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Abstract—Binary Convolutional Neural Networks (CNNs) have
significantly reduced the number of arithmetic operations and
the size of memory storage needed for CNNs, which makes
their deployment on mobile and embedded systems more feasible.
However, the CNN architecture after binarizing requires to be re-
designed and refined significantly due to two reasons: 1. the large
accumulation error of binarization in the forward propagation,
and 2. the severe gradient mismatch problem of binarization in
the backward propagation. Even though substantial effort has
been invested in designing architectures for single and multiple
binary CNNs, it is still difficult to find an optimal architecture
for binary CNNs. In this paper, we propose a strategy, named
NASB, which adopts Neural Architecture Search (NAS) to find
an optimal architecture for the binarization of CNNs. Due to
the flexibility of this automated strategy, the obtained archi-
tecture is not only suitable for binarization but also has low
overhead, achieving a better trade-off between the accuracy and
computational complexity of hand-optimized binary CNNs. The
implementation of NASB strategy is evaluated on the ImageNet
dataset and demonstrated as a better solution compared to
existing quantized CNNs. With insignificant overhead increase,
NASB outperforms existing single and multiple binary CNNs by
up to 4.0% and 1.0% Top-1 accuracy respectively, bringing them
closer to the precision of their full precision counterpart. The
code and pretrained models will be publicly available.

Index Terms—binary neural networks, neural architecture
search, quantized neural networks, efficiency

I. INTRODUCTION

With the increasing depth and width of Convolutional Neu-
ral Networks (CNNs), they have demonstrated many break-
throughs in a wide range of applications, such as image
classification, object detection, and semantic segmentation
[1]–[3]. However, the computation and storage overhead of
deep and wide CNNs require millions of FLOPs and param-
eters, which hinders the real-time deployment on resource-
constrained mobile and embedded platforms.

Numerous researchers proposed different approaches to
address the efficiency problem of deploying CNNs, including
low bit-width quantization [4], [5], network pruning [6], and
efficient architecture design [2], [7]. Binarization [8], [9] is the
most efficient quantization method among all those methods
with reduced bit-widths, where a real-valued weight or acti-
vation is represented with a single bit and the multiplication
and addition of a convolution can be implemented simply by
XNOR and popcount bitwise operations, which is roughly 64

times faster to compute and requires 32 times less storage
than their full precision counterpart. However, the extreme
quantization method of single binary CNNs introduces the
largest accumulation error in the forward propagation. In
addition, during the backward propagation, its gradient flow
is the most difficult to determine due to the high gradient
mismatch problem [10] among all quantization methods with
reduced bit-widths.

Existing published work focuses on improving the quanti-
zation quality mainly using value approximation and structure
approximation. These two approximations are complementary
to each other and could be exploited together. Value ap-
proximation seeks to find an optimized algorithm to quan-
tize weights and activations while preserving the original
network architecture. Knowledge distillation [11], [12] and
loss-aware [13] objectives are introduced to find optimal
local minima for quantized weights and activations. Advanced
quantization functions [4], [5], [10] are proposed to minimize
the quantization error between quantized values and their full
precision counterparts. Tight approximation of the derivative
of the non-differentiable activation function [9], [14] is ex-
plored to alleviate the gradient mismatch problem.

Unlike the above value approximation methods, structure
approximation seeks to redesign the architecture of quantized
CNNs to match the representational capacity of their original
full precision counterpart. Structure approximation is more
important for binary CNNs than for other low bit-width CNNs
because binarization introduces the largest accumulation error
and the severest gradient mismatch problem among all quan-
tization methods with reduced bit-widths. Bi-Real Net [9] and
Group-Net [15] are the state-of-the-art structure approximation
methods for single and multiple binary CNNs, respectively.
However, designing architectures for quantized CNNs is highly
non-trivial especially for binary CNNs. In this paper, NASB
strategy is proposed to automatically seek an optimal structure
approximation for binary CNNs. In particular, this strategy
uses Neural Architecture Search (NAS) to figure out an
optimized architecture for the binarization of CNNs. After
searching in a large space, the finalized CNN architecture is
suitable for binarization, whose accuracy outperforms previ-
ous binary CNNs with insignificant computational complexity
increase.



The main contributions in this paper are summarized as
follows.
• We proposed the NASB strategy, which adopts NAS

to automatically find an optimal architecture for the
binarization of CNNs. Using NAS, NASB can search in a
large space to figure out an optimized CNN architecture,
which is suitable for binarization.

