
 
 

Delft University of Technology

MIMO Graph Filters for Convolutional Neural Networks

Gama, Fernando; Marques, Antonio G.; Ribeiro, Alejandro; Leus, Geert

DOI
10.1109/SPAWC.2018.8445934
Publication date
2018
Document Version
Final published version
Published in
2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications,
SPAWC 2018

Citation (APA)
Gama, F., Marques, A. G., Ribeiro, A., & Leus, G. (2018). MIMO Graph Filters for Convolutional Neural
Networks. In 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless
Communications, SPAWC 2018 (Vol. 2018-June, pp. 1-5). Article 8445934 IEEE.
https://doi.org/10.1109/SPAWC.2018.8445934
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/SPAWC.2018.8445934
https://doi.org/10.1109/SPAWC.2018.8445934


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



MIMO Graph Filters for Convolutional

Neural Networks

Fernando Gama, Antonio G. Marques, Alejandro Ribeiro, and Geert Leus

Abstract—Superior performance and ease of implementation
have fostered the adoption of Convolutional Neural Networks
(CNNs) for a wide array of inference and reconstruction tasks.
CNNs implement three basic blocks: convolution, pooling and
pointwise nonlinearity. Since the two first operations are well-
defined only on regular-structured data such as audio or im-
ages, application of CNNs to contemporary datasets where the
information is defined in irregular domains is challenging. This
paper investigates CNNs architectures to operate on signals whose
support can be modeled using a graph. Architectures that replace
the regular convolution with a so-called linear shift-invariant
graph filter have been recently proposed. This paper goes one step
further and, under the framework of multiple-input multiple-
output (MIMO) graph filters, imposes additional structure on the
adopted graph filters, to obtain three new (more parsimonious)
architectures. The proposed architectures result in a lower num-
ber of model parameters, reducing the computational complexity,
facilitating the training, and mitigating the risk of overfitting.
Simulations show that the proposed simpler architectures achieve
similar performance as more complex models.

Index Terms—Convolutional neural networks, network data,
graph signal processing, MIMO.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have emerged as

the information processing architecture of choice in a wide

range of fields as diverse as pattern recognition, computer

vision and medicine, for solving problems involving inference

and reconstruction tasks [1]–[3]. CNNs have demonstrated

remarkable performance, as well as ease of implementation

and low online computational complexity [4], [5]. CNNs take

the input data and process it through several layers, each

of which performs three simple operations on the output of

the previous layer. These three operations are convolution,

pointwise nonlinearity and pooling. The objective of such

an architecture is to progressively extract useful information,

from local features to more global aspects of the data. This

is mainly achieved by the combination of convolution and

pooling operations which sequentially combine data that is

located further away. The nonlinearity dons the architecture

with enough flexibility to represent a richer class of functions

that may describe the problem.

One of the most outstanding characteristics of CNNs is that

the filters used for convolution can be efficiently learned from

Work supported by USA NSF CCF-1717120 and ARO W911NF1710438,
Spanish MINECO grants No. TEC2013-41604-R and TEC2016-75361-R. F.
Gama and A. Ribeiro are with the Dept. of Electrical and Systems Eng.,
Univ. of Pennsylvania., A. G. Marques is with the Dept. of Signal Theory and
Comms., King Juan Carlos Univ., G. Leus is with the Dept. of Microelec-
tronics, Delft Univ. of Technology. Emails: {fgama,aribeiro}@seas.upenn.edu,
antonio.garcia.marques@urjc.es, and g.j.t.leus@tudelft.nl .

training datasets by means of a backpropagation algorithm

[6]. This implies that the CNN architecture is capable of

learning which are the most useful features for the task at

hand. Intimately related to the capability of successful training,

is the fact that the filters used are small, thus containing few

parameters, making training easier. While, convolution and

pooling are well-defined only in regular domains such as time

or space, contemporary data is increasingly being described

on domains that exhibit more irregular behavior [7], with

examples including marketing, social networks, or genetics

[8]–[10]. With the objective of extending the remarkable

performance of CNNs to broader data domains, extensions

capable of processing network data have been developed [11]–

[18], see [19] for a survey. In particular, the works of [11],

[14] make use of the concept of graph filters (GFs) [20],

[21] to extend the convolution operation to graph signals [22].

