predefined threshold. Direct learning: the number
of falls is calculated until the cumulative mean exploration intensity Ξ reaches the same threshold twice
to match with corresponding balancing and walking tasks of the 2-task curriculum. For all systems
except Walker2d, curriculum learning achieves the similar or lower number of falls compared to the
direct learning. The threshold is calculated as the minimum value of maximum cumulative exploration
intensities calculated during the described periods.

System Period Strategy Curriculum
task

Threshold
intensity Ξ

Cumulative
of falls

Robot Leo
1 Direct learning − 536.4 2084 ± 267

2-task curriculum balancing 𝟏𝟔𝟏𝟓 ± 𝟐𝟑𝟖

2 Direct learning − 1853.7 1708 ± 356
2-task curriculum walking 𝟏𝟏𝟐𝟑 ± 𝟐𝟎𝟑

Hopper
1 Direct learning − 391.3 1387 ± 255

2-task curriculum balancing 𝟖𝟎𝟖 ± 𝟏𝟐𝟖

2 Direct learning − 1304.1 𝟏𝟏𝟓𝟎 ± 𝟏𝟐𝟗
2-task curriculum walking 𝟏𝟏𝟐𝟐 ± 𝟏𝟎𝟐

Half-
cheetah

1 Direct learning − 695.0 1194 ± 95
2-task curriculum balancing 𝟗𝟎𝟗 ± 𝟏𝟎𝟐

2 Direct learning − 2423.0 𝟗𝟗𝟒 ± 𝟑𝟏𝟒
2-task curriculum walking 𝟏𝟏𝟖𝟓 ± 𝟐𝟔𝟗

Walker2d
1 Direct learning − 1296.7 1406 ± 151

2-task curriculum balancing 𝟖𝟓𝟐 ± 𝟓𝟑

2 Direct learning − 1739.1 𝟑𝟕𝟎 ± 𝟐𝟗𝟒
2-task curriculum walking 722 ± 127

time steps. Finding the optimal number of successful balancing episodes for the 3-
task curriculum is particularly difficult, and this is reflected in its low performance
in terms of the return and the walking distance.

Out of all tested strategies, the 2-task BAL10 strategy incurs the minimum num-
ber of falls. However, the low total return suggests that long balancing results in
overtraining. BAL2 and BAL5 strategies show a balanced performance with a high
return and walking distance, but also a higher number of falls. Finally, the BAL1
strategy results in undertraining, which leads to the worst performance compared
to the other 2-task options.

6.5.3 RNN: automated curriculum learning with RNN-based iden-
tification of task-switching moments

Figure 6.9a shows the obtainedCEdistributions after six iterations. The previous ex-
periments showed that the upper-body balancing task is very easy. For this reason,
a logarithmic scale of time steps is used for the moments when the upper-body bal-

98 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

0.0
1.0

𝜙 h

−2.0
−1.0𝜙 k

0 1 2
Time (s)

0.5
1.0

𝜙 a

0.0
0.5
1.0

(a) Leo

0.0

1.0

𝜙 h

0.0
1.0

𝜙 k

0 1 2
Time (s)

−1.0
0.0
1.0

𝜙 a

0.0
0.5
1.0

(b) Hopper

0.5
1.0

𝜙 h

0.0
1.0

𝜙 k

0.0 0.5 1.0 1.5
Time (s)

0.5
1.0

𝜙 a

.0
0.5
1.0

(c) Halfcheetah

0.0
1.0

𝜙 h
−1.0

0.0
1.0

𝜙 k

0 1 2
Time (s)

−1.0
0.0
1.0

𝜙 a
0.0
0.5
1.0

(d) Walker2d

Figure 6.6: Angle trajectories of the left (or front for Halfcheetah) hip 𝜙h, knee 𝜙k and ankle 𝜙a during
locomotion. Plots (a), (b) and (c) illustrate that when the leg is in contact with the ground (shaded area),
controls are similar to those applied during balancing (black line). Less similarity with balancing controls
(blue line) is observed when the leg is swinging in the air. Comparable similarity is not observed in plot
(d). Leo angles are given in radians, while Roboschool angles are normalized to the interval [−1.0, 1.0].

ancing task switches to the whole-body one (upper plot in Figure 6.9a). From these
results, we see that (1) the optimal switching to the whole-body balancing task is at
the 1833 time steps since the beginning of learning, and (2) the optimal switching
to the walking task is at the 45000 time steps since the beginning of the upper-body
balancing task. Switching the tasks at thesemoments realizes the 3-task curriculum
that incurs the minimum number of falls on average.

The validation result of RNN training is shown in Figure 6.9b. The chosen indi-
cators do not allow to reliably distinguish the upper-body balancing task, resulting
in a true positive rate (sensitivity) at only 56.5%. However, the confusion matrix
shows that indicators of the upper-body balancing task are hardly misclassified as
belonging to the walking task. Hence, the whole-body balancing stage is unlikely
to be skipped. Classification of the other two tasks is much more reliable, reaching
at least 93.5% sensitivity. Specificity of the classifier is also relatively high, reaching
at least 86.0%.

Figure 6.9c presents the learning results with the switching moments detected

6 Multitask reinforcement learning for safer acquisition of locomotion skills 99

0

2

Re
tu
rn
,×

10
3

undertraining optimal overtraining

3
4

6

Fa
lls
,×

10
3

0 25 50 75 100 125 150 175 200
The number of balancing time steps, ×103

0

10

D
is
ta
nc
e

𝑆
(m

)

Figure 6.7: Two-task curriculum learning results with the
TIM switching strategy applied to Leo. The performance of
the strategy varies with the number of balancing time steps
and reaches the optimum at 50000 steps. The number of
walking time steps is fixed. Direct learning corresponds to
a 0 number of balancing steps. The ѝѣ⋅џя option is applied
at the task-switching moments.

0

2

Re
tu
rn
,×

10
3

BAL1
BAL2

BAL5
BAL10

3
4

6

Fa
lls
,×

10
3

2-task 3-task
Curriculum type

0

10

D
is
ta
nc
e

𝑆
(m

)

Figure 6.8: Two- and 3-task curricu-
lum learning results with BAL switch-
ing strategies applied to Leo. Neither
strategy could reach the optimal per-
formance of the TIM strategy shown
by the red dashed line, cf. Figure 6.7.
The ѝѣ⋅џя option is applied at the task-
switching moments.

using RNN on the perturbed model of Leo subject to ±60% added torso mass. For
all strategies, a heavier torso leads to a greater number of falls. However, the TIM,
BAL2 and RNN strategies consistently outperform the direct learning in terms of
Leo falls. Moreover, the curriculum strategies outperform the direct learning in
terms of the total return for the added torso mass of ≤ −40%, which is a surpris-
ing result. For the heavier torso (added mass ≥ 40%) the direct learning aĴains a
greater return.

Table 6.6 shows the decrease of falls compared to direct learning. Although not
entirely consistent, the TIM strategy performs the best among the other curriculum
strategies. The RNN strategy often reaches similar or slightly greater number of
falls, but lags behind in terms of the total return and the walking distance, which is
reflected in the learning success rate. The TIM and BAL2 strategies perform similar
in terms of the return. However, the laĴer consistently aĴains a greater number of
falls compared to the other strategies.

6.6 Discussion

Our results demonstrate that learning to balance before learning locomotion can
significantly reduce the number of falls. For DDPG, transferring the policy and the

100 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

0.0

0.2𝑝C
E

ub-wb
switch

0 50 100
Time step, 103

0.0

0.2

𝑝C
E

wb-w
switch

(a) Rare-event probability distribu-
tion estimated using cross-entropy
method after six iterations. Non-zero
and non-coinciding peaks demon-
strate that the upper- and whole-
body balancing tasks reduce damage
while learning to walk.

0.0

0.5

1.0

Se
ns
iti
vi
ty

0 500 1000
Iteration

0.0

0.5

1.0

Sp
ec
ifi
ci
ty

ub balancing
wb balancing
walking

Predicted
ub wb w

A
ct
ua

l ub 45 33 1
wb 7 497 23
w 0 43 749

(b) (top) Supervised training of RNN
task classifier. (boĴom) Confusion
matrix of the validation dataset.

0

2

Re
tu
rn
,×

10
3

direct TIM BAL2 RNN

10

2
3
4
6

Fa
lls
,×

10
3

−60 −40 −20 0 20 40 60
Additional torso mass (%)

0

10

D
is
ta
nc
e

𝑆
(m

)

(c) Comparison of the generalization of the direct learning and the TIM, BAL2 and RNN
strategies subject to the torso mass perturbations. All strategies keep samples in the
replay buffer. The TIM and BAL2 strategies use the most optimal moments of switching
identified on the idealized model. The ѝѣ⋅џя option is applied at the task-switching
moments.

Figure 6.9: CE dataset collection, RNN training, and performance evaluation. Labels “ub”, “wb” and
“w” refer to upper-body balancing, whole-body balancing and walking, respectively.

6 Multitask reinforcement learning for safer acquisition of locomotion skills 101

Table 6.6: Average success rate and the decrease of falls compared to direct learning while reaching
a return of 526, cf. Table 6.4. All strategies keep samples in the replay buffer. The TIM and BAL2
strategies use the optimal moments of switching identified on the idealized model. The ѝѣ⋅џя option is
applied at the task-switching moments. Runs that could not reach the target return are excluded from
fall calculations, and the success rate is adjusted accordingly.

Criterion Added torso
mass, % TIM BAL2 RNN

Success rate, % Average 𝟗𝟒.𝟔 ± 𝟓.𝟐 𝟗𝟕.𝟑 ± 𝟒.𝟓 83.0 ± 14.0

Decrease of falls, %

−60 −𝟑𝟐.𝟖 ± 𝟓.𝟖 −𝟏𝟒.𝟕 ± 𝟐𝟓.𝟒 −𝟐𝟖.𝟑 ± 𝟓.𝟎
−40 −𝟑𝟒.𝟒 ± 𝟒.𝟏 −15.4 ± 7.8 −𝟑𝟎.𝟏 ± 𝟓.𝟑
−20 −𝟑𝟎.𝟑 ± 𝟓.𝟗 −𝟐𝟕.𝟒 ± 𝟕.𝟗 −𝟐𝟓.𝟑 ± 𝟗.𝟐

0 −𝟐𝟗.𝟒 ± 𝟔.𝟖 −10.4 ± 10.8 −𝟐𝟑.𝟏 ± 𝟖.𝟏
20 −𝟐𝟗.𝟏 ± 𝟖.𝟕 −𝟏𝟔.𝟎 ± 𝟏𝟓.𝟑 −𝟐𝟕.𝟒 ± 𝟏𝟏.𝟗
40 −𝟑𝟓.𝟒 ± 𝟏𝟐.𝟑 −21.1 ± 12.3 −𝟑𝟗.𝟔 ± 𝟗.𝟗
60 −𝟒𝟖.𝟑 ± 𝟖.𝟎 −19.0 ± 16.0 −𝟒𝟏.𝟕 ± 𝟏𝟐.𝟕

value function using the ѝѣ option is necessary for achieving this result. Transfer-
ring the replay buffer additionally to the ѝѣ option further reduces the number of
Leo falls, although the difference with standalone ѝѣ is not significant. The down-
side of the curriculum learning is the increasing learning time. However, we be-
lieve that in many cases it is more acceptable than the repair costs, which in case of
Leo usually involve the time of disassembling the broken leg, changing the motor
gearbox and calibrating the encoder.

Our detailed study of the exploration intensity and the cumulative number of
falls reveals two important facts. First, the robots accumulate less falls at the end of
the balancing task compared to the same period of the direct locomotion learning.
Since this result holds for all systems, the most probable explanation is that learn-
ing the statically-stable balancing task is easier than the walking task. Second, the
learned balancing policy averts unsafe exploration actions during the walking task.
This fact applies only to Leo. We hypothesize that the balancing task is particularly
important for supporting the heavy torso of Leo, while the Roboschool systems do
not benefit from the balancing task due to their light-weight upper bodies. This hy-
pothesis is supported by the difference in the number of falls observed for higher
torso mass in Figure 6.9c and Table 6.6.

The knowledge of balancing allows Leo to learn the walking task more safely.
During the walking task, the preconditioned policy parameters are gradually re-
vised, therefore ensuring a slow transition from one policy to another. This policy
is aĴracted to local maxima different from the direct learning maxima. The state-
ment is supported by the contrasting performance of the policies learned using di-
rect and curriculum learning on the perturbed model of Leo. For the lighter torso,
curriculum learning finds beĴer local maxima, while direct learning gets stuck in a
suboptimal behavior, which leads to frequent falls. For the heavier torso, the direct
learning finds beĴer local maxima. Although curriculum learning occasionally gets

102 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

stuck in a suboptimal behavior, this behavior prefers balancing to falling, which is
reflected in the lower number of robot falls. Similar observations of the difference
between the local maxima were also found in supervised learning (Bengio et al.,
2009; Erhan et al., 2010; Kumar et al., 2010).

Curriculum learning does not achieve a significant fall reduction for Walker2d.
A careful study of the Walker2d trajectories reveals that the balancing policy is not
reused during walking the same way as it is reused by other systems, notably by
Leo. We believe that the foot construction and the unrealistically lightweight upper
body cause this difference. Our preliminary experiment with the Walker2d ankle
placed in the middle of the foot as it is in Leo showed a significant reduction of falls.

Both TIM and BAL strategies require the selection of various parameters that
identify the switching moments. If not selected correctly, undertraining or over-
training occurs. However, undertraining results in a stronger negative influence
on the number of falls compared to overtraining. Thus, a larger number of balanc-
ing time steps is less detrimental than the smaller number.

Although the BAL strategy demonstrates a reduction of falls compared to direct
walking, it suffers from an innate pitfall. Occasionally, it happens that RL cannot
learn a feasible balancing policy. In such cases, the BAL strategy does not switch
over to practice the walking task, therefore failing in terms of the total return and
the walking distance.