• Compared to the recent literature of binary CNNs, NASB
achieves a sizable accuracy increase with negligible ad-
ditional overhead, providing a better solution to address
the trade-off between accuracy and efficiency.

• Our proposed NASB strategy is evaluated for ResNet on
the ImageNet classification dataset, providing extensive
experimental results to show the effectiveness of our
proposal.

II. RELATED WORK

In this section, recent network quantization methods and
efficient architecture design developments of CNNs are de-
scribed.

A. Network quantization

There is substantial interest in research and development
of dedicated hardware for CNNs to be deployed on embed-
ded systems and mobile devices, which motivates the study
of network quantization. Low bit-width approaches [4], [5],
[16], [17] quantized weights and activations using fixed-point
numbers, which reduces model size and compute time, but
still requires multipliers to compute. Binary CNNs [8], [18],
[19] are trained with weights and activations constrained to
binary values +1 or −1, which can be categorized as single
binary CNNs. The Ternary Weight Networks (TWN) [20]
approach is proposed to reduce the loss of single binary CNNs
by introducing 0 as the third quantized value, while Trained
Ternary Quantization (TTQ) [21] enables the asymmetry and
training of its scaling coefficients. However, the accuracy
degradation of single binary and ternary CNNs is unacceptable
for advanced CNNs like ResNet and large scale datasets
like ImageNet. Multiple binary CNNs [15], [22]–[24] are
promising attempts to reduce the accuracy gap between binary
CNNs and their full precision counterpart. However, all the
architectures of current single or multiple binary CNNs are
human-designed. Further architecture optimization is possible
using automated methods, such as [19], which encodes the
number of channels in each layer, but does not change the
operations and their connections in the model; something that
we do consider in our proposed NASB strategy.

B. Efficient architecture design

Recently, more and more literature focuses on the efficient
architecture design for the deployment of CNNs. Replacing
3×3 convolutional weights with 1×1 weights (in SqueezeNet
[3] and GoogLeNet [25]) is suggested to decrease the com-
putational complexity. Moreover, separable convolutions are
adopted in Inception series [26] and further generalized as
depthwise separable convolutions in Xception [27], MobileNet
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Fig. 1. Human-designed architecture for single and multiple binary CNNs.
conv and bconv refer to full precision and binary convolutional layer,
respectively, while Batch Normalization and the Relu layers are omitted.

[2] and ShuffleNet [7]. Group convolution has been used as an
efficient way to enhance efficiency in [7], [28], where the input
activations and convolutional kernels are factorized into groups
and executed independently inside each group. MobileNet [29]
and ShuffleNet [30] series have been working on depthwise
separable convolutions and shuffle operations to achieve a
better trade-off between efficiency and accuracy. ESPNetv2
[31] uses group point-wise and depth-wise dilated separable
convolutions to learn representations from a large effective
receptive field, delivering state-of-the-art performance across
different tasks. NAS [32]–[34] has demonstrated much success
in automating network architecture design, achieving state-of-
the-art efficiency [35], [36].

III. METHOD

In this section, the problem of finding an architecture for
the binarization of CNNs is defined and presented. Then, we
explain NASB strategy, which can adopt the NAS technique
to figure out an optimal architecture for binarizing CNNs.
Last but not least, variants of NASB strategy are illustrated
to enhance its efficiency.

A. Problem definition

Given a full precision convolutional cell, what is an optimal
architecture for binarizing it? The accumulation error in the
forward propagation of binarization is the largest and the
gradient flow in the backward propagation is the most difficult
to take care of among all quantization methods with different
bit-widths. As a result, it is essential to figure out an optimized
architecture for binarizing CNNs. Here, this convolutional cell
can be a convolutional layer, block, group, and network.

There have been various attempts to answer the above
question, as shown in Fig. 1. Fig. 1(a) is a full precision
convolutional block. Fig. 1(b), (c), and (d) describe the
proposed architecture in the literature representing XNOR
[8], Bi-Real [9], and Group-Net [15], respectively, where the
scaling coefficients have been omitted. Although lots of the
above human efforts have been dedicated for designing an
architecture for single and multiple binary CNNs, it is still
worth to explore an optimal convolutional cell architecture



using the automatical approach as represented by the question
marks in Fig. 1(e).

