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Abstract 
It is known that quantitative measures for the 

reliability of software systems can be derived from 
software reliability models. And, as such, support the 
product development process. Over the past four 
decades, research activities in this area have been 
performed. As a result, many software reliability 
models have been proposed. It was shown that, once 
these models reach a certain level of convergence, it 
can enable the developer to release the software. And 
stop software testing accordingly. Criteria to determine 
the optimal testing time include the number of 
remaining errors, failure rate, reliability requirements, 
or total system cost. In this paper we will present our 
results in predicting the reliability of software for agile 
testing environments. We seek to model this way of 
working by extending the Jelinski-Moranda model to a 
‘stack’ of feature-specific models, assuming that the 
bugs are labelled with the feature they belong to. In 
order to demonstrate the extended model, several 
prediction results of actual cases will be presented. The 
questions to be answered in these cases are: how many 
software bugs remain in the software and should one 
decide to stop testing the software? 

1. Introduction 
Nowadays the lighting industry experiences an 
exponential increasing impact of digitization and 
connectivity of its lighting systems [1, 2]. The impact 
is far beyond the impact on single products, but 
extends to an ever larger amount of connected systems. 
Continuously, more intelligent interfacing with the 
technical environment and with different kind of users 
is being built-in by using more and different kind of 
sensors, (wireless) communication, and different kind 
of interacting or interfacing devices, see Figure 1. 

 

Figure 1: The growing population with increased 
urbanization results in the need to focus on energy efficiency 
and sustainability thereby increasing digitalization and 
rapidly evolving technologies containing software. 

The trend towards controlled and connected 
systems also implies that other components will start 
playing an equal role in the reliability of such systems. 
Here, reliability needs to be complimented with 
availability and other modelling approaches are to be 
considered [3]. In the lighting industry, there is a strong 
focus on hardware reliability, including going from 
component reliability to system reliability. However, in 
the controlled and connected systems, software plays a 
much more prominent role than in even sophisticated 
“single” products such as color-adjustable lamps at 
home, streetlights, UV sterilization lights and alike. In 
these systems, availability is more strongly determined 
by software reliability than by hardware reliability [3]. 
In a previous study, the reliability of software was 
evaluated using the Goel-Okumoto reliability growth 
model [4]. It is known that different models can 
produce very different answers when assessing 
software reliability in the future [5]. A significant 
amount of research has been performed in the area of 
reliability growth and software reliability, that 
considers the process of finding (and repairing) bugs in 
existing software, essentially during a test phase [6 - 
11]. A typical assumption is that the development of 
the software has finished, except for the bugs that have 
to be detected and repaired [5, 8, 12]. The software 
reliability models then answer questions such as: what 
is the number of remaining bugs?, how many would we 
find if we spend a specified number of additional 
weeks of testing, etc. [13, 14]. In a more recent study 
Rana et al. [15] demonstrated the use of eight different 
software reliability growth models that were evaluated 
on eleven large projects. Prior classification of the 
expected shape was proven to improve the software 
reliability prediction.  

In many software developments companies, 
software is developed in a cadence of sprints resulting 
in biweekly releases in the so-called Scaled Agile 
Framework (SAFe) [16]. This means there is a second 
reason why bugs are found, apart from finding them by 
doing tests, namely, new bugs are introduced because 
new features are added to the software continuously. 
An important class of software reliability growth 
models is known as General Order Statistics (GOS) 
models [17, 18]. The special case in which the order 
statistics come from an exponential distribution is 
known as the Jelinski-Moranda model [19]. The main 
assumption for this class of models is that the times 
between failures of a software system can be defined as 
the differences between two consecutive order 
statistics. It is assumed that the initial number of 
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failures, denoted by a, is unknown but fixed and finite. 
In this paper, we seek to model this way of working by 
extending the Jelinski-Moranda model to a ‘stack’ of 
feature-specific models, assuming that the bugs are 
labelled with the feature they belong to. The feature-
specific model parameters can be considered as random 
effects, so that differences between features are 
modelled as well. In order to demonstrate the extended 
model, two use cases will be presented. Here, we 
model the software testing phase to get a detailed sense 
of the software maturity. Once software is deemed 
mature enough by the organization, it is released to the 
end-users. The new, operational use of the software is 
different from testing phase, and this phase is not being 
modelled. The questions to be answered in the two 
cases are: how many software bugs remain in the 
software and should one decide to stop testing the 
software [20, 21]? This paper builds up the 
mathematical model that describes the number of bugs 
detected in every time interval (sprint), specified per 
software feature. We derive a way to evaluate the 
likelihood function, which is used in the next section 
on estimation. We set out with the model with only one 
feature, which is a variant of the Jelinski-Moranda 
model but adapted for the counts per sprint. We need 
expressions for conditional probabilities based on 
recent history, where only the cumulative counts turn 
out to be important. We extend the results to multiple 
features, where we shift the time axis as different 
software features are completed at different times. We 
conclude by describing how all ingredients are 
combined to the likelihood function. 

