

Delft University of Technology

System Software Reliability

van Driel, Willem D.; Bikker, J.W.; Tijink, M.

DOI
10.1109/EuroSimE48426.2020.9152686
Publication date
2020
Document Version
Final published version
Published in
2020 21st International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments
in Microelectronics and Microsystems (EuroSimE)

Citation (APA)
van Driel, W. D., Bikker, J. W., & Tijink, M. (2020). System Software Reliability. In 2020 21st International
Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and
Microsystems (EuroSimE): Proceedings (pp. 1-5). Article 9152686 IEEE.
https://doi.org/10.1109/EuroSimE48426.2020.9152686
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/EuroSimE48426.2020.9152686
https://doi.org/10.1109/EuroSimE48426.2020.9152686

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

System Software Reliability

Willem D. van Driel1, J.W. Bikker, M. Tijink
1Signify Eindhoven / Delft University of Technology, The Netherlands

2CQM, Eindhoven, The Netherlands
willem.van.driel@signify.com

Abstract
It is known that quantitative measures for the

reliability of software systems can be derived from
software reliability models. And, as such, support the
product development process. Over the past four
decades, research activities in this area have been
performed. As a result, many software reliability
models have been proposed. It was shown that, once
these models reach a certain level of convergence, it
can enable the developer to release the software. And
stop software testing accordingly. Criteria to determine
the optimal testing time include the number of
remaining errors, failure rate, reliability requirements,
or total system cost. In this paper we will present our
results in predicting the reliability of software for agile
testing environments. We seek to model this way of
working by extending the Jelinski-Moranda model to a
‘stack’ of feature-specific models, assuming that the
bugs are labelled with the feature they belong to. In
order to demonstrate the extended model, several
prediction results of actual cases will be presented. The
questions to be answered in these cases are: how many
software bugs remain in the software and should one
decide to stop testing the software?

1. Introduction
Nowadays the lighting industry experiences an
exponential increasing impact of digitization and
connectivity of its lighting systems [1, 2]. The impact
is far beyond the impact on single products, but
extends to an ever larger amount of connected systems.
Continuously, more intelligent interfacing with the
technical environment and with different kind of users
is being built-in by using more and different kind of
sensors, (wireless) communication, and different kind
of interacting or interfacing devices, see Figure 1.

Figure 1: The growing population with increased
urbanization results in the need to focus on energy efficiency
and sustainability thereby increasing digitalization and
rapidly evolving technologies containing software.

The trend towards controlled and connected
systems also implies that other components will start
playing an equal role in the reliability of such systems.
Here, reliability needs to be complimented with
availability and other modelling approaches are to be
considered [3]. In the lighting industry, there is a strong
focus on hardware reliability, including going from
component reliability to system reliability. However, in
the controlled and connected systems, software plays a
much more prominent role than in even sophisticated
“single” products such as color-adjustable lamps at
home, streetlights, UV sterilization lights and alike. In
these systems, availability is more strongly determined
by software reliability than by hardware reliability [3].
In a previous study, the reliability of software was
evaluated using the Goel-Okumoto reliability growth
model [4]. It is known that different models can
produce very different answers when assessing
software reliability in the future [5]. A significant
amount of research has been performed in the area of
reliability growth and software reliability, that
considers the process of finding (and repairing) bugs in
existing software, essentially during a test phase [6 -
11]. A typical assumption is that the development of
the software has finished, except for the bugs that have
to be detected and repaired [5, 8, 12]. The software
reliability models then answer questions such as: what
is the number of remaining bugs?, how many would we
find if we spend a specified number of additional
weeks of testing, etc. [13, 14]. In a more recent study
Rana et al. [15] demonstrated the use of eight different
software reliability growth models that were evaluated
on eleven large projects. Prior classification of the
expected shape was proven to improve the software
reliability prediction.