The question can be expressed as a directed acyclic graph
in Fig. 1(e), which represents an ordered sequence of 3 nodes
and 3 edges with one operation for each edge. The number
of nodes, edges, and operations for each edge can be freely
selected. Each node xi represents a feature map and each edge
(i, j) is associated with several operations oi,j to transform xi.
Here the convolutional cell has one input and output node, and
its output is obtained by addition of all intermediate nodes. In
the following, the binarization and NAS techniques adopted
in this paper are presented.

a) Binary convolutional neural networks: Given a full
precision convolutional layer, its inputs, weights and outputs
are denoted as I ∈ RN×Cin×H×W , W ∈ RCin×Cout×h×w

and O ∈ RN×Cout×H×W , respectively, where N , Cin, Cout,
H , W , h and w refer to the batch size, the number of input
and output channels, the height and width of the feature maps,
and the height and width of the weights, respectively.

Using the binarization method of weights in [8], we ap-
proximate the full precision weights W as binary weights bW

with the sign of W and the scaling coefficient s, where the
scaling coefficient is computed as the mean of the absolute
values of W . Adopting the Straight Through Estimator (STE)
[37], the forward and backward propagations of the weights
binarization are shown as follows.

Forward: bW = s× sign(W )

Backward:
∂L

∂W
=

∂L

∂bW
× ∂bW

∂W
≈ s× ∂L

∂bW

(1)

where L is the total loss.
Using the binarization method of activations in [9], we

approximate the full precision activations as binary activations
bI by a piecewise polynomial function. The forward and
backward propagations of the activations binarization can be
written as follows.

Forward: bI = sign(I)

Backward:
∂L

∂I
=
∂L

∂bI
× ∂bI

∂I

where
∂bI

∂I
=

 2 + 2I,−1 ≤ I < 0
2− 2I, 0 ≤ I < 1
0, otherwise

(2)

b) Gradient based neural architecture search: We adopt
a gradient-based NAS in [38]. To reduce memory footprint
during training the over-parameterized network, we use the
strategy from [34] to binarize and learn the M real-valued
architecture parameters αi.

In the forward propagation, the M real-valued architecture
parameters αi are transformed to the real-valued path weights
pi, and then to the binary gates gi as follows.

pi =
exp(αi)

M∑
j=1

exp(αj)

(3)

gi = binarize(pi) =
{

1,with probability pi
0,with probability (1− pi)

(4)

In the backward propagation, the STE [37] is also applied.

∂L

∂pj
≈ ∂L

∂gj
(5)

The gradient w.r.t. architecture parameters can be estimated
as follows.

∂L

∂αi
=

M∑
j=1

∂L

∂pj

∂pj
∂αi
≈

M∑
j=1

∂L

∂gj

∂pj
∂αi

=

M∑
j=1

∂L

∂gj
pj(δij − pi)

(6)

where δij = 1 if i = j and δij = 0 if i 6= j.

B. NASB strategy

In this section, we present the details about how NASB
strategy works. To apply NAS for binarizing CNNs, the key
innovation is to leverage the NAS technique to find a NASB-
convolutional cell as an optimal architecture for binarizing
their full precision counterpart, where the NASB-convolutional
cell can be a replacement for a binarized convolutional layer,
block, group, and network. NASB strategy consists of the
following stages: searching stage, pretraining stage, and fine-
tuning stage. In the following, the search space of a NASB-
convolutional cell in NASB strategy is described, including its
connections and operations. Besides, its training algorithm is
presented.

a) Connections of a NASB-convolutional cell: Taking
that we are exploring an optimal architecture for a convo-
lutional group as an example, the connections of a NASB-
convolutional cell in NASB strategy is explored at the search-
ing stage as shown in Fig. 2.

Fig. 2(a) describes all the connections of a NASB-
convolutional cell during the training of the searching stage,
which consists of a backbone and a NAS-convolutional cell.
The left cell is the backbone of the NASB-convolutional cell,
which is a standard convolutional group in ResNet [1]. The
right cell is considered as a NAS-convolutional cell, which
is a directed acyclic graph consisting of 5 nodes, 10 edges,
and 10 operations for every edge. Here 5 nodes are used to
keep the layer depth of a NASB-convolutional cell in NASB
strategy the same as its full precision counterpart, which will
not increase the latency during inference. The connections
of the backbone are fixed and there is no need to specify
architecture parameters for it. During the training of the
searching stage, the model weights of the NASB-convolutional
cell and architecture parameters of the NAS-convolutional cell
can be updated alternately, and only one operation on every
edge in the NAS-convolutional cell is sampled and active at
every step. In this way, the inactive paths reduce the memory
requirements.



bconv ops

ops

ops

ops

ops

ops

ops

ops

ops ops

0

1

4

2

3

0

1

4

2

3

ops

ops

ops

ops

0

1

4

2

3

0

1

4

2

3

0

1

4

2

3

op

op

op

op

(a) (b) (c)

bconv

bconv

bconv

bconv

bconv

bconv

bconv

bconv

bconv

bconv

bconv

Fig. 2. Exploring connections of a NASB-convolutional cell at the searching stage. conv and bconv refer to full precision and binary convolutional layer,
respectively. ops refers to a set of operations as shown in Fig. 3, among which one operation is active during the training of the searching stage.

...identityzero bconv max pool

Fig. 3. A set of operations in every ops.

Fig. 2(b) is the finalized architecture after completing the
training of the searching stage. In the NAS-convolutional
cell, we retain only one predecessor for every node and one
operation for every edge except for the node with the number
0. Fig. 2(c) is a more compact representation of Fig. 2(b),
showing the output of every node in the NASB-convolutional
cell (except for the node with the number 0) defined as the
addition of the two inputs from the backbone and the NAS-
convolutional cell.

b) Operations of a NASB-convolutional cell: Taking the
number of bitwise operations and binary parameters of a 3×3
binary convolution as 1 unit, the number of bitwise operations
and binary parameters of all the operations used in NASB
strategy are unified as shown in Table I. The overhead of Batch
Normalization and Relu layer is not included.

The number of bitwise operations and binary parameters
of the binary convolution is NCoutHW × 2Cinhw and
CoutCinhw, respectively, when no bias is added. Scaling the
kernel size of the binary convolution by a scaling coefficient
of sk, both the number of bitwise operations and binary
parameters are scaled by s2k. Changing the dilation rate will
not increase the number of bitwise operations and binary
parameters of the binary convolution, when the additional
cost introduced by padding is omitted. The number of bitwise
operations required for computing every individual output of
the binary convolution is approximately 2Cinhw, while the
number of bitwise operations required for computing every

TABLE I
THE NUMBER OF BITWISE OPERATIONS AND BINARY PARAMETERS OF THE

OPERATIONS USED IN NASB. F AND B REFER TO FULL PRECISION AND
BINARY PRECISION, RESPECTIVELY. BO AND BP REFER TO BITWISE

OPERATIONS AND BINARY PARAMETERS, RESPECTIVELY.

Operations Bo Bp
op0 = Zero (F) 0 0
op1 = 3× 3 average pooling (F) < 1 0
op2 = 3× 3 max pooling (F) < 1 0
op3 = Identity (F) 0 0
op4 = 1× 1 convolution (B) 1/9 1/9
op5 = 3× 3 convolution (B) 1 1
op6 = 5× 5 convolution (B) 25/9 25/9
op7 = 1× 1 dilated convolution (B) 1/9 1/9
op8 = 3× 3 dilated convolution (B) 1 1
op9 = 5× 5 dilated convolution (B) 25/9 25/9

individual output of a 3 × 3 max and average pooling is 8d
and 16d, respectively, where d is the bit-width of pooling
operations and 2Cinhw � 16d in general. Besides, pooling
will not introduce any parameters.

c) Three-stage training algorithm: As shown in Algo-
rithm 1, the training algorithm of NASB strategy consists
of three stages: the searching stage, pretraining stage, and
finetuning stage. The goal of the searching stage is to get
an optimal binary CNN architecture, which is done by using
NAS to train a binary CNN model Ms from scratch on dataset
D. The pretraining stage is used to train a full precision CNN
model Mp from scratch on dataset D′, whose architecture is
finalized from the searching stage. The finetuning stage is used
to binarize the pre-trained CNN obtained from the pretraining
stage and finetune it on dataset D′ to get a binary CNN model
Mf .

The binary CNN model finalized from the searching stage
is the same as model Mf used in the finetuning stage except
for some minor differences because of their different datasets.
Performing the searching stage on a small dataset D rather



Algorithm 1 Three-stage training algorithm
Input: Dataset D = {(Xi, Yi)}Si=1 for the searching stage,

dataset D′ = {(X ′i, Y ′i )}Si=1 for the pretraining and fine-
tuning stages.

