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Summary

During a seismic experiment, mechanical waves are usually generated by various man-
made sources. These waves propagate in the subsurface and are recorded at receivers.
Modern seismic exploration methods analyze them to infer the mechanical properties
of the subsurface; this is commonly referred as quantitative imaging. These proper-
ties assist in the determination of the subsurface rock type and structure. Exploration
methods are not only useful while looking for the deposits such as crude oil, natural
gas and minerals but also for near-surface geotechnical investigation. A motive of this
thesis is to adopt these methods to image the subsurface ahead of a tunnel-boring
machine for hazard assessment during excavation. Full-waveform inversion (FWI) is a
gradient-based optimization problem that is employed in seismic exploration for quan-
titative imaging of the recorded waves. During FWI, seismic waves are simulated in a
computer by using certain physical laws that govern the wave propagation. After in-
version, output subsurface properties simulate waves that fit the recorded waves in a
least-squares sense. In other words, the gradient-based optimization aims to find the
minimum of the least-squares misfit between the simulated and the recorded waves.

Finding such a minimum is not straight forward due to the existence of multiple
local minima when using the the least-squares objective. As a result, it might often
happen that the optimizer converges to local minima, where the simulated waves only
partially explain the recorded waves. The presence of local minima is associated to the
strong non-linear dependence of the recorded waves on the subsurface properties. In
this thesis, we attempt to overcome this difficulty. We propose a new measure of misfit
between the recorded and the simulated waves. This measure compares the waveforms
in a simplified form after taking the absolute value and blurring. We show that the new
misfit measure suffers less from the local-minima problem. For robust inversion, we
use a multi-objective inversion scheme, where the new measure is used as an auxiliary
objective to pull the trapped solution out of the least-squares local minimum whenever
necessary.

In multi-parameter FWI, more than one kind of subsurface properties are simulta-
neously estimated. When only the first-order derivatives of the misfit are used during
minimization, different choices of subsurface parameterization are not equivalent; they
can be interpreted as different preconditioners. Therefore, the choice of parametriza-
tion will affect the rate of convergence in multi-parameter FWI and the best choice of
parameterization is the one with the highest rate. In this thesis, we also analyse various
choices of subsurface parameterization in search of the best one.

It is well known that the local-minima problem in FWI can easily be resolved by
reliably generating and recording low-frequency waves in the subsurface. Recently,
a seismic source capable of generating such low frequencies is developed based on
linear synchronous motors technology. Finally, we demonstrated a shear-wave seismic

xi



xii Summary

ground prediction system using these sources to enable imaging ahead of a tunnel-
boring machine (TBM).



Samenvatting

Tijdens een seismisch experiment worden mechanische golven doorgaans opgewekt
door middel van diverse kunstmatige bronnen. Deze golven propageren door de onder-
grond en worden opgenomen door ontvangers. Moderne seismische onderzoeksmetho-
den analyseren de opgenomen gegevens om de mechanische eigenschappen van de
ondergrond af te leiden; dit wordt meestal aangeduid als kwantitatieve beeldvorming.
Deze eigenschappen helpen bij het bepalen van het type ondergrondse gesteente en
hun structuur. Opsporingsmethoden zijn niet alleen nuttig bij het zoeken naar voorraden
ruwe olie, aardgas en mineralen, maar ook voor geotechnisch onderzoek van het nabije
aardoppervlak. Een motief voor dit proefschrift is om deze methoden aan te passen ten
behoeve van beeldvorming van de ondergrond net vóór een tunnelboormachine om mo-
gelijke gevaren tijdens het graven vast te stellen. Volledige golfvorminversie is een door
de gradiënt gedreven optimalisatieprobleem dat wordt gebruikt bij seismisch onderzoek
voor kwantitatieve beeldvorming vanuit het opgenomen golfveld. Tijdens deze inversie
worden seismische golven gesimuleerd in een computer, gebruikmakend van bepaalde
fysische wetten die de golfvoortplanting beschrijven. Na inversie kunnen de gevonden
ondergrondse materiaaleigenschappen de opgenomen golven nabootsen in de zin van
de kleinste kwadraten. Met andere woorden, de op de gradiënt gebaseerde optimali-
satie beoogt het minimum van de kleinstekwadratenfout tussen de gesimuleerde en de
gemeten golven te vinden.

Het vinden van een dergelijke minimum is niet vanzelfsprekend ten gevolge van het
bestaan van meerdere lokale minima bij het gebruik van de kleinstekwadratenfout. Als
gevolg daarvan kan het vaak gebeuren dat de optimalisatiemethode convergeert naar
een lokaal minimum, waarbij de gesimuleerde golven slechts ten dele de opgenomen
golven verklaren. De aanwezigheid van lokale minima houdt verband met de sterke
niet-lineaire afhankelijkheid tussen de geregistreerde golven en de eigenschappen van
de ondergrond. In dit proefschrift proberen we dit probleem aan te pakken. Wij stel-
len een nieuwe foutenmaat tussen de geregistreerde en de gesimuleerde golven voor.
Deze maat vergelijkt de golfvormen in een vereenvoudigde vorm door het nemen van
de absolute waarde en het versmeren ervan. We tonen aan dat de nieuwe foutenmaat
minder lijdt onder het probleem van de lokale minima. Voor robuuste inversie maken
we gebruik van een inversiemethode met meerdere objectieve functies, waar de nieuwe
maat wordt gebruikt om de gestrande oplossing uit het lokale minimum van de kleinste-
kwadratenmethode te halen wanneer dat nodig is.

Bij multiparametergolfvorminversie worden verschillende ondergrondse eigenschap-
pen geschat. Indien alleen de eerste afgeleiden van de foutenmaat worden gebruikt
tijdens de minimalisatie, zijn verschillende keuzes van parametrisering niet equivalent;
ze kunnen worden opgevat als verschillende preconditioners. Dientengevolge zal de
gekozen parametrisering de convergentiesnelheid van multiparametergolfvorminversie
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bepalen. De beste keuze van parametrisering is die met de snelste convergentie. In dit
proefschrift analyseren we ook verschillende keuzes van parametrisering van de onder-
grond, op zoek naar de de beste.

Het is bekend dat het probleem van de lokale minima in golfvorminversie eenvoudig
opgelost kan worden door op betrouwbare wijze laag-frequente golven in de ondergrond
op te wekken en op te nemen. Onlangs is er een seismische bron ontwikkeld, op
basis van technologie voor lineaire synchrone motoren, die in staat is dergelijke lage
frequenties op te wekken. Tot slot laten we zien dat met zulke bronnen een systeem voor
beeldvorming voorafgaand aan een tunnelboormachine met behulp van schuifgolven
mogelijk is.
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1
Introduction

Nobody ever figures out what life is all about, and it doesn’t matter.
Explore the world.

Nearly everything is really interesting if you go into it deeply enough.

Richard Feynman

1
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2 1. Introduction

In seismic exploration, artificially or naturally generated mechanical waves are rec-
orded and processed to infer the structure and mechanical properties of the subsurface.
During a seismic experiment, waves generated by various active sources reflect and
refract off subsurface formations before travelling to receivers. A motive of this thesis
is to develop a seismic system to map the subsurface ahead of a tunnel boring machine
for hazard assessment during excavation. Such a system should be able generate the
subsurface properties in near real time with very little human interaction.

Conventionally, processing of recorded seismic data is a two-step procedure. First, a
background wave velocity of the subsurface is estimated using kinematic information in
the data. The background velocity model only contains components that are smoothly
varying with location. Secondly, the reflected arrivals in the data are mapped back into
depth to produce a reflectivity image of the subsurface. This step is called migration.
The reflectivity image only contains rough components of the wave velocity and the
mass density. It highlights the interfaces between Earth layers and rock formations,
each having a different wave impedance, the product of density and velocity.

The kinematic information of seismic data is contained in the traveltimes of both
the reflected and refracted arrivals. These traveltimes can be manually picked and then
refraction [White, 1989; Zhang and Toksöz, 1998; Schuster and Quintus-Bosz, 1993] or
reflection [Luo and Schuster, 1991; Stork, 1992] tomography can be used to produce a
background velocity model. With such a model, a suitable migration algorithm [Claer-
bout, 1971; Stolt, 1978; Berkhout, 1980; Gazdag and Sguazzero, 1984; Bleistein et al.,
2000] can generate a reflectivity image of the subsurface.

The migration imaging principle of Claerbout [1971] was recast into a local optimisa-
tion problem by Lailly [1983]; Tarantola [1984a]. The latter minimizes the least-squares
misfit between the recorded and modelled data that are generated by solving a wave
equation, based on simplified laws of physics, assuming a fixed background velocity.
As the modelled data depend linearly on the unknown rough components of the wave
velocity, this inverse problem is easy to solve. If such an optimisation problem also
estimates all the other unknown subsurface properties, including the background veloc-
ity, the resulting inversion algorithm is called full waveform inversion (FWI) [Tarantola,
1984b]. Unlike the conventional tomographic or migration methods, FWI uses both the
amplitude and the phase of the recorded waveforms to iteratively solve for the elastic
properties of the subsurface. The dependence between the modelled data and cer-
tain subsurface properties can be highly non-linear. A key assumption, which is often
overlooked in practice, of both the linearized and full-waveform inversion is that the
simplified wave equation provides a sufficiently accurate description of the true seis-
mic wave propagation. For example, consider an inversion using the two-dimensional
isotropic elastic wave equation, where the actual wave propagation has occured in a
three-dimensional anisotropic medium.

Over the past 20 years, FWI has gradually replaced the conventional seismic pro-
cessing and imaging methods, such as traveltime tomography and migration, for the
following reasons:

• FWI not only estimates the subsurface wave velocity but also other elastic proper-
ties that determine the wave propagation, which leads to multi-parameter quanti-
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tative imaging [Djikpéssé and Tarantola, 1999; Plessix et al., 2013; Operto et al.,
2013; Prieux et al., 2013].

• FWI has the potential to obtain all wavenumber components of the subsurface
models that can be resolved from the information contained in seismic recordings.
For example, in the case of the wave-velocity model, both the low- and high-
wavenumber components are expected to be reconstructed accurately. The low-
wavenumber components mainly affect the transmission of waves and constitute
the background velocity, whereas the high wavenumber components add details
to the model and are responsible for the reflection of waves. Therefore, full
waveform inversion encompasses both migration and tomography [Mora, 1989].

• In principle, data processing with FWI can be done automatically with almost
negligible human intervention. This is clearly valuable when real-time mapping of
the Earth’s composition and structure is required. One example is looking ahead of
a tunnel boring machine (TBM) for hazard assessment during tunnel excavation,
the subject of chapter 5 of this thesis. Another is helping operators to reduce
risk and improve efficiency during drilling of wells [Rector III and Marion, 1991;
Miranda et al., 1996; Poletto and Miranda, 2004].

Despite the attractive reasons given above, until now the success of the inversion
algorithms using only FWI is limited due to the following problems [Santosa and Symes,
1989; Mulder and Plessix, 2008; Symes, 2008; Virieux and Operto, 2009]:

• Convergence to local minima of the least-squares functional. The presence of lo-
cal minima can be attributed to the well-known non-linear dependence between
the modelled data and the unknown background wave velocity. Hence, the local
minima make the reconstruction of the low-wavenumber components of the wave
velocity difficult. This problem is severe in the absence of reliable low-frequency
information in the recorded data. In such situations, FWI is successful only when
started from an accurate background velocity model derived from either the con-
ventional tomography or available a priori knowledge.

• The wave equation based on simplified physics is used for modelling; it cannot
satisfactorily account for the amplitudes of the recorded arrivals in most of the
cases. In addition to this modelling uncertainty, there is always noise in the seismic
data due to various external sources in the recording environment.

• During multi-parameter inversion, different parameter types have different sensi-
tivities to the modelled data, making their simultaneous estimation challenging.

• Computational costs associated with the modelling and inversion of 3-D subsur-
face models are high.

Therefore, successful seismic experiments that aim for automatic quantitative imaging
of the subsurface need to

• use automatic procedures that do not rely on manual picking to build low-wave-
number components and/or record reliable low frequencies,
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• adopt new minimization criteria to mitigate the sensitivity of inversion to amplitude
errors and increase the robustness of FWI when multiple types of parameter are
to be estimated, and

• improve computational efficiency, for instance, data-compression techniques can
be used when the inversion program is slow due to the lack of memory bandwidth.

The chapters of this thesis can be read independently if the reader already has an
understanding of FWI. If not, chapter 2 provides the basics of time-domain FWI, which
is prevalent in all the subsequent chapters.

In chapter 3, we focus on the problem of local minima. We first formulate a new data-
domain objective function, that we call the bump functional, for inversion. The bump
functional can be seen as a generalised envelope-based misfit. We describe various
characteristics of the bump functional using simple and illustrative numerical examples.
Then, we propose a multi-objective inversion scheme that uses the conventional least-
squares functional along with the bump functional. We demonstrate the effectiveness of
the proposed multi-objective inversion scheme in reconstructing the low-wavenumber
components of the wave-velocity by considering realistic examples.

In chapter 4, we focus on reducing the computational cost of multi-parameter inver-
sion. We analyse various choices of subsurface parameterizations in search of a choice
with the fastest convergence for multi-parameter acoustic FWI. We also review two
different conventional parameterization analysis methods, i.e., the point-scatterer anal-
ysis and diffraction-pattern analysis, which are expected to suggest a parameterization
choice with the fastest convergence. Our numerical examples with single-component
data do not agree with the suggestions of the conventional analyses and show that we
cannot decide on the fastest parameterization choice for multi-parameter acoustic full
waveform inversion.

In chapter 5, we undertake the demonstration of FWI’s speculative qualification to
allow for automatic processing. To enable imaging ahead of a tunnel-boring machine
(TBM), we developed a seismic prediction system with a few shear-wave vibrators and
horizontal receivers. The horizontal receivers measure the particle velocity, mainly due
to horizontally polarised shear (SH) waves. The design of the vibrators is based on linear
synchronous motors technology [Noorlandt et al., 2015], which is capable of expanding
the source frequency band to the lower frequencies. Hence the local minima problem is
less severe, enabling the system to use FWI for processing. Since the acquired data need
to be processed in nearly real time with current computing technology, we simplified
the SH full waveform inversion problem to 2D. We demonstrated the capabilities of the
proposed system by a number of synthetic and field experiments.

Chapter 6 concludes the thesis and provides some recommendations for future re-
search directions.
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2
Waveform Inversion

I learned very early the difference between
knowing the name of something and knowing something.

Richard Feynman

The purpose of this chapter is to briefly review time-domain seismic waveform in-
version methods. They are formulated as optimization problems with partial dif-
ferential equation (PDE) constraints. To aid the understanding of these problems,
we also provide a simple two-dimensional constrained optimization example in
boxes.

7
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2.1. Notation for Differentiation
We use Euler’s notation for differentiation in this chapter. The total differential and the
partial differential operators are denoted as d and 𝜕, respectively. When applied to a
function 𝐽 of two variables 𝑥 and 𝑧,

d፱𝐽 =
d𝐽
d𝑥

is the total derivative of 𝐽 with respect to 𝑥 and

𝜕፱𝐽 =
𝜕𝐽
𝜕𝑥

gives the partial derivative of 𝐽 with respect to 𝑥. The subscript of d or 𝜕 denotes the
derivatives that are being taken. For example, the second partial derivatives of 𝐽 are
𝜕፱፱𝐽, 𝜕፱፳𝐽 and 𝜕፳፳𝐽. The gradient of 𝐽 with respect to a vector x = (𝑥, 𝑧) is also a vector,
which is symbolically expressed as:

∇x𝐽 = (
𝜕𝐽
𝜕𝑥 ,

𝜕𝐽
𝜕𝑧)

T

2.2. PDE-constrained Optimization
In a seismic experiment, we refer to the physical observable recorded at the receivers
as observed or recorded data. Seismic waveform inversion uses the observed data to
estimate the following unknowns:

1. a state variable 𝜈(x, 𝑡) at each point x in the subsurface and evolving as a function
of time 𝑡;

2. the model parameter vector m(x) at each point in the subsurface that influences
the propagation of seismic waves.

It aims to match the state variable at the receivers to the observed data. The inversion
can be formulated as a minimization problem with an objective function

𝐽 =∑
፬
𝐽፬(𝜈,m), (2.1)

where the subscript 𝑠 denotes a source position. Here, the model parameter vector m
belongs to model space 𝕄, which is a set of possible models of the subsurface. For a
single-source experiment, the misfit between the state variable 𝜈 ∈ ℝ and the observed
data at the receivers is quantified by 𝐽፬ ∶ 𝕄 × ℝ → ℝ. The functional 𝐽፬ may also
contain additional model-dependent regularization terms. We denote time by 𝑡 ∈ [0, 𝑡ኻ]
and 2-D spatial coordinates with x ∈ {(𝑥, 𝑧) ∶ 𝑧 ≥ 𝑧ኺ} ⊂ ℝኼ. The horizontal and vertical
coordinates are denoted by 𝑥 and 𝑧, respectively. The maximum recording time of the
seismic experiment is given by 𝑡ኻ. A horizontal free surface is defined at 𝑧 = 𝑧ኺ and
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a point on the free surface by xኺ = (𝑥, 𝑧ኺ). The minimization of 𝐽፬ is subject to the
following partial differential equation (PDE) constraints:

⎧
⎪
⎨
⎪
⎩

𝑔(m, 𝜈; x, 𝑡) = L[m]𝜈(x, 𝑡) − 𝜙(x, 𝑡) = 0;
𝜈(x, 0) = 0;
𝜕፭𝜈(x, 0) = 0;
𝜈(xኺ, 𝑡) = 0.

(2.2)

These constraints represent the physical laws that the state variable is assumed to obey.
We denote the source term by 𝜙. The acoustic or shear-horizontal wave operator,

L[m] = 𝑚ፚ𝜕፭፭ − 𝜕፱𝑚፛𝜕፱ − 𝜕፳𝑚፛𝜕፳ , (2.3)

depends on different subsurface medium parameters𝑚ፚ and𝑚፛, constituting the medium
parameter vector m = (𝑚ፚ , 𝑚፛)T. The partial derivatives with respect to 𝑡, 𝑥 and 𝑧 are
denoted by 𝜕፭, 𝜕፱ and 𝜕፳, respectively. The initial boundary conditions imply that the
state variable and its time derivative are zero everywhere in the medium at the initial
𝑡 = 0. The Dirichlet spatial boundary condition, 𝜈(xኺ, 𝑡) = 0, is necessary for the re-
flecting free surface at x = xኺ. The theory in the rest of the chapter should be modified
accordingly when the Neumann boundary condition, 𝜕፳𝜈(xኺ, 𝑡) = 0, is imposed at the
boundary.

Consider a hypothetical case, where receivers are present everywhere in the sub-
surface: we can choose the state variable same as the observed data to minimize 𝐽፬.
However, we can choose to impose additional restrictions on the state variables. We are
only interested in those variables that satisfy the partial differential equation (PDE) in
2.2 for subsurface models in 𝕄. When 𝑔 = 0, the state variable is a physical realization
and it is referred to as modelled wavefield. For m ∈ 𝕄 and 𝜈 ∈ ℝ, the points in 𝕄×ℝ
that satisfy the wave-equation constraint belong to what we call the feasible region. If
the modelled wavefield space is denoted by 𝕌 ⊂ ℝ, then the feasible region is given by
𝕄×𝕌. A forward simulation ℱ maps every element of 𝕄 to 𝕌 using equations 2.2.

Example: 2-D Constrained Optimization

To aid the understanding of PDE-constrained optimization methods discussed
in this chapter, we consider a simple two-dimensional constrained optimization
example. Let a scalar 𝑚̌ denote a hypothetical subsurface model and a scalar 𝜈̌
a hypothetical state variable. In this chapter, the diacritical mark ̌ is added to
variables that are related to this simple example. We define an inverse problem
that maximizes a functional

̌𝐽(𝑚̌, 𝜈̌) = 2 − 𝑚̌ኼ − 2𝜈̌ኼ, (2.4)

and subject to a constraint

𝑔̌(𝑚̌, 𝜈̌) = 𝜈̌ − 1 + 𝑚̌ = 0. (2.5)

Figure 2.1a plots contours or level curves of ̌𝐽. Clearly, the unconstrained max-
imum is at (𝑚̌, 𝜈̌) = (0, 0). Note that this point does not belong to the feasi-
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Figure 2.1: A two-dimensional constrained optimization example. (a) Contours or level curves of the objective
function are plotted. The feasible region is marked using a dashed red line. (b) Contours of the reduced
Lagrangian when the multipliers Ꭴ̌ are chosen such that Ꭷᒒ̌ℒ̌ ዆ ኺ. (c) Contours of the reduced Lagrangian
when the multipliers Ꭴ̌ are chosen such that Ꭷᑞ̌ℒ̌ ዆ ኺ.

ble region. The points corresponding to the feasible region are marked by the
red-dashed line in Figure 2.1a. To find the constrained maximum, we can first
explicitly solve for 𝜈̌ using equation 2.5, yielding

𝜈̌ = 1 − 𝑚̌,

and then substitute into ̌𝐽 to get

̌𝐽 = 2 − 𝑚̌ኼ − 2(1 − 𝑚̌)ኼ.

In this way, we arrive at a one-dimensional unconstrained optimization problem.
Now, it is easy to find the stationary or saddle point, where the derivative of ̌𝐽
with respect to 𝑚̌ is zero. This point is marked by the triangle in Figure 2.1a.
The current substitution technique cannot be used in the case of slightly more
complicated constraints such as, for instance, the wave equation.

2.2.1. Method of Lagrange Multipliers
For simplicity, we consider a seismic experiment with one source such that 𝐽 = 𝐽፬. We
form a function, also called the Lagrangian ℒ ∶ 𝕄 × ℝ ×ℝ → ℝ, to minimize 𝐽፬ with the
wave-equation constraint in 2.2 as:

ℒ(m, 𝜈, 𝜒) = 𝐽፬(𝜈,m) − ⟨𝜒(x, 𝑡), 𝑔(m, 𝜈; x, 𝑡)⟩x,፭ ,
= 𝐽፬(𝜈,m) − ⟨𝜒(x, 𝑡),L[m]𝜈(x, 𝑡) − 𝜙(x, 𝑡)⟩x,፭ ,
= 𝐽፬(𝜈,m) − ⟨𝜒(x, 𝑡),L[m]𝜈(x, 𝑡)⟩x,፭ + ⟨𝜒(x, 𝑡), 𝜙(x, 𝑡)⟩x,፭ . (2.6)
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𝜒(x, 𝑡) denotes the Lagrange multipliers. We use ⟨⋅, ⋅⟩x,፭ to denote the integration over
space and time. For example,

⟨𝜒(x, 𝑡), 𝜙(x, 𝑡)⟩x,፭ = ∫
፭
∫
x
𝜒(x, 𝑡)𝜙(x, 𝑡)dx d𝑡.

The Lagrangian depends on the state variable 𝜈, the medium-parameter vector m and
the Lagrange multipliers 𝜒. Note that the Lagrangian generally contains the initial and
boundary-value constraints of equations 2.2. For simplicity, we assume that they have
been removed by substitution.

Waveform inversion aims to find saddle points of the Lagrangian given in equa-
tion 2.6. At a saddle point the partial derivatives of the Lagrangian with respect to 𝜈, 𝜒
and m are zero:

{
∇mℒ = (0, 0)T;
𝜕᎚ℒ = 0;
𝜕Ꭴℒ = 0.

(2.7)

Example: Lagrange Multipliers

A geometric way of solving the constrained optimization problem is to a find
point where a particular level curve of ̌𝐽 touches the line 𝑔̌ = 0. At such a
point the normal vectors corresponding to the level curve and the constraint line
are parallel to each other. This is referred to as the tangential condition, which
is satisfied at the point marked by a triangle in Figure 2.1a. The method of
Lagrange multipliers gives points that satisfy the tangential condition by solving
the following equations simultaneously:

{
𝜕፦̌ ̌𝐽 = 𝜒̌𝜕፦̌𝑔̌;
𝜕᎚̌ ̌𝐽 = 𝜒̌𝜕᎚̌𝑔̌;
𝑔̌ = 0.

(2.8)

Here, 𝜒̌ is the Lagrange multiplier. Alternatively, we can compactly represent the
above equations at once by writing the Lagrangian,

ℒ̌(𝑚̌, 𝜈̌, 𝜒̌) = ̌𝐽 + 𝜒̌𝑔̌, (2.9)

and finding the saddle points where

{
𝜕፦̌ℒ̌ = 0;
𝜕᎚̌ℒ̌ = 0;
𝜕Ꭴ̌ℒ̌ = 0.

(2.10)

The Lagrangian is seen as a function of independent variables 𝑚̌, 𝜈̌ and 𝜒̌. So,
we have reformulated the constrained optimization problem in two dimensions
into an unconstrained optimization problem in three dimensions.
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2.2.2. Full-space Optimization Methods
A full-space optimization approach searches the multi-dimensional space spanned by
m, 𝜈 and 𝜒 to find the saddle points of the Lagrangian [Haber et al., 2000]. In this
approach, the wave-equation constraint is not necessarily satisfied during the optimiza-
tion. However, the constraint does hold as soon as the optimization has converged
to a saddle point. This approach is not feasible for large-scale seismic problems since
storing and updating the state variable 𝜈 and the Lagrange multipliers 𝜒 requires a large
amount of memory. Contrast-source inversion (CSI) is discussed by van den Berg and
Kleinman [1997] and Abubakar et al. [2008], where the optimization updates both the
state variable and the medium parameters in the subsurface. A full-space optimization
method of another kind is considered by van Leeuwen and Herrmann [2013], where an
augmented functional is used instead of the Lagrangian.

Example: Full-space Optimization

A full-space optimization approach searches the whole space span by 𝑚̌, 𝜈̌ and
𝜒̌ for saddle points of the Lagrangian. After using the equations 2.4 and 2.5, the
system of equations 2.10 reduces to the following system of linear equations:

{
−2𝑚̌ + 𝜒̌ = 0;
−4𝜈̌ + 𝜒̌ = 0;
𝜈̌ − 1 + 𝑚̌ = 0.

(2.11)

Example: Reduced-space Optimization

In this case, the search space of the optimization problem is reduced by explic-
itly solving either one or two equations of 2.10. Now we look at two different
illustrations of reduced-space optimization. In the first illustration, the optimizer
only searches in a space spanned by 𝑚̌ after the following two steps:

1. choose 𝜒̌ such that 𝜕᎚̌ℒ̌ = 0

2. and choose 𝜈̌ such that 𝜕Ꭴ̌ℒ̌ = 0.

The contours of the reduced Lagrangian after the first step are plotted in Fig-
ure 2.1b as a function of 𝜈̌ and 𝑚̌. The second step forces the optimizer to only
search along the constraint line to find the saddle point. Notice that everywhere
along this line, the level curves are horizontal, since the derivative of the reduced
Lagrangian with respect to the state variable is set to be zero.
In the second illustration, the optimizer only searches in a space spanned by 𝜈̌
after following the two steps as above except 𝜕፦̌ℒ̌ = 0 during the first step. In
this case, the reduced Lagrangian after the first step is plotted in Figure 2.1c.
Notice that the contour lines are vertical everywhere on the constraint line, hence
the reduced Lagrangian changes only with the state variable 𝜈̌.
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2.2.3. Full Waveform Inversion (FWI) as Reduced-space Optimiza-
tion

In full waveform inversion, instead of solving the equations 2.7 simultaneously, the
dimensionality of the full-space Lagrangian optimization is reduced only to the model
space by employing the following two steps.

