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SUMMARY

Cavitation erosion is a problem in the design of a wide range of fluid machinery involv-
ing liquid flows. Ship propellers, rudders, hydro pumps and turbines or diesel injectors
are some of the most prominent examples. Cavitation occurs at locations of high local
flow velocity, where the pressure may drop so low that the liquid phase vaporizes. The
violent collapse of cavitating structures in regions of pressure recovery can result in high
pressure loads and severe damage of such devices. Erosive cavitation is typically en-
countered when the hydrodynamic efficiency of fluid machinery is optimized. In order
to find an appropriate balance in the design trade-off between hydrodynamic efficiency
and the risk of cavitation erosion damage, there is a need for computational tools that
can predict the risk of cavitation erosion in the early design and optimization process.
The prediction of cavitation erosion risk using Computational Fluid Dynamics (CFD),
however, is a major challenge because the local erosion damage is the result of extreme
pressure loads forming at the final stage of cavity collapses at extremely small scales in
both space and time. Due to limited computational resources, such small scales can
usually not be resolved for flow problems relevant to engineering applications.

The main contribution of the present research effort is an acoustic model to compute
cavitation implosion loads with numerical simulation tools that are typically used in en-
gineering practice. To approach the aforementioned problems, the present research has
essentially two goals. The first goal is to better understand which quantities of the cav-
itating flow can be reliably predicted with engineering flow simulation tools. It is found
that kinematic flow parameters such as the collapse time of larger scale cavities or the
frequency of periodic cavitating flows are reliably predicted, whereas the extreme pres-
sure loads eventually leading to cavitation erosion are not reliably predicted. Against
this finding, the second and most relevant goal is to develop a cavitation implosion load
model that relies on the evolution of the macroscopic vaporous structures in the cavi-
tating flow. The impact load resulting from the collapse of these structures is linked to
their potential energy content. While this idea is actually not new, there are only very
few attempts to rigorously incorporate the energy balance involved in the energy cas-
cade from the initial potential energy content of a collapsing structure to the final impact
load somewhere on the solid surface. However, satisfying the collapse energy balance is
crucial when quantitative impact load predictions are the principal aim.

The suggested modeling approach can be subdivided into two sub-problems, both
coming at their own difficulties. The first problem is to identify the collapse locations in
a cavitating flow and the energy content that is radiated from these sources in form of
shock wave energy. In an approximation that is good enough for most engineering pur-
poses, the cascade of energy leading to the radiated energy content essentially involves
the decrease of potential energy of the collapsing structure, which feeds into kinetic en-
ergy of the surrounding liquid. In order to exploit the advantage that the macroscopic
evolution of collapsing cavitating structures is well predicted, the energy content radi-
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ated from the collapse center must be determined from the history of the collapse. For
this reason, the radiated energy content cannot simply be extracted from the instan-
taneous local flow quantities computed by the numerical flow solver. Instead, a novel
transport equation of collapse induced kinetic energy is proposed to track the amount
of kinetic energy induced by collapsing vaporous structures and to transport this energy
into the collapse center. By this means, a physical focusing of the accumulated kinetic
energy into the collapse center is achieved. In this modeling frame work, the decrease
of potential cavity energy and the radiation of shock wave energy act as source terms in
the transport equation of collapse induced kinetic energy. The transport terms and the
criterion to identify the final collapse stage, at which energy radiation is assumed to take
place, are formulated in such a way that the transport equation can reflect the energy
cascade of interacting cavities. This, in return, enables to capture the energy focusing
mechanism of a collective bubble cloud collapse.

The second problem concerns the energy conservative propagation of the radiated
shock wave energy to the solid surfaces. Formally, this is achieved in a rather straight-
forward fashion via a projection approach based on spherical wave propagation. The
problem here is that the surface projection of multiple sources can get computationally
expensive. A computationally efficient approach to achieve this projection is presented
in this work. Finally, a statistical analysis method is developed to identify extreme event
contributions to the surface energy distribution accumulated from repetitive cavitation
implosion loads.