Output: Binary CNN model Ms for the searching stage, full
precision CNN model Mp for the pretraining stage, and
binary CNN model Mf for the finetuning stage.
Stage 1: The searching stage

1: for epoch = 1 to L do
2: for batch = 1 to T do
3: Randomly sample a mini-batch validation data from

D, freeze the model weights of model Ms, and
update its architecture parameters.
Randomly sample a mini-batch training data from D,
freeze the architecture parameters of model Ms, and
update its model weights.

4: end for
5: end for

Stage 2: The pretraining stage
6: for epoch = 1 to L do
7: for batch = 1 to T do
8: Randomly sample a mini-batch training data from D′

and update the weights of model Mp.
9: end for

10: end for
Stage 3: The finetuning stage

11: for epoch = 1 to L do
12: for batch = 1 to T do
13: Randomly sample a mini-batch training data from D′

and update the weights of model Mf .
14: end for
15: end for

than directly on target dataset D′ can be regarded as a proxy
task to find the optimal binary architecture model Mf for
the finetuning stage, which can enable a large search space
and significantly accelerate the computation of NASB strategy.
After binarizing the full precision CNN model Mp from the
pretraining stage, we directly get the binary CNN model Mf

for the finetuning stage.

C. Variants of NASB strategy

In this section, a number of variants of NASB strategy are
presented to improve the accuracy over state-of-the-art mul-
tiple binary CNNs. Taking NASB ResNet18 as an example,
there are 4 NASB-convolutional cells, and each of them is
composed of 5 nodes. we retain only one predecessor for
every node and one operation for every edge except for the
node with the number 0. By changing the number of NASB-
convolutional cells and operations for every node, different
variants of NASB strategy are explored.

NASBV1 strategy enlarges the search space of a NASB-
convolutional cell. In NASBV1 ResNet18, there are 2 NASB-
convolutional cells, and each of them is composed of 9 nodes.
In NASBV2 ResNet18, we adopt the method in [38] to retain

TABLE II
ACCURACY OF NASB RESNET18 VARIANTS

Variants Top-1 Top-5
NASB ResNet18 60.5% 82.2%
NASBV1 ResNet18 60.3% 82.3%
NASBV2 ResNet18 61.1% 82.7%
NASBV3 ResNet18 62.8% 84.1%
NASBV4 ResNet18 65.3% 85.9%
NASBV5 ResNet18 66.6% 87.0%

TABLE III
COMPARISONS OF RESNET18 WITH MULTIPLE BINARY METHODS.

Model Top-1 Top-5
Full precision 69.7% 89.4%
ABC-Net (M = 5, N = 5) 65.0% 85.9%
Group-Net (4 bases) 64.2% 85.6%
Group-Net** (4 bases) 66.3% 86.6%
NASBV4 65.3% 85.9%
NASBV5 66.6% 87.0%

4 operations instead of 1 operation for the output node of the
NASB-convolutional cell. In NASBV3 ResNet18, We copy
all the NASB-convolutional cells once to get two binary
branches. The two branches can be parallelized thoroughly
except that we merge the information of the two branches at
the end of every block using addition operation as in [15]. All
the NASB-convolutional cells are different from each other,
which can explore the optimal binary architecture for every
NASB-convolutional cell. In NASBV4 ResNet18, we retain 4
operations (except for identity) instead of 1 operation for every
node of the NASB-convolutional cell. In NASBV5 ResNet18,
we retain 8 operations for the output node and 6 operations for
the other nodes of the NASB-convolutional cell. Fig. 2(a) is
the connections of a NASB-convolutional cell at the searching
stages for the NASB strategy and the NASBV5 strategy. Fig. 4
is the derived architecture of the NASBV5 strategy after the
searching stage.

IV. EXPERIMENTAL RESULTS ON IMAGENET DATASET

We applied our proposed NASB strategy for the binarization
of ResNet [1], trained and evaluated on the ILSVRC2012
classification dataset [39]. ResNet is one of the most popular
and advanced CNNs.

