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Abstract

Quantum communication promises to allow groundbreaking new ways of in-
formation exchange. Recent advancements in the field have shown that the emer-
gence of a quantum internet is not too far in the future.

A network of devices capable of transmitting quantum information called a
quantum network has promising applications with vast benefits. One of the most
near term achievable application is quantum key distribution. It could be used
for sharing a secret key between two end users through any insecure authentic-
ated communication channel. Other than sharing secret key communication, a
quantum network can be used for connecting quantum computers. Quantum com-
puters have the potential to solve computational problems that their classical coun-
terparts either can not do or would require significantly more time to do so. By
connecting such devices, distributed computation problems such as leader election
or distributed consensus between nodes can be solved securely.

For such applications to be put into practice on a large scale, there are open prac-
tical questions still to be answered. In a quantum network, a data qubit containing
quantum information is transmitted by an operation called quantum teleportation.
For it, two nodes need to share entanglement between each other. Quantum tele-
portation then ensures the safe transmission of a qubit by using the shared entan-
glement and the exchange of two classical bits. This operation, however, consumes
entanglement between the nodes, changing the network topology with each served
request.

In quantum networks, certain nodes share entanglement between each other.
Routing in quantum networks entails determining which of these shared entan-
glements are used to transmit quantum information. As this proves to be a difficult
task, we study quantum networks and in particular consider the problem of routing
entanglement in quantum networks.

The average latency for routing entanglement in a quantum network has been
studied so far using a distributed routing approach. Thus, we present numerical
simulation results of centralised routing for the average latency of demands in
two existing entanglement generation models. In the first, shared entanglement
between nodes is created on-demand. In the second, certain nodes pre-share en-
tanglement before the demand comes. Our results show the intuition that using a
centralised routing approach in the on-demand model results in drastically more
average latency than in the model with pre-shared entanglement.

Since some nodes might not be informed about the change in topology, we study
the effect of the propagation of information about the network topology to nodes
in the network. Our observations based on simulation results show that the av-
erage latency is significantly higher if the information about the topology is not
propagated well in the network. The message complexity, however, for propagat-
ing information to all nodes in a network for a single request is O(2|E| − |V |).



Since this would be a significant load for the network, we consider information
propagation within a radius and still observe a considerable decrease in average
latency.

At last, we present a technique called link prediction which can be performed by
any node without the need for information propagation and still achieve a consid-
erable decrease in average latency. It can be effectively used to predict the change
of topology in a quantum network by using knowledge about the network topology
for a certain future point in time and previous knowledge about the network traffic.

For a large scale quantum network, the use of information propagation within a
certain radius together with link prediction can be used for a significant improve-
ment in the average latency for requests.
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Chapter 1

Introduction

Quantum computing and quantum communication promise to allow groundbreak-
ing new ways of computation and information exchange through the use of quantum
mechanics. Recent advancements in engineering combined with physics and com-
puter science expertise have allowed the further development of these fields. The
practical realisation of full-fledged quantum technologies can be expected in the
coming years.

1.1 A first look at quantum networks

In classical computing technology, we use the concept of the bit as a basic unit
of information. A bit can have 0 or 1 as a value. Quantum mechanics allows a
new way of thinking about information. A single quantum bit, the unit of quantum
information can be both 0 and 1 at the same time. In such a case we say that the
qubit is in a superposition. An important feature of qubits is that unlike classical
bits, they cannot be cloned or copied (no-cloning theorem). Through certain op-
erations, however, several qubits can be made to interact with each other. Two
quantum states can become correlated once a quantum mechanical phenomenon
called entanglement is established between them. Entanglement can be utilised for
quantum communication and quantum computation. The creation of entanglement
has already been demonstrated in practice for several distances and setups over the
years [TBZG98] [Hen15]. Once such a connection has been created, through the
process of quantum teleportation, quantum information can be transmitted between
two nodes separated by a distance [BBC+93].

Creating a network of devices connected with entanglement is the main goal of a
quantum network, a vision that has been described over the years [Kim08] [Met14]
[LSW+04][WEH18]. The basic application for a quantum network would be se-
cure communication using quantum key distribution (QKD). QKD allows parties
to share a random secret key that can be used for the encryption and decryption of
messages guaranteeing secure communication [BB84] [Eke91].

Quantum networks could also connect quantum computers. Quantum computers
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have the potential to solve computational problems that their classical counter-
parts either cannot do or would require significantly more time to do so. Several
quantum algorithms like Shor’s period-finding algorithm [Sho94], Grover’s search
algorithm [Gro96] and the quantum algorithm for solving linear systems of equa-
tions [WHHL09] are expected to offer a speedup compared to classical approaches.
The modelling of complex quantum systems would be furthermore one of the im-
portant applications of quantum computing.

Once such quantum computers are connected, their tasks can be broken up into
separate parts of computation and may be distributed to several quantum processors
in the network [JCM99]. This capability gave rise to proving the possibility of
leader election and distributed consensus in anonymous quantum networks [DP04],
problems which are impossible to solve in the classical case. Later, algorithms
for solving such problems also appeared [TKM05]. As more advanced forms
of quantum networks and quantum computation are developed, more and more
solutions are expected to be implemented using quantum networks. Further use
cases include clock synchronisation, quantum sensor networks and secure remote
quantum computations [WEH18].

1.2 Network components of a quantum internet

Optical fibers are used to transmit classical information. They serve as classical
communication links in the classical internet. Similarly, optical fibers can be used
as physical quantum communication channels to send photons and share entangle-
ment, thus enabling quantum communication.

The transmission rate for classical and quantum information in an optical fibre
decreases exponentially with the distance. This causes packet loss for vast dis-
tances. In classical networking, packets are retransmitted by intermediary repeat-
ers in such cases. Due to the no-cloning theorem, however, quantum information
cannot be copied for retransmission. Thus, special devices, so-called quantum re-
peaters need to be used in quantum networks.

Quantum repeaters separated by great distances can become entangled through
the operation called entanglement swap [BBC+93][ZZHE94] [GWZ+08]. Let us
consider three parties positioned in a chain as in figure 1.1, Alice, Bob and a Router.
Alice is connected with the Router and the Router is also connected with Bob
through a physical quantum communication channel. Although there is no such
connection between Alice and Bob, they would like to share entanglement. This
is possible for them if they both separately share entanglement with the Router at
the same time. This requires one qubit to be stored with Alice and with Bob and
two qubits to be stored at the Router. Once the Router shares entanglement with
the two other nodes, it can perform entanglement swap. This entails teleporting
the qubit of the Router entangled with Alice to Bob, eventually making Alice and
Bob share entanglement. For this, the entanglement between the Router and Bob
is consumed and a classical communication channel is used to send two classical
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Figure 1.1: The operation of entanglement swap allows the creation of entangle-
ment between two qubits even if there is no physical quantum communication
channel between them.

bits. By repeating the entanglement swap operation iteratively, remote nodes can
become entangled. For this, several intermediary quantum repeaters can be used.
In a quantum network, nodes can share just as many entangled links as many qubits
they can store. Once a node shares entangled links with multiple nodes at the same
time, it needs to select which one to perform entanglement swap with. This selec-
tion is regarded as a routing decision. Quantum repeaters taking routing decisions
are called quantum routers. Routing in a quantum network is the task of routing
entanglement between source and destination with the assistance of intermediary
nodes [Met14][Cal17][GI18].

1.3 Average latency of demands

A quantum network would be used to serve requests for transmitting quantum in-
formation. As for the present-day classical internet, there would be requirements
imposed on the service provided by the network. One of such requirements would
be keeping the time it takes for serving requests low. In quantum networks this
time, referred to as latency, is greatly affected by the time entanglement generation
takes [CRDW19]. In this thesis, we will be carrying out analysis to see estim-
ates for the average latency of demands. Once factors affecting this measure are
identified, techniques aimed at reducing it can be devised.

1.4 Research questions

Entanglement in a quantum network is generated and consumed rapidly. This prop-
erty results in a network whose topology is dynamically changing. Information
about the dynamically changing topology can affect routing decisions. Therefore,
propagating information in the network might be a solution to achieving better
routing decisions. It is, however, problematic to propagate information to all nodes
at all times.

In this thesis we will be exploring the following research questions:

1. How can we express the dynamically changing topology of quantum net-
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works with regards to time?

2. Given that information is propagated to nodes following a pre-defined ap-
proach, what is the average latency for several demands (requests) in a quantum
network?

3. How can lower average latency be achieved for demands in a given quantum
network even with limited information propagation?

1.5 Contributions

The main contributions in this thesis can be divided into three parts.
First, we describe a mathematical model for modelling the dynamic lifecycle of

quantum networks. As mentioned previously, the entanglement between quantum
routers is not permanent. It can either be consumed when quantum teleportation
or entanglement swap takes place or its fidelity (a quantity describing the quality
of the entanglement) can decay with time to such an extent that the entangled link
is no longer useful. Therefore, a model which can incorporate the temporal nature
of entangled links is essential to describe quantum networks. We present a model
using temporal networks that enables a better way of modelling the lifecycle of
quantum networks. In this model, we incorporate the time entangled links can be
used. For this, we introduce the concept of threshold time and time window. The
threshold time represents the amount of time for which the fidelity of entangled
links is high enough to be used for quantum communication. The length of a
time window is upper bounded by the threshold time. An entangled link can be
used for quantum communication in such a time window. Using the proposed
model, one can describe when entangled links are available in the network. This is
beneficial when trying to determine certain paths that are dependent on a point in
time. Analogous to the concept of time-respecting paths from temporal networks,
the concept of a time-dependent path is introduced. In our proposed model, the
problem of routing in quantum networks can be formulated as searching for such
time-dependent paths between source and destination.

In the following part, we focus on the description and simulation of centralised
routing approaches in quantum networks. Entangled links are generated and then
consumed rapidly in quantum networks. The propagation of information about
their current state of the network proves to be important for routing decisions. We
define routing approaches based on the knowledge each node has in the network
about the topology:

1. Initial knowledge,

2. Local knowledge and

3. Global knowledge.

4



We further introduce the concept of a propagation radius to describe the propaga-
tion of information. For each of these approaches, we would like to determine
the average latency caused by the generation of end-to-end entanglement between
source and destination. We present results of numerical simulations on the average
latency of entanglement generation after the quantum network has served a specific
number of demands.

At last, we define a link prediction algorithm with which the availability of en-
tangled links in the quantum network can be predicted. This algorithm can be used
for decreasing the average latency of demands. The idea of link prediction has
been discussed widely in network science as an example to trying to predict links
that will be present in a given network [LNK03]. In our case, statistical measures
are calculated based on the shortest paths in quantum networks. For this, nodes use
their local information about the state of the topology from a certain point in time
and information about the elapsed time since then. We present simulation results
for link prediction showing that a considerable advantage in average latency can be
achieved by using this algorithm.

1.6 Outline

We provide a summary of the chapters in this section. In Chapter 2 and Chapter
3 cover the preliminaries of classical networking, quantum information theory and
quantum networks. Chapter 4 introduces existing quantum network models. In
Chapter 5 we present a mathematical structure for quantum networks capable of
describing the lifecycle of the network. In Chapter 6 we analyse how propagating
information about the change in network topology affects the average latency. Sec-
tions 6.4,6.5 and 6.6 cover three approaches with simulation results based on the
level of information propagation. In Chapter 7 we describe link prediction used
for reducing the average latency only by computing shortest paths based on local
information. This technique can be used effectively for pathfinding with lower
latency. At last, Chapter 8 summarises the results obtained and provides a list of
potential future work.
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Chapter 2

Quantum information theory and
quantum networks

In this chapter, we describe the concepts connected to quantum information and
quantum networks. First, we discuss the four postulates of quantum mechanics.
We review the concept of the quantum state, quantum gate, tensor product, unitary
evolution and give examples for quantum gates. Then we discuss some interest-
ing tools of quantum information theory, such as the no-cloning theorem, quantum
teleportation and entanglement swap. We then provide a description on the func-
tion and the building blocks of quantum networks: quantum links, quantum repeat-
ers, quantum routers and entanglement generation in a quantum network. At the
end of the chapter, we move our discussion to the phases of end-to-end entangle-
ment creation in a quantum network.

2.1 Basic quantum mechanics and quantum information
theory

One of the greatest advancements in physics in the 20th century was the emergence
of quantum mechanics. In this section, we will discuss the basic postulates of
quantum mechanics and important examples of quantum information theory. For a
more detailed description, we refer to Chapter 2 of [NC10].

Postulate 1. (Quantum State) A complex vector space with an inner product (Hil-
bert space) is associated with any isolated physical system and is called the state
space of the system. The system is completely described by its state vector which is
a unit vector in the system’s state space.

Similarly to the concept of bits in classical information, the smallest possible
information processing unit in quantum information is called qubit. It is an element
of C2. It is written as,

|ψ〉 = α |0〉+ β |1〉 , (2.1)

6



where α, β ∈ C satisfy

|α|2 + |β|2 = 1 (2.2)

and |0〉 , |1〉 are two basis vectors:

|0〉 ≡
(

1
0

)
|1〉 ≡

(
0
1

)
.

In general any pure quantum state in a Q-dimensional Hilbert space HQ ' CQ
can be written as,

|ψ〉 =

Q−1∑
j=0

λj |j〉 , (2.3)

where {|j〉}Q−1j=0 forms an orthonormal basis forHQ and
∑

j |λj |2 = 1.
The change of |ψ〉 with time is described by the following postulate.

Postulate 2. The evolution of a closed quantum system is described by a unitary
transformation. That is, the state |ψ〉 of the system at time t1 is related to the state
|ψ′〉 of the system at time t2 by a unitary operator U which depends only on the
times t1 and t2,

|ψ′〉 = U |ψ〉 . (2.4)

Analogous to the way a classical computer is built from an electrical circuit con-
taining wires and logic gates, a quantum computer is built from a quantum circuit
containing wires and elementary quantum gates to carry around and manipulate the
quantum information. Quantum circuits are to be read from left-to-right. Each line
in the circuit represents a wire in the quantum circuit. The left-hand side shows the
initial states, the right-hand side the resulting states. Examples of quantum circuits
will follow later in this chapter.

Quantum gates on a single qubit can be described by two by two matrices. The
only requirement for such a matrix to be a valid quantum gate is unitarity. An
operator U is said to be unitary, if UU † = U †U = I , where U † is the adjoint of
an operator U (obtained by transposing and then complex conjugating U), and I is
the two by two identity matrix. This comes from the fact that the normalization
condition, equation 2.2 needs to be true also after the gate has acted.