2. Mathematical derivations and approach 
Full details for the mathematical derivations can be 

found in [22]. The basic concept includes that a 
software tool has bugs, which are detected at time Ti 
after testing starts at time 0.  is independent and 
exponentially distributed, i.e., Individual bugs are 
found independently following an exponential 
distribution. To model agile software development, 
where new functionality is added after each sprint 
(taking say two working weeks), we consider software 
as a set of features: one feature can be considered a 
single part of the software, or the result of a single 
“sprint” of development. Bugs are found and fixed for 

the existing features (the latest and earlier features), 
and new features can be added at later points in time. 
This way, you can track and predict the remaining 
number of bugs for the current set of features (or any 
other interesting set of features). 

The bug reports may come from different sources 
(implemented regression tests and tests by the team). 
Only bugs of sufficient severity are considered in the 
predictions. To handle the various sources we simply 
took the aggregate counts per sprint as input, assuming 
that the total number of tests in a sprint was 
comparable, we get a discrete time axis that was 
reasonably close to both test effort and calendar time. 

Ticket data were fed into the code, where we 
distinguished tickets with severity levels S (high) and 
A (low). We used JIRA [23] output of bug data, a 
typical out is shown in Figure 2. Pick-and-mix was 
used for ticket severity allocation. These tickets either 
had the allocation open or closed. Open means the 
issues were being solved, closed means it was solved. 
Recurring tickets were treated as a new open ticket 
which can be closed as soon as it is known to be 
recurrent. Ticket severity is denoted as S, A, B, C, or 
D. S are issues seen as a blocker that need immediate 
attention. A is seen as critical, B as major C and D as 
minor severity levels. We have only analyzed the 
closed tickets. Figure 2 depicts the full flowchart of the 
process: from tickets to dashboard values. Actual sprint 
dates have an equal length for each sprint of two 
weeks. The outcome is produced automatically. 

 

Figure 2: Flowchart for automatic generation of software 
reliability predictions. 

3. Results 
We analyzed 8 system projects with the developed 

tool. All these projects are still in the development 
phase and follow clear software quality principles. In 
total, it concerns approximately 10.000 software tickets 
or bugs. Figure 3 depicts the ticket distributions when 
classified as high (A + S tickets) and low (B + C + C) 
tickets. The variation per project is clear, tickets 
classified as high cover approximately 12% of all, and 
low about 88%. This was to be expected as severe 
tickets should appear less then less severe ones. 

 

Figure 3: Ticket distributions for the 8 analyzed projects. 

Predicted results of 4 projects, 1, 4, 6 and 7, are 
depicted in Figure 4. It shows the cumulative growth of 
severe (orange – red) and less severe (blue – green) 
tickets as function of sprints (in this case weeks). For 
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projects 4 and 6 no signs of maturity is near, for 
projects 1 and 7, maturity is in sight. The predicted 
data is shown in Table 1. This table depicts the average 
values of predicted nr of tickets in coming sprints. 
Some projects are seeing maturity that are those with a 
low nr of remaining bugs after 10 sprints such as 
project 1. Most projects are seeing good levels of 
maturity for high severity tickets. Project 5 is the 
exemption, with still a large amount of severe tickets 
remaining in the code. Again, all projects are still in the 
development stage. The predicted values presented in 
Table 1 can serve for decisions to be taken if the 
software can be launched into the market. Also, this 
data can be used to allocate manpower for further code 
development and/or enhancement. Question remains 
for all these projects: can we take that decision? 

 

 

Figure 4: Predicted tickets as function of sprints (weeks) for 
projects 1, 4, 6 and 7. Blue lines concerns low severity tickets 
orange lines the high ones. Future tickets are given in green 
and red. 

Table 1: Predicted nr of tickets for coming sprints. Average 
values +/- standard deviation. 

 P
ro

je
ct

 

Predicted nr of tickets 

High (A + S) Low (B + C + D) 

+1 sprint +10 sprints +1 sprint +10 sprints 

1 0.3 +/- 1.7 1.4 +/- 2.6 2.4 +/- 3.6 11.9 +/- 8.1 

2 0.7 +/- 2.3 3.2 +/- 4.8 2.6 +/- 3.4 12.7 +/- 8.3 

3 1.0 +/- 3.0 5.1 +/- 5.9 5.2 +/- 4.8 25.8 +/- 11.2 

4 0.5 +/- 1.5 2.4 +/- 3.6 14.7 +/- 7.8 71.0 +/- 20.0 

5 3.9 +/- 4.1 19.3 +/- 9.7 8.1 +/- 5.9 39.9 +/- 14.1 

6 0.6 +/- 1.4 2.9 +/- 4.1 15.0 +/- 8.0 75.2 +/- 18.8 

7 0.2 +/- 0.8 0.8 +/- 2.2 5.2 +/- 4.8 25.1 +/- 10.9 

8 0.2 +/- 0.8 1.0 +/- 2.0 2.2 +/- 3.8 10.5 +/- 7.5 

4. Discussion & conclusions 
Software failures differ significantly from hardware 

failures. They are not caused by faulty components or 
wear-out due to e.g. physical environment stresses such 
as temperature, moisture and vibration. Software 

failures are caused by latent software defects. These 
defects were introduced in the software while it was 
created. However, these defects were not detected 
and/or removed prior of being released to the customer. 
In order to prevent that these defects are noticed by the 
customer, a higher level of software reliability has to 
be achieved. This means to reduce the likelihood that 
latent defects are present in released software. 
Unfortunately, even with the most highly skilled 
software engineers following industry best practices, 
the introduction of software defects is inevitable. This 
is due to the ever-increasing inherent complexities of 
the software functionality and its execution 
environment. Here, software reliability engineering 
may be helpful, a field that relates to testing and 
modelling of software functionality in a given 
environment of a particular amount of time. But 
certainly, there is currently no method available that 
can guarantee a totally reliable software. In order to 
achieve the best possible software, a set of statistical 
modelling techniques are required that: 
� Can assess or predict the to-be-achieved reliability; 
� Based on the observations of software failures 

during testing and/or operational use. 
In order to achieve these two requirements, many 

software reliability models have been proposed. It was 
shown that, once these models reach a certain level of 
convergence, it can enable the developer to release the 
software. And stop software testing accordingly. 
Criteria to determine the optimal testing time include 
the number of remaining errors, failure rate, reliability 
requirements, or total system cost. Typical questions 
that need to be addressed are:  
� How many errors are still left in the software?  
� What is the probability of having no failures in a 

given time period?  
� What is the expected time until the next software 

failure will occur? 
� What is the expected number of total software 

failures in a given time period?  
Certainly, the question on “How many errors are 

left” is something completely different from “What is 

the expected number of errors in a given time period”. 

One cannot estimate the first directly, but you can 
estimate the second. In our approach, we are content 
with “expected number of errors that a long testing 

period would yield”.  
In this paper we presented an approach to predict 

software reliability for agile testing environments. The 
new approach divers from the many others in the sense 
that it combines features with tickets using Bayesian 
statistics. By doing that, a more reliable number of 
predicted tickets (read: software bugs) can be obtained. 
The developed system software reliability approach is 
applied to 8 software development projects, to 
demonstrate how software reliability models can be 
used to improve the quality metrics. The new approach 
is carved down in a tool, programmed in Python. The 
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outcome of the predictions can be used in the Quality 
dashboard maturity grid to enable a better judgement of 
releasing the software or not. The strength of the 
software reliability approach is to be proven by more 
data and comparison with field return data. The 
outcome is satisfactory as a more reliable number of 
remaining tickets was calculated. As prominent 
advantage we note that divergence of the proposed 
fitting procedure is not an issue anymore in the new 
approach. 

Following is recommended for the future 
developments of the presented approach: 
� Gather more data from the software development 

teams. 
� Connect to the field quality community to gather 

field data of software tickets. 
� Make software reliability calculation part of the 

development process  
� Automate the Python code such that ticket-feature 

data can be imported on-the-fly. 
� Include machine learning techniques and online 

failure prediction methods, which can be used to 
predict if a failure will happen 5 minutes from now 
[24]. 

� Investigate the used of other SRGM models, 
including multistage ones, or those that can 
distinguish development and maintenance software 
defects [14, 15]. 

� Not focus on a specific software reliability model 
but rather assess forecast accuracy and then 
improve forecasts as was demonstrated by Zhao et 
al [25]. 

� Classify the expected shape of defect inflow prior 
to the prediction [15]. 
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