The acoustic cavitation implosion load model developed in this work is applied to
three test cases. The purpose of these test cases is to show in how far the model can com-
pete with high fidelity simulations and what the limitations are. Best practice guidelines
for the use of the model are developed and it is indicated that quantitative predictions of
cavitation implosion loads are possible. In future work, the implosion load model can be
linked to material models to predict the material damage caused by violent cavitation.
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Cavitatie-erosie is een verschijnsel dat bij het ontwerp van verschillende soorten tur-
bomachines zoals bijvoorbeeld scheepsschroeven, roeren, vloeistofpompen, turbines
en dieselinjectoren een belangrijke rol speelt. Cavitatie vindt plaats op locaties met een
hoge lokale stroomsnelheid, waar de druk zo laag kan dalen dat de vloeibare fase ver-
dampt. De gewelddadige implosie van cavitatiebellen in gebieden waar de druk vervol-
gens herstelt, kan tot hoge drukbelastingen en ernstige schade aan dergelijke apparaten
leiden. Erosieve cavitatie vindt doorgaans plaats wanneer de hydrodynamische effici-
ëntie van turbomachines wordt geoptimaliseerd. Om een passend evenwicht te vinden
tussen de efficiëntie en de erosiviteit van de caviterende stroming, is er behoefte aan
computertools die het risico van cavitatie-erosie in het vroege ontwerp- en optimalisa-
tieproces kunnen voorspellen. De voorspelling van het risico op cavitatie-erosie met be-
hulp van Computational Fluid Dynamics (CFD) is echter een grote uitdaging, omdat de
lokale erosieschade het gevolg van extreme drukpulsen is, die zich in het laatste stadium
van een implosie op extreem kleine schaal in zowel ruimte als tijd vormen. Dergelijk
kleine schalen kunnen echter niet worden opgelost met de CFD tools die voor techni-
sche toepassingen relevant zijn, vanwege de beperkte rekenkracht en tijd die doorgaans
beschikbaar is.

De belangrijkste bijdrage van de huidige onderzoeksinspanning is een een akoes-
tisch model om cavitatie-implosiebelastingen te kunnen berekenen, met numerieke si-
mulatietools die voor de technische praktijk toepasbaar zijn. Om de bovengenoemde
problemen aan te pakken, heeft het huidige onderzoek in wezen twee doelen. Het eer-
ste doel is om beter te begrijpen welke delen van de caviterende stroming betrouwbaar
voorspeld kunnen worden met de simulatietools uit de technische praktijk. Het huidige
onderzoek toont aan dat kinematische stromingsparameters zoals de implosietijd van
de grotere caviterende structuren of hun afschuddingsfrequentie in periodiek cavite-
rende stromingen betrouwbaar berekend kunnen worden, terwijl de voorspelling van de
extreme drukbelastingen die uiteindelijk tot cavitatie-erosie leiden niet betrouwbaar is.
Tegen deze achtergrond is het tweede en meest relevante doel het ontwikkelen van een
cavitatie-implosiemodel, dat op de evolutie van de macroscopische dampvormige struc-
turen in de stroming berust. De huidige studie koppelt de impactbelasting als gevolg
van de implosie aan de potentiële energie-inhoud van de dampstructuren. Deze koppe-
ling is op zich niet nieuw, er zijn echter maar heel weinig toepassingen bekend waarbij
rekening is gehouden met de volledige energiebalans. Het voldoen aan de implosie-
energiebalans is echter cruciaal wanneer er naar een kwantitatieve voorspelling van de
impactbelasting wordt gestreefd. Deze energiebalans moet zowel de aanvankelijke po-
tentiele energie-inhoud van een imploderende structuur als ook de energiecascade tot
aan de uiteindelijke impactbelasting ergens op een vast oppervlak bevatten.

De voorgestelde modelaanpak kan in twee deelproblemen onderverdeeld worden,
die elk hun eigen moeilijkheden met zich mee brengen. Het eerste probleem is het iden-
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tificeren van de implosielocaties in de stroming en de berekening van de energie-inhoud
die vanuit deze bronnen in de vorm van schokgolfenergie wordt uitgestraald. In een be-
nadering die voldoende nauwkeurig is voor de meeste technische doeleinden, omvat de
energiecascade, die tot de uitgestraalde energie leidt, in wezen de afname van de po-
tentiële energie van de imploderende structuur, die omgezet wordt in kinetische energie
van de omgevende vloeistof. Om gebruik te kunnen maken van de bevinding dat de ma-
croscopische evolutie van de ineenstortende cavitatiestructuren voldoende nauwkeurig
voorspeld wordt, zou de vanuit het implosiecentrum uitgestraalde schokgolfenergie uit
de geschiedenis van de implosie bepaald moeten worden. Deze informatie is echter niet
beschikbaar in het instantane stroomveld, en om deze reden kan de uitgestraalde ener-
gie niet via deze weg worden bepaald. In plaats daarvan wordt een nieuwe transport-
vergelijking voorgesteld, die de formatie van kinetische energie in aanmerking neemt
die door de implosieprocessen opgewekt wordt. De tijdelijke en ruimtelijke verdeling
van de geïnduceerde kinetische energie wordt achterhaald om de energiehoeveelheid
in het implosiecentrum te bepalen. Op deze manier wordt de focussering van de ge-
accumuleerde kinetische energie naar het implosiecentrum bereikt. De afname van de
potentiële energie en de uitstraling van schokgolfenergie zullen dan als brontermen in
de transportvergelijking van de implosie-geïnduceerde kinetische energie optreden. De
transporttermen maar ook het criterium om het eindpunt van de primaire implosie en
dus de locatie van energie-uitstraling vast te stellen, zijn zo geformuleerd dat de trans-
portvergelijking de energie-uitwisseling tussen meerdere cavitatiebellen kan weerspie-
gelen wanneer deze tijdens de implosie in interactie met elkaar treden. Daardoor wordt
het mogelijk gemaakt, om het energiefocusseringsmechanisme van de implosie van een
collectieve bellenwolk weer te spiegelen.