The following operators are called Pauli matrices:

I ≡
(

1 0
0 1

)
X ≡

(
0 1
1 0

)
Y ≡

(
0 −i
i 0

)
Z ≡

(
1 0
0 −1

)
The X quantum gate represents the NOT operation, as it acts as a bit flip opera-

tion on single qubits:

X|ψ〉 =

(
0 1
1 0

)(
α
β

)
=

(
β
α

)
7



The following gate is called the Hadamard gate:

H =
1√
2

(
1 1
1 −1

)
There are also multi-qubit quantum gates. One of the most important two-qubit

gates is the controlled-NOT or CNOT gate:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



|A〉

|B〉

|A〉

|B
⊕
A〉

(a) The quantum circuit of the
controlled-NOT gate.

M
|ψ〉

(b) The quantum circuit depiction of
a measurement. M stands for the
result of the measurement.

Figure 2.1: The quantum circuit depiction of a CNOT gate and a measurement.

This gate has two input qubits, known as the control qubit and the target qubit,
respectively. The action of the gate may be described as follows. If the control
qubit is set to 0, then the target qubit is left alone. If the control qubit is set to 1,
then the target qubit is flipped. The circuit for a CNOT gate and the measurement
of a qubit are shown in subfigures 2.1a and 2.1b.

Postulate 3 provides a means for describing the effects of measurements on
quantum systems.

Postulate 3. Quantum measurements are described by a collection {Mm} of meas-
urement operators. These are operators acting on the state space of the system
being measured. The index m refers to the measurement outcomes that may occur
in the experiment. If the state of the quantum system is |ψ〉 immediately before the
measurement, then the probability p(m) that the result m occurs is given by

p(m) = 〈ψ|M †mMm |ψ〉 , (2.5)

and the state of the system after the measurement is

Mm |ψ〉√
〈ψ|M †mMm |ψ〉

. (2.6)

The measurement operators satisfy the completeness equation∑
m

M †mMm = I. (2.7)
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A measurement is called projective if the operators Πm = M †mMm are project-
ors, that is if Π2

m = Πm. A property of such measurements is that performing
the measurement again immediately after the first one yields the same result with
probability 1.

For the fourth and last postulate, we will have to look at the definition of the
tensor product. The tensor product is a way of putting vector spaces together to
form larger vector spaces.

Suppose V and W are vector spaces of dimension m and n respectively. For
convenience we also suppose that V and W are Hilbert spaces. Then V ⊗W (read
’V tensor W’) is an mn dimensional vector space.

By definition the tensor product satisfies the following basic properties:

1. For an arbitrary scalar z and elements |v〉 of V and |w〉 of W,

z(|v〉 ⊗ |w〉) = z(|v〉)⊗ |w〉 = |v〉 ⊗ z(|w〉).

2. For an arbitrary |v1〉 and |v2〉 in V and |w〉 in W,

(|v1〉+ |v2〉)⊗ |w〉 = |v1〉 ⊗ |w〉+ |v2〉 ⊗ |w〉 .

3. For an arbitrary |v〉 in V and |w1〉 and |w2〉 in W,

|v〉 ⊗ (|w1〉+ |w2〉) = |v〉 ⊗ |w1〉+ |v〉 ⊗ |w2〉 .

A convenient matrix representation for the tensor product is known as the Kro-
necker product. Suppose A is an m by n matrix, and B is a p by q matrix. Then we
have the matrix representation:

A⊗B ≡



nq︷ ︸︸ ︷
A11B A12B A13B . . . A1nB
A21B A22B A23B . . . A2nB

...
...

... · · ·
...

Am1B Am2B Am3B . . . AmnB


mp. (2.8)

In this representation terms like A11B denote p by q submatrices whose entries
are proportional to B, with overall proportionality constant A11. For example, the
tensor product of the vectors (1, 2) and (2, 3) is the vector

[
1
2

]
⊗
[
2
3

]
=


1× 2
1× 3
2× 2
2× 3

 =


2
3
4
6

 . (2.9)

Postulate 4. The state space of a composite physical system is the tensor product of
the state spaces of the component physical systems. Moreover, if we have systems
numbered 1 through n, and system number i is prepared in the state |ψi〉, then the
joint state of the total system is |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉.

Postulate 4 enables us to define entanglement.
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2.1.1 Entanglement

A special kind of correlation between multiple qubits is called entanglement.
Let us consider the following two qubit state:

|Φ00〉AB =
1√
2

(|00〉AB) + |11〉AB) (2.10)

This state has the property that there are no single qubit states |a〉 and |b〉 such
that |Φ00〉AB = |a〉 |b〉. We say that a state of a composite system for which
|Φ00〉AB 6= |α〉 ⊗ |β〉 is an entangled state, where |α〉 and |β〉 holds for all single
qubit states |a〉 and |b〉.

The following two-qubit entangled states form a basis in the two-qubit space and
are called the Bell states or EPR pairs (after Einstein, Podolsky and Rosen):

|Φ00〉AB =
1√
2

(|00〉AB) + |11〉AB)

|Φ01〉AB =
1√
2

(|00〉AB)− |11〉AB)

|Φ10〉AB =
1√
2

(|01〉AB) + |10〉AB)

|Φ11〉AB =
1√
2

(|01〉AB)− |10〉AB)

Figure 2.2 shows the circuit of how the entangled state |Φ00〉AB state can be
created from the |00〉 state.

|ψ00〉
|0〉 H

|0〉

Figure 2.2: The quantum circuit of entanglement creation.

An important measure of entanglement is called the fidelity. It describes the
quality of the entanglement with the constraint of 0 ≤ F ≤ 1. The desired value
of fidelity is 1, whereas a minimum value of F ≥ 0.5 is often needed [AD].

2.1.2 No-cloning theorem

An important feature of qubits is called no-cloning. It states that it is not possible to
make a copy of an unknown quantum state. Suppose we have a quantum machine
with two slots labeled A and B. Slot A, the data slot, starts out in an unknown,
but pure quantum state, |ψ〉. This is the state which is to be copied into slot B, the

10



target slot. We assume that the target slot starts out in some standard pure state,
|s〉. Thus the initial state of the copying machine is

|ψ〉 ⊗ |s〉 . (2.11)

Some unitary evolution U now affects the copying procedure, ideally,

|ψ〉 ⊗ |s〉 U−→ U(|ψ〉 ⊗ |s〉) = |ψ〉 ⊗ |ψ〉 (2.12)

Suppose this copying procedure works for two particular pure states, |ψ〉 and
|φ〉. Then we have

U(|ψ〉 ⊗ |s〉) = |ψ〉 ⊗ |ψ〉 (2.13)

U(|φ〉 ⊗ |s〉) = |φ〉 ⊗ |φ〉 . (2.14)

Taking the inner product of these two equations gives

〈ψ |φ〉 = (〈ψ |φ〉)2. (2.15)

But x = x2 has only two solutions, x = 0 and x = 1, so either |ψ〉 = |φ〉 or |ψ〉
and |φ〉 are orthogonal. Thus a cloning device can only clone states which are
orthogonal to one another, and therefore a general quantum cloning device is im-
possible. A potential quantum cloner cannot, for example, clone the qubit states
|ψ〉 = |0〉 and |φ〉 = (|0〉+|1〉)√

2
, since these states are not orthogonal. This shows

that it is impossible to perfectly clone an unknown quantum state using unitary
evolution.

2.1.3 Quantum Teleportation

An operation called quantum teleportation allows safe quantum information trans-
mission even without a quantum communication channel between two parties.

Let us assume that Alice and Bob are separated by physical distance, but they
share a |Φ00〉 entangled quantum state with each other. Alice has a qubit |ψ〉,
which she would like to transmit to Bob. During quantum teleportation, she can do
so just by sending classical messages and using the state |Φ00〉 that is pre-shared
between the two of them. Consequently, she does not need to send her qubit |ψ〉 in
a quantum communication channel to Bob.

The circuit for quantum teleportation is represented in figure 2.4. We denote the
joint state with |Ψ0〉 at the beginning of the operation. The first two qubits belong
to Alice, whereas the third qubit belongs to Bob.

The quantum circuit shown in Figure 2.4 gives a more precise description of
quantum teleportation. The state to be teleported is |ψ〉 = α |0〉 + β |1〉, where α
and β are unknown amplitudes. The state input into the circuit |Ψ0〉 is

|Ψ0〉 = |ψ〉|Φ00〉 =
1√
2

[α |0〉 (|00〉+ |11〉) + β |1〉 (|00〉+ |11〉)] (2.16)
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|ψ〉

M1

M2

|Ψ0〉 |Ψ1〉 |Ψ2〉 |Ψ3〉 |Ψ4〉

|ψ〉 H

XM2 ZM1

|Φ00〉

Figure 2.3: The quantum circuit for quantum teleportation of qubit |ψ〉 [BBC+93].

where we use the convention that the first two qubits (on the left) belong to Alice
and the third qubit to Bob. As we explained previously, Alice’s second qubit and
Bob’s qubit start out in an EPR state. Alice sends her qubits through a CNOT gate,
obtaining

|Ψ1〉 =
1√
2

[α |0〉 (|00〉+ |11〉) + β |1〉 (|10〉+ |01〉)] (2.17)

She then sends the first qubit through a Hadamard gate, obtaining

|Ψ2〉 =
1

2
[α(|0〉+ |1〉)(|00〉+ |11〉) + β(|0〉 − |1〉)(|10〉+ |01〉)]

This state may be re-written in the following way, simply by regrouping terms:

|Ψ2〉 =
1

2
[|00〉 (α |0〉+ β |1〉) + |01〉 (α |1〉+ β |0〉)

+ |10〉 (α |0〉 − β |1〉) + |11〉 (α |1〉 − β |0〉)]

This expression naturally breaks down into four terms. The first term has Alice’s
qubits in the state |00〉, and Bob’s qubit in the state α |0〉+ β |1〉 - which is the ori-
ginal state |ψ〉. If Alice performs a measurement and obtains the result |00〉 then
Bob’s system will be in the state |ψ〉. Similarly, from the previous expression, we
can read off Bob’s post- measurement state, given the result of Alice’s measure-
ment:

00 7−→ |ψ3(00)〉 ≡
[
α |0〉+ β |1〉

]
(2.18)

01 7−→ |ψ3(01)〉 ≡
[
α |1〉+ β |0〉

]
(2.19)

10 7−→ |ψ3(10)〉 ≡
[
α |0〉 − β |1〉

]
(2.20)

11 7−→ |ψ3(11)〉 ≡
[
α |1〉 − β |0〉

]
(2.21)
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Depending on Alice’s measurement outcome, Bob’s qubit will end up in one
of these four possible states. Of course, to know which state it is in, Bob must
be told the result of Alice’s measurement – we will show later that it is this fact
which prevents teleportation from being used to transmit information faster than
light. Once Bob has learned the measurement outcome, Bob can ’fix up’ his state,
recovering |ψ〉, by applying the appropriate quantum gate. For example, in the
case where the measurement yields 00, Bob doesn’t need to do anything. If the
measurement is 01 then Bob can fix up his state by applying the X gate. If the
measurement is 10 then Bob can fix up his state by applying the Z gate. If the
measurement is 11 then Bob can fix up his state by applying first an X and then a
Z gate. Summing up, Bob needs to apply the transformation ZM1XM2 (note how
time goes from left to right in circuit diagrams, but in matrix products terms on the
right happen first) to his qubit, and he will recover the state |ψ〉.

2.1.4 Entanglement swap

An operation that is vital in quantum networks is called entanglement swap. It
allows the creation of entanglement between two parties even if there is no phys-
ical quantum communication channel between them. Figure 1.1 summarises this
operation.

Alice and Bob would like to share entanglement. Unfortunately, there is no
physical quantum communication channel between them. Both of them can, how-
ever, generate entanglement with an intermediary router. In such a case, we assume
that the router can share entanglement with Alice and Bob at the same time. If it
does so, then it can teleport its qubit of the shared entanglement with Alice to Bob.
At the end of the teleportation Alice and Bob share entanglement.

Let us assume that a router shares a |Φ00〉 Bell state with Alice and shares an-
other |Φ00〉 Bell state with Bob. In this case, the joint state of the three parties is as
follows:

M1

M2

|Ψ0〉 |Ψ1〉 |Ψ2〉 |Ψ3〉 |Ψ4〉

H

XM2 ZM1

|Φ00〉

|Φ00〉

|Φ00〉

Figure 2.4: The quantum circuit of the entanglement swap operation.
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|Ψ0〉 = |Φ00〉AR1
⊗ |Φ00〉R2B

=
|00〉AR1 + |11〉AR1√

2
⊗ |00〉R2B + |11〉R2B√

2
(2.22)

This state may be re-written by regrouping terms (Alice and Bob form the first,
the two qubits of the router the second group):

|Ψ0〉 =
1

2

(
|0000〉AR1R2B

+ |0011〉AR1R2B

+ |1100〉AR1R2B
+ |1111〉AR1R2B

)
=

1

2

(
|00〉AB |00〉R1R2

+ |01〉AB |01〉R1R2

+ |10〉AB |10〉R1R2
+ |11〉AB |11〉R1R2

)
(2.23)

First, a CNOT is applied locally at the router. Qubit R1 is the control qubit, R2

is the target qubit of the operation:

|Ψ1〉 =
1

2

(
|00〉AB |00〉R1R2

+ |01〉AB |01〉R1R2

+ |10〉AB |11〉R1R2
+ |11〉AB |10〉R1R2

)
(2.24)

Then a Hadamard gate is applied on R1:

|Ψ2〉 =
1

2
√

2

(
|00〉AB (|0〉+ |1〉)R1 |0〉R2

+ |01〉AB (|0〉+ |1〉)R1 |1〉R2

+ |10〉AB (|0〉 − |1〉)R1 |1〉R2

+ |11〉AB (|0〉 − |1〉)R1 |0〉R2

)
(2.25)

This state may be re-written the following way, simply by regrouping terms:

|Ψ2〉 =
1

2
√

2

(
(|00〉AB + |11〉AB) |00〉R1R2

+ (|00〉AB − |11〉AB) |10〉R1R2

+ (|01〉AB + |10〉AB) |01〉R1R2

+ (|01〉AB − |10〉AB) |11〉R1R2

)
(2.26)

Similarly to the general quantum teleportation operation described by equations
2.18-2.21, we can read off Bob’s post-measurement state. This state is determined
by the result of the measurement of the two qubits at the router. After this, Bob can
perform local operations to fix up his state.
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2.1.5 Latency of entanglement generation

An important factor of entanglement is the time to generate end-to-end entangle-
ment. This quantity can also be referred to as latency.

Let us assume a discrete-time model (similar to the one in [CRDW19], described
later in section 4.3) and introduce the following notations:

• Tth: the threshold time for the decay in the fidelity of an entangled link,

• P0: the probability of successfully generating entanglement between two
nodes at a single time step,

• d: the hop distance which is equal to the number of intermediate quantum
routers between a source and destination. The hop distance between Alice
and Bob is 1 in figure 1.1.

Entanglement generation is attempted with probability P0 at each time step until
it is successful. Once entanglement is shared, the fidelity of the entangled link de-
teriorates over time. The threshold time represents a time quantity until the fidelity
has decreased such that the entangled link can not be used anymore.