Leveraging the framework of multiple-input multiple-output

(MIMO) GFs on existing results, this paper proposes three

novel architectures for GF-based CNNs. The main idea is

to replace the bank of parallel GFs with a more structured

filtering block which reduces the degrees of freedom (number

of parameters) on each layer. This new architecture facilitates

the training, incurs reduced computational complexity, and can

be beneficial to avoid overfitting.

Section II introduces notation and reviews existing GF-

based CNNs under the framework of MIMO GFs. Section III

describes the novel architectures. Section IV presents simula-

tions showing the benefits of our schemes. Concluding remarks

are provided in Section V.

II. CNNS ON GRAPH SIGNALS

Let x ∈ X be the input data defined on some field X and

let y ∈ Y be the output data such that y = f(x) for some

(unknown) function f : X → Y . The general objective in

machine learning is to estimate or learn the function f [23].

A neural network is an information processing architecture

that aims at constructing an estimator f̂ that consists of a

concatenation of layers, each of which applies three simple

operations on the output of the layer before, namely a linear

transform, a pointwise nonlinearity and a pooling operator.

Formally, the estimator f̂ can be written as f̂ = fL ◦ fL−1 ◦
· · · ◦ f1 where f� denotes the operations to be applied at layer

� = 1, . . . , L [24]. Denote by x� ∈ X� the N�-dimensional

output of layer � defined over field X�, by A� : X�−1 →
X ′� a linear transform between fields X�−1 and X ′� , by σ� :
X ′� → X ′� a pointwise nonlinearity, and by P� : X

′
� → X� the

pooling operator. Then, each layer can be described as x� =

2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

978-1-5386-3512-4/18/$31.00 ©2018 IEEE

Authorized licensed use limited to: TU Delft Library. Downloaded on September 02,2021 at 12:31:51 UTC from IEEE Xplore.  Restrictions apply. 



f�(x�−1) = P�{σ�(A�x�−1)}, � = 1, . . . , L with X0 ≡ X the

input data field and XL ≡ Y the output data field.

In particular, a CNN assumes that the linear operator A� is

comprised of a collection of F� filters of small support K�,

A� = {h�,1, . . . ,h�,F�
}. Then, the application of the linear

operator yields a collection of signals {h�,1∗x�−1, . . . ,h�,F�
∗

x�−1}, in which each element i = 1, ..., N�−1,

[h�,f ∗ x�−1]i =

K�−1∑
k=0

[h�,f ]k[x�−1]i−k (1)

is considered a feature, f = 1, . . . , F�, and where we assumed

that [x�−1]i−k = 0 for i ≤ k. Using filters with a small

support has a twofold goal. First, the convolution operation

linearly relates nearby values (consecutive time instants, or

neighboring pixels) and consolidates them in a feature value

that aggregates this local information. Second, such filters only

have a few parameters and, therefore, are easy to be learned

from data. We also note that the pooling operation serves the

function of changing the resolution of data, so that on each

layer, the nearby values that are related by the convolution

operator are actually located further away. In this way, the

convolution and pooling operations act in tandem to guarantee

that the CNN aggregates information at different levels, from

local to global.

The operation of convolution, in particular, depends upon

the existence of a notion of neighborhood. Such a notion also

exists in domains like manifolds and graphs, and thus, the

convolution can be extended to operate on signals defined on

these irregular domains. In particular, for signals defined on

graphs, let us start by considering the graph G = (V , E ,W),
where V is the set of N nodes, E ⊆ V × V is the set of

edges, and W : E → R is the function that assigns weights

to the edges. The neighborhood of node i ∈ V is then defined

as the set of nodes Ni = {j ∈ V : (j, i) ∈ E}. With these

notations in place, a graph signal is defined as a map which

associates a real value to each element of V . This graph signal

can be conveniently represented as the vector x ∈ R
N , where

the i-th element [x]i = xi corresponding to the value of the

signal at node i. In order to relate the values of the graph

signal at any node with those at its neighborhood, we can make

use of a matrix description of the graph. More precisely, let

S ∈ R
N×N be a graph shift operator (GSO) which is a matrix

whose (i, j)-th element can be nonzero if and only if i = j or

if (j, i) ∈ E [20]. Note then, that Sx is a linear combination

of the values of the signal with that of its neighbors. More

precisely, we have that, for each i ∈ V

[Sx]i =
N∑
j=1

[S]ijxj =
∑

j∈Ni∪{i}

[S]ijxj (2)