1. We choose the state variable 𝜈 such that 𝜕Ꭴℒ = 0, to obtain

L[m]𝜈(x, 𝑡) − 𝜙(x, 𝑡) = 0. (2.12)

The above equation is known as the state equation. This means that, during
FWI, we always choose the state variable such that it satisfies the wave-equation
constraint. For this reason, the state variable is also referred to as the modelled
wavefield. Once equation 2.12 is satisfied, the Lagrangian reduces to

ℒ = 𝐽፬ . (2.13)

2. Next, we differentiate ℒ with respect to 𝜈. Towards that end, we rewrite the term
⟨𝜒,L[m]𝜈⟩x,፭ in equation 2.6 by using integration by parts twice:

⟨𝜒,L[m]𝜈⟩x,፭ = ⟨𝜒,𝑚ፚ𝜕፭፭𝜈⟩x,፭ − ⟨𝜒, 𝜕፱𝑚፛𝜕፱𝜈⟩x,፭ − ⟨𝜒, 𝜕፳𝑚፛𝜕፳𝜈⟩x,፭ , (2.14)

= −⟨𝜕፭𝜒,𝑚ፚ𝜕፭𝜈⟩x,፭ + ⟨𝜒,𝑚ፚ𝜕፭𝜈⟩x |
፭዆፭Ꮃ
፭዆ኺ

+⟨𝜕፱𝜒,𝑚፛𝜕፱𝜈⟩x,፭ − ⟨𝜒,𝑚፛𝜕፱𝜈⟩፭ |
፱዆ጼ
፱዆ዅጼ

+⟨𝜕፳𝜒,𝑚፛𝜕፳𝜈⟩x,፭ − ⟨𝜒,𝑚፛𝜕፳𝜈⟩፭ |
፳዆ጼ
፳዆፳Ꮂ

, (2.15)

= ⟨𝜈,L[m]𝜒⟩x,፭
+ ⟨𝜒,𝑚ፚ𝜕፭𝜈⟩x |

፭዆፭Ꮃ
፭዆ኺ − ⟨𝜕፭𝜒,𝑚ፚ𝜈⟩x |

፭዆፭Ꮃ
፭዆ኺ

+ ⟨𝑚፛𝜕፱𝜒, 𝜈⟩፭ |
፱዆ጼ
፱዆ዅጼ − ⟨𝜒,𝑚፛𝜕፱𝜈⟩፭ |

፱዆ጼ
፱዆ዅጼ

+ ⟨𝑚፛𝜕፳𝜒, 𝜈⟩፭ |
፳዆ጼ
፳዆፳Ꮂ

− ⟨𝜒,𝑚፛𝜕፳𝜈⟩፭ |
፳዆ጼ
፳዆፳Ꮂ

, (2.16)

= ⟨𝜈,L[m]𝜒⟩x,፭
+ ⟨𝜒,𝑚ፚ𝜕፭𝜈⟩x |፭዆፭Ꮃ − ⟨𝜕፭𝜒,𝑚ፚ𝜈⟩x |፭዆፭Ꮃ
− ⟨𝜒,𝑚፛𝜕፳𝜈⟩፭ |፳዆፳Ꮂ . (2.17)

In the equation 2.17, it was possible to have the wave operator L on both the
left and right hand sides is the same because it is self-adjoint. We have used the
initial and spatial boundary conditions of the equation 2.2 to eliminate the terms
containing 𝜈(x, 0), 𝜕፭𝜈(x, 0) and 𝜈(xኺ, 𝑡). The modelled wavefield and its spatial
derivatives vanish if |𝑥| or 𝑧 tend to infinity (Sommerfield radiation conditions,
Wapenaar and Haimé [1990]). Again, 𝑡ኻ corresponds to the maximum modelling
time and 𝑧 = 𝑧ኺ is the free surface. Substituting equation 2.17 into the Lagrangian
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of equation 2.6 and then choosing the Lagrange multipliers 𝜒 such that 𝜕᎚ℒ = 0
gives:

⎧
⎪
⎨
⎪
⎩

L[m]𝜒(x, 𝑡) − 𝜕᎚𝐽፬(x, 𝑡) = 0,
𝜒(x, 𝑡ኻ) = 0,
𝜕፭𝜒(x, 𝑡ኻ) = 0,
𝜒(xኺ, 𝑡) = 0.

(2.18)

The system of equations 2.18 has final conditions at 𝑡 = 𝑡ኻ and the same spatial
boundary conditions as in the system 2.2. It has to be numerically solved in
reverse time starting from 𝑡 = 𝑡ኻ. Defining 𝜒ኻ(𝑡) as 𝜒ኻ(𝑡) = 𝜒(𝑡ኻ − 𝑡), and
substituting this into equations 2.18 leads to

⎧
⎪
⎨
⎪
⎩

L[m]𝜒ኻ(x, 𝑡) − 𝜕᎚𝐽፬(x, 𝑡ኻ − 𝑡) = 0,
𝜒ኻ(x, 0) = 0,
𝜕፭𝜒ኻ(x, 0) = 0,
𝜒(xኺ, 𝑡) = 0.

(2.19)

This system can be solved in forward time and it corresponds to the adjoint state
𝜒ኻ, which is also referred to as the adjoint wavefield [Plessix, 2006]. It is mod-
elled by back propagating adjoint source functions, given by 𝜕᎚𝐽፬(x, 𝑡), into the
medium.

In full waveform inversion, we use an iterative gradient-based optimizer to search
in the feasible region for a point where the partial derivative of the Lagrangian with
respect to medium parameter vector goes to zero. At every iteration, the gradient-
based optimizer first computes a search direction that is used to update m such that
the functional is minimized. In order to determine the search direction, typically the
first and sometimes also the second derivatives of the Lagrangian with respect tom are
used. We derive expressions of these derivatives in the following subsections.

First Derivatives of the Lagrangian with Respect to Medium Parameters
Using the relation 𝜒ኻ(𝑡) = 𝜒(𝑡ኻ−𝑡) and differentiating the Lagrangian in the equation 2.6
with respect to the model vector m, we obtain

∇mℒ(x) = ∇m𝐽፬(x) − ⟨𝜒ኻ(x, 𝑡ኻ − 𝑡), ∇mL[m]𝜈(x, 𝑡)⟩፭ . (2.20)

If model-dependent regularization terms are absent in 𝐽፬, then ∇m𝐽፬ = (0, 0). We can
write the derivatives with respect to 𝑚ፚ and 𝑚፛ individually as

{𝜕፦ᑒℒ(x) = 𝜕፦ᑒ𝐽፬(x) − ⟨𝜒ኻ(x, 𝑡ኻ − 𝑡), 𝜕፭፭𝜈(x, 𝑡)⟩፭;𝜕፦ᑓℒ(x) = 𝜕፦ᑓ𝐽፬(x) − ⟨𝜒ኻ(x, 𝑡ኻ − 𝑡), −𝜕፱፱𝜈(x, 𝑡) − 𝜕፳፳𝜈(x, 𝑡)⟩፭ .
(2.21)

Using equation 2.17, we can alternatively write:

{𝜕፦ᑒℒ(x) = 𝜕፦ᑒ𝐽፬(x) − ⟨𝜈(x, 𝑡), 𝜕፭፭𝜒ኻ(x, 𝑡ኻ − 𝑡)⟩፭;𝜕፦ᑓℒ(x) = 𝜕፦ᑓ𝐽፬(x) − ⟨𝜈(x, 𝑡), −𝜕፱፱𝜒ኻ(x, 𝑡ኻ − 𝑡) − 𝜕፳፳𝜒ኻ(x, 𝑡ኻ − 𝑡)⟩፭ .
(2.22)
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The first derivatives of the Lagrangian with respect to the medium parameters can be
computed using the forward modelled wavefield 𝜈 and the adjoint wavefield 𝜒ኻ.

Second Derivatives of the Lagrangian with Respect to Medium Parameters
We refer the reader to Fichtner and Trampert [2011] for a discussion on second deriva-
tives. Consider a point xኻ and its corresponding medium parameter vectormኻ =m(xኻ)
has parameters 𝑚ኻ,ፚ and 𝑚ኻ,፛. Our aim now is to express the derivative of 𝜕፦Ꮃ,ᑒℒ with
respect to the medium parameters at all other subsurface points. Towards that end, we
use the expression for the first derivatives in equation 2.22. To compute the second
derivatives, we introduce a Lagrangian

ℒ̀ኻ,ፚ(𝜈, 𝜒, 𝜓ኻ, 𝜓ኼ,m) =
ᎧᑞᎳ,ᑒℒ

⏜⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏜𝜕፦Ꮃ,ᑒ𝐽፬(x) − ⟨𝜒ኻ(xኻ, 𝑡ኻ − 𝑡), 𝜕፦Ꮃ,ᑒL[m]𝜈(xኻ, 𝑡)⟩፭
−⟨𝜓ኻ(x, 𝑡),L[m]𝜈(x, 𝑡) − 𝜙(x, 𝑡)⟩x,፭
−⟨𝜓ኼ(x, 𝑡),L[m]𝜒ኻ(x, 𝑡) − 𝜕᎚𝐽(x, 𝑡ኻ − 𝑡)⟩x,፭ . (2.23)

The diacritical mark and the subscript in ℒ̀ኻ,ፚ indicate that it includes the first derivative
of the original Lagrangian ℒ with respect to the medium parameter 𝑚ኻ,ፚ at xኻ. We aim
now to compute the first derivatives of this Lagrangian ℒ̀ኻ,ፚ, which is a function of the
state variable 𝜈, the adjoint state variable 𝜒ኻ, the model vector m and the Lagrange
multipliers 𝜓ኻ and 𝜓ኼ. Here, the forward wavefield 𝜈 and the adjoint wavefield 𝜒ኻ are
constrained by equations 2.2 and 2.19, respectively. We follow the way we derived the
first derivatives of ℒ and first choose 𝜈 and 𝜒ኻ such that 𝜕ᎥᎳ ℒ̀ኻ,ፚ = 0 and 𝜕ᎥᎴ ℒ̀ኻ,ፚ = 0,
respectively. In this way, the constraints in equations 2.2 and 2.19 are satisfied. Then,
we choose 𝜓ኼ such that 𝜕ᎤᎳ ℒ̀ኻ,ፚ = 0, to obtain

⎧
⎪
⎨
⎪
⎩

L[m]𝜓ኼ(x, 𝑡) + 𝜕፦Ꮃ,ᑒL𝜈(xኻ, 𝑡ኻ − 𝑡) = 0;
𝜓ኼ(x, 𝑡ኻ) = 0;
𝜕፭𝜓ኼ(x, 𝑡ኻ) = 0;
𝜓ኼ(xኺ, 𝑡) = 0.

(2.24)

We introduce the first secondary adjoint state for the computation of the second deriva-
tives as 𝜓ኾ(x, 𝑡) = 𝜓ኼ(x, 𝑡ኻ − 𝑡) and use 𝜕፦Ꮃ,ᑒL = 𝜕፭፭ to rewrite the above system of
equations:

⎧
⎪
⎨
⎪
⎩

L[m]𝜓ኾ(x, 𝑡) + 𝜕፭፭𝜈(xኻ, 𝑡) = 0;
𝜓ኾ(x, 0) = 0;
𝜕፭𝜓ኾ(x, 0) = 0;
𝜓ኼ(xኺ, 𝑡) = 0.

(2.25)

Similarly, we choose 𝜓ኻ such that 𝜕᎚ℒ̀ኻ,ፚ(x, 𝑡) = 0, yielding

⎧
⎪
⎨
⎪
⎩

L[m]𝜓ኻ(x, 𝑡) + 𝜕፦Ꮃ,ᑒL𝜒ኻ(xኻ, 𝑡ኻ − 𝑡) − 𝜓ኼ(x, 𝑡)𝜕᎚᎚𝐽፬(x, 𝑡) = 0;
𝜓ኻ(x, 𝑡ኻ) = 0;
𝜕፭𝜓ኻ(x, 𝑡ኻ) = 0;
𝜓ኻ(xኺ, 𝑡) = 0.

(2.26)
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We introduce the second secondary adjoint state for the computation second derivatives
as 𝜓ኽ(x, 𝑡) = 𝜓ኻ(x, 𝑡ኻ − 𝑡) and use 𝜕፦Ꮃ,ᑒL = 𝜕፭፭ to rewrite the above equations:

⎧
⎪
⎨
⎪
⎩

L[m]𝜓ኽ(x, 𝑡) + 𝜕፭፭𝜒ኻ(xኻ, 𝑡) − 𝜓ኾ(x, 𝑡)𝜕᎚᎚𝐽፬(x, 𝑡ኻ − 𝑡) = 0;
𝜓ኽ(x, 0) = 0;
𝜕፭𝜓ኽ(x, 0) = 0;
𝜓ኽ(xኺ, 𝑡) = 0.

(2.27)

Finally, the expression for the first derivatives of ℒ̀ኻ,ፚ in terms of the secondary adjoint
wavefields, 𝜓ኽ and 𝜓ኾ, is given by

∇mℒ̀ኻ,ፚ(x) = ∇m𝜕፦Ꮃ,ᑒ𝐽፬(x)
−⟨𝜒ኻ(xኻ, 𝑡ኻ − 𝑡), ∇m𝜕፦Ꮃ,ᑒL𝜈(xኻ, 𝑡)⟩፭
−⟨𝜓ኽ(x, 𝑡ኻ − 𝑡), ∇mL[m]𝜈(x, 𝑡)⟩፭
−⟨𝜓ኾ(x, 𝑡ኻ − 𝑡), ∇mL[m]𝜒ኻ(x, 𝑡)⟩፭ . (2.28)

Again, ∇m𝜕፦Ꮃ,ᑒ𝐽፬(x) = (0, 0) if the functional 𝐽፬ has no model-dependent regularization
terms. Using the above expression for the gradient with respect to 𝑚ፚ, we obtain

𝜕፦ᑒ ℒ̀ኻ,ፚ(x) = 𝜕፦ᑒ𝜕፦Ꮃ,ᑒ𝐽፬(x)
−⟨𝜓ኽ(x, 𝑡ኻ − 𝑡), 𝜕፭፭𝜈(x, 𝑡)⟩፭
−⟨𝜓ኾ(x, 𝑡ኻ − 𝑡), 𝜕፭፭𝜒ኻ(x, 𝑡)⟩፭ . (2.29)

The derivative with respect to 𝑚፛ is given by

𝜕፦ᑓ ℒ̀ኻ,ፚ(x) = 𝜕፦ᑓ𝜕፦Ꮃ,ᑒ𝐽፬(x)
−⟨𝜓ኽ(x, 𝑡ኻ − 𝑡), −𝜕፱፱𝜈(x, 𝑡) − 𝜕፳፳𝜈(x, 𝑡)⟩፭
−⟨𝜓ኾ(x, 𝑡ኻ − 𝑡), −𝜕፱፱𝜒ኻ(x, 𝑡) − 𝜕፳፳𝜒ኻ(x, 𝑡)⟩፭ . (2.30)

In a similar way, we can compute the derivative of 𝜕፦Ꮃ,ᑓℒ with respect to the pa-
rameter 𝑚፛ everywhere in the subsurface by forming another Lagrangian ℒ̀ኻ,፛. We use
two additional secondary adjoint states, 𝜓኿ and 𝜓ዀ, given by

⎧
⎪
⎨
⎪
⎩

L[m]𝜓ዀ(x, 𝑡) − 𝜕፱፱𝜈(xኻ, 𝑡) − 𝜕፳፳𝜈(xኻ, 𝑡) = 0;
𝜓ዀ(x, 0) = 0;
𝜕፭𝜓ዀ(x, 0) = 0;
𝜓ዀ(xኺ, 𝑡) = 0;

(2.31)

⎧
⎪
⎨
⎪
⎩

L[m]𝜓኿(x, 𝑡) − 𝜕፱፱𝜒ኻ(xኻ, 𝑡) − 𝜕፳፳𝜒ኻ(xኻ, 𝑡) − 𝜓ዀ(x, 𝑡)𝜕᎚᎚𝐽፬(x, 𝑡ኻ − 𝑡) = 0;
𝜓኿(x, 0) = 0;
𝜕፭𝜓኿(x, 0) = 0;
𝜓኿(xኺ, 𝑡) = 0.

(2.32)
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The final expression for the derivative becomes

𝜕፦ᑓ ℒ̀ኻ,፛(x) = 𝜕፦ᑓ𝜕፦Ꮃ,ᑓ𝐽፬(x)
−⟨𝜓኿(x, 𝑡ኻ − 𝑡), −𝜕፱፱𝜈(x, 𝑡) − 𝜕፳፳𝜈(x, 𝑡)⟩፭
−⟨𝜓ዀ(x, 𝑡ኻ − 𝑡), −𝜕፱፱𝜒ኻ(x, 𝑡) − 𝜕፳፳𝜒ኻ(x, 𝑡)⟩፭ . (2.33)

2.2.4. Interpretation of FWI Without Using the Lagrangian
FWI can also be formulated as a minimization problem without using the Lagrangian.
This is due to the fact that the dimensionality of the Lagrangian is finally reduced only to
the model space during FWI, as we have already shown. We now minimize a functional
̃𝐽፬(𝜈(m),m) of onlym such that the modelled wavefield 𝜈 depends on the model vector
m through equations 2.2. For gradient-based optimization, we need to find the total
derivative of ̃𝐽፬ with respect to m given by:

{d፦ᑒ
̃𝐽፬ = 𝜕፦ᑒ ̃𝐽፬ + (𝜕᎚ ̃𝐽፬)(𝜕፦ᑒ𝜈);

d፦ᑓ ̃𝐽፬ = 𝜕፦ᑓ ̃𝐽፬ + (𝜕᎚ ̃𝐽፬)(𝜕፦ᑓ𝜈).
(2.34)

Since ̃𝐽፬ = 𝐽፬, we can replace ̃𝐽፬ on the right hand side of the above equation with the
reduced Lagrangian, as in equation 2.13, when 𝜕᎚ℒ = 0 and 𝜕Ꭴℒ = 0, to obtain

{d፦ᑒ
̃𝐽፬ = 𝜕፦ᑒℒ;

d፦ᑓ ̃𝐽፬ = 𝜕፦ᑓℒ.
(2.35)

Here, 𝜕፦ᑒℒ and 𝜕፦ᑓℒ, follow from equations 2.21.

2.3. Specific Wave Operators
Until now, we have considered a more generalized wave operator in equation 2.3 with
two different medium parameters, 𝑚ፚ and 𝑚፛, such that the propagation of waves is in
the 𝑥-𝑧 plane. In this section, we elaborate on full waveform inversion for two specific
wave operators. The first operator corresponds to the propagation of pressure waves
in fluid regions of the Earth. It depends on the bulk modulus and mass density of the
medium. The second operator corresponds to the propagation of shear horizontal (SH)
waves in an elastic medium. It depends on the shear modulus and mass density of the
elastic medium. For each of these two operators, we can specialize the expressions
2.21 of the first-order derivatives of the misfit functional with respect to the medium
parameters.

2.3.1. Elastic Wave Equation
We now review the equations governing the propagation of elastic waves. At each point
in a three-dimensional isotropic elastic medium, the symmetric stress tensor is given by

𝜎 = [
𝜎፱፱ 𝜎፱፲ 𝜎፱፳
𝜎፲፱ 𝜎፲፲ 𝜎፲፳
𝜎፳፱ 𝜎፳፲ 𝜎፳፳

] . (2.36)
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Given a normal vector corresponding to an infinitesimal plane, the components of the
stress tensor can be used to calculate the force acting on the plane. For example, the
force acting on an infinitesimal plane normal to a unit vector along 𝑦-axis is given by
𝜎፲፱ ̂𝑖+𝜎፲፲ ̂𝑗+𝜎፲፳𝑘̂. Here, ̂𝑖, ̂𝑗 and 𝑘̂ are the unit vectors along 𝑥, 𝑦 and 𝑧 axes, respectively.
We denote the vector field of particle displacement using 𝑢 = 𝑢፱ ̂𝑖 + 𝑢፲ ̂𝑗 + 𝑢፳𝑘̂. In order
to write equations of motion, we now consider an infinitesimal cube in the medium.
The external force acting on an infinitesimal cube in the medium is denoted by 𝜅 =
𝜅፱ ̂𝑖 + 𝜅፲ ̂𝑗 + 𝜅፳𝑘̂. Using the definition of the stress tensor, the net force acting on the
infinitesimal cube in 𝑥 direction is given by 𝜕፱𝜎፱፱ + 𝜕፱𝜎፱፲ + 𝜕፱𝜎፱፳ + 𝜅፱. The net force
acting on the cube is non-zero not only because of the external force but also because
of the presence of gradients in the stress tensor. Newton’s second law provides the
equation of motion for the continuum, relating the different components of the particle
accelerations and the stress tensor:

{
𝜌𝜕፭፭𝑢፱ − 𝜕፱𝜎፱፱ − 𝜕፱𝜎፱፲ − 𝜕፱𝜎፱፳ = 𝜅፱;
𝜌𝜕፭፭𝑢፲ − 𝜕፲𝜎፲፱ − 𝜕፲𝜎፲፲ − 𝜕፲𝜎፲፳ = 𝜅፲;
𝜌𝜕፭፭𝑢፳ − 𝜕፳𝜎፳፱ − 𝜕፳𝜎፳፲ − 𝜕፳𝜎፳፳ = 𝜅፳ .

(2.37)

Note that 𝑢, 𝜅, 𝜎 are functions of position and time. The linear stress-strain relationship
for an elastic medium is given by Hooke’s law,

𝜎።፣ = 𝜆𝛿።፣ 𝜕፤𝑢፤ + 𝜇 (𝜕፣𝑢። + 𝜕።𝑢፣) , (2.38)

where 𝜆 and 𝜇 are the Lamé parameters. Here, the subscripts 𝑖, 𝑗 and 𝑘 can be either
of 𝑥, 𝑦 or 𝑧, and 𝛿።፣ denotes the Kronecker delta function.

2.3.2. 2-D Acoustic Wave Operator
The equations governing the elastic-wave propagation are significantly simplified if we
only consider pressure waves by setting 𝜇 = 0. The result is the acoustic wave equa-
tion that describes sound waves in non-moving fluids but also provides an approximate
description of pressure waves in solids. The stress tensor becomes a diagonal matrix,
meaning that the force acting on an infinitesimal plane is independent of its orientation.
Using the relation 𝜎።፣ = −𝛿።፣𝔭 to simplify equations 2.37, we obtain

{𝜌𝜕፭፭𝑢፱ + 𝜕፱𝔭 = 𝜅፱;𝜌𝜕፭፭𝑢፳ + 𝜕፳𝔭 = 𝜅፳ ,
(2.39)

where 𝔭 denotes a scalar pressure field in the medium. Hooke’s law for fluids states
that the pressure 𝔭 at a given point depends on the stiffness or bulk modulus 𝐾 at that
point and the divergence of the particle displacement field, according to

𝔭 = −𝐾 (𝜕፱𝑢፱ + 𝜕፳𝑢፳) . (2.40)

After eliminating the particle displacement from equations 2.39 and 2.40, we obtain a
2-D second-order wave equation for fluids

Lፚ𝔭 − 𝜙ፚ = 𝐾ዅኻ𝜕፭፭𝔭 − 𝜕፱(𝜌ዅኻ𝜕፱𝔭) − 𝜕፳(𝜌ዅኻ𝜕፳𝔭) − 𝜕፱(𝜌ዅኻ𝜅፱) − 𝜕፳(𝜌ዅኻ𝜅፳)
= 0, (2.41)
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with a wave operator

Lፚ = 𝐾ዅኻ𝜕፭፭ − 𝜕፱(𝜌ዅኻ𝜕፱) − 𝜕፳(𝜌ዅኻ𝜕፳), (2.42)

and source term

𝜙ፚ = 𝜕፱(𝜌ዅኻ𝜅፱) + 𝜕፳(𝜌ዅኻ𝜅፳). (2.43)

Equation 2.41 is commonly referred to as the 2-D second-order acoustic wave equation
and can be used as the constraint for acoustic FWI. Acoustic FWI minimizes the misfit
between recorded and modelled pressure wavefield at the receivers. The medium pa-
rameter vector that is estimated during inversion consists in the bulk modulus and the
mass density. Using 𝑚ፚ = 𝐾ዅኻ and 𝑚፛ = 𝜌ዅኻ, the equations 2.21 are rewritten as:

{𝜕ፊᎽᎳℒ(x) = 𝜕ፊᎽᎳ𝐽፬(x) − ⟨𝜒ኻ(x, 𝑡ኻ − 𝑡), 𝜕፭፭𝜈(x, 𝑡)⟩፭𝜕᎞ᎽᎳℒ(x) = 𝜕᎞ᎽᎳ𝐽፬(x) − ⟨𝜒ኻ(x, 𝑡ኻ − 𝑡), −𝜕፱፱𝜈(x, 𝑡) − 𝜕፳፳𝜈(x, 𝑡)⟩፭
(2.44)

Note that in this case, 𝜈 is the modelled pressure wavefield. If the subsurface is parame-
terized by pressure-wave velocity ̄𝑐፩ = 𝑐፩ = √𝐾/𝜌 and density 𝜌̄ = 𝜌 instead of inverse
bulk modulus 𝐾ዅኻ and inverse density 𝜌ዅኻ, the respective derivatives after applying the
chain rule become

{𝜕 ̄፜ᑡℒ(x) = −2𝑐ዅኽ፩ 𝜌ዅኻ𝜕ፊᎽᎳℒ(x);
𝜕᎞̄ℒ(x) = −𝜌ዅኼ𝜕᎞ᎽᎳ𝐽፬(x) − 𝑐ዅኼ፩ 𝜌ዅኼ𝜕ፊᎽᎳℒ(x).

(2.45)

Here, the diacritical mark ̄ denotes the subsurface parameterization.

2.3.3. 2-D SH Wave Operator
In a 2-D SH seismic experiment, horizontally polarized shear waves are used to image
the subsurface. Sources and receivers are placed along a transect, say the 𝑥-axis. The
vibrator sources primarily inject a ground force in the 𝑦-direction, perpendicular to the
transect. As a result, SH waves propagate in the 𝑥, 𝑧-plane with particle displacement
only in the 𝑦-direction. The receivers are assumed to record only the 𝑦-component of
particle velocity field. For this reason, we substitute 𝑢 = 𝑢፲ ̂𝑗, to write the equation of
motion in equations 2.37 as

𝜌𝜕፭፭𝑢፲ − 𝜕፱𝜎፲፱ − 𝜕፳𝜎፲፳ = 𝜅፲; (2.46)

and Hooke’s law in equation 2.38 as

{𝜎፲፱ = 𝜇𝜕፱𝑢፲;𝜎፲፳ = 𝜇𝜕፳𝑢፲ .
(2.47)

Eliminating the stress components 𝜎፲፱ and 𝜎፲፳ from equations 2.46 and 2.47, we have
a second-order equation:

𝜌𝜕፭፭𝑢፲ − 𝜕፱(𝜇𝜕፱𝑢፲) − 𝜕፳(𝜇𝜕፳𝑢፲) = 𝜅፲ . (2.48)
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In terms of the particle velocity in the 𝑦-direction 𝑣፲, we rewrite the equation above to
obtain the 2-D SH wave equation

L፬፡𝑣፲ − 𝜙፬፡ = 𝜌𝜕፭፭𝑣፲ − 𝜕፱(𝜇𝜕፱𝑣፲) − 𝜕፳(𝜇𝜕፳𝑣፲) − 𝜕፭𝜅፲ = 0, (2.49)

which has a wave operator

L፬፡ = 𝜌𝜕፭፭ − 𝜕፱(𝜇𝜕፱) − 𝜕፳(𝜇𝜕፳), (2.50)

and source term

𝜙፬፡ = 𝜕፭𝜅፲ . (2.51)

We use the wave equation 2.49 as a constraint and choose 𝑣፲ as the state variable
for 2-D SH FWI. In this case, the gradients of the objective function with respect to the
shear modulus 𝜇 and mass density 𝜌 are given by rewriting equations 2.21 as:

{𝜕᎞ℒ(x) = 𝜕᎞𝐽፬(x) − ⟨𝜒ኻ(x, 𝑡ኻ − 𝑡), 𝜕፭፭𝜈(x, 𝑡)⟩፭𝜕᎙ℒ(x) = 𝜕᎙𝐽፬(x) − ⟨𝜒ኻ(x, 𝑡ኻ − 𝑡), −𝜕፱፱𝜈(x, 𝑡) − 𝜕፳፳𝜈(x, 𝑡)⟩፭
(2.52)

If the subsurface is parameterized by the shear-wave velocity ̄𝑐፬ = 𝑐፬ = √𝜇/𝜌 and
density 𝜌̄ = 𝜌 instead of shear modulus 𝜇 and density 𝜌, we can express the derivatives,
after applying the chain rule, as

{𝜕᎞̄ℒ(x) = 𝜕᎞ℒ(x) + 𝑐
ኼ
፬𝜕᎙𝐽፬(x)

𝜕 ̄፜ᑤℒ(x) = 2√𝜇𝜌𝜕᎙𝐽፬(x)
(2.53)

Again, the diacritical mark ̄ denotes the subsurface parameterization.