Using the previous notations, the event that entanglement can be successfully
generated in a chain of d+ 2 routers within the threshold time follows a geometric
distribution with probability

Pd = (1− (1− P0)
Tth)d+1, (2.27)

where (1 − P0) is the probability of attempting, but not generating entangle-
ment at a single time step and 1 − (1 − P0)

Tth is the probability of generating
entanglement in Tth time steps.

Hence, the expected time entanglement generation takes in this repeater chain is
1
Pd = (1− (1− P0)

Tth)−d−1.
Thus, the entanglement generation time scales exponentially with d, the number

of routers in the chain (or hop distance using networking terminology).

2.2 Physical realization of quantum networks

2.2.1 Quantum links

The most basic building block for quantum networks are quantum links. A quantum
link is an abstraction for the physical realisation of shared entanglement through
a physical connection, the quantum channel. Quantum channels are implemented
using telecommunication fibres capable of transmitting photons and are essential
in the creation of EPR pairs. In other words, quantum links are entangled pairs of
qubits in a certain network [WEH18].

The practical realisation of entanglement creation include the use of nitrogen-
vacancy centres [Ber13], atoms [HKO+12] [Rit12] and trapped-ions [Moe07]. In
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practice, entanglement generation between two nodes in a quantum network has
two main characteristics: it is probabilistic and it is a heralded procedure. Con-
sequently, when two nodes would like to share entanglement, they often need to
attempt entanglement generation multiple times. Once entanglement has been gen-
erated, the fidelity of the joint state will, however, decay over time. For this reason,
a certain time threshold may be introduced. This quantity would determine the
maximum amount of time for which an entangled link may be used for. Once this
time has elapsed, the fidelity of the entangled link has decayed to such an extent,
that it cannot be used for quantum communication. In such a case the entanglement
is discarded and a new link needs to be generated.

2.2.2 Quantum repeaters and routers

The transmission rate for classical and quantum information in an optical fibre
decreases exponentially with the distance. One basic solution used in classical
networking to this problem is to amplify the signal. This, however, is not possible
in the quantum case due to the no-cloning theorem.

A quantum repeater is a device that would potentially solve this problem. The
authors in [BDCZ98] proposed setup for the use of quantum repeaters. A network
of quantum repeaters would allow the creation of long-distance entanglement. This
would be achieved by first creating entanglement between the end devices and in-
termediary repeaters that are separated by a smaller distance and eventually per-
forming entanglement swap operations to create an end-to-end entanglement. Al-
though there have been various further schemes proposed since the first description
of quantum repeaters, in our models, the previously described notion of quantum
repeaters is going to be used.

In our work, we will be referring to controllable quantum repeaters that can
choose a next-hop based on a certain strategy as quantum routers.

2.2.3 Entanglement generation in a router chain network

There are two ways of creating entangled links between quantum routers in a
quantum network:

• Either they are connected by a physical quantum communication channel,

• Or there is a path of physical quantum communication channels in the net-
work connecting two end nodes.

In the first case, the two routers can attempt entanglement generation through
the quantum communication channel. In the second case, each node along the path
generates entanglement with a subsequent quantum router (pairwise entanglement
generation) and then multiple entanglement swap operations are carried out to cre-
ate an end-to-end entanglement.

Although the operation of entanglement swap is probabilistic for certain setups,
for simplicity, in our models we regard it as a deterministic procedure. In further
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chapters, two models will be distinguished: the on-demand model and the continu-
ous model, based whether entanglement is generated only when a request has been
received or it is already "pre-shared".

2.3 End-to-end entanglement creation in a quantum net-
work

Before we delve into the study of various approaches for routing entanglement, it
is important to separate phases of the end-to-end entanglement creation procedure.
The main question that we would like to answer in this section is the following:

• What communication steps take place from the point in time when the de-
mand comes from a node s until the point when end-to-end entanglement
has been created between s and e?

As an answer to this question, we define the following phases of end-to-end
entanglement creation [CRDW19]:

1. Path discovery

2. Entanglement reservation

3. Entanglement distribution

These phases are discussed without any requirements towards routing algorithms
or entanglement generation schemes i.e. serve as a general list of entanglement
creation steps. The first two phases belong to the network layer, whereas the third is
executed by the link layer of the Quantum Internet stack. In the following section,
we give further details for each of the phases.

2.3.1 Path discovery (Classical)

The goal of the path discovery phase is, to plan the path(s) between the source and
the destination nodes. The path is specified by routing the demand and adhering
to the requirements specified. It discovers the path according to the specific rout-
ing algorithm defined. In [CRDW19] distributed routing algorithms are proposed,
where the next hop for a given path is specified based on the knowledge about the
neighbours of the latest node. In this document, path discovery is carried out with
a more centralised approach, the start node computes the path based on its current
knowledge about the topology.

2.3.2 Entanglement reservation (Classical)

The entanglement reservation phase ensures that nodes along the discovered path
are informed about the requirements of the demand, that the nodes allocate the
needed resources and that no other demand will try to use these resources until the
demand has been served. This means, that each node will :
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1. either allocate the pre-shared entangled links with the specified requirements;

2. or allocate the link generation capabilities to serve the demand.

During our work, we assume that entanglement reservation takes place sequentially
for each demand. This property will later be explained in more details.

2.3.3 Entanglement distribution (Quantum)

The entanglement distribution phase is the part of the end-to-end entanglement
creation when the entangled links are provisioned on the quantum level. Two op-
erations are performed between nodes along the selected path:

• Entanglement generation between intermediary nodes (if no pre-shared en-
tangled links can be used);

• Pairwise entanglement swap between the intermediary nodes.

Once all the entanglement swap operations have finished, the end-to-end en-
tangled link between source and destination is ready to be used for quantum com-
munication.
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Chapter 3

Graph theory and finding the
shortest path

In this chapter, we discuss the definitions and ideas of graph theory that we will
be using throughout this document. Basic concepts related to this field like the
distance in a graph, the diameter of a graph, the neighbourhood of a vertex are
described in section 3.1. Having introduced and explained the significance of these
and other related terms, we discuss Dijkstra’s algorithm for finding the shortest
path in sections 3.2 and 3.2.3. In the subsequent section 3.3, we consider relevant
results from complex network theory that have been achieved in the past years.
After introducing the concept of random networks, we study the concept of the
small world phenomenon. Then we discuss how Watts and Strogatz transitioned
from a deterministically created network towards a random one. At the end of the
chapter, we describe scale-free networks which will in coming chapters prove to
be essential to our approach.

3.1 Graph theory

Graph theory has been an essential tool for representing networks ever since the
18th century. It allows a simple, yet powerful expression of the building blocks
and the characteristics of networks. As we will later explain, to model quantum
networks graph theory is essential. Consequently, we introduce the following rel-
evant notations and definitions from the field.

3.1.1 Notations and definitions

First and foremost, we define the most fundamental tool from mathematics that
allows us to represent networks, the graph.

Definition 3.1.1. Graph [GR01]
A graph G consists of a vertex set V , and an edge set E, where an edge is an
unordered pair of distinct vertices of G.
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A vertex and an edge in a graph are equivalent to a node and a link in a network
respectively. For this reason, we will use these terms interchangeably. To ease the
specification of a graph, the G = (V,E) notation will be used.

Definition 3.1.2. Undirected graph
A graph is undirected if the set of edges consists of unordered pairs of elements of
V .

According to the definition, considering an undirected graph G = (V,E), an
edge is a set of {u, v} ∈ E such that u, v ∈ V and u 6= v. We will be sticking
to the notation of denoting an edge between vertices v, u ∈ V as (u, v) instead of
having the set notation of {u, v}. As a consequence, we regard (u, v) and (v, u)
as the same edge in the graph. In an undirected graph, self-loops are not allowed,
every edge consists of two distinct vertices.

Definition 3.1.3. Adjacency
Given a graph G = (V,E), u, v ∈ V . if (u, v) ∈ E then vertex u is adjacent to
vertex v.

In undirected graphs the adjacency relation is symmetric, hence if (u, v) ∈ E
then (v, u) ∈ E as well. Adjacent vertices are also called neighbours. Thus, we
will be talking about the neighbours of a certain vertex.

Now that we have defined what graphs are, we can introduce further specific
attributes related to each edge in a graph. One of such attributes is assigning a
weight to each of the edges.

Definition 3.1.4. Weighted graph
A graph G = (V,E) with weight function w : E → R defined on the set of edges
is said to be a weighted graph.

Weighted graphs can be useful for representing the cost of "using" edges. Most
of the times in these cases we regard a sequence of edges and would like to know
what the sum of the weights of the edges is. Such sequences called paths will prove
to be extremely important.

Definition 3.1.5. Path
Given a graph G = (V,E), a path between two vertices s, e ∈ V is sequence of
edges such that path(s, e) = {(s, v1), (v1, v2), (v2, v3), ..., (vn, e)}.

At times, we will be referring to vertices that are visited by a specific path and
use the v ∈ path(s, e) notation. Although this does not correspond to the definition
of a path, as a path, according to its definition, contains edges. Consequently, we
will be using the notation v ∈ path(s, e), when ∃u ∈ V : (v, u) ∈ E∨ (u, v) ∈ E.

Now we know what paths are in a graph, can we always find one between the
vertices? Given a graph, it is said to be connected if there is a path between any
two of its vertices. We refer to the number of edges in a path as the length of the
path. As mentioned earlier, we are curious about what the sum of the weights of
the edges for a path is. The reason for this is that we would like to minimise it.
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Definition 3.1.6. Shortest path
Given a graph G with a weight function and vertices u, v ∈ V , the shortest path
between u and v is the path where the sum of the weights of the edges in the path
is minimised.

If not specified otherwise, we will be using the weight function w : E → {1} in
our work, that is each edge will have unit weight. Finding shortest paths between
vertices is of vital importance to provide a certain optimal connection between
vertices. We are also concerned about the length of such shortest paths.

Definition 3.1.7. Distance
Given a graph G = (V,E), the distance between two vertices u, v ∈ V is the
length of the shortest path between u and v.

Now we can introduce a very important characteristic when describing the con-
nectivity of a graph using the distance between any two vertices in a graph.

Definition 3.1.8. Diameter of a graph
Given a graph G = (V,E), the diameter of the graph is:

diamG = max
v∈V,u∈V

{distG(u, v)}

This definition can also be worded such that the diameter of a graph is equal to
the shortest path with the biggest distance between any two vertices in a graph. For
this reason, knowing the diameter of a network and how it might change proves to
be very important for determining the shortest paths in a network. If it is obvious
which graph we are seeking the diameter, then we just denote the value at diam.
We will also see that having networks with a low diameter will be very much
desirable for routing in quantum networks.

So the diameter of a graph shows the maximum distance between any two ver-
tices in the graph. Sometimes, however, in certain graphs, the diameter might prove
not to be the quantity that we are looking for. Consider a graph where there are
certain nodes between which the distance is significantly bigger than the distance
between other nodes (see figure 3.1). In such a case the diameter of the graph
only tells us something about a certain number of extreme cases, but we might be
interested in an average distance in the graph.

Definition 3.1.9. Average distance
Given a graph G with N vertices, the average distance or average path length in
the graph is:

〈d〉 =
1

N(N − 1)

∑
v,u∈V

distG(u, v)

As we have seen distance measures tell us how far apart vertices lie in a graph,
and what length is for each path connecting them. Another important measure is
the degree of a vertex.
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(a) A graph with 16 nodes
such that 〈d〉 = 4.35,
diam = 11
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(b) One dimensional lat-
tice with 10 nodes such that
〈d〉 = 3.67, diam = 9.

Figure 3.1: Two examples for graphs where their diameter and average distance
between two arbitrary nodes differ significantly.

Definition 3.1.10. Degree of a vertex
Given a graph G = (V,E), the degree of a vertex is the number of edges whose
start or end is the vertex:

∀v ∈ V : deg(v) = |{u ∈ V |{v, u} ∈ E}|

Lemma 1. (Handshaking lemma)
Given a graph G, the following degree sum statement holds:∑

v∈V
deg(v) = 2|E|

We see now, that we can determine the number of edges for a vertex in the graph.
This is, however, specific to a vertex, and vertices can differ very much in a graph-
based on how connected they are. It seems to be reasonable to consider the average
edge count per vertex in a graph.

Definition 3.1.11. Coordination Number
Given a graph, the coordination number z is the average number of edges per
vertex, i.e. the average degree of a vertex in a graph.

The coordination number provides the average degree in the graph. It does not
tell us specifically, however, what is the distribution of degrees between the vertices
in the graph. How many vertices have deg(1), deg(2), ..deg(N) and how are these
numbers related to the number of all edges?

Definition 3.1.12. Degree distribution
For a graph G = (V,E), N = |V |, the probability distribution determined by
pk = Nk

N , where Nk is the number of degree-k nodes is called degree distribution.
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Now that we have seen what the coordination number and degree distribution
are, and have an idea about the edge count on average in a graph, we are interested
in how well neighbours of a certain vertex are connected. In determining this, the
concept of clustering and the local clustering coefficient of a vertex helps us out.

Definition 3.1.13. Local clustering coefficient [DJW98]
Given a graph G, a vertex v ∈ V , the local clustering coefficient of v is defined
as: Clv = 2Lv

deg(v)(deg(v)−1) , where Lv represents the number of links between the
deg(v) neighbors of node v.
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(b) Cl5 = 0.5
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(c) Cl5 = 0

Figure 3.2: The local clustering coefficient (Cl5) of node 5 in three different ex-
amples (as shown in [Bar16]). In all three of the examples, node 5 has 4 neigh-
bours. In the first graph there is an edge between any two of these neighbours,
resulting in Lv = 6. In the second example the edges {1,2}, {2,3} and {3,4} are
present, hence Lv = 3. In the last example none of the neighbours are connected.
Using the value of Lv, the clustering coefficient can be computed as described in
definition 3.1.13.

If for a certain node v the clustering coefficient is 0, then none of its neighbours
has any links among themselves. On the other hand, if the clustering coefficient is
1, then the neighbours of v are all connected. The probability that two neighbours
of v are connected is equal to Cv [Bar16].

Definition 3.1.14. Edge Betweenness Centrality
Given a graph G = (V,E), the edge betweenness centrality of an edge ∈ E is

cB(edge) =
∑
s,e∈V

σ(s, e|edge)
σ(s, e)

(3.1)

where σ(s, e) denotes the number of all the shortest paths between vertices s, e
and σ(s, e|edge) denotes the number of shortest paths between vertices s, e such
that edge is in the shortest path.
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3.2 Dijkstra’s algorithm

3.2.1 The problem

Dijkstra’s algorithm provides an approach to compute the shortest paths in a weighted
graphG, where the edge weights in the graph are non-negative. For further descrip-
tion of the algorithm we refer to [CLRS09].