The RNN switching strategy avoids the pitfall of the BAL strategy and always
switches over to the walking task. Even though the idealized model of Leo is used
for RNN training, our results demonstrate the reduction of falls for thewhole±60%
range of torso mass perturbations. However, Leo appears to be less successful in
walking, which is reflected in the smaller walking distance and return. There are
two possible explanations of this effect which need to be studied in future. The first
explanation is that the policy and the value function become slightly undertrained
or overtrained as a result of applying the RNN. This effect is also observed in both
TIM and BAL strategies with suboptimal task durations. The second explanation
supported by the additional result presented in Appendix B.4 suggests that mix-
ing transitions sampled from two different models of Leo – the upper-body model
and the whole-body model – is detrimental for learning. Similarly, such incorrect
samples affect TIM and BAL strategies.

Our studies do not reveal a significant difference between the 2- and 3-task cur-
riculum learning, although the results in Table 6.4 and the cross-entropy method
results suggest that both the upper-body balancing and the whole-body balancing
tasks are useful. Also note that we use a conservative damage evaluation because
damage due to the robot falls is treated equally across all tasks. In practice, the
upper-body balancing task requires us to fix the robot in a standing position. Since
the robot is fixed in its hips, it is possible to eliminate the damage due to falls by
placing safety cushions around the robot at the height of its hips. In the 2-task cur-
riculum learning, placing cushions is cumbersome because the robot is constantly
moving. By neglecting falls during the upper-body balancing task, we expect to fur-
ther reduce the number of falls by 3.2% compared to the conservative evaluation
presented in Table 6.4.

6 Multitask reinforcement learning for safer acquisition of locomotion skills 103

6.7 Conclusion
Inspired by infants learning to walk and by the rehabilitation process, we hypothe-
sized that curriculum learning is a practical approach towards increasing the safety
of locomotion learning by robots. We set up experiments on several dynamical sys-
tems and in several simulators, and demonstrate the correctness of this hypotheses.

The results suggest that the reduction of robot falls happens due to two reasons.
First, the balancing task is easier than the walking task. Consequently, learning
the balancing task is quicker and safer than learning the walking task. Second, the
balancing task appears to precondition the control policy and to avert unsafe explo-
ration actions during the walking task. This aspect was found useful only for Leo,
which has a significantly heavier torso mass among the studied systems.

There aremultipleways of improving the currentwork. First, for the automated
switching strategies, BAL and RNN, we kept all transitions in the replay buffer. We
hypothesize that further improvement of their performance is possible by a smart
bookkeeping and filtering of the transitions, cf. De Bruin et al. (2016).

Second, additional or new performance indicators can improve the RNN strat-
egy to achieve a higher return and a more robust policy, e.g. Graves et al. (2017).

Third, it is possible to prevent forgeĴing the balancing policy when the walking
task is being practiced, e.g. by using progressive networks (Rusu et al., 2017). By
predicting states that are likely to lead to falls, one can actively switch between
the already-acquired balancing policy and the immature walking policy, thereby
providing a backup and constraining risky exploration. Increased training stability
could be an additional benefit of using progressive networks because for each new
task the capacity of the network is extendedwith untrained neurons. Training these
neurons in the direction of the new task can be easier than the already pretrained
ones.

Fourth, it is possible to learn the robot model concurrently with learning the
policy anduse it for directing the exploration of a new task. The starting task should
be very safe to learn, e.g. in the case of Leo, learning of a siĴing position can be
initiated from the lying position. In the next task – possibly more complex and
risky – the model can suggest safer exploration actions. Chaining several tasks in
this manner can potentially lead to acquiring a precarious skill with less damage
compared to direct learning.

Finally, for the simplicity of this workwe used a trimmed version of thewalking
reward function for learning to balance. However, this approach is not generic for
a larger set of tasks, and a new methodology should be developed.

7
Conclusions and future

directions

This thesis presented several reinforcement learning approaches that use various forms of
prior knowledge to increase the safety of learning on the real hardware. The improvement of
safety was illustrated bymeans of numerical simulations and real experiments. This chapter
presents the conclusions in reply to the research questions posed in Chapter 1 and provides
possible directions for future research.

106 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

7.1 Conclusions

7.1.1 Influence of exploration strategies
In search for a beĴer understanding of how exploration during learning influences
the robot performance and the incurred damage , the following research question
was addressed in Chapter 2:

How do exploration strategies affect the damage of a real robot?

Conflicting influence of exploration strategies was observed in multiple exper-
iments. Learning the high-return policy with Ornstein-Uhlenbeck (OU) noise re-
sulted in a large number of robot falls and substantial gearbox fatigue due to gear
re-engagements. The high foot velocities exhibited by the policy right before heel-
strike could be another potential source of gearbox damage. This damage was not
taken into account by the reward function, therefore Leo would continue to suffer
from high-energy heel-strike impacts even after learning.

Learning lower-return policies with other exploration strategies such as
𝜖-greedy and 𝜖-OU resulted in lower velocities before heel-strike. Such policies
have less chances of damaging the gears. The gearbox fatigue was also reduced
by the PADA strategy, which took only an action similar to the previous one.
Unfortunately, this strategy could not react to the quickly changing states of the
robot, and consequently Leo suffered from a large number of falls. The 𝜖-OU
strategy, which applied greedy actions distorted by occasional OU noise, reduced
the number of falls but significantly increased gearbox fatigue. Interestingly, the
number of falls was smaller compared to the popular ε-greedy strategy, while the
other performance measures were similar. For this reason, it is recommended to
use the 𝜖-OU strategy instead of the ε-greedy one.

As in the presented results, the importance of the temporal exploration coher-
ence was recently studied by Van Hoof et al. (2017b). The authors demonstrated
a trade-off between the time-step-based and episode-based exploration in policy
search RL. Although the authors did not provide a formal damage analysis, their re-
sults are comparable to the results in Chapter 2. For example, episode-based explo-
ration, as with PADA, did not explore well, which resulted in a suboptimal perfor-
mance and lowactuation jerk. On the other hand, similarly to 𝜖-PADA, the balanced
exploration strategy proposed by the authors improved the performance and also
increased the actuation jerk. Unfortunately, the authors did not experiment with
complex unstable systems such as walking robots, which prevents a comparison of
their exploration strategies with ours in terms of robot falls.

The important conclusion is the following: although the studied exploration
strategies could reduce either gearbox fatigue or the number of robot falls, it is
not possible to reduce both factors concurrently. Faster learning can be a viable
solution. However, since learning from experience involves making mistakes, it is
unreasonable to believe that faster learning can completely eliminate the damage.
Therefore, a composite approach towards damage minimization is recommended
in Section 7.2.1.

7 Conclusions and future directions 107

7.1.2 Safer learning with an approximate dynamical model
Chapters 3 to 5 addressed the following research question:

How can an approximate model of the robot help to mitigate the risks
of robot damage?

Chapter 3 established the ground basis for using the learning algorithms. In
particular, it showed that RL outperformed optimal control (OC) and nonlinear
model predictive control (NMPC) in robustness to large structural uncertainties. In
Chapter 4, the instability in the sequential quadratic programming solver made it
difficult to augment the existing model of Leo with a Coulomb friction model. Two
learning approaches were proposed to mitigate the reality gap.

Combination of RL and NMPC
The first approach called Model-Plant Mismatch Learning (MPML) is described

in Chapter 4. MPML uses model-free RL to correct the difference between the ex-
pected outcome of the NMPC, which uses an approximate system model, and the
actual outcome of the real system. While standalone NMPC was not able to ac-
complish the task, in combination with RL it provided safety barriers to constrain
dangerous exploration actions taken by MPML.

In this thesis, the combination of RL with the prior knowledge of the dynam-
ical model, the constraints, and the model-based controller resulted in the safest
learning approach. The success of the real experiment was largely due to the re-
duced hardware strain, even though the learning time was long. The presented
result demonstrates that, in general, slower learning can be more aĴractive, as long
as learning goals are achieved without damaging a robot. This observation cre-
ates a new insight and a practical solution towards learning on real systems, where
stochastic observations and rewards often do not allow the use of learning rates
as high as those used in simulated experiments. In non-stationary environments,
however, the learning should be quicker than the changes of the system dynamics.

The benefits of the MPML approach are summarized below:

1. Depending on the severity of themodel-plant mismatch, safety barriers allow
learning with liĴle risk.

2. The nominal controller does not need to be Markov¹, as long as RL is Markov
with respect to the real system.

3. MPML provides a practical and useful adaptation mechanism to slowly
changing non-stationary environments and life-long learning.

4. The learning outcome is predictable, i.e., when the mismatch is minimized,
the trajectory of the controlled system becomes similar to the trajectory of the
internal model controlled by the nominal controller.

¹ Nominal controller should be Markov with respect to the model.

108 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

One shortcoming of the MPML formulation is that it does not establish safety
guarantees neither during nor after the learning. In contrast to MPML, the recent
work of Ostafew et al. (2016) improves the internal model of NMPC by updating it
usingmachine learning techniques. Their approach guarantees safety after learning
if the unknown disturbance can be modeled as a Gaussian process. In addition, the
necessity for the real-time computation of constraints limits the application of the
approach to low-dimensional systems, although faster processors will mitigate this
problem in the future.

Learning the difference model with RL
The model-based RL-only approach to compensating parametric and structural

uncertainties was proposed in Chapter 5. The approach iteratively improves the
model of Leo by learning the difference model, which reduces the reality gap. The
approach does not require continuity of the system dynamics, objective function,
or constraints , and is therefore very suitable for hybrid systems. However, there is
a higher risk of damage compared to MPML due to two factors. First, there are no
safety barriers that constrain the exploration of potentially dangerous states. Sec-
ond, there are no restrictions imposed on the difference model in the parts of the
state space where supervised-learning data is unavailable.

Independently from the work presented in Chapter 5, Chaĵilygeroudis and
Mouret (2017) proposed not only to learn the difference model, but also to update
the parameters of the idealized model using the data from the reality gap. When
idealized model is far from the true one, their experimental results demonstrate an
improved performance compared to learning using the difference model only.

Recently, several other approaches of using the approximate model were proposed
in literature. These approaches try to improve the robustness of policies using an
ensemble of perturbed models. For example, Rajeswaran et al. (2017) maximizes
the return associated with the worst-case model parameters. In contrast, Yu et al.
(2017) and Clavera et al. (2018) learn a universal policy that performs optimally
across allmodel parameters, therefore avoiding a robustness vs. performance trade-
off. These approaches demonstrate robustness even to model parameters not in-
cluded in the ensemble of models. Finally, the recent extension of the model-based
PILCOmethod developed byGal et al. (2016) and improved byHiguera et al. (2018)
demonstrated the exceptionally quick learning properties formedium-sized control
problems.

In conclusion, for a substantial damage minimization during learning, it is im-
portant either to have an approximatemodel of the robot and its surroundings or to
learn these models concurrently with learning the control policy. This conclusion
follows from the comparison of the model-based and model-free learning results
presented in this thesis, and from the similar observations found in the aforemen-
tioned articles.

7.1.3 Safer learning without the approximate dynamical model
The third research question was formulated to find alternative solutions for safer
learning when the approximate dynamical model is unavailable:

7 Conclusions and future directions 109

Without having the model at hand, is it possible to reduce robot dam-
age by sequencing learning tasks similar to the way humans learn grad-
ually?

As a representative example, Chapter 6 studied whether learning to balance
before learning towalk could reduce the number of robot falls. Curriculum learning
demonstrated a reduced number of falls and a good performance of the final policy.
To achieve similar performance, direct learning required less time, but incurred a
significantly larger number of falls.

This longer-learning outcome is contradictory to other curriculum learning
works, in which the curriculum speeds up learning, e.g. works by Asada et al.
(1996); Heess et al. (2017); Andrychowicz et al. (2017). This contradiction arises
from the nature of RL which implies that learning can succeed only when there is
a chance of solving the task by random actions. Curriculum learning implemented
in the cited articles increases the chances of solving a very difficult task because it
starts with an easier task and shapes the control policy such that it can later solve
a more complex task. In our case, the balancing task is auxiliary because walking
skill does not directly follow from balancing skill, although a connection between
the skills is known in the research field of passive dynamic walkers (Mochon and
McMahon, 1980; Wisse, 2004). Learning this auxiliary balancing task required
additional effort, and thus longer learning time. In the meanwhile, learning first
to balance preconditioned policy parameters, which subsequently protected the
robots against risky actions while learning to walk. In other words, the balancing
policy can be viewed as a backup controller that, in the beginning of learning
to walk, provides safety barriers similar to NMPC in Chapter 4. The difference
with a NMPC-based backup controller is that the balancing policy is gradually
substituted by the walking policy when more walking experience is added to the
replay buffer.

The prior knowledge provided in the form of the tasks and their sequence did
not hamper the final policy performance. This can be aĴributed to the choice of the
tasks and their sequence.

In conclusion, the presented results reinforce the statement regarding the learn-
ing time made in the previous section. A longer learning time does not necessarily
result in more damage. Even without a system model available, curriculum learn-
ing reduces damage to the robot and does not hamper the final policy performance.
Note that the potential for robot damage becomes substantially lower when the
approximate robot model is available, cf. Chapters 4 and 5.

7.2 Directions for future research
Anumber of open issues related to algorithms presented in this thesis are identified
and listed below.

7.2.1 Composite approach towards damage minimization
The process of the robot Leo learning to walk resulted in frequent damage to hard-
ware components (Schuitema, 2012). Since none of the studied exploration strate-

110 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

gies could reduce both the number of falls and the severity of gearbox damage, the
composite approach towards damage minimization is recommended. The list of
recommendations below is sorted with the most effective recommendation first:

• If the approximate model of Leo is available, the combination of the model-
based and model-free controllers proposed in Chapter 4 can be used to speed
up learning, reduce the number of robot falls, and potentially reduce gearbox
fatigue. Since online model predictive control approaches towards hybrid
dynamics are not available yet, a gradient-free optimization method can be
used for deriving a suboptimal control from an approximate model of Leo,
e.g. Nagabandi et al. (2017). Special care should be taken to ensure that the
derived controller is Markov with respect to the model.

