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OPTIMIZING INVENTORY STRATEGY FOR MODULAR SHIPBUILDING  

 

T van der Beek, J T van Essen, J Pruyn, K Aardal, H Hopman, Delft University of Technology, NL 

 

SUMMARY 

 

The primary drivers for buying a ship from a certain yard are price, delivery time and quality. In order to decrease 

construction time and costs, shipbuilding companies are exploring the development of product-families to include family 

wide modularity and cross family standardization. Standardization is the use of identical components across multiple 

products, while modularity combines parts to create ‘building-blocks’. This creates an opportunity for less inventory, a 

more efficient supply chain and shorter delivery times. Considering a network of suppliers and shipyards, the shipbuilder 

has to answer the following question: Which components and pre-assembled modules should be available in which 

inventory? Since the exact ship orders are not known, this can be seen as an optimization problem with uncertainty. To 

solve it, it is formulated as an integer linear program (ILP), and to handle the uncertainty, the Sampling Average 

Approximation (SAA) method is used. Several smaller instances are solved to optimality by Gurobi optimization software 

and the performance of this approach is evaluated along with the convergence of the SAA method. The results show 

convergence of the SAA method although only relatively small instances can be solved to optimality by the ILP. 

 

 

NOMENCLATURE 

 

SETS 

 

As Relative times when qsia > 0 for any i  

D Depots 

D' Depots in the original problem without 

scenarios 

D'd Depots in the multi-scenario problem, which 

link to depot d ∈ D' in the original problem 

Dj Depots for yard j ∈ J 

I Component and module types, i.e.,  𝐼𝑐 ∪ 𝐼𝑚  

Ic Component types 

Im Module types 

J Yards 

M Module options 

Ms Module options which can be used by ship s 

∈ S 

Msia Module options of module type i ∈ Im which 

can be used by ship s ∈ S at time a ∈ As 

S Ships 

Sj Ships produced in jard j ∈ J 

T Time periods 

Ts Time periods when ship s ∈ S can be 

constructed  

Λ Scenarios 

Λ∞ All possible scenarios 

Φ Base inventories 

 

PARAMETERS 

 

as0 Earliest relative time in As 

bi Cost per one base stock for component or 

module type i ∈ I 
cst Cost for starting the construction of ship s ∈ 

S in time period t ∈ Ts 

fs Construction time of ship s ∈ S 

js Yard of ship s ∈ S 

ldj Lead time from depot d ∈ D to yard j ∈ J 
OBJu Objective value for iteration u in robustness 

evaluation algorithm 

OBJu
θ(v) Objective value for iteration u in robustness 

evaluation algorithm with base inventory 

𝜃(𝑣). 

qsia Number of components of type i ∈ I required 

for ship s ∈ S  at relative time a ∈ As 

rmia Reduction at relative time a ∈ As of 

component type i ∈ Ic by using module m ∈ M 

ts Order time for ship s ∈ S 

Δu Variation parameter for iteration u in 

robustness evaluation algorithm 

λd Lead time for depot d ∈ D to re-order a 

component 

φ*
Λ Optimal base inventory over scenario set Λ 

θ(u)  Base inventory of iteration u in robustness 

evaluation algorithm 

 

DECISION VARIABLES 

 

Wm 1 if module option m ∈ M is used, and 0 

otherwise 

Xst 1 if ship s ∈ S is constructed at time t ∈ Ts, 0 

otherwise 

Ysdit Number of components or modules of type i 

∈ I  ordered  for ship s ∈ S at time t ∈ Ts  from 

depot d ∈ D  
Zdit Inventory level of component type i ∈ I  at 

time t ∈ T at depot d ∈ D 

 

1. INTRODUCTION 

 

In the current market of shipbuilding, lead times are an 

important aspect to gain a competitive advantage for both 

standardized and custom design [1]. The research 

presented in this paper was done within the NAVAIS 

project, an EU sponsored cooperation between multiple 

European maritime companies and  Delft University of 

Technology to develop a modular product family for work 
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boats and ferries. Work boats can be used for various 

activities on water, like construction, maintenance and 

inspection. Ferries are used for transporting passengers 

and vehicles. 

When buying a product, the shortest lead time would be 

attained if a product could be bought directly from stock. 

This is, for example, often the case when buying a new 

car. Unfortunately, for ships, this is usually not possible 

because of several reasons: First of all, ships are very 

expensive and keeping finished ships in stock carries high 

costs. These costs are due to deprecation of the ships, 

interest costs on investments, maintenance costs and 

storage costs. Secondly, ships are customized products. 

This means that the total variety of ships is very large and 

by keeping every possible variation in stock, it is bound to 

result in a large part of the stock not being sold. 

Therefore, instead of producing to stock, shipyards 

traditionally start producing a ship after a customer orders 

it. The influence a customer order has on the production 

process can be characterized by the customer order 

decoupling point (CODP) [2]. This point defines how far 

the client order penetrates the production or distribution 

process. Traditional ship production is done by 

engineering-to-order (ETO). In ETO, both the engineering 

process and the production process are done after the 

customer order is placed. This is the earliest CODP 

possible (Figure 1), and minimizes the costs of keeping 

products in stock and the risk of overproduction to 

basically zero. 

From earlier to later CODP, the other production types are 

make-to-order (MTO), assemble-to-order (ATO) and 

make-to-stock (MTS) (see also Figure 1). In MTO, the 

engineering design is available before the customer orders 

a product, and the production is done afterwards. In an 

ATO environment, there consists one or more defined 

product families. These exists of multiple modules. After 

a product is ordered, the modules are assembled to create 

the desired product. Lastly, MTS produces complete 

products and stores them in stock. 

 

 

Figure 1: Types of production environments 

 

An ATO approach has the capability of reducing lead 

times, while maintaining a varied product portfolio. An 

ATO system consists of multiple subassemblies or 

modules. By having these modules available in the 

inventory, the lead times are reduced due to the reduction 

in manufacturing and transportation time. The portfolio 

variety is kept since relatively few modules can create 

many combinations of the final product. In addition, this 

offers opportunities to reduce inventory costs [3]. When 

producing according to an MTO or ATO policy, a base 

stock policy can reduce lead times. A base stock policy is 

a policy where (some) components are kept in stock 

regardless of ship orders. When components leave the 

inventory, they will be re-ordered to resupply the base-

stock levels.  

In this paper, a modular shipbuilding approach is assumed 

in an ATO environment of multiple depots, component 

manufacturers and shipyards. Given this environment and 

a product family, two questions arise. The first one is the 

placement of components. Obviously, having components 

available near the shipyard can reduce lead times, but also 

increase inventory costs. Secondly, the question arises 

which modules to already pre-assemble. By pre-

assembling modules, flexibility is lost, but it creates an 

opportunity for decreased lead times. 

The contribution of this paper is providing a first 

optimization model for this problem. This model, 

combined with the SAA method, minimizes the expected 

costs due to storage and delayed construction by 

determining the base-stock levels, component sources and 

scheduling per yard. This provides valuable information, 

both for direct operations, i.e., deciding the stock levels, 

as for evaluating the potential benefit of modular 

production of product families. 

In Section 2, the literature on base-stock optimization is 

reviewed. Subsequently, the problem is described in 

Section 3 and the model is given in Section 4. Section 5 

expands the problem to include stochastic ship orders, 

Section 6 shows computational results for the 

implemented model and Section 7 concludes the paper and 

presents an outlook on future research on this topic. 

 

2. LITERATURE STUDY 

 

Since shipbuilding is traditionally ETO based [4], 

optimization approaches for the base-stock in this industry 

are, to the best of the authors’ knowledge, non-existent. 

There is some research on inventory minimization for 

interim products during the production process [5], but to 

obtain more information, the scope of the literature study 

was expanded to other industries. However, similar 

industries as shipbuilding face the same problem. Since 

most current approaches are ETO or MTO, there is little 

research on base-inventory optimization for industries 

with large, highly customizable, and low sale volumes like 

industrial machinery, industrial transport systems and 

construction [6]. 

Agrawal and Cohen [7] studied the problem of 

determining inventory levels for a stochastic assembly 

system at multiple time periods to minimize the holding 

costs, while guaranteeing a probabilistic service threshold, 

i.e., a lower bound on the probability that there are no 

delays. This is done for a single location. A stochastic 

programming model is given and the optimal solution is 

given for small instances. 

A similar problem is studied by Akçay and Xu [8]. For a 

single horizon period, an optimization problem is modeled 

to determine base stock levels and replenishment 

decisions to maximize profit of the completed orders. 

Proof is given for the NP-hardness of this problem, and 

the stock levels are determined with the sample average 

approximation method (SAA). This method creates 

multiple scenarios after which it optimizes the average 

cost function of one policy applied to all scenarios. 
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Lu and Song [9] also study an ATO system to define the 

base stock levels. They show that, given continuous stock 

level variables, the optimal solution can be found with a 

local search steepest descent algorithm. They compare the 

optimal solution against a simpler heuristic used 

commonly in practice, and evaluate the base stock levels 

for varying replenishment lead times and lead time 

variability. 

Other variations include pre-assembly and de-assembly 

actions [10] and dependence between demands of multiple 

items [11]. Furthermore, research is done in heuristic 

approaches for base-stock levels [12]. Van Jaarsveld and 

Scheller-Wolf [13] study industrial-size ATO systems, 

consisting of hundreds of components, and use SAA to 

determine the base stock levels. 

 

A related field of research is spare parts inventory 

optimization. Deciding the optimal stocking policy for 

spare parts has the following characteristics [14]: The 

demand patterns are intermittent and characterized by long 

sequences of zero demand, the variety of parts is very 

large and it is desired to minimize stocks to reduce the risk 

of spare parts obsolescence. These are similar to the 

characteristics of the shipbuilding industry. 

Nozick and Turnquist [15] minimize the stock-out and 

holding costs for an inventory allocation problem with 

multiple distribution centers. Each retail outlet can order 

parts at exactly one distribution center, and an order is 

backlogged if it is unavailable at the distribution center. 

For this problem, they provide a non-convex formulation. 

For a single depot, Van Jaarsveld et al. [16] define the 

problem of determining the restocking policy per 

component. For each component, the restocking level is 

optimized to minimize the holding and ordering costs. 

This is solved to optimality with a column generation 

approach, and for faster computations, a rounding 

heuristic is given. 

Basten and Van Houtum [17] study a multi-warehouse 

spare parts inventory problem with a continuous review 

base stock policy. In this problem, the base stock levels 

are determined, subject to various service constraints. 

Service constraints are, for example, bounds on the 

expected waiting time per component, the rate of orders 

which can be fulfilled or the average availability of 

products. They give a greedy algorithm to find a Pareto 

front of minimal costs and expected back-orders. 

A problem with discrete inventory levels was studied by 

Yang and Du [18]. They use a genetic algorithm to define 

the base stock levels to minimize the expected back-orders 

and storage costs. 

A range of research is available for optimizing the base 

stock levels. However, certain properties of our problem 

are still missing in the literature. One of the main 

properties is the out-of-stock consequence. In most 

research, the consequence of an out-of-stock is either 

delay until all components arrive, or penalty costs. For the 

ship construction problem, delay of a single ship will also 

affect the schedule of other ships at the same yard. 

Furthermore, almost all referred papers use continuous 

stock levels to simplify the calculations. In ship 

constructions, systems like cranes or firefighting systems 

are large, expensive and needed in low quantities. 

Therefore, they cannot be simplified to continuous stock. 

Finally, there is the aspect of multiple depots and yards. 

Although multiple-location models exist in the literature, 

most of them follow quite simple policies. In most cases 

in literature, each production facility is linked to a fixed 

depot, and ordering will always happen from that depot 

with possibility of a backorder. It is also often considered 

that a first-come first-serve policy is used, to further 

simplify decisions. In shipbuilding, due to the high costs 

of delay, it is common to order components from another 

depot if needed. Therefore, the decision of which 

component comes from which depot should also be taken 

into account. 

 

3. PROBLEM DESCRIPTION 

 

The studied problem consists of a network of yards, depots 

and manufacturers, where ships are produced at yards. The 

required components can either be taken from depots or 

ordered from manufacturers. It is assumed that each ship 

is pre-assigned to a specific yard. At the beginning of a 

fixed time period, for example a year, it has to be decided 

what the base-inventory levels for both components and 

assembled modules are. 

However, the exact customer orders are unknown. If they 

were known, the base-inventory would simply be zero, 

since with perfect foresight all components can be ordered 

in time. It is assumed that the ship orders are generated by 

a known random process. A realization of this random 

process is a set of ship orders, which is called a scenario. 

In this research, it is assumed that a simple Bernoulli 

process generates the ship orders, although in practice, a 

more realistic generator can be created based on expert 

opinions from the industry. Any generator function can be 

used with the same model. 

Each ship model consists of a construction duration and a 

list of components, of which each is required at a defined 

time during the construction process. However, for certain 

sets of components, it is also possible to use a pre-

assembled module instead. 

The total time between ordering a product and receiving it 

is called the lead time. To reduce the lead time, 

components can be already stored in depots. This reduces 

the lead time based on the distance between the depot and 

the yard, possibly approaching zero. 

In Section 4, the problem is modeled as an optimization 

problem where the base-stock levels per depot and the 

flow of components is determined to minimize the costs 

of delayed production and holding stock. This is done for 

a single scenario. Subsequently, in Section 5, the model is 

expanded for multiple scenarios using the SAA method. 

 

4. MODEL DEFINITION 

 

The problem consists of a set of ships S that have to be 

built. A ship is constructed from a set of components. 

Ships are produced in yards and ship components are 

stored in depots.  
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The set J contains all yards and the set D contains all 

depots. For each ship s ∈ S, the production yard js is given. 

The set Sj ⊆ S contains all ships to be produced in yard j ∈ 

J. A yard j ∈ J can only order components from depots Dj 

⊆ D. Depot 0 represents ordering from manufacturers. 

The problem is modeled in discrete time with T being the 

set of time periods. A ship s ∈ S can be constructed in all 

time periods after the order time ts. These time periods for 

ship s ∈ S are contained in set Ts ⊆ T. This also serves as 

the time periods when components can be ordered for ship 

s ∈ S. The reason for this is that it is assumed that a ship 

order is not known until it has arrived. Therefore, ordering 

components before the ship is ordered is forbidden. 

The duration of the construction of ship s ∈ S is fs time 

periods. The lead time when ordering from depot d ∈ Dj to 

yard j ∈ J is ldj. After ordering, the depot restores its base 

inventory by ordering the same amount. This takes λd time 

periods. 

The binary decision variable Xst defines the starting time, 

being equal to one if the construction of ship s ∈ S starts 

in time period t ∈ TS, and zero otherwise. The variable Ysdit 

defines the number of components or modules of type i ∈ 

I leaving depot d ∈ D at time t ∈ T, to be used for the 

construction of ship s ∈ S. The inventory levels are defined 

by the decision variables Zdit. Zdit defines the level of 

component or module type i ∈ I in depot d ∈ D at the start 

of time period t ∈ T. 

The cost function, Expression 1, is based on the start time 

of construction for each ship and the holding costs for each 

component as base-stock. The cost of starting the 

construction of ship s ∈ S in time period t ∈ Ts is given by 

cst. Since the construction time fs is constant, this is equal 

to setting the cost for finishing the construction of ship s 

∈ S. The cost per component or module type i ∈ I in base 

stock is equal to bi, and the total base stock is the number 

of components i ∈ I in a depot at time 0, plus the number 

of components which are directly shipped at time 0. 

 

min ∑ ∑ 𝑐𝑠𝑡𝑋𝑠𝑡 + ∑ ∑ (𝑍𝑑𝑖0 + ∑ 𝑌𝑠𝑑𝑖0

𝑠∈𝑆

) 𝑏𝑖

𝑖∈𝐼𝑑∈𝐷\{0}  𝑡∈𝑇𝑠𝑠∈𝑆

 

(1) 

Constraint 2 requires all ships to be constructed. 

Constraint 3 imposes that for all ships produced at a 

certain yard, only one can be produced simultaneously. 

This is a simplification, as in reality the production process 

of multiple ships overlap. However, for a broad initial 

planning, it can be assumed sequentially.  

 

∑ 𝑋𝑠𝑡 = 1, ∀𝑠 ∈ 𝑆

𝑡∈𝑇𝑠

 

(2) 

∑ ∑ 𝑋𝑠𝑡′

𝑡

𝑡′=𝑡−𝑓𝑠+1

≤ 1, ∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝐽

𝑠∈𝑆𝑗

 

(3) 

Ships are built from components. The set Ic contains all 

component types. The number of components required for 

each ship is defined by qsia. This defines the number of 

components of type i ∈ Ic needed for ship s, at a time 

periods after starting construction. The time passed after 

starting construction is called the relative time. It is also 

possible to require components before the start of 

construction by setting qsia > 0 for a < 0. This is illustrated 

in Figure 2. 

 

 
Figure 2: Component requirements for a single ship 

 

Instead of constructing a ship fully from components, it is 

also possible to use modules. Modules are pre-constructed 

sets which can be installed instead of using a set of 

separate components. The physical modules are contained 

in the set Im with each i ∈ Im representing a module kept in 

stock. However, the effect of using a module can differ. 

The same module i ∈ Im can, depending on in which ship 

it is installed and at which point in the construction 

process, replace different components at different times. 

For example, consider a ship where a module i ∈ Im is 

placed in a spatially restricted location. Later in the 

construction process, the rest of the ship might block the 

path to the installation location, so the module has to be 

installed relatively early. Loose components are smaller, 

and therefore, might be installed later. Another ship that 

uses the same module might not have these restrictions, 

and therefore, the same module i ∈ Im might be needed 

much later, thus, providing more benefit based on 

component requirements. It is also possible that certain 

modules include functions not required on a ship, but 

which are included to maintain the generality of the 

modules. This means that the same module i ∈ Im might 

replace a slightly different set of components on one ship 

compared to another. 

For this reason, module options are introduced. A module 

option m ∈ M represents the possibility to use a certain 

module i ∈ Im at a certain ship and at a certain time in the 

construction process. The binary variable Wm is equal to 

one if module option m ∈ M is used, and zero otherwise. 

The components inside module m ∈ M are denoted by the 

parameter rmia. If module m ∈ M is used, then at each 

relative time a ∈ As of the construction process, the 

number of components of type i ∈ Ic needed is reduced by 

rmia. The set Ms contains all module options for ship s ∈ S, 

and the set Msia represents all module options of module 

type i ∈ Im, for ship s  ∈ S, which can be used at time a ∈ 

As. 

Components and modules are to be ordered at depot d ∈ D 

for yard j ∈ J exactly ldj time periods before they are 
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required. If ordering in advance is allowed, the optimal 

solution might ‘cheat’ the requirement of not allowing 

component orders before a ship order arrives. Consider 

two ships 1 and 2 that both need components of type i ∈ Ic, 

and that are produced in the same yard with t1 < t2. If ship 

1 has some time between the order time t1 and the start of 

construction, it might order component type i ∈ Ic earlier 

than required such that the depot is restocked in time for 

ship 2. 

The component requirements are set by Constraint 4. First, 

As is introduced, representing all relative times when qsia > 

0, for any i ∈ I. The variable as0 defines the earliest relative 

time in As. The first term on the left hand side represents 

all orders for ship s ∈ S of component i ∈ Ic, that arrive in 

time for relative time a ∈ As. The second term is a 

cancellation term, which makes sure that the constraint is 

always satisfied when Xst = 0. When Xst = 1, the second 

term reduces to zero. Constraint 4 is thus only relevant 

when Xst = 1. The first term on the right hand side equals 

the required components at relative time a. The last term 

represents the reduced requirements due to modules being 

used. Similarly, Constraint 5 requires enough modules to 

arrive. The first term of this constraint does not include 

depot 0, since modules are to be taken only from depots 

and not from manufacturers. 

 

∑ 𝑌𝑠𝑑𝑖(𝑡−𝑙𝑑𝑗𝑠+𝑎)

𝑑∈𝐷𝑗𝑠

+ (1 − 𝑋𝑠𝑡)𝑞𝑠𝑖𝑎

≥ 𝑞𝑠𝑖𝑎 − ∑ 𝑟𝑚𝑖𝑎𝑊𝑚

𝑚∈𝑀𝑠

,

∀𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇𝑠, 𝑎 ∈ 𝐴𝑠, 𝑖 ∈ 𝐼𝑐  

(4) 

∑ 𝑌𝑠𝑑𝑖(𝑡−𝑙𝑑𝑗𝑠+𝑎)

𝑑∈𝐷𝑗𝑠∖{0}

+ (1 − 𝑋𝑠𝑡)|𝑀𝑠𝑖𝑎|

≥ ∑ 𝑊𝑚,   

𝑚∈𝑀𝑠𝑖𝑎

∀𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇𝑠, 𝑎 ∈ 𝐴𝑠, 𝑖

∈ 𝐼𝑚 

(5) 

Constraint 6 and 7 update the inventory at each time period 

by removing the ordered and adding the re-ordered 

components. The moment of ordering new components is 

done at the time of the arriving ship order. Although this 

is not always the same time as the component is ordered 

by the yard, it represents the earliest possible time that a 

depot can know that a certain component will be shipped, 

and therefore, anticipate for potential shortages. 

Furthermore, Constraints 8 to 11 represent all decision 

variables. 

𝑍𝑑𝑖𝑡 = 𝑍𝑑𝑖(𝑡−1) − ∑ 𝑌𝑠𝑑𝑖𝑡

𝑠∈𝑆

,

∀𝑑 ∈ 𝐷 ∖ {0}, 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 ∖ {0}, 𝑡 < 𝜆𝑑 

(6) 

𝑍𝑑𝑖𝑡 = 𝑍𝑑𝑖(𝑡−1) − ∑(𝑌𝑠𝑑𝑖𝑡 +  𝑌𝑠𝑑𝑖(𝑡−𝜆𝑑))

𝑠∈𝑆

,

∀𝑑 ∈ 𝐷 ∖ {0}, 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 ∖ {0}, 𝑡 ≥ 𝜆𝑑 

(7) 

 

𝑋𝑠𝑡 ∈ {0,1}, ∀ 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇𝑠 

(8) 

𝑌𝑠𝑑𝑖𝑡 ≥ 0 and integer, ∀ 𝑠 ∈ 𝑆, 𝑑 ∈ 𝐷𝑗𝑠
, 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇𝑠 

(9) 

𝑍𝑑𝑖𝑡 ≥ 0 and integer, ∀ 𝑑 ∈ 𝐷, 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 

(10) 

𝑊𝑚 ∈ {0,1}, ∀ 𝑚 ∈ 𝑀 

(11) 

This model can be seen as the optimization of one known 

scenario of ship orders. In Section 5, the model is 

expanded to incorporate stochastic ship orders by using 

the SAA-method. 

 

5. SAMPLE AVERAGE APPROXIMATION 

 

The model introduced in Section 4 optimizes one scenario. 

However, since the base stock values have to be 

determined before the scenario is known, it is desired to 

have a base-stock policy that has the lowest expected cost 

for all possible scenarios. For this, a generator is used. A 

generator is a stochastic function, that produces a single 

scenario of ship orders. 

Consider a set of scenarios Λ, a set of possible base 

inventories Φ, and an optimal cost cλ(φ), which minimizes 

the costs in Expression 1 for scenario λ ∈ Λ while applying 

base inventory φ ∈ Φ. Now, the optimal base inventory 𝜑Λ
∗  

for scenarios Λ is defined as the base inventory that 

minimizes the average value over all scenarios: 

 
1

|Λ|
∑ 𝑐𝜆(𝜑Λ

∗ )

𝜆∈Λ

≤
1

|Λ|
∑ 𝑐𝜆(φ)

𝜆∈Λ

, ∀φ ∈ Φ. 

(12) 

Thus, a single inventory policy is applied to multiple 

scenarios as illustrated in Figure 3. For infinitely many 

scenarios produced by the generator, φ∗ would be optimal 

in expectation. The idea behind Sample Average 

Approximation (SAA) [19] is to randomly generate 

scenarios, and with an increasing number of scenarios, 𝜑Λ
∗  

will approach 𝜑Λ∞

∗ , where Λ∞ represents all possible 

scenarios. 

To apply the SAA method on the inventory problem, a 

combined problem is created. Each depot and each yard in 

the original problem is added once per scenario to the 

combined problem. Each yard from a scenario λ can only 

receive components from depots corresponding to the 

same scenario. The ship orders of scenario λ are then set 

to the corresponding yards of scenario λ. 
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Figure 3: Multiple scenarios 

 

This creates |Λ| separate problems. To link them, the base 

inventory should be equal. Since each depot in the original 

problem is added once per scenario, denote D′ as the 

original set of depots, and D′d as the set of depots in the 

combined problem which originate from the original depot 

d ∈ D′. Then, adding Constraint 13 creates the SAA 

combined problem by setting the base inventories equal 

across all scenarios. 

 

𝑍𝑑𝑖0 =  𝑍𝑑′𝑖0, ∀𝑑 ∈ 𝐷′, 𝑑′ ∈ 𝐷𝑑
′  

(13) 

 

 

6. COMPUTATIONAL RESULTS  

 

The model introduced in Sections 4 and 5 was solved by 

the ILP solver Gurobi Optimizer and tests were performed 

on generated data. This was done to evaluate the size of 

solvable instances and the convergence properties of the 

SAA method. The instances were run on the hpc cluster of 

Delft University of Technology. A total memory limit of 

32gb was imposed. Each optimization job used 8 cores, 

which each had a clock frequency of 2.40 GHz.  

The required ship types were generated by using the 

component ordering list of existing shipbuilding projects. 

Components were sampled from these lists, combined 

with component commonality and required ordering time. 

The modules were defined by sampling multiple 

component types and a time, and a module would then 

exists for all selected components required before the 

selected time. The costs were then hand fitted in order to 

guarantee a computational challenge, i.e., not have the 

optimum at either ordering each part or having everything 

in stock. The considered time period is 3 years, divided 

into monthly intervals. 

 

The randomly generated tests were varied on the number 

of components, modules, yards and scenarios. For each 

combination of these amounts, five random instances were 

generated and optimized with a time limit of 3 hours. An 

instance x is considered larger than instance y if there is no 

property (modules, yards, etc.) in instance y with a higher 

value than the property in instance x, and at least one 

property of instance x is larger than the property in 

instance y. In Table 1, all solved instances which did not 

have a larger solved instance are shown with the average 

solving time. The same concept, but reversed, applies to 

the property that an instance is smaller than another. In 

Table 2, all unsolved instances are shown which do not 

have a smaller unsolved instance. 

 

Components Module 

options 

Scenarios Yards Avg. 

Time 

[s] 

10 0 5 8 2412 

10 0 10 3 216 

10 506 8 3 790 

14 0 5 5 2249 

Table 1: Largest solvable instances 

Components Module 

options 

Scenarios Yards 

5 0 5 5 

10 0 3 5 

10 0 5 3 

Table 2: Smallest unsolvable instances 

 

 

In total, 93 instances were solved, and 189 were not. It can 

be seen that size is not the only factor determining the 

difficulty, as there are solved instances larger than some 

unsolved, as can be seen in Table 1 and 2. However, these 

results give some measure for the size of solvable 

instances. 

 

In practice, ships have hundreds of components that need 

to be taken into account in the inventory optimization [20]. 

Therefore, although a proof of concept of the optimization 

model is given, the solvable instances at this moment are 

too small for real life applications. However, it must also 

be noted that since this is a strategic problem, 3 hours is 

relative short, as even a few weeks solving time might be 

allowed. 

 

Furthermore, the convergence of the SAA method is 

evaluated. This is done in the following way. First, set u = 

1, and solve u scenarios. Denote the objective as OBJu and 

the resulting base inventory as θ(u). Now, increase u by 

one and add a scenario. Solve this once normally, and once 

with the base inventory from the previous step fixed. Call 

the objective of the latter 𝑂𝐵𝐽𝑢
𝜃(𝑢−1)

. The variation metric 

Δu is then introduced by Equation 14. This represents the 

relative cost of using the base inventory from the previous 

iteration, compared to the cost of using the optimal base 

inventory. A robust base inventory should not worsen too 

much if more scenarios are added, and therefore, a low Δu 

represents a robust base inventory.  

Δ𝑢 =  
𝑂𝐵𝐽𝑢

𝜃(𝑢−1)
− 𝑂𝐵𝐽𝑢

𝑂𝐵𝐽𝑢
𝜃(𝑢−1)

 

Eq. 1 

This was repeated for 10 random problems, which were 

optimized for 10 scenarios. The average Δu values are 
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shown in Figure 4. Here, a clearly decreasing trend is 

visible.  
 

Figure 4: Average variation when adding more scenarios 

 

7. CONCLUSIONS 

 

This paper gives a first mathematical model for the base 

stock inventory problem modified for the shipbuilding 

industry. Along with this, initial tests were done to 

evaluate the performance of directly solving the ILP. 

These tests conclude that only relatively small instances 

are solved, and therefore, more work is required to 

optimize real world instances. 

The current model captures multiple aspects: Scheduling, 

base inventory, component flow and modularization. 

Although all these aspects are certainly connected, it 

creates a very large model. Therefore, a possible step for 

future research is to split these aspects and optimize a 

subset of them. 

However, it is also interesting to expand the model. One 

possibility for this is the assumption that all construction 

happens sequentially. Instead of this assumption, it would 

be interesting to take into account yard resources and the 

requirement of these during the construction process. On 

a related note, the current model for the construction 

process is very simplified. Expanding this to a more 

realistic process will result in a better representation of the 

benefits of modularity. Finally, in reality, there is the 

option of de-assembling or modifying modules, which can 

be a good alternative for keeping multiple modules in 

stock. Therefore, the model might be generalized to 

include this as well. 

From an analytic point of view, it would be interesting to 

analyze the complexity of the problem and the stochastic 

properties. The results suggest convergence of the SAA 

method for increasing number of scenarios, but no 

guarantee can be given at this point. Finally, the solution 

method has to be improved to solve larger instances. The 

direction of this will be a result of the complexity analysis, 

possibly being a (meta)heuristic method, or an optimal 

approach. 
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