Given a graph G, weight function w and source vertex s, Dijkstra’s algorithm
computes a shortest path from s to each vertex in V \ {s}. For this reason, if
possible, it solves the single-source shortest path problem.

3.2.2 The algorithm

Dijkstra serves as the main function, which uses the Relax and Initialize-Single-
Source functions as subfunctions.

We use the adjacency list graph representation of an undirected, weighted graph
G = (V,E). The weight function is denoted by w : E → R. We assign a unique
label from N to each element of the set of vertices V.

Furthermore, G has the following attributes:

• V: an array that contains the indices of vertices found in graph G
• E: an array that contains the edges found in graph G as pairs of vertices from

V
• Neigh: an array that contains a list for each vertex from G.V. Each list stores

the neighbours for the specific vertex, i.e.:

∀s ∈ V : G.Neigh[s] = {e ∈ V |∃(s, e) ∈ E}

For each vertex s ∈ V we introduce the following two attributes:

• d: distance of vertex e from vertex s in graph G;
• π: parent vertex of e in the discovered path towards s.

Furthermore, a minimum priority queue denoted as Q will also be used. This
data structure has an Extract −Min method defined on the queue that removes
and returns the element of Q with the smallest key. In the case of Dijkstra, the key
corresponds to the value of d for each node in Q.

Using these notations the following algorithms describe Dijkstra’s algorithm.

Algorithm 1 Relax(u, v, w)

1: if v.d > u.d+ w(u, v) then
2: v.d = u.d+ w(u, v)
3: v.π = u
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Algorithm 2 Initialize-Single-Source(G, s)

1: for each vertex v ∈ G.V do
2: v.d =∞
3: v.π = NIL
4: s.d = 0

Algorithm 3 Dijkstra(G,w, s)

1: Initialize− Single− Source(G, s)
2: S = ∅
3: Q = G.V
4: while Q 6= ∅ do
5: u = Extract−Min(Q)
6: S = S ∪ {u}
7: for each vertex v ∈ G.Neigh[u] do
8: Relax(u, v, w)

3.2.3 Shortest path algorithm

As later we will be interested in finding the shortest path between two specific
vertices in a graph, we also introduce the ShortestPath algorithm to solve the single-
pair shortest path problem. Using Dijkstra’s algorithm it returns the set of vertices
for the shortest path between a source and destination vertex.

Algorithm 4 Shortest-Path(G,w, s, e)

1: Dijkstra(G,w, s)
2: Paths,e = ∅
3: ucurr = e
4: while ucurr 6= NIL do
5: Paths,e = Paths,e ∪ {ucurr}
6: ucurr = ucurr.π

7: return(Paths,e)

No-path property

In case there exists no path between s and e, after running Dijkstra(G, s, e) the
following equation holds: e.d = ∞ (∞ the arbitrarily chosen extreme value).
After running Shortest− Path(G,w, s, e), s is not in the set of Paths,e.
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3.3 Complex network theory

Complex network theory deals with the modelling of real systems found in practice
which bear characteristics alike to simple network representations such as lattices
and random graphs. Although a considerably new field of research, it had a great
impact in all kinds of networks be its computer networks, neural networks or social
networks. Consequently, in this section, we discuss the results of complex network
theory that prove to be closely related to the building of quantum networks and
routing in the quantum network. In our work, we will be studying one-dimensional
lattice (ring) topologies or networks constructed from such graphs. Next to the con-
cepts described in this section, for a more detailed description of complex network
theory we refer to [Bar16].

3.3.1 Random networks

The origins of complex network theory date back to the random graph model cre-
ated by Pál Erdős and Alfréd Rényi in 1959 [PE59]. Erdős and Rényi fixed the
number of nodes and the number of links in a graph and then constructed the graph
randomly. Such a graph, called the Erdős-Rényi graph can be specified byG(N,L)
(N : number of nodes, L: number of links in the graph). Another approach, that
was introduced by Gilbert, fixes the probability with which two arbitrary nodes are
connected. Thus, the graph is given by G(N, p). In this definition N : denotes the
number of nodes, while p the probability of two nodes being connected. [Gil59].
Following this second model, we can now define the concept of random networks.

Definition 3.3.1. Random network
A random network consists of N nodes where each node pair is connected with
probability p.

In a random network of G(N, p), the degree distribution follows a binomial
distribution with the following probabilities: [Bol01]

pk =

(
N − 1

k

)
pk(1− p)N−1−k (3.2)

where pk is the probability that a node chosen at random has degree k.
Assuming that 〈k〉 � N (a property displayed by many real-world networks) we

can approximate the degree distribution with the following Poisson distribution:

pk = e−〈k〉
〈k〉k

k!
(3.3)

where 〈k〉 is the coordination number in G.
We can thus describe the degree distribution of a random network with equations

3.2 and 3.3.
Having introduced what is meant by random networks and what their degree dis-

tributions are, we can now discuss an important empirical result related to random
networks.
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3.3.2 The small-world phenomenon

One of the simplest of networks that is apparent in our everyday life as well, is the
people around us, the people with whom we interact with and know. However, of
course, each person can only know a limited number of other people, so it is worth
observing the entirety of such relationships. Following this idea, let us consider a
network with each person as a node, while there is a link between two people if
they know each other. In the graph representation of such a network, we would
have over 7 billion nodes. What could be the separation (distance) between any
two people on our planet? Well, to answer this question we have to consider the
graph of this network.

First, let us take a one-dimensional lattice as an example. In such a topology the
diameter of the graph scales linearly with the number of nodes in the graph (see
figure 3.1b for an example). If we then, consider a two-dimensional lattice as the
underlying graph for the network, we will observe that the diameter scales with the
square root of the number nodes.

These two scaling factors call for the intuition that by adding new nodes to the
graph, the diameter is also increased significantly. Say we take the example of all
the people living in the world. Then, the degree of separation (diameter in this
example) between people has a comparable "speed" to the increase of the world
population.

This intuition was proven wrong following the empirical result coming from
Stanley Milgram [Mil67]. Through Milgram’s experiment something called as the
idea of living in a "small-world" was set to challenge and the study of such "small-
world" networks started to get traction. This study introduced a concept which
later became known as the six-degrees of separation.

Here we assess the definition of what exactly the "small-world phenomenon"
means.

Definition 3.3.2. Small-world phenomenon
For a random network G of N nodes, coordination number 〈k〉, the diameter of
the network is:

diamG ≈
logN

log〈k〉
(3.4)

Let us now return to the example of the network comprised of the individuals
on Earth. Using equation 3.4, N ≈ 7 ∗ 109 and 〈k〉 ≈ 103, we end up with the
value of 〈d〉 ≈ ln(7∗109)

ln103
= 3.28 [IdSP78]. This value proves to be quite close to

the result of Milgram’s experiment.
Although the small-world phenomenon gives a close estimate to the result com-

ing from Milgram’s experiment, it has been observed that many other properties
(such as degree distribution or local clustering coefficient) true for real-world net-
works do not correspond to that of random networks. For this reason, although the
small-world phenomenon was the key result, it did not imply that random graphs
could serve as suitable models for real-world networks.
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3.3.3 Watts-Strogatz Model

In 1998, Duncan J. Watts and Steven Strogatz came up with a new way of incorpor-
ating randomness in the models attempting to depict real-world networks [DJW98].
They managed to construct graphs which showed the small-world property and had
an average clustering coefficient that was higher than for random networks. They
presented a procedure for creating such a graph. First, one starts from a regular
one-dimensional lattice created in a deterministic manner: each node is connected
with its two neighbours as well as with its k nearest neighbour where k is a pre-
defined value. Then, determined by a fixed parameter p, each link is rewired with
probability p to a vertex sampled uniformly at random. This procedure significantly
decreases the distance between nodes in the network. With this procedure, when
p takes intermediate values between 0 and 1, then graphs showing the small-world
phenomenon were created, while a higher clustering was achieved than in random
networks. Yet, certain properties of real-world networks were still not incorporated
in these models.

(a) p = 0 (b) p = 0.05 (c) p = 1

Figure 3.3: Three graphs obtained by applying the procedure suggested by Duncan
J. Watts and Steven Strogatz [DJW98]. We start from a one-dimensional lattice
of N = 10 nodes, where each of the nodes are connected with k = 4 nearest
neighbours. Then, each link is rewired with a certain probability p. The three
examples show how graphs are constructed while increasing the randomness. First,
we start from a highly clustered ring lattice and then end up with a random network
showing the small-world phenomenon. For intermediate values of p, the graph
created with this procedure shows the small-world phenomenon and is also highly
clustered like a regular graph.

3.3.4 An algorithmic perspective

In 1999, Jon Kleinberg further explored the topic of small-world networks [Kle00].
In his work, he argued that Milgram’s experiment did not only show that people are
separated by small distances. It also showed that people (who can be represented as
nodes in a network) may find short paths between each other in the network even if
separated by great physical distance. For this, each node uses its local information
about the location of its neighbours. The Watts-Strogatz model was used to create
a fitting model for the algorithmic approach. A network of nodes using a two-

28



dimensional grid was constructed. Edges were added between nodes regardless
of the location of such nodes in the grid, resulting in "long-range contacts". One
of the key results of the paper was showing that there is a decentalized algorithm
used in this model for which the expected delivery time of a message is at most
α(log n)2, where n is the number of nodes in the network and α is a constant
independent of n. Once such a model was constructed, a decentralized algorithm
resembling Milgram’s experiment was applied to find a short path between a source
and destination with a high probability.

3.3.5 Scale-free networks

A property of networks that proved to be of vital importance was the degree distri-
bution. While random networks carried a basic intuition and the Watts and Strogatz
model gave an approach of how to have high clustering and add the small-world
property in a graph, these networks were still different from those of real-world
networks. The key towards the next step in the field was the realisation that the
degree distribution of these networks was not following a Poisson distribution, but
another one.

Definition 3.3.3. Scale-free property[HJB99]
A scale-free network is a network whose degree distribution follows a power-law:

pk ≈ k−γ (3.5)

Equation 3.5 is called a power law distribution and the exponent γ is its degree
exponent. The first network that was empirically shown to demonstrate such a
degree distribution was the World Wide Web in 1999 [HJB99]. Later that year,
power-law relations found in the Internet topology were reported in [MFF99]. Ever
since several other real-world networks were also reported to have a power-law
degree distribution. However, it is important to note that not all such networks bear
this property.

3.3.6 Summary

In this chapter first, we gave the relevant concepts and results of the field. First, we
introduced a basic intuition as to how real-world networks were regarded initially.
The use and study of random graphs were discussed. Then, we described what the
small-world property is and how its study emerged through an experiment. Follow-
ing that, we discussed a model introduced by Watts and Strogatz, that attempted
to model real-world networks. Using this model and small-world networks, Jon
Kleinberg’s result was discussed. At the end of the chapter, the scale-free net-
works were introduced, networks whose degree distribution correspond to many
real-world networks such as the World Wide Web and the Internet.

These concepts and results have influenced [CRDW19] and the work presented
in this thesis. One of the key ideas is constructing network models with "long-
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range" neighbours for nodes representing quantum networks. This effectively de-
creases the diameter of the network, resulting in the length of shortest-paths be
smaller between arbitrary nodes. Characteristics of small-world and scale-free net-
works may be observed in the models introduced in the coming chapter.
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Chapter 4

Quantum network models

In this chapter, we adapt the customary tools of studying the behaviour of networks
to our specific case of quantum networks. For this, we use definitions and concepts
from graph theory.

First, we look at why we need to create new models for quantum networks.
Following that, we introduce a time model according to which we conduct our
analysis. Then, we adapt the models of quantum networks based on the event of
link generation. Based on how links are generated to serve the incoming demand,
we distinguish between an on-demand and a continuous model.

Later in the chapter, a two-layered network model is introduced which describes
the entanglement between nodes. Physical graphs consist of quantum routers and
physical quantum communication channels. These graphs serve as an underlying
network. Upon introducing them, we explain virtual graph models. They include
entangled links and make up an overlay network for quantum networks.

4.1 Motivation for model creation

In this section, we describe the motivation behind using different models for quantum
networks. Although they are inherently different from classical networks, certain
similarities can be found.

It is important to describe the time communication (quantum as well as classical)
takes in a quantum network. As an example, quantum routers need to communicate
via classical messages between each other. Other events, such as elementary link
creation, also take a considerable amount of time. How shall we include time in
our models? What could be the basic time unit in our models?

Assume that we already have a certain definition of time unit in a quantum net-
work. We can then use entanglement to transmit quantum information between
nodes. For this, entanglement is demanded by the sender. The process of entangle-
ment generation is summarized in figure 4.1. When should such an entanglement
be created?

To create entanglement, physical quantum communication channels are needed
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between certain nodes. The nodes not connected by a physical quantum commu-
nication channel can also share entanglement as a result of entanglement swap.
This way a "shortcut" is created in the network (as described in [ESW16]). For
which nodes is it worth having these shortcuts? Also, when creating shortcuts, the
network made up of physical quantum communication channels and entanglement
between nodes differs. What type of network topology could be used for analysis?

In this chapter provide answers to these questions by introducing quantum net-
work models.

(a) Quantum routers prepare to gen-
erate entanglement using physical
quantum channels. (For more de-
tails see 2.2.3).

(b) Entangled links are generated
between the routers.

(c) The entangled links are used for
quantum teleportation or they deco-
here over time.

(d) Once the entangled links have
been used or decoherence took
place, they need to be regenerated.

Figure 4.1: Entanglement generation and consumption between quantum routers.

4.2 Quantum network

In each of the following models, we assume that we have a quantum network with
quantum routers and that some are connected with physical quantum channels.

Apart from this, we make the following additional assumptions for the routers
(nodes) of the network:

• they can use the classical communication infrastructure to send and receive
classical messages,

• they know about the physical quantum topology,
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• they have a certain initial view about the shared entanglements in the network
(this point will be explored more in detail in chapter 6).

Using these capabilities, quantum routers want to use entanglement to serve re-
quests. We will be referring to these requests as demand appearing in the network.
The frequency of such demands appearing at specific nodes and the overall distri-
bution of demands in the network greatly depends on the structure of the quantum
network.

4.3 Discrete time model

To be able to introduce the dynamic nature of the network, we are considering a
discrete time model, as introduced in [CRDW19]. We assume that the distance
between any two quantum routers can be upper bounded by distphys. One time
step in our model is equal to distphys

c time units, where c is the speed of light in a
communication channel.

4.4 Demand based entanglement generation models

To analyse the behaviour of quantum networks, we need to create models based on
the event of entanglement generation in the network. The created entanglement can
be then used for various applications. There can be different models determined
based on when entanglement is created.