• Alternatively, a mental rehearsal can reduce the number of interactions
with the real world, e.g. Chapter 5. The ensembles of slightly perturbed
models can improve the robustness of a trained policy during the mental
rehearsal (Yu et al., 2017; Rajeswaran et al., 2017; Clavera et al., 2018).

• To reduce the damage associated with the gearbox re-engagement, actions
similar to the previous ones should be selected, e.g. using the PADA explo-
ration strategy from Chapter 2. Another possibility of increasing the number
of times the robot can withstand stress before failure is to use more durable
materials, such as hardened steel instead of aluminum. Finally, compliant
actuators integrated into the robot construction can reduce generic impact
forces (Albu-Schaeffer et al., 2008).

• To reduce the severity of heel-strike impacts, high velocities of the feet before
the contact should be penalized by a specifically designed reward function.
An accelerometer or a lower-body model can be used for the velocity estima-
tion purpose.

• Curriculum learning proposed in Chapter 6 can be used to reduce the number
of robot falls that increase due to the PADA exploration strategy.

• To further reduce the number of robot falls, knowledge of the critical states
that lead to falls can be used to constrain exploration or dynamically modify
the exploration strategy, e.g. Mannucci et al. (2018). For walking robots with
statically unstable poses, the information about the critical states should be
propagated, for example by learning a separate failure function similar to the
value function, but at a higher learning rate and at a coarser scale (Schuitema,
2012).

7.2.2 Future directions for safer reinforcement learning research

The following list contains suggestions for improving the presented work. Some
points directly arise from the developed approaches, while the others suggest more
fundamental research directions.

7 Conclusions and future directions 111

• It is important to establish guarantees on the performance and stability of the
MPML approach. A possible direction towards stability can be to guarantee
that NMPC can recover from any RL disturbance in a single step.

• It is equally important to establish guarantees on the learning performance
of RL, e.g. of the difference model approach. The possible number of ways a
physical system may fail increases with the growth of its degrees of freedom
(DoFs). This problem becomes especially pronounced with deep neural net-
work (DNN)-based representations, because they are highly sensitive to an
intentionally manipulated inputs. In computer vision, Papernot et al. (2017)
demonstrated that DNN are vulnerable to black-box adversarial aĴacks. Be-
hzadan andMunir (2017) demonstrated similar results in RL. DNN are easily
fooled by these aĴacks because they do not understand the nature of tasks
they are solving. While there exist a number of brute-force methods to pre-
vent such aĴacks, these aĴacks clearly show that DNN could not yet yield the
level of abstraction required to understand the concepts behind the training
data.

• In terms of safety, it would be useful to compare model-free RL approaches
to those proposed in Chapters 4 and 5 but with a model learned from the ex-
perience, e.g. Deisenroth and Rasmussen (2011); Caarls and Schuitema (2016);
Nagabandi et al. (2017). Since learning the model may result in longer learn-
ing times, it is important to consider if the benefits of safer – but longer –
learning outweigh the repair costs of the hardware.

• A particularly interesting connection can be drawn between models and cur-
riculum learning in the context of generalization. It is well-known that gen-
eralization improves when one uses models of the “right” capacity (Shalev-
Shwarĵ and Ben-David, 2014). On the other hand, the model with a particu-
lar capacity is appropriate for solving a particular task for a particular system.
Curriculum learning provides a framework for building richer and more ab-
stract concepts based on those that are already known. As such, curriculum
learning seems to be a suitable tool for linking the “right”model capacitywith
the difficulty of tasks and environments. If the system model is not available,
curriculum learning coupled with the model-driven exploration can gradu-
ally learn the model of a system or policies resulting in damage, and possibly
reduce the risk of damage.

• The first step in the direction proposed in the previous step, and the direct
continuation of Chapter 6, is to gain safety-related information from the ap-
proximate model of Leo to achieve fail-safe learning. Can Leo learn walking
with just a few falls, if the approximate model of the robot is provided? One
promising solution to this problem is to learn state and action representations
that would comprehend the structure imposed by physics.

The state representation is usually learned from redundant visual or lidar ob-
servations (Jonschkowski and Brock, 2015). However, it would also be useful

112 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

to discover the state representation of denser observations such as measure-
ments of angle and velocity.
Learning the action representations can facilitate transfer between robotic
systems and tasks as long as these systems operate under the laws of physics.²
Such representations may serve as an abstraction layer between the con-
troller and the robot actuators. Here, one can consider possible parallels with
computer vision, where the layers of DNN learn local features that merge
into more complex structures at deeper layers. These features are universal
and can be reused for training on new datasets or problems (Shelhamer
et al., 2017). The pre-trained network imposes implicit constraints on neuron
weights, thereby guiding the learning towards minima that support beĴer
generalization and faster convergence (Erhan et al., 2010).
The proposed state and action representations would facilitate safer learning
even when applied to generic problems. Finding such representations would
be a major scientific break-through in the upcoming years.

• This thesis showed that curriculum learning is very promising for reducing
the damage of walking robots. This hypothesis was inspired by knowledge of
infants’ development and post-stroke rehabilitation. The important issue to
consider is whether curriculum learning can be applied to other robots for the
purpose of damage reduction. Selection of the relevant tasks – that is, reward
functions – is another open issue, which needs to be addressed in the future.

• To address the previous point, one can simplify the problem by first automat-
ing the specification of a single reward function for solving a single task. This
is itself a challenging problem, because the proper reward function encodes
the essential understanding of the task and the system. This knowledge is usu-
ally provided either by human (Popov et al., 2017) or obtained from demon-
strations using inverse RL (Abbeel andNg, 2004). However, similar to the pre-
vious points, the laws of physics and spacial rules of geometry are uniform
for all real systems. Therefore, robotic systems and tasks can share similar-
ity beyond the currently considered penalties on the control signals and jerk.
Developing approaches to account for such similarity in the reward function
could be an exciting avenue to explore. These approaches initialized with
physics-based knowledge could discover platform- and task-specific reward
functions through self-learning, e.g. guided solely by the intrinsic motiva-
tion. In such a seĴing, human would provide only a goal-directed part of the
reward.

• The behavior of the exploration strategies is generic and should hold for
model-free or model-based, discrete or continuous RL algorithms as well as
other physical systems. For example, results in Chapter 2 are obtained for the
SARSA algorithm with discretized states and control actions. To implement
this strategy for continuous states and actions, the actor-critic algorithm can

² This idea is related to dynamicmovement primitives or hierarchical RL, although these representations
are usually learned for a specific system and task.

7 Conclusions and future directions 113

learn the delta-action that is added to the previously applied action. Similarly
to the PADA results, these bounded delta-actions will affect systems with
unstable dynamics such as generic bipedal robots. It is expected that this
strategy will increase the number of robot falls but reduce the damage due
to the gearbox re-engagement. Van Hoof et al. (2017a) already explored
this idea, although the reduction of damage by this strategy was neither
calculated nor evaluated experimentally.

• Memorizing a backup controller learned from solving each task in the curricu-
lum can provide an aĴractive enhancement to the basic approach described
in this thesis. Such enhancement, e.g. achieved by means of progressive net-
works (Rusu et al., 2017), can provide a backup solution during the whole
training time and not only in the beginning of learning. Potentially, this can
further reduce the number of robot falls incurred during the learning.

• Suppressing the difference model in the parts of the state space, where
supervised-learning data is unavailable, may yield steadier policy improve-
ment by the algorithm proposed in Chapter 5.

Working with hardware is challenging. However, working with it is essential if
one wants not only to solve practical robotic problems but also to gain new insights
that might not be possible to perceive in simulated environments.

Acknowledgements

First and foremost, I would like to thank my promoters, Heike Vallery and Robert
Babuška, for their continued support throughout my Ph.D. studies. Both Heike
and Robert provided invaluable advice on many topics. They were always open
for discussion due to which the research steadily progressed forward. No maĴer
how busy they were, they always found the time to read the articles I was writing,
provide constructive suggestions and keep a critical aĴitude towards the results.
All this helped me enormously with sharpening ideas, developing new ones and
finally publishing them. I would also like to thank Wouter Caarls whose expertize
and knowledge of reinforcement learning has proven to be priceless. Although of-
ficially he was not my supervisor, he has commiĴed to Skype meetings every other
week, and we were communicating like that for four years almost without inter-
missions. I truly appreciate this mindset of Wouter. Wouter also provided many
advise on the articles, taught me a structured and analytical approach towards sci-
ence. This work would not have been possible without the encouragement and
enthusiasm of Heike, Robert and Wouter. Also, I would like to thank Jens Kober
and Tim de Bruin for their keen insights, ideas and help with fellowship proposal
writing.

Second, I would like to thank all my colleagues – who also became my good
friends – at TU Delft BioRobotics Lab. I really liked their curious minds and open
hearts that welcomed me in the Netherlands and made my life there very pleas-
ant. Joost van der Weijde and Erik Vlasblom, whom I met in the first days after
my arrival in the Netherlands, became my close friends and also paranymphs of
the Ph.D. defense ceremony. I absolutely enjoyed our countless and funny talks
about science, food, Japan, Korea, Netherlands, and aĴitude towards life. The four
years of research would be much more problematic without Gijs van der Hoorn
who took the responsibility of administrating computing servers and ensured that
all tasks were running smoothly (and usually until the end). Special thanks go to
Andrew Berry, Patricia Baines and Pavlo Bazilinskyy who helped me to proofread
and polish dissertation texts. I have learned a lot from their feedback.

Every year we had several activities in our lab. I will miss our summer BBQs
at Heike’s house, Christmas Feuerzangenbowle, and occasional sports events. But
most of all, I will miss our daily routine of lunches, coffee breaks, and borrels that
we had together with Mukunda Bharatheesha, Carlos Hernandez Corbato, Tim
Vercruyssen, Daniel Lemus Perez, Laurens Valk, Jeff van Egmond, Michiel Plooij,
Wouter Wolfslag, Saher Jabeen, Martin Klomp, Ruben Burger, and other people
mentioned above. This was an indispensable time to learn something new about
theNetherlands or other countries, share food, and receivemuch advice about stud-
ies and research.

I am also thankful to Erik Schuitema for developing the robot Leo that kept me

116 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

busy for four years. Many thanks go to Jan van Frankenhuyzen and Guus Liqui
Lung who helped me with repairing the robot and maintaining it in good shape.

I would like to thank the department of BioMechanical Engineering and Grad-
uate School of TU Delft for providing management and accounting support and
for solving occasional problems. In particular, many thanks go to Nancy Kouters,
Mirjam Bierhuizen, Hanneke Hustinx, Sabrina Ramos Rodrigues, andMascha Top-
penberg.

Many thanks go to my friends at TU Delft – Gleb Polevoy, Nikita Lenchenkov,
Pavlo Bazilinskyy, Alexey Ilyushkin, Natalia Vtyurina, and others – for being there
with me when I have had ups and downs which are inevitable for almost any Ph.D.
student.

Last but not least, I would like to thank my parents, grandfather, and brother
for all their support and love throughout my life.

Ivan Koryakovskiy
Moscow, October 2018

A
Experimental setups

118 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

A.1 Bipedal walking robot Leo

Abipedal robot Leowas designed by Erik Schuitema in 2010 at theDelft Biorobotics
Lab (Schuitema, 2012). This section gives a description of the robot.

Leo is the 2D bipedal robot. It is shown in Figure A.1. The robot hardware is
designed with the purpose of conducting hours of autonomous learning. Leo is
small (50 cm) in size and light-weight (1.7 kg). Foam bumpers are aĴached on both
sides of the torso top and between the hip motors to secure the robot from dam-
age due to falls in the wide range of configurations. Additionally, elastic couplings
are added for protection of built-in motor gearboxes. Leo is connected to a boom
at its right hip with power provided through a freely rotating joint. The on-board
embedded computer (VIA Eden 1.2GHz CPU and 1GB RAM) communicates over
RS-485 serial ports with servo motors. Although it is possible to run a standalone
real-time software on the embedded computer, an external computer is used for
resource-intensive algorithms. The communication between the embedded and ex-
ternal computers is established over Ethernet using ZeroMQ library. While this
communication channel obstructs from using the real-time software, in practice it
does not pose a serious problem for learning.

Leo has seven motors, two for each hip, knee, and ankle, and the last one for a
shoulder. A single arm facilitates preprogrammed stand up motion thereby deliv-
ering a completely autonomous learning platform. All joints and the torso-to-boom
connection are equippedwithmagnetic encoders that provide anglemeasurements.
The resulting state vector consists of the angles 𝝓 and angular velocities ̇𝝓 of all
joints and the torso-to-boom connection, as well as the feet contact indicators mea-
sured by the pressure sensors located at toes and heels of each foot. The angular
velocities are calculated using the finite difference and second order BuĴerworth fil-
ters applied to the angular positions𝝓. The on-board operating system implements
a fixed 30ms sampling period of the state vector. Temperature measurements are
provided every minute by the dedicated sensors located in each motor.

All sevenmotors are actuated in a voltage controlmodewith themaximumabso-
lute voltage of 10.8V. The original robot design adopted Dynamixel RX-28 motors
which were used in Chapter 2. In the later chapters, these motors were upgraded
to newer Dynamixel XM-430-W210-R version, which supports voltage (PWM) and
torque control modes, have built-in magnetic encoders and a beĴer heat transfer.

In this thesis, two simulators are used for the robot modeling. The first
simulator developed by Schuitema (2012) is based on the Open Dynamics En-
gine (ODE) (Smith, 2011). The second simulator, Rigid Body Dynamics Library
(RBDL) (Felis, 2017b,a), uses Articulated Body Algorithm by Featherstone (2008).
The laĴer simulator has an advantage over ODE in that is allows to initialize Leo
in an arbitrary state and extract an additional information such as the position
and velocity of the center of mass, or the angular momentum. Both simulators use
similar models of Leo and deliver similar results. Table A.1 summarizes geometric
properties of the schematic model of Leo shown in Figure A.2.

The ODE and RBDL simulators require torques as input signals. The following
simplified model for a DC motor with the gearbox is used to calculate the joint

A Experimental setups 119

Figure A.1: A 2D bipedal walking robot Leo designed by Schuitema (2012) to conduct hours of learning
experiments with a minimal human assistance. A boom enforces sideways stability, provides power to
the robot and lets it walk in circles. A single arm facilitates preprogrammed stand up motion.

torque 𝜏 resulting from the motor voltage 𝑈 :

𝜏 = 𝐾𝜏𝐾G
𝑈 − 𝐾𝜏𝐾G

̇𝜙
𝑅 ,

where 𝐾𝜏 = 6.33 ⋅ 10−3NmA−1 is the motor’s torque constant, 𝐾G = 212.6 is the
gearbox ratio, and 𝑅 = 4.6Ω is the winding resistance¹.

The difficulty of working with the real robot arises from its fragile hardware as
well as model structure and parameter uncertainties. For instance, the experiments
conducted by Schuitema (2012) revealed that the motor gearboxes are highly sus-
ceptible to the damage that arises due to the random exploration and the touch-
down impacts experienced in certain robot states. In particular, the author showed
that gearboxes broke every 30min on average during the locomotion learning.

The model-plant mismatch arises due to the following model structure and pa-
rameter uncertainties. Note that the simulators do not account for these uncertain-
ties.

• A large communication delay of 13.0±1.7ms, which comprisesmeasurement,
computation and actuation delays. This delay violates Markov property and
significantly hampers the learning performance.

¹ These parameters are equivalent to the Dynamixel XM-430-W210-R motor parameters.

120 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

g

𝜙b

−𝜙h,sw

−𝜙k,sw

𝜙a,sw

𝑙ul

𝑙ll

𝑦ul𝑐
𝑥ul𝑐

𝐽ul 𝑚ul

𝑥ll𝑐
𝐽ll 𝑚ll

𝑦ll𝑐

𝑦t𝑐
𝑥t

𝑐

𝐽 t 𝑚t

𝑥f
𝑐

𝐽 f𝑚f

𝑦f𝑐

𝑙f

𝑙t

𝜙a,st

𝜙h,st

𝑥a
𝑐

𝐽 a 𝑚a

𝑙a𝑦a𝑐

FigureA.2: Simulationmodel of Leo designed by Schuitema (2012). The left picture shows the parameter
definitions with values given in Table A.1. The right picture shows the DoFs of the model.

• A Coulomb and viscous friction that depend on the motor temperature and
the applied torque.

• The approximate value of the motor’s torque constant.

A.2 The inverted pendulum on a movable cart
The cart-pendulum system is shown in Figure A.3. The system consists of a cart
with mass 𝑚𝑀 and a pendulum that is aĴached to the cart’s center of mass 𝑐𝑀.
The pendulum is a point mass 𝑚𝑚 aĴached at the end of a massless rod of length
𝑙. The system has two DoFs, namely the linear motion of the cart along the 𝑥-axis,
described here by the coordinate 𝑠 ∈ ℝ, and the rotary motion of the pendulum
with respect to the cart, described by the angle 𝜙 ∈ ℝ. The only actuation is realized
by a horizontal force 𝐹𝑠 ∈ ℝ acting on the cart body.

By summarizing the positions, velocities and accelerations in 𝒒 = [𝑠, 𝜙]⊤, ̇𝒒 =
[̇𝑠, ̇𝜙]⊤ and ̈𝒒 = [̈𝑠, ̈𝜙]⊤, the forward dynamics are given by

̈𝒒 = (𝐇(𝒒))−1 (𝑭 − 𝑩(𝒒, ̇𝒒)) ,

A Experimental setups 121

Table A.1: Parameter values of the simulation model of Leo, where 𝑚 is the mass, 𝐽 is the moment of
inertia, 𝑙 is the joint length, 𝑦𝑐 is the vertical center of mass offset, 𝑥𝑐 is the horizontal center of mass
offset of all body parts. The table is adapted from Schuitema (2012) to reflect changes in Leo after the
motor upgrade.

torso torso
+ boom upper leg lower leg foot arm boom

𝑚 (kg) 0.942 1.260 0.200 0.137 0.073 0.095 0.860
𝐽 (gm2) 4.68 8.71 0.273 0.153 0.0488 0.873 319
𝑙 (mm) 212 212 116 109 81 −300 1700
𝑦𝑐 (mm) 131 97 63 61 31 148 0
𝑥𝑐 (mm) −1 0 3 8 0 14 835

𝑚𝑀 𝑐𝑀
𝐹𝑠

𝑐𝑚

𝑥
𝑦

𝑠

𝜙

𝑚𝑚

𝑙

0

Figure A.3: The inverted pendulum on a movable cart.

where 𝐇 ∈ ℝ2×2 is the system’s mass matrix and 𝑩 contains Coriolis, centrifugal,
and gravitational terms and 𝑭 = [𝐹𝑠, 𝜏𝜙]⊤ ∈ ℝ2 denotes the actual actuation con-
sisting of the one for the cart and for the pendulum.

We use the RBDL (Felis, 2017b,a) for the efficient evaluation of the system’s for-
ward dynamics using the Articulated Body Algorithm by Featherstone (2008). The
respective dynamic system in the form of an ordinary differential equation (3.1b)
and initial values (3.3a) are retrieved from the forward dynamics.

For simulations, we use the following parameters:

𝑚𝑀 = 10.0kg; 𝑚𝑚 = 1kg; 𝑙 = 0.5m; 0 s ≤ 𝑡 ≤ 5 s.
The cart and the pendulum are subject to simple constraints that enforce limits on
the cart position and applicable force

−2.4m ≤ 𝑠(𝑡) ≤ 2.4m, −150N ≤ 𝐹𝑠(𝑡) ≤ 150N.
In the experiment with unknown viscous friction coefficient, the internal torque in
the rotary joint of the pendulum is 𝜏𝜙 = −𝜅𝜇 ̇𝜙, where 𝜅 is a coefficient that depends

122 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

on the configuration of the rotary joint, and 𝜇 is a viscous friction coefficient. We
choose 𝜅 = 1m2, and vary 𝜇 in the range

0.0Nsm−2 ≤ 𝜇 ≤ 0.2Nsm−2.

B
Additional results

124 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

B.1 Influence of the reward shaping on the trajectory
cost

The results of the effect of the shaping weight 𝜓 on the cost (3.5) are presented
in Figure B.1. According to the graph, for a shaping weight of up to 20, the total
cost reduces, and then starts increasing again. Note that the total cost is calculated
using (3.6), which does not include the shaping weight 𝜓. The error in position is
more volatile, but one may notice that it gets smaller for higher shaping weights.
We selected 𝜓 = 20, because our primary goal was to reduce the total cost and
accept a moderate steady-state error.

B.2 Influence of the discount rate on learning with
MPML*

According to Corollary 1, MPML with the discount rate 𝛾 > 0 can minimize the
mismatch beĴer than with 𝛾 = 0. However, 𝛾 > 0 may hamper the learning perfor-
mance because MPML with 𝛾 > 0 minimizes the expected future mismatch, which
is more challenging computationally. To investigate the influence of 𝛾, two addi-
tional experiments are performed for the multiple values of 𝛾 on two models of
Leo.

The first model is the realistic model of Leo described in Section 4.5.1. The differ-
ence with the idealizedmodel is mild, and the constraints in Section 4.5.2 are rather
loose. Therefore, it is expected that for every state it is possible to find a control
signal that eliminates the Coulomb friction. According to Corollary 1, MPML with
𝛾 = 0 can minimize the mismatch beĴer than with 𝛾 > 0.

In the second model, the torsion spring of stiffness 𝐾hip = 3.50Nmrad−1 is
introduced in robot’s hip joints. The spring results in the additional torque applied
at the hips,

Δ𝜏hip = −𝐾hip (𝝓hip − ̄𝝓hip) ,

where ̄𝝓hip = 1.03 rad corresponds to the hip angle when the robot reaches the
upper setpoint. Although thismodification does not apply to real Leo, it can imitate
the stiffness of leg wires in other robots. The high stiffness forces RL to search for
alternative means to minimize the mismatch because it is not possible to find such
𝒖RL signal that eliminates the mismatch. According to Corollary 1, MPML with
𝛾 > 0 should minimize the mismatch beĴer than with 𝛾 = 0.

Figure B.2a shows simulation results on the first model. As expected, 𝛾 = 0
achieves the smallest mismatch, which almost monotonically increases with 𝛾. A
different picture is seen in Figure B.2b for the hip springs model. It turns out that
𝛾 ∈ [0.5, 0.6] finds solutions with lower mismatch and the number of squats closer
to the idealized model. Surprisingly, 𝛾 = 0 also performs relatively well.

The smaller values of 𝛾 break the ties between the present and future mismatch,
therefore, allowing a more efficient mismatch minimization. However, this

* This appendix is not a part of the published article.

B Additional results 125

0 5 10 15 20 25 30 35 40 45 50
Shaping weight 𝜓

0

0.05

0.1

0.069 0.075 0.079 0.063 0.058 0.065 0.066 0.055 0.065 0.054 0.054

|𝑠
|(
m

)

0 5 10 15 20 25 30 35 40 45 50
Shaping weight 𝜓

19.5

20

20.5

21

19.88 19.85 19.80
*

19.77
*

19.76
*

19.88 19.80
*

19.99 20.04 20.28

*

20.59

*

ℒ(
𝜁)

Figure B.1: Influence of the shaping function on the results of the “RL” method. The top plot shows the
absolute error in the cart position at the end of an episode depending on the weight 𝜓 of the shaping
function. The boĴom plot shows the total cost of the trajectory. Shaping is not used for 𝜓 = 0. The
numbers inside of the bars show the mean value of the error averaged over 50 independent runs, while
the error bars show the upper and lower 95% confidence limits. The statistically significant result, for
which the 𝑝-value is less then 0.05, is marked with ∗ above the bars.

requires the possibility of reaching zero mismatch for every state of the idealized
trajectory. Three situations of when this is not possible are listed below.

1. Intended cautiousness in the face of uncertainty forced by the tight constraints
on 𝒖RL.

2. Themodel-plantmismatch is such that idealizedNMPC state-space trajectory
is not realizable on a real system.

3. Large policy approximation errors, which may happen due to the regulariza-
tion of policy parameters or a chosen function approximator.

In such situations, using 𝛾 > 0 is preferable.

126 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

0.09
0.10
0.11

ℰu

0.050
0.075ℰl

0.0 0.5 1.0
Discount rate 𝛾

3.0

3.5

Sq
ua

ts

(a) Coulomb friction

0.5

0.6

ℰu

2.5
5.0

ℰl

0.0 0.5 1.0
Discount rate 𝛾

2
4

Sq
ua

ts

(b) Hip springs

Figure B.2: These plots illustrate the results ofMPMLafter learning on the Leomodel subject to Coulomb
friction (a) and on the model with added hip springs (b). Each subplot shows the model-plant mismatch
accumulated during reaching the upper (top) and the lower (middle) setpoints, and the number of squats
(boĴom). Means with upper and lower 95% confidence limits are shown for five runs.

B.3 The mass distribution of Leo and Roboschool sys-
tems vs. human

Table B.1 compares the ratios of the upper-body mass to the total body mass for
the studied systems vs. the human body. The presented result reveals that Leo’s
body is very similar to the human body. On the other hand, all Roboschool systems
(Hopper, Halfcheetah, Walker2d) have a very different distribution of mass, with
Walker2d having the least similarity to the human body.

B.4 Curriculum learning with samples obtained from
different models

Figure B.3 compares the 3-task curriculum learning performance in two cases. In
the first case, the upper-body balancing samples are removed from the replay buffer
after the first task is completed (ѝѣ+ѝѣ⋅џя). In the second case, the samples are kept
in the reply buffer until the end of learning (ѝѣ⋅џя+ѝѣ⋅џя). It can be seen that the џя
option appears to have a negative influence on the total reward, the number of robot
falls, and the walking distance of Leo. The changing system dynamics between the
upper-body andwhole-body balancing tasks can explain this outcome. Since the џя
option improves the performance of the 2-task curriculum, we conclude that only
the upper-body balancing samples are detrimental for learning on the whole-body
model.

B Additional results 127

Table B.1: This table compares the mass distribution of the studied systems vs. human. The masses of
the Roboschool systems are calculated directly from the Bullet Physics Engine.

System Upper-body mass to the total body mass Reference

Human 0.678 Winter (2009)
Leo 0.642 Schuitema (2012)
Hopper 0.232
Halfcheetah 0.248
Walker2d 0.155

0

2

Re
tu
rn
,×

10
3

BAL1 BAL2

3
4

6

Fa
lls
,×

10
3

ѝѣ
ѝѣ⋅џя ѝѣ⋅џя

ѝѣ⋅џя
Curriculum options

0

10

D
is
ta
nc
e

𝑆
(m

)

Figure B.3: Three-task curriculum learning results on Leo (left group) without the replay buffer transfer
from the upper-body balancing task to the whole-body balancing task, and (right group)with the replay
buffer transfer. The џя option appears to have a negative influence on the total reward and the walk-
ing distance of Leo. The optimal performance of the TIM strategy is shown by the red dashed line, cf.
Figure 6.7.

Bibliography

Abbeel, P., Coates, A., and Ng, A. Y. (2010). Autonomous Helicopter Aerobat-
ics Through Apprenticeship Learning. International Journal of Robotics Research,
29(13):1608–1639.

Abbeel, P. andNg, A. Y. (2004). Apprenticeship Learning via Inverse Reinforcement
Learning. In International Conference on Machine Learning, page 1.

Abbeel, P., Quigley, M., and Ng, A. Y. (2006). Using Inaccurate Models in Rein-
forcement Learning. In International Conference on Machine Learning, pages 1–8.

Adolph, K. and Robinson, S. (2013). The Road to Walking: What Learning to Walk
Tells Us About Development. Oxford handbook of developmental psychology, 1:403–
443.

Adolph, K. E., Berger, S. E., andLeo, A. J. (2011). Developmental Continuity? Crawl-
ing, Cruising, and Walking. Developmental science, 14(2):306–318.

Albu-Schaeffer, A., Eiberger, O., Grebenstein, M., Haddadin, S., OĴ, C., Wimbock,
T., Wolf, S., and Hirzinger, G. (2008). Soft Robotics: From Torque Feedback Con-
trolled Lightweight Robots to Intrinsically Compliant Systems. IEEE Robotics and
Automation Magazine, 15:20–30.

Albus, J. S. (1975). A NewApproach to Manipulator Control: the Cerebellar Model
Articulation Controller (CMAC). Journal of Dynamic Systems, Measurement, and
Control, 97(3):220–227.

Alpaydın, E. (2014). Introduction to Machine Learning. MIT Press, 3 edition.

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., Mc-
Grew, B., Tobin, J., Abbeel, P., and Zaremba, W. (2017). Hindsight Experience
Replay. In Advances in Neural Information Processing Systems, pages 5048–5058.

Asada,M., Noda, S., Tawaratsumida, S., andHosoda, K. (1996). Purposive Behavior
Acquisition for a Real Robot by Vision-Based Reinforcement Learning. Machine
Learning, 23(2):279–303.

Bachrach, A., He, R., and Roy, N. (2009). Autonomous Flight in Unknown Indoor
Environments. International Journal of Micro Air Vehicles, 1(4):217–228.

Bansal, T., Pachocki, J., Sidor, S., Sutskever, I., and Mordatch, I. (2017). Emergent
Complexity via Multi-Agent Competition. arXiv:1710.03748.

130 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

Barto, A. G., SuĴon, R. S., and Anderson, C. W. (1983). Neuronlike Adaptive Ele-
ments That Can Solve Difficult Learning Control Problems. IEEE Transactions on
Systems, Man, and Cybernetics, 13(5):834–846.

Bayiz, Y. E. and Babuska, R. (2014). Nonlinear Disturbance Compensation and Ref-
erence Tracking via Reinforcement Learning With Fuzzy Approximators. IFAC
Proceedings Volumes, 47(3):5393 – 5398.

Behzadan, V. and Munir, A. (2017). Vulnerability of Deep Reinforcement Learn-
ing to Policy Induction AĴacks. In Machine Learning and Data Mining in PaĴern
Recognition, pages 262–275.

Bengio, Y., Louradour, J., Collobert, R., andWeston, J. (2009). Curriculum Learning.
In International Conference on Machine Learning, pages 41–48.

Berger, S. E., Theuring, C., and Adolph, K. E. (2007). How andWhen Infants Learn
to Climb Stairs. Infant Behavior and Development, 30(1):36 – 49.

Bhatnagar, S., SuĴon, R. S., Ghavamzadeh, M., and Lee, M. (2009). Natural Actor-
Critic Algorithms. TR09-10, University of Alberta, Canada.

Biegler, L. T. (2013). A Survey on Sensitivity-based Nonlinear Model Predictive
Control. In IFAC International Symposium on Dynamics and Control of Process Sys-
tems, pages 499–510.

Bock, H. G., Diehl, M., Kostina, E. A., and Schlöder, J. P. (2007). Constrained Op-
timal Feedback Control of Systems Governed by Large Differential Algebraic
Equations. In Biegler, L., GhaĴas, O., Heinkenschloss, M., Keyes, D., and van
Bloemen Waanders, B., editors, Real-Time PDE-Constrained Optimization, chap-
ter 1, pages 3–24. SIAM.

Bock, H. G. and PliĴ, K. J. (1984). AMultiple ShootingAlgorithm for Direct Solution
of Optimal Control Problems. In IFAC World Congress, pages 242–247.

Botev, Z. I., Kroese, D. P., Rubinstein, R. Y., and L’Ecuyer, P. (2013). The Cross-
Entropy Method for Optimization. In Handbook of statistics, volume 31, pages
35–59.

de Bruin, T., Kober, J., Tuyls, K., and Babuska, R. (2016). Improved Deep Reinforce-
ment Learning for Robotics Through Distribution-Based Experience Retention.
In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 3947–
3952.

Caarls, W. (2015). Generic Reinforcement Learning Library. https://github.
com/wcaarls/grl.

Caarls, W. and Schuitema, E. (2016). Parallel Online Temporal Difference Learning
for Motor Control. IEEE Transactions on Neural Networks and Learning Systems,
27(7):1457–1468.

https://github.com/wcaarls/grl
https://github.com/wcaarls/grl

BIBLIOGRAPHY 131

Calandra, R., Seyfarth, A., Peters, J., and Deisenroth, M. P. (2016). Bayesian Opti-
mization for Learning Gaits Under Uncertainty. Annals of Mathematics and Artifi-
cial Intelligence, 76(1):5–23.

Cardona, G. A., Moreno, W., Weiĵenfeld, A., and Calderon, J. M. (2016). Reduction
of Impact Force in Falling Robots Using Variable Stiffness. In IEEE SoutheastCon,
pages 1–6.

Chaĵilygeroudis, K. I. and Mouret, J.-B. (2017). Using Parameterized Black-Box
Priors to Scale Up Model-Based Policy Search for Robotics. arXiv:1709.06917.

Christiano, P., Shah, Z., Mordatch, I., Schneider, J., Blackwell, T., Tobin, J., Abbeel,
P., and Zaremba, W. (2016). Transfer From Simulation to Real World Through
Learning Deep Inverse Dynamics Model. arXiv:1610.03518.

Clavera, I., Nagabandi, A., Fearing, R. S., Abbeel, P., Levine, S., and Finn, C. (2018).
Learning to Adapt: Meta-Learning for Model-Based Control. arXiv:1803.11347.

Cutler, M., Walsh, T. J., and How, J. P. (2014). Reinforcement Learning With Multi-
Fidelity Simulators. In IEEE International Conference on Robotics and Automation,
pages 3888–3895.

DaĴa, A. and Xing, L. (1998). The Theory and Design of Adaptive Internal Model
Control Schemes. In American Control Conference, volume 6, pages 3677–3684.

Deisenroth, M. P., Fox, D., and Rasmussen, C. E. (2015). Gaussian Processes for
Data-Efficient Learning in Robotics and Control. IEEE Transactions on PaĴern
Analysis and Machine Intelligence, 37(2):408–423.

Deisenroth, M. P. and Rasmussen, C. E. (2011). PILCO: A Model-Based and Data-
Efficient Approach to Policy Search. In International Conference on Machine Learn-
ing.

Diehl, M. (2001). Real-Time Optimization for Large Scale Nonlinear Processes. PhD
thesis, Heidelberg University.

Diehl, M., Bock, H. G., and Schlöder, J. P. (2005). A Real-Time Iteration Scheme for
Nonlinear Optimization in Optimal Feedback Control. SIAM Journal on Control
and Optimization, 43(5):1714–1736.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and Abbeel, P. (2016). Benchmark-
ing Deep Reinforcement Learning for Continuous Control. In International Con-
ference on Machine Learning, pages 1329–1338.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive Subgradient Methods for On-
line Learning and Stochastic Optimization. Journal of Machine Learning Research,
12:2121–2159.

Endo, G., Morimoto, J., Matsubara, T., Nakanishi, J., andCheng, G. (2008). Learning
CPG-based Biped Locomotion with a Policy Gradient Method: Application to a
Humanoid Robot. International Journal of Robotics Research, 27(2):213–228.

132 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

Engel, J.-M. and Babuska, R. (2014). On-line Reinforcement Learning for Nonlinear
MotionControl: Quadratic andNon-Quadratic Reward Functions. In IFACWorld
Congress, volume 19, pages 7043–7048.

Erez, T., Lowrey, K., Tassa, Y., Kumar, V., Kolev, S., and Todorov, E. (2013). An
Integrated System for Real-Time Model Predictive Control of Humanoid Robots.
In IEEE-RAS International Conference on Humanoid Robots (Humanoids), pages 292–
299.

Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., and Bengio, S.
(2010). Why Does Unsupervised Pre-Training Help Deep Learning? Journal of
Machine Learning Research, 11(Feb):625–660.

Ernst, D., Glavic, M., Capitanescu, F., and Wehenkel, L. (2009). Reinforcement
Learning Versus Model Predictive Control: A Comparison on a Power System
Problem. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
39(2):517–529.

Farchy, A., BarreĴ, S., MacAlpine, P., and Stone, P. (2013). Humanoid Robots Learn-
ing to Walk Faster: From the Real World to Simulation and Back. In International
Conference on Autonomous Agents and Multi-Agent Systems, pages 39–46.

Farshidian, F., Neunert, M., and Buchli, J. (2014). Learning of Closed-Loop Motion
Control. In International Conference on Intelligent Robots and Systems, pages 1441–
1446.

Featherstone, R. (2008). Rigid BodyDynamics Algorithms. Kluwer international series
in engineering and computer science: Robotics. Springer.

Felis, M. (2012-2017a). Rigid Body Dynamics Library (RBDL). https://
bitbucket.org/rbdl/rbdl.

Felis, M. L. (2017b). RBDL: an Efficient Rigid-Body Dynamics Library using Recur-
sive Algorithms. Autonomous Robots, 41(2):495–511.

Finn, C., Tan, X. Y., Duan, Y., Darrell, T., Levine, S., and Abbeel, P. (2015). Learning
Visual Feature Spaces for RoboticManipulationWith Deep Spatial Autoencoders.
arXiv:1509.06113.

Fisac, J. F., Akametalu, A. K., Zeilinger, M. N., Kaynama, S., Gillula, J. H., and
Tomlin, C. J. (2017). A General Safety Framework for Learning-Based Control in
Uncertain Robotic Systems. arXiv:1705.01292.

Frasch, J. V., Wirsching, L., Sager, S., and Bock, H. G. (2012). Mixed–Level Itera-
tion Schemes for Nonlinear Model Predictive Control. IFAC Proceedings Volumes,
45(17):138 – 144.

Fulton, N. and Plaĵer, A. (2018). Safe Reinforcement Learning via FormalMethods.
In AAAI Conference on Artificial Intelligence.

https://bitbucket.org/rbdl/rbdl
https://bitbucket.org/rbdl/rbdl

BIBLIOGRAPHY 133

Gal, Y., McAllister, R., and Rasmussen, C. E. (2016). Improving PILCO With
Bayesian Neural Network Dynamics Models. In Data-Efficient Machine Learning
Workshop at International Conference on Machine Learning.

Gamboa Higuera, J. C., Meger, D., and Dudek, G. (2017). Adapting Learned
Robotics Behaviours Through Policy Adjustments. In IEEE International Confer-
ence on Robotics and Automation.

Garcia, J. and Fernandez, F. (2015). A Comprehensive Survey on Safe Reinforce-
ment Learning. Journal of Machine Learning Research, 16:1437–1480.

Gehring, C. and Precup, D. (2013). Smart Exploration in Reinforcement Learning
Using Absolute Temporal Difference Errors. In International Conference on Au-
tonomous Agents and Multi-Agent Systems, pages 1037–1044.

Geibel, P. andWysoĵki, F. (2011). Risk-Sensitive Reinforcement Learning Applied
to Control under Constraints. arXiv:1109.2147.

Graves, A., Bellemare, M. G., Menick, J., Munos, R., and Kavukcuoglu, K. (2017).
AutomatedCurriculumLearning forNeuralNetworks. In International Conference
on Machine Learning, volume 70, pages 1311–1320.

Grondman, I., Vaandrager, M., Busoniu, L., Babuska, R., and Schuitema, E. (2012).
Efficient Model Learning Methods for Actor-Critic Control. IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics, 42(3):591–602.

Gu, S., Holly, E., Lillicrap, T., and Levine, S. (2017). Deep Reinforcement Learn-
ing for Robotic Manipulation With Asynchronous Off-Policy Updates. In IEEE
International Conference on Robotics and Automation, pages 3389–3396.

Gu, S., Lillicrap, T., Sutskever, I., and Levine, S. (2016). Continuous Deep Q-
Learning With Model-Based Acceleration. In International Conference on Machine
Learning, pages 2829–2838.

Ha, S. and Liu, C. K. (2015). Multiple Contact Planning for Minimizing Damage
of Humanoid Falls. IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems.

Ha, S. and Yamane, K. (2015). ReducingHardware Experiments forModel Learning
and Policy Optimization. In IEEE International Conference on Robotics and Automa-
tion.

Hanna, J. P. and Stone, P. (2017). GroundedAction Transformation for Robot Learn-
ing in Simulation. In AAAI, pages 3834–3840.

Hans, A., Schneegass, D., Schafer, A. M., and Udluft, S. (2008). Safe Exploration
for Reinforcement Learning. In European Symposium on Artificial Neural Networks,
pages 143–148.

134 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

Hansen, N. and Ostermeier, A. (2001). Completely Derandomized Self-Adaptation
in Evolution Strategies. Evolutionary Computation, 9(2):159–195.

Heess, N., TB, D., Sriram, S., Lemmon, J., Merel, J., Wayne, G., Tassa, Y., Erez, T.,
Wang, Z., Eslami, S. M. A., Riedmiller, M. A., and Silver, D. (2017). Emergence of
Locomotion Behaviours in Rich Environments. arXiv:1707.02286.

Heess, N., Wayne, G., Tassa, Y., Lillicrap, T. P., Riedmiller, M. A., and Sil-
ver, D. (2016). Learning and Transfer of Modulated Locomotor Controllers.
arXiv:1610.05182.

Heger, M. (1994). Consideration of Risk in Reinforcement Learning. In Machine
Learning Proceedings, pages 105 – 111.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., and Meger, D. (2017).
Deep Reinforcement Learning that MaĴers. arXiv:1709.06560.