2.4. Data Misfit Functionals
In this section, we discuss various data misfit functionals commonly used in FWI. The
modelled wavefield 𝜈 corresponding to a particular source at x፬ has to be restricted or
sampled to the receiver locations prior to comparing it to the observed data. A restriction
operator, 𝑆(x,x፫) ∶ 𝕌 → 𝔻, maps the modelled wavefield into the data space 𝔻. In
discrete form, 𝑆 corresponds to an interpolation operator. For every source position x፬,
modelled data at a particular receiver location x፫ are given by

𝑝(x፫ , 𝑡; x፬) = 𝑆(x,x፫)𝜈(x, 𝑡; x፬). (2.54)

2.4.1. Least-squares Misfit
The least-squares misfit is given by the sum of squared differences between the ob-
served and modelled data. For an experiment with multiple source positions, it is given
by

𝐽፥፬ = ኻ
ኼ∑

፬
𝐽፥፬,፬ (2.55)

= ኻ
ኼ∑

፬
∑
፫
∑
፭
[𝑝(x፫ , 𝑡; x፬) − 𝑞(x፫ , 𝑡; x፬)]ኼ . (2.56)
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Here, 𝑞(x፫ , 𝑡; x፬) ∈ 𝔻 are the pre-processed observed data for a source at x፬ and
receiver at x፫ as a function of time 𝑡, whereas 𝑝(x፫ , 𝑡; x፬) ∈ 𝔻 represents the modelled
data.

At a particular source position, the adjoint sources necessary for modelling the ad-
joint wavefield in equation 2.19 are given by 𝜕᎚𝐽፬(x, 𝑡ኻ − 𝑡). In the case of the least-
squares misfit, we use chain rule to obtain

𝜕᎚𝐽፥፬,፬(x, 𝑡) = (𝜕᎚𝑝)(𝜕፩𝐽፥፬,፬). (2.57)

Using equation 2.54, we get

𝜕᎚𝐽፥፬,፬(x, 𝑡) = 𝑆T(x,x፫) [𝑝(x፫ , 𝑡;x፬) − 𝑞(x፫ , 𝑡)] , (2.58)

where 𝑆T in discrete form is an adjoint interpolation operator that sprays the adjoint
sources from the receiver locations to the grid points. It is often difficult to achieve
the best possible fit between the modelled and the observed data when only the least-
squares misfit is used. This is primarily due to cycle-skipping, which is discussed with
examples in the following section.

2.4.2. Envelope-based Misfit
The envelope-based misfit measures the difference between the envelopes of the ob-
served and the modelled data [Bozdağ et al., 2011; Wu et al., 2014; Chi et al., 2014;
Luo and Wu, 2015]. The envelope of a real-valued signal is found by computing the
absolute value of its analytic representation. We denote the envelope operator by E.
The envelope of the observed data is given by

E(𝑞) = √𝑞ኼ +Hኼ(𝑞) (2.59)

In the above equation, H(𝑞) denotes the Hilbert transform of the observed data 𝑞. After
computing the observed and modelled envelopes, the misfit is given by

𝐽፞፧፯ =∑
፬
∑
፫
∑
፭
[E(𝑝(x፫ , 𝑡; x፬)) − E(𝑞(x፫ , 𝑡; x፬))]ኼ . (2.60)

The pros and cons of using this misfit are given in Chapter 3 of this thesis. The envelope-
based misfit suffers less from the cycle-skipping problem than the least-squares objec-
tive.

2.4.3. Correlation-based Misfit
In order to compute this misfit, we first need to rescale each receiver record of the data
using its root-mean-squared amplitude. For example, the rescaled modelled data are
given by

𝑝፧(x፫ , 𝑡; x፬) = 𝑝፧(x፫ , 𝑡; x፬) [∫
፭
𝑝ኼ(x፫ , 𝑡; x፬)d𝑡]

ዅኻኼ
. (2.61)
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Inversion with a cross-correlation based misfit estimates a model such that the rescaled
modelled data better correlates with the rescaled observed data at the receivers. Math-
ematically, it aims to maximize the energy around zero lag of the cross-correlation
between the rescaled observed and the rescaled modelled data, denoted by 𝑞፧ and 𝑝፧,
respectively. The cross-correlation based inversion minimizes the misfit 𝐽፜፨፫፫ given by

𝐽፜፨፫፫ = − ኻ
ኼ∑

፬
∑
፫
∑
፭
𝑤(𝑡) [𝑝፧(x፫ , 𝑡; x፬) ⊗፭ 𝑞፧(x፫ , 𝑡; x፬)]ኼ . (2.62)

In the above equation,⊗፭ denotes cross-correlation in time and 𝑤(𝑡) > 0 is a Gaussian
window used to quantify energy only close to 𝑡 = 0. This cross-correlation based misfit is
useful for kinematically fitting transmitted arrivals. The rescaling prevents its application
to complicated datasets with several arrivals.

2.5. Cycle-skipping in Least-squares FWI
Due to the absence of reliable low frequencies in the observed data, the classic least-
squares full waveform inversion suffers from cycle-skipping or loop-skipping problem
[Mulder and Plessix, 2008]. To illustrate this, we consider two simple synthetic exper-
iments using one source and one receiver. The aim of these experiments is to fit the
observed data by updating the velocity between the source and receiver.

In the first experiment, a 40-Hz Ricker source wavelet is used to to generate the
observed data with only a direct arrival as plotted in Figure 2.2a. The starting velocity
model for this experiment is plotted in Figure 2.3a. The modelled direct arrival using the
starting model, plotted in Figure 2.2a, has a travel time greater than that of the observed
arrival by more than half the dominant period 𝜏፝. At the end of least-squares FWI, the
modelled direct arrival does not fit the observed arrival as plotted in Figure 2.2a. The
inversion converges to a local minimum due to cycle-skipping. The estimated velocity
between the source and the receiver, plotted in Figure 2.3c, is lower than in the starting
model.

During the second experiment, we used a 20-Hz Ricker wavelet to generate the
observed data. The observed and the initially modelled arrivals are plotted in the Fig-
ure 2.2b. The arrival time error in the initially modelled data is less than half the domi-
nant period 𝜏፝. The starting model for inversion, plotted in Figure 2.3b, is same as that
of the first experiment. FWI has successfully increased the velocity between the source
and receiver as in the final estimated model of Figure 2.3d. This results in a better fit
between the modelled data and the observed data as shown in the Figure 2.2b.

2.6. Conclusions
In this chapter, we have outlined the basics of wave-equation constrained optimization.
Full waveform inversion can be seen as reduced-space optimization problem, where
only the model space is searched to find the minimum. We have given details about
2-D acoustic and SH FWI. Different data misfit functionals that can be minimized during
FWI are explained. Finally, we have demonstrated the cycle-skipping problem that limits
the applicability of least-squares FWI in the absence of low-frequencies in the data.
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Figure 2.2: (a) The modelled data before and after the least-squares inversion are compared to the observed
data in the first experiment with a ኾኺ-Hz Ricker source wavelet. The initial traveltime error in this case is
greater than ኺ.኿Ꭱᑕ. (b) Same as a) but for the second experiment with a ኼኺ-Hz Ricker source wavelet. The
initial traveltime error in this case is less than ኺ.኿Ꭱᑕ.
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Figure 2.3: A ኾኺ-Hz Ricker source wavelet is used to generate the observed data during the first synthetic
experiment. In this case, (c) the estimated velocity is lower than (a) the initial velocity between the source
(diamond) and receiver (triangle). The second experiment is similar to the first experiment, except for a
ኼኺ-Hz Ricker source wavelet is used to generate the observed data. Now (d) the estimated velocity is higher
than (b) the initial velocity.
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3
Full Waveform Inversion With
An Auxiliary Bump Functional

Take up one idea.
Make that one idea your life — think of it, dream of it, live on that idea.

Let the brain, muscles, nerves, every part of your body, be full of that idea,
and just leave every other idea alone. This is the way to success.

Swami Vivekananda

Least-squares inversion of seismic arrivals can provide remarkably detailed mod-
els of the Earth’s subsurface. However, cycle skipping associated with these
oscillatory arrivals is the main cause for local minima in the least-squares ob-
jective function. Therefore, it is often difficult for descent methods to converge
to the solution without an accurate initial large-scale velocity estimate. The low
frequencies in the arrivals, needed to update the large-scale components in the
velocity model, are usually unreliable or absent.

To overcome this difficulty, we propose a multi-objective inversion scheme that
uses the conventional least-squares functional alongwith an auxiliary data-domain
objective. As the auxiliary objective effectively replaces the seismic arrivals by
bumps, we call it the bump functional. The bump functional minimization can be
made far less sensitive to cycle skipping and can deal with multiple arrivals in the
data. However, it can only be used as an auxiliary objective since it usually does
not provide a unique model after minimization even when the regularized-least-
squares functional has a unique global minimum and hence a unique solution.
The role of the bump functional during the multi-objective inversion is to guide
the optimization towards the global minimum by pulling the trapped solution out

Parts of this chapter have been published in Geophysical Journal International 206 (2), 1076 (2016).
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of the local minima associated with the least-squares functional whenever neces-
sary. The computational complexity of the bump functional is equivalent to that
of the least-squares functional.

In this paper, we describe various characteristics of the bump functional using
simple and illustrative numerical examples. We also demonstrate the effective-
ness of the proposed multi-objective inversion scheme by considering more realis-
tic examples. These include syntheic and field data from a cross-well experiment,
surface-seismic synthetic data with reflections and synthetic data with refracted
arrivals at long offsets.
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3.1. Introduction
Full waveform inversion (FWI) is a non-linear optimization procedure that estimates the
Earth’s model parameters by least-squares fitting of the recorded arrivals in the seis-
mic data [Tarantola, 1984; Mora, 1988, 1989; Pratt, 1999; Virieux and Operto, 2009;
Fichtner, 2010]. Due to the computational cost of the wave-equation modelling, the opti-
mization is usually performed with gradient-based techniques, although several authors
have tried more costly global optimization techniques [Sen and Stoffa, 1991; Stoffa and
Sen, 1991; Sambridge and Drijkoningen, 1992; Gao et al., 2014; Datta, 2015]. While fit-
ting the observed and the modelled seismic arrivals with the conventional least-squares
objective function, the gradient-based optimization will get trapped in the nearest local
minimum when the error in the arrival time exceeds about half a period of the signal
[Gauthier et al., 1986; Snieder et al., 1989; Mulder and Plessix, 2008; Symes, 2008].
Here, period is related to the dominant frequency of the data. In other words, the least-
squares inversion cannot reconstruct velocity anomalies that cause shifts in the arrival
times larger than half a period. Usually, the velocity anomalies accounting for the arrival
times have relatively low wave-numbers. Hence, inversion of the low-frequency seismic
signals with larger periods is easier and they help in the reconstruction of a kinematically
correct velocity model.

3.1.1. Data-domain Objective Functions
Many authors have formulated alternative data-domain functionals to achieve global
convergence in the absence of the necessary low frequencies [Luo and Schuster, 1991;
Shin and Min, 2006; Shin and Cha, 2008, 2009; Zhang and Wang, 2009; van Leeuwen
and Mulder, 2010; van Leeuwen, 2010; Bozdağ et al., 2011; Chauris et al., 2012; Donno
et al., 2013; Warner et al., 2014; Engquist and Froese, 2013]. These can be grouped
into the following two major classes.

Class 1. Functionals that give more weight to the kinematic than to the amplitude error
between the seismic arrivals. They often involve the cross-correlation between the
observed and modelled arrivals [Luo and Schuster, 1991; van Leeuwen and Mul-
der, 2010; van Leeuwen, 2010]. After cross-correlation, the arrival-time error can
be picked by hand, which is tedious and to be avoided if possible. Fully automatic
methods involve proper normalization of the arrivals prior to cross-correlation in
order to ensure that the energy at non-zero time lags quantifies the arrival-time er-
ror. These functionals, however, suffer from cross-talk between multiple arrivals.
Hence, the data are assumed to have only single arrivals or strong first arrivals.
Such functionals are primarily used in cross-well data and tomographic inversion.
Luo et al. [2011] suggested replacing the cross-correlation with a deconvolution
to obtain better convergence.

Class 2. Functionals that aim to fit the data after transforming them into a simpler form.
By this transformation, the strong non-linear dependence of the functional with
respect to the medium parameters can be avoided [Schuster, 2015]. The function-
als using simplified data have a basin of attraction with a larger size than that of
the least-squares functional. The simplified data are easier to fit as they have arti-
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ficial ultra-low frequencies that can circumvent the cycle-skipping problem during
the optimization. Creation of these artificial low frequencies by a non-linear oper-
ation bears a similarity to other methods such as using deconvolution prior to data
fitting [Fei et al., 2012], travel-time picking, and a differential-semblance variant
that recovers missing low frequencies [Sun and Symes, 2012]. It should be noted
that these simplifying operators act in a non-linear way on the data, unlike the
usual scale separation in the multi-scale inversion approach [Bunks et al., 1995],
which is linear. This means that they do not solely rely on the low-frequency con-
tent of the data. An example is the functional that measures the misfit between
the envelopes of the observed and the modelled waveforms [Bozdağ et al., 2011;
Wu et al., 2014; Chi et al., 2014; Luo and Wu, 2015]. The envelope operator is
non-linear and the resulting data have ultra-low frequencies. Another example is
the normalized integration method [Chauris et al., 2012; Donno et al., 2013] that
uses the normalized time integral of the squared data for least-squares minimiza-
tion. The normalized integration method, however, might suffer from noise. An
advantage of using these functionals, compared to the correlation-type function-
als, is that they take multiple arrivals in the data into account.

3.1.2. Problems Using the Envelope-based Misfit
In this paper, we formulate another data-domain objective function that uses the data
in a reduced or simplified form. We call it the bump functional, after the mathematical
definition of a bump function. A bump function or mollifier is a smooth function in
the sense of having continuous derivatives of all orders. Intuitively, given a function
which is rather irregular or rough, convolution with a mollifier will mollify the function,
that is, its sharp features are smoothed. It belongs to the second class of functionals
mentioned above. The bump functional bears a strong similarity to the envelope-based
misfit functional, without suffering from the following issues.

Issue 1. The envelope-based misfit may perform worse than a correlation-based func-
tional, even in the case of a single arrival, because global convergence with a
gradient-based method can only be obtained if the modelled and the observed
envelopes partially overlap. In other words, this functional cannot reconstruct ve-
locity anomalies that separate the modelled and the observed arrivals in time by
roughly more than the dominant period. This is due to the fact that the envelope-
based misfit is not sensitive to arrival-time errors that exceed the overall width of
the observed and modelled envelopes.

Issue 2. One of the key challenges in waveform inversion is the reconstruction of the
smooth background velocity from reflected arrivals recorded later in time and at
shorter offsets, compared to transmitted early arrivals. The envelope-based misfit
cannot reconstruct the background velocity of the model using only reflection data.
Wu et al. [2014] and Luo and Wu [2015] notice that the envelope-based inversion
results are much rougher when fitting the reflected arrivals in the data. During
inversion, in order to fit only the stronger transmitted arrivals in the records, they
use squared envelopes instead of just the envelopes. In this paper, we will analyse
the cause of this issue in more detail.
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3.1.3. Why the Bump Functional?
The bump functional can be seen as a generalized envelope-based misfit. We show that
it not only can be made insensitive to cycle skipping but also has an improved global-
convergence robustness compared to the envelope-based misfit. The bump functional
is sensitive to arrival-time errors in the modelled data that are larger than a period.
Furthermore, as the evaluation of the functional does not involve cross-correlation, it
is also applicable to data containing multiple arrivals. The price paid is severe non-
uniqueness while estimating the solution. In other words, the solution of the bump
functional will depend on the initial guess and the chosen optimization method.

3.1.4. Importance of Multi-objective Strategy
In this paper, we discuss different properties of the bump functional. We notice that
the bump-functional inversion suffers from the same second issue as the envelope-
based misfit. In order to partially overcome this difficulty, we propose a multi-objective
inversion strategy using both the bump functional and the least-squares functional. We
illustrate the effectiveness of this inversion strategy by a number of examples.

The rest of the paper is organized such that first we describe the conventional least-
squares optimization. After that, we formulate the bump functional and demonstrate
its characteristics using some numerical experiments. Finally, we describe the proposed
multi-objective inversion strategy and show its effectiveness using realistic numerical
examples. The last section summarizes the paper.

3.2. Review of the Least-squares Inversion
The classic least-squares inversion aims to find a model in 𝕄, a set of possible models
of the subsurface, which minimizes the functional [Tarantola, 1984],

𝐽፥፬ = ኻ
ኼ∑

፬
∑
፫
∑
፭
[𝑝(x፫ ,x፬ , 𝑡) − 𝑞(x፫ ,x፬ , 𝑡)]ኼ . (3.1)

Here, 𝑞(x፫ ,x፬ , 𝑡) is the observed pressure for a source at position x፬ and receiver at x፫
as a function of time 𝑡. The modelled data are denoted by 𝑝(x፫ ,x፬ , 𝑡). Both 𝑞 and 𝑝
belong to the data space denoted by 𝔻. The operator ℱ ∶ 𝕄 → 𝔻 requires the solution
of a wave equation to provide data in the data space 𝔻 for a given model in 𝕄. For the
examples in this paper, we will consider the 2-D acoustic wave equation

1
𝜌𝑐ኼ

𝜕ኼ𝑝
𝜕𝑡 − ∇ ⋅

1
𝜌∇𝑝 = 𝜙(𝑡)𝛿(x− x፬), (3.2)

with pressure 𝑝(x,x፬ , 𝑡), sound speed 𝑐(x), mass density 𝜌(x) and source signature
𝜙(𝑡). In 2D, x = (𝑥, 𝑧). We use a time-domain staggered-grid finite-difference code
to model the pressure wavefield required to perform the forward and the adjoint wave-
field computations [Tarantola, 1984; Fichtner, 2010]. Absorbing boundary conditions
are used on all sides of the computational domain except for a realistic example, where
reflections from the boundary at 𝑧 = 0 are included. We assume that the source signa-
ture, 𝜙(𝑡), is known in our examples. In all our examples, we perform full-bandwidth
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inversion as opposed to the multi-scale inversion approach [Bunks et al., 1995] that
relies on the low-frequency information in the data. The optimizations are performed
by the conjugate-gradient method. The gradient at each iteration is preconditioned by
the type 1 migration weights of Plessix and Mulder(2004).

3.3. The Bump Functional
3.3.1. Definition
To compute the bump functional, the modelled and the observed data should be mapped
into the space𝔻፛ of bumpy data. The observed and modelled data in bumpy-data space
are denoted by 𝑝፛ and 𝑞፛, respectively. A function, ℱ፛ ∶ 𝔻 → 𝔻፛, maps the modelled
data into the bumpy-data space and is given by

𝑝፛(x፫ ,x፬ , 𝑡) = ℱ፛[𝜎፭ , 𝜎፫ , 𝑝, 𝜖](x፫ ,x፬ , 𝑡)
= 𝑏(x፫ , 𝜎፫) ∗፫ [𝑏(𝑡, 𝜎፭) ∗፭ √𝑝ኼ(x፫ ,x፬ , 𝑡) + 𝜖ኼ] . (3.3)

The non-zero constant 𝜖 makes 𝑝፛ differentiable at 𝑝 = 0. We chose 𝜖 much smaller than
𝑝, such that √𝑝ኼ(x፫ ,x፬ , 𝑡) + 𝜖ኼ ≃ |𝑝(x፫ ,x፬ , 𝑡)|. In the above equation, 𝑏 is a blurring
function for which we choose a Gaussian with standard deviation equal to either 𝜎፭ when
blurring in time or 𝜎፫ when blurring in one of the receiver coordinates. Convolution in
time is denoted by ∗፭, and along the receiver position, x፫, by ∗፫.

The non-linear mapping ℱ፛ replaces the arrivals in the data with bumps and is non-
injective due to the following reasons:

1. 𝑝፛ ≥ 0, irrespective of the polarity of arrivals in 𝑝,

2. depending on the amount of blurring, 𝑝፛ is less dependent on the source signature
and

3. the blurring operation removes the details from 𝑝, depending on the blurring
parameters, 𝜎፭ and 𝜎፫.

The blurring parameters control the amount of blurring applied to the absolute-valued
data and determine the width of the resulting bumps. For example, choosing 𝜎፭ = 𝜏፝
and 𝜎፫ = 0, where 𝜏፝ = 1/𝑓 is the period of the data corresponding to the dominant
frequency 𝑓 , would blur an impulsive arrival in the absolute-valued data such that it
is spread roughly over 2𝜏፝ in time. Similarly, choosing 𝜎፭ = 0 and 𝜎፫ = 𝜆፝, where
𝜆፝ = 𝑐፫/𝑓 is the wavelength corresponding to the velocity, 𝑐፫, close to the receivers,
would blur an impulsive arrival in the absolute-valued data such that it is spread roughly
over receivers within a distance of 2𝜆፝.

The bump functional, 𝐽፛, is the least-squares difference between the observed and
the modelled bumpy data:

𝐽፛ = ኻ
ኼ∑

፬
∑
፫
∑
፭
[𝑝፛(x፫ ,x፬ , 𝑡) − 𝑞፛(x፫ ,x፬ , 𝑡)]ኼ . (3.4)

Inversion based on 𝐽፛ produces a model in 𝕄 that minimizes the difference between 𝑝፛
and 𝑞፛. Details on the gradient computation of the bump functional with respect to the



3.3. The Bump Functional

3

31

medium parameters are given in Appendix A. Note that minimizing their difference does
not necessarily reduce the difference between 𝑝 and 𝑞, since the bump functional is
insensitive to the polarity of the events in the data. Also note that the bump functional
with the parameters 𝜎፭/𝜏፝ = 0.5 and 𝜎፫ = 0 closely resemble the envelope-based misfit
[Bozdağ et al., 2011].

3.3.2. Adjoint Source Functions for the Bump Functional
The gradient of the bump functional with respect to the medium parameters, 𝑐 and 𝜌,
is computed by correlating the forward-propagated source wavefield with the adjoint
wavefield at each point in the subsurface. This is similar to the gradient computation
for the conventional least-squares inversion, where the adjoint wavefield is generated
by injecting the adjoint source functions from the receiver positions [Tarantola, 1984;
Plessix, 2006; Fichtner, 2010]. The adjoint source functions for the least-squares func-
tional are the difference between the modelled and the observed data. In order to
compute the adjoint source functions for the bump functional, the following steps are
performed in order:

1. the difference between the modelled and the observed bumpy data is calculated,

2. time and/or receiver blurring is applied to the difference, based on 𝜎፭ and 𝜎፫, and

3. the result is multiplied with the stabilized sign of the modelled data in the time
domain.

The adjoint source functions for the bump functional are given by 𝜕፩𝐽፛, where 𝜕፩ denotes
the derivative with respect to the modelled data 𝑝. Using the chain rule, we write:

𝜕፩𝐽፛ = 𝜕፩ᑒ𝐽፛ 𝜕፩𝑝ፚ = 𝜕፩ᑒ𝐽፛ 𝑝 [𝑝ኼ + 𝜖ኼ]ዅ
Ꮃ
Ꮄ⏝⎵⎵⎵⏟⎵⎵⎵⏝

sgn(፩),when Ꭸ is 0
, (3.5)

where 𝜕፩ᑒ denotes the derivative with respect to the absolute-valued-modelled data 𝑝ፚ
and sgn is the sign function. In order to derive an expression for 𝜕፩ᑒ𝐽፛, we consider
the bump functional in frequency-wavenumber domain. In such a domain, time and/or
receiver blurring corresponds to a simple multiplication with the blurring function 𝑏̃.
Without loss of generality, we consider the case of a regular horizontal array of receivers
that record waves originating from a given source location. Using Parseval’s theorem,
we rewrite the expression of the bump functional in Equation 3.4 by Fourier transforming
the bumpy data from time 𝑡 and horizontal receiver coordinate 𝑥፫ to frequency 𝑓 and
horizontal wavenumber 𝑘፫ as:

𝐽፛ = ኻ
ኼ∑

፫
∑
፭
[𝑝፛(𝑥፫ , 𝑡) − 𝑞፛(𝑥፫ , 𝑡)]ኼ ,

= ኻ
ዂ᎝Ꮄ ∑

፫
∑
፟
|𝑝̃፛(𝑘፫ , 𝑓) − 𝑞̃፛(𝑘፫ , 𝑓)|ኼ. (3.6)

Where we used the fact that 𝑝፛ and 𝑞፛ are real valued. Here, 𝑝̃፛ and 𝑞̃፛ denote the
modelled and the observed bumpy data in the 𝑓-𝑘፫ domain, respectively. In the 𝑓-𝑘፫
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domain, the bumpy data are obtained by multiplying the absolute-valued data, 𝑝̃ፚ and
𝑞̃ፚ, with the blurring function 𝑏̃, so we have:

𝐽፛ = ኻ
ዂ᎝Ꮄ ∑

፫
∑
፟
|𝑏̃(𝑓, 𝜎፭)𝑏̃(𝑘፫ , 𝜎፫)[𝑝̃ፚ(𝑘፫ , 𝑓) − 𝑞̃ፚ(𝑘፫ , 𝑓)]|ኼ. (3.7)

We rewrite the above equation using the real and imaginary parts of the absolute-valued
data as:

𝐽፛ = ኻ
ዂ᎝Ꮄ ∑

፫
∑
፟
𝑏̃ኼ(𝑓, 𝜎፭)𝑏̃ኼ(𝑘፫ , 𝜎፫)

{[ℜ(𝑝̃ፚ) − ℜ(𝑞̃ፚ)]ኼ + [ℑ(𝑝̃ፚ) − ℑ(𝑞̃ፚ)]ኼ}. (3.8)

Where we used the fact that the blurring function 𝑏̃ is real valued. We now differenti-
ate the above equation with respect to the real and imaginary parts of the modelled-
absolute-valued data 𝑝̃ፚ to obtain:

𝜕፩̃ᑒ𝐽፛ = 𝜕ℜ(፩̃ᑒ)𝐽፛ + 𝚤𝜕ℑ(፩̃ᑒ)𝐽፛

= 1
4𝜋ኼ 𝑏̃

ኼ(𝑓, 𝜎፭)𝑏̃ኼ(𝑘፫ , 𝜎፫)[𝑝̃ፚ(𝑘፫ , 𝑓) − 𝑞̃ፚ(𝑘፫ , 𝑓)],

= 1
4𝜋ኼ 𝑏̃(𝑓, 𝜎፭)𝑏̃(𝑘፫ , 𝜎፫)[𝑝̃፛(𝑘፫ , 𝑓) − 𝑞̃፛(𝑘፫ , 𝑓)]. (3.9)

Using the chain rule, we can write the derivative of the bump functional with respect to
modelled-absolute-valued data in the time domain as:

𝜕፩ᑒ𝐽፛ = ∑
፫
∑
፟
𝜕፩̃ᑒ𝐽፛𝜕፩ᑒ 𝑝̃ፚ ,

= 𝑏(𝑥፫ , 𝜎፫) ∗፫ {𝑏(𝑡, 𝜎፭) ∗፭ [𝑝፛(𝑥፫ , 𝑡) − 𝑞፛(𝑥፫ , 𝑡)]} . (3.10)

After substituting 𝜕፩ᑒ𝐽፛ in the Equation 3.5, we obtain the final expression to compute
the adjoint source functions for the bump functional in the time domain:

𝜕፩𝐽፛ = {𝑏(𝑥፫ , 𝜎፫) ∗፫ {𝑏(𝑡, 𝜎፭) ∗፭ [𝑝፛ − 𝑞፛]}} 𝑝 [𝑝ኼ + 𝜖ኼ]ዅ
Ꮃ
Ꮄ . (3.11)

3.3.3. Characteristics
The main characteristics of inversion with the bump functional are listed next.

Insensitivity to Cycle Skipping
The bump-functional inversion is less sensitive to cycle skipping even in the absence of
low frequencies in the data. This is due to the fact that it fits the bumpy data, as in
Equation 3.4, which are non-oscillatory if sufficient blurring is applied.