where the second equality follows because [S]ij = 0 if

j /∈ Ni ∪ {i}. The operation in (2) is the basic element to

extend the notion of convolution (filtering) to signals defined

on graphs; see, e.g., [21]. First, observe that while Sx collects

information from the one-hop neighborhood of each node, Skx

collects information up to the k-hop neighborhood of each

node. Denote by h = [h0, . . . , hK−1]
T ∈ R

K a collection

of K filter taps. Then, we can linearly combine neighboring

values up to the (K − 1)-hop neighborhood by [cf. (1)]

[h ∗ x]i =
K−1∑
k=0

hk[S
kx]i. (3)

Upon defining matrix H :=
∑K−1

k=0 hkS
k ∈ R

N×N , (3) can

be equivalently written as

h ∗ x = Hx =
K−1∑
k=0

hkS
kx. (4)

with H being known as a linear shift-invariant (LSI) GF [21].

Since LSI-GFs are regarded as the generalization of con-

volutions to operate on graph signals, the operator in (3)

can be used to extend CNNs to operate on graph signals

[11]. More specifically, assume that in each layer � of the

CNN, output x� consists of F� features, each of which is

considered a graph signal x
(f)
� ∈ R

N�×1 defined on an N�-

node graph described by GSO S� ∈ R
N�×N� , f = 1, . . . , F�.

Then, all F� features can be concatenated on vector x� =
[(x

(1)
� )T, . . . , (x

(F�)
� )T]T ∈ R

F�N�×1. Assume that the linear

transform A� constructs F� features out of the existing F�−1

ones. Then, A� can be regarded as a MIMO GF since it

takes F�−1 input signals and outputs F� graph signals. By

denoting as ⊗ the Kronecker matrix product, the output of

the convolution operation on graph signals can be compactly

written as a MIMO GF as follows

A�x�−1 =

K�−1∑
k=0

(
H�,k ⊗ Sk

�

)
x�−1 (5)

where H�,k ∈ R
F�×F�−1 contains the filter taps corresponding

to the F�−1F� LSI-GFs employed. More precisely, by denoting

as [H�,k]f,f ′ = h
(�)
k,f,f ′ , the filter taps of the (f, f ′) filter can

be written as h
(�)
f,f ′ = [h

(�)
0,f,f ′ , . . . , h

(�)
K�−1,f,f ′

]T ∈ R
K�×1,

f = 1, . . . , F�, f ′ = 1, . . . , F�−1. Construction (5) builds

F� different LSI-GFs for each of the F�−1 features contained

in the previous layer, totaling F�−1F� LSI-GFs. The total

number of trainable parameters is thus F�−1F�K�. While

written differently, the MIMO GF in (5) represents the per-

layer architecture proposed in [14].

Finally, with respect to the pooling operation, the use of

multiscale hierarchical clustering to reduce the size of the

graph in each layer has been employed, yielding N� ≤ N�−1

and S� the corresponding GSO of each layer [11], [14]. Also,

due to the computational and performance issues of clustering,

alternative approaches which do not rely on pooling exist

[16]. In this work, we focus on the convolutional operation

of CNNs on graph signals, letting the user determine the

preferred choice of pooling scheme.

III. CNNS BASED ON STRUCTURED MIMO GFS

This paper proposes three new architectures for CNNs on

graph signals, obtained by imposing a certain parsimonious

representation on the MIMO GF matrices {H�,1, . . . ,H�,K�
}.

The resulting architectures yield a considerably lower number

of trainable parameters, reducing the complexity of the net-

work, as well as avoiding certain pitfalls such as overfitting

2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

Authorized licensed use limited to: TU Delft Library. Downloaded on September 02,2021 at 12:31:51 UTC from IEEE Xplore.  Restrictions apply. 



or the curse of dimensionality [25]. For simplicity, from now

on, we focus on some specific layer �, hence dropping the

subscript on all notations. We denote as x = x�−1 the input,

with x = [xT

1 , . . . ,x
T

Q]
T ∈ R

QN×1 where xq ∈ R
N are the

F�−1 = Q input features, q = 1, . . . , Q. We denote as y = x�

the output features, with y = [yT

1 , . . . ,y
T

P ]
T ∈ R

PN×1 where

yp ∈ R
N×1 are the F� = P output features, p = 1, . . . , P .