In many software developments companies,
software is developed in a cadence of sprints resulting
in biweekly releases in the so-called Scaled Agile
Framework (SAFe) [16]. This means there is a second
reason why bugs are found, apart from finding them by
doing tests, namely, new bugs are introduced because
new features are added to the software continuously.
An important class of software reliability growth
models is known as General Order Statistics (GOS)
models [17, 18]. The special case in which the order
statistics come from an exponential distribution is
known as the Jelinski-Moranda model [19]. The main
assumption for this class of models is that the times
between failures of a software system can be defined as
the differences between two consecutive order
statistics. It is assumed that the initial number of

978-1-7281-6049-8/20/$31.00 ©2020 IEEE

2020 21st International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)

Authorized licensed use limited to: TU Delft Library. Downloaded on September 18,2020 at 07:56:11 UTC from IEEE Xplore. Restrictions apply.

failures, denoted by a, is unknown but fixed and finite.
In this paper, we seek to model this way of working by
extending the Jelinski-Moranda model to a ‘stack’ of
feature-specific models, assuming that the bugs are
labelled with the feature they belong to. The feature-
specific model parameters can be considered as random
effects, so that differences between features are
modelled as well. In order to demonstrate the extended
model, two use cases will be presented. Here, we
model the software testing phase to get a detailed sense
of the software maturity. Once software is deemed
mature enough by the organization, it is released to the
end-users. The new, operational use of the software is
different from testing phase, and this phase is not being
modelled. The questions to be answered in the two
cases are: how many software bugs remain in the
software and should one decide to stop testing the
software [20, 21]? This paper builds up the
mathematical model that describes the number of bugs
detected in every time interval (sprint), specified per
software feature. We derive a way to evaluate the
likelihood function, which is used in the next section
on estimation. We set out with the model with only one
feature, which is a variant of the Jelinski-Moranda
model but adapted for the counts per sprint. We need
expressions for conditional probabilities based on
recent history, where only the cumulative counts turn
out to be important. We extend the results to multiple
features, where we shift the time axis as different
software features are completed at different times. We
conclude by describing how all ingredients are
combined to the likelihood function.

2. Mathematical derivations and approach
Full details for the mathematical derivations can be

found in [22]. The basic concept includes that a
software tool has bugs, which are detected at time Ti
after testing starts at time 0. is independent and
exponentially distributed, i.e., Individual bugs are
found independently following an exponential
distribution. To model agile software development,
where new functionality is added after each sprint
(taking say two working weeks), we consider software
as a set of features: one feature can be considered a
single part of the software, or the result of a single
“sprint” of development. Bugs are found and fixed for

the existing features (the latest and earlier features),
and new features can be added at later points in time.
This way, you can track and predict the remaining
number of bugs for the current set of features (or any
other interesting set of features).

The bug reports may come from different sources
(implemented regression tests and tests by the team).
Only bugs of sufficient severity are considered in the
predictions. To handle the various sources we simply
took the aggregate counts per sprint as input, assuming
that the total number of tests in a sprint was
comparable, we get a discrete time axis that was
reasonably close to both test effort and calendar time.

Ticket data were fed into the code, where we
distinguished tickets with severity levels S (high) and
A (low). We used JIRA [23] output of bug data, a
typical out is shown in Figure 2. Pick-and-mix was
used for ticket severity allocation. These tickets either
had the allocation open or closed. Open means the
issues were being solved, closed means it was solved.
Recurring tickets were treated as a new open ticket
which can be closed as soon as it is known to be
recurrent. Ticket severity is denoted as S, A, B, C, or
D. S are issues seen as a blocker that need immediate
attention. A is seen as critical, B as major C and D as
minor severity levels. We have only analyzed the
closed tickets. Figure 2 depicts the full flowchart of the
process: from tickets to dashboard values. Actual sprint
dates have an equal length for each sprint of two
weeks. The outcome is produced automatically.

Figure 2: Flowchart for automatic generation of software
reliability predictions.