Het tweede probleem betreft de verspreiding van de uitgestraalde schokgolfenergie
naar de vaste oppervlakken op een zodanige manier, dat aan het wet van behoud van
energie wordt voldaan. Formeel wordt dit op een vrij eenvoudige manier via een sferi-
sche projectie bereikt, die op de behoudswet van sferische golfvoortplanting gebaseerd
is. Het probleem hier is dat de projectie van een groot aantal bronnen rekenkundig duur
kan worden. In verband met dit werk wordt een rekenkundig efficiënte methode gepre-
senteerd om deze projectie uit te voeren. Ten slotte is een statistische analysemethode
ontwikkeld, om in het geval van periodieke cavitatie en de daaruit voortvloeiende her-
haaldelijke cavitatie-implosielastingen de extreme bijdragen aan de verdeling van de ge-
accumuleerde oppervlakte-energie te identificeren.

Het akoestische cavitatie-implosiemodel wordt op drie testcases toegepast. Het doel
van deze testcases is om te laten zien in hoeverre het model met meer geavanceerde si-
mulaties kan concurreren en wat de beperkingen ervan zijn. Er worden richtlijnen voor
beste praktijken voor het gebruik van het model ontwikkeld, en er wordt aangetoond dat
kwantitatieve voorspellingen van cavitatie-implosiebelastingen mogelijk zijn. In de toe-
komst zou het implosiemodel aan materiaalmodellen gekoppeld kunnen worden, om
op deze manier de erosieschade als gevolg van schadelijke cavitatie te voorspellen.
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INTRODUCTION

Parts of this chapter were published in Physics of Fluids 31, 052102 (2019) [1] and in the International Journal
of Multiphase Flow 111, 200 (2019) [2].
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2 1. INTRODUCTION

1.1. A BRIEF OVERVIEW OVER RESEARCH ON THE NUMERICAL

PREDICTION OF CAVITATION EROSION
The development of cavition erosion models for numerical flow simulations is strongly
driven by the question what the most essential mechanism of cavitation erosion would
be. An ongoing debate concerns the question whether cavitation erosion is predomi-
nantly caused by impinging liquid micro-jets or by collapse induced shock waves im-
pacting the solid surface. Fig. 1.1 depicts high-speed shadowgraphic images of an iso-
lated vapor bubble collapse [3], resulting in a spherical shock wave. When a vapor bub-
ble collapses in close distance to a solid wall, the surrounding pressure distribution be-
comes non-symmetric in such a way that the collapse is predominantly driven from the
wall-opposite side. As exemplary shown in Fig. 1.2 [4], this leads to the formation of a
high velocity liquid jet, which penetrates the bubble and eventually impinges the solid
wall. The moment of jet incidence on the wall goes along with a high amplitude water
hammer pressure of very short impact duration [5], after which the impinging jet causes
a stagnation pressure of smaller amplitude but longer impact duration [5].

Figure 1.1: High-speed shadowgraphic images of the isolated collapse of a laser induced vapor bubble taken
from the work by Johansen et al. [3]; a shock wave forms at the final collapse stage and propagates in spherical
direction.

Figure 1.2: High-speed photography of the close wall collapse of a laser induced vapor bubble taken from the
work by Vogel et al. [4]; the maximum bubble radius after generation is R0 = 2 mm and the wall distance is
2.3R0.