Global-convergence Robustness
While computing the bump functional, the absolute-valued data are blurred in time
and/or along a receiver coordinate, as in Equation 3.3. The role of the blurring is to
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increase the size of the basin of attraction of the objective function compared to that
of the envelope-based misfit. The global-convergence robustness of 𝐽፛ inversion, when
using gradient-based optimization, increases with the amount of blurring applied to the
absolute-valued data. Intuitively, after taking the absolute value, a single pulse in the
modelled data will still not be able to sense a corresponding pulse in the observed data
if they are separated in time. Large amounts of blurring increases the width of the
observed and modelled bumps, so that they can sense each other in time during the
inversion. In other words, blurring is essential to make the bump functional sensitive to
large arrival-time errors. Since the bumpy data become simpler with increased blurring,
it is easier to find models that fit them.

Non-uniqueness
The price paid for blurring is a loss of resolution and an increase of non-uniqueness.
Since the mapping ℱ፛ ∶ 𝔻 → 𝔻፛ is non-injective, the inverse problem of estimating
a model that minimizes the bump functional suffers from non-uniqueness, which gets
worse with the amount of blurring applied in the Equation 3.3. Note that the least-
squares inversion also suffers from non-uniqueness due to band-limitation of the data
and lack of illumination, making regularization necessary to obtain an acceptable solu-
tion. The bump functional inversion suffers from non-uniqueness even when the same
regularization as for the least-squares inversion is used.

Once the bump functional is minimized, the observed and modelled bumpy data
match each other. However, this does not imply that the modelled data fit the observed
data very well. The modelled arrivals can have the opposite polarity as well as a different
wavelet, compared to the observed arrivals. Furthermore, the modelled data can contain
ancillary false arrivals that are not present in the observed data. This prevents the
bump-functional inversion from correctly updating the background velocity while fitting
the reflected arrivals. The bump functional inversion might result in a model with many
high-wavenumber artefacts that generate the false arrivals. Next, we will discuss some
simple examples to illustrate these characteristics.

3.3.4. Illustrative Examples Using the Bump Functional
Two Arrivals
As a very simple example, we assume that both the observed and the modelled data
to contain a single record with two arrivals. For the first arrival, 𝑤ኻ(𝑡), we use a Ricker
wavelet with a peak frequency of 20Hz and a band-limitation of 10–15–50–60Hz. We
used the same Ricker wavelet with a band-limitation of 15–17–23–25Hz for the second
arrival, 𝑤ኼ(𝑡). The arrivals do not contain any low-frequency information. The modelled
and ‘observed’ data are then chosen as

𝑝(𝑡) = 𝑤ኻ(𝑡 + 𝛽 − 𝛽ኺ) + 0.6𝑤ኼ(𝑡 + 𝛾 − 𝛾ኺ),

𝑞(𝑡) = 𝑤ኻ(𝑡 − 𝛽ኺ) + 0.6𝑤ኼ(𝑡 − 𝛾ኺ).

To the observed data, we added 20% of white random noise. The model parameters
were chosen as 𝛽ኺ = 2.16s and 𝛾ኺ = 2.55s. Figure 3.1 plots the observed and modelled
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Figure 3.1: The observed and modelled data with two arrivals are plotted in blue and red, respectively. (a)
The arrival-time error in the modelled arrivals is more than the dominant period, Ꭱᑕ. (b) Absolute-valued data.
(c) Bumpy data obtained using ᎟ᑥ/Ꭱᑕ ዆ ኺ.኿, (d) ᎟ᑥ/Ꭱᑕ ዆ ኻ, (e) ᎟ᑥ/Ꭱᑕ ዆ ኼ and (f) ᎟ᑥ/Ꭱᑕ ዆ ኾ.
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Figure 3.2: Various objective functions are plotted as a function of the arrival-time errors, ᎐ and ᎏ, for the
observed and modelled data shown in Figure 3.1. The basin of attraction is outlined by a black circle. (a) The
least-squares functional, ፉᑝᑤ. (b) The envelope-based misfit. (c) The bump functional, ፉᑓ, with ᎟ᑥ/Ꭱᑕ ዆ ኺ.኿,
(d) ᎟ᑥ/Ꭱᑕ ዆ ኻ, (e) ᎟ᑥ/Ꭱᑕ ዆ ኼ, and (f) with ᎟ᑥ/Ꭱᑕ ዆ ኾ.
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Figure 3.3: Plots corresponding to the two-arrival example as in Figure 3.1. Two inversions (I & II) are
performed, starting from different initial values of ᎐ and ᎏ using the bump functional with ᎟ᑥ/Ꭱᑕ ዆ ኻ. The
observed and estimated data are plotted in blue and red respectively. The initially estimated data are drawn
with a dashed red line. (a) Data corresponding to inversion I. (b) Bumpy data corresponding to inversion I.
(c) Same as (a), but for inversion II. (d) Same as (b), but for inversion II.
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data in blue and red, respectively. The inversion parameters are the arrival-time errors,
𝛽 and 𝛾. Both should be zero at the global minimum. We now consider the inverse
problem of estimating the arrival times using different objective functionals.

Least-squares Functional
Figure 3.2a shows the classic least-squares functional, 𝐽፥፬ = ∫[𝑝(𝑡) − 𝑞(𝑡)]ኼd𝑡, as a
function of the arrival-time errors. The oscillatory nature of the arrivals causes various
local minima to occur around the global minimum, shrinking the radius of the basin of
attraction. In this case, the radius of the basin is approximately 𝜏፝/2 = 0.025s, where,
again, 𝜏፝ denotes the period of the dominant frequency. In the multi-scale inversion
approach [Bunks et al., 1995], a low-pass filter is applied to the data to first fit the lowest
reliable frequencies. The radius of the basin is then half the period corresponding to the
lowest frequency, 𝜏፦ፚ፱ = 0.1s. This implies that, if the arrival-time error in the initially
modelled data exceeds 0.1 s, the least-squares inversion cannot accurately estimate the
arrival times.

Envelope-based Misfit
The envelope-based misfit [Bozdağ et al., 2011] computes the least-squares error using
the observed and the modelled envelopes. In this example, Figure 3.2b shows that
the misfit suffers less from cycle skipping and local minima do not occur close to the
global minimum because the envelopes are non-oscillatory. In this case, the radius of
attraction roughly equals the dominant period, 𝜏፝ = 0.05s. It can be seen that the
functional is insensitive to arrival-time shifts larger than 𝜏፝, when there is no overlap
between the observed and modelled data envelopes.

Bump Functional
To compute the bump functional, the absolute-valued data are considered, as plotted
in Figure 3.1b. The choice of 𝜎፭ determines the amount of blurring applied to the
absolute-valued data. For 𝜎፭/𝜏፝ = 0.5, the observed and modelled bumps, as plotted
in Figures 3.1c, are similar to envelopes. In this case, the bump functional has charac-
teristics similar to the envelope-based misfit, as plotted in Figure 3.2c. In general, for
any given 𝜎፭, since the observed and the modelled bumps are non-oscillatory, the bump
functional suffers less from cycle skipping.

In order to corroborate our claim that the global-convergence robustness of 𝐽፛ de-
pends on the amount of blurring, we now examine the bump functional for different
values of 𝜎፭. The bumpy data for different values of 𝜎፭ are plotted in Figures 3.1c–
f. As can be seen in Figures 3.2d–f, the radius of the attraction circle of the bump
functional increases with 𝜎፭. With increased blurring, the separated bumps of the ob-
served and modelled data can sense each other in time, resulting in an improved global-
convergence robustness. Note that the radius of the basin of attraction for 𝐽፛, unlike
the least-squares functional, is independent of the presence of low frequencies in the
data. The radius of basin of attraction in the case of 𝜎፭/𝜏፝ = 4 and 8 is larger than
period corresponding to the minimum frequency in the data, 𝜏፦ፚ፱, which shows that 𝐽፛
can also be effective in the absence of low frequencies.
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Finally, we show that the data minimizing the bump functional cannot be determined
uniquely. We perform two inversions (I & II) using the conjugate-gradient method
starting from different initial values of 𝛽 and 𝛾. During each inversion, we estimate the
data that minimize the bump functional for 𝜎፭/𝜏፝ = 1. We expect that the estimated
data output from both the inversions to be different while fitting each other in their
bumpy form. This is possible because the non-linear mapping ℱ፛ is non-injective. The
observed and initially estimated data for both the inversions are plotted in Figures 3.3a
and 3.3c, respectively. The estimated data after the inversions, plotted in Figures 3.3a
and 3.3c, are different and they contain false arrivals and have polarity mismatches. For
both the inversions, the estimated bumpy data, plotted in Figures 3.3b and 3.3d, at the
last iteration do fit the observed bumpy data.

Cross-well Transmission Example
We now consider a cross-well experiment with a Gaussian anomaly. This is a transmis-
sion problem for which the background velocity needs to be estimated. We used evenly
spaced vertical arrays of sources and receivers at 𝑥 = 1m and 𝑥 = 96m, respectively.
The source wavelet had a peak frequency of 140Hz. The assumed Earth model and the
corresponding ‘observed’ data are plotted in Figures 3.4a and 3.5a, respectively. The
initial velocity model for inversion is homogeneous with 𝑐 = 1800m/s. The correspond-
ing modelled data are plotted in Figure 3.5b and have arrival-time errors of more than
three times the dominant period, 𝑇 = 0.0071 s. Therefore, larger amounts of blurring
are necessary during the 𝐽፛ inversion to ensure that the bumps in the initially mod-
elled data can sense the bumps in the observed data. We used the 𝐽፛ functional with
𝜎፭/𝜏፝ = 0.5, 1, 2 and 4. Gaussian smoothing is applied to the gradient at each iteration
with a standard deviation of 1.5m in order to avoid high-wavenumber artefacts in the
solution. In all the cases, the iterations were stopped when the convergence slowed
down too much.

Figures 3.4b–e show the velocity models and Figures 3.5c–f show the modelled
arrivals at the last iteration. For 𝜎፭/𝜏፝ = 0.5 and 1, the inversion was not able to
reconstruct the velocity anomaly, as in Figures 3.4b–c, since the 𝐽፛ functional has a
small basin of attraction. At the last iteration, the observed and the modelled data in
bumpy form do not match each other, as mentioned in Table 3.1. Only the error in
records with initial arrival-time error less than 2𝜏፝ is minimized (see Figures 3.5c–d).
The 𝐽፛ inversion with 𝜎፭/𝜏፝ = 0.5 is similar to the envelope-based inversion, as shown
in the Figures 3.1 and 3.2. In the case of 𝜎፭/𝜏፝ = 2 and 4, the bump functional inversion
has successfully reconstructed the velocity anomaly, as in Figures 3.4d–e, proving that
the size of the basin of attraction for 𝐽፛ increases with the amount of blurring. As
shown in the Table 3.1, the inversion is able to fit the observed bumpy data. Also, the
modelled data after inversion, shown in Figures 3.5e–f, reasonably fit the observed data
in Figure 3.5a. Hence these solutions are acceptable as summarized in the Table 3.1.

To illustrate the non-uniqueness problem, we choose 𝜎፭/𝜏፝ = 8 for 𝐽፛ inversion.
At the last iteration, the inversion is able to fit the observed and the modelled data in
bumpy form as mentioned in Table 3.1. However, Figure 3.5g shows that the modelled
data do not necessarily fit the observed data. There are many models providing data
that can fit the observed data in their bumpy form. Since the non-uniqueness becomes
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Figure 3.4: For the cross-well experiment with a Gaussian anomaly, ፉᑓ inversion is performed with different
amounts of time blurring. The initial model before inversion is a homogeneous model with ፜ ዆ ኻዂኺኺm/s.
(a) Earth model with a Gaussian anomaly at the center. (b) Result using ᎟ᑥ/Ꭱᑕ ዆ ኺ.኿, (c) ᎟ᑥ/Ꭱᑕ ዆ ኻ, (d)
᎟ᑥ/Ꭱᑕ ዆ ኼ, (e) ᎟ᑥ/Ꭱᑕ ዆ ኾ and (f) ᎟ᑥ/Ꭱᑕ ዆ ዂ.
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Figure 3.5: Data panels corresponding to the cross-well experiment in Figure 3.4 for a source at (ኻ, ኺ). ፉᑓ
inversion is performed using different amounts of time blurring and ᎟ᑣ ዆ ኺ. The shot gathers at the last
iteration are plotted with the same gray scale. (a) Observed shot gather. (b) Initially modelled shot gather.
(c) Using ፉᑓ with ᎟ᑥ/Ꭱᑕ ዆ ኺ.኿, (d) with ᎟ᑥ/Ꭱᑕ ዆ ኻ, (e) with ᎟ᑥ/Ꭱᑕ ዆ ኼ, (f) with ᎟ᑥ/Ꭱᑕ ዆ ኾ and (g) with
᎟ᑥ/Ꭱᑕ ዆ ዂ.

Table 3.1: Convergence of the bump functional for different amounts of blurring in the case of a cross-well
experiment on a Gaussian anomaly.

𝜎፭ /𝜏፝ 𝑝፛ fits 𝑞፛ 𝑝 fits 𝑞 comment
0.5 no no lack of sensitivity
1 no no lack of sensitivity
2 yes yes acceptable solution
4 yes yes acceptable solution
8 yes no non-uniqueness
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Figure 3.6: Results of single-objective ፉᑝᑤ inversion of the three-layer reflection example. The initial model
(dashed black) before inversion is also shown.

more severe with larger amounts of blurring, the inversion fails to reach an acceptable
solution, as shown in Figure 3.4f. Also, false arrivals appear in the modelled data and
they assist in the minimization of the bump functional.

Three-layer Reflection Example
We consider another example in which the ‘observed’ data contain primarily reflected
arrivals. In the case of reflection problems, both the background velocity and the posi-
tion of the reflectors have to be estimated. The background velocity is determined by
the offset-based moveout information in the data. This example illustrates the inabil-
ity of the bump functional to estimate the background velocity using reflected arrivals.
We also show that the velocity model that minimizes the bump functional cannot be
uniquely determined.

We consider an assumed Earth model of 1500-m width and 600-m depth with a
negative velocity anomaly of approximately 40%. The velocity model, plotted in Fig-
ure 3.6, is assumed to only vary with depth and contains two reflectors at 𝑧 = 120m and
𝑧 = 320m. We used a horizontal array of 100 evenly spaced receivers at a depth of 30m
and a source at (0, 20)m. We generated the data using a fourth-order minimum-phase
Butterworth wavelet of bandwidth 10–30Hz. Due to the negative velocity anomaly,
head waves do not arrive at the receivers before 1.2 s recording time. Figure 3.7a de-
picts the ‘observed’ shot gather, where an internal multiple can also be seen. The initial
model for inversion is homogeneous with 𝑐 = 2500m/s. The spatial sampling for the
inversion mesh is 6m.

Figure 3.6 shows the result of the 𝐽፥፬ inversion. It fails to reconstruct the background
velocity of the model and convergence starts to become very slow after 20 iterations.
After updating the reflectivity of the first layer, the 𝐽፥፬ inversion updates the reflectivity
of the model at depths between 400 and 450m. This causes the modelled data, plotted
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Figure 3.7: The shot gathers corresponding to the three-layer reflection experiment in Figure 3.6. (a) Ob-
served gather (b) Cycle-skipped modelled gather at the last iteration of the ፉᑝᑤ inversion.
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Figure 3.8: Same as Figure 3.6, except that the bump functional is used with different amounts of time
blurring and ᎟ᑣ ዆ ኺ.
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Figure 3.9: Modelled shot gathers after ፉᑓ inversion corresponding to the reflection experiment in Figure 3.8.
No blurring is applied along the receiver array (᎟ᑣ ዆ ኺ) in all cases. (a) Data using ᎟ᑥ/Ꭱᑕ ዆ ኺ.኿, (b) ᎟ᑥ/Ꭱᑕ ዆ ኻ,
(c) ᎟ᑥ/Ꭱᑕ ዆ ኼ and (d) ᎟ᑥ/Ꭱᑕ ዆ ኾ. (e) Observed bumpy data using ᎟ᑥ/Ꭱᑕ ዆ ኺ.኿, (f) ᎟ᑥ/Ꭱᑕ ዆ ኻ, (g) ᎟ᑥ/Ꭱᑕ ዆ ኼ
and (h) ᎟ᑥ/Ꭱᑕ ዆ ኾ. (i) Modelled bumpy data after ፉᑓ inversion using ᎟ᑥ/Ꭱᑕ ዆ ኺ.኿, (j) ᎟ᑥ/Ꭱᑕ ዆ ኻ, (k)
᎟ᑥ/Ꭱᑕ ዆ ኼ and (l) ᎟ᑥ/Ꭱᑕ ዆ ኾ.
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Figure 3.10: Same as Figure 3.6, except that the bump functional is used with ᎟ᑥ/Ꭱᑕ ዆ ኻ and ᎟ᑣ ዆ ኺ. Two
different initial models were used for inversion.
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Figure 3.11: Single-objective bump functional inversion using ᎟ᑥ/Ꭱᑕ ዆ ኻ and ᎟ᑣ ዆ ኺ starting from two
different initial models (I & II), as plotted in Figure 3.10. (a) Modelled data at the last iteration using initial
model I and (b) initial model II. (c) Modelled bumpy data at last iteration using initial model I and (d) initial
model II.
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in Figure 3.7b, to partially match the ‘observed’ data, primarily at the short offsets. We
also see that these reflectors, positioned at the wrong depths, generate arrivals in the
data that are cycle-skipped at larger offsets. This behaviour of least-squares inversion is
well-known. The cycle skipping indicates that the solution is caught in a local minimum.
It has to be noted that the results might differ depending on the coarseness of the
inversion mesh [Ma et al., 2012]. We did neither apply smoothing to the gradient at
each iteration nor use any additional smoothness constraints on the model. In the case
of this simple example, we noticed that the least-squares inversion was able to reach
the global minimum when the spatial sampling for the inversion mesh was 10m.

We have seen that the bump functional does not suffer from cycle skipping if enough
blurring is applied. In order to see if it can update the background velocity, we per-
formed the bump-functional inversion with 𝜎፭/𝜏፝ = 0.5, 1, 2 and 4. No blurring along
the receiver coordinate is applied since this is an illustrative example. The observed
bumpy data for these cases are plotted in Figures 3.9e–h. The modelled bumpy data
at the final iteration are displayed in Figures 3.9i–l. We notice that the inversion has
matched the observed and the modelled data in their bumpy form at the last itera-
tion. However, the resulting velocity models have an incorrect background velocity, as
Figure 3.8 shows. The 𝐽፛ inversion has not updated the background velocity but only
boosted the reflectivity of the model at depths between 400 and 550m. In all cases,
the modelled data contain a lot of false arrivals and do not fit the observed data, as
can be seen in Figures 3.9a–d. These false arrivals help the 𝐽፛ inversion in matching
the bumpy form of the observed and modelled data. The false arrivals are caused by
several reflectors at incorrect depths. Even in the presence of moveout information
in the observed data, we see that the bump functional cannot update the background
velocity of the model.

We now perform the bump functional inversion with 𝜎፭/𝜏፝ = 1 and 𝜎፫ = 0 starting
from two different initial models (I & II), plotted in Figure 3.10. The output models in
both the cases are different in a non-trivial way since the data corresponding to them,
plotted in Figures 3.11a and 3.11b, do not match each other. However, the bumpy data
corresponding to the output models, plotted in Figures 3.11c and 3.11d, are similar.
This shows that the velocity model that explains the observed-bumpy reflections is not
unique. Due to this, the bump functional inversion fails to output a model with the
correct background velocity, even though it suffers less from cycle-skipping.

3.4. Multi-objective Inversion
As mentioned before, least-squares inversion suffers from cycle skipping and cannot
recover velocity errors that cause arrival-time errors larger than 𝜏፝/2. Let 𝕄፥፬ denote a
set that includes all the models corresponding to the local minima of the least-squares
objective function, excluding the global minimum. We assume that the bump functional
does not suffer from cycle skipping, for particular values of 𝜎፭ and 𝜎፫, and let𝕄፛ denote
a set that contains all the non-unique solutions that minimize it. We state without a proof
that the sets 𝕄፥፬ and 𝕄፛ are disjoint due to the following intuitive reasons:

• A model that belongs to 𝕄፥፬ generates data that are cycle-skipped compared to
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the observed data, but this model does not belong to𝕄፛ since the bump functional
does not suffer from cycle skipping for sufficiently large blurring.

• A model that belongs to 𝕄፛ generates data that contain false arrivals, but this
model does not belong to 𝕄፥፬ because false arrivals increase the least-squares
functional.

This motivates the use of both the least-squares and the bump functional in the inver-
sion. In the inversion strategy, the primary objective is to minimize the least-squares
difference. It is also used to constrain the model space 𝕄፛. Minimization of the bump
functional is an auxiliary objective needed to move away from models that belong to
𝕄፥፬.

3.4.1. Strategy
The multi-objective inversion scheme we use throughout this paper is given in Fig-
ure 3.12. The inversion consists of several round-trips depending on how far the starting
model is from the global minimum. Within each round-trip, we optimize both the 𝐽፛ and
𝐽፥፬ objectives separately. During each individual optimization, we update the subsur-
face models and the iterations are stopped whenever convergence becomes too slow.
The multi-objective inversion stops when the change in the output between consecutive
round-trips is negligible. This implies that the inversion has converged to a model that
simultaneously minimizes the least-squares and the bump functional.

We start with the bump-functional inversion, where strong blurring is chosen both in
time and along the receiver coordinate. Then, we gradually reduce the blurring and, at
the same time, perform more iterations. The motivation for starting with strong blurring
is that it allows the observed and modelled bumps, if they are far apart, to interact with
each other so that the time gap between them can be closed. Once the bumps are
close enough, inversion with a smaller amount of blurring will provide a fit with better
resolution. Instead of choosing strong initial blurring, the amount of blurring can also be
chosen according to the complexity of the problem and hence by considering the initially
modelled data. A strong initial blurring, in time and along the receiver coordinate, can
be used only if the arrival-time errors are large in the initial comparision between the
modelled and observed data. Otherwise, if the arrival-time errors are low, the data are
blurred either in time or along the receiver coordinate using a small amount of initial
blurring. This will reduce the computational burden of the multi-objective inversion.
Note that the purpose of blurring is to just create an overlap between the modelled and
the corresponding observed bumpy arrivals. As long as this overlap is created, the exact
choice of blurring parameters will not affect the multi-objective inversion. The resulting
model that minimizes the bump functional is non-unique and its corresponding data will
contain false arrivals. We therefore use the output of the bump-functional optimization
as input to the least-squares optimization to complete a round-trip. The least-squares
objective removes the false arrivals that are not present in the observed data. However,
it could happen that the least-squares optimization now converges to a local minimum.
Then we use the output corresponding to the, possibly local, minimum of the least-
squares inversion from the first round-trip as input to the bump-functional optimization.
The auxiliary bump objective now pulls the solution out of the local minimum, since it
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Figure 3.12: Flowchart of multi-objective inversion strategy.
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Figure 3.13: Same as Figure 3.6, but now with the proposed multi-objective inversion scheme. The bump
functional with ᎟ᑥ/Ꭱᑕ ዆ ኻ.ኺ and no receiver blurring (᎟ᑣ ዆ ኺ) is used along with the least-squares objective.

does not suffer from cycle skipping. Subsequently, we carry out more round-trips to
converge to the global minimum of the least-squares objective.

3.4.2. Three-layer Reflection Example, Again
To demonstrate the effectiveness of our multi-objective inversion scheme, we consider
the same three-layer reflection example with a negative velocity anomaly as used before
for single-objective inversion with either 𝐽፥፬ or 𝐽፛. In each round-trip, we first use the
bump functional, followed by minimization of the least-squares functional, as shown in
the Figure 3.12. The blurring parameters used in this case are given in the Table 3.2.
For this simple example, we did not use the bump functional with strong blurring. The
final model after 9 round-trips is plotted in green in Figure 3.13. The corresponding
modelled shot gather, plotted in Figure 3.14f, is not cycle-skipped when compared to
the observed shot gather in the Figure 3.7a.

During the first round-trip, the bump functional inversion outputs a model that be-
longs to𝕄፛ as shown in Figure 3.13. The modelled data corresponding to this model, in
Figure 3.14a, has false arrivals due to strong reflectivity around 𝑧 = 450m. We notice
that the 𝐽፥፬ optimization removes those false arrivals that are not present in the ob-
served data, as visible in Figure 3.14b. The 𝐽፥፬ inversion converges to a local minimum,
where the modelled data are cycle-skipped compared to the observed data. We now
use the bump functional to pull the trapped solution out of the local minimum during
the second round-trip. The output model and the corresponding modelled data are plot-
ted in Figures 3.13 and 3.14c, respectively. We notice that whenever the least-squares
objective removes the false arrivals, it updates the background velocity of the model.
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Figure 3.14: Modelled shot gathers at the last iteration corresponding to the multi-objective inversion in
Figures 3.13. (a) After the ኻᑤᑥ ፉᑓ inversion. (b) After the ኻᑤᑥ ፉᑝᑤ inversion. (c) After the ኼᑟᑕ ፉᑓ inversion. (d)
After the ኼᑟᑕ ፉᑝᑤ inversion. (e) After the ኽᑣᑕ ፉᑓ inversion. (f) After the ኽᑣᑕ ፉᑝᑤ inversion.
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Table 3.2: Blurring parameters used in different examples during the multi-objective inversion. Strong blurring
is chosen initially depending on the complexity of the example. The blurring is then reduced to the lowest as
shown in Figure 3.12. The multi-objective inversion is not sensitive to the exact blurring parameters chosen.

example initial strong blurring reduced lowest blurring
(𝜎፭ /𝜏፝ , 𝜎፫ /𝜆፝ ) (𝜎፭ /𝜏፝ , 𝜎፫ /𝜆፝ )

three-layer reflection skipped (1, 0)
cross-well with field data (1.5, 1.0) (0.5, 0)
five layer: early arrivals (1.0, 0.5) (0.5, 0)
five layer: all arrivals (1.5, 1.0) (0.5, 0)
complex 2-D model (1.0, 0.5) (0.5, 0)

𝐽፥፬ inversion again converges to another local minimum that is closer to the global min-
imum than after the first round-trip. This behaviour is reminiscent of Mora’s (1989)
observation that the 𝐽፥፬ functional can provide low-wavenumber updates to the velocity
model, provided the reflectivity is strong enough to allow for an interaction between
the scattered and the direct wavefield. In our case, after each round-trip, the output
of the least-squares inversion suffers less and less from cycle skipping and provides
convergence to the global minimum.

3.5. Realistic Examples
3.5.1. Cross-well Example with Field Data
We consider a cross-well experiment to demonstrate the applicability of the multi-objective
inversion strategy to field data. The field data were also used by van Leeuwen [2010]
and van Leeuwen and Mulder [2010] to perform wave-equation based travel-time to-
mography with a cross-correlation type functional. Two wells are located at 𝑥 = 205m
and 𝑥 = 27m with 122 sources and 125 receivers, respectively. The source and re-
ceiver spacing interval is approximately 3.84m. The velocity and density Earth models
after interpolating the well-log data are plotted in Figures 3.15a and 3.15b. During the
inversion, both velocity and density are estimated and a 110-Hz Ricker source wavelet is
used. We choose a homogeneous initial velocity model with 𝑐 = 2500m/s for inversion
such that the arrival-time error in the initially modelled data, plotted in Figure 3.17b,
exceeds the dominant period by a factor 2 to 3. Due to this reason, 𝐽፛ inversion with
high blurring is used initially in the multi-objective inversion strategy, which is outlined
in the Figure 3.12. The blurring parameters used during the multi-objective inversion
are given in Table 3.2. It is expected that the single-objective 𝐽፥፬ inversion suffers from
cycle-skipping.