3. Results
We analyzed 8 system projects with the developed

tool. All these projects are still in the development
phase and follow clear software quality principles. In
total, it concerns approximately 10.000 software tickets
or bugs. Figure 3 depicts the ticket distributions when
classified as high (A + S tickets) and low (B + C + C)
tickets. The variation per project is clear, tickets
classified as high cover approximately 12% of all, and
low about 88%. This was to be expected as severe
tickets should appear less then less severe ones.

Figure 3: Ticket distributions for the 8 analyzed projects.

Predicted results of 4 projects, 1, 4, 6 and 7, are
depicted in Figure 4. It shows the cumulative growth of
severe (orange – red) and less severe (blue – green)
tickets as function of sprints (in this case weeks). For

2020 21st International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)

Authorized licensed use limited to: TU Delft Library. Downloaded on September 18,2020 at 07:56:11 UTC from IEEE Xplore. Restrictions apply.

projects 4 and 6 no signs of maturity is near, for
projects 1 and 7, maturity is in sight. The predicted
data is shown in Table 1. This table depicts the average
values of predicted nr of tickets in coming sprints.
Some projects are seeing maturity that are those with a
low nr of remaining bugs after 10 sprints such as
project 1. Most projects are seeing good levels of
maturity for high severity tickets. Project 5 is the
exemption, with still a large amount of severe tickets
remaining in the code. Again, all projects are still in the
development stage. The predicted values presented in
Table 1 can serve for decisions to be taken if the
software can be launched into the market. Also, this
data can be used to allocate manpower for further code
development and/or enhancement. Question remains
for all these projects: can we take that decision?

Figure 4: Predicted tickets as function of sprints (weeks) for
projects 1, 4, 6 and 7. Blue lines concerns low severity tickets
orange lines the high ones. Future tickets are given in green
and red.

Table 1: Predicted nr of tickets for coming sprints. Average
values +/- standard deviation.

 P
ro

je
ct

Predicted nr of tickets

High (A + S) Low (B + C + D)

+1 sprint +10 sprints +1 sprint +10 sprints

1 0.3 +/- 1.7 1.4 +/- 2.6 2.4 +/- 3.6 11.9 +/- 8.1

2 0.7 +/- 2.3 3.2 +/- 4.8 2.6 +/- 3.4 12.7 +/- 8.3

3 1.0 +/- 3.0 5.1 +/- 5.9 5.2 +/- 4.8 25.8 +/- 11.2

4 0.5 +/- 1.5 2.4 +/- 3.6 14.7 +/- 7.8 71.0 +/- 20.0

5 3.9 +/- 4.1 19.3 +/- 9.7 8.1 +/- 5.9 39.9 +/- 14.1

6 0.6 +/- 1.4 2.9 +/- 4.1 15.0 +/- 8.0 75.2 +/- 18.8

7 0.2 +/- 0.8 0.8 +/- 2.2 5.2 +/- 4.8 25.1 +/- 10.9

8 0.2 +/- 0.8 1.0 +/- 2.0 2.2 +/- 3.8 10.5 +/- 7.5

4. Discussion & conclusions
Software failures differ significantly from hardware

failures. They are not caused by faulty components or
wear-out due to e.g. physical environment stresses such
as temperature, moisture and vibration. Software

failures are caused by latent software defects. These
defects were introduced in the software while it was
created. However, these defects were not detected
and/or removed prior of being released to the customer.
In order to prevent that these defects are noticed by the
customer, a higher level of software reliability has to
be achieved. This means to reduce the likelihood that
latent defects are present in released software.
Unfortunately, even with the most highly skilled
software engineers following industry best practices,
the introduction of software defects is inevitable. This
is due to the ever-increasing inherent complexities of
the software functionality and its execution
environment. Here, software reliability engineering
may be helpful, a field that relates to testing and
modelling of software functionality in a given
environment of a particular amount of time. But
certainly, there is currently no method available that
can guarantee a totally reliable software. In order to
achieve the best possible software, a set of statistical
modelling techniques are required that:
� Can assess or predict the to-be-achieved reliability;
� Based on the observations of software failures