4.4.1 On-demand model

The basic entanglement generation model used to represent a quantum network
is the on-demand model. The key point for the on-demand model is that entan-
glement is generated between two nodes only once there is a need for it. Once the
demand comes, a path made up of quantum communication channels is determined
between the source and the destination node. After this, pairwise entanglement is
generated between the nodes. This is followed by entanglement swaps performed
at the intermediary nodes to create end-to-end entanglement.

Let us take an example. Consider two nodes connected by a physical quantum
channel. Entanglement can be created using this channel. Each of the two nodes
can send quantum information to the other one, once entanglement has been cre-
ated. In the on-demand model, the process of entanglement creation is only ini-
tiated, once one of the nodes wants to transmit quantum information. As soon as
such a shared entanglement has been created, it can be used for quantum teleport-
ation.

33



4.4.2 Continuous model

Since the creation of end-to-end entanglement in the on-demand model might take
a significant amount of time (in the subsequent chapter we study this more thor-
oughly), entangled links could potentially be generated even before the demand
comes. We will be referring to this process as "pre-sharing" entanglement, as they
are created in advance. Pre-shared entangled links can not be stored for an unlim-
ited amount of time unfortunately due to the decoherence process that takes place.
Consequently, after a certain amount of time, entangled links are not available any-
more. We use the concept of threshold time as used in [CRDW19] and denote it
with Tth. Hence, after Tth, the generation process of entangled links commences
again.

Let us consider an example of the continuous model. Consider two nodes con-
nected by a physical quantum channel. In the continuous model, the entanglement
generation process between the two nodes is ongoing regardless of incoming re-
quests. Let us assume that such a link has been created with a Tth value. If we a
demand comes between the time of generation and Tth, the created entanglement
can be used for quantum teleportation. This way no entanglement needs to be
generated.

4.5 Physical graphs

In the previous section, we have considered models based on when entanglement
generation takes place. In this section and the next one, we look at models needed
to describe the state of the quantum network.

The quantum network infrastructure can be modelled as a simple static graph
where the nodes are quantum routers and the edges are quantum channels.

Definition 4.5.1. Physical graph[CRDW19]
A physical graph is an undirected simple connected graph GPh = (V,EPh) where
V represents quantum routers and EPh represents physical quantum channels.

In such a graph we can define physical neighbours of nodes.

Definition 4.5.2. Physical neighbour[CRDW19]
Given a physical graph GPh = (V,EPh), two nodes v, u ∈ V are physical neigh-
bours of each other, if ∃e ∈ EPh : e = {(v, u)}.

Physical graphs are also used to represent the on-demand model. A physical
graph does not describe the current state of entangled links in the network. It is
also static in nature, hence its diameter is constant.
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Figure 4.2: Physical graph of |V | = 16 nodes in a ring topology. The nodes and
the edges represent quantum routers and quantum channels.

4.6 Virtual Graphs

As physical graphs are models of the physical channels capable of creating en-
tanglement between nodes, we have not included entangled links in such graphs.
We include entangled links in graphs called virtual graphs [CRDW19]. Virtual
graphs contain virtual links which represent pre-shared entanglement in quantum
networks. The pre-shared entanglements are then later recreated in a new time win-
dow. For these reasons, virtual graphs are equivalent to the graph representation of
the continuous model.

Definition 4.6.1. Virtual graph[CRDW19]
Given a GPh = (V,EPh), a virtual graph is a graph G = (V, E) where V repres-
ents the set of quantum routers and E represents entangled links.

Later we will be referring to the edges comprising the virtual graph as virtual
edges (virtual links), u, v ∈ V connected by a virtual edge will be referred to as
virtual neighbours. It is worth noting that E ∩ EPh = ∅. This comes from the fact
that the edges in a physical graph are physical quantum communication channels,
whereas edges in a virtual graph are entangled links.

Although virtual edges will create neighbours in the virtual graph, we will be
referring to their lengths based on the properties in the underlying physical graph.

Definition 4.6.2. Virtual edge length
The length of an edge in a virtual graph between v1, v2 is distGPh(v1, v2).

Definition 3.1.7 was used in the physical graph as a distance metric. We will
later be referring to a virtual edge whose length is greater than 1 as a long virtual
edge. As the generation of such long virtual edges can be quite costly in terms of
time, it is worth posing a threshold on the length of virtual links.

Definition 4.6.3. Distance threshold[CRDW19]
Given a quantum network, the physical distance between any two virtual neigh-

bours is upper bounded by the distance threshold (dth).
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An equivalent statement connected to the definition of the distance threshold is
that given a virtual graph G constructed with a certain distance threshold, no virtual
edge is longer than the value of dth.

Defining a distance threshold and a specific procedure for constructing virtual
graphs (see next section) will be useful to set the diameter of a virtual graph. Let
us consider the example of a ring topology with 16 nodes and a distance threshold
of 2. Then, construction of virtual graphs could be defined such that nodes are
connected along the physical graph and each node is also connected to nodes at
physical distance 2.

4.6.1 Deterministic virtual graphs

Deterministic virtual graphs are constructed according to a specific procedure of
adding virtual edges. The motivation for construction comes from the fact that by
reducing the diameter of the graph, a more connected graph can be used [Kle00].
It is hence worth to transition from a ring topology towards a more connected
network. This in principle shall offer advantage while doing routing.

In order to create a deterministic virtual graph with n number of nodes, a dis-
tance threshold of dth and a maxdth such that dth ≤ maxdth, the following steps
are carried out:

1. Neighbouring nodes of the physical graph are connected by a virtual edge,

2. Long virtual edges starting from nodes with odd-numbered labels are added,

3. Additional log2maxdth− log2dth many virtual edges between nodes labeled
as x and (x+ 1) mod n are added, where x = (y ∗ 2i) + 1, i ∈ N0, y ∈ N0

and y is 0 or odd.

It is worth mentioning that by following this strategy, for the case log2maxdth =
log2dth, there is exactly one virtual edge connecting any two nodes in the virtual
graph.

For an input node of label x ∈ N, the number of long edges is given by the
following function:

longcountdth(x) =


0 if x ∈ N and x is even
2logdth if x = 1
min(2i, 2logdth) if x = (y ∗ 2i) + 1, i ∈ N0, y ∈ N

and y odd
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(a) dth = 1, maxdth = 1
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(b) dth = 2,maxdth = 2
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(c) dth = 4,maxdth = 4

Figure 4.3: Quantum networks of |V | = 16 nodes. Each is made up of a physical
graph (continuous black line) and a deterministically constructed virtual graph (red
dashed line) determined by the distance threshold (dth).

The number of long edges for a node with labels x = 1 or x = 2i ∗ y + 1
(where i ∈ N0, y ∈ N and y is odd) are connected with nodes labeled as (x +
2)mod n, (x+22)mod n, ..., (x+2min(i,log2dth))mod n and (x+n−2)mod n, (x+
n− 22) mod n, ..., (x+ n− 2min(i,log2dth)) mod n [CRDW19].

For virtual graphs constructed this way, we have |E| = N+
N∑
x=1

longcountdth(x).

With this construction, we increase the degree of every other node in the graph,
eventually creating hubs in the virtual graph.

The coordination number (avereage degree of a node) of a deterministic virtual

graph can be obtained the following way: z =
N+

N∑
x=1

longcountdth (x)

N .
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(a) dth = 1,maxdth = 4
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(b) dth = 2,maxdth = 4

Figure 4.4: Quantum networks of |V | = 16 nodes, maxdth = 4 and dth <
maxdth. Extra links are added according to step 3.

4.6.2 Random virtual graphs

We can further construct virtual graphs starting from a some pre-defined topology
and then by adding long edges randomly. The random virtual graph construction
method described in this section is adapted from [CRDW19]. The graph creation
described in section 3.3.3 results in graphs with the small-world phenomenon and
also higher clustering than with totally random graphs. The random graph creation
explained in this section follows steps similar to the Watts-Strogatz model.

In our case of random virtual graph creation, long virtual edges are added ac-
cording to a power-law distribution. Any node u chooses another node v (such that
distGph

(u, v) > 1) as a neighbour with the following probability:

Pchoose(u, v) :=

{
1
βu

1
distαGph

(u,v) if distGph
(u, v) ≤ dth

0 Otherwise

where βu =
∑

v′∈V
1

distαGph
(u,v′) and α > 0.

In our models, each node chooses k = log2dth many long neighbours with
replacement according to Pchoose.

The graphs that are created this way are scale-free (section 3.3.5) and provide us
with models similar to real-world networks.

4.7 Summary

In this chapter, we have introduced the already existing quantum network models
that will prove to be relevant during our observations. We have taken a discrete
time model based on classical communication latency between quantum routers,
enabling the quantification of the duration of events in a quantum network. We have
also adapted the on-demand and the continuous models to describe when entangled
link creation takes place with respect to the arrival of demand. The concepts of

38



1

2

3

4
5

6

7

8

9

10

11

12
13

14

15

16 12

3

4

5

6

7

8

9 10

11

12

13

1415

16

Figure 4.5: Two representations of a quantum network with random virtual graph
of |V | = 16, dth = 4 in a ring topology. Every node is connected with k = 2 many
long neighbours based on a probability following a power law-distribution.

physical graphs and virtual graphs were discussed with relevant definitions such
as the distance threshold in a virtual graph. At the end of the chapter, strategies
of deterministic and random virtual graph generations were discussed with graphic
examples.
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Chapter 5

Entanglement routing in a
quantum network

5.1 Introduction

In the previous chapter, we have introduced the existing models and techniques
which are used to model quantum networks. In this chapter, we will see the need
to introduce new ones, to make our analysis more realistic.

After phrasing certain reasons for coming up with a more realistic model, we in-
clude the concept of time and look at our network. The emerging field of analyzing
temporal networks provides promising tools. They enable specifying graphs that
change over time. Hence, in section 5.2, we introduce the mathematical concepts
and terminologies from temporal networks used to describe the evolution of dy-
namic graphs. Later, we define quantum networks using these concepts and give a
new definition in such a network.

In section 5.3 we phrase what pathfinding means in a quantum network and how
it is related to routing in a quantum network.

Having formulated what a quantum network is using temporal graphs and what
routing in such a network means, in section 5.3.2 we take a look at a specific
example. We assume that a fixed number of requests are served in the network,
paths are found for them and observe how the network changes. We also highlight
the fact that for a more realistic demand model, traffic engineering needs to be
carried out.

At the end of the chapter, in section 5.4 we look at the challenges faced when
solving the problem of routing in a quantum network. We choose time as the
main metric of interest for end-to-end entanglement creation. Each phase of this
procedure is considered separately to determine the one that acts as a bottleneck
for the entire process.
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5.2 Quantum networks as temporal graphs

5.2.1 Approach for a new model creation

In our work, we will be looking at the change in the network topology over time.
This would be necessary for modelling the entanglement generation and consump-
tion taking place in a quantum network. For this reason, it will be important to see
at which point in time we consider the network, hence the notion of time will play a
key role. This serves as a motivation to shift from using the existing approaches of
network theories. In most of the practical scenarios, the network does not change
with time very frequently. So, one can easily represent this type of network using
static graphs. However, these static graphs are not a good abstraction for dynamic
graphs.

In the continuous model of quantum networks, the links between nodes are
shared EPR pairs. They can be used for quantum teleportation or can decohere over
time until they are no longer useful for quantum communication. These factors
make quantum networks very dynamic. Given a set of EPR pairs in the network,
each has its time of creation and will decohere at different times.

Suppose that some of the EPR pairs are used for quantum teleportation. In such
a case, they are consumed and the representation of the network should be able to
reflect this change. How could one use a simple graph to represent the behaviour?
One solution would be creating a new graph for each change of the network, how-
ever, then a specific state of a point in time would be represented. It would be very
useful if we would have a way of describing how the networks evolve.

To provide a solution to this problem, we make use of the already developing
field of temporal networks. The main goal of this field is to encompass character-
istics of the network in terms of time and introduce functions related to the network
which take a point in time as an input. Therefore, in the following sections, we in-
troduce and use definitions and ideas that could encompass the dynamic features
of quantum networks. The same concepts proved to have been useful for describ-
ing evolving networks connected to other research areas such as health sciences,
mobile communication networks and social networks.

5.2.2 Temporal graphs

As mentioned earlier, we would like to have a model where we can seamlessly use
points in time to describe the state of the network.

Temporal networks and temporal graph algebra will be useful for that and even-
tually for defining quantum networks. Our motivation in introducing such concepts
stems from the fact that we would like to describe the state of quantum links at spe-
cific points in time [MS17].

In our model, the points in time will have limited precision and have discrete
time values from N.
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First, however, we define on which set of points in time we would like to observe
the evolution of our quantum network.

Definition 5.2.1. Time interval
Given a tinit ∈ N and n ∈ N, the [tinit, tend] = {tinit, tinit+1, tinit+2...tinit+n =
tend} set of points in time is a time interval.

We will be calling tinit initial time, whereas tend as the end time of the time
interval. Later we will be working with certain time intervals that are bounded by
a threshold value. The reason for this is that in practice we know that no entangled
link in a quantum network is permanent. A certain value (threshold value) can be
determined as the maximum time an entangled link is available. The motivation
behind introducing such a threshold time is that we can model the decoherence
process of a quantum link using it. Therefore it makes sense to introduce time
intervals that are determined by certain threshold values.

Definition 5.2.2. Time window
A time interval [tinit, tend], [tinit, tend] is said to be a time window with respect to

a Tth ∈ N, if |tinit − tend| ≤ Tth.

As we can see, the threshold value will determine the length of a time window
(or the time for which entanglement is shared between two nodes in practice) and
plays a key role in the life cycle of quantum networks.

tinit1 tend1 tinit1 + Tth tinit2 N

Time window

Threshold time

Figure 5.1: Representation of the linearly ordered time domain mapped to N with
regards to the concepts of time window and threshold time. We denote the initial
time in a time window by tinit, the end of the time window by tend.

Now that we have a clear idea of what intervals of time we are interested in, we
can adapt the definition of a temporal graph from temporal network literature.

Definition 5.2.3. Temporal Graph[MS17]
A temporal graph is a 6-tuple G = (V, E , L,Γ, ξT , λT ) where:

• V is a finite set of nodes

• E is a finite set of edges

• L is a finite set of property labels

• Γ : E → (V × V ) is a total function that maps an edge to its source and
destination nodes
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• ξT : (V ∪ E)× N → {0, 1} is a total function that maps a node or an edge
and a point in time to a Boolean value, indicating the existence of the node
or edge at the specific time; and

• λT : (V ∪ E) × L × N → val is a partial function that maps a node or an
edge, a property label, and a point in time to a value of the property at the
specified time.

In the definition of a temporal graph, V contains unique labels from N for each
node and E contains unique identifiers for each edge. It is worth noting that neither
the definition of E , nor Γ restricts having multiple edges between two nodes (and
in later chapters, we will usually have such multiple edges between nodes).

For our convenience, now we introduce a definition to the availability set of
edges in a temporal graph and later use it to define quantum networks.

Definition 5.2.4. Availability set
Given a temporal graph G and an edge denoted by id ∈ E , we define the avail-
ability set of id as the ordered set of time windows when the edge is available:
Tid = ([tinit1 , tend1 ], [tinit2 , tend2 ], ...), where:

• ∀[tinit, tend] ∈ Tid ∀t ∈ [tinit, tend] : ξT (id, t) = True;

• ∀t ∈ N∃[tinit, tend] ∈ Tid : t ∈ [tinit, tend];

• Given a [tiniti , tendi ], [tiniti+1 , tendi+1
] ∈ Tid, ∀ti ∈ [tiniti , tendi ]∀ti+1 ∈

[tiniti+1 , tendi+1
] : ti < ti+1

Thus the availability set for a certain edge contains time windows when the edge
is available.

Due to the dynamic nature of the topology, the existence of a path between any
two vertex in a temporal graph is time-dependent. Therefore, a new notion of the
path with regards to time will be needed.

Definition 5.2.5. Time-dependent path
Let G be a temporal graph, s, e ∈ V , t ∈ N and pathTt (s, e) = {id1, id2, ...idn−1}
a path between s and e. If ∀i ∈ [1..n− 1] : ξT (idi, t) = True, then pathT (s, e) is
a time-dependent path at t.

As pathT (s, e) is a path in G connecting s and e, Γ(id1) = (s, v1) and Γ(idn) =
(vn − 1, e) are trivially true.

It is worth noting that the definition of a time-dependent path is stricter than of
the definition of a time-respecting path present in the literature of temporal net-
works (e.g. [HS12]). The difference comes from the fact that instead of requiring
non-decreasing times for consecutive edges in the path, edges in a time-dependent
path need to be available at the same point in time.

There is yet another difference between the two concepts when it comes to
the transitivity property [HS12]. This property, does not hold for time-respecting
paths, but holds for time-dependent paths:
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Theorem 1. Transitivity of time-dependent paths
Let G be a temporal graph and let v1, v2, v3 be vertices ∈ V and t ∈ N. If
∃pathTt (v1, v2) ∧ ∃pathTt (v2, v3) then ∃ pathTt (v1, v3).

Proof. Considering the time-dependent paths as simple paths at time t, the proof
follows analogously to proving the transitivity of paths in an undirected graph.

In our study, we will be examining whether, for a certain source-destination pair,
we can find a time, for which there is a time-dependent path.

5.2.3 Defining quantum networks

Having built up a fitting representation of temporal graphs, we can now define
quantum networks using these constructs as a temporal graph.

Definition 5.2.6. Quantum network
A quantum network is a temporal graph G = (V, E , L,Γ, ξT , λT ) and the underly-
ing physical graph GPh = (V,EPh) such that:

• ∀id ∈ E ∀t ∈ N :

ξ(id, t) =

{
True if ∃ [tinit, tend] ∈ Tid : tinit ≤ t ≤ tend
False Otherwise

• ∀id ∈ E ∀j ∈ N : tendj+1 < tinitj+1 , where [tinitj , tendj ], [tinitj+1 , tendj+1
] ∈

Tid

The first point in the definition describes the fact that if the link is available at a
certain point in time, then this time belongs to some time window. When the time
window ends, the link will become unavailable. The second point incorporates
that once a link becomes unavailable, there is a certain latency until it becomes
available again.

For brevity we will be using the notation G = (V, E , L,Γ, ξT , λT ) for quantum
networks, and we also mean to incorporate an underlying physical graph.

Definition 5.2.7. Generation time
Given a quantum network and an edge with id ∈ E , the generation time of the edge
id is Tgen = argmini{ξ(id, t+ 1 + i) = True}, where t ∈ N : ξ(id, t) = True,
ξ(id, t+ 1) = False and i ∈ N.
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tinit1 tend1 tinit2 tend2 N

Link is available

Tgen

Link is available

Figure 5.2: Lifecycle of a quantum link. The respective tinit and tend with the
same index represent the same time windows upper bounded by a Tthvalue (see
defintion 5.2.2). Tgen denotes the time required for successful link generation.

5.3 Routing in a quantum network

Definition 5.3.1. Path finding in a quantum network
Given a quantum network G = (V, E , L,Γ, ξT , λT ), s, e ∈ V and t ∈ N the prob-
lem of path finding is providing a t < t′ such that pathT (s, e) = {id1, id2, ...idn−1}
is a time-dependent path between s and e at time t′.

We call the ordered four of (s, e,#EPR pairs, t) a demand. Solving the
pathfinding problem in a quantum network is one of the main goals of quantum
network routing. However, in quantum networks, there are several metrics which
would prove to be important for a given time-dependent path.

On one hand, if a time-dependent path considered as a simple path at t ∈ N
(when it is time-dependent) the fidelity of the end-to-end entanglement that can
be created using this path decreases with its distance. In other words, it is worth
having small distance paths as time-dependent paths.

On the other hand, we would like nodes not to wait too long after they have
requested a link. What this means is that we would like to secure a relative low
latency for each request. For this reason, serving demands fast is key, hence we
would like to find a time-dependent path as soon as possible after the request ar-
rived. In our analysis, we choose the second metric as our main focus. Therefore,
we introduce the concept of fastest time-dependent path.

Definition 5.3.2. Fastest time-dependent path
Given a quantum network G = (V, E , L,Γ, ξT , λT ) and a demand of (s, e,#EPR
pairs, t)a pathT (s, e) = {id1, id2, ...idn−1} that is a time-dependent path between
s and e at time t′ is called the fastest time-dependent path, if t′ = min{t ∈ N|∀j ∈
[1..n− 1]∃[tinit, tend] ∈ Tidj : t ∈ [tinit, tend]

5.3.1 Concepts in quantum networks

In the previous section, we have defined quantum networks, now we would like
to have a look what each of the concepts from temporal graphs mean in quantum
networks.
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Time-dependent paths will determine whether an end-to-end entanglement can
be created between two nodes in a quantum network. A solution to the path finding
problem (such as finding the fastest time-dependent path) will determine the time
when the entanglement swap and quantum teleportation operations are going to
take place.

The problem of routing in a quantum network can be worded as considering
the time-dependent paths for a source and destination pair and choosing the one
with a minimum cost in the temporal graph. What a minimum cost is for a given
time-dependent path depends on what constraints we would like to pose on the
time-dependent paths that we are choosing. Several approaches will be used in the
later chapters.

5.3.2 Time evolution of the quantum network

Given a quantum network, we have seen that various events affect the connectivity
of the network. Through observing and analysing a series of such events, we can
conclude how the network evolves. Our goal is to (with some heuristic) predict
how it is going to change, and solve the problem of routing in a quantum network
accordingly. In this section, we provide an example of the evolution of a quantum
network over time.

Example

Our focus will mainly be examining quantum networks with virtual graphs that are
connected at T = 0 (i.e. there is a time-dependent path between any two nodes
at T = 0). Therefore, we consider topologies that are constructed in ways as
described in section 4.6.

In our example, we assume to have a quantum network of 8 nodes. We look at a
time window, where at tinit point in time, the availability of edges in the network
corresponds to a deterministic virtual graph of dth = 2 andmaxdth = 2 (see figure
5.3f). After this point in time, requests are received.

Upon receipt, a route is determined for each of the requests. We assume that
in each case this route is the shortest path in the virtual graph between source
and destination. The entangled links along the route are used to create end-to-end
entanglement and hence they are consumed (see subfigures 5.3b, 5.3c and 5.3d).
The requests are served in the network at t1, t2 and t3 points in time. Eventually,
at a certain tend the links decohere, and right at the next point in time, the links are
not available (see figure 5.4).

As it can be concluded, after such a time window, a new set of entangled links
need to be generated. This allows us to serve the next set of requests coming into
the network.
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(b) 1. demand from node 4 to node
1 arrives at time t1, entangled links
are consumed along path: {4, 3, 1}.
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(c) 2. demand from node 7 to node
3 arrives at t2, entangled links are
consumed along path: {7, 5, 3}.
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(d) 3. demand from node 4 to node
6 arrives at t3, entangled links are
consumed along path: {4, 5, 6}.
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(f) Quantum network wtih pre-
shared entangled links at tinit2.

Figure 5.3: Time evolution of a quantum network of |V | = 8, dth = 2 and
maxdth = 2.
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Figure 5.4: Time evolution of a quantum network of |V | = 8, dth = 2 and
maxdth = 2 serving demands in a temporal network representation. t1, t2 and
t3 are the points in time when a demand is served in the network.

5.4 Challenges of entanglement routing in a quantum net-
work

As previously mentioned, we are interested in the time it takes for a demand to be
served in the quantum network. This time is equal to the time it takes to create
end-to-end entanglement between source and destination nodes. The created EPR
pair is then used to teleport a qubit.

Let us look at the latency for each of these operations (a summary can be found
in table 5.1). Considering the first phase of end-to-end entanglement creation, path
discovery (section 2.3.1), we have two opportunities: centralised or distributed
routing. In this thesis, we focus on the first approach that is a path can be com-
puted from source to destination in a centralised fashion. In this case, the source
node determines the path based on its knowledge about the network. With the
current capabilities of computers and CPUs, we can assume that the time such a
computation would require is negligible.

When it comes to entanglement reservation (section 2.3.2), the source node
needs to notify every node along the path to reserve entanglement capabilities.
One approach to this is that these nodes will receive a classical message about the
demand and send an acknowledgement to the request. The time for this commu-
nication scales linearly with the diameter of the classical infrastructure.

In the entanglement distribution phase (section 2.3.3) let l denote the number of
entangled pairs to be generated along the reserved path. This number is equal to
d + 1 where d is the hop distance, the number of "hops" a message does between
source and destination using routers. Taking the model used in [CRDW19], the
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latency for link generation will depend on several factors and scale exponentially
with d, as described in section 2.2.3.

Once all the entangled links have been generated pairwise through the reserved
path, entanglement swap operations can commence creating the end-to-end entan-
glement.

Finally, the latency for quantum teleportation is determined by the classical com-
munication needed for the operation between source and destination.

As can be observed, the latency for the creation of end-to-end entanglement is
significantly determined by the number of entangled links that need to be gener-
ated. If almost all entangled links are available, then the time entanglement gen-
eration takes is negligible. According to our model, in this case, the latency for
end-to-end entanglement creation is mostly determined by classical communica-
tion and the time certain operations like entanglement swap, quantum teleportation
take.

Once, however, a significant number of entangled links are missing along the
reserved path, the latency is going to be very high. Thus, optimising path discovery
to decrease the number of entangled links to be generated proves to be key to keep
the latency for demands low. In subsequent sections and chapters, we would like
to delve into details on what techniques can be used for this purpose.

Procedure
Time-consuming
operation

Latency

Path discovery Computing the path O(1)

Path reserva-
tion

Sending messages
to the nodes along
the path

O(diamGCl)

Entanglement
generation

Successful element-
ary link generation
along the path

O(( 1
P0

)l)

Entanglement
swap

Sending messages
to perform the swap

O(diamGCl)

Quantum tele-
portation

Sending a message
to perform the
measurement

O(diamGCl)

Table 5.1: Latency for end-to-end entanglement creation (section 2.2.3) and
quantum teleportation (section 2.1.3). We denote the diameter of the classical
communication infrastructure with diamGCl . P0 is the probability of successful
elementary link creation whereas l is the number of elementary links that need to
be generated. Denoting d as the hop distance, l = d+ 1.

49



5.5 Summary

In this chapter we have formulated a new model for entanglement routing in a
quantum network using temporal graphs. First, we have identified that the notion
of time and the change of the network over time is still to be included in our models.
Then, we have used the temporal graph concepts to define quantum networks and
routing in a quantum network. At the end of the chapter we provided an example
for the evolution of the network.
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Chapter 6

Information propagation in
quantum networks

In the previous chapter we have discussed a dynamic (non-static) model for quantum
networks. In this chapter we use this formalism to present empirical results coming
from simulations. In order to do this, we first introduce the concept of knowledge
about the network topology. Then, we describe how it plays a key role in quantum
network routing.

In our work we make the assumption that nodes know about the network topo-
logy for the underlying physical graph. They can also make use of the classical
communication infrastructure between them.

We have taken three different approaches based on the level of knowledge a node
has about the network topology. This knowledge is important, as nodes perform
Path Discovery 2.3.1 based on this knowledge.

In this chapter we introduce the following approaches:

1. initial knowledge;

2. local knowledge and

3. global knowledge.

First, by taking the initial knowledge approach, we assume that each node has a
static knowledge about the topology throughout the lifetime of the network. With
the local knowledge approach, information is propagated about the change in the
topology within a certain radius. By increasing the level of information propaga-
tion in the network to its maximum, we achieve global knowledge. As later ex-
plained, global knowledge means that the level of information propagation guaran-
tees that each node is always up to date with the current state of the network.

In this chapter, centralised routing is used to compare preliminary intuitions with
observations based on empirical results from simulations.
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6.1 The method of observation

Our aim is to observe how the latency is for a demand in the quantum network. For
a given demand (s, e,#EPR pairs, t), latency is the time difference between t
and point in time when the end-to-end entanglement has been created between s
and e.

Our simulations consist of executing the phases of end-to-end entanglement cre-
ation for several demands (see section 2.3 for a description on the phases) and
keeping track of the average latency.

Path Discovery takes place in a centralised fashion. The node requesting en-
tangled links performs the Shortest-Path algorithm (algorithm 4) to find a path to-
wards the destination based on the local knowledge it has about the network. This
means that it uses a locally stored graph representing the network as an input to
the algorithm. It then, sends out classical communication messages to execute the
Entanglement Reservation phase (see section 2.3.2).

As hinted on in section 2.3.2, the Entanglement Reservation phase takes place
sequentially for entire paths, and so our simulations are devised accordingly. This
implies the following. Given two demands, (s1, e1, epr1, t1) and (s2, e2, epr2, t2),
let us denote the paths returned by Path Discovery as:

pathT1 (s1, e1) = {id1, id2, ...idn−1},

pathT2 (s2, e2) = {id1, id2, ...idn−1}
respectively.

Let us then denote:

JointSet = (pathT1 (s1, e1) ∩ pathT2 (s2, e2)).

In this case, if t1 < t2, then ∀id ∈ JointSet will be utilised by the first demand.
The second demand will then either utilise parallel links between the all (v1, v2)
(v1, v2) = Γ(id)id∈JointSet (see 5.2.3 for definition) pairs of nodes or reserve ca-
pacities for generating entangled links between these nodes.

Once a path has been reserved for a demand, Entanglement Distribution (see
section 2.3.3) takes place and the entangled links used for end-to-end entanglement
creation are consumed. If there are not enough entangled links available along the
discovered path, a generation process takes place.