The liquid jet hypothesis on the one hand is often motivated by the assumption that
near wall bubbles collapse under the influence of shock waves caused by the collapse
of larger scale structures [6]. A liquid micro-jet forms due to bubble-wall interaction [5]
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and impinges the solid surface. The jet is supposed to cause erosion pit formation if
the liquid mass velocity exceeds a critical threshold velocity [7]. Relations between the
liquid jet velocity, ambient conditions and geometrical parameters of a near-wall bubble
collapse were in numerous studies, suggesting that the jet velocity is proportional to the
square root of the driving pressure [8, 9]. This relation was adopted by Dular and Coutier-
Delgosha [10] to model the formation of cavitation erosion pits caused by impinging
liquid jets, where the occurrence of the individual jet impacts is linked to the local flow
conditions predicted from a numerical flow simulation.

An important foundation of the shock wave hypothesis on the other hand is the po-
tential energy hypothesis initiated by Hammitt [11]. According to the later formulation
by Vogel and Lauterborn [12], it states that the potential energy of the spherical bubble is
proportional to its initial volume and the difference between the static ambient pressure
p∞ and the vapor pressure pv . This relation can be interpreted as the work that the sur-
rounding liquid can do on the vapor volume throughout the collapse. With R0 being the
initial bubble radius and r the distance from the center, this work and hence the initial
potential bubble energy is given by [12–14]

Epot,0 =
∫ R0

0
4πr 2 (

p∞−pv
)

dr = 4

3
πR3

0

(
p∞−pv

)
. (1.1)

Vogel and Lauterborn [12] further support the potential energy hypothesis by show-
ing experimentally that the energy of a spherical acoustic transient as derived by Cole
[15] is indeed proportional with the initial potential energy of a spherical bubble col-
lapsing close to a solid wall. Wang and Brennen [16] as well as Schmidt et al. [17] and
Ogloblina et al. [18] have shown by a numerical simulation of vapor bubble cloud col-
lapses, that such clouds exhibit a collective behavior if they are densely populated. Prac-
tically the entire energy content of the cloud can then feed into a single primary shock
wave. Early applications of the potential energy concept to cavitating flow problems are
found in the work by Pereira et al. [19], Patella and Reboud [20], and Patella et al. [21].
They explain how energy is transferred from the collapse of macro-scale cavities to the
solid surface in an energy cascade. As shown by Vogel and Lauterborn [12] and Kato et al.
[22], the distance of imploding cavities from the impacted surface plays a major role in
this energy cascade. Two different integral approaches evolved from this understand-
ing. One approach attempts to identify isolated collapse events to assess their surface
impact strength from the wall distance and kinematic parameters. Mihatsch et al. [23]
partially assess the impact aggressiveness from the maximum local velocity divergence
at the final stage of the collapse. Based on the work by Bark et al. [24], Arabnejad and
Bensow [25] assess the collapse aggressiveness from the maximum volume change of
the entire isolated cavity, which occurs prior to the final stage of the collapse. Another
family of approaches rather attempts to assess the collapse strength in a direct integral
fashion without isolating individual collapse events. Different from the approaches by
Mihatsch et al. [23] and Arabnejad and Bensow [25], it is assumed that the collapsing
cavities release their potential energy instantaneously during the collapse. Patella et al.
[26] integrate the locally released power over an aggressiveness height derived from the
work by Kato et al. [22]. Leclercq et al. [27] derived a discrete surface impact power model
from the solid angle projection of released power on a discrete surface element. Apart
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from the integral approaches described above, there are also attempts to utilize the po-
tential energy concept for the prediction of cavitation erosion exclusively based on local
flow quantities. Those approaches are essentially based on local changes of vapor vol-
ume and/or pressure [28, 29] and can be used as qualitative aggressiveness indicators.
However, a quantitative model of impact loads based on the potential energy hypoth-
esis [11, 12] should somehow involve the cascade of potential cavity energy into radi-
ated shock wave energy and eventually into local impact power, as formally described
by Pereira et al. [19], Patella et al. [21], and Bark et al. [24].

Figure 1.3: Axisymmetric Smoothed Particle Hydrody-
namics (SPH) simulation by Joshi et al. [30] to com-
pute the plastic material deformation caused by the
collapse of a vapor bubble initially attached to the
solid surface.

Figure 1.4: Resolved cloud of 12500 gas bubbles taken
from the work by Rasthofer et al. [31]; the numerical
simulation of the cloud collapse involved nearly 232 ·
109 grid cells.

More detailed insights into the mechanisms leading to cavitation erosion are ob-
tained from highly resolved numerical simulations that are restricted to very local phe-
nomena. What makes the problem intriguingly difficult is that cavitation erosion is a
complex non-linear interaction of fluid and material dynamics. An attempt to capture
both was made by Joshi et al. [30], who employed Smoothed Particle Hydrodynamