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A B S T R A C T

Accurately forecasting ozone levels that exceed specific thresholds is pivotal for mitigating adverse effects on
both the environment and public health. However, predicting such ozone exceedances remains challenging due
to the infrequent occurrence of high-concentration ozone data. This research, leveraging data from 57 German
monitoring stations from 1999 to 2018, introduces an Enhanced Extreme Instance Augmentation Random
Forest (EEIA-RF) approach that significantly improves the prediction of days when the maximum daily 8-hour
average ozone concentrations exceed 120 μg∕m3. A pre-trained machine learning model is used to generate
additional high-concentration data, which, combined with selectively reduced low-concentration data, forms a
new dataset for training a refined model. This method achieved an improvement of at least 8% in the accuracy
of predicting days with ozone exceedances across Germany. Our experiment underscores the approach’s value
in enhancing atmospheric modeling and supporting public health advisories and environmental policy-making
related to ozone pollution.
1. Introduction

Air pollution poses a critical challenge to environmental sustain-
ability, public health, and the vitality of ecosystems. Ground-level
ozone stands out as a particularly deleterious component, with well-
documented ramifications including respiratory illnesses in humans
and damage to agricultural and natural vegetation (Sicard et al., 2019).
For the protection of human health, the European Union’s (EU) air qual-
ity directives and the World Health Organization (WHO) guidelines set
thresholds for maximum daily 8-h ozone mean concentrations (MDA8)
(EU: 120 μg/m3, WHO: 100 μg/m3) (Hjellbrekke and Solberg, 2022).
According to EU, the number of ozone exceedance days should not
be more than 25 days per calendar year. Persistently high ozone con-
centrations continue to pose ecological threats, negatively impacting
plant and animal life as well as human health across North America,
Europe, and Asia (Zhang et al., 2019). Even under optimistic emission
scenario pathways, ozone pollution will cause additional yield losses
for wheat, soya bean and maize of between 0.1 and 11% globally
by 2030 (Emberson, 2020). Therefore, it is essential to analyze and
simulate long-term ozone changes to prevent air pollution and protect
public and ecological health.

Tropospheric ozone is generally attributed to its in situ photo-
chemical production and destruction coupled with regular intrusions
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of ozone-rich stratospheric air. Worldwide expansions in agriculture,
transportation, and industry are producing a growing burden of waste
gases, which include nitrogen oxides (especially NO and NO2) and
volatile organic compounds (𝑉 𝑂𝐶𝑠). These gases enter the atmosphere
and exacerbate the photochemical production of ozone. The atmo-
spheric chemistry of tropospheric ozone formation is complex, making
it challenging to simulate the process of tropospheric ozone forma-
tion (Lu et al., 2019). The formation of ozone can be described by the
following reactions. Under the influence of solar radiation, nitrogen
dioxide (NO2) undergoes photodissociation to yield atomic oxygen, a
process that initiates the formation of ozone (1). This atomic oxygen
rapidly reacts with diatomic oxygen to form the ozone molecule (2).

NO2 + h𝜐 → NO + O (1)

O + O2 +𝑀 → O3 +𝑀 (2)

In tandem, 𝑉 𝑂𝐶𝑠 play a crucial role in atmospheric chemistry by
oxidizing nitric oxide (NO) into nitrogen dioxide, thus fueling the con-
tinuous production of ozone. During nightfall, particularly in areas with
substantial nitric oxide emissions (e.g., power plants), ozone engages in
a chemical reaction with nitrogen dioxide, leading to the formation of
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the nitrate radical (NO3) (Finlayson-Pitts and Pitts, 1993).

O2 + O3 → NO3 + O2 (3)

Climate change and the emission of ozone precursors directly affect
the tropospheric ozone concentration. Recent research underscores the
intricate relationship between meteorological conditions and ground-
level ozone pollution. Elevated temperatures accelerate ozone forma-
tion by enhancing the rate of photochemical reactions, leading to
higher ozone concentrations, particularly in urban areas (Li et al.,
2023). Relative humidity plays a dual role; while it can facilitate ozone
formation by contributing to the formation of precursor compounds,
higher humidity generally leads to a decrease in ozone levels due to
increased ozone scavenging (Li et al., 2021). Wind patterns significantly
influence ozone distribution by dispersing or concentrating ozone and
its precursors, affecting both local and regional ozone levels (Liu and
Wang, 2020). Solar radiation, especially UV light, is a critical driver
of ozone formation, as it initiates the photochemical reactions that
produce ozone from its precursors (Fang et al., 2020).

Considering the complex formation of ground-level ozone and the
multitude of influencing factors, the role of Chemical Transport Models
(CTMs) is essential. These models not only help in predicting long-term
ozone trends but also in comprehensively understanding the nuanced
effects of various environmental and anthropogenic factors on atmo-
spheric ozone concentrations. Travis and Jacob (2019) investigated the
reasons for the difficulty during the ozone diurnal cycle simulation
by CTM. The GEOS-Chem model was used to simulate the case study
of the NASA SEAC4RS aircraft campaign in the Southeast U.S. It is
found that the proper representation of diurnal variations in mixed
layer dynamics and ozone deposition velocities is critical in models to
describe the diurnal cycle of ozone. Ryu et al. (2019) evaluate and
compare the WRF-Chem simulations driven by Rapid Refresh (RAP)
and the Global Forecast System (GFS) forecasts over the Contiguous
United States (CONUS) for 2016 summer. They found that the ozone
concentration mainly responds to changes in the boundary layer height,
which directly affects the mixing of ozone and its precursors. The article
also shows that the CTM overpredicts the ozone concentration and gives
false alarms. The ozone simulation error from the CTM model is not
an exception. Manders et al. (2012) found that LOTOS-EUROS under-
estimates the daily ozone maximum, especially for the highest ozone
peaks. According to previous model validation and intercomparison
studies (Otero et al., 2018), the ozone simulation error could be caused
by the uncertainties (emissions, meteorological parameters, etc.) in the
CTM.

The interplay between ozone concentrations and meteorological fac-
tors advances, evidenced by research like Otero et al. (2018), the focus
expands to include advanced modeling techniques. Traditional statis-
tical learning methods and modern machine learning (ML) models,
such as deep learning, are increasingly employed to understand these
dynamics. Zhang et al. (2023) developed a 2-D convolutional neural
network-surface ozone ensemble forecast (2DCNN-SOEF) system and
applied it to 216-h ozone forecast in Shenzhen, China. The model can
quantify the uncertainty of surface ozone forecast due to weather fore-
cast uncertainties. Using spatial patterns of weather, the model detects
the ozone-meteorology relationship. The XGBoost (Extreme Gradient
Boosting) was used to simulate the variability in urban ozone over Doon
valley of the Himalaya (Ojha et al., 2021). The model can reproduce
the ozone data based on the training with past variations in ozone and
meteorological conditions. Given the lack of high-resolution observa-
tion, ML simulations can be used to assess the regional impacts of ozone
on health and agriculture. Feng et al. (2019) compared three different
models – the Weather Research and Forecasting Model coupled with
Chemistry (WRF-CAMQ), Random Forest (RF), and Recurrent Neural
Networks (RNN) – for forecasting ozone pollution over a 24-h period in
Hangzhou. The study highlighted the importance of individual features
2

in the RF model and found that the RNN model outperformed the
chemical transport model (CTM) and other ML models in predicting
ozone levels.

Despite advancements in atmospheric research, accurately predict-
ing high ozone concentrations, especially exceedances, poses a sig-
nificant challenge for machine learning models (Eslami et al., 2020).
Crucial for addressing environmental and public health concerns due
to the serious health risks of high ozone levels (Zhang et al., 2019),
this area of research confronts a notable difficulty: the infrequency of
high ozone exceedances leads to imbalanced datasets with sparse high-
concentration observations. Such scarcity complicates the task of ma-
chine learning models in forecasting these rare but vital events (Gong
and Ordieres-Meré, 2016; Fan et al., 2022). Therefore, the development
of innovative machine learning strategies that effectively handle imbal-
anced datasets to enhance the precision of high ozone predictions is
urgently needed (Chao and Zhang, 2023).

To tackle the challenge of imbalanced datasets in atmospheric sci-
ence, researchers have explored innovative methods for more accu-
rate predictions. Gong and Ordieres-Meré (2016) investigated vari-
ous resampling techniques like the Synthetic Minority Over-sampling
Technique (SMOTE) alongside machine learning algorithms to balance
datasets. Similarly, Tsai et al. (2009) utilized cost-sensitive neural
networks, adding weighted losses to focus on rare high ozone days.
Recently, Vicente et al. (2024) introduced two distinct approaches
to address data imbalance in atmospheric modeling. The first is a
threshold-moving method, which adjusts classification thresholds to
enhance the model’s sensitivity to less frequent high ozone events.
The second approach, an error-tolerance increment method, proposes
increasing the tolerance for classifying a prediction as an exceedance
by lowering the exceedance threshold. These methods enhance model
performance by focusing on rare but critical categories, such as extreme
ozone pollution, thereby improving the model’s prediction accuracy for
high ozone concentrations.

To address the challenge of poor prediction accuracy on days with
ozone exceedances (MDA8 over 120 μg/m3), due to the rarity of such
events, we introduce the Enhanced Extreme Instance Augmentation
for Random Forest Modelling (EEIA-RFM) method. This approach is
designed to overcome the issues of imbalanced datasets and the scarcity
of extreme ozone events in the measurement datasets. Through the
generation of synthetic data mimicking these rare occurrences, EEIA-
RFM substantially boosts model precision. Specifically, our study seeks
to contribute to this evolving field by investigating the relationship be-
tween Maximum Daily 8-h Average (MDA8) ozone concentrations and
meteorological factors in Germany. Utilizing data from 57 monitoring
stations spanning from 1999 to 2018, we address the uneven distribu-
tion and rarity of high-concentration ozone events. We employ K-means
clustering, guided by the Elbow Method, to categorize observation sites
based on their geographical coordinates. This step ensures our analysis
is sensitive to the distinct environmental conditions of each region. In
each cluster, the EEIA-RFM method augments the dataset with syn-
thetic instances of high ozone days. By incorporating more generated
exceedance scenarios, the model gains additional insights into the
characteristics of ozone exceedances, allowing for more nuanced model
training. Collectively, these methods enable more accurate and region-
specific forecasting of ozone levels, a crucial factor in understanding
atmospheric dynamics and their public health implications.

In Section 2, we delve into the specifics of our data processing
methodologies and outline the evaluation criteria that underpin our
research. Section 3 details the machine learning methods we have ap-
plied, including K-means clustering, Random Forest, and our innovative
EEIA-RFM approach. Section 4 presents the outcomes of our clustering
analysis and conducts a thorough comparison of different models in
forecasting ozone levels. Finally, Section 5 brings together our key
findings, offering a comprehensive summary and drawing conclusions

from our extensive study.
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Fig. 1. Distribution of MDA8 ozone concentrations in German (1999–2018).

2. Dataset characterization and model evaluation framework

2.1. Dataset overview

The dataset employed in this study is comprised of meteorological
and air pollution data. For meteorological insights, we utilized data
from the E-OBS dataset (Cornes et al., 2018), offering daily observations
across Europe at a 0.25◦×0.25◦ spatial resolution. Our analysis included
seven critical meteorological features: daily mean temperature (TG),
daily maximum temperature (TX), daily precipitation sum (RR), daily
averaged sea level pressure (PP), daily averaged relative humidity
(HU), daily mean wind speed (FG), and daily mean global radiation
(QQ). The comprehensive processing by E-OBS ensured the dataset was
free from missing values, facilitating our analysis without the need for
additional data imputation methods.

The air pollution component of our study was derived from data
provided by the German Environment Agency (Umweltbundesamt,
UBA) (Bollmeyer et al., 2015), focusing specifically on hourly ozone
measurements from the years 1999 to 2018. For quantifying ozone
pollution severity, we calculated the maximum daily 8-h mean (MDA8)
concentration of ozone. All meteorological and air pollution data
utilized in this study underwent a thorough normalization process to
enhance model training speed and stability.

A comprehensive screening process resulted in the selection of 57
monitoring stations across Germany for our study. These stations were
chosen for their consistent data quality, each presenting less than 5%
missing ozone values annually. For handling missing ozone values, we
employed the temporal nearest-neighbor interpolation method. This
approach interpolates missing entries by substituting them with the
closest available value within the same temporal series from the same
monitoring station. The interpolation process was efficiently conducted
using the ‘Scipy’ Python package (Virtanen et al., 2020). Fig. 3 il-
lustrates the distribution of the selected observatories, showcasing a
diverse range of environmental settings for comprehensive analysis.
This includes three stations near Bremen in the northwest, eleven
stations around Berlin in the northeast, and the remainder strategically
located across southern Germany. This geographic diversity ensures a
robust representation of varied atmospheric conditions in our study.
Notably, all these stations are situated at altitudes below 1000 m. This
uniformity in altitude helps minimize the influence of elevation on the
ozone-meteorological relationship, ensuring a more focused analysis of
other environmental factors.

Fig. 1 depicts the MDA8 ozone concentration distribution from 57
monitoring stations across Germany, spanning from 1999 to 2018. The
data, organized in 10 μg/m3 intervals, primarily peaks within the 50-
80 μg/m3 range, and shows a significant decrease in frequency for
concentrations over 70 μg/m3. Instances where ozone levels exceed
100 or 120 μg/m3 are particularly rare. This infrequency of high ozone
3

events presents a significant challenge for machine learning algorithms,
as it limits the data available for accurately predicting these sporadic
exceedance events.

2.2. Evaluation and validation

This section delineates the metrics and validation techniques em-
ployed to assess the efficacy of our machine learning models in ac-
curately forecasting ozone concentrations, a crucial aspect with direct
implications for public health and environmental monitoring.

Evaluation Metrics: To comprehensively gauge the model’s accu-
racy in ozone prediction, we employ:

• Root Mean Squared Error (RMSE) (Hodson, 2022): This metric
provides an average of the model’s prediction errors, giving us a
measure of the precision of ozone concentration forecasts.

• Coefficient of Determination (𝑅2) (Chicco et al., 2021): 𝑅2 as-
sesses the proportion of variance in observed ozone concentra-
tions that is predictable from our model, indicating the model’s
overall fit.

• Prediction Accuracy (PA): Focusing on the public health impact of
ozone, PA measures the model’s ability to accurately predict days
exceeding the critical ozone threshold of 120 μg/m3, reflecting its
capacity to flag potential health risk days.

Confusion Matrix Analysis (Caelen, 2017): To further dissect the
model’s prediction capabilities, particularly in identifying exceedance
days, we analyze:

• True Positives (TP) and True Negatives (TN): Reflecting correctly
identified exceedance and non-exceedance days, respectively.

• False Positives (FP) and False Negatives (FN): Indicating instances
of misclassification, with FP representing overestimation and FN
underestimation of high ozone days.

Cross-Validation Strategies: We adopt three distinct cross-
validation methods, each with a default fold number of 5, to ensure
a thorough evaluation of our models:

• Traditional Cross-Validation (Browne, 2000): This approach in-
volves randomly dividing our entire dataset into five subsets. In
each validation cycle, or ‘fold’, four subsets are used to train
the model, while the fifth subset is reserved for testing its per-
formance. This method offers a well-rounded assessment of the
model’s accuracy and generalizability across different data seg-
ments.

• Year-Based Cross-Validation (Xue et al., 2019): Recognizing the
importance of temporal dynamics in atmospheric data, we im-
plement year-based cross-validation. Here, data is partitioned
based on distinct calendar years, with each fold representing a
different year or set of years. This strategy is crucial for evalu-
ating the model’s ability to perform consistently across varying
atmospheric conditions that can change from year to year due to
environmental and climatic shifts.

• Station-Based Cross-Validation (Xiao et al., 2018): Given the po-
tential for varied environmental conditions at different monitor-
ing stations, this method validates the model’s performance by
treating each station as a unique fold. This ensures the model is
robust and adaptable across different geographic locations and at-
mospheric backgrounds. When the number of stations is less than
five, we adapt by using a leave-one-out approach to maximize the
use of available data for validation purposes.

These rigorous evaluation criteria and consistent cross-validation
methodologies collectively provide a comprehensive assessment of our
machine learning model’s performance in long-term ozone forecasting,
with a particular emphasis on high ozone concentration events crucial
for public health assessment.
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3. Machine learning methods

3.1. K-means clustering and Elbow method

To refine the predictive accuracy of our machine learning models,
we employed the K-means clustering algorithm for segmenting air
pollution observation sites across Germany. K-means is an unsupervised
learning technique that categorizes data into a specified number of
clusters (Ahmed et al., 2020). It does so by assigning each data point
(in our case, observation sites) to the nearest cluster center, also known
as the centroid, and then recalculating the centroid of each cluster.
This process iteratively continues until the cluster assignments no
longer change significantly, ensuring each site is grouped based on
geographical proximity. In our experiments, to maximize the similarity
in background factors (such as topography, climate, and emissions)
among ozone monitoring stations within the same cluster, we chose
the geographic coordinates (latitude and longitude) as the feature for
clustering.

Determining the optimal number of clusters is crucial for the effec-
tiveness of K-means clustering. We used the Elbow Method to identify
this number (Liu and Deng, 2020). This method involves calculating
the Within-Cluster Sum of Squares (WCSS), which is the sum of squared
distances between each data point and its cluster centroid. By plotting
the WCSS against different numbers of clusters, we looked for the
‘elbow point’ — the point where the rate of decrease sharply changes,
indicating a diminishing return in explaining data variance with ad-
ditional clusters. This point suggests a balance between the model’s
simplicity and the detailed representation of data, marking the optimal
cluster count for our analysis.

The application of K-means clustering, guided by the Elbow Method,
ensures that our machine learning models are informed by data sets
that are both geographically and environmentally coherent. Such an
approach enhances the models’ relevance and accuracy in predicting
atmospheric conditions specific to different regions.

3.2. Random forest methodology for atmospheric data analysis

The Random Forest (RF) algorithm represents a cornerstone of our
machine learning approach, offering robustness and versatility in han-
dling complex atmospheric datasets (Wang et al., 2021). As a method
rooted in ensemble learning, RF integrates multiple decision trees to
form a comprehensive model. This integration enhances the model’s
predictive accuracy and reduces the risk of overfitting, which is par-
ticularly valuable when dealing with intricate patterns in atmospheric
data.

Each decision tree in the RF model is constructed using a random
subset of the data and a random selection of features at each split.
This randomness introduces diversity among the trees, leading to a
more reliable aggregate prediction. When predicting ozone levels, the
RF model considers various meteorological factors and produces an
outcome that reflects the majority vote or the average prediction across
all trees.

One of the key strengths of RF in atmospheric studies is its ability
to capture non-linear relationships between variables, such as the com-
plex interactions between different meteorological factors and ozone
levels. This capability is crucial for accurate long-term forecasting in
environmental science.

Furthermore, the RF model provides insights into feature impor-
tance, allowing us to identify which meteorological variables most
significantly influence ozone concentrations. This aspect is particularly
beneficial for understanding and interpreting the underlying drivers of
atmospheric phenomena.

In our application of RF, we tune parameters such as the number
of trees and the depth of each tree to optimize the model for our
specific dataset. Through this careful calibration, we ensure that the
RF model is well-suited to capture the nuances of ozone prediction in
4

varied atmospheric conditions across Germany. o
3.3. Enhancing ozone exceedance predictions with EEIA-RFM

The Enhanced Extreme Instance Augmentation for Random Forest
Modelling (EEIA-RFM) is an approach we developed to tackle the
prevalent challenge in atmospheric science: accurately predicting ozone
exceedance days in dataset where high-concentration ozone data is
sparse. This method is specifically engineered to boost the predictive
performance of machine learning models in environmental datasets
where extreme events are under-represented. The method unfolds in
several strategic steps:

1. Data Partitioning: The dataset is split into a training set of size
𝑁 and a test set for evaluation.

2. Extreme Data Isolation: From the training set, extreme data in-
stances, defined as those with ozone levels exceeding 120 μg/m3,
are identified and isolated. These instances form a subset of size
𝑛.

3. Model Training on Extreme Data: The Random Forest model
is trained on this extreme data subset (𝑛).

4. Synthetic Data Generation: The model predicts new extreme
instances using randomly selected meteorological inputs from
the extreme subset. This step generates 𝐾 × 𝑛 synthetic extreme
instances, where 𝐾 is a factor determined by cross-validation to
achieve data balance.

5. Dataset Pooling and Balancing: In this step, the 𝐾 × 𝑛 newly
generated exceedance instances from step 4 are combined with
a randomly selected subset of the non-exceedance data from
the original training dataset (𝑁). Specifically, we randomly
select (𝑁 − 𝐾 × 𝑛) non-exceedance instances for inclusion. This
approach ensures that the enhanced dataset remains balanced
and maintains its original size of 𝑁 . The final dataset for train-
ing the model thus comprises the 𝐾 × 𝑛 newly generated ex-
ceedance instances and a representative subset of the original
non-exceedance data, providing a balanced and comprehensive
set for effective model training.

6. Model Training on Balanced Dataset: The newly balanced
dataset, resulting from the integration of 𝐾 × 𝑛 newly generated
exceedance instances with the selected non-exceedance data, is
employed to train a Random Forest model. This dataset now
features an increased proportion of extreme data by a factor of
K, enhancing the model’s focus on predicting ozone exceedances.
The training on this enriched dataset is expected to improve
the model’s accuracy in forecasting high-concentration ozone
events.

7. Performance Comparison: The model’s efficacy is assessed by
comparing its prediction accuracy with that of a model trained
on the original, unbalanced dataset.

The EEIA-RFM method, by specifically focusing on enhancing the
odel’s exposure to high ozone events, aims to bridge a crucial gap in

tmospheric data analysis. Its synthetic data generation and balancing
teps are key innovations that enable the model to learn from a more
epresentative sample of ozone exceedance scenarios. This approach
ot only promises to increase the accuracy in forecasting critical ex-
eedance events but also offers insights into the complex dynamics
f ozone behavior under extreme conditions. As such, EEIA-RFM has
he potential to be a general tool for dealing with forecasts of rare
vents in environmental modeling, providing a more reliable tool for
ublic health advisories and environmental policy-making in the face
f atmospheric pollution challenges.

. Experiments and results

.1. Cluster result

In our pursuit of developing robust machine learning models for

zone prediction, we initiated our analysis by segmenting air pollution
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Fig. 2. Optimal cluster determination using the Elbow Method.

observation sites across Germany into distinct clusters. This preliminary
step is essential to mitigate the diverse influences of site-specific char-
acteristics on the model’s predictive performance. Primarily leveraging
geographical location data (latitude and longitude), due to the absence
of comprehensive emissions and demographic details, we employed
clustering as a foundational strategy to categorize these sites. Here we
used K-means algorithm for clustering.