Herdt, A., Diedam, H., Wieber, P.-B., Dimitrov, D., Mombaur, K., and Diehl, M.
(2010). Online Walking Motion Generation with Automatic Foot Step Placement.
Special Issue: Section Focused on CuĴing Edge of Robotics in Japan, 24(5-6):719–737.

Hester, T., Quinlan, M., and Stone, P. (2012). RTMBA: A Real-Time Model-Based
Reinforcement Learning Architecture for Robot Control. In IEEE International
Conference on Robotics and Automation, pages 85–90.

Higgins, I., Pal, A., Rusu, A., MaĴhey, L., Burgess, C., Priĵel, A., Botvinick, M.,
Blundell, C., and Lerchner, A. (2017). DARLA: Improving Zero-Shot Transfer
in Reinforcement Learning. In International Conference on Machine Learning, vol-
ume 70, pages 1480–1490.

Higuera, J. C. G., Meger, D., and Dudek, G. (2018). Synthesizing Neural
Network Controllers With Probabilistic Model-Based Reinforcement Learning.
arXiv:1803.02291.

van Hoof, H., Neumann, G., and Peters, J. (2017a). Non-parametric Policy Search
with Limited Information Loss. Journal of Machine Learning Research, 18(73):1–46.

van Hoof, H., Tanneberg, D., and Peters, J. (2017b). Generalized Exploration in
Policy Search. Machine Learning, 106(9):1705–1724.

Hopkins, B. andWestra, T. (1990). Motor Development, Maternal Expectations, and
the Role of Handling. Infant Behavior and Development, 13(1):117 – 122.

Howard, R. A. and Matheson, J. E. (1972). Risk-Sensitive Markov Decision Pro-
cesses. Management Science, 18(7):356–369.

Ioffe, S. and Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. arXiv:1502.03167.

BIBLIOGRAPHY 135

Jakobi, N. (1998). RunningAcross theRealityGap: OctopodLocomotion Evolved in
a Minimal Simulation. In European Workshop on Evolutionary Robotics (EvoRobot),
pages 39–58.

Janka, D., Kirches, C., Sager, S., and Wächter, A. (2016). An SR1/BFGS SQP Algo-
rithm for Nonconvex Nonlinear Programs with Block-Diagonal Hessian Matrix.
Mathematical Programming Computation.

Jazwinski, A. H. (2007). Stochastic Processes and Filtering Theory. Dover Books on
Electrical Engineering Series. Dover Publications.

Jiang, N., Kulesza, A., Singh, S., and Lewis, R. (2015). The Dependence of Effective
Planning Horizon on Model Accuracy. In International Conference on Autonomous
Agents and Multiagent Systems, pages 1181–1189.

Johnson, T., Kirches, C., andWächter, A. (2015). An Active-Set Quadratic Program-
ming Method Based On Sequential Hot-Starts. SIAM Journal on Optimization,
25(2):967–994.

Jonschkowski, R. and Brock, O. (2015). Learning State Representationswith Robotic
Priors. Autonomous Robots, 39(3):407–428.

Kaelbling, L. P., LiĴman, M. L., and Moore, A. W. (1996). Reinforcement Learning:
A Survey. Journal of Artificial Intelligence Research, 4(1):237–285.

Kakade, S. M. (2002). A Natural Policy Gradient. In Advances in Neural Information
Processing Systems, pages 1531–1538.

Kamthe, S. and Deisenroth, M. P. (2017). Data-Efficient Reinforcement Learning
With Probabilistic Model Predictive Control. arXiv:1706.06491.

Karpathy, A. and van de Panne, M. (2012). Curriculum Learning for Motor Skills.
In Advances in Artificial Intelligence, pages 325–330.

Kawato, M. (1990). Feedback-Error-Learning Neural Network for Supervised Mo-
tor Learning. Advanced Neural Computers, 6(3):365–372.

Kimura, H. and Kobayashi, S. (1999). Stochastic Real-Valued Reinforcement Learn-
ing to Solve a Nonlinear Control Problem. In IEEE International Conference on
Systems, Man, and Cybernetics, volume 5, pages 510–515.

Kirches, C., Wirsching, L., Bock, H. G., and Schlöder, J. P. (2012). Efficient Direct
Multiple Shooting for Nonlinear Model Predictive Control on Long Horizons.
Journal of Process Control, 22(3):540–550.

Kober, J., Bagnell, J. A. D., and Peters, J. (2013). Reinforcement Learning in Robotics:
A Survey. International Journal of Robotics Research.

Kober, J. and Peters, J. (2011). Policy Search for Motor Primitives in Robotics. Ma-
chine Learning, 84(1-2):171–203.

136 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

Kohl, N. and Stone, P. (2004). Policy Gradient Reinforcement Learning for Fast
Quadrupedal Locomotion. In IEEE International Conference on Robotics and Au-
tomation, volume 3, pages 2619–2624 Vol.3.

Koryakovskiy, I., Vallery, H., Babuska, R., and Caarls, W. (2017). Evaluation of
Physical Damage Associated with Action Selection Strategies in Reinforcement
Learning. IFAC-PapersOnLine, 50(1):6928 – 6933.

Kudruss, M., Koryakovskiy, I., Vallery, H., Mombaur, K., and Kirches, C. (2018).
CombiningMulti-Level Real-Time Iterations of NonlinearModel Predictive Con-
trol to Realize SquaĴing Motions on Leo. Technical Report 6425, Optimization
Online.

Kühl, P., Diehl, M., Kraus, T., Schlöder, J. P., and Bock, H. G. (2011). A Real-Time
Algorithm for Moving Horizon State and Parameter Estimation. Computers &
Chemical Engineering, 35(1):71–83.

Kuindersma, S., Deits, R., Fallon, M., Valenzuela, A., Dai, H., Permenter, F., Koolen,
T., Marion, P., and Tedrake, R. (2015). Optimization-based Locomotion Plan-
ning, Estimation, and Control Design for the Atlas Humanoid Robot. Autonomous
Robots, pages 1–27.

Kumar, M. P., Packer, B., and Koller, D. (2010). Self-Paced Learning for Latent
VariableModels. InAdvances in Neural Information Processing Systems, pages 1189–
1197.

Lange, S. (2010). Tiefes Reinforcement Lernen auf Basis Visueller Wahrnehmungen. PhD
thesis, Universitat Osnabruck.

Lange, S. and Riedmiller, M. (2010). Deep Auto-Encoder Neural Networks in Re-
inforcement Learning. In International Joint Conference on Neural Networks, pages
1–8.

Leineweber, D. B., Bauer, I., Bock, H. G., and Schlöder, J. P. (2003a). An Efficient
Multiple Shooting Based Reduced SQP Strategy for Large-Scale Dynamic Pro-
cess Optimization. Part I: Theoretical Aspects. Computers & Chemical Engineering,
27(2):157–166.

Leineweber, D. B., Schäfer, A., Bock, H. G., and Schlöder, J. P. (2003b). An Efficient
Multiple Shooting Based Reduced SQP Strategy for Large-Scale Dynamic Process
Optimization: Part II: Software Aspects and Applications. Computers & Chemical
Engineering, 27(2):167–174.

Levine, S. and Koltun, V. (2013). Guided Policy Search. In International Conference
on Machine Learning, pages 1–9.

Levine, S., Sampedro, P. P., Krizhevsky, A., Ibarz, J., and Quillen, D. (2017). Learn-
ingHand-Eye Coordination for Robotic Graspingwith Deep Learning and Large-
Scale Data Collection.

BIBLIOGRAPHY 137

Lillicrap, T. P., Hunt, J. J., Priĵel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and
Wierstra, D. (2015). Continuous Control with Deep Reinforcement Learning.
arXiv:1509.02971.

Lin, L.-J. (1993). Reinforcement Learning for Robots Using Neural Networks. Tech-
nical report, Carnegie-Mellon Univ PiĴsburgh PA School of Computer Science.

Ljung, L., editor (1999). System Identification: Theory for the User. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 2 edition.

Mannucci, T., van Kampen, E. J., de Visser, C., and Chu, Q. (2018). Safe Exploration
Algorithms for Reinforcement Learning Controllers. IEEE Transactions on Neural
Networks and Learning Systems, 29(4):1069–1081.

Marco, A., Hennig, P., Bohg, J., Schaal, S., and Trimpe, S. (2016). Automatic LQR
Tuning Based on Gaussian Process Global Optimization. In IEEE International
Conference on Robotics and Automation.

Matignon, L., Laurent, G., and Le Fort-Piat, N. (2006). Reward Function and Initial
Values: BeĴer Choices for AcceleratedGoal-Directed Reinforcement Learning. In
International Conference on Artificial Neural Networks, volume 4131, pages 840–849.

Matsubara, T., Morimoto, J., Nakanishi, J., Sato, M.-a., and Doya, K. (2006). Learn-
ing CPG-Based Biped Locomotion With a Policy Gradient Method. Robotics and
Autonomous Systems, 54(11):911 – 920.

Meijdam, H. J., Plooij, M., and Caarls, W. (2013). Learning While Preventing Me-
chanical Failure Due to RandomMotions. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 182–187.

Mihatsch, O. and Neuneier, R. (2002). Risk-Sensitive Reinforcement Learning. Ma-
chine Learning, 49(2-3):267–290.

Miyamoto, H., Gandolfo, F., Gomi, H., Schaal, S., Koike, Y., Osu, R., Nakano, E.,
Wada, Y., and Kawato, M. (1995). A Kendama Learning Robot Based on a Dy-
namic Optimization Theory. In IEEE International Workshop on Robot and Human
Communication, pages 327–332.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,
M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., and others
(2015). Human-Level Control Through Deep Reinforcement Learning. Nature,
518(7540):529.

Mochon, S. and McMahon, T. A. (1980). Ballistic Walking. Journal of Biomechanics,
13(1):49–57.

Moldovan, T. M. and Abbeel, P. (2012). Safe Exploration in Markov Decision Pro-
cesses. In International Conference on Machine Learning, pages 1711–1718.

138 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

Mori, T., Nakamura, Y., Sato, M. A., and Ishii, S. (2004). Reinforcement Learning for
a CPG-Driven Biped Robot. American Association for Artificial Intelligence, pages
623–630.

Morimioto, J., Zeglin, G., and Atkeson, C. G. (2003). Minimax Differential Dynamic
Programming: Application to a BipedWalking Robot. In SICE Annual Conference,
volume 3, pages 2310–2315.

Morimoto, J., Cheng, G., Atkeson, C. G., and Zeglin, G. (2004). A Simple Rein-
forcement Learning Algorithm For Biped Walking. In International Conference on
Robotics and Automation, pages 3030–3035.

Muske, K. R., Rawlings, J. B., and Lee, J. H. (1993). Receding Horizon Recursive
State Estimation. American Control Conference, 30:900 – 904.

Nagabandi, A., Kahn, G., Fearing, R. S., and Levine, S. (2017). Neural Network
Dynamics for Model-Based Deep Reinforcement Learning withModel-Free Fine-
Tuning. arXiv:1708.02596.

Ng, A. Y., Harada, D., and Russell, S. J. (1999). Policy Invariance Under Reward
Transformations: Theory and Application to Reward Shaping. In International
Conference on Machine Learning, pages 278–287.

Ostafew, C. J., Schoellig, A. P., and Barfoot, T. D. (2016). Robust Constrained
Learning-Based NMPC Enabling Reliable Mobile Robot Path Tracking. Interna-
tional Journal of Robotics Research, 35(13):1547–1563.

Oßwald, S., Hornung, A., and Bennewiĵ,M. (2010). Learning Reliable and Efficient
Navigation With a Humanoid. In IEEE International Conference on Robotics and
Automation, pages 2375–2380.

Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z. B., and Swami, A. (2017).
Practical Black-Box AĴacks Against Machine Learning. In ACM on Asia Confer-
ence on Computer and Communications Security, pages 506–519.

Pastor, P., Hoffmann, H., Asfour, T., and Schaal, S. (2009). Learning and General-
ization of Motor Skills by Learning from Demonstration. In IEEE International
Conference on Robotics and Automation, pages 1293–1298.

Peters, J., Mülling, K., and Altun, Y. (2010). Relative Entropy Policy Search. In
National Conference on Artificial Intelligence, pages 1607–1612.

Peters, J. and Schaal, S. (2008). Reinforcement Learning of Motor Skills With Policy
Gradients. Neural Networks, 21(4):682–697.

Popov, I., Heess, N., Lillicrap, T., Hafner, R., Barth-Maron, G., Vecerik, M., Lampe,
T., Tassa, Y., Erez, T., and Riedmiller, M. (2017). Data-Efficient Deep Reinforce-
ment Learning for Dexterous Manipulation. arXiv:1704.03073.

BIBLIOGRAPHY 139

Qin, S. J. and Badgwell, T. A. (2003). A Survey of Industrial Model Predictive Con-
trol Technology. Control Engineering Practice, 11(7):733–764.

Rajeswaran, A., Ghotra, S., Ravindran, B., and Levine, S. (2017). EPOpt: Learning
Robust Neural Network Policies Using Model Ensembles. In International Confer-
ence on Learning Representations.

Rubinstein, R. Y. (1997). Optimization of Computer Simulation Models with Rare
Events. European Journal of Operational Research, 99(1):89 – 112.

Rusu, A. A., Večerík, M., Rothörl, T., Heess, N., Pascanu, R., and Hadsell, R. (2017).
Sim-to-Real Robot Learning from Pixels with Progressive Nets. In Annual Confer-
ence on Robot Learning, volume 78, pages 262–270.

Sadeghi, F. and Levine, S. (2016). (CAD)2RL: Real Single-Image Flight Wihtout a
Single Real Image. arXiv:1611.04201.

Saveriano, M., Yin, Y., Falco, P., and Lee, D. (2017). Data-Efficient Control Policy
Search Using Residual Dynamics Learning. In International Conference on Intelli-
gent Robots and Systems.

Schmid, K., Tomic, T., Ruess, F., Hirschmüller, H., and Suppa, M. (2013). Stereo
Vision Based Indoor/Outdoor Navigation for Flying Robots. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pages 3955–3962.