during testing and/or operational use.
In order to achieve these two requirements, many

software reliability models have been proposed. It was
shown that, once these models reach a certain level of
convergence, it can enable the developer to release the
software. And stop software testing accordingly.
Criteria to determine the optimal testing time include
the number of remaining errors, failure rate, reliability
requirements, or total system cost. Typical questions
that need to be addressed are:
� How many errors are still left in the software?
� What is the probability of having no failures in a

given time period?
� What is the expected time until the next software

failure will occur?
� What is the expected number of total software

failures in a given time period?
Certainly, the question on “How many errors are

left” is something completely different from “What is

the expected number of errors in a given time period”.

One cannot estimate the first directly, but you can
estimate the second. In our approach, we are content
with “expected number of errors that a long testing

period would yield”.
In this paper we presented an approach to predict

software reliability for agile testing environments. The
new approach divers from the many others in the sense
that it combines features with tickets using Bayesian
statistics. By doing that, a more reliable number of
predicted tickets (read: software bugs) can be obtained.
The developed system software reliability approach is
applied to 8 software development projects, to
demonstrate how software reliability models can be
used to improve the quality metrics. The new approach
is carved down in a tool, programmed in Python. The

2020 21st International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)

Authorized licensed use limited to: TU Delft Library. Downloaded on September 18,2020 at 07:56:11 UTC from IEEE Xplore. Restrictions apply.

outcome of the predictions can be used in the Quality
dashboard maturity grid to enable a better judgement of
releasing the software or not. The strength of the
software reliability approach is to be proven by more
data and comparison with field return data. The
outcome is satisfactory as a more reliable number of
remaining tickets was calculated. As prominent
advantage we note that divergence of the proposed
fitting procedure is not an issue anymore in the new
approach.

Following is recommended for the future
developments of the presented approach:
� Gather more data from the software development

teams.
� Connect to the field quality community to gather

field data of software tickets.
� Make software reliability calculation part of the

development process
� Automate the Python code such that ticket-feature

data can be imported on-the-fly.
� Include machine learning techniques and online

failure prediction methods, which can be used to
predict if a failure will happen 5 minutes from now
[24].

� Investigate the used of other SRGM models,
including multistage ones, or those that can
distinguish development and maintenance software
defects [14, 15].

� Not focus on a specific software reliability model
but rather assess forecast accuracy and then
improve forecasts as was demonstrated by Zhao et
al [25].

� Classify the expected shape of defect inflow prior
to the prediction [15].

Acknowledgments
The European project SCOTT is acknowledged for

funding the presented work in this paper.

References
1. Van Driel, W.; Fan, X. Solid State Lighting

Reliability: Components to Systems; Springer:
New York, 2012. 359 doi:10.1007/978-1-4614-
3067-4.

2. Van Driel, W.; Fan, X.; Zhang, G. Solid State
Lighting Reliability: Components to Systems Part
II; Springer: New York, 2016. doi:10.1007/978-3-
319-58175-0.

3. Papp, Z.; Exarchakos, G., Eds. Runtime
Reconfiguration in Networked Embedded Systems
- Design and Testing Practice; Springer:
Singapore, 2016. doi:doi: 10.1007/978-981-10-
0715-6.

4. Van Driel,W.; Schuld, M.;Wijgers, R.; Kooten,W.
Software reliability and its interaction with
hardware reliability. 15th International Conference
on Thermal, Mechanical and Multi-Physics

Simulation and Experiments in Microelectronics
and Microsystems (EuroSimE), 2014.

5. Abdel-Ghaly, A.A.; Chan, P.Y.; Littlewood, B.
Evaluation of competing software reliability
predictions. IEEE Trans. Softw. Eng. 1986, SE-12,
950–967.

6. Bendell, A.; Mellor, P., Eds. Software Reliability:
State of the Art Report; Pergamon Infotech
Limited: Maidenhead, 1986.