Synthetic Data Inversion
We first use the interpolated well-log models to generate synthetic pressure data, as
plotted in Figure 3.17a. While inverting these data, the output models are only allowed
to vary with depth. The bumpy ‘observed’ data used during the inversion are plotted in
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Figure 3.15: A synthetic cross-well example. (a) ፜ and (b) ᎞ models after interpolating the well-logs used for
forward modelling. (c) Multi-objective inversion output ፜ model using synthetic data from the well-log models.
The output ፜ and ᎞ models are only allowed to vary with depth. The ᎞ model is not shown.
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Figure 3.16: A cross-well example with field data and well-logs plotted in Figures 3.15a and 3.15b. The
output ᎞ models are not shown. (a) Reconstructed ፜ model from the field data using the single-objective ፉᑝᑤ
inversion. (b) Same as (a), but using the multi-objective inversion strategy.



3

52 3. Full Waveform Inversion With An Auxiliary Bump Functional

390 145 -100

0.04

0.1

0.16

offset (m)

𝑡(
s)

(a)

390 145 -100
offset (m)

(b)

390 145 -100
offset (m)

(c)

390 145 -100

0.04

0.1

0.16

offset (m)

𝑡(
s)

(d)

390 145 -100
offset (m)

(e)

390 145 -100
offset (m)

(f)

Figure 3.17: Shot gathers corresponding to the cross-well experiment in Figures 3.15 and 3.16 for a source
at (ኼኺ኿, ኻዃዃ)m. (a) Synthetic data using interpolated well-log models. (b) Observed field data. (c) Initially
modelled data for synthetic and field data inversion. (d) Modelled data after synthetic data multi-objective
inversion, to be compared to (a). (e) Modelled data after field data inversion, to be compared to (b). (f)
Same as (e), but after single-objective ፉᑝᑤ inversion.
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Figure 3.18: Bumpy shot gathers corresponding to the cross-well experiment in Figures 3.15 and 3.16 for a
source at (ኼኺ኿, ኻዃዃ)m. (a) Observed and (b) modelled gathers after synthetic data inversion using ᎟ᑥ/Ꭱᑕ ዆
ኻ.኿ and ᎟ᑣ/᎘ᑕ ዆ ኻ.ኺ. (c) Observed and (d) modelled gathers after synthetic data inversion using ᎟ᑥ/Ꭱᑕ ዆ ኺ.኿
and ᎟ᑣ ዆ ኺ. (e) Observed and (f) modelled gathers after field data inversion using ᎟ᑥ/Ꭱᑕ ዆ ኻ.኿ and ᎟ᑣ/᎘ᑕ ዆
ኻ.ኺ. (g) Observed and (h) modelled gathers after field data inversion using ᎟ᑥ/Ꭱᑕ ዆ ኺ.኿ and ᎟ᑣ ዆ ኺ.
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Figure 3.19: Output models for the cross-well experiment. For the synthetic data inversion, the output in
Figure 3.15c varies only with depth and is plotted in blue. A cross-section at ፱ ዆ ኻኻኺm, obtained from the
field data and corresponding to the reconstructed model in Figure 3.16b, is plotted in red.
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Figures 3.18a and 3.18c. The multi-objective inversion results in the final velocity model
plotted in 3.15c. The modelled data after the final iteration, plotted in Figure 3.17d,
match the synthetic observed data. And the modelled bumpy data after the inversion,
plotted in Figures 3.18b and 3.18d, match the observed bumpy data.

Field Data Inversion
Under the acoustic approximation, we assumed that the recorded 𝑥-component data
generated by 𝑥-component sources are not too different from acoustic pressure data
generated by explosive sources. We band-limited the observed data to the range be-
tween 80 to 120Hz, such that the low frequencies are removed. Attenuation is not
taken into account, but during pre-processing, an amplitude-versus-offset correction
was applied to the observed data using the initially modelled data, following Brenders
and Pratt [2007]. The observed shot gather for a source at (205, 199) is shown in
Figure 3.17b. Both single- and multi-objective inversions in this case are performed in
two stages. During the first stage, the subsurface models are allowed to vary only with
depth. Then, the output is used as a starting model to estimate the final results that
vary in both the 𝑥- and 𝑧-coordinates.

Single-objective 𝐽፥፬ inversion outputs the velocity model plotted in Figure 3.16a that
varies both in the 𝑥- and 𝑧-coordinates. The corresponding modelled shot gather in
Figure 3.17f is cycle skipped compared to the observed shot gather in Figure 3.17b: no-
tice the arrivals around the red square. The multi-objective inversion results in the final
velocity model plotted in Figure 3.16b that also varies both in the 𝑥- and 𝑧-coordinates.
The modelled shot gather after inversion, plotted in Figure 3.17e, matches the observed
shot gather in Figure 3.17b. The modelled bumpy data, plotted in Figures 3.18f and
3.18h, match the observed bumpy data in Figures 3.18e and 3.18g after the inversion.
Finally, Figure 3.19 displays vertical cross-sections of the synthetic- and field-data multi-
objective inversion results.

3.5.2. Five-layer Example
We now numerically test the applicability of the multi-objective strategy when:

• the data are acquired at sufficiently long offsets to contain refracted waves and

• the data contain many arrivals including free-surface reflection as well as refraction
multiples.

A somewhat more realistic five-layer Earth model of 6000m width and 2500m depth is
assumed and the velocity varies with depth as depicted in Figure 3.20. We placed an
evenly spaced horizontal array of 200 receivers at a depth of 10m. A source is placed
at (0, 10) such that the maximum offset in the data is 6000m. We generated ‘observed’
data using a fourth-order minimum-phase Butterworth source wavelet of bandwidth 5–
10Hz. The ‘observed’ shot gather, plotted in Figure 3.21a, contains refractions due to
high-velocity contrasts at the interfaces just below 750m and 1200m. We choose a
free-surface boundary condition so that free-surface multiples are present in the data.
The initial velocity model, plotted in Figure 3.20, has an incorrect background velocity.
The modelled data using the initial velocity model are plotted in Figure 3.21b.
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Figure 3.20: Plot corresponding to the five-layer example. The actual (solid black) and initial (dashed black)
models are plotted. Single-objective ፉᑝᑤ inversion result is plotted in red. The multi-objective inversion scheme,
depicted in Figure 3.12, results in a model plotted in green.

0 3.0 6.0

0

2

4

offset (km)

𝑡(
s)

(a)

0 3.0 6.0
offset (km)

(b)

0 3.0 6.0
offset (km)

(c)

0 3.0 6.0
offset (km)

(d)

Figure 3.21: The shot gathers corresponding to the results in Figure 3.20. (a) Observed gather. (b) Initially
modelled gather. (c) Modelled gather after single-objective ፉᑝᑤ inversion. (d) Modelled gather after multi-
objective inversion.
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We now perform the multi-objective inversion depicted in Figure 3.12. Each round-
trip consists of two different optimization stages. During the first stage, we used the
blurring parameters as in Table 3.2 with time windowing to fit only the early refracted
arrivals at offsets larger than 2000m. The inversion model grid spacing during these
optimizations is 50m and a Gaussian with standard deviation of 210m is used for gra-
dient smoothing. In the next stage, the optimizations minimize the error in the entire
shot gather without windowing and use the blurring parameters given in Table 3.2. The
model spatial sampling is 30m. The standard deviation of the Gaussian used for gradi-
ent smoothing is 60m. The modelled data after 5 round-trips, plotted in Figure 3.21d,
match the synthetic observed data. The corresponding output velocity model is plotted
in Figure 3.20.

We now perform the single-objective 𝐽፥፬ inversion also in two stages that are de-
scribed above. Single-objective 𝐽፥፬ inversion fails to reconstruct the background velocity
of the model, as plotted in Figure 3.20. Also, the modelled data at the last iteration,
plotted in Figure 3.21c, do not fit the observed data.

3.5.3. Complex 2-D Model with Reflection Data
Figure 3.22a depicts an assumed Earth model of 4800-m width and 1280-m depth with
a high-velocity structure. We placed an evenly spaced horizontal array of 60 sources
and 100 receivers at a depth of 20m. We used a 5–12-Hz fourth-order minimum-
phase Butterworth source wavelet. The ‘observed’ data generated for the actual model
do not contain any refracted arrival due to the negative velocity anomaly at shallow
depths. The initial velocity model for inversion is homogeneous with 𝑐 = 3000m/s.
The background velocity of the model has to be reconstructed using only the reflected
arrivals in the data. In order to reduce high-wavenumber artefacts, we apply Gaussian
smoothing to the gradient at each iteration with a standard deviation of 32m. The single-
objective 𝐽፥፬ inversion results in a model with an incorrect background velocity, plotted
in Figure 3.22b. We started again from the homogeneous model but now with the
bump functional, setting 𝜎፭/𝜏፝ = 1 and 𝜎፫/𝜆፝ = 0.5. As expected, the single-objective
bump functional inversion results in a model that does not have the correct background
velocity, as can be seen in Figure 3.22c. Finally, we performed 10 round-trips using the
multi-objective inversion strategy, outlined in Figure 3.12. The multi-objective inversion
uses the blurring parameters as in Table 3.2. The resulting velocity model is plotted in
Figure 3.22d and resembles the actual velocity model fairly well.

3.6. Conclusions
We formulated a data-domain functional that matches the observed and the modelled
data in a simplified form. It can be viewed as a generalized envelope-based misfit.
The simplification results in bumpy data, obtained by taking the absolute value of the
data and subsequent smoothing or blurring with a Gaussian. Using numerical examples
involving transmission or reflection data, we illustrated the following characteristics of
the bump functional:

1. the functional is less sensitive to cycle skipping and does not rely on the low
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Figure 3.22: A 2-D reflection experiment on a complex model with a high-velocity structure. The initial
model for inversion is homogeneous with ፜ ዆ ኽኺኺኺm/s. (a) Actual velocity model. (b) Single-objective ፉᑝᑤ
inversion result. (c) Single-objective ፉᑓ inversion result using ᎟ᑥ/Ꭱᑕ ዆ ኻ and ᎟ᑣ/᎘ᑕ ዆ ኺ.኿. (d) Result from
the multi-objective inversion strategy, outlined in Figure 3.12, after 10 inversion round-trips.
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frequencies present in the data;

2. blurring increases the size of the basin of attraction that corresponds to the func-
tional and hence its global-convergence robustness;

3. the bump-functional inversion suffers from the fact that the model that matches
given bumpy data tends to be highly non-unique.

Single-objective bump-functional inversion can produce acceptable results while fit-
ting transmitted arrivals. While in the case of reflected arrivals, the non-uniqueness
prevents the bump functional to update the background velocity of the model. There-
fore, in order to reach the global minimum corresponding to the least-squares objective,
we proposed a multi-objective inversion scheme that uses the bump functional as an
auxiliary functional. We demonstrated the potential of the bump functional to pull the
trapped solution out of the least-squares local minimum whenever necessary. Finally,
we have tested the applicability of the multi-objective inversion scheme using realistic
numerical examples as well as cross-well field data. In all the cases, the scheme found
the model that well explains the observed data and hence corresponds to the global
minimum of the least-squares functional, even in the absence of low frequencies in the
data.
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4
A Parameterization Analysis for

Acoustic Full Waveform
Inversion

We are trying to prove ourselves wrong as quickly as possible,
because only in that way can we find progress.

Richard Feynman

With single-parameter full-waveform inversion (FWI), estimating the inverse of
the Hessian matrix will accelerate the convergence but is computationally expen-
sive. Therefore, it is often replaced by the inverse of an approximate Hessian
that is easier to compute and serves as a preconditioning matrix. Alternatively,
or in combination, a BFGS-type of optimization method that estimates the inverse
Hessian from subsequent iterations can be applied. Similarly, in the case of
multi-parameter full-waveform inversion, the computation of the Hessian terms
that contain derivatives with respect to more than on type of parameter, called
cross-parameter Hessian terms, is not usually feasible at each iteration. If a
simple gradient-based minimization with, for instance, just scalar weights for
each of the parameter types is used, different choices of parametrization can be
interpreted as different preconditioners. If the non-linear inverse problem is well-
posed, then the inversion should converge to a band-limited version of the true
solution irrespective of the parametrization choice, provided we start sufficiently
close to the global minimum. However, the choice of parametrization will affect
the rate of convergence to the exact solution and the ‘best’ choice of parametriza-
tion is the one with the fastest rate.

Parts of this chapter have been submitted for publication to Geophysical Journal International
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In this paper, we are in a search of the best choice for acoustic full-waveform
inversion, where 1. anomalies with a size less than a quarter of the dominant
wavelength have to be estimated; 2. the scattered wavefield is recorded at all the
scattering angles. Towards that end, we review two different conventional anal-
ysis methods, i.e., the point-scatterer analysis and diffraction-pattern analysis.
To validate these analyses, we consider single-component numerical examples,
where the inversion estimates one of the following: 1. only contrast of a point-
shaped scatterer; 2. only contrast of a Gaussian-shaped scatterer; 3. both shape
and contrast of a Gaussian-shaped scatterer. The numerical examples show that
the suggestions of the conventional analyses are only valid while estimating the
contrast of point-shaped anomalies at a known location. For extended anomalies,
they suggest that the best choice of parameterization depends on the contrast of
the subsurface scatterer that the inversion tries to estimate. Therefore, we can-
not decide on the best parameterization choice for full-waveform inversion in the
general case.

In addition to full-waveform inversion, we consider Born modelling and inversion
to learn if the dependence on the contrast of subsurface scatterer is due to the
non-linearity in the full-waveform modelling and inversion. We again observe
that we cannot decide on the best parameterization choice for Born modelling and
inversion in the general case, where both the shape and the size of the anomalies
have to be estimated.
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4.1. Introduction
Quantitative imaging of various near-surface elastic parameters is essential in many
civil engineering applications as well as for hydrocarbon exploration. One approach to
this is full-waveform inversion (FWI) of the recorded elastic wavefield [Tarantola, 1986;
Virieux and Operto, 2009], which is sensitive to the shear and compressional properties
of the subsurface. Multi-parameter FWI is a non-linear procedure that minimises the
least-squares misfit between the recorded and the modelled seismic data to estimate
various subsurface parameters. Given the size of the seismic problem, i.e., estimating
thousands or millions of parameters, it is only feasible in practice to use descent methods
for optimisation.

In order to reduce the number of iterations needed to reach an acceptable solu-
tion, the gradient at each iteration should be preconditioned using the inverse of the
Hessian matrix [Pratt et al., 1998]. The elements of the Hessian matrix are the second-
order derivatives of the misfit function with respect to the model parameters. If model
parameter of kinds 𝑎 and 𝑏 at locations x። and x፣ are given by 𝑚ፚ(x።) and 𝑚፛(x፣),
respectively, the elements of the Hessian matrix H are

H(ፚ,።),(፛,፣) = 𝜕፦ᑒ(xᑚ) (𝜕፦ᑓ(xᑛ)𝐽፥፬) , (4.1)

where 𝐽፥፬ denotes the least-squares misfit functional.
We will refer to the Hessian terms with 𝑎 = 𝑏 as mono-parameter terms. The terms

of the Hessian on its band diagonal with 𝑖 ≈ 𝑗, 𝑖 ≠ 𝑗 and 𝑎 = 𝑏 will be called band-
diagonal mono-parameter terms, as sketched in Figure 4.1. During the preconditioning,
they deconvolve the gradient such that it is less dependent on source bandwidth and
acquisition geometry. The terms of the Hessian where 𝑖 = 𝑗 and 𝑎 = 𝑏, called main-
diagonal mono-parameter terms, account for the amplitude effects in wave propagation
[Pratt et al., 1998; Virieux and Operto, 2009], for instance, due to geometrical spreading.
In the presence of multiple scattering, the change in data due to a model perturbation
at x። depends on the model perturbation at x፣ even if 𝑖 ≠ 𝑗 and 𝑖 ≉ 𝑗. This means
that these non-band-diagonal terms of the Hessian, H(ፚ,።),(፛,፣) with 𝑖 ≠ 𝑗 and 𝑖 ≉ 𝑗,
are non-zero. During the preconditioning, they correct the gradient such that multiple
scattering is taken into account.

The non-zero Hessian terms with 𝑎 ≠ 𝑏 represent cross-talk between the differ-
ent parameter types. We call them cross-parameter terms, which are marked in the
Figure 4.1. The cross-parameter terms corresponding to a single subsurface position
when 𝑖 = 𝑗 are called main cross-parameter terms, whereas the cross-parameter terms
with 𝑖 ≈ 𝑗 and 𝑖 ≠ 𝑗 are called block cross-parameter terms. When cross-parameter
terms are smallest, a change in the data due to a perturbation of one parameter should
be almost independent of the perturbation of another parameter at the same location.

The computation of the Hessian matrix or its inverse is computationally expensive
for large-scale acoustic inverse problems. Therefore, in this paper, we restrict ourselves
to gradient-based optimisation without the involvement of the Hessian. Since the terms
of the Hessian matrix depend on the choice of the subsurface parameterization in the
case of multi-parameter full-waveform inversion, the various parameterization choices
are not equivalent. If the inverse problem is well-posed, the inversion should converge
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(a, i) (b, i)

(b, j)

(a, j)

Figure 4.1: This sketch marks different terms of the Hessian matrix in equation 4.1. The main-diagonal mono-
parameter terms are marked with a dashed line. The band-diagonal mono-parameter terms are marked in
blue and the block cross-parameter terms in red. Dashed-dotted line mark the main cross-parameter terms.
The terms of the reduced Hessian, in equation 4.17, are marked with ⊗.

to a band-limited version of the true solution irrespective of the parameterization choice,
provided we start close to the global minimum. The best choice of parameterization is
the one that converges the fastest. It should be noted that the rate of convergence
of a particular parameterization depends on the background subsurface model, without
scatterers, and the acquisition geometry. The background subsurface model serves as
the initial or starting model for inversion.

Hence, for a given acquisition geometry and background subsurface model, it is ob-
vious that the fastest convergence will be obtained for a parameterization choice that
provides zero cross-parameter terms in the Hessian. We notice, for an acoustic inverse
problem, that both the main and block cross-parameter terms are non-zero for any of
the parameterization choices involving wave velocity, density, bulk modulus or wave-
impedance. Among these options, we, therefore, have to choose a parameterization
that provides the smallest condition number of the Hessian matrix. Because the compu-
tation of the condition number of the full Hessian matrix for large-scale inverse problems
is costly or intractable, we need a simpler method for parameterization analysis. There
are two conventional methods to analyse different subsurface parameterization choices
with the aim to find the best one. The first method, called diffraction-pattern analysis,
chooses the best parametrization by examining the radiation patterns of the scattered
wavefield generated by different perturbations [Tarantola, 1986; Operto et al., 2013;
Prieux et al., 2013]. The second method, called point-scatterer analysis, considers the
Hessian of a reduced inverse problem that only estimates the contrast of a point scat-
terer at a known location. The reduction will result in fewer unknowns compared to
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Table 4.1: Various medium parameterizations that are used in this paper for the acoustic inverse problem.

Parameterization First Parameter Second Parameter
(A) m፜ᑡ ,᎞ 𝜉፜ᑡ = (𝑐፩ − 𝑐፩፨)/𝑐፩፨ 𝜉᎞ = (𝜌 − 𝜌፨)/𝜌፨
(B) mፙᑡ ,᎞ 𝜉ፙᑡ = (𝑍፩ − 𝑍፩፨)/𝑍፩፨ 𝜉᎞ = (𝜌 − 𝜌፨)/𝜌፨
(C) m፜ᑡ ,ፙᑡ 𝜉፜ᑡ = (𝑐፩ − 𝑐፩፨)/𝑐፩፨ 𝜉ፙᑡ = (𝑍፩ − 𝑍፩፨)/𝑍፩፨
(D) mፊ,᎞ 𝜉ፊ = (𝐾 − 𝐾፨)/𝐾፨ 𝜉᎞ = (𝜌 − 𝜌፨)/𝜌፨
(E) mᎳ/ᑂ,Ꮃ/ᒖ 𝜉Ꮃ/ᑂ = (Ꮃ/ᑂ− Ꮃ/ᑂᑠ)/(Ꮃ/ᑂᑠ) 𝜉Ꮃ/ᒖ = (Ꮃ/ᒖ− Ꮃ/ᒖᑠ)/(Ꮃ/ᒖᑠ)

the original inverse problem, where both the contrast and shape of the scatterer have
to be estimated. The block cross-parameter terms of the original non-reduced Hes-
sian, shown in Figure 4.1, are absent in the reduced Hessian. Therefore, this analysis
ignores the block cross-parameter terms of the original non-reduced Hessian matrix
and chooses a parameterization which has main cross-parameter terms with the least
possible magnitude.

In this paper, we consider an almost well-posed 2-D acoustic inversion example. In
the numerical examples, the aim is to reconstruct seven different scatterers surrounded
by sources and receivers using the steepest-descent minimization method, which does
not involve an expensive computation of the Hessian matrix at each iteration. The
steepest-descent method, unlike the conjugate-gradient or L-BFGS quasi-Newton [Byrd
et al., 1995] methods, allows us to clearly observe the differences in convergence rates
among the various parameterization choices. In this regard, we employ three different
modelling and inversion schemes, where the first two schemes use the Born approxima-
tion for modelling and inversion, while the third scheme uses a time-domain acoustic
staggered-grid finite-difference code. For Born modelling and inversion, we use a ho-
mogeneous background model and the analytical expressions of the corresponding 2-D
Green functions. Using this example, we show that the findings of the conventional
parameterization analysis methods are not valid in general. For elastic waveform in-
version, Modrak et al. [2016] also numerically demonstrate that the choice of material
parameters is more complicated than the current literature suggests.

This paper is organised as follows. We start with the considered parameterization
choices. Then, we outline the three modelling and inversion schemes that are employed
in the numerical example. Next, we briefly review the two conventional parameteriza-
tion analysis methods before validating them against the numerical examples. The last
section concludes the paper.

4.2. Parameterization Choices
We parameterize the Earth model with two parameters at each point, involving density, 𝜌,
and compressional-wave speed, 𝑐፩, or their combinations, for instance, compressional-
wave impedance, 𝑍፩ = 𝜌𝑐፩, or bulk modulus, 𝐾 = 𝜌𝑐ኼ፩. We denote the model parameter
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Table 4.2: Conversion formulas used for the non-linear re-parameterization.

Parameterization First Parameter Second Parameter

(A) m፜ᑡ ,᎞ 𝜉፜ᑡ = √
(᎛Ꮃ/ᒖዄኻ)
(᎛Ꮃ/ᑂዄኻ)

− 1 𝜉᎞ =− ᎛Ꮃ/ᒖ
᎛Ꮃ/ᒖዄኻ

(B) mፙᑡ ,᎞ 𝜉ፙᑡ = √
ኻ

(᎛Ꮃ/ᒖዄኻ)(᎛Ꮃ/ᑂዄኻ)
− 1 𝜉᎞ =− ᎛Ꮃ/ᒖ

᎛Ꮃ/ᒖዄኻ

(C) m፜ᑡ ,ፙᑡ 𝜉፜ᑡ = √
(᎛Ꮃ/ᒖዄኻ)
(᎛Ꮃ/ᑂዄኻ)

− 1 𝜉ፙᑡ = √
ኻ

(᎛Ꮃ/ᒖዄኻ)(᎛Ꮃ/ᑂዄኻ)
− 1

(D) mፊ,᎞ 𝜉ፊ =− ᎛Ꮃ/ᑂ
᎛Ꮃ/ᑂዄኻ 𝜉᎞ =− ᎛Ꮃ/ᒖ

᎛Ꮃ/ᒖዄኻ

of kind 𝑎 by 𝑚ፚ and write

𝑚ፚ(x) = 𝑚ፚ፨(x) [1 + 𝜉፦ᑒ(x)] , (4.2)

where 𝜉፦ᑒ(x) is the contrast function and an additional subscript 𝑜 is used to denote the
parameters corresponding to the reference medium. The subsurface location is denoted
by x. When the subsurface is parameterized using 𝜉፦ᑒ and 𝜉፦ᑓ , the model vector at
each point is denoted bym፦ᑒ ,፦ᑓ and the choice of parameterization is indicated by the
subscript ‘𝑚ፚ , 𝑚፛ ’. For example, in the case of m፜ᑡ ,᎞-parameterization, the subsurface
is parameterized using the contrast functions of the compressional-wave speed 𝑐፩ and
mass density 𝜌. The model vector for m፜ᑡ ,᎞-parameterization is

m፜,᎞ = [
𝜉፜
𝜉᎞
] . (4.3)

In this paper, we consider the five different parameterization choices given in the Ta-
ble 4.1. In the case of a m፜ᑡ ,ፙᑡ-parameterization, perturbations in the first subsurface
parameter mainly affect the transmission of waves and perturbations in the second
mainly their reflections. We consider the mᎳ/ᑂ,Ꮃ/ᒖ-parameterization because the acoustic
wave-operator is linear in 𝜉Ꮃ/ᑂ and 𝜉Ꮃ/ᒖ, providing zero second derivatives with respect to
these medium parameters. The second derivatives, which are non-zero for other param-
eterization choices, are used during the computation of the full Hessian matrix as shown
by Fichtner and Trampert [2011]. Now, we discuss two approaches to re-parameterize
the subsurface from one parameterization to another.

4.2.1. Re-parameterization
The non-linear re-parameterization approach involves the exact non-linear transforma-
tion. For example, in order to obtain 𝜉ፊ from 𝜉Ꮃ/ᑂ, we write

𝜉ፊ =
𝐾 − 𝐾፨
𝐾፨

= ( 1
𝜉Ꮃ/ᑂᎳ/ᑂᑠ + Ꮃ/ᑂᑠ

− 𝐾፨)
1
𝐾፨

= 1
𝜉Ꮃ/ᑂ + 1

− 1 = −
𝜉Ꮃ/ᑂ

𝜉Ꮃ/ᑂ + 1
. (4.4)

Similarly, Table 4.2 gives non-linear re-parameterization formulas for various parameter-
ization choices.
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Table 4.3: Conversion formulas used for the linear re-parameterization.

Parameterization First Parameter Second Parameter
(A) m፜ᑡ ,᎞ 𝜉፜ᑡ =

ኻ
ኼ (𝜉Ꮃ/ᒖ − 𝜉Ꮃ/ᑂ) 𝜉᎞ = −𝜉Ꮃ/ᒖ

(B) mፙᑡ ,᎞ 𝜉ፙᑡ = 𝜉Ꮃ/ᒖ −
ኻ
ኼ𝜉Ꮃ/ᑂ 𝜉᎞ = −𝜉Ꮃ/ᒖ

(C) m፜ᑡ ,ፙᑡ 𝜉፜ᑡ =
ኻ
ኼ (𝜉Ꮃ/ᒖ − 𝜉Ꮃ/ᑂ) 𝜉ፙᑡ = 𝜉Ꮃ/ᒖ −

ኻ
ኼ𝜉Ꮃ/ᑂ

(D) mፊ,᎞ 𝜉ፊ = −𝜉Ꮃ/ᑂ 𝜉᎞ = −𝜉Ꮃ/ᒖ

The linear re-parameterization approach assumes small contrasts, ignoring higher-
order terms in the exact non-linear conversion formula. As an example, we consider a
case where the subsurface is initially parameterized bymፊ,᎞. In order to re-parameterize
the subsurface to mᎳ/ᑂ,Ꮃ/ᒖ, we write the model vector as

mᎳ/ᑂ,Ꮃ/ᒖ = [
𝜉Ꮃ/ᑂ
𝜉Ꮃ/ᒖ
] = [−

ፊᑠ
ፊ 0
0 −᎞ᑠ

᎞
] [𝜉ፊ𝜉᎞

]

= [−1 0
0 −1] [

𝜉ፊ
𝜉᎞
] + [

᎛ᑂ
ኻዄ᎛ᑂ 0
0 ᎛ᒖ

ኻዄ᎛ᒖ
] [𝜉ፊ𝜉᎞

] . (4.5)

Now, the second term on the right-hand side of the above equation is ignored since it
is of the order 𝜉ኼፊ and 𝜉ኼ᎞ for small 𝜉ፊ and 𝜉᎞. The linear re-parameterization formula
becomes

mᎳ/ᑂ,Ꮃ/ᒖ ≈ [
−1 0
0 −1]mፊ,᎞ = −mፊ,᎞ . (4.6)

Similarly, Table 4.3 gives linear re-parameterization formulas for other parameterization
choices.