The length of the filters is K� = K and the matrix of filter

taps H�,k = Hk ∈ R
P×Q has elements [Hk]p,q = hk,p,q ,

k = 0, . . . ,K − 1, p = 1, . . . , P , q = 1, . . . , Q. Each of the

(p, q) filters is represented by a vector of filter taps hp,q =
[h0,p,q, . . . , hK−1,p,q]

T ∈ R
K×1. Equation (5) becomes

y =
K−1∑
k=0

(
Hk ⊗ Sk

)
x (6)

and each new feature is computed as

yp =

Q∑
q=1

K−1∑
k=0

hk,p,qS
kxq , p = 1, . . . , P. (7)

The design variables are the collection of matrices

{H0, . . . ,HK−1} containing the PQ filters, and thus totaling

PQK parameters.

A. Aggregating the input features

First, we propose to aggregate all input features so as to

reduce the number of filters. Instead of designing P different

filters for each one of the Q input features, we first aggregate

the Q input features into one graph signal, and proceed to

design P different filters to be applied to this graph signal.

This strategy amounts to designing filter taps hp,1 =
[h0,p,1, . . . , hK−1,p,1]

T ∈ R
K×1 for p = 1, . . . , P . Then,

matrix Hk in (6) becomes a replication of the first column

Hk =

⎡
⎢⎢⎢⎣
hk,1,1 hk,1,1 · · · hk,1,1

hk,2,1 hk,2,1 · · · hk,2,1

...
...

. . .
...

hk,P,1 hk,P,1 · · · hk,P,1

⎤
⎥⎥⎥⎦ . (8)

Each output feature (7) is thus computed as

yp =

Q∑
q=1

K∑
k=1

hk,p,1S
kxq =

K∑
k=1

hk,p,1S
k

(
Q∑

q=1

xq

)
(9)

for p = 1, . . . , P .

Observe that the structure imposed on (8) leads to only

P different LSI-GFs and therefore the number of trainable

parameters has been reduced to PK. The effect of this filter, as

observed from (9) is to first aggregate all the input features into

a single graph signal
∑Q

q=1 xq and then applying P different

filters to it, yielding the P different output features.

B. Consolidating output features

The second proposed architecture consists of designing one

filter for each input feature and then consolidating all the

filtered input features into a single output feature.

In order to do this, we need to design Q LSI-GFs described

by filter taps h1,q = [h0,1,q, . . . , hK−1,1,q]
T ∈ R

K−1 specific

to each input feature q = 1, . . . , Q. Matrix Hk in (6) can thus

be written as a replication of the first row

Hk =

⎡
⎢⎢⎢⎣
hk,1,1 hk,1,2 · · · hk,1,Q

hk,1,1 hk,1,2 · · · hk,1,Q

...
...

. . .
...

hk,1,1 hk,1,2 · · · hk,1,Q

⎤
⎥⎥⎥⎦ . (10)

This leads to each output feature (7) being calculated as

yp =

Q∑
q=1

(
K−1∑
k=0

hk,1,qS
k

)
xq =

Q∑
q=1

Gqxq (11)

for p = 1, . . . , P .

Note that all P output features yp are actually the same,

since (11) does not depend on p. Thus, the filter taps given by

(10) actually yield a single output feature, which is the graph

signal given by (11). This could be particularly useful for

reducing operational complexity of subsequent layers, since

graph signals can be handled easily. Observe that the imposed

structure (10) containing Q distinct filters yields QK trainable

parameters.

C. Convolution of features

As a third approach to reducing the number of parameters

involved in (6), we consider a set of P + Q − 1 filters to be

applied sequentially and progressively to the input features,

yielding output features that resemble convolutions of the input

features.

Let hp−q+1 = [h0,p−q+1, . . . , hK−1,p−q+1]
T ∈ R

K−1 be a

set of filter taps, p = 1, . . . , P , q = 1, . . . , Q. Then, for this

third proposed strategy, matrix Hk in (6) becomes

Hk =

⎡
⎢⎢⎢⎣
hk,1 hk,0 · · · hk,2−Q

hk,2 hk,1 · · · hk,3−Q

...
...