In determining the appropriate number of clusters for the k-means
algorithm, the Elbow Method was applied. By plotting the Within-
Cluster Sum of Squares (WCSS) against various numbers of clusters,
we observed a distinct ‘elbow’ in the graph. This elbow point, depicted
in Fig. 2, was most apparent at the 4-cluster mark. This point is
significant as it represents where the addition of more clusters ceases
to provide substantial benefits in reducing within-cluster variance,
suggesting a balance between model simplicity and explanatory power.
Consequently, we chose four clusters to capture the diverse environ-
mental conditions across Germany more effectively, ensuring a nuanced
approach in our subsequent modeling.

In Fig. 3, the geographical distribution of air quality monitoring
sites across Germany is segmented into four distinct k-means clusters,
each representing varied environmental and meteorological conditions.
Clusters 2 and 3 are predominantly urban, characterized by high pop-
ulation densities in their respective regions. Cluster 3, situated in
northwestern Germany, includes a smaller collection of only three
urban stations around Bremen. The coastal proximity of Bremen con-
tributes to a comparatively cleaner environment in this cluster. In
contrast, Cluster 2 in northeastern Germany comprises 11 stations, with
seven situated around Berlin, representing a mix of urban, suburban,
and rural backgrounds. As indicated in Section 4.2 of our study, the
diversity in station types does not significantly impact the perfor-
mance of machine learning models in simulating ozone concentrations.
Meanwhile, Clusters 0 and 1, located in the southeast and southwest
of Germany respectively, exhibit more dispersed station distributions.
Cluster 0 contains 13 stations, some of which are situated in moun-
tainous areas, typically associated with lower emission sources. This
contrasts with its urban stations, including three in Munchen. Cluster 1,
the largest cluster with 30 stations, presents a complex environmental
background. This cluster includes stations in industrial cities with
significant emissions from manufacturing and automotive sectors, as
well as areas within the Black Forest, indicative of a wide range of
emission sources and environmental conditions.

Table 1 presents ozone statistics collected in Germany from 1999 to
2018, further highlighting the regional air quality differences. Cluster
3 (Bremen area) exhibits the lowest average ozone concentration at
58.26 μg/m3, along with the fewest exceedance days at 256.67 days,
attributed to its cleaner environment. In contrast, Cluster 1 in South-
west Germany records the highest mean ozone level at 66.90 μg/m3,
accompanied by a substantial 562.13 exceedance days, reflecting its in-
dustrial backdrop. This disparity amplifies the need for region-specific
machine learning models in ozone prediction, considering the unique
5

Fig. 3. Geographical distribution of air quality monitoring stations in Germany: K-
means clustering results — inset map of Europe in the top right corner highlighting
Germany in yellow.

Table 1
German ozone statistics (1999–2018) by clusters.

Cluster Mean Std Max Number of exceedance
days (>120 μg/m3) per
Station

Proportion of
exceedance days
over 20 years

Cluster 0 64.24 31.04 183.39 343.69 4.71%
Cluster 1 66.90 34.93 208.67 562.13 7.70%
Cluster 2 65.32 31.38 190.79 378.64 5.19%
Cluster 3 58.26 30.15 206.20 256.67 3.52%

environmental and industrial characteristics of each cluster. Moreover,
the data reveals that over the two-decade span, the incidence of ozone
exceedances in all clusters remains below 10%, with Cluster 3 expe-
riencing a mere 3.52%. This low frequency highlights the scarcity of
ozone exceedance days and underscores the importance of methods like
extreme data enhancement in ozone forecasting.

4.2. Comparative analysis of machine learning models in ozone prediction

In this section, we embark on a comparative analysis of machine
learning models extensively utilized in ozone research. Our approach
involves training each model on data from the four distinct clusters
identified previously, employing a 5-fold cross-validation method for
evaluation. Given the nature of our dataset, we specifically exclude
Recurrent Neural Networks (RNN) (Chang et al., 2020) due to the
absence of a time series prediction component in our experiment.
Likewise, Convolutional Neural Networks (CNN) (Eslami et al., 2020)
are omitted, considering the relatively low dimensionality of our input
features. The core objective is to assess the efficacy of selected machine
learning models in simulating MDA8 ozone concentrations based on
meteorological factors. For this purpose, we focus on three models
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Fig. 4. Comparative scatter plot: Machine learning model predictions in Cluster 2, with best fit line shown in red.
Table 2
Comparison of machine learning model performance by clusters.

Model Cluster 0 Cluster 1 Cluster 2 Cluster 3

RMSE R2 PAa RMSE R2 PA RMSE R2 PA RMSE R2 PA

RF 15.17 0.77 53% 15.06 0.79 54% 11.5 0.87 63% 11.26 0.86 65%
MLP 15.29 0.79 53% 17.16 0.75 39% 14.39 0.77 45% 13.87 0.75 49%
MLR 17.98 0.73 32% 18.91 0.69 27% 16.93 0.71 23% 16.74 0.68 18%

a Prediction accuracy of ozone exceedances with 120 μg/m3 threshold.
that have demonstrated utility in atmospheric studies: Multiple Linear
Regression (Han et al., 2020), Random Forest (Weng et al., 2022), and
Multilayer Perceptron (Chattopadhyay et al., 2019).

In the modeling process, we utilized seven meteorological features
(TG, TX, RR, PP, HU, FG and QQ), as delineated in Section 2.1, to serve
as input variables. Preliminary attempts to integrate annual average
emissions data for NO𝑋 , 𝑁𝑀𝑉 𝑂𝐶, and CH4 were made; however, this
data was ultimately excluded from the final model inputs due to its
negligible impact on daily prediction accuracy. The output of these
models is the Maximum Daily 8-h Average (MDA8) ozone concentra-
tion, directly addressing our objective to enhance the accuracy of ozone
exceedance forecasts. Three distinct machine learning models were
independently trained on the dataset from the four identified clusters.
The results of these individual training are consolidated in Table 2,
which demonstrates that the Random Forest (RF) model distinctly out-
shines the others in performance metrics across all clusters. It records
the highest R-squared values, with a peak of 0.87 in Cluster 2 and 0.86
in Cluster 3, and it also exhibits the lowest RMSE, particularly notable
at 11.26 in Cluster 3. The clusters with geographically proximate
stations, especially Cluster 3, where all stations are situated around
Bremen, show improved model performance. This suggests that the
closer station locations within these clusters, which likely experience
more similar meteorological conditions, contribute to a more accurate
modeling outcome. In contrast, Clusters 0 and 1, which have a wider
spread of stations over larger regions, exhibit more variable results,
indicating that the geographical dispersion of stations may introduce
additional complexities to the model’s predictive ability. The Multi-
layer Perceptron (MLP) and Multiple Linear Regression (MLR) models
demonstrate predictive potential but lag behind the Random Forest
(RF), with the MLP edging out the MLR on RMSE and R2. However,
all models show limited Prediction Accuracy for exceedance days.
Fig. 4 displays scatter plots from diverse machine learning models for
Cluster 2, centered around Berlin, and serves as an illustrative case
study. These plots underscore the Random Forest model’s heightened
precision, notably its alignment with the observed ozone values.

The different performance between the machine learning models
can be attributed to the non-linear nature of the ozone-meteorological
relationship. RF’s ensemble approach captures this non-linearity, as
evidenced by its consistent performance, particularly in clusters with
closer station proximity. MLR’s linear assumptions fail to account for
this complexity, resulting in lower performance metrics. MLP’s poten-
tial is hampered by the absence of broader environmental data, such as
6

Table 3
Comparison of Random Forest model by different CV methods.

Cluster Year-CV Station-CV Sample-CV

RMSE R2 PA RMSE R2 PA RMSE R2 PA

Cluster 0 16.52 0.76 50% 15.21 0.81 58% 15.17 0.77 53%
Cluster 1 18.15 0.74 52% 16.15 0.77 51% 15.06 0.79 54%
Cluster 2 15.50 0.73 45% 11.15 0.86 65% 11.50 0.87 63%
Cluster 3 15.21 0.75 51% 11.17 0.87 60% 11.26 0.86 65%

emissions and land use, making its training more challenging compared
to RF. Given RF’s robust predictions with the available data, it has been
selected for further experimentation.

The ensemble nature of RF, which mitigates overfitting and adeptly
handles environmental data complexity, makes it well-suited for in-
depth analysis using both station-based and year-based cross-validation
methods. The results from Table 3 suggest that the Random Forest
(RF) model’s performance is influenced by the cross-validation (CV)
method employed, which varies depending on the cluster. Specifically,
Station-CV demonstrates enhanced performance, with Clusters 2 and
3 achieving RMSE scores of 11.15 and 11.17, respectively, alongside
high R2 values of 0.86 and 0.87. The enhanced performance observed
in Station-CV, especially within Clusters 2 and 3, is likely a consequence
of the similarity in meteorological and emission conditions among these
clusters. This can be associated with the stations being geographically
close to each other, implying that they share similar environmental
conditions. Conversely, in the two clusters located in southern Ger-
many, the stations within the same cluster are more widely distributed,
leading to variations in background conditions. This greater dispersion
contributes to larger simulation errors (RMSE) in these clusters.

On the other hand, Year-CV exhibits weaker performance across all
clusters, which could be due to the absence of certain dynamic factors
in the model’s input features. The lack of emission data, along with
other influential factors such as population density and traffic patterns,
which can change significantly over time, likely hampers the model’s
ability to account for annual variations in ozone levels. Since emission
factors are particularly susceptible to yearly fluctuations due to pol-
icy changes, economic growth, and technological advancements, their
omission might be particularly impactful on the Year-CV’s effectiveness.

In summary, the superior performance of Station-CV reinforces
the importance of spatial homogeneity provided by clustering when
training machine learning models for environmental applications. The
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Table 4
Comparison of RF and EEIA-RF model performance by clusters.

Cluster RF EEIA-RF

RMSE R2 PA RMSE R2 PA

Cluster 0 15.17 0.77 53% 14.24 0.81 78%
Cluster 1 15.06 0.79 54% 15.97 0.78 69%
Cluster 2 11.50 0.87 63% 11.27 0.88 76%
Cluster 3 11.26 0.86 65% 11.59 0.86 73%

underperformance of Year-CV underscores the need for incorporating
time-varying predictors to better capture the annual variability of ozone
concentrations, especially in regions like Germany where emissions and
other anthropogenic factors can change significantly from year to year.

4.3. Enhanced extreme instance augmentation for random forest modelling

In practical scenarios, accurately forecasting the number of days
with ozone exceedances is crucial for assessing ozone pollution. How-
ever, the infrequent occurrence of high-concentration ozone days
within large datasets presents a challenge for machine learning models.
Referring to Table 1, even the cluster with the most exceedance days
over a 20-year period—Cluster 1—only accounts for 7.7% of the data,
with 562.13 days. Conversely, Cluster 3, with the fewest exceedance
days at 256.67, represents a mere 3.52% of the total observations.
This imbalance, characterized by a scarcity of high-concentration data
points, impedes the ability of data-driven machine learning models to
forecast ozone exceedances with high accuracy.

In our experimental assessment, the Enhanced Extreme Instance
Augmentation Random Forest (EEIA-RF) method was rigorously tested
across each of the four clusters. For each cluster, we partitioned the
data into distinct training and test sets. The model training and EEIA
processes were exclusively applied to the training set, ensuring that the
test set remained independent for unbiased evaluation. This approach
provided a focused and tailored assessment for each cluster, enabling
a precise evaluation of the method’s efficacy. To determine the factor
𝐾, indicative of the increased proportion of exceedance data in the
EEIA method, we tested values from 2 to 10 through cross-validation.
This range was selected to comprehensively assess the method’s perfor-
mance across various levels of data augmentation. The optimal value of
𝐾 was chosen based on the best model performance. We employed both
raditional Random Forest (RF) and EEIA-RF models to elucidate the
mpact of our augmentation strategy on prediction performance. The
ssessments in this section were consistently evaluated using traditional
sample-based) cross-validation methods. The results are summarized
n Table 4, highlighting the outcomes of this comparative study.