4.3. Modelling and Inversion
We denote the 2-D spatial coordinates by x = (𝑥, 𝑧). The origin is denoted by xኺ = (0, 0)
and the positions of sources and receivers are denoted by x፬ and x፫, respectively. We
introduce the reference Green function, 𝐺፨(x, 𝜔; x፬), satisfying the 2-D acoustic wave
equation

L፨𝐺፨ = 𝛿(x− x፬). (4.7)

Here, 𝜔 denotes angular frequency. The wave operator L፨ is given by

L፨ = ᎦᎴ
ፊᑠ + ∇ ⋅

ኻ
᎞ᑠ ∇, (4.8)

where 𝐾፨ denotes the bulk modulus and 𝜌፨ the mass density of the reference medium.
The Green function corresponding to the actual inhomogeneous medium is denoted by
𝐺(x, 𝜔; x፬) and satisfies the wave equation

L𝐺 = 𝛿(x− x፬), (4.9)
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with

L = ᎦᎴ
ፊ + ∇ ⋅ ኻ᎞∇. (4.10)

We write Green’s function in the actual inhomogeneous medium as 𝐺 = 𝐺፨ +𝐺፬, where
𝐺፬ stands for the scattered component of the total pressure wavefield. The Lippmann-
Schwinger equation produces

𝐺(x፫ , 𝜔; x፬) = 𝐺፨(x፫ , 𝜔; x፬) +

∫
x
𝐺፨(x፫ , 𝜔; x)𝜔ኼ ( ኻፊ −

ኻ
ፊᑠ )𝐺(x, 𝜔; x፬)dx+

∫
x
𝐺፨(x፫ , 𝜔; x) (∇ ⋅ ( ኻ᎞ −

ኻ
᎞ᑠ ) ∇𝐺(x, 𝜔; x፬))dx, (4.11)

where 𝐺፨(x፫ , 𝜔; x) denotes the scatterer-to-receiver field in the unperturbed medium
and 𝐺(x, 𝜔; x፬) denotes the source-to-scatterer field in the perturbed medium. We now
employ the Born approximation to replace the actual Green function 𝐺 in the right-hand
side of equation 4.11 with 𝐺፨. Also, we use integration by parts to obtain the Born
approximation, 𝐺፛, of Green’s function as

𝐺፛(x፫ , 𝜔; x፬) = 𝐺፨(x፫ , 𝜔; x፬) +

∫
x

ᎦᎴ
ፊᑠ 𝐺፨(x፫ , 𝜔; x)𝐺፨(x, 𝜔; x፬)𝜉Ꮃ/ᑂdx−

∫
x

ኻ
᎞ᑠ [∇𝐺፨(x፫ , 𝜔; x) ⋅ ∇𝐺፨(x, 𝜔; x፬)] 𝜉Ꮃ/ᒖdx, (4.12)

= 𝐺፨(x፫ , 𝜔; x፬) +

∫
x
WT

Ꮃ/ᑂ,Ꮃ/ᒖ(x, 𝜔; x፫ ,x፬)mᎳ/ᑂ,Ꮃ/ᒖ(x)dx, (4.13)

where the modelling vector WᎳ/ᑂ,Ꮃ/ᒖ is given by

WᎳ/ᑂ,Ꮃ/ᒖ(x, 𝜔; x፫ ,x፬) = [
ᎦᎴ
ፊᑠ 𝐺፨(x፫ ,x)𝐺፨(x,x፬)

− ኻ
᎞ᑠ (∇𝐺፨(x፫ ,x)) ⋅ (∇𝐺፨(x,x፬))

] . (4.14)

We now discuss different modelling and inversion schemes that are used in the
numerical experiments in this paper. In each scheme, the least-squares misfit between
the artificially-generated observed data 𝑄(x፫ , 𝜔; x፬) and the modelled data 𝑃(x፫ , 𝜔; x፬),

𝐽፥፬ =
1
2 ∑
Ꭶጿኺ

∑
፬,፫
‖𝑃(x፫ , 𝜔; x፬) − 𝑄(x፫ , 𝜔; x፬)‖ኼ, (4.15)

is minimized. If the subsurface is parameterized by a model vector other than mᎳ/ᑂ,Ꮃ/ᒖ,
either the linear or the non-linear re-parameterization approach is used. Then, for
forward and adjoint modelling, we use either the Born or a full-waveform approach.
After the adjoint modelling, the gradient of 𝐽፥፬ with respect to mᎳ/ᑂ,Ꮃ/ᒖ is obtained by
chain rule. As already mentioned, we use a steepest-descent algorithm to minimize 𝐽፥፬.
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Figure 4.2: A flowchart to illustrate the modelling and inversion schemes I, II and III. Square boxes repre-
sent subsurface models and boxes with rounded corners represent an operation. Boxes that depend on the
parameterization choice are white. Linear and non-linear re-parameterizations are described by the formulas
in Tables 4.3 and 4.2, respectively.
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4.3.1. Scheme I
With this scheme, the modelled data are obtained by using the linear re-parameterization,
listed in Table 4.3, and the Born-approximated Green functions 𝐺፛ of equation 4.13:

𝑃(x፫ , 𝜔; x፬) = Φ(𝜔)𝐺፛(x፫ , 𝜔; x፬). (4.16)

Here, Φ(𝜔) denotes the source spectrum, which is assumed to be known. Also, the
‘observed’ data are generated with 𝐺፛, committing an inverse crime, but for those, the
non-linear re-parameterization approach of Table 4.2 is used. The flowchart in Figure 4.2
illustrates this scheme.

4.3.2. Scheme II
As shown in Figure 4.2, this scheme is similar to the modelling and inversion scheme
I, except that the non-linear re-parameterization, listed in Table 4.2, is adopted while
generating both the modelled and the ‘observed’ data.

4.3.3. Scheme III
The numerical results obtained for this modelling and inversion scheme are decisive be-
cause it is identical to conventional acoustic full-waveform modelling and inversion. We
used a time-domain acoustic staggered-grid finite-difference code to solve equation 4.9
for the forward as well as the adjoint wavefield computations required for the gradients
[Tarantola, 1984, 1986]. Absorbing boundary conditions are used on all sides of the
computational domain. The flowchart in the Figure 4.2 also illustrates this scheme.

4.4. Diffraction-pattern Analysis
The most common way to analyse various parameterization choices is with diffraction
patterns [Wu and Aki, 1985; Tarantola, 1986; Malinowski et al., 2011; Operto et al.,
2013; Gholami et al., 2013; Prieux et al., 2013; He and Plessix, 2016]. In this analy-
sis, for each individual parameterization choice, a perturbation of both the first and the
second parameter in the same scatter point at the centre, xኺ = (0, 0), of the model
is considered, leading to an inverse problem with two parameters. When the primary
wavefield, incident on these perturbations, is scattered, the contours of the scattered en-
ergy produce diffraction patterns. For example, in the case of am፜ᑡ ,᎞-parameterization,
contours of the scattered energy due to a point scatterer with velocity and density con-
trasts are plotted in Figures 4.3a and 4.3b, respectively. Here, the incident wavefield is
generated by a point source at (0, 490). Note that these plots are insensitive to the sign
of the incident wavefield. The diffraction patterns for other parameterization choices are
also plotted in Figure 4.3. Alternatively, analytical expressions derived in the framework
of asymptotic ray+Born inversion [Forgues and Lambaré, 1997] can be used to obtain
the diffraction patterns.

Diffraction pattern analysis chooses subsurface parameterization depending on the
recorded arrivals, at a particular scattering angle 𝜃, which are being inverted or fit. A
parameterization where the two diffraction patterns at 𝜃 differ as much as possible
has the fastest convergence because the change in the data due to a perturbation
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Figure 4.3: Diffraction patterns due to different point scatterers located at the center of the model (0,0).
The red arrow indicates the direction of the incident primary wavefield radiated by a source located outside
the plotted domain at (0,490). Point scatterers have (a) velocity and (b) density perturbations for a mᑔᑡ ,ᒖ-
parameterization. (c), (d) For a mᑑᑡ ,ᒖ-parameterization. (e), (f) For a mᑔᑡ ,ᑑᑡ -parameterization. (g), (h) For
a mᑂ,ᒖ-parameterization or mᎳ/ᑂ,Ꮃ/ᒖ-parameterization. Red-coloured contours are used for higher scattered
energy than blue-coloured contours.
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in the first parameter is independent of that caused by the second parameter. For
example, when mainly inverting arrivals recorded at short-to-intermediate scattering
angles, the trade-off between the two parameters is minimum in the case of m፜ᑡ ,ፙᑡ-
or mፙᑡ ,᎞-parameterizations as shown in the Figures 4.3c, 4.3d, 4.3e and 4.3f. This is
due to the fact that there is an overlap in the diffraction patterns in the case of other
parameterization choices (Figures 4.3a, 4.3b, 4.3g and 4.3h).

In this paper, we are only interested in the case in which the recorded arrivals for
all the scattering angles are being inverted simultaneously. For surface-seismic exper-
iments, this corresponds to an acquisition scenario with a wide-angle illumination of
the target. In these cases, the contrasts in both the parameters can be uniquely de-
termined as the inverse problem is almost well-posed. This analysis suggests that a
m፜ᑡ ,ፙᑡ-parameterization is the best choice for an almost well-posed problem because
its two diffraction patterns differ the most. Later in this paper, we want to numerically
validate this claim. In the next section, we plot the terms of the Hessian matrix to show
that there is a dependence between the two parameters for all the parameterization
choices, given that all the scattering angles are considered for inversion.

4.5. Point-scatterer Analysis
During this analysis, the inverse problem is simplified such that only the contrast of a
point-shaped scatterer at a known location xኺ has to be estimated. In this case, the
terms of the original Hessian matrix in equation 4.1 are reduced to a 2 by 2 symmetric
matrix since there are only two unknowns during the inversion:

ℍፚ,፛ = [H(ፚ,ኺ),(ፚ,ኺ) H(ፚ,ኺ),(፛,ኺ)
H(፛,ኺ),(ፚ,ኺ) H(፛,ኺ),(፛,ኺ)

] , (4.17)

where H was defined in equation 4.1. We call the matrix ℍ in equation 4.17 the reduced
Hessian. It varies with the parameterization choice and acquisition geometry. As an
example, when the modelling and inversion scheme I is employed and the subsurface
is parameterized using mᎳ/ᑂ,Ꮃ/ᒖ, we can write ℍ in terms of the modelling vector W as

ℍᎳ/ᑂ,Ꮃ/ᒖ = ∑
Ꭶ
Φ(𝜔)Φ∗(𝜔)

∑
፬,፫

WᎳ/ᑂ,Ꮃ/ᒖ(xኺ, 𝜔; x፫ ,x፬)WH
Ꮃ/ᑂ,Ꮃ/ᒖ(xኺ, 𝜔; x፫ ,x፬). (4.18)

The point-scatterer analysis compares the reduced Hessians ℍ for different param-
eterization choices with the objective to find the one with the fastest convergence. As
the reduced Hessian also depends on the acquisition geometry, we choose, as an ex-
ample, a circular acquisition geometry with sources and receivers along a circle with
xኺ as the centre. The eigenvalues and eigenvectors of the reduced Hessians [Operto
et al., 2013] for the various parameterization choices can be plotted to assess the rel-
ative convergence rate for each choice. This analysis was also employed for ray-based
inversion by Forgues and Lambaré [1997], where under the high-frequency approxima-
tion and in the absence of multiple scattering, the terms of the non-reduced Hessian
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matrix, H(ፚ,።),(፛,፣), are non-zero only if 𝑖 = 𝑗. This analysis suggests that the mᎳ/ᑂ,Ꮃ/ᒖ and
mፊ,᎞ parameterization choices are equivalent and have the fastest convergence for the
chosen circular acquisition geometry for the following reasons:

Condition Number: Convergence to the exact solution is possible in only one iteration
step if all the eigenvalues of the reduced Hessian are equal. Intuitively, this corre-
sponds to the case when the ellipsoidal contours of the objective function become
circular. The condition number of ℍᎳ/ᑂ,Ꮃ/ᒖ or ℍፊ,᎞, unlike the reduced Hessians for
other parameterization choices, is one.

Cross-parameter Terms: The convergence is faster when the coordinate axes, which
refer to the parameters, coincide with the eigenvector directions of the reduced
Hessian. This corresponds to the case where the cross-parameter terms of the
reduced Hessian are zero. This is true only if the subsurface is parameterized
using either mፊ,᎞ or mᎳ/ᑂ,Ꮃ/ᒖ.

This analysis is not suited for realistic inverse problems, where both the shape and
contrast of subwavelength scatterers have to be estimated, unlike the simplified one
we considered with the point-shaped scatterer. To show this, we employ the mod-
elling and inversion scheme I and plot some terms of the non-reduced Hessian matrix,
H(ፚ,።),(፛,፣) with x፣ = xኺ, in Figure 4.4. It can be observed that the cross-parameter
terms of the non-reduced Hessian matrix are non-zero for any given parameterization
demonstrating the dependence between the two parameters. As discussed before, the
cross-parameter terms of the reduced Hessian, i.e., the main cross-parameter terms of
the non-reduced Hessian matrix, are zero (white colour in Figure 4.4k) for a mፊ,᎞- or
mᎳ/ᑂ,Ꮃ/ᒖ-parameterization. However, the block cross-parameter terms are non-zero for
these parameterization choices, as in Figure 4.4k, resulting in the dependence between
an 𝐾 or Ꮃ/ᑂ contrast at xኺ and a 𝜌 or Ꮃ/ᒖ contrast at any of the points neighbouring
xኺ. Hence, there is a dependency between the parameters for all the parameterization
choices.

Anyway, our goal is to validate the suggestions of this analysis with the numerical
examples later in this paper.

4.6. Almost Well-posed Example
The acoustic inverse problem is non-unique when the source-receiver aperture is lim-
ited and/or the necessary frequencies are lacking from the data. It is known that in the
presence of non-uniqueness, different choices of parametrization may lead to different
inversion results (see, for example, Bharadwaj et al. [2014]), each explaining the data at
convergence. In other words, the model obtained after the first few iterations depends
on the choice of parameterization. Lack of angle-dependent information in the data pre-
vents convergence to the true solution. Hence, the search for the best parametrization
in terms of convergence speed might be obfuscated by non-uniqueness problems.

Therefore, we define an almost well-posed numerical example by placing 10 sources
and 100 receivers evenly on a circle with a 490-m radius all around xኺ to avoid ill-
posedness problems related to incomplete illumination. Figure 4.5 shows the setup. The
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Figure 4.4: The terms of the non-reduced Hessian matrix, H(ᑒ,ᑚ),(ᑓ,ᑛ) such that xᑛ ዆ xᎲ, plotted as a function
of xᑚ ዆ (፱ᑚ , ፳ᑚ) for the chosen, almost well-posed problem. The modelling and inversion scheme I is adopted.
A source is located at (0,ዅ490) and receivers surround xᎲ ዆ (ኺ, ኺ) along a circle of radius 490m. InH(ᑒ,ᑚ),(ᑓ,ᑛ),
ፚ and ፛ are chosen as: a) ፚ ዆ ፜ᑡ and ፛ ዆ ፜ᑡ; b) ፚ ዆ ፜ᑡ and ፛ ዆ ᎞; c) ፚ ዆ ᎞ and ፛ ዆ ᎞; d) ፚ ዆ ፙᑡ and
፛ ዆ ፙᑡ; e) ፚ ዆ ፙᑡ and ፛ ዆ ᎞; f) ፚ ዆ ᎞ and ፛ ዆ ᎞; g) ፚ ዆ ፜ᑡ and ፛ ዆ ፜ᑡ; h) ፚ ዆ ፜ᑡ and ፛ ዆ ፙᑡ; i) ፚ ዆ ፙᑡ
and ፛ ዆ ፙᑡ; j) ፚ ዆ ፊ and ፛ ዆ ፊ or ፚ ዆ Ꮃ/ᑂ and ፛ ዆ Ꮃ/ᑂ; k) ፚ ዆ ፊ and ፛ ዆ ᎞ or ፚ ዆ Ꮃ/ᑂ and ፛ ዆ Ꮃ/ᒖ; l) ፚ ዆ ᎞
and ፛ ዆ ᎞ or ፚ ዆ Ꮃ/ᒖ and ፛ ዆ Ꮃ/ᒖ. Observe that the block cross-parameter terms of the non-reduced Hessian
are non-zero, for any given parameterization choice, showing a dependence between the two parameters.
For each parameterization choice, the terms of the reduced Hessian used for the point-scatterer analysis are
marked with ⊗. It can be seen that in the case of the mᑂ,ᒖ- or mᎳ/ᑂ,Ꮃ/ᒖ-parameterization (j–k), the cross-
parameter terms of the reduced Hessian are zero. In this figure, red and blue colours represent positive and
negative values, respectively. White color corresponds to zero value.
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x0

cpo =2000 m/s
ρo =2000 kg/m3

radius = 490 m

Figure 4.5: A sketch illustrating the almost well-posed example used for parameterization analysis. We place
10 sources, marked by stars, and 100 receivers, marked by triangles, on a circle with a 490-m radius. Different
scatterers listed in the Table 4.4 are located at xᎲ.

starting model for all inversion examples is the same as the background homogeneous
model with 𝑐፩ = 2000msዅኻ and 𝜌 = 2000 kgmዅኽ. The peak frequency of the Ricker
source wavelet, which is assumed to be known during inversion, is 5Hz. The dominant
wavelength of the acoustic wavefield used for imaging is 400m.

If one aims to reconstruct model perturbations of a size comparable to the wave-
length that corresponds to the dominant frequency in the data, then the problem may
be considered as almost well-posed even with band-limited data. The standard devia-
tion of the extended Gaussian-shaped scatterers is 50m, corresponding to a size around
one-fourth of the dominant wavelength.

For the parameterization analysis, we position one out of the seven different scatter-
ers, listed in Table 4.4, at xኺ. We employ the three modelling and inversion schemes to

Table 4.4: Properties of different scatterers located at xᎲ.

Scatterer Actual Properties Shape Properties
Case (Shape & Contrast) Known? to be Estimated
(i) Point; 𝑐፩-only Yes Contrast
(ii) Gaussian-shaped; 𝑐፩-only Yes Contrast
(iii) Gaussian-shaped; 𝑐፩-only No Shape & Contrast
(iv) Point; 𝜌-only Yes Contrast
(v) Gaussian-shaped; 𝜌-only Yes Contrast
(vi) Gaussian-shaped; 𝜌-only No Shape & Contrast
(vii) Gaussian-shaped; non-𝐾 No Shape & Contrast
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reconstruct the scatterer at xኺ with different subsurface parameterizations (Table 4.1).
During inversion, we examine the relative convergence rate of different parameteriza-
tions by displaying the least-squares misfit as a function of the iteration count on a
log-log scale. We want to observe if

• the suggestions of the point-scatterer analysis and/or radiation pattern analysis
can be validated at least by one of the three modelling and inversion schemes
used;

• the relative convergence rate of a particular parameterization choice is similar
among different inversion schemes;

• the relative convergence rate of a particular parameterization choice depends on
the actual contrast of the scatterer — we have chosen scatterers (i)–(iii) with a
𝑐፩-only contrast, (iv)–(vi) with a 𝜌-only contrast and scatterer (vii) such that there
is no contrast in 𝐾;

• the relative convergence rate of a particular parameterization choice depends on
the scatterer properties that are to be estimated — only the contrast of the scat-
terers (i), (ii), (iv) and (v) has to be estimated, while both the contrast and shape
are unknown for other scatterers;

• the relative convergence rate of a particular parameterization choice during recon-
structing point-shaped scatterers is different when compared to Gaussian-shaped
scatterers — scatterers (i) and (iv) are point-shaped while the others are Gaussian-
shaped.

The parameterization choices with the faster and slower convergence are coloured green
and orange, respectively, in Table 4.5.

4.6.1. Error-bowl Analysis
Since there are only two unknown variables while reconstructing scatterers (i), (ii), (iv)
and (v) with a known shape (see Table 4.4), we could plot two-dimensional logarithmic
contours of the least-squares misfit, i.e., contours of − logኻኺ(𝐽፥፬), as a function of the
variables. These contours or error bowls can be used to assess the observed relative
convergence rate of each parameterization choice. Similar to the analysis using the
Hessian matrix, the relative convergence rate for each parameterization can also be
assessed based on the (a) ellipticity of the misfit contours; (b) angle between the error
vector and one of the principle axis of the contours. We call this an error-bowl analysis.

We are analysing the same simplified inverse problem as that of the point-scatterer
analysis, when the error bowls are plotted for the point-shaped scatterers (i) and (iv)
after adopting scheme I. Therefore, the error-bowl analysis is the same as the point-
scatterer analysis in this case, because the shape and orientation of the error bowls
in Figures 4.6 and 4.7 are determined by the reduced Hessians. For example, the
error bowls for mፊ,᎞- or mᎳ/ᑂ,Ꮃ/ᒖ-parameterization, in Figures 4.6 and 4.7, are circular
due to the fact that the condition number of ℍᎳ/ᑂ,Ꮃ/ᒖ or ℍፊ,᎞ is one. Furthermore, the
error-bowl analysis can be seen as an extension of the point-scatterer analysis, in which
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Table 4.5: Reconstruction of seven different scatterers in Table 4.4 when different modelling and inversion
schemes are employed. The parameterizations, listed in Table 4.1, with faster and slower convergence relative
to each other are in green and orange, respectively.

Scatterer Scheme I Scheme II Scheme III
(i) (A) (B) (C) (D) (E) (A) (B) (C) (D) (E) (A) (B) (C) (D) (E)

Figure 4.6 Figure 4.8 Figure 4.10
(ii) (A) (B) (C) (D) (E) (A) (B) (C) (D) (E) (A) (B) (C) (D) (E)

Figure 4.12 Figure 4.14 Figure 4.16
(iii) (A) (B) (C) (D) (E) (A) (B) (C) (D) (E) (A) (B) (C) (D) (E)

Figure 4.18a Figure 4.18b Figure 4.18c
(iv) (A) (B) (C) (D) (E) (A) (B) (C) (D) (E) (A) (B) (C) (D) (E)

Figure 4.7 Figure 4.9 Figure 4.11
(v) (A) (B) (C) (D) (E) (A) (B) (C) (D) (E) (A) (B) (C) (D) (E)

Figure 4.13 Figure 4.15 Figure 4.17
(vi) (A) (B) (C) (D) (E) (A) (B) (C) (D) (E) (A) (B) (C) (D) (E)

Figure 4.19a Figure 4.19b Figure 4.19c
(vii) (A) (B) (C) (D) (E) (A) (B) (C) (D) (E) (A) (B) (C) (D) (E)

Figure 4.20a Figure 4.20b Figure 4.20c

different modelling and inversion schemes can be employed along with arbitrarily shaped
scatterers. It has to be noted that it is cumbersome to derive analytical expressions of
the reduced Hessians in the case of arbitrarily shaped scatterers, when full-waveform
modelling is employed.

4.6.2. Point-shaped Scatterers
We first consider the inverse problems of reconstructing the point-shaped scatterers
in Table 4.4. When scheme I is adopted for modelling and inversion, the error-bowl
analysis, identical to the point-scatterer analysis, suggests that mፊ,᎞- or mᎳ/ᑂ,Ꮃ/ᒖ-para-
meterizations have the fastest convergence because of their corresponding circular error
bowls, as plotted in Figures 4.6c, 4.6e, 4.7c and 4.7. In addition to that, we observe that
the bowls form፜ᑡ ,ፙᑡ-parameterization are more circular than either them፜ᑡ ,᎞- ormፙᑡ ,᎞-
parameterization. The least-squares misfit plotted against the iteration count while
estimating the 𝑐፩-only contrast, in Figure 4.6f, and the 𝜌-only contrast, in Figure 4.7f,
shows that the m፜ᑡ ,ፙᑡ-, mፊ,᎞- and mᎳ/ᑂ,Ꮃ/ᒖ-parameterizations have faster convergence
than the others.

We now employ the modelling and inversion scheme II. Figures 4.8 and 4.9 show
that the ellipticity of the error bowls for all the parameterizations, except for themᎳ/ᑂ,Ꮃ/ᒖ-
parameterization, are different from the previous case. Note that the mፊ,᎞-param-
eterization is no longer equivalent to the mᎳ/ᑂ,Ꮃ/ᒖ-parameterization because of the non-
linear re-parameterization. However, similar to the previous case with the scheme I, we
observe that the m፜ᑡ ,ፙᑡ-, mፊ,᎞- and mᎳ/ᑂ,Ꮃ/ᒖ-parameterizations converge faster.

Figures 4.10 and 4.11 display the error bowls when modelling and inversion with
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Figure 4.6: Reconstruction of the point-shaped ፜ᑡ-only scatterer (i) when the modelling and inversion scheme
I, with the Born approximation and linear re-parameterization, is adopted. Error-bowl analysis is performed by
plotting the logarithmic contours of the least-squares misfit as a function of the two subsurface parameters
while using the following parameterization choices: a) mᑔᑡ ,ᒖ— slower convergence expected due to high
ellipticity; b)mᑑᑡ ,ᒖ— slower convergence expected due to high ellipticity; c)mᑂ,ᒖ—expect faster convergence
due to circular contours; d) mᑔᑡ ,ᑑᑡ—expect faster convergence due to almost circular contours; e) mᎳ/ᑂ,Ꮃ/ᒖ—

expect faster convergence due to circular contours. In all the plots, the starting homogeneous model, (ኺ, ኺ)T,
is marked by the red star. f) The least-squares misfit is plotted as a function of the iteration count on a log-log
scale. This plot shows that the suggestions of the point-scatterer analysis are valid in this case.
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Figure 4.7: Reconstruction of the point-shaped ᎞-only scatterer (iv) when the modelling and inversion scheme
I, with the Born approximation and linear re-parameterization, is adopted. Error-bowl analysis is performed
by plotting the logarithmic contours of the least-squares misfit as a function of the two subsurface parameters
while using the following parameterization choices: a)mᑔᑡ ,ᒖ— slower convergence expected because of high
ellipticity; b) mᑑᑡ ,ᒖ— slower convergence expected because of high ellipticity; c) mᑂ,ᒖ— faster convergence
expected because of circular contours; d) mᑔᑡ ,ᑑᑡ— faster convergence expected because of almost circular
contours; e) mᎳ/ᑂ,Ꮃ/ᒖ— faster convergence expected because of circular contours. In all the plots, the starting
homogeneous model, (ኺ, ኺ)T, is marked by the red star. f) The least-squares misfit is plotted as a function
of the iteration count on a log-log scale. This plot shows that the suggestions of the point-scatterer analysis
are valid in this case.
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Figure 4.8: Same as Figure 4.6, except for adopting the modelling and inversion scheme II, with the
Born approximation and non-linear re-parameterization. It can be seen that the error bowls for the
mᑂ,ᒖ-parameterization are not equivalent to the mᎳ/ᑂ,Ꮃ/ᒖ-parameterization because of the non-linear re-
parameterization. Also, the shapes of the error bowls (a)–(d) are different compared to that of Figure 4.6. It
can be noted that the error bowls (c)–(e) are more circular than error bowls (a)–(b). The least-squares misfit
plot shows that the suggestions of the point-scatterer analysis are valid.
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Figure 4.9: Same as Figure 4.7, except for adopting scheme II, with the Born approximation and non-linear
re-parameterization. The least-squares misfit plot, similar to that of Figure 4.8, shows that the suggestions
of the point-scatterer analysis are valid.
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Figure 4.10: Same as Figure 4.6, except for adopting scheme III, with full-waveform modelling and inversion.
We see that the shapes of the error bowls and the relative convergence rates of different parameterization
choices are similar to that of Figure 4.8. The least-squares misfit plot shows that the suggestions of the
point-scatterer analysis are valid.
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Figure 4.11: Same as Figure 4.7, except for adopting scheme III, with full-waveform modelling and inversion.
It can be seen that the shapes of the error bowls and the relative convergence rates of different parameter-
ization choices are similar to that of Figure 4.9. The least-squares misfit plot shows that the suggestions of
the point-scatterer analysis are valid.