Schork, L. (2015). A Parametric Active Set Method for General Quadratic Program-
ming. Master thesis, Heidelberg University.

Schuitema, E. (2012). Reinforcement Learning on Autonomous Humanoid Robots. PhD
thesis, TU Delft.

Schuitema, E., Hobbelen, D., Jonker, P., Wisse, M., and Karssen, J. (2005). Using
a Controller Based on Reinforcement Learning for a Passive Dynamic Walking
Robot. In IEEE-RAS International Conference on Humanoid Robots, pages 232–237.

Schuitema, E., Wisse, M., Ramakers, T., and Jonker, P. (2010). The Design of LEO:
A 2D Bipedal Walking Robot for Online Autonomous Reinforcement Learning.
In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 3238–
3243.

Schulman, J., Levine, S., Moriĵ, P., Jordan,M. I., andAbbeel, P. (2015). Trust Region
Policy Optimization. In International Conference on Machine Learning, pages 1889–
1897.

Schulman, J., Moriĵ, P., Levine, S., Jordan, M., and Abbeel, P. (2016). High-
Dimensional Continuous Control Using Generalized Advantage Estimation. In
International Conference on Learning Representations.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., andKlimov, O. (2017). Proximal
Policy Optimization Algorithms. arXiv:1707.06347.

140 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

Shalev-Shwarĵ, S. (2012). Online Learning andOnline Convex Optimization. Foun-
dations and Trends in Machine Learning, 4(2):107–194.

Shalev-Shwarĵ, S. and Ben-David, S. (2014). Understanding Machine Learning: From
Theory to Algorithms. Cambridge university press.

Shelhamer, E., Long, J., and Darrell, T. (2017). Fully Convolutional Networks for
Semantic Segmentation. IEEE Transactions on PaĴern Analysis and Machine Intelli-
gence, 39(4):640–651.

Shen, Y., Tobia, M. J., Sommer, T., and Obermayer, K. (2014). Risk-Sensitive Rein-
forcement Learning. Neural computation, 26(7):1298–1328.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. (2014).
Deterministic Policy Gradient Algorithms. In International Conference on Machine
Learning, pages 387–395.

Silver, D., SchriĴwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hu-
bert, T., Baker, L., Lai, M., Bolton, A., and others (2017). Mastering the Game of
Go Without Human Knowledge. Nature, 550(7676):354.

Smart, W. D. and Kaelbling, L. P. (2000). Practical Reinforcement Learning in Con-
tinuous Spaces. In International Conference on Machine Learning, pages 903–910.

Smith, R. (2011). Open Dynamics Engine. http://ode.org/.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: A Simple Way to Prevent Neural Networks from OverfiĴing.
The Journal of Machine Learning Research, 15(1):1929–1958.

Stulp, F. and Schaal, S. (2011). Hierarchical Reinforcement Learning With Move-
ment Primitives. In IEEE-RAS International Conference on Humanoid Robots, pages
231–238.

Sukhbaatar, S., Szlam, A., Synnaeve, G., Chintala, S., and Fergus, R. (2015). Maze-
Base: A Sandbox for Learning from Games. arXiv:1511.07401.

SuĴon, R. and Barto, A. (1998). Reinforcement Learning: An Introduction. MIT Press.

SuĴon, R., Barto, A., and Williams, R. J. (1992). Reinforcement Learning Is Direct
Adaptive Optimal Control. IEEE Control Systems, 12(2):19–22.

SuĴon, R., Modayil, J., Delp, M., Degris, T., Pilarski, P. M., White, A., and Precup,
D. (2011). Horde: A Scalable Real-time Architecture for Learning Knowledge
from Unsupervised Sensorimotor Interaction. In International Conference on Au-
tonomous Agents and Multiagent Systems, pages 761–768.

Svinin, M. M., Yamada, K., and Ueda, K. (2001). Emergent Synthesis of Motion
PaĴerns for Locomotion Robots. Artificial Intelligence in Engineering, 15(4):353 –
363.

http://ode.org/

BIBLIOGRAPHY 141

Sünderhauf, N., Brock, O., Scheirer, W., Hadsell, R., Fox, D., Leitner, J., Upcroft, B.,
Abbeel, P., Burgard, W., Milford, M., and Corke, P. (2018). The Limits and Poten-
tials of Deep Learning for Robotics. The International Journal of Robotics Research,
37(4-5):405–420.

Tedrake, R., Zhang, T. W., and Seung, H. S. (2004). Stochastic Policy Gradient Re-
inforcement Learning on a Simple 3D Biped. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, volume 3, pages 2849–2854 vol.3.

Tesauro, G. (1995). Temporal Difference Learning and TD-Gammon. Communica-
tions of the ACM, 38(3):58–68.

Tessler, C., Givony, S., Zahavy, T., Mankowiĵ, D. J., andMannor, S. (2017). A Deep
Hierarchical Approach to Lifelong Learning in Minecraft. In AAAI Conference on
Artificial Intelligence, volume 3, page 6.

Veerbeek, J., van Wegen, E., Harmeling-van der Wel, B., Kwakkel, G., and Inves-
tigators, f. t. E. (2011). Is Accurate Prediction of Gait in Nonambulatory Stroke
Patients Possible Within 72 Hours Poststroke?: The EPOS Study. Neurorehabilita-
tion and Neural Repair, 25(3):268–274.

Veerbeek, J., van Wegen, E., van Peppen, R., Hendriks, E., Rietberg, M., van
der Wees, P., Heijblom, K., Goos, J., Hanssen, W., Harmeling-van der
Wel, B., van Jong, L., Kamphuis, J., Noom, M., van der Schaft, R.,
Smeets, C., Vluggen, T., Vijsma, D., Vollmar, C., and Kwakkel, G. (2014).
KNGF Clinical Practice Guideline for Physical Therapy in Patients with
Stroke. http://www.fysionet-evidencebased.nl/index.php/
kngf-guidelines-in-english.

Williams, R. J. (1992). Simple Statistical Gradient-Following Algorithms for Con-
nectionist Reinforcement Learning. InMachine Learning, pages 229–256.

Winstein, C. J. and Kay, D. B. (2015). Translating the Science Into Practice: Shaping
Rehabilitation Practice to Enhance Recovery After Brain Damage. In Progress in
Brain Research, volume 218, pages 331–360.

Winter, D. (2009). Biomechanics and Motor Control of Human Movement. Wiley, 4
edition.

Wisse, M. (2004). Essentials of Dynamic Walking: Analysis and Design of Two-legged
Robots. PhD thesis, Delft University of Technology, Netherlands.

Wu, H. G., Miyamoto, Y. R., Castro, L. N. G., Olveczky, B. P., and Smith, M. A.
(2014). Temporal Structure of Motor Variability Is Dynamically Regulated and
Predicts Motor Learning Ability. Nature Neuroscience, 17(2):312–321.

Wu, Y. and Tian, Y. (2017). Training Agent for First-Person Shooter Game with
Actor-Critic Curriculum Learning. In International Conference on Learning Repre-
sentations.

http://www.fysionet-evidencebased.nl/index.php/kngf-guidelines-in-english
http://www.fysionet-evidencebased.nl/index.php/kngf-guidelines-in-english

142 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

Yin, K., Coros, S., Beaudoin, P., and van de Panne,M. (2008). ContinuationMethods
for Adapting Simulated Skills. ACM Transactions on Graphics, 27(3):81.

Yu, W., Liu, C. K., and Turk, G. (2017). Preparing for the Unknown: Learning a
Universal Policy with Online System Identification. arXiv:1702.02453.

Zaremba, W. and Sutskever, I. (2015). Reinforcement Learning Neural Turing Ma-
chines. arXiv:1505.00521.

Zhang, T., Kahn, G., Levine, S., and Abbeel, P. (2016). Learning Deep Control Poli-
cies for Autonomous Aerial Vehicles With MPC-Guided Policy Search. In IEEE
International Conference on Robotics and Automation, pages 528–535.

List of publications

The following articles were published during studies at TU Delft. In this thesis, the
articles were edited for the consistency of the narration.

Journal articles
2. Koryakovskiy, I., Kudruss, M., Vallery, H., Babuska, R., and Caarls, W. (2018). Model-

Plant Mismatch Compensation Using Reinforcement Learning. IEEE Robotics and Au-
tomation LeĴers, 3(3): 2471 – 2477.

1. Koryakovskiy, I., Kudruss, M., Babuska, R., Caarls, W., Kirches, C., Mombaur, K.,
Schloder, J. P., and Vallery, H. (2017). Benchmarking Model-Free and Model-Based
Optimal Control. Robotics and Autonomous Systems, 92:81 – 90.

Conference articles
3. Koryakovskiy, I., Kudruss, M., Vallery, H., Babuska, R., and Caarls, W. (2018). Model-

PlantMismatch Compensation Using Reinforcement Learning. IEEE International Con-
ference on Robotics and Automation.¹

2. Koryakovskiy, I., Vallery, H., Babuska, R., and Caarls, W. (2017). Evaluation of Phys-
ical Damage Associated with Action Selection Strategies in Reinforcement Learning.
IFAC-PapersOnLine, 50(1): 6928 – 6933.

1. Feirstein, D. S., Koryakovskiy, I., Kober, J., and Vallery, H. (2016). Reinforcement
Learning of Potential Fields to Achieve Limit-Cycle Walking. IFAC-PapersOnLine,
49(14): 113 – 118.

Workshop presentations
2. Rastogi, D., Koryakovskiy, I., Kober, J. (2018). Sample-efficient Reinforcement Learn-

ing via Difference Models, The Third Machine Learning in Planning and Control of Robot
Motion Workshop at ICRA 2018, Brisbane, Australia.

1. Koryakovskiy, I., Kudruss, (2015). CombiningModel Predictive Control Methods and
Reinforcement Learning Approaches for Bipedal Walking. Towards Truly Human-like
Bipedal Locomotion: the Role of Optimization, Learning and Motor Primitives Workshop at
IROS 2015, Hamburg, Germany.

¹ The content of this article is identical the journal article of the same title.

144 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

Technical reports
1. Kudruss, M., Koryakovskiy, I., Vallery, H., Mombaur, K., and Kirches, C. (2018). Com-

bining Multi-Level Real-Time Iterations of Nonlinear Model Predictive Control to Re-
alize SquaĴing Motions on Leo. Technical Report 6425, Optimization Online.

Summary

In recent years, machine learning has approached the level of development suitable
for solving real-world problems. In comparison to supervised learning, reinforce-
ment learning (RL) applications are still rare. One of the reasons is that, in super-
vised learning applications, the actual actions are undertaken by a human or by
an independent controller. In contrast, RL interacts autonomously with the world
and learns from the outcome of its own actions. The advantage of this is that RL
does not require human-provided data, which is often a problem for supervised
learning because collecting and labeling the data is expensive and time-consuming.
However, it is not surprising that, in the absence of any prior information about the
real world, RL actions may lead to serious damage of the robot or its surroundings.
Safety – an often neglected factor in the RL community – requires greater aĴention
from researchers.

Prior knowledge can increase safety during learning. At the same time, it can
severely limit a possible solution set and hamper learning performance. Therefore,
the focus of this thesis is to identify different forms of prior knowledge required to
achieve learning goals with minimum damage.

Bipedal walking robot Leo, whichwas developed in Delft Biorobotics Lab, is the
benchmark example used throughout the thesis. The intrinsic vulnerability of Leo
to damage and the challenging walking task itself motivate the usage of this robot.

This thesis starts with model-free RL, where commonly-used exploration strate-
gies are studiedwith respect to the incurred damage and the cumulative reward. In
the case of the bipedal walking robot Leo, the two sources of damage are identified:
the fatigue of gearboxes due to backlash re-engagements, and the overall system
damage due to robot falls. The results reveal a previously unknown trade-off be-
tween the two sources of damage. For example, the results show that a greedy ex-
ploration strategy leads to the highest gearbox fatigue, but at the same time it causes
the least number of robot falls. On the other hand, the Previous-Action-Dependent-
Action method drastically reduces the gearbox fatigue but increases the number of
falls. These results suggest that a composite approach towards damage minimiza-
tion is required. In principle, both sources of damage can be mitigated by using
more durable materials and by improving the robot construction. However, reper-
cussions of robot falls in an unstructured environment can be disastrous, because
damage depends on the configuration of the environment, which itself is not pre-
pared to withstand falling impacts. Thus, damage due to robot falls is primarily
considered for the rest of the thesis.

A substantial part of this thesis is dedicated to learning with a provided approx-
imate robot model. Model-plant mismatch arises from the difficulty of constructing
the exact model of Leo due to factors such as hybrid dynamics of walking, torque-
and temperature-dependent Coulomb friction, and the accuracy of the estimated

146 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

model parameters. In Chapter 3, similarities and differences of nonlinear model
predictive control (NMPC) and RL are studied in the context of robustness to para-
metric and structural uncertainties. The results demonstrate that NMPC has ad-
vantages over RL if uncertainties can be eliminated by the identification of system
parameters. Otherwise, there exists a break-even point after which model-free RL
performs beĴer than NMPC with an inaccurate model.

In Chapter 4, these findings lead to two approaches that combine model-free
RL and a nominal NMPC controller. Both approaches (1) provide safety barriers
to limit risky RL exploration in dangerous state-space regions, (2) can in principle
compensate any type of uncertainty, and (3) allow easy integration with an existing
model-based nominal controller. One of them – Model-Plant Mismatch Learning
(MPML) – learns a compensatory signal from the difference of the state transition
predicted by the internal model and the actual transition, and eliminates themodel-
plant mismatch by forcing the real system to behave as if it has no uncertainties.
This approach was successfully implemented on the real robot Leo for a squaĴing
task.