We use the discrete time model described in section 4.3. In section 5.4, we have
established the fact that the procedure that greatly influences the latency of end-
to-end entanglement creation is entanglement generation. Consequently, in our
simulations we are computing the time entanglement generation takes as latency
while neglecting the time other procedures would take. In our work we do not
impose constraints on the minimum fidelity needed along the path. Should we
want to extend these observation methods by also incorporating the requirement
for fidelities, we would need to include it in our demand specification. As far as
the topology goes, we can simply assign fidelities as a property to each edge and
posing an extra constraint on the fidelity of the edges that are used in a path.
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6.2 Knowledge in quantum network routing

As explained in section 5.4, the time of end-to-end entanglement creation is highly
dependent on the number of entangled links that need to be generated. This num-
ber is, however, determined by the path along which the entangled links are used to
create the end-to-end entanglement. Looking at the phases of end-to-end entangle-
ment generation phases as described in section 2.3, the crucial phase for this is the
first one, namely the Path Discovery phase, as this is when the path is determined.

The Path Discovery phase can be reduced to solving the shortest path problem.
This is so because the purpose of the Path Discovery phase would be to find the
shortest path between a source and destination along which we can reserve the
entangled links adhering to the requirements set by the demand.

It is, therefore, needed to introduce what we mean by a certain node using its
knowledge about the network to perform Path Discovery.

Definition 6.2.1. Knowledge about the network
Given a quantum network G = (V, E , L,Γ, ξT , λT ), let us denote the set of edges
that are available at a t ∈ N point in time as Et, that is: Et = {e|e ∈ E ∧ ξ(e, t) =
True}. A node v ∈ V has knowledge about the quantum network at time t if it
locally stores a Gv = (V,Ev) for which ∃t ∈ N : Ev ⊂ Et.

6.2.1 Why is knowledge important?

Let us take an example of what role knowledge plays once a quantum network is
used for communication. Assume that we have a quantum network with N = 16
and pre-shared entangled links constructed as shown in figure 6.1 (similar to the
ones described in section 4.6). Let us take the case when there is a demand from
node 1 to node 8. A potential path to create end-to-end entanglement could be
path = 1, 13, 9, 8. As it is demonstrated in subfigures 6.1a- 6.1e, the entangled
links along this path are consumed.

Let us now assume, that node 2 wants to teleport a qubit to node 12. It uses
the topology shown on subfigure 6.1a to discover the path. Hence, it determines
the path = {2, 1, 13, 12} as a path. However, the entangled link between nodes
1 and 13 is consumed and needs to be regenerated. The real state of the network
is represented on 6.1e. Should node 2 have had the knowledge about the real state
of the quantum network, it could have discovered another path such as path =
{2, 1, 15, 13, 12}. Instead, the time for the demand to be served is increased by the
creation of the long link between nodes 1 and 13.

This example hints on the fact that the knowledge stored locally by each node
plays a key role in Path Discovery. In order to find a good path available, inform-
ation about the change in the network needs to be propagated to nodes. In later
sections, we will examine how much the knowledge of the nodes affect the time it
takes to serve demands.
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(d) End-to-end entanglement
between 1 and 8.
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(e) Quantum teleportation
using the end-to-end en-
tangled link.

Figure 6.1: The creation of end-to-end entanglement between nodes 1 and 8. Once
created, the end-to-end entanglement is used for the quantum teleportation of the
|ψ〉 quantum state from node 1 to node 8.
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6.3 Simulation setup

In the following sections, we will present results for Python simulations that were
carried out based on the level of knowledge each of the nodes had. Before we
delve into the description of the approaches used, in this section, we discuss the
simulation setup. This was standard for each of the scenarios described later, or
else, the change of parameters will be mentioned.

The topology chosen as a simulation model is a one-dimensional lattice (ring
topology) of 32 nodes. A physical graph is created by connecting nodes along the
ring (see figure 4.2 in section 4.5). Virtual graphs are created based on the rules
discussed in sections 4.6 and 4.6.2. We carry out simulations in the on-demand
model as well as the continuous model. Simulations based on the continuous model
start from a virtual graph with pre-shared entangled links.

Demands are sampled uniformly at random, which means that an evenly dis-
tributed traffic is simulated. The number of demands is equal to 50 in most of
our simulations (else marked otherwise). In our models, we assume that there are
no limits to generate capacities and that generation attempts to start taking place
immediately after the reservation attempt. The parameters are used according to
the values presented in [CRDW19], so the threshold value for time windows is set
as Tth = 1, 000 time units. If the generation time of entangled links along the
discovered path would take more than this value, then the generation process does
not take place. Instead, we assume that the demand will be served in the next time
window. The value of Tth is regarded as generation time and so as latency.

First, we fix the number of demands and sample them. Then we use Monte Carlo
simulations with at least 1000 rounds to determine what the average latency for
these demands could be. In the process, we also determine the following properties:

• average number of links used for each demand;

• number of links remaining in the quantum network (multiple links are pos-
sible between the same pair of nodes);

• average number of links remaining (counting multiple links between the
same pair of nodes once).

If the quantum network is constructed based on a randomly generated network
topology, we average 10 separate simulation results.

6.4 Initial knowledge

6.4.1 Approach taken

We start from a quantum network G = (V, E , L,Γ, ξT , λT ). With the initial know-
ledge approach, we assume that each node v ∈ V has knowledge Gv = (V,Ev)
about the network. According to definition 6.5.2 this means, that ∃tinit ∈ N :
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Ev = Etinit . We further make the assumption, that this tinit is the starting point of
a time window with a specific Tth threshold value (see definition 5.2.2). We then
carry out simulations as explained prior.

6.4.2 Results and discussion

Having previously introduced the simulation setting and the approach that is going
to be taken, now we discuss the intuition behind how the initial knowledge ap-
proach would perform. We apply this approach to different topologies introduced
earlier in chapter 4.6. Our intuition based on works like [Kle00][CRDW19] is that
the algorithm performs better in topologies where longer links are available. That
is, if we keep the same number of edges, but increase the value of the distance
threshold, then we effectively decrease the diameter of the network. A smaller
diameter implies a decrease in average latency.

Deterministic virtual graphs

The first simulation result for the initial knowledge approach was carried out in a
quantum network of a deterministic virtual graph with 32 nodes, 56 links and the
parameter maxdth = 4 (see definition of distance threshold 4.6.3).

Subfigure 6.2a shows the values for the average latency for each number of de-
mands. What we can observe is that the previously described intuition does not
hold. First of all, the on-demand model performs as expected, and sets a nearly
constant average latency regardless of the number of demands. However, there
seems to be no correlation between increasing the distance threshold and a de-
creased average latency. Proof for that is the fact that dth = 2 topology outper-
forms dth = 4 quite clearly up until 30 demands. After that, each of the topologies
with pre-shared links starts to tend to the on-demand model. What could be the
reason for such behaviour? If the topology contains shorter paths, "shortcuts" for
the demand, how could such a construction of the network still result in higher
average latency?

The intuitive answer is that these "shortcuts" are available once, but traffic is
routed towards them based on initial knowledge after their consumption as well.
Let us consider figure 6.2. From the second demand using the same long link, they
need to be regenerated, which introduces the exponential scaling with physical
distance mentioned in section 5.4. Examining subfigure 6.2c and the curves for
dth= 2 and dth= 4, we can observe that their decrease rate is the same at around
when the number of demands reaches 10. This seems to indicate the fact that in the
dth= 2 topology as well, the longer, length 2 links are utilised for prior demands.
Once there are more than 10 however, the regeneration of the long links need to
take place.

Potential new approaches in the implementation of quantum networks have the
prospect of changing the correlations between our parameters. Therefore, we have
further carried out a simulation where we assume, that given a chain of routers, the
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time for generating entanglement in a quantum router chain scales polynomially
with the hop distance (see figure 6.3). This behaviour is contrary to the exponential
scaling used in our other simulation rounds.
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Figure 6.2: Initial knowledge approach in a quantum network of a deterministic
virtual graph of |V | = 32, |E| = 56 and maxdth = 4.

The example of polynomial scaling is fairly similar to the exponential result
previously presented when it comes to comparing each of the topologies. It can be
observed that advantage is not gained in the dth = 4 case in this setting either. The
difference between dth = 2 and the other two topologies of the continuous model
is proportionally larger, as it was the case in figure 6.2.
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Figure 6.3: Initial knowledge approach in a quantum network of a deterministic
virtual graph of |V | = 32, |E| = 56 and maxdth = 4. In this case, the time for
generating entanglement in a quantum router chain is a polynomial function of the
hop distance between source and destination.

Random virtual graphs

After simulations in topologies of deterministic virtual graphs, we proceed to quantum
networks with random virtual graphs. The construction of these topologies is de-
tailed in section 4.6.2.

The first example clearly proves our basic intuition is figure 6.4. Constructed
based on the rules described in section 4.6.2, it shows quite a considerable advant-
age, when increasing the distance threshold. This property could be because the
long links in the topology are generated at random following a power-law distribu-
tion. Consequently, there are no main clusters formed, towards which traffic would
be routed to again and again. For this reason, it is more probable that a link that
has not been used before is utilised.

At last, we transit to a random virtual graph where k = 4 (see figure 6.5. What
we observe is that apart from dth = 2, an increased value of the distance threshold
results in a decreased average latency. This proves our preliminary intuition. Why
are then the values for average latency low up until 15 demands in the dth = 2
topology?

An intuitive answer to that question would be that for demands sampled uni-
formly at random, there are available links to be used. The way this is possible, is
that in this topology |V | = 32 and k = 4, so there are 120 links of length 2. These
links provide very good connectivity for the topology. However, at least one more
link needs to be used on average for each demand as compared to topologies with
higher distance thresholds (see subfigure 6.5b). Based on this fact, the links are
consumed way faster (see figure 6.5c, and this advantage is lost as the number of
demands further increases. An example that can be observed at 40 demands, when
the approach starts to perform better in the dth = 16 topology.
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Figure 6.4: Initial knowledge approach in a quantum network with 32 nodes and 64
links. Each node chose one (k = 1) long virtual link randomly within the distance
threshold of 16.
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Figure 6.5: Initial knowledge approach in a quantum network with 32 nodes and
120 links. Each node chose one (k = 4) long virtual link randomly within the
distance threshold of 16.

6.5 Local knowledge

6.5.1 Approach taken

Having seen the rather static behaviour of the initial knowledge, when it comes
to knowledge about the network, we now look at an approach that includes up-
dating the knowledge stored. With the local knowledge approach, we assume an
existing quantum network G = (V, E , L,Γ, ξT , λT ) and that each node v ∈ V has
knowledge Ginit = (V,Einit) about the network. As an addition, each time Path
Discovery takes place, the information about the change in topology is propagated
to certain nodes. The nodes to which information is propagated is determined by a
pre-defined radius.
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Definition 6.5.1. Information propagation
Given a quantum network G = (V, E , L,Γ, ξT , λT ), a demand (s, e,#EPR pairs,
t)and a path path(s, e) to serve the demand, information propagation is sending
classical messages to certain nodes of the network about path(s, e).

Assume that a node had a locally stored Gv = (V,Ev) knowledge about the
network at time t. Once the information has been propagated to the node, its loc-
ally stored knowledge will be G updated with the consumed virtual links along
path(s, e). Information propagation takes place after the Path Reservation. As
mentioned previously, in our simulations we neglect the time of the classical com-
munication. Consequently, upon Path Reservation, nodes receiving classical mes-
sages update their local knowledge with negligible delay.

Definition 6.5.2. Propagation radius
Given a quantum network G = (V, E , L,Γ, ξT , λT ), a demand (s, e, t) and a path
pathT (s, e), the propagation radius is r ∈ N such that information is propagated
to all nodes v for which distGPh(u, v) ≤ r such that u ∈ pathT (s, e).

In this chapter, whenever we apply the local knowledge approach, we also spe-
cify the propagation radius.

6.5.2 Results and discussion

We now consider how the proposed approach performs. Simulating the local know-
ledge approach was first carried out in a quantum network of a deterministic virtual
graph with 32 nodes, 56 links and the maximum distance threshold of 4 (see figure
6.6). We set the propagation radius to r = 0. This implies that only the nodes along
the discovered path update their local knowledge about the quantum network.

First, let us compare the initial knowledge with the local knowledge approach.
The graph showing the average latency for local knowledge differs from the initial
knowledge case presented in figure 6.2. What can be observed is that the local
knowledge approach performs better in more connected topologies. The difference
in average latency between the dth = 1 and dth = 2 topologies is more significant
than it was for the initial knowledge approach. With dth = 1 the approach per-
forms worse than the initial knowledge. A similar behaviour can be observedin the
dth = 2 case. For 10 demands, there are around 3 ∗ 107 time units of difference
between the two approaches. One reason for this could be that after a demand has
been served, nodes within the propagation radius update their locally stored state
about the network. As the distance threshold is equal to one, the virtual graph is
a ring with multiple edges between certain physical neighbours. Therefore, once
knowledge has been propagated, the traffic may be routed in the opposite direc-
tion along the ring. This would ensure the utilisation of the remaining available
links, yielding a more advantageous route for certain demands. However, as more
demands are served, links along such routes become unavailable. Taking longer
paths results in an increased latency when generating unavailable links. This fact
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serves as an explanation for the increased overall average latency. Subfigure 6.6b
indicates that the average path length for dth = 1 exceeds the on-demand average.
Considering topologies with a different distance threshold, this approach performs
slightly better in the virtual graph with dth = 4.
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Figure 6.6: Local knowledge approach of r = 0 in a quantum network of a determ-
inistic virtual graph of |V | = 32, |E| = 56 and maxdth = 4.

Figure 6.7 summarizes results for information propagation with radius 5. This
type of information propagation seems to be the most beneficial in the dth = 4
case. The curve of the average latency for this topology reaches the curve for
dth = 2 after around 10 demands. For later demands, the average latency is lower
in the dth = 4 case. The reason for this is that once the long links are utilised,
the knowledge about their consumption is propagated to the nodes in the network.
The effect of the increased propagation radius can be also observed by comparing
subfigures 6.6b and 6.7b. For each of the topologies, the curves of average path
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length reach their peak after a fewer number of demands, when the propagation ra-
dius is equal to 5. For consequent demands this average tends to the level observed
in 6.2b. This is an indicator that demands are not routed towards longer paths once
information has been propagated about the change in topology.
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Figure 6.7: Local knowledge approach of r = 5 in a quantum network of a determ-
inistic virtual graph of |V | = 32, |E| = 56 and maxdth = 4.

6.6 Global knowledge approach

6.6.1 Approach taken

Once again, we start from an existing quantum network G = (V, E , L,Γ, ξT , λT )
and we also assume that each node v ∈ V has knowledge Gv = (V,Ev) about
the network. With the global knowledge approach, the main assumption we make
is that information propagation happens by flooding to every node. That is, every

63



node is informed about the change in topology. This means that following the
notation of a node having Gv knowledge about the network at time t, ∀t ∈ N,
Gv = Et at all times.