A. Implementation details

During the searching stage, we train model Ms on CIFAR-
10. Half of the CIFAR-10 training data is used as a validation
set. The Relu layer is not added in the searching stage. We
train model Ms for 100 epochs with batch size 64. We use
momentum SGD and Adam to optimize the model weights
and architecture parameters, respectively. The experiments
are performed on one GPU. In NASB ResNet18 and NASB
ResNet34, all NASB-convolutional cells adopt 4 nodes and
they use 3 nodes for NASB ResNet50. Due to memory
limitations, we remove convolutions and dilated convolutions
with kernel size 3 and 5 for NASB ResNet50 during this stage.
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Fig. 4. Architecture of NASB-convolutional cells in NASBV5 ResNet18. Nconv cell refers to NASB-convolutional cell. conv and bconv refer to full precision
and binary convolutional layer, respectively.

TABLE IV
COMPARISONS WITH SINGLE BINARY CNNS

Model Full BNN XNOR Bi-Real NASB

ResNet18 Top-1 69.7% 42.2% 51.2% 56.4% 60.5%
Top-5 89.4% 67.1% 73.2% 79.5% 82.2%

ResNet34 Top-1 73.2% − − 62.2% 64.0%
Top-5 91.4% − − 83.9% 84.7%

ResNet50 Top-1 76.0% − − 62.6% 65.7%
Top-5 92.9% − − 83.9% 85.8%

TABLE V
COMPARISONS OF RESNET18 WITH FIXED-POINT QUANTIZATION

METHODS.

Model W A Top-1 Top-5
Full precision 32 32 69.7% 89.4%
Dorefa-Net 2 2 62.6% 84.4%
SYQ 1 8 62.9% 84.6%
Lq-Net 2 2 64.9% 85.9%
NASBV4 1 1 65.3% 85.9%

During the pretraining stage, we train model Mp obtained
from the last searching stage on the ILSVRC2012 classifica-
tion dataset. A 224× 224 crop is randomly sampled from an
image or its horizontal flip, with the per-pixel mean subtracted.
We do not apply any more sophisticated data augmentation

to the training data. We use standard single-crop testing for
evaluation. We insert the Relu layer and use the layer order
as Conv→Relu→BN, and the tanh function is applied to
activation after the Batch Normalization layer.

During the finetuning stage, we binarize and train the pre-
trained model Mp from the pretraining stage into model Mf .
The weights and activations are binarized using the method
described in Section III-A0a. We keep 1×1 convolution to full-
precision in this stage. We adopt Adam as the optimizer and
set weight decay to 0 since the binarization can be recognized
as a kind of regularization.

B. Experimental results of NASB variants

The accuracy of different variants is compared in Table II.
The accuracy of NASBV1 ResNet18 is almost the same as
that of NASB ResNet18. We conjecture that 28/36 of the total
edges in NASBV1 ResNet18 is removed rather than 6/10 of
the total edges in NASB ResNet18, which will change model
Ms too much and remedy the benefits of a larger search
space. For other variants of NASB strategy, we observe the
increased operations of NASB-convolutional cell bring Top-1
accuracy improvement by up to 6.0%. It is expected that with
more operations retained, NASB variants can achieve higher
accuracy. We present the finalized architecture of four NASB-
convolutional cells in NASBV5 ResNet18, as shown in Fig. 4,



TABLE VI
MEMORY USAGE AND FLOPS CALCULATION OF BI-REAL NET, GROUP-NET, NASB NET, AND FULL PRECISION MODELS

Model Memory usage Memory saving Flops Speedup
Bi-Real ResNet18 33.6Mbit 11.14 × 1.63× 108 11.06 ×
NASB ResNet18 33.8Mbit 11.07 × 1.71× 108 10.60 ×
ResNet18 374.1Mbit − 1.81× 109 −
Bi-Real ResNet34 43.7Mbit 15.97 × 1.93× 108 18.99 ×
NASB ResNet34 44.0Mbit 15.86 × 2.01× 108 18.26 ×
ResNet34 697.3Mbit − 3.66× 109 −
Bi-Real ResNet50 176.8Mbit 4.62 × 5.45× 108 7.08 ×
NASB ResNet50 178.1Mbit 4.60 × 6.18× 108 6.26 ×
ResNet50 817.8Mbit − 3.86× 109 −
ABC-Net (M = 5, N = 5) ResNet18 72.3Mbit 5.17 × 6.74× 108 2.70 ×
Group-Net (4 bases) ResNet18 62.1Mbit 6.03 × 2.62× 108 6.90 ×
Group-Net** (4 bases) ResNet18 83.9Mbit 4.46 × 3.38× 108 5.35 ×
NASBV4 ResNet18 70.7Mbit 5.30 × 2.81× 108 6.45 ×
NASBV5 ResNet18 88.3Mbit 4.24 × 3.52× 108 5.15 ×
ResNet18 374.1Mbit − 1.81× 109 −

which is derived from Fig. 2(a) after the searching stage. In
this figure, we retain 8 operations for the output node and 6
operations for the other nodes of every NASB-convolutional
cell.