4

84 4. A Parameterization Analysis for Acoustic Full Waveform Inversion

scheme III is employed. It can be seen that the suggestions of the point-scatterer
analysis remain valid even when employing the modelling and inversion scheme II or
III. This is because the error bowls (c)–(e) are more circular or less elliptical than the
error bowls (a)–(b) in the Figures 4.8, 4.9, 4.10 and 4.11.

4.6.3. Gaussian-shaped Scatterers
We now want to see if the sub-wavelength Gaussian-shaped scatterers at xኺ will result in
error bowls of a different shape compared to the point-shaped scatterers of the previous
subsection. When the modelling and inversion scheme I is employed, both while recon-
structing the scatterer (ii) with the 𝑐፩-only contrast, in Figure 4.12, and the scatterer
(v) with the 𝜌-only contrast, in Figure 4.13, the error bowls are more elliptical for the
m፜ᑡ ,᎞-, mፙᑡ ,᎞- and m፜ᑡ ,ፙᑡ-parameterizations than those with point-shaped scatterers.
Moreover, the error bowls for the mፊ,᎞- and mᎳ/ᑂ,Ꮃ/ᒖ-parameterizations are not circular
anymore. We still observe that the m፜ᑡ ,ፙᑡ-, mፊ,᎞- and mᎳ/ᑂ,Ꮃ/ᒖ-parameterizations have
a faster convergence because their corresponding error bowls are more circular.

When either modelling and inversion scheme II or III is employed, the error bowls
for all parameterizations not only have different ellipticities but also different orienta-
tions. This indicates that the suggestions of the point-scatterer analysis are no longer
valid. We observe that the m፜ᑡ ,᎞-parameterization is faster in reconstructing a 𝑐፩-only
contrast (Figure 4.14f and 4.16f) and that the mᎳ/ᑂ,Ꮃ/ᒖ-parameterization has the fastest
convergence when reconstructing a 𝜌-only contrast (Figures 4.15f and 4.17f). Hence,
when modelling and inversion schemes II and III are employed to reconstruct non-point
shaped scatterers, the rate of convergence of a particular parameterization also depends
on the type of contrast that has to be reconstructed.

4.6.4. Scatterers with Unknown Shape and Contrast
We now consider the inverse problems of estimating both the shape and contrast of the
sub-wavelength Gaussian scatterers (iii), (vi) and (vii). As shown in Figures 4.18, 4.19
and 4.20, the m፜ᑡ ,᎞-parameterization is the fastest while estimating a 𝑐፩-only scatterer,
whereas the m፜ᑡ ,ፙᑡ-, mፊ,᎞- and mᎳ/ᑂ,Ꮃ/ᒖ-parameterizations have a faster convergence
while estimating a 𝜌-only or a non-𝐾 scatterer. This observation is similar to that of
estimating the contrast of the Gaussian-shaped scatterers in the last subsection.

4.7. Conclusions
We have briefly outlined the conventional point-scatterer and the diffraction-pattern
parameterization-analysis methods for the 2-D acoustic inverse problem. Using almost
well-posed-numerical examples, we have shown that the suggestions of these conven-
tional methods are valid only when the contrasts of the point-shaped scatterers at a
known location are estimated. The numerical examples employ three different mod-
elling and inversion schemes using both Born and full-waveform modelling. As expected,
for almost well-posed inverse problems, we observed that a change in parametrization
will result in a different convergence rate. Furthermore, the relative rate of convergence
for a particular choice of parameterization depends on (a) the modelling and inversion
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Figure 4.12: Same as Figure 4.6, except for the Gaussian-shaped ፜ᑡ-only scatterer (ii). We observe that
the errors bowls for all the parameterization choices are more elliptical compared to that of Figure 4.6. The
least-squares misfit plot shows that the suggestion of the point-scatterer analysis is valid. The contours in the
case mᎳ/ᑂ,Ꮃ/ᒖ- and mᑂ,ᒖ-parameterizations are not circular. The rate of convergence in the case of mᑔᑡ ,ᑑᑡ -,
mᑂ,ᒖ- andmᎳ/ᑂ,Ꮃ/ᒖ-parameterizations is higher as their corresponding error bowls are more circular compared
to the rest.
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Figure 4.13: Same as Figure 4.7, except for the Gaussian-shaped ᎞-only scatterer (v). We observe that
the errors bowls for all the parameterization choices are more elliptical compared to that of Figure 4.7. The
least-squares misfit plot shows that the suggestions of the point-scatterer analysis are valid. The rate of
convergence in the case of mᑔᑡ ,ᑑᑡ -, mᑂ,ᒖ- and mᎳ/ᑂ,Ꮃ/ᒖ-parameterizations is higher as their corresponding
error bowls are more circular compared to the rest.
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Figure 4.14: Same as Figure 4.6, except for scatterer (ii) and adopting scheme II, with the Born approximation
and non-linear reparameterization. Compared to the Figure 4.12, we see that the error bowls, in this case,
have much different orientation. The least-squares misfit plot shows that the suggestions of the point-scatterer
analysis are no longer valid.
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Figure 4.15: Same as Figure 4.7, except for scatterer (v) and adopting scheme II, with the Born approximation
and non-linear reparameterization. Compared to the Figure 4.13, we see that the error bowls in this case
have different ellipticity and orientation.
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Figure 4.16: Same as Figure 4.6, except for scatterer (ii) and adopting scheme III, with full-wavefrom mod-
elling and inversion. The least-squares misfit plot shows that the suggestions of the point-scatterer analysis
are no longer valid. Parameterization using mᑔᑡ ,ᒖ has the best convergence rate.
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Figure 4.17: Same as Figure 4.7, except for scatterer (v) and adopting scheme III, with full-wavefrom mod-
elling and inversion. The least-squares misfit plot shows that the suggestions of the point-scatterer analysis
are no longer valid.
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Figure 4.18: The least-squares misfit is plotted as a function of the iteration count on a log-log scale during
the reconstruction of scatterer (iii), where both shape and contrast of a ፜ᑡ-only scatterer are unknown.
The modelling and inversion schemes (a) I, (b) II and (c) III are adopted. It can be observed that the
parameterization using mᑂ,ᒖ has the worst convergence rate in all the cases.
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Figure 4.19: Same as Figure 4.18, except for scatterer (vi), with ᎞-only contrast. Note that the relative rates
of convergence of various parameterization choices are different compared to that of the Figure 4.18. It can
be observed that the parameterization using mᑑᑡ ,ᒖ has the worst convergence rate in all the cases.
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Figure 4.20: Same as Figure 4.18, except for scatterer (vii), with a non-ፊ contrast. Note that relative rates of
convergence of various parameterization choices are different compared to that of the Figures 4.18 and 4.19.
It can be observed that the parameterization using mᑑᑡ ,ᒖ has the worst convergence rate in all the cases.

scheme employed; (b) the contrast of subsurface scatterer that has to be reconstructed;
(c) the shape of the sub-wavelength scatterer. We observed that in most of the cases
the mፙᑡ ,᎞-parameterization did not have the fastest convergence. Finally, our numeri-
cal examples show that, in general, there is no such thing as the best parametrization
choice that provides the fastest convergence for acoustic inversion.
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5
Near-surface Application of 2-D

SH Full Waveform Inversion

We are what our thoughts have made us;
so take care about what you think. Words are secondary.

Thoughts live; they travel far.

Swami Vivekananda

In the near-surface with unconsolidated soils, shear-wave properties can often
be imaged better and with a higher resolution than P-wave properties. To enable
imaging ahead of a tunnel-boring machine (TBM), we developed a seismic pre-
diction system with a few shear-wave vibrators and horizontal receivers. The
boring process is interrupted at regular intervals to carry out active surveys. The
vibrators are then pushed against the rock or soil in front of the machine’s cutting
wheel. Their design is based on linear synchronous motor technology that can
generate very low frequencies. They inject a force in a direction perpendicular to
the tunnel axis. Horizontal receivers measure the particle velocity, mainly due to
the horizontal polarized shear (SH) waves. Because imaging with conventional
migration methods suffers from artefacts, caused by the incomplete aperture and
inaccuracies in the assumed velocity model, we use 2-D SH full waveform inver-
sion (FWI) to image the subsurface shear properties. The classic cycle-skipping
problem, which can make the application of FWI cumbersome, is avoided by the
capability to generate low frequencies. In this paper, we demonstrate the ca-
pabilities of the proposed seismic system by a number of synthetic and field
experiments.

Parts of this chapter have been accepted for publication in Near Surface Geophysics.
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5.1. Introduction
While excavating a tunnel with a tunnel-boring machine (TBM), the geology and the
ground conditions along the planned-tunnel trajectory need to be investigated in order
to safely and efficiently carry out underground operations. This entails detecting the
occurrence of faults, boulders, foundations, pipes, etc., necessary to avoid hazards
that can cause time-consuming delays in the tunnel-boring operations. In order to
predict ground conditions ahead of a TBM, seismic exploration techniques such as data
acquisition, processing and inversion can be deployed. We will discuss how each of
those can be applied to tunnel excavation with a TBM.

Seismic-ground-prediction systems for TBM record waves generated by either con-
trolled sources or its rotating cutter wheel. Hauser [2001] and Petronio and Poletto
[2002] obtained interpretable seismic data by cross-correlating signals generated by
the cutter wheel with pilot signals recorded at reference receivers. Alternatively, seis-
mic interferometry uses cross-correlation to turn the noise generated by the cutter wheel
into useful virtual source records [Poletto and Petronio, 2006; Harmankaya et al., 2016].
However, artefacts are present in the virtual source records since the location of the
sources generating the noise is limited to the cutter wheel. Because of this, ground-
prediction systems that employ active sources are more successful. In these systems,
acquisition is usually carried out with a focus on a particular propagation mode of the
seismic waves. The use of Rayleigh waves was proposed by Bohlen et al. [2007] and
Jetschny [2010], considering a system that excites and records tunnel surface waves
at the tunnel wall behind the cutter head of the TBM. With 3-D elastic modelling, they
showed that the high-amplitude Rayleigh waves are converted into high-amplitude shear
waves at the front face of the tunnel and vice-versa. P waves are commonly used in
hydrocarbon exploration. Kneib et al. [2000] describes a seismic system for use in soft
soil, which uses P waves from 1.8 to 6 kHz. These are higher compared to the 10- to
120-Hz frequencies commonly used in surface-seismic techniques. The advantage of
using shear or S body waves has been demonstrated by several authors in the case of
soft-soil near-surface applications [Omnes, 1978; Helbig and Mesdag, 1982; Stümpel
et al., 1984; Guy et al., 2003; Haines and Ellefsen, 2010]. S waves turn out to be very
suitable for soft soils since shear waves are not sensitive to the type of fluid or gas in
the pores. Hence, estimated shear-wave properties using shear waves correlate well
with subsurface lithology. In these soils, propagating shear waves often have a shorter
wavelength than P waves [Ghose et al., 1998; Haines and Ellefsen, 2010; Miller et al.,
2001], resulting in a better resolution while imaging. Also, in the near surface, where
the soft-soil TBM usually operates, relative shear-wave variations are much larger than
relative P-wave variations.

Recorded data are processed with the aim to obtain the subsurface parameters that
control the seismic wave-propagation. A reflectivity image of the subsurface, which de-
picts the interfaces between different soil types, can be produced by using a subsurface
wave-speed or velocity model. The conventional methods of estimating the velocity
model directly from seismic data are not fully automatic and require time-consuming
human interaction, commonly taking several days to obtain the final images. In tunnel-
boring operations, this time is not available: results need to be available within an hour
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or even minutes, to allow for preventive action when obstacles or potentially dangerous
situations ahead of the TBM show up.

Most of the current systems for seismic exploration produce reflectivity images us-
ing an assumed velocity model instead of an estimated one. Swinnen et al. [2007]
discusses an imaging technique based on focusing operators in an assumed model.
Tzavaras [2010] applies Kirchhoff pre-stack depth migration and Fresnel-volume migra-
tion to produce 3-D reflectivity images in the case of hard-rock tunnelling. Ashida [2001]
describes a method to detect the interfaces using data from multi-component receivers.
These conventional near-surface imaging techniques all use an assumed velocity model
and suffer from various pitfalls [Steeples and Miller, 1998]. When using shear waves,
Miller et al. [2001] has shown that Love waves can stack coherently in a common mid-
point gather, leading to a wrong interpretation. Incomplete acquisition, due to the
limited space available on the TBM, causes recording footprint noise in conventional
images. Inaccuracies in the assumed velocity model will result in migration images that
are not properly focused. Therefore, in tunnelling applications, there is a need for a seis-
mic system that can automatically estimate the wave-velocity prior to imaging. Bellino
et al. [2013] proposes such a fully automatic method, which can estimate the average
wave-velocity as well as the distance to an interface.

Recently, an approach called full-waveform inversion (FWI) [Tarantola, 1986; Virieux
and Operto, 2009] has been used to automatically produce a subsurface velocity model
for tunnel exploration [Musayev et al., 2013; Bharadwaj et al., 2015]. FWI is a non-
linear data fitting procedure that minimises the misfit between the recorded and the
modelled seismic data, in a least-squares sense, to estimate the subsurface parameters.
It requires low frequencies in the data to avoid convergence to local minima caused
by the notorious cycle-skipping problem [Virieux and Operto, 2009]. The advantage
of using FWI over conventional imaging techniques is that the least-squares imaging
condition used in FWI will suppress some of the acquisition-related artefacts [Nemeth
et al., 1999].

The application of waveform inversion to near-surface land data is even more chal-
lenging than the marine case because of strong elastic effects such as ground-roll and
near-surface attenuation. It is difficult to fit the surface waves due to a heterogeneous
near-surface during inversion. In the tunnel environment, the surface waves propagate
along the tunnel wall. In order to properly account for the surface waves, elastic mod-
elling is commonly used for near-surface FWI [Bretaudeau et al., 2013]. Even when
using elastic modelling, Brossier et al. [2009] illustrated that near-surface FWI gener-
ates accurate results via judicious data pre-conditioning and/or muting rather than using
surface waves. Moreover, using elastic modelling makes the inverse problem computa-
tionally more expensive.

In this chapter, we focus on a system that uses horizontally polarised shear (SH)
waves [Bharadwaj et al., 2015], because shear waves are better suited for exploration
in soft soils than P waves, as discussed earlier. Our objective is to investigate and
demonstrate the feasibility of using SH waves in unconsolidated soils for TBM-like situa-
tions and geometries. For data acquisition in this system, shear vibrators and receivers
are placed on the soil in front of the cutter head to generate and record mainly the SH
wavefield. Acquisition is carried out when the tunnel-boring machine (TBM) is not in
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operation. The design of the vibrator is based on linear synchronous motors technology
[Noorlandt et al., 2015], which can expand the source frequency band to frequencies
as low as 5Hz. For inverting the data, we use full-waveform inversion to estimate the
subsurface shear-wave speed and reflectivity. The capabality of the seismic vibrator to
generate low frequencies allows us to circumvent the classic problem of cycle-skipping.
Of course, this assumes that these frequencies can actually be injected into the sub-
surface, which may not always be the case. The inability to inject low frequencies is
illustrated by an acoustic model with a linear vertical velocity gradient in which waves
below a certain frequency do not propagate [Kuvshinov and Mulder, 2006].

Since the acquired data need to be processed in near real time with current comput-
ing technology, we simplified the SH full-waveform inversion problem to 2D. We applied
a crude but simple correction to the measured 3-D data to make them resemble 2-D
data. The 2-D approach implicitly assumes invariance in the out-of-plane direction. In
that case, the SH waves are decoupled from P, SV, and Rayleigh waves and we can
simplify the elastic wave equation to a 2-D SH wave-equation. Due to the absence of
Rayleigh waves, the observed data are easier to fit compared to P-wave land datasets.
However, Love waves that might be present in the observed data are also modelled
by solving the 2-D SH wave equation [Luo et al., 2010]. It should be noted that Love
waves are guided waves that are only generated in the presence of a low S-wave veloc-
ity layer close to the sources and receivers. The occurrence of such a layer will be rare
as subsurface layering is often nearly horizontal and perpendicular to cutter-head front.

The remainder of the chapter is organised into five sections. The next section de-
scribes the data acquisition and pre-processing of our system in more detail. After that,
we elaborate on the FWI algorithm used to process the data. In the fourth and fifth
section, we demonstrate the application of the seismic system using synthetic scenarios
as well as field data, respectively. The last section summarises the chapter.

5.2. Data Acquisition and Pre-processing
Our system places sources and receivers on the soil along a diameter of the cutter head
to generate and record seismic shear waves. Figure 5.1 shows four possible source-
receiver geometries along diameters AAᖣ, BBᖣ, CCᖣ and DDᖣ, respectively. Geometry
A is impractical but best illuminates the target. The other geometries use only a few
source and receiver positions because of the limited space on a TBM. In the case of a
10-m TBM, geometries B, C and D also take the following practical considerations into
account:

1. sources and receivers cannot be placed at the same position;

2. sources and receivers cannot be placed within a 1-m radius around the centre of
the cutter head;

3. the minimum distance between two positions, each with either a source or receiver,
is 0.5m.

The sources and receivers are pushed against the tunnel face to improve the coupling
with the soil. The acquisition takes the rotation and advance of the TBM into account.
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C

Cᖣ

B

Bᖣ

D

Dᖣ

Aᖣ A

source

receiver

Geometry Number of Sources Number of Receivers Practical?
A 20 20 no
B 4 16 yes
C 2 18 yes
D 1 19 yes

Figure 5.1: Cutter head of the tunnel-boring machine showing source-receiver acquisition geometries along
different diameters.

Making use of the rotation of the TBM, different measurements are combined to obtain
data along a particular transect, oriented along one of the diameters of the cutter head.
As an example, we can combine the measurements at 45 and 225 degrees to obtain
data along the transect BBᖣ in Figure 5.1. The new dataset will have eight source
positions and we refer it as a combined dataset. Depending on the rotation speed of
the cutter head, combined datasets along 3 to 4 transects can be obtained before the
TBM advances ahead, closer to a possible target reflector that needs to be imaged.

In the rest of the chapter, we consider pre-processing and inversion for a combined
dataset along one particular transect. We choose a coordinate system for this transect
such that the 𝑥-axis is always along the transect. The TBM’s direction of advance corre-
sponds to the 𝑧-axis. The vibrator source primarily injects a known sweep as a ground
force in the 𝑦-direction, perpendicular to the transect. As a simplified but useful model,
we consider 2-D SH waves in the [𝑥, 𝑧]-plane, with the particle velocity in the 𝑦-direction.
Shear vibrators and receivers generate and record only the SH wavefield. This is under
the assumption that the medium properties should be invariant in the 𝑦-direction. Our
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vibrator source can excite signals down to 5Hz, a low enough frequency for shallow
shear-wave surveying.

We denote the sweep signal in the frequency domain by Φ፬. The uncorrelated
recorded data at x፫ = [𝑥፫ , 𝑧፫] due to a source at x፬ = [𝑥፬ , 𝑧፬] are given in the frequency
domain by

𝑄፮(x፫ , 𝑓; x፬) = Φ፬(𝑓)Γ(ኺ)፬ (x፬ , 𝑓)Γ(ኺ)፫ (x፫)𝐼፫(𝑓)𝐺ኽፃ(x፫ , 𝑓; x፬). (5.1)

In the above equation, Γ(ኺ)፬ (x፬ , 𝑓) is a factor that takes frequency-dependent ground
coupling at the source position x፬ into account. Similarly, Γ(ኺ)፫ (x፫) denotes coupling
at the receiver position x፫ and 𝐼፫(𝑓) describes the frequency-dependent instrument
response of the receivers used in the survey, which is assumed to be known. 𝐺ኽፃ is the
3-D Green’s functions or impulse response of the Earth. After acquiring the data, a cross-
correlation with the source-sweep signal 𝜙፬ in the time domain or multiplication with the
complex-conjugate spectrum Φ∗፬ in the frequency domain is performed. Furthermore,
to broaden the bandwidth of the data, a spectral division with the amplitude spectrum
of the sweep and the amplitude spectrum of the instrument response is carried out.
This results in correlated data 𝑄(ኽፃ), given in the frequency domain by

𝑄(ኽፃ)(x፬ ,x፫ , 𝑓) = Φ∗፬(𝑓)Φ፬(𝑓)Γ(ኺ)፬ (x፬ , 𝑓)Γ(ኺ)፫ (x፫)𝐼፫(𝑓)𝐺ኽፃ(x፬ ,x፫ , 𝑓)
(|Φ፬(𝑓)|ኼ + 𝜖ኻ)(|𝐼፫(𝑓)| + 𝜖ኼ)

, (5.2)

where 𝜖ኻ and 𝜖ኼ are small stabilisation factors.
We invert the combined data along each transect individually as if line sources, which

are oriented along the direction perpendicular to the transect, were used. This is a
consequence of the 2-D assumption. Since, in reality, we use nearly point-like 3-D
sources, we apply an approximate correction to the combined data, 𝑞(ኽፃ), in the time
domain to make them resemble 2-D data. We let

𝑞(ኼፃ)(x፬ ,x፫ , 𝑡) = √𝑡 𝑞(ኽፃ)(x፬ ,x፫ , 𝑡), (5.3)

where the correlated data before and after applying correction are denoted by 𝑞(ኽፃ)
and 𝑞(ኼፃ), respectively. This correction mainly compensates for the difference in geo-
metrical spreading of the waves [Wapenaar et al., 1992]; we skipped the customary
phase correction by √𝚤𝑓, which is handled instead by including a source-related filter as
unknown during the inversion. The correction replaces the 3-D Green’s functions 𝐺ኽፃ in
the equation (5.2) with the 2-D Green’s functions 𝐺ኼፃ. After this correction, additional
pre-processing such as band-pass filtering, shot-gather normalisation and time-domain
tapering, etc., are performed on 𝑞(ኼፃ) to obtain the pre-processed observed data 𝑞፩,
used for inversion.

Finally, the inversion results from datasets along different transects can be combined
into a single 3-D image.

5.3. 2-D SH Full-Waveform Inversion
An important characteristic of our ground prediction seismic system is its ability to auto-
matically produce subsurface maps of the shear-wave velocity, 𝑐፬, and/or mass-density,
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𝜌. This is mainly achieved by the combination of a specially designed seismic vibrator,
based on linear synchronous motors and capable of generating low frequencies, and
FWI. Once these maps are produced, the reflectivity image of the subsurface can be
obtained by taking the derivative of the estimated S-wave impedance in either 𝑥- or
𝑧-direction or by taking the Laplacian. Applying the derivative boosts the reflectors, the
interfaces between different materials where seismic waves are reflected.

To compute the modelled data, we solve the 2-D SH wave equation in terms of the
particle velocity in the out-of-plane or 𝑦-direction. We use a time-domain staggered-grid
finite-difference solver [Virieux, 1984] for the forward modelling. To properly account
for the effect of the tunnel wall on the wave-propagation, we impose the appropriate
Neumann boundary conditions.

Next, we will discuss the objective function to be minimised during full-waveform
inversion.

5.3.1. Least-squares Functional With Source Filters and Receiver-
coupling Factors

The classic least-squares inversion [Tarantola, 1984; Pratt et al., 1998; Virieux and Op-
erto, 2009; Fichtner, 2010; ?] minimises the difference between the pre-processed
observed data and the modelled data iteratively. The objective function with unknown
source-related filters and receiver-coupling factors along with the modelled data is given
by

𝐽፥፬ = ኻ
ኼ∑

፬
∑
፫
∑
፭
[𝑝(x፫ , 𝑡; x፬) ∗፭ 𝛾፬(x፬ , 𝑡)𝛾፫(x፫) − 𝑞፩(x፫ , 𝑡; x፬)]

ኼ . (5.4)

Here, ∗፭ denotes convolution in time. We denote the source filters in the time do-
main and receiver-coupling factors by 𝛾፬(x፬ , 𝑡) and 𝛾፫(x፫), respectively. Note that the
receiver-coupling factors are chosen to be time-independent scalars. The pre-processed
observed data and the modelled data are denoted by 𝑞፩ and 𝑝, respectively. For fur-
ther analysis, we consider the data in the frequency domain where convolution in time
corresponds to a simple product operation. Using Parseval’s theorem, we rewrite the
objective function in equation (5.4) by Fourier transforming the data from time 𝑡 to
frequency 𝑓 as

𝐽፥፬ = ኻ
ኾ᎝∑

፬
∑
፫
∑
፟ጿኺ

|𝑃(x፫ , 𝑓; x፬)Γ፬(x፬ , 𝑓)Γ፫(x፫) − 𝑄፩(x፫ , 𝑓; x፬)|
ኼ , (5.5)

where we used the fact that 𝑝, 𝑞፩, 𝛾፬ and 𝛾፫ are real valued. Here, 𝑃, 𝑄፩, Γ፬ and Γ፫
denote the frequency domain representations of 𝑝, 𝑞፩, 𝛾፬ and 𝛾፫, respectively. Note
that Γ፫ = 𝛾፫, as the receiver-coupling factors are frequency independent.

During the inversion, Γ፬ and Γ፫ are to be estimated in addition to the medium pa-
rameters. The source filters and the receiver-coupling factors compensate for additional
unknowns such as source signature and ground coupling at source and receiver loca-
tions in the seismic experiment. In order to understand their significance, we consider
a case in which the modelled data are generated for the correct medium parameters
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with a source wavelet Φ. For that case, we express the pre-processed observed data
discussed in the previous section as

𝑄፩(x፬ ,x፫ , 𝑓) ≈ Φ∗፬(𝑓)Φ፬(𝑓)Γ(ኺ)፬ (x፬ , 𝑓)Γ(ኺ)፫ (x፫)𝐼፫(𝑓)𝐺ኼፃ(x፬ ,x፫ , 𝑓)
(|Φ፬|ኼ + 𝜖ኻ)(|𝐼፫| + 𝜖ኼ)

, (5.6)

≈ Φ∗፬(𝑓)Φ፬(𝑓)Γ(ኺ)፬ (x፬ , 𝑓)𝐼፫(𝑓)
Φ(𝑓)(|Φ፬|ኼ + 𝜖ኻ)(|𝐼፫| + 𝜖ኼ)⏝⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏝

ጁᑤ(xᑤ ,፟)

Γ(ኺ)፫ (x፫)⏝⎵⏟⎵⏝
ጁᑣ(xᑣ)

𝑃(x፬ ,x፫ , 𝑓). (5.7)

It is obvious from the above equation that the factors Γ፬ and Γ፫ are required to match
the modelled data to the observed data even when the correct medium parameters are
used.

We use gradient-based techniques to minimise the functional 𝐽፥፬. Hence, we first
derive the expressions for the gradient of 𝐽፥፬ with respect to the modelled data, source
filters and receiver-coupling factors. These are denoted by ∇፩𝐽፥፬, ∇᎐ᑤ𝐽፥፬ and ∇᎐ᑣ𝐽፥፬,
respectively. Then, we will explain our optimisation strategy.

Gradient With Respect To Medium Parameters
The gradient of 𝐽፥፬ with respect to the medium parameters, 𝑐፬ and 𝜌, is required to
update the subsurface maps. It is computed by correlating the forward-propagated
source wavefield with the adjoint wavefield at each point in the subsurface. The adjoint
wavefield is generated by injecting the adjoint source functions ∇፩𝐽፥፬ from the receiver
positions. In order to compute the adjoint source functions for the least-squares func-
tional with source filters and receiver-coupling factors, the following steps are performed
sequentially:

1. source filters and receiver-coupling factors are applied to the modelled data,

2. the difference between the data after applying filters and the observed data is
calculated,

3. the difference is cross-correlated with the source filters and multiplied with receiver-
coupling factors.