6.6.2 Results and discussion
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Figure 6.8: Global knowledge approach in a quantum network of a deterministic
virtual graph of |V | = 32, |E| = 62 and maxdth = 16.

The global knowledge approach was first carried out in a quantum network of
a deterministic virtual graph of |V | = 32, |E| = 62 and maxdth = 16 and in a
random virtual graph with k = 1, |V | = 32 and maxdth = 16.

What can be observed from the measurement results (figures 6.8 and 6.9) for the
global knowledge approach, is that the preliminary intuition influenced by [Kle00]
holds once information is propagated to all nodes. Decreasing the diameter of the
topology results in lower average latency for several demands. This means that a
topology with a bigger distance threshold gives an advantage. Comparing these
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Figure 6.9: Global knowledge approach in a quantum network of a random virtual
graph with k = 1, |V | = 32 and maxdth = 16.

results with figures 6.6 and 6.7, this advantage is clearly distinguishable between
the different values of distance threshold.

The length of paths is determined by the information propagation. In the global
knowledge case, alternative routes with bigger path length are used. Subfigure
6.8b demonstrates how the path lengths increase with the number of demands. The
peaks of each curve indicate when links in these alternative routes are consumed.
After this point link generation commences along the path with minimum distance
in the underlying physical graph. As can be observed, the peak of each curve is
determined by the distance threshold.
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Figure 6.10: Comparison of the initial knowledge and the global knowledge ap-
proach in a quantum network with a random graph of |V | = 32, k = 1 as virtual
graph.

6.7 Summary of results

In this chapter, we looked at the concept of a node having knowledge about the
quantum network. We have established the conclusion that knowledge plays an
important role in routing in a quantum network (in figure 6.10, this fact is demon-
strated). Later, we introduced the concept of information propagation, a technique
with which the knowledge of nodes can be updated.

We have looked at simulation results for three knowledge-based approaches:

• initial knowledge;

• local knowledge and

• global knowledge.
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We observed that topologies with a low diameter can utilise their advantage and
yield low average latency for demands. Information propagation about the change
in topology plays a key role to utilise this advantage. Therefore, in this chapter we
have examined different levels of information propagation. If information is not
propagated to the nodes of the network and they have only an initial knowledge,
our results showed no advantage for low diameter topologies. Once information is
propagated to the nodes in the network, topologies with a higher distance threshold
have a clear advantage. The magnitude of the advantage gained depends on the
size of the radius, within which information is propagated.
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Chapter 7

Link prediction in quantum
networks

7.1 Introduction

In the previous chapter, we have looked at how the knowledge of a certain node
in a quantum network affects the average latency for demands. We have also con-
cluded that given a demand (s, e,#EPR pairs, t), there is an inverse correlation
between the level of knowledge of node s performing Path Discovery and the av-
erage latency for the demand (s, e,#EPR pairs, t).

In this chapter, we present a technique called link prediction with which low
average latency can be achieved with non-global (e.g. initial) knowledge without
introducing additional latency or message complexity. First, we present the mo-
tivation for introducing this technique. Then we look at how a measure related to
complex network analysis can be used for link prediction. At the end of the chapter,
we present simulation results through comparison with previous results from the
previous chapter.

7.2 Motivation for link prediction

In chapter 6 we have seen that by increasing the level of knowledge for each node
(see sections 6.4 -6.6), the average latency can be decreased. Following this intu-
ition, once each node has global knowledge about the current state of the network,
they can perform Path Discovery and discover the best route available (best in terms
of latency for the demand).

How realistic is it, however, that nodes have global knowledge about the net-
work at all times? Achieving global knowledge would entail sending classical
messages to all the nodes about the change in topology (broadcasting/flooding).
Two factors to be considered in such a case: the introduced time and message
complexity. Given a quantum network, in our model, we have assumed that one-
time step is equal to the maximum classical communication time between any two

68



nodes in the physical graph (same as in [CRDW19]). Therefore, the introduced
additional latency for the information propagation would be equal to the diameter
of the physical graph. Regarding the message complexity, let us denote the clas-
sical communication infrastructure by GCl = (VCl, ECl) average distance of the
underlying physical graph as 〈d〉. Given a demand (s, e,#EPR pairs, t), once
node s has performed Path Discovery, it will start a flooding procedure making
use of the classical communication infrastructure to propagate information about
the change of topology in the quantum network. In this procedure, once a node
receives a message, it sends it forward to all neighbours it has, except for the node
it received the message from. This means that the overall number of messages sent
during this algorithm is 2 ∗ |ECl| − |VCl|+ 1. Considering the numbers presented
in [Bar16] for the classical Internet, |VCl| = 192, 244 and |ECl| = 609, 066 result-
ing in hundreds of thousands of messages sent for a single demand in the quantum
network. Altogether, this means that achieving global knowledge in a real-world
network is infeasible.

What happens then, if the nodes do not have global knowledge about the state of
the network? We have seen in chapter 6.10, that in such cases, the average latency
after a certain number of demands is significantly greater than in the global know-
ledge case. This comes from the fact that given a demand (s, e,#EPR pairs,
t), if s has initial knowledge about the network, then it might discover a path with
more unavailable links than it would have discovered with global knowledge.

The problem of a significantly increased latency described in subsection 6.4.2
comes from the fact that in most connected networks, a given link is part of several
shortest paths. That is, given a G = (V, E , L,Γ, ξT , λT ) quantum network and
a virtual link at time t such that edge ∈ E ,Γ(edge, t) = True, the following
statement is true:

∃s1, e1, s2, e2 ∈ V, s1 6= e1 6= s2 6= e2 : edge ∈ path(s1,e1) ∧ edge ∈ path(s2,e2)

where path(s1,e1) and path(s2,e2) are paths discovered by nodes s1 and s2 respect-
ively using Et.

What this means essentially, is that considering each pair of vertices from V ,
and the shortest path between them, edge is part of several such shortest paths. We
could then, characterise any edge in a graph by the measure of how many shortest
paths it is part of. This will be a key idea used for the technique presented in this
chapter.

7.3 Approach taken

Previously, we have assumed that the traffic of the network is uniformly distributed.
That is, given a demand (s, e,#EPR pairs, t), s and e are sampled from the set
of vertices following a uniform distribution. For that reason, it is equally likely to
seek the shortest path between any two nodes in the network. We can make use of
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this fact and perform the link prediction technique. Link prediction means in our
case that nodes can use their

• initial knowledge about the network topology for a given time window and

• knowledge about the traffic (demands)

to "predict" whether or not a link is still available in the network topology. For
this reason, they need these two types of input data to perform link prediction. As
far as the first input data is concerned, for real-world networks, each node can use
historic data to predict the distribution of traffic over time. What this would imply,
is that these nodes can observe the traffic from previous days to refine what is the
expected traffic at each times. Then, they can see what can be accounted for each
time window when it comes to incoming demands. In the second case, we can
assume that nodes in the network perform some form of clock synchronisation and
know the starting time of certain time windows. They would also have knowledge
about the initial topology of the network at the starting time of such time windows.

So after how many demands will an edge be consumed? Let pedge be the prob-
ability that an edge is consumed for a demand.

Let path(s, e) be the shortest path between two vertices. Then we consider the
following indicator function which determines whether or not an edge is in the
shortest path: Ipath(s,e)(edge) : E 7→ {0, 1}.

Ipath(s,e)(edge) =

{
1 edge ∈ path(s, e)
0 otherwise

Using it, we can define pedge:

pedge =
∑

s,e∈V,s 6=e

Ipath(s,e)(edge)
N∗(N−1)

2

(7.1)

We can now consider the probability that it is consumed by the kth demand and
this yields a geometric distribution with the success probability of Predge(X = k).
The expectation value for this distribution is 1

pedge
. This is the expected number of

demands after which an edge will be consumed.
So what each node does when performing link prediction, is that they compute

this expectation value for all of the edges in the graph. Based on the time elapsed
from the start of the time window, they can estimate how many demands have been
served already. If certain edges are expected to be consumed, then they perform
Path Discovery in a graph where such edges are unavailable. Hence, each node
stores a collection of link consumption times for the edges in the topology.

7.4 Results and discussion

In this section, we compare the proposed link prediction approach with the classical
initial knowledge approach. As mentioned, link prediction uses local information
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about the time window to estimate the number of demands and knowledge about
the distribution of traffic.
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Figure 7.1: Link prediction starting from an initial knowledge approach in a
quantum network with 32 nodes. The virtual graph with 48 links was construc-
ted deterministically with parameters dth = 2 and maxdth = 2.

The first results for link prediction in a deterministically created quantum net-
work are shown in figure 7.1. The quantum network had 32 nodes. The underly-
ing virtual graph with 56 links was constructed deterministically with parameters
dth = 2 and maxdth = 2.

What can be observed in subfigure 7.1a is that from 6 demands the link predic-
tion approach starts to outperform the initial knowledge approach. The magnitude
of difference in average latency is higher for earlier demands (until around 30).
However, link prediction yields a lower average latency overall for this topology.

As mentioned in section 7.3, Path Discovery is performed in an updated graph
based on link consumption times. In subfigure 7.1b from 6 demands the curve for
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(a) The virtual graph with 56 links
was constructed deterministically
with parameters dth = 4 and
maxdth = 4.
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with parameters dth = 8 and
maxdth = 8.

Figure 7.2: Link prediction starting from an initial knowledge approach in a
quantum network with 32 nodes.

link prediction increases and reaches a path length more than 7 at 30 demands.
The reason for this change is the Path Discovery performed in an updated graph.
Once certain links are expected to be consumed, alternative paths are discovered.
These paths are longer on average than those discovered with the classical initial
knowledge approach.

In subfigure 7.1c the difference in link consumption rate can be observed. Link
prediction uses existing links faster than the classical initial knowledge approach.
This is related to the previous observation, that it chooses longer paths on average.

After the dth = 2 case we have considered a quantum network with a virtual
graph constructed with parameters dth = 4 andmaxdth = 4. As can be observed,
we obtain the advantage in this case as well. The link prediction algorithm, similar
to the dth = 2 case starts to take effect from 6 demands and gives considerable
advantage for around 10 more demands. For later demands, an advantage is still
achieved with link prediction, although there is a smaller difference between the
two approaches.

At last, we conducted the simulation in a quantum network with 60 virtual links
constructed deterministically. The parameters dth = 8 and maxdth = 8 were
used. Figure shows that the performance advantage gained by link prediction still
holds for a certain number of demands in this topology as well.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

Realising a quantum internet in practice would allow a perfectly secure way of
communication. Quantum networks would be provisioning quantum entangle-
ment between participating nodes. These nodes can then use shared entanglement
for quantum communication. The iterative use of the operation called entangle-
ment swap allows nodes to share entanglement even if there is no direct physical
quantum communication channel between them. With this approach, far away
nodes can also share entanglement and be able to transfer quantum information.
Entanglement is, however, a finite resource that needs to be generated and can be
consumed. This characteristic results in a dynamically changing network topology.

Modelling a quantum network becomes difficult with current network represent-
ations due to its dynamic nature. Therefore, in this thesis, we define a quantum
network as a temporal network. This definition allows us to describe the dynam-
ically changing nature of the network. We can also incorporate time windows in
which entangled links can be used for quantum communication. This model is use-
ful for describing the lifecycle of quantum networks. In practice, we envision that
traffic engineering will play a key role in quantum network routing. Our proposed
model serves as a perfect basis for the mathematical and statistical analysis of the
network.

We have then considered a centralized routing approach for the Path Discovery.
Nodes that would like to share an entangled link with another remote node dis-
cover a path based on their local state of the network topology. Our main focus
lay on the novel problem of determining the average latency in a quantum network
based on information propagation approaches. Determining the average latency
for multiple demands proves to be difficult with analytical approaches. Therefore,
we have carried out numerical simulations to determine these values for a fixed
number of demands. These simulations were carried out in network models with
different distance threshold values. We have further defined the initial knowledge,
local knowledge and global knowledge approaches. Each represents a certain level
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of information propagation. Our results showed that with the initial knowledge
approach we do not gain an advantage with a higher value of distance threshold in
the deterministically created topology. Based on our results, as the level of inform-
ation propagation is increased, the expected advantage of the distance threshold is
gradually observed. With the global knowledge approach, our results show a clear
advantage in the topologies created with higher distance threshold values. Finally,
the obtained simulation results have further shown that increasing the level of in-
formation propagation (e.g. comparing the initial knowledge and global knowledge
approaches) results in a decreased average latency.

Our proposed link prediction algorithm can be used to considerably decrease the
average latency of demands. One key factor for nodes to determine is the current
point in time in the time window. Historic data on the distribution of demands
in time windows can be used to estimate this value. Nodes can then in practice
use this estimate and their locally stored knowledge about the topology to perform
link prediction. It allows them to predict which entangled links have likely been
already consumed in the network since the start of the time window (although their
locally stored knowledge might still include them as available entangled links).
Link prediction is useful when nodes do not have a global knowledge about the
network topology. In such a case, the existing level of information propagation and
link prediction can be used together to achieve lower average latency.

8.2 Future Work

8.2.1 Fidelity constraints

In the models that we have used, we were focusing on the latency of demands.
The quality of entanglement described by its fidelity, however, affects the noise
involved in quantum communication. In our models, a minimum value for the
fidelity of entangled links was included (see [CRDW19]). This value affected the
choice of the value of the threshold time. However, nodes of the network may
request entangled links with a fidelity higher than this minimum value. Thus, nodes
could specify the requested minimum fidelity for their demand. Incorporating this
feature would make the simulation model more realistic.

8.2.2 Refined link prediction

Our proposed link prediction algorithm uses a statistical measure to compute the
expected time after which links are going to be consumed. This measure is similar
to the betweenness centrality measure in networks. It would be worth exploring,
what advantage can be gained by performing link prediction by using other cent-
rality measures.
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8.2.3 Netsquid

The quantum network simulator called Netsquid [QuT18] allows simulating the de-
cay of quantum information over time. It further incorporates modelling the noisy
operations of quantum communication. Netsquid allows simulations with specific
implementations of quantum networks such as nitrogen-vacancy centers, atomic
ensembles, trapped ions, etc.. Currently under development, Netsquid could be
used to devise routing algorithms in the physically-realistic setting.

8.2.4 Load-balanced centralized shortest path finding

Our approach was using Dijkstra’s algorithm for finding the shortest path between
source and destination. A node might discover the same path each time, however,
when there are several possible shortest paths towards the same destination. This
results in the traffic flowing the same direction. A simple theoretical solution to
such a problem would be sampling a path from all the shortest paths uniformly
at random each time. However, further, more sophisticated strategies could be
devised based on the properties of the topology. We further expect that similarly
to the classical internet, such decisions will be mostly determined by performing
traffic engineering. Thus, what could be a potentially general way of effectively
balancing the load between alternative paths, remains to be future work.
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