Unfortunately, MPML is currently not applicable to walking because it requires
a different type of an online NMPC controller that would be able to handle hy-
brid dynamics properly. To overcome this problem, Chapter 5 proposes an itera-
tive model-learning approach. In contrast to MPML, this approach collects some
amount of the real-world experience to learn the difference between the real robot
and its approximate model. Next, a control policy is learned for the original model
enhanced by the difference model. The approach scales to high degree of free-
dom systems with nonlinear, contact-rich dynamics, and continuous states and ac-
tions. Simulated experiments performed with a perturbed model of Leo demon-
strate a significantly fewer trials required to mitigate the mismatch compared to
cold-started and warm-started RL. Compared to MPML, this approach does not
provide safety barriers for constraining dangerous exploration.

The aforementioned approaches demonstrate the usefulness of an existing ap-
proximate model for damage reduction. An alternative nature-inspired approach
towards reducing the damage while learning is proposed in the final part of the
thesis. It is observed that often children learn to walk by progressing through the
intermediate stages of siĴing, crawling and balancing. The specific task arrange-
ment is also practiced for the rehabilitation of individuals post-stroke. Applied to
robots, this suggests that the particular arrangement of learning tasks can reduce
the number of falls compared to the cases when the final task is learned directly.
This hypothesis is verified in a set of experiments performed on four robot models
and two dynamic simulators.

In summary, this thesis studies the influence of different forms of prior knowl-
edge on learning performance and the risk to robot damage, where prior knowl-
edge ranges from physics-based assumptions, such as the robot construction and
material properties, to the knowledge of the task curriculum, or the approximate
model possibly coupled with a nominal controller. The results reveal the impor-
tance of having the approximate model for increasing safety during learning. In
the model-free seĴing, curriculum learning has the potential to gradually learn a

Summary 147

model, which can be combined with the aforementioned model-based RL methods
to further reduce the risks of hardware damage.

Samenvatting

In de afgelopen jaren heeft machine learning het niveau bereikt waar het inzetbaar
begint te worden voor problemen in de echte wereld. In vergelijking met supervi-
sed learning zijn toepassingen die gebruikmaken van reinforcement learning (RL)
nog zeldzaam. Eén van de redenen hiervoor is dat bij supervised learning de wer-
kelijke handelingen uitgevoerd worden door een mens of door een onaĢankelijke
regelaar. RL heeft daarentegen autonoom in de omgeving en leert zelf van de uit-
komsten van deze interactie. Het voordeel hiervan is dat RL geen data nodig heeft
die door mensen verzameld is. Dit is vaak een probleem voor supervised learning
omdat het verzamelen en labelen van de data een duur en tijdrovend proces is. Des-
alnieĴemin kunnen RL-acties bij gebrek aan voorkennis over de echte wereld mo-
gelijk leiden tot serieuze schade aan de robot of de omgeving. Veiligheid – een vaak
verwaarloosde factor in de RL-gemeenschap – vraagt daarom meer aandacht van
onderzoekers.

Voorkennis kan de veiligheid bevorderen tijdens het leerproces. Tegelijkertijd
kan voorkennis het aantal mogelijke oplossingen ernstig inperken en de prestaties
verminderen. De focus van dit proefschrift ligt daarom op het identificeren van
verschillende vormen van voorkennis die nodig zijn om met minimale schade de
leerdoelen te behalen.

De tweebenige looprobot Leo, ontwikkeld in het Delft Biorobotics Lab, is als
referentiepunt gebruikt in dit proefschrift. De kwetsbaarheid van de robot Leo en
de uitdagende taak om te leren lopen zijn de redenen geweest om deze robot te
gebruiken.

Dit proefschrift begint met RL zonder een model. Veelgebruikte verkennings-
strategieën worden bestudeerd en vergeleken door te kijken naar de opgelopen
schade en het rendement. Voor de tweebenige robot Leo worden twee vormen van
opgelopen schade vastgesteld: de vermoeidheid in de overbrengingen door het her-
haaldelijk contact ten gevolge van de speling, en de schade aan de robot door een
val. De resultaten onthullen een voorheen onbekende afweging tussen deze twee
vormen van schade. Uit de resultaten bleek bijvoorbeeld dat een zogenoemde gree-
dy verkenningsstrategie leidt tot de hoogste vermoeidheid in de overbrengingen,
maar dat dit tegelijkertijd resulteert in het minste aantal vallen. Daarentegen zorgt
de Previous-Action-Dependent-Action methode voor een drastische vermindering
van de vermoeidheid, maar neemt hierdoor het aantal vallen toe. Deze resultaten
suggereren dat een samengestelde aanpak voor schadebeperking nodig is. In prin-
cipe kunnen beide vormen van schade voorkomen worden door meer duurzame
materialen te gebruiken en door de constructie van de robot te verbeteren. De gevol-
gen door een val van de robot in een ongestructureerde omgeving kunnen echter
rampzalig zijn. De schade hangt namelijk af van de vorm van de omgeving die uit
zichzelf niet bestand hoeft te zijn tegen een botsing. Om deze reden wordt in de

150 Sюѓђџ џђіћѓќџѐђњђћѡ љђюџћіћє ѓќџ џќяќѡіѐѠ

rest van dit proefschrift vooral uitgegaan van valschade.
Een substantieel deel van dit proefschrift wordt gewijd aan zelflerende algorit-

mes die gebruikmaken van een beschikbaar model dat de echte robot benadert. Het
verschil tussen het model en de werkelijkheid komt doordat het moeilijk is om een
exact model van Leo op te stellen. Dit is te wijten aan verschillende factoren zo-
als de hybride dynamica van het lopen, moment- en temperatuuraĢankelijke Cou-
lomb wrijving en de nauwkeurigheid van de geschaĴe parameters van het model.
In hoofdstuk 3 worden de overeenkomsten en verschillen van nonlinear model pre-
dictive control (NMPC) en RL onderzocht met betrekking tot de robuustheid tegen
dergelijke parametrische en structurele onzekerheden. De resultaten laten zien dat
NMPC voordelen biedt ten opzichte van RL, mits de onzekerheden geëlimineerd
kunnen worden door systeemidentificatie. Anders is er een break-even punt vanaf
waar RL zonder wiskundig model beter presteert dan NMPCmet een onnauwkeu-
rig model.

Gebaseerd op deze bevindingen worden er in hoofdstuk 4 twee manieren van
aanpak behandeld die RL zondermodel combinerenmet een nominaleNMPC rege-
laar. Beidemethodes (1) zorgen voor veiligheidsbarrières die risicovolle verkenning
begrenzen in gevaarlijke toestanden, (2) compenseren in principe voor elke vorm
van onzekerheid en (3) kunnen makkelijk geïntegreerd worden met bestaande no-
minale regelaars die wel gebruik maken van een model. Eén van deze methodes –
Model-Plant Mismatch Learning (MPML) – leert te compenseren op basis van het
verschil tussen de toestandsverandering zoals voorspeld door het interne model en
de werkelijke toestandsverandering. Het elimineert hiermee het verschil tussen het
model en de realiteit door het echte systeem te dwingen zich te gedragen alsof er
geen onzekerheden zijn. Deze aanpak is succesvol geïmplementeerd op de echte
robot Leo tijdens het hurken.

Helaas is MPML momenteel niet toepasbaar op lopende robots, omdat het een
ander type online NMPC regelaar nodig heeft die naar behoren om kan gaan met
de hybride dynamica. Omdit probleem aan te pakken, wordt in hoofdstuk 5 een ite-
ratieve methode geïntroduceerd om het model te leren. In tegenstelling tot MPML
gebruikt de iteratievemethode deels ervaringen uit de echte wereld om het verschil
te leren tussen de echte robot en het model dat de echte robot benadert. Vervol-
gens wordt er een regelstrategie geleerd die gebaseerd is op het originele model
versterkt door de geleerde verschillen. Deze methode schaalt naar systemen met
veel vrijheidsgraden, met niet-lineaire dynamica en veel contact met de omgeving,
en naar systemen met continue toestanden en acties. Gesimuleerde experimenten
die zijn uitgevoerd met een verstoord model van Leo laten zien dat er significant
minder proeven nodig zijn om de discrepantie te verminderen, in vergelijking met
koud gestarte en warm gestarte RL. Vergeleken met MPML zorgt deze aanpak niet
voor veiligheidsbarrières die het verkennen van gevaarlijke toestanden limiteren.

De eerder genoemdemethodes laten het nut zien van het gebruik van modellen
die de echte robot benaderen, met als doel om de schade te beperken. Een alterna-
tieve, op de natuur geïnspireerde methode om schade te beperken tijdens het leren
wordt behandeld in het laatste deel van dit proefschrift. Het valt op dat kinderen
vaak leren lopen door tussenliggende fases te doorlopen van ziĴen tot kruipen en

SamenvaĴing 151

balanceren. Deze specifieke rangschikking van de taken wordt ook gebruikt voor
de rehabilitatie van personen na een beroerte. Toegepast op robots suggereert dit
dat de specifieke rangschikking van de leerdoelen het aantal vallen kan reduceren
in vergelijkingmet situaties waarin de uiteindelijke taak direct geleerdwordt. Deze
hypothese is geverifiëerd door het uitvoeren van een aantal experimenten met vier
verschillende modellen van robots en twee dynamische simulatieomgevingen.

SamenvaĴend behandelt dit proefschrift de invloed van verschillende vormen
van voorkennis op mogelijke schade en de prestatie van het zelflerende algoritme.
De voorkennis varieert van fysische aannames, zoals de constructie van de robot en
materiaaleigenschappen, tot de kennis over de volgorde vande leerdoelen of kennis
over het model, mogelijk gecombineerd met een nominale regelaar. De resultaten
laten het belang zien van eenmodel dat de echte robot benadert om de veiligheid te
verbeteren tijdens het leerproces. In de situatie zonder model heeft gefaseerd leren
de potentie om geleidelijk een model te leren. Dit kan worden gecombineerd met
de eerder genoemde RL methodes die wel gebruikmaken van een model om het
risico op hardwareschade verder te beperken.

Curriculum Vitae

Ivan Koryakovskiy was born in Sosnoviy Bor, Russia on November 29, 1986.
In 2004, he graduated from the Liceum №23 in Kalin-
ingrad and the same year started his studies at National
Research University of Electronic Technology, Moscow,
Russia, specializing in the development of electronic
circuits, embedded computers, and programming. In
the meanwhile, he started to work part-time at “STK-
VICOM Ltd.”, Moscow, as a research engineer, success-
fully combining theoretical knowledge from the univer-
sity with practical experience in the company.

He earned a Bachelor of Science Degree with dis-
tinction in 2008. Several months before graduation, he
won SamsungGlobal Engineering Scholarshipwhich al-
lowed him to pursue aMaster of ScienceDegree at Seoul
National University, Seoul, SouthKorea. He joined the Computer Vision Lab super-
vised by prof. dr. KyoungMu Lee. In 2010, he graduatedwith a thesis titled “Image
Deblurring with Depth-variant Kernel”, for which he received a Best Master Thesis
Award.

After graduation, he joined Samsung Electronics R&D center in Suwon, South
Korea, where he conducted numerous projects related to computer vision and de-
veloped several patented inventions.

In 2014, he commenced his Ph.D. research on reinforcement learning applied to
walking robots at the Delft Biorobotics Lab at Delft University of Technology in the
Netherlands under the supervision of prof. dr. W. Caarls, prof. Dr.-Ing. H. Vallery,
and prof. dr. R. Babuška. During this time he supervised several MSc students,
assisted with and delivered lectures for reinforcement learning courses, published
several journal articles and presented his work at international conferences.

	Contents
	List of symbols
	List of abbreviations
	Preface
	Introduction
	Motivation
	Robot safety and learning
	Problem definition
	Research goal
	Approach
	Thesis outline

	Evaluation of physical damage associated with action selection strategies
	Introduction
	Reinforcement learning
	The Markov decision process
	Action-selection methods

	Simulations results
	Discussion
	Conclusion

	Benchmarking model-free and model-based optimal control
	Introduction
	Model-based and model-free optimal control methods
	Optimal control
	Nonlinear model predictive control
	Reinforcement learning

	Benchmark system
	Problem formulation
	Evaluation protocol
	Notations and methodology
	Description of experiment and measures

	Results on the cart-pendulum
	Discussion
	Conclusion

	Model-plant mismatch compensation using reinforcement learning
	Introduction
	Related work
	Background
	Problem statement
	NMPC
	RL

	Proposed combination approaches
	CAL
	MPML

	Experiments
	Bipedal walking robot Leo
	Objective function and constraints
	Parameters
	Evaluation
	Simulation results
	Results on the real robot

	Discussion
	Conclusion

	Sample-efficient reinforcement learning via difference models
	Introduction
	Related work
	Reinforcement learning
	Proposed method
	Notation
	Algorithm
	Training data

	Experiment details
	Inverted pendulum
	Bipedal walking robot Leo
	Training data and parameters
	Evaluation measures

	Results
	Inverted pendulum
	Robot Leo

	Discussion
	Conclusion

	Multitask reinforcement learning for safer acquisition of locomotion skills
	Introduction
	Background
	Reinforcement learning
	Model-free deep reinforcement learning

	Proposed method
	Curriculum learning
	Supervised learning of the task-switching network

	Experiment details
	Systems
	Learning parameters
	Evaluation methodology
	Evaluation metrics

	Results
	TIM: curriculum learning with manual selection of time steps to practice
	BAL: automated curriculum learning with the duration of balancing as a task-switching indicator
	RNN: automated curriculum learning with RNN-based identification of task-switching moments

	Discussion
	Conclusion

	Conclusions and future directions
	Conclusions
	Influence of exploration strategies
	Safer learning with an approximate dynamical model
	Safer learning without the approximate dynamical model

	Directions for future research
	Composite approach towards damage minimization
	Future directions for safer reinforcement learning research

	Acknowledgements
	Appendix. Experimental setups
	Bipedal walking robot Leo
	The inverted pendulum on a movable cart

	Appendix. Additional results
	Influence of the reward shaping on the trajectory cost
	Influence of the discount rate on learning with MPML
	The mass distribution of Leo and Roboschool systems vs. human
	Curriculum learning with samples obtained from different models

	Bibliography
	List of publications
	Summary
	Samenvatting
	Curriculum Vitae