. . .
...

hk,P hk,P−1 · · · hk,P+1−Q

⎤
⎥⎥⎥⎦ . (12)

The output features are then obtained using (12) in (7) yielding

yp =

Q∑
q=1

K−1∑
k=0

hk,p+1−qS
kxq =

K−1∑
k=0

Sk

Q∑
q=1

hk,p+1−qxq

(13)
for p = 1, . . . , P .

From (13) we observe that each output feature yp can be

thought of as the convolution of the input feature vector x with

the collection of filter taps given by {hk,p, . . . , hk,p+1−Q}.
Note also that consecutive output features weigh input features

similarly. In a way, (13) acts as a smoother of input features.

Matrix Hk in (12) is a Toeplitz matrix and thus has P +Q−1
elements, so that the total number of trainable parameters is

(P +Q− 1)K.

IV. NUMERICAL TESTS

Here we compare the performance of the three architectures

proposed in Sections III-A, III-B and III-C, which involve,

respectively, PK, QK and (P + Q − 1)K parameters, with

that of [14], which involves PQK parameters [cf. (5)]. In

the first testcase we consider a synthetic dataset of a source

localization problem in which different diffused graph signals

2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

Authorized licensed use limited to: TU Delft Library. Downloaded on September 02,2021 at 12:31:51 UTC from IEEE Xplore.  Restrictions apply. 



(a) (b) (c)

Figure 1: Accuracy in the source localization problem. Results were averaged across 10 different graph realizations. For clarity

of figures, error bars represent 1/4 of the estimated variance. (a) As a function of the probability of keeping a sample during

the training phase, i.e. 1− probdropout. (b) As a function of the noise in the test set. (c) As a function of the number of training

samples. Overall, we observe that the full architecture (5) yields a performance similar to that proposed in Section III-A.

Architecture Parameters Accuracy

PQK 10, 400 93.9%
PK 480 94.8%
QK 165 88.0%
(P +Q− 1)K 635 78.8%

Table I: Source localization results for N = 16 nodes.

are processed to determine the single node that originated

them. In the second testcase we use the 20NEWS dataset and

a word2vec embedding underlying graph to classify articles

in one out of 20 different categories [26]. For both problems,

we evaluate an architecture with 2 convolutional layers, the

first one generating F1 = 32 features, and the second one

outputting F2 = 64 features. GFs are of length K1 = K2 =
K = 5. No pooling is employed, so that N1 = N2 = N , the

number of nodes in the graph, and S1 = S2 = S is the GSO

specific to each testcase. We denote as PQK the architecture

in [14], and as PK, QK and (P+Q−1)K the ones developed

in Sections III-A, III-B and III-C, respectively. The number of

parameters in the convolutional layers are 10400 for PQK,

480 for PK, 165 for QK and 635 for (P + Q − 1)K. The

selected nonlinearity is a ReLU applied at each layer and all

architectures include a readout layer. For the training stage in

both problems, an ADAM optimizer with learning rate 0.005
was employed [27], for 20 epochs and batch size of 100.

A. Source localization.

Consider a connected Stochastic Block Model (SBM) graph

with N = 16 nodes divided in 4 communities, with intra-

community edge probability of 0.8 and intercommunity edge

probability of 0.2. Let W denote its adjacency matrix. With

δc representing a graph signal taking the value 1 at node c
and 0 elsewhere, the signal x = Wtδc is a diffused version

of the sparse input δc for some unknown 0 ≤ t ≤ N − 1.

The objective is to determine the source c that originated the

signal x irrespective of time t. To that end, we create a set of

Ntrain labeled training samples {(c′,x′)} where x′ = Wtδc′

with both c′ and t chosen at random. Then we create a test

set with Ntest samples in the same fashion, but we add i.i.d.

zero-mean Gaussian noise w with variance σ2
w, so that the

signals to be classified are Wtδc +w. The goal is to use the

Architecture Parameters Accuracy

PQK 10, 400 61.32%
PK 480 62.48%
QK 165 58.22%
(P +Q− 1)K 635 64.06%

Table II: Results for classification on 20NEWS dataset on a

word2vec graph embedding of N = 5, 000 nodes.

training samples to design a CNN that determines the source

(node) c that originated the diffused signal.

First, we run the source localization problem on 10 different

realizations of randomly generated SBM graphs. For each

graph, we train the four architectures using dropout with

probability of keeping each training sample of 0.75. The

total number of training samples is 10, 000. Once trained,

the architectures are tested on a test set of 200 samples

for each graph, contaminated with noise of variance σ2
w =

10−1. Results are listed in Table I, where the accuracy is

averaged over the 200 samples, over the 10 different graph

realizations. We observe that the PK architecture proposed in

Section III-A outperforms the full PQK architecture, with two

orders of magnitude less parameters. Also, the QK and the

(P +Q− 1)K architectures yields reasonable performances.

Additionally, we run tests changing the values of several of

the simulations parameters. In Fig. 1a we observe the accuracy

obtained when varying the probability of keeping training

samples. It is noted that the PK architecture performs as well

as the full PQK architecture. It is also observed that the other

two architectures have significant variance, which implies that

they depend heavily on the topology of the graph. The effect

of noise σ2
w on the test samples can be observed in Fig. 1b.

We observe that all four architectures are relatively robust to

noise. The QK and (P +Q− 1)K architectures exhibit a dip

in performance for the highest noise value simulated. Finally,

in Fig. 1c we show the performance of all four architectures as

a function of the number of training samples. We see that the

PK and the full PQK architecture improve in performance

as more training samples are considered, with a huge increase

between 1, 000 and 2, 000 training samples. This same increase

is observed for the remaining two architectures, although their

performance behaves somewhat erratically afterwards. All in

all, from these set of simulations, we observe that the PK

2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

Authorized licensed use limited to: TU Delft Library. Downloaded on September 02,2021 at 12:31:51 UTC from IEEE Xplore.  Restrictions apply. 



architecture performs as well as the full PQK architecture,

but utilizing almost two orders of magnitude less parameters.

We also observe that the QK and (P +Q−1)K architectures

have a high dependence on the topology of the network.

B. 20NEWS dataset

Here we consider the classification of articles in the

20NEWS dataset which consists of 18, 846 texts (11, 314 of

which are used for training and 7, 532 for testing) [26]. The

graph signals are constructed as in [14]: each document x is

represented using a normalized bag-of-words model and the

underlying graph support is constructed using a 16-NN graph

on the word2vec embedding [28] considering the 5, 000
most common words. The GSO adopted is the normalized

Laplacian. No dropout is used in the training phase. Accuracy

results are listed in Table II, demonstrating that the PK and

(P + Q − 1)K architectures outperform the full PQK one,

but requiring almost 100 times less parameters.

V. CONCLUSIONS

In this paper, we have studied the problem of extending

CNNs to operate on graph signals. More precisely, we re-

framed existing architectures under the concept of MIMO

GFs, and leveraged structured representations of such filters

to reduce the number of trainable parameters involved. We

proposed three new architectures, each of which arises from

adopting a different parsimonious model on the MIMO GF

matrices. All the resulting architectures yield a lower number

of trainable parameters, reducing computational complexity,

as well as helping in avoiding certain pitfalls of training like

overfitting or the curse of dimensionality.

We have applied the three proposed architectures to a

synthetic problem on source localization, and compared its

performance with the more complex, full MIMO GF model.

We analyzed performance as a function of dropout probability

in the training phase, noise in the test samples, and number of

training samples. We noted that the proposed architecture that

aggregates input features (Section III-A) has a performance

similar to that of the full model, but involving two orders of

magnitude less parameters. The other two architectures offer

comparable performance for certain values of the analyzed

parameters. Finally, we utilized the proposed architectures on

the problem of classifying articles of the 20NEWS dataset. In

this case, we observed that two of the proposed parsimonious

models outperform the full model.

REFERENCES

[1] J. Bruna and S. Mallat, “Invariant scattering convolution networks,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1872–1886,
Aug. 2013.

[2] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional networks
and applications in vision,” in 2010 IEEE Int. Symp. Circuits and Syst.,
Paris, France, 30 May-2 June 2010, IEEE.

[3] H. Greenspan, B. van Ginneken, and R. M. Summers, “Deep learning
in medical imaging: Overview and future promise of an exciting new
technique,” IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1153–1159,
May 2016.

[4] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 85–117, May 2015.

[5] M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, and N. Seliya,
“Deep learning applications and challenges in big data analytics,” J. Big

Data, vol. 2, no. 1, pp. 1–21, Dec. 2015.
[6] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning

representations by back-propagating errors,” Nature, vol. 323, no. 6088,
pp. 533–536, Oct. 1986.

[7] D. Lazer et al., “Life in the network: The coming age of computational
social science,” Science, vol. 323, no. 5915, pp. 721–723, Feb. 2009.

[8] M. O. Jackson, Social and Economic Networks, Princeton University
Press, Princeton, NJ, 2008.

[9] E. H. Davidson et al., “A genomic regulatory network for development,”
Science, vol. 295, no. 5560, pp. 1669–1678, Feb. 2002.

[10] J. Haupt, W. U. Bajwa, M. Rabbat, and R. Nowak, “Compressed sensing
for networked data,” IEEE Signal Process. Mag., vol. 25, no. 2, pp. 92–
101, March 2008.

[11] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks
and deep locally connected networks on graphs,” arXiv:1312.6203v3

[cs.LG], 21 May 2014.
[12] M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks on

graph-structured data,” arXiv:1506.051631v1 [cs.LG], 16 June 2015.
[13] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional neural

networks for graphs,” in 33rd Int. Conf. Mach. Learning, New York,
NY, 24-26 June 2016.

[14] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Neural

Inform. Process. Syst. 2016, Barcelona, Spain, 5-10 Dec. 2016, NIPS
Foundation.

[15] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in 5th Int. Conf. Learning Representations,
Toulon, France, 24-26 Apr. 2017, Assoc. Comput. Linguistics.

[16] F. Gama, G. J. T. Leus, A. G. Marques, and A. Ribeiro, “Convolutional
neural networks via node-varying graph filters,” arXiv:1710.10355v1

[cs.LG], 27 Oct. 2017.
[17] B. Pasdeloup, V. Gripon, J.-C. Vialatte, and D. Pastor, “Convolutional

neural networks on irregular domains through approximate translations
on inferred graphs,” arXiv:1710.10035v1 [cs.DM], 27 Oct. 2017.

[18] J. Du, S. Zhang, G. Wu, J. M. F. Moura, and S. Kar, “Topology adaptive
graph convolutional networks,” arXiv:1710.10370v2 [cs.LG], 2 Nov.
2017.

[19] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: Going beyond Euclidean data,” IEEE Signal

Process. Mag., vol. 34, no. 4, pp. 18–42, July 2017.
[20] A. Sandyhaila and J. M. F. Moura, “Discrete signal processing on

graphs: Frequency analysis,” IEEE Trans. Signal Process., vol. 62, no.
12, pp. 3042–3054, June 2014.

[21] S. Segarra, A. G. Marques, and A. Ribeiro, “Optimal graph-filter design
and applications to distributed linear network operators,” IEEE Trans.

Signal Process., vol. 65, no. 15, pp. 4117–4131, Aug. 2017.
[22] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on

graphs,” IEEE Trans. Signal Process., vol. 61, no. 7, pp. 1644–1656,
Apr. 2013.

[23] M. J. Kearns and U. V. Vazirani, An Introduction to Computational

Learning Theory, The MIT Press, Cambridge, MA, 1994.
[24] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, The

Adaptive Computation and Machine Learning Series. The MIT Press,
Cambridge, MA, 2016.

[25] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in IEEE Comput. Soc. Conf.

Comput. Vision and Pattern Recognition 2017, Honolulu, HI, 21-26 July
2017, IEEE Comput. Soc.

[26] T. Joachims, “Analysis of the Rocchio algorithm with TFIDF for text
categorization,” Computer Science Technical Report CMU-CS-96-118,
Carnegie Mellon University, 1996.

[27] D. P. Kingma and J. L. Ba, “ADAM: A method for stochastic
optimization,” in 3rd Int. Conf. Learning Representations, San Diego,
CA, 7-9 May 2015, Assoc. Comput. Linguistics.

[28] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” in 1st Int. Conf. Learning Repre-

sentations, Scottsdale, AZ, 2-4 May 2013, Assoc. Comput. Linguistics.

2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

Authorized licensed use limited to: TU Delft Library. Downloaded on September 02,2021 at 12:31:51 UTC from IEEE Xplore.  Restrictions apply. 