The EEIA-RF approach yielded a pronounced enhancement in Pre-
iction Accuracy (PA) for ozone exceedance days across all clusters. For
nstance, in Cluster 0, the application of EEIA-RF not only increased
he Prediction Accuracy (PA) from 53% (with standard RF) to 78%,
ut it also led to a reduction in the Root Mean Squared Error (RMSE)
nd an increase in the R-squared values, indicating enhanced model
erformance and fit. This pattern of increased PA with negligible
hanges in RMSE and R2 was consistent in Clusters 2 and 3, with
A improvements of 13% and 8%, respectively. Although Cluster 1
xperienced a marginal decrease in R-squared and a small increase in
MSE, the PA still rose substantially from 54% to 69%. The consistent

mprovements in Prediction Accuracy across all clusters, especially in
dentifying critical ozone exceedance days, underscore the effectiveness
f the EEIA-RF method in enhancing ozone concentration forecasts,
vital factor for atmospheric pollution assessment and public health

rotection.
In our continued analysis with Cluster 2 as a case study, we examine

he scatter plots depicting the prediction results for both the RF and
EIA-RF models. As demonstrated in Fig. 5, these scatter plots, partic-
larly the fitted lines within them, reveal a notable similarity in the
7

predictive behavior of the two Random Forest methodologies. These
results underscore the EEIA-RF method’s efficacy in addressing the data
imbalance challenge, particularly in enhancing the model’s predictive
power for critical exceedance days. Despite some trade-offs, the no-
table gains in PA confirm that the augmentation method provides a
significant advantage in predicting rare but critical high-concentration
ozone events, which is of utmost importance for environmental health
monitoring and policy-making.

The efficacy of the Enhanced Extreme Instance Augmentation Ran-
dom Forest (EEIA-RF) method in improving ozone exceedance predic-
tions is rooted in its approach to data balancing and model integra-
tion. By augmenting the training dataset with synthetically generated
high-concentration ozone instances, the EEIA-RF method corrects for
the underrepresentation of such events, leading to a more balanced
dataset. This enhancement enables the Random Forest algorithm to
better capture the occurrence of extreme ozone levels, leveraging the
model’s ensemble learning capabilities to discern the complex patterns
associated with these events.

In Fig. 6, the box and whisker plots compare the observational data
and model predictions within Cluster 2. The general underestimation of
ozone concentrations by both the RF and EEIA-RF models is evidenced
by the lower quartiles and medians. This trend is pronounced when
analyzing the complete test dataset. In contrast, during exceedance
days (ozone concentrations > 120 μg/m3), the predictive distribution
aligns more closely with observations, particularly for the EEIA-RF
model which achieves a median prediction (129.69 μg/m3) closely
approximating the observed median (132.44 μg/m3). This comparison
highlights the improved predictive capability of the EEIA method for
critical exceedance forecasting. It is important to note that both models
exhibit limitations in predicting ozone levels above 160 μg/m3, resulting
in a predictive distribution that appears lower than the observed dis-
tribution for exceedance days. Nonetheless, our primary concern aligns
with public health objectives—accurately predicting the frequency of
days exceeding the 120 μg/m3 ozone threshold. This is the level beyond
which adverse health effects become a significant concern.

Fig. 7 delineates the outcomes for the Random Forest (RF) and
Enhanced Extreme Instance Augmentation Random Forest (EEIA-RF)
models, with the latter showing a significant decrease in missed high
ozone events from 329 to 199 and an increase in accurately identified
exceedance days from 526 to 656. This improvement is crucial for the
accurate prediction of ozone pollution, which is vital for public health
guidance and environmental policy.

Despite these advances, the EEIA-RF model may incline towards
overestimating the number of exceedance days due to its data augmen-
tation technique, which could amplify the frequency of predicted high
ozone levels. For instance, an increase in false alerts from 114 to 161
suggests a possible overestimation bias. This conservative stance, while
potentially overstating the number of exceedance days, remains a crit-
ical area for refinement to ensure the model mirrors true atmospheric
behavior.

To avoid such overestimation, it is essential to calibrate the syn-
thetic data generation carefully, ensuring that the augmented instances
are representative of the true distribution of extreme events. Moreover,
the performance of the EEIA-RF model must be rigorously validated
against an independent test set to ensure that any improvements in
predictive accuracy are due to genuine learning and not an artifact
of artificial data inflation. By continuously evaluating and adjusting
the proportion of synthetic data in the training process, the EEIA-RF
method can maintain the delicate balance necessary for accurate and
reliable exceedance forecasting.

During the training process of the Random Forest model, we were
able to ascertain the feature importance of each meteorological vari-
able on ozone concentration predictions. Despite the variations in
geography and emissions across clusters, the importance ranking of
meteorological features remained consistent. This uniformity in the

importance ranking across different geographical areas underscores the
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Fig. 5. Scatter plots of RF and EEIA-RF Models for MDA8 ozone forecasting in Cluster 2, with best fit line shown in red.

Fig. 6. Box and whisker plot of RF and EEIA-RF model predictions for MDA8 ozone in Cluster 2: The upper subfigures represent the complete test dataset, while the lower
subfigures focus on instances with observed values exceeding the 120 μg/m3 ozone threshold. Red lines indicate mean values, and triangles denote medians, with quartile values
detailed within the plots.

Fig. 7. Comparative confusion matrices for RF and EEIA-RF models in Cluster 2 (2015–2018 validation period).
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Table 5
Comparison of confusion matrices for different methods in cluster 2.

Method Confusion matrix (Unnormalized) Confusion matrix (Normalized)

TN FP FN TP TN % FP % FN % TP %

Ori-RF 15 001 84 412 574 99.44% 0.56% 41.79% 58.22%
EEIA 14 884 201 196 790 98.67% 1.33% 19.88% 80.12%
SMOTE 14 893 192 233 753 98.73% 1.27% 23.63% 76.37%
Cost-sensitive (Weighted Loss) 14 961 124 348 638 99.18% 0.82% 35.29% 64.71%
Error tolerance increment 14 870 215 239 747 98.57% 1.43% 24.24% 75.76%
I

D

c

significant potential impact of incorporating omitted variables, such as
emissions data and geographic background. Notably, solar radiation,
temperature, and humidity emerged as the most influential predictors.
With the integration of the EEIA method, temperature’s influence in-
creased, reflecting its role in enhancing photochemical reactions under
high ozone scenarios, a finding that aligns with existing literature (Li
et al., 2023). The omission of emissions data in our model precludes a
comprehensive simulation of the complex interplay of factors affecting
ozone formation, thus a deeper exploration of meteorological elements’
impact on ozone concentrations was not within the scope of this study.

To comprehensively evaluate the efficacy of the Enhanced Extreme
Instance Augmentation (EEIA) approach, our study involves a compar-
ative analysis with both established and novel methods for addressing
data imbalance in atmospheric studies. We focus on Cluster 2 as a
case study to juxtapose the EEIA method with the Synthetic Minority
Over-sampling Technique (SMOTE) (Gong and Ordieres-Meré, 2016)
and Cost-Sensitive (Weighted-Loss) methods (Tsai et al., 2009). Addi-
tionally, due to similar results observed between threshold moving and
error tolerance increment methods, we present only the latter for clarity
and conciseness (Vicente et al., 2024). Each method employed is based
on a Random Forest model, with hyperparameters optimized through
cross-validation.

Our findings are detailed in Table 5, featuring both unnormalized
and normalized confusion matrices. The analysis primarily focuses
on two crucial metrics: the True Positive (TP) rate, reflecting the
accurate prediction of ozone exceedance days, and the False Positive
(FP) rate, indicative of mistakenly predicted non-exceedance days as
exceedances. The EEIA-RF model demonstrates a superior TP rate of
80.12%, surpassing SMOTE’s 76.37%, Cost-Sensitive’s 64.71%, and
Error Tolerance Increment’s 75.76%. In contrast, the EEIA-RF method
exhibits an FP rate of 1.33%, which, while lower than the Error Tol-
erance Increment method (1.43%), is marginally higher than SMOTE
(1.27%) and Cost-Sensitive (0.82%). The EEIA-RF model predicts 991
exceedance days (FP + TP), closely aligning with the observed 986
days (FN + TP), thereby highlighting its effectiveness in providing
accurate statistical representations for ozone exceedance analysis. This
alignment affirms EEIA-RF’s potential as a powerful tool in ozone
pollution research.

5. Conclusion

This research focused on utilizing machine learning techniques to
predict ozone levels across Germany, leveraging data spanning from
1999 to 2018 obtained from 57 monitoring stations. Central to our
study was the application of the Random Forest (RF) model and our
novel Enhanced Extreme Instance Augmentation for Random Forest
Modelling (EEIA-RFM) approach, tailored specifically for the accurate
prediction of high ozone concentration events, which are critical for
public health considerations.

The initial phase of our study involved employing K-means cluster-
ing and the Elbow Method to segment the extensive dataset, ensuring
that the models were attuned to the distinct environmental characteris-
tics of various regions in Germany. This pre-processing step was crucial
in enhancing the geographical relevance of our models.

The RF model demonstrated robustness in capturing the intri-
cate, non-linear relationships characteristic of atmospheric data. Our
9
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major advancement, however, was the introduction of EEIA-RFM.
This innovative approach addressed the under-representation of high-
concentration ozone events in environmental datasets. By generating
and integrating synthetic extreme ozone event data, the EEIA-RFM
method significantly improved the model’s accuracy in predicting
exceedance days.

In summary, this study presents a significant step forward in the
application of machine learning for atmospheric data analysis. By
enhancing the predictive accuracy of ozone exceedance events, our
research supports the development of more reliable forecasting models.
These models can be useful tools for informing public health advisories
and shaping environmental policies in Germany, given the critical
nature of ozone levels in atmospheric science.

While our model advances prediction accuracy for ozone
exceedances, it encounters specific challenges. Notably, there is a
tendency to overestimate the number of days when the MDA8 ozone
concentration exceeds the 120 μg/m3 threshold, evidenced by an in-
crease in false alerts. Moreover, the model’s current reliance on a
limited array of meteorological inputs, to the exclusion of emissions
data and geographic background, constrains its predictive capability.
The use of annual average emission data for Germany proves insuffi-
cient for our daily predictive needs. To address this issue, we aim to
incorporate daily regional emissions data and geographical factors in
future model versions, dependent on the availability of such detailed
datasets. Furthermore, it could be interesting to split the study period
into segments of a decade (e.g.,1999–2008, 2009–2018) to explore the
impact of environmental policies on ozone levels in the last decades.
This approach can help analyze the temporal trends in ozone levels,
offering insights and guidance for more effective future strategies.

Software and data availability

All methods were written in the Python language and in the Visual
Studio Code environment (https://code.visualstudio.com/). Machine
learning methods were developed using the freely available scikit-learn
library (Pedregosa et al., 2011). The source code of Enhanced Extreme
Instance Augmentation for Random Forest Modelling is available on
Github at https://github.com/td5060/EEIA-RFM. The monitoring air
pollution data used in this study was accessed through German Environ-
ment Agency (UBA) and is available at https://eeadmz1-cws-wp-air02.
azurewebsites.net/index.php/users-corner/download-e1a-from-2013/.
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