7. Lyu, M., Ed. Handbook of Software Reliability
Engineering; McGraw-Hill and IEEE Computer
Society: New York, 1996.

8. Pham, H., Ed. Software Reliability and Testing, Los
Alamitos, California, 1995. IEEE Computer
Society Press.

9. Xie, M. Software reliability models—past, present
and future. In Recent advances in reliability
theory, Bordeaux, 2000; Stat. Ind. Technol.,
Birkhäuser Boston: Boston, MA, 2000; pp. 325–

340.
10. Bishop, P.; Povyakalo, A. Deriving a frequentist

conservative confidence bound for probability of
failure per demand for systems with different
operational and test profiles. Reliability
Engineering & System Safety 378 2017, 158, 246–

253.
11. Adams, E. Optimizing preventive service of

software products. IBM Journal of Research and
Development 380 1984, 28, 2–14.

12. Xie, M.; Hong, G. Software reliability modeling,
estimation and analysis. In Advances in
Reliability; North-Holland: Amsterdam, 2001;
Vol. 20, Handbook of Statist., pp. 707–731.

13. Almering, V.; Van Genuchten, M.; Cloudt, G.;
Sonnemans, P. Using Software Reliability Growth
Models in Practice. Software, IEEE 2007, 24, 82–

88.
14. Pham, H., Ed. System Software Reliability;

Springer-Verlag: London, 2000. doi:10.1007/1-
84628-295-0.

15. Rana, R.; Staron, M.; Berger, C.; Hansson, J.;
Nilsson, M.; Törner, F.; Meding, W.; Höglund, C.
Selecting pm nhu8io0software reliability growth
models and improving their predictive accuracy
using historical projects data, Journal of Systems
and Software 2014, 98, 59–78.

16. Xie, M.; Hong, G.; Wohlin, C. Modeling and
analysis of software system reliability. In Case
Studies in Reliability and Maintenance; Blischke,
W.; Murthy, D., Eds.; Wiley: New York, 2003;
chapter 10, pp. 233–249.

17. Miller, D. Exponential order statistic models of
software reliability growth. IEEE Transactions on
Software, Engineering 1986, SE-12, 12–24.

18. Joe, H. Statistical Inference for General-Order-
Statistics and Nonhomogeneous-Poisson-Process

2020 21st International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)

Authorized licensed use limited to: TU Delft Library. Downloaded on September 18,2020 at 07:56:11 UTC from IEEE Xplore. Restrictions apply.

Software Reliability Models. IEEE Trans.
Software Eng. 1989, 15, 1485–1490.

19. Jelinski, Z.; Moranda, P. Software Reliability
Research. In Statistical Computer Performance
Evaluation; Freiberger, W., Ed.; Academic Press,
1972; pp. 465–497.

20. Dalal, S.R.; Mallows, C.L. When should one stop
testing software? J. Amer. Statist. Assoc. 1988, 83,
872–879.

21. Zacks, S. Sequential procedures in software
reliability testing. In Recent advances in life-
testing and reliability; CRC: Boca Raton, FL,
1995; pp. 107–126. Version April 21, 2020
submitted to Mathematics.

22. W.D. van Driel, J.W. Bikker, M Tijink, A. Di
Bucchianico, Software Reliability for Agile
Testing, Accepted for publication in Mathematics,
2020.

23. Atlassian. JIRA Software Description, 2020.
24. Salfner, F., L.M..M.M. A survey of online failure

prediction methods. ACM Computing Surveys
2010, 433 42, 12–24.

25. Zhao, X.; Robu, V.; Flynn, D.; Salako, K.; Strigini,
L. Assessing the Safety and Reliability of
Autonomous Vehicles from Road Testing. 30th
International Symposium on Software Reliability
Engineering (ISSRE) 436 2019, 2019.

2020 21st International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)

Authorized licensed use limited to: TU Delft Library. Downloaded on September 18,2020 at 07:56:11 UTC from IEEE Xplore. Restrictions apply.