C. Comparisons with the state-of-the-art quantized CNNs

As shown in Table IV, Table III, and Table V, we com-
pare our NASB strategy with single binary CNNs, multiple
parallel binary CNNs, and fixed-point CNNs using different
quantization methods, respectively. All the comparison results
are directly cited from the corresponding papers.

As shown in Table IV, Bi-Real Net [9] is the state-of-the-
art single binary CNNs. Compared with Bi-Real ResNet with
varying layers from 18 to 50, our proposed NASB ResNet
show consistent accuracy improvement by 4.1%, 1.8%, and
3.1% Top-1 accuracy respectively.

As shown in Table III, we compare our NASB strategy with
ABC-Net and Group-Net, which is a multiple binary CNN and
can be implemented in a parallel way. Both NASBV4 and
NASBV5 achieve higher accuray than ABC-Net. NASBV4
and NASBV5 show better accuracy performance than Group-
Net and Group-Net** by 1.1% and 0.3%, respectively.

As shown in Table V, Lq-Net is the current best-performing
fixed-point method. Multiple binary CNNs with K binary
branches are preferable to fixed-point CNNs with

√
K bit-

width considering the computational complexity and memory
bandwidth [15]. Thus, NASBV4 with 4 operations retained for
every node requires less overhead while still achieves better
accuracy.

D. Computational complexity analysis

To analyze the computational complexity of our proposed
NASB strategy, we compare with Bi-Real Net, Group-Net, and
full precision models in terms of memory usage saving and
computation speedup as shown in Table VI.

The memory usage is computed as the summation of the
number of real-valued parameters times 32 bit and the number
of binary parameters times 1 bit. We use Flops to measure the
computation and assume that bitwise XNOR and popcount

operations can be calculated in parallel of 64 on current CPUs.
Thus, the Flops is calculated as the summations of 1/64 of the
number of bitwise operations and the number of real-valued
operations. Following the suggestion from [8], [9], [15], we
keep the first convolutional layer, the last fully connected layer,
and the downsampling layer as full precision.

Bi-Real Net [9] can be seen as a suboptimal binary CNN
architecture of our NASB Net, where one edge connected to its
last node is retained for every node and one identity operation
remains for every edge. The finalized NAS-convolutional cells
in NASB ResNet18 includes 12 max pooling and 4 identity
operations, and they are composed of 20 max pooling and 12
identity operations in NASB ResNet34. In NASB Res50, the
NAS-convolutional cells consist of 41 max pooling, 6 identity,
and 1 1x1 dilated convolution operations. Compared to Bi-Real
Net, the increased computational complexity is mainly due to
max pooling. The Flops or the number of bitwise operations
of a 3x3 max pooling is less than that of a 3x3 convolution,
and the additional number of trainable parameters introduced
by Batch Normalization of max pooling operation is 2Cout.

As shown in Table VI, both the additional memory usage
and Flops of NASB ResNet of varying depths are negligible
compared to Bi-Real Net. ABC-Net requires much more Flops
than Group-Net and NASB variants. The increased memory
usage and Flops of NASB V5 and NASB V4 ResNet18
are insignificant compared to Group-Net** and Group-Net
respectively.

V. CONCLUSION

In this paper, we proposed a NASB strategy to find an
accurate architecture for binary CNNs. Specifically, the NASB
strategy uses the NAS technique to identify an optimal archi-
tecture in a large search space, which is suitable for binarizing
CNNs. We use the ImageNet classification dataset to prove
the effectiveness of our proposed approach. With insignificant
overhead increases, NASB strategy and its variants achieve
up to 4.0% and 1.0% Top-1 accuracy improvement compared
with the state-of-the-art single and multiple binary CNNs,
respectively, providing a better trade-off between accuracy and



efficiency. It is worth to worth to clarify that without we
can easily extend our proposed NASB strategy to fixed-point
quantized convolutional neural networks and other models for
computer vision tasks beyond image classification, which can
be explored further in the future.
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