In order to derive an expression for ∇፩𝐽፥፬, we rewrite equation (5.5) using the real and
imaginary parts of the absolute-valued data as

𝐽፥፬ = ኻ
ኾ᎝∑

፬
∑
፫
∑
፟ጿኺ
{[ℜ(𝑃)ℜ(Γ፬)Γ፫ − ℑ(𝑃)ℑ(Γ፬)Γ፫ −ℜ(𝑄፩)]ኼ+

[ℑ(𝑃)ℜ(Γ፬)Γ፫ + ℑ(Γ፬)ℜ(𝑃)Γ፫ − ℑ(𝑄፩)]ኼ}. (5.8)

We now differentiate the above equation with respect to the real and imaginary parts
of the modelled data 𝑃 to obtain

∇ፏ𝐽፥፬ = ∇ℜ(ፏ)𝐽፥፬ + 𝚤∇ℑ(ፏ)𝐽፥፬ ,
= ኻ

ኼ᎝ [𝑃(x፫ , 𝑓; x፬)Γ፬(x፬ , 𝑓)Γ፫(x፫) − 𝑄፩(x፫ , 𝑓; x፬)]
Γ∗፬(x፬ , 𝑓)Γ፫(x፫), (5.9)
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where the superscript ∗ denotes complex conjugation. Alternatively, the Wirtinger cal-
culus can be used to derive an expression for ∇ፏ𝐽፥፬.

Using the chain rule, we can write the derivative of the functional with respect to
the modelled data in the time domain as

∇፩𝐽፥፬ = [𝑝(x፫ , 𝑡; x፬) ∗፭ 𝛾፬(x፬ , 𝑡)𝛾፫(x፫) − 𝑞፩(x፫ , 𝑡; x፬)]
⊗፭ 𝛾፬(x፬ , 𝑡)𝛾፫(x፫), (5.10)

where ⊗፭ denote cross-correlation.

Updating Source and Receiver Filters
In order to compute the gradient of the objective function in the equation (5.8) with
respect to the source filters, the same steps as those for the gradient in the preceding
subsection are followed except for the step 3, where the difference is cross-correlated
with the modelled data and multiplied with the receiver-coupling factors. Now, an addi-
tional summation over the receiver coordinate is also performed. This leads to

∇᎐ᑤ𝐽፥፬ =∑
፫
[𝑝(x፫ , 𝑡; x፬) ∗፭ 𝛾፬(x፬ , 𝑡)𝛾፫(x፫) − 𝑞፩(x፫ , 𝑡; x፬)]

⊗፭ 𝑝(x፫ , 𝑡; x፬)𝛾፫(x፫). (5.11)

Similarly, the gradient with respect to the receiver-coupling factors can be computed as

∇᎐ᑣ𝐽፥፬ =∑
፬
∑
፭
[𝑝(x፫ , 𝑡; x፬) ∗፭ 𝛾፬(x፬ , 𝑡)𝛾፫(x፫) − 𝑞፩(x፫ , 𝑡; x፬)]

⊗፭ 𝑝(x፫ , 𝑡; x፬) ⊗፭ 𝛾፬(x፬ , 𝑡). (5.12)

5.3.2. Optimisation Strategy
We estimate the unknown medium parameters, source filters and receiver-coupling fac-
tors that affect equation (5.4) by using an optimisation strategy outlined by the flowchart
of Figure 5.2. We use the conjugate-gradient minimisation scheme that uses the gra-
dients of the objective function with respect to the unknowns. The inputs of the opti-
misation strategy are the pre-processed observed data, the initial values of the source
filters, the receiver-coupling factors and the medium parameters. Initially, we choose
the receiver-coupling factors to be equal for all the receivers, for instance 𝛾፫ = 1, and
the source filters all zero. The initial shear-wave velocity model is a homogeneous one
and the velocity is chosen based on the move-out of the direct arrivals in the observed
data.

The outermost loop in our strategy runs over the frequency band (𝑖፛) of the observed
data selected for inversion. This approach corresponds to multi-scale full-waveform
inversion [Bunks et al., 1995; Boonyasiriwat et al., 2009], where we first invert the
low-frequency data and then gradually include higher frequencies. The innermost loop
consists of two round-trips (𝑖፫) for the observed data in a given frequency band. The
output of the first round trip is used as input to the second. In each round-trip, the
unknowns that should minimize 𝐽፥፬ are estimated in the following order:
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1. source-related filters, 𝛾፬, having both positive and negative lags, where a maxi-
mum lag time is chosen to prevent error-leakage from medium parameters;

2. receiver-coupling factors, 𝛾፫, which should be positive;

3. the velocity, 𝑐፬, everywhere ahead of the TBM, by fitting both the direct arrivals
and the reflections in the observed data;

4. the velocity, 𝑐፬, in a region with roughly one dominant wavelength away from the
TBM, so that the minimization mainly fits the arrivals reflected off the scatterers
in the region. This is accomplished by muting the gradient close to the TBM.

While updating one of the unknowns, the other unknowns are kept constant. During
the step 4, we focus on fitting only the reflections in the data because the direct arrivals
are often stronger and dominate the inversion during step 3. Note that the limited
maximum offset causes refractions and diving waves to be absent. The motivation
behind performing more than one round trip is that the estimate of the source and
receiver filters is improved during the second round-trip when an updated velocity model
from the first round-trip is available, assuming that each step reduces the error between
modelled and observed data. Similarly, the velocity model is better estimated in the
second round-trip since improved filters are applied to the modelled data.

5.4. Synthetic Scenarios
In order to evaluate the performance of 2-D SH FWI in a TBM-like setting, we present
results from three typical hazardous scenarios from the tunelling industry. Table 5.1 lists
the values for the seismic shear-wave properties of various subsurface materials, used
to generate 2-D synthetic 𝑐፬ and 𝜌 models. Random velocity and density perturbations
(approximately 10% of the background) are added to the synthetic models to make
them more realistic. For each scenario, synthetic models serve as input to the 2-D SH
finite-difference wave-equation solver to generate synthetic ‘observed’ data. Table 5.2
lists the parameters chosen for the forward modelling. The records corresponding to
each receiver are then multiplied with a random number between 0.2 to 1 to introduce
receiver-coupling factors Γ(ኺ)፫ (x፫), as in Equation (5.1). As specified in Table 5.2, we
deliberately chose different source wavelets for the observed data and for the initially
modelled data so that the estimation of the source filter is necessary during the inver-
sion.

We invert only for the shear-wave speed, 𝑐፬, while the source filter is assumed to
be independent of the source location. Table 5.3 summarizes the inversion parameters.
The mass-density, 𝜌, is taken as a constant during the inversion. The tunnel axis is
assumed to be at a depth of 10m below the surface at 𝑧 = 0. The sources and receivers
are constrained to depths between 5m to 15m below the surface, thereby assuming
a TBM diameter of 10m (see, e.g., Figure 5.1). Absorbing boundary conditions are
applied at the surface. For quantitative evaluation of the output model vectors, say m,
we used a correlation measure with respect to a reference model vector, mኺ, given by

𝐶m,mᎲ =
⟨m,mኺ⟩
⟨mኺ,mኺ⟩

, (5.13)
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observed data 𝑞፩; initial 𝑐፬ model;
𝛾፬ = 0; 𝛾፫ = 1; 𝑖፫ = 1; 𝑖፛ = 1

𝑖th፛ frequency band inversion

estimate source filters 𝛾፬

estimate receiver-coupling factors 𝛾፫

estimate full 𝑐፬ model
(fit direct and reflected arrivals)

estimate 𝑐፬ away from TBM
(fit mainly reflected arrivals)

outputs 𝑖th፫ round-trip

𝑖፫ ≤ 2
no

𝑖፫ = 𝑖፫ + 1

outputs 𝑖th፛ frequency-band inversion

𝑖፛ ≤ N፛

yes

no
𝑖፛ = 𝑖፛ + 1

final 𝛾፬, 𝛾፫, 𝑐፬

yes

Figure 5.2: Flowchart depicting the optimisation strategy used to estimate source, receivers filters and shear-
wave velocity in the medium. The subscript ፛ in ።ᑓ stands for frequency band and the subscript ፫ in ።ᑣ stands
for round-trip. Nᑓ denotes the total number of frequency bands inverted.
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Table 5.1: Shear properties of some materials as used in synthetic scenarios, given as shear-wave velocity ፜ᑤ
and mass density ᎞.

Synthetic Scenario(s) Background Material Anomaly

Abrupt Change & Fault Region Sand Clay
፜ᑤ (m sᎽᎳ) 500 160
᎞ (g cmᎽᎵ) 2.2 1.8

Inclusion Clay Limestone
፜ᑤ (m sᎽᎳ) 160 1300
᎞ (g cmᎽᎵ) 1.8 2.4

Table 5.2: Forward modelling parameters used for different examples.

Source wavelet for ፩
Example Source wavelet 4th order minimum-phase Record time

for ፪ Butterworth (s)
Abrupt Change (synthetic) 40–80–300–400Hz Ormsby 40–400Hz 0.1
Inclusion (synthetic) 40Hz Ricker 1–150Hz 0.15
Fault Region (synthetic) 40–80–300–400Hz Ormsby 40–400Hz 0.1
Inclusion (field) unknown 10–120Hz 0.35

where ⟨., .⟩ denotes zero-lag correlation.

5.4.1. Scenario A: Abrupt Change
This scenario defines a sudden change in geology, for instance, when a compacted sand
layer lies next to clay. Figures 5.3e and 5.3j show 2-D cross-sections of the shear-wave
velocity and mass-density models for such a scenario. Here, the sources and receivers
are positioned in the sand and we consider all the four acquisition geometries shown
in Figure 5.1. As listed in Table 5.2, we used a 40–80–300–400Hz Ormsby source
wavelet, plotted in Figure 5.4, to generate the observed seismic data. To generate the
modelled data, we used a 40–400Hz fourth-order minimum-phase Butterworth wavelet.
Maximum recording time for the observed and the modelled data is 0.1 s.

The source filter, 𝛾፬, has both positive and negative lags with a maximum lag time
of 0.01 s. We applied multi-scale full-waveform inversion by first inverting the data
between 40–70Hz, followed by three bands: 40–100Hz, 40–200Hz, and 40–400Hz, as

Table 5.3: Inversion parameters used in examples.

Scenario Band 1 Band 2 Band 3 Band 4 Length of ᎐ᑤ Initial ፜ᑤ
(Hz) (Hz) (Hz) (Hz) (s) (m sᎽᎳ)

Abrupt change (synthetic) 40–70 40–100 40–200 40–400 0.01 400
Inclusion (synthetic) full 0.01 170
Fault Region (synthetic) 40–70 40–100 40–200 40–400 0.01 400
Inclusion (field) full 0.04 110
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shown in the Table 5.3. We start the inversion from a homogeneous velocity model
with 𝑐፬ = 400m/s. As already mentioned, the mass-density is kept constant during the
inversion.

The updated velocity models after inversion with the acquisition geometries A, B, C
and D are displayed in Figures 5.3a–d. The cross-hatched pattern indicates the location
of the TBM. The horizontal and vertical reflectivity models, shown in Figures 5.3f–i
and Figures 5.3k–n, are obtained by differentiating the output velocity models with
respect to 𝑥 and 𝑧, respectively. The abrupt change in geology is well imaged with
acquisition geometries A and B, although better with A than with B. This is caused by
the fact that more sources and receivers are used in acquisition geometry A. In both
cases, the horizontal reflectivity models depict a reflector that is positioned correctly. In
addition to the first reflector, the inversion has also imaged a ghost reflector that can be
misinterpreted as a second reflector. Acquisition geometries C and D were unsuccessful
in illuminating the target reflector, particularly in the centre, because they use a smaller
number of sources. As shown in the Figure 5.3, the correlation measure (Equation 5.13)
decreases (by a factor of 2) for these geometries compared to geometry B, where the
outputs using geometry A are chosen as reference. This indicates that one should
aim for an acquisition with properly distributed sources and receivers. In all cases,
the estimated source filters and receiver-coupling factors after inversion are close to
their true values. In the case of geometry B, the source wavelet used to generate the
observed data and the estimated source filter 𝛾፬ applied to the modelled-data wavelet
𝜙 are plotted in Figure 5.4. Figure 5.5 shows the estimated and true receiver-coupling
factors.

Advance of the TBM
As the TBM advances, it approaches the subsurface target that we would like to image.
Our system performs inversion at each stage of advance separately. Often the target is
better illuminated when the TBM comes closer, resulting in a better image. To demon-
strate this fact, we consider the current scenario with three stages of advance and with
acquisition geometry B. During the first stage, the TBM is far away from the target
reflector as in Figure 5.6a. The position of the target reflector cannot be determined
accurately because of the lack of offset-dependent information, which determines the
background velocity. The image of the target reflector in the output reflectivity model of
Figures 5.6d appears closer to the TBM than in the actual synthetic model in Figure 5.6g.
It can be noticed that, in the output velocity model (Figure 5.6a), the velocity between
the reflector and the TBM is lower than the actual value. The inversion results from
the second stage, Figures 5.6b and 5.6e, show that the target is better illuminated and
slightly better positioned. In the third stage, the inversion results in Figures 5.6c and
5.6f show that the target is correctly imaged.

In practice, it is possible to use the inversion outputs from a particular stage as initial
models for the next stage. Also, the datasets from two or three consecutive stages can
be combined to perform joint inversion.
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Figure 5.3: Scenario A: Abrupt Change. The output ፜ᑤ models using geometries A, B, C and D are plotted
in (a), (b), (c) and (d), respectively. The corresponding horizontal and vertical derivatives of the ፜ᑤ models
are plotted in (f)–(i) and (k)–(n), respectively. The ፜ᑤ (e) and ᎞ (j) models used to generate the observed
data are shown as well. Crosshatch pattern indicates the location of the TBM. The correlation measures of
the outputs using geometries B, C and D are also given, where the outputs using geometry A are chosen for
reference.
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Figure 5.6: Inversion results during three stages of advance of the TBM for Scenario A using acquisition
geometry B. The output velocity models from inversion are plotted in (a)–(c). The horizontal derivatives of
the output velocity models are plotted in (d)–(f), which depict the target reflector. The cross-hatched pattern
indicates the location of the TBM. The ፜ᑤ (g) and ᎞ (h) models used to generate the observed data are also
plotted.



5.5. Field Test: Inclusion

5

111

5.4.2. Scenario B: Hard-rock Inclusion
In this scenario, we used the 𝑐፬ and 𝜌 models shown in Figures 5.7e and 5.7j. The
models represent a rock-type inclusion in a soft-soil environment. Often, this type of
inclusion is more or less horizontal in young sediments. We use clay as the background
medium and limestone for the hard inclusion. The shear-wave velocity of the propagat-
ing waves in clay is lower than in sand or limestone and high frequencies are attenuated
due to losses. Based on our experience with field experiments, we used a 40 -Hz Ricker
wavelet to generate the observed seismic data. The modelling and inversion parameters
for this scenario are summarized in Tables 5.2 and 5.3, respectively. In this example,
we invert the observed data only in a single frequency band because the initial homo-
geneous velocity model has roughly the same background velocity as the actual model.
The output velocity models, horizontal-reflectivity models and vertical-reflectivity mod-
els after inversion using different acquisition geometries are plotted in Figure 5.7. The
correlation measure is only slightly lower for geometries C and D compared to geometry
B, where the outputs using geometry A are chosen as reference. In all cases, we were
able to image only the tip of the inclusion in front of the TBM. This was to be expected
since the source cannot illuminate the sides of the inclusion, in a way that would cause
waves to be reflected back to the receivers. All the acquisition geometries image the
tip of the inclusion well. However, it can be seen that using less source positions, as in
the case of geometries C and D, causes more artefacts in the output velocity models.

5.4.3. Scenario C: Fault Region
Figures 5.8e and 5.8j show the velocity and density models corresponding to this sce-
nario. The aim is to predict the characteristics of the fault region, in particular its width
and filling material. We consider the case where the geology is the same on both sides
of the fault region. The medium inside the fault region is considered to be clay and the
background medium is considered to be sand. Since the sources and receivers are in
the sand area, we used the same modelling and inversion parameters (Tables 5.2 and
5.3) as those for the abrupt-change scenario. The output velocity models, horizontal-
reflectivity models and vertical-reflectivity models after inversion with the different ac-
quisition geometries are displayed in Figure 5.8. The fault region model is only imaged
properly in the case of geometries A and B. Again, when compared to geometry B, the
correlation measure is lower by almost a factor two when using geometries C and D,
because of the smaller number of sources and receivers. The width of the reconstructed
fault structure exceeds the actual width. The exact velocity of the filling material, clay,
cannot be determined by the inversion because of the limited aperture. However, the
horizontal-reflectivity images depict the boundaries of the fault region. Note that the
imaged reflector corresponding to the outer boundary of the fault region might also be
misinterpreted as a ghost reflector in Figure 5.3.

5.5. Field Test: Inclusion
So far, we have considered synthetic scenarios. We will contnue with a scenario that
was built in the field. This took place at a site near Eindhoven Airport in the Netherlands,
where a number of scenarios were built. Here, we will discuss only one of them, namely
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Figure 5.7: Same as Figure 5.3, except for Scenario B: Hard-rock Inclusion.
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Figure 5.8: Same as Figure 5.3, except for Scenario C: Fault Region.
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an inclusion. A TBM setting was simulated by having a fixed spread at the surface as
if that spread would represent the source(s) and receivers on the cutter head of a
TBM. Therefore, this mimicks a TBM measuring in the vertical rather than the horizontal
direction, as considered in the preceding section. The rotation of the cutter head was
simulated by rotating the spread by an angle of 60 degrees compared to the previous
one, keeping the central point of the spread fixed.

In order to simulate an inclusion, a vertical concrete tube of 1.2m height and 0.6m
diameter was filled with gravel and placed at a depth of 6m, exactly below the middle
point of the spread. The tube was buried underneath a thick cover of clay. The clay
cover was subsequently peeled off, mimicking the advancement of the TBM. Here we
will show the results after removing 2m of the clay cover, when the concrete tube was
4m, below the acquisition surface; in Figures 5.10 and 5.11, the tube is situated at
𝑧 = 6m, while the acquisition surface was at 𝑧 = 2m.

As for the receivers positions: the experiment was conducted with seventeen 10-
Hz horizontal SM9© geophones from the company ION, evenly spaced at 0.5m from
𝑥 = −4m to 4m, mimicking the case of a TBM with a diameter of 8m. And for the type
of seismograph: we used a 24-bit Sigma Delta system Geode© from the company Ge-
ometrics. The geophones measure the out-of-plane component of the particle velocity,
in this case the SH waves. As for the source, we generated an out-of-plane component
of the force, i.e., generating SH waves. The shear-wave vibrator was placed at the po-
sitions of the 1st, 3rd, 5th, 13th, 15th and 17th receivers, so at 𝑥 = −4m, −3m, −2m,
2m, 3m, and 4m. With the source placed there, the geophone was removed from
that particular position and put back when the source was moved to the next position.
Figure 5.9, taken during the acquisition, shows a picture of the whole set up.

We used the newly developed shear-wave vibrator that allowed us to input a broad-
band signal into the ground, namely a linear sweep from 5 to 120 Hz, including the low
frequencies required by FWI to perform the processing in a fully automated way.

Observed shot gathers for a source at 𝑥 = 4m after pre-processing are plotted in
Figures 5.10a and 5.11a. The pre-processing consisted in applying the correlation with
the input sweep, the correction for the amplitude of the receiver’s transfer function and
the correction for 3D-to-2D amplitudes, all according to Equation (5.3). We fitted the
recorded shot gathers starting from a homogeneous Earth model with 𝑐፬ = 110m/s and
𝜌 = 1 g/cmኽ. The mass-density model is not updated during the inversion and only the
data in the bandwidth 50–120Hz are used. Unfortunately, frequencies below 50Hz had
to be muted to suppress the noise from nearby vehicles. We noticed that such a muting
operation did not cause severe cycle-skipping problems in this test.

We use the optimisation strategy shown in Figure 5.2. After inversion, the mod-
elled data, plotted in Figures 5.10b and 5.11b, match the observed data quite well.
Figures 5.10c and 5.11c show the final output velocity model for both transects. Fig-
ures 5.10d and 5.11d depict the vertical derivatives of the output velocity models. Note
that in Figure 5.11d, there is a slight mismatch with the true position of the buried target.
In Figure 5.11b, there is a data mismatch around an offset of 4 to 5 m. For each transect,
the inversion of pre-processed data takes about half an hour on six compute cores. The
results were used for interpretation and we were able to detect a high-velocity anomaly,



5.6. Discussion and Conclusions

5

115

Field Experiment in the Netherlands

Figure 5.9: Field acquisition with the shear-wave vibrator (marked by the red box), especially designed for
this application, and the receivers (blue box) along a transect (dashed line) similar to what is typical for a
TBM situation.

corresponding to the location of the concrete-tube inclusion. This demonstrates the
success of our SH-wave seismic system to produce subsurface images, including the
possibility to have a fully automatic system.

5.6. Discussion and Conclusions
During the field experiment, the recorded signals below 50Hz are masked by the noise
due to nearby vehicles. In these situations with unreliable low frequencies in the data,
the inversion is prone to suffer from the cycle-skipping problem [Mulder and Plessix,
2008]. The cycle-skipping problem is severe only when recovering low-wavenumber
anomalies, which is not the case in our field example. Alternative inversion algorithms
are proposed by many authors [van Leeuwen and Mulder, 2010; Bozdağ et al., 2011;
Bharadwaj et al., 2016; Li and Demanet, 2016] to reduce the severity of this problem.

In the examples of this chapter, we only estimated the subsurface shear-wave ve-
locity. In addition to that, full-waveform inversion can also estimate the mass-density
of the subsurface provided if the inverse problem is properly regularized with necessary
constraints.

We developed a ground prediction system that uses horizontally polarised shear-
waves for imaging in front of a TBM, in the case of unconsolidated soils. Compared to
the conventional systems, this system produces subsurface images with less artefacts,
in an automated way. Seismic data are acquired by the receivers on the cutter head
of the TBM, which also hosts the vibrators. The design of the vibrator is based on
linear synchronous motors technology that is capable of generating low frequencies.
With these low frequencies, the seismic system can use full-waveform inversion as an
imaging engine and estimate the shear-wave velocity model required for subsurface
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Figure 5.10: The pre-processed data and inversion results of the first transect. a) Observed shot gather for
a source at ፱ ዆ ኾm. b) Modelled shot gather after inversion. c) Estimated shear-wave velocity model of
subsurface. d) Image of subsurface depicting the inclusion. The actual location of the inclusion is marked by
the red box.
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Figure 5.11: Same as Figure 5.10, except for the data corresponding to the second transect.
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imaging in a fully automatic way, without human intervention. In addition to shear-
wave velocity, our full-waveform inversion algorithm estimates the source-related filters
and the receiver-coupling factors.

We investigated the potential of the seismic system using both synthetic and field
experiments with TBM configurations. The synthetic examples use different acquisition
geometries that take practical constraints into account. We showed that the output
subsurface image quality goes up almost by a factor of two when an acquisition with
properly distributed sources and receivers is used. In the case of the field experiments,
the system was able to detect a buried object in the subsurface. Hence, our ground
prediction system can be used for hazard assessment during TBM operation in soft soils.
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Conclusions and Further

Research

I would rather have questions
that can’t be answered than answers that can’t be questioned.

Richard Feynman

121



6

122 6. Conclusions and Further Research

In the chapter 2 of this thesis, we have outlined the theory of full waveform inversion
(FWI). Using a simple numerical example, we have demonstrated that cycle-skipping is
the main cause of the local-minima problem, which limits the success of FWI when
reliable low-frequency observed data are absent.

To overcome this problem, in chapter 3, we formulated a data-domain functional that
matches the observed and the modelled data in a simplified form. It can be viewed as
a generalized envelope-based misfit. The simplification results in bumpy data, obtained
by taking the absolute value of the data and subsequent smoothing or blurring with a
Gaussian. Using numerical examples involving either transmission or reflection data, we
illustrated the following characteristics of the bump functional:

• the functional is less sensitive to cycle skipping and does not rely on the low
frequencies present in the data;

• blurring increases the size of the basin of attraction that corresponds to the func-
tional and hence its global-convergence robustness;

• the bump-functional inversion suffers from the fact that the model that matches
given bumpy data tends to be highly non-unique.

In the same chapter, we observed that the single-objective bump-functional inversion
can produce acceptable results while fitting transmitted arrivals. While in the case of
reflected arrivals, the non-uniqueness prevents the bump functional to update the back-
ground velocity of the model. Therefore, in order to reach the global minimum corre-
sponding to the least-squares objective, we proposed a multi-objective inversion scheme
that uses the bump functional as an auxiliary functional. We demonstrated the poten-
tial of the bump functional to pull the trapped solution out of the least-squares local
minimum whenever necessary. Finally, we have tested the applicability of the multi-
objective inversion scheme using realistic numerical examples as well as cross-well field
data. In all the cases, the scheme found the model that well explains the observed data
and hence corresponds to the global minimum of the least-squares functional, even in
the absence of low frequencies in the data. Some immediate research oppurtunities
regarding the multi-objective inversion scheme using the bump functional are given
below.

• More physical and/or mathematical appreciation of the scheme is necessary to
show that its achievements are not limited to the numerical examples chosen in
the chapter.

• The applicability of the scheme has to be tested with a real data scenario, where
the background velocity has to be reconstructed mainly using the reflected arrivals.
This is to investigate its sensitivity to the noise and the unaccountability of the
wave equation to the recorded amplitudes.

In chapter 4, we have briefly outlined the conventional point-scatterer and the
diffraction-pattern parameterization-analysis methods for the 2-D acoustic inverse prob-
lem. Using almost well-posed numerical examples, we have shown that the suggestions
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of the conventional analyses methods are valid only when the contrasts of the point-
shaped scatterers at a known location are estimated. The numerical examples employ
three different modelling and inversion schemes using both Born and full waveform
modelling. As expected, for almost well-posed inverse problems, we observed that the
change in parametrization will result in a different convergence rate. Furthermore, the
relative rate of convergence for a particular choice of parameterization depends on

• the modelling and inversion schemes employed;

• the contrast of the subsurface scatterer that has to be reconstructed;

• the shape of the sub-wavelength scatterer.

We observe that in most of the cases a parameterization with compressional-wave imp-
edance and mass-density did not have the fastest convergence. Finally, our numerical
example shows that, in general, there is no such thing as the best parametrization
choice that provides the fastest convergence for acoustic inversion.

In chapter 5, we developed a ground prediction system that uses horizontally po-
larised shear-waves for imaging in front of a TBM, in the case of unconsolidated soils.
Seismic data are acquired by the receivers on the cutter head of the TBM, which also
hosts the vibrators. The design of the vibrator is based on linear synchronous motors
technology that is capable of generating low frequencies. With these low frequencies,
the seismic system can use full waveform inversion as an imaging engine and estimate
the shear-wave velocity model required for subsurface imaging in a fully automatic way,
without human intervention. In addition to shear-wave velocity, our full waveform in-
version algorithm estimates the source-related filters and the receiver-coupling factors.
We investigated the potential of the seismic system using both synthetic and field ex-
periments with TBM configurations. The synthetic examples use different acquisition
geometries that take practical constraints into account. In the case of the field experi-
ments, the system was able to detect a buried object in the subsurface. We now give
some suggestions for further research below.

• Our inversion algorithm considers the the recorded data only at a particular stage
of the TBM advance. The benefits of the following multiple-stage algorithms are
to be investigated: 1. the inversion outputs from a particular stage can be used
as initial models for the next stage; 2. the data from two or three consecutive
stages can be combined to perform joint inversion.

• Love waves are not seen as a problem in our numerical examples. They are known
to be dominant in the presence of a reflector close to the source-recevier array.
The performance of the inversion should be tested in the presence of Love waves
because: 1. they are dispersive; 2. they mask the useful reflections in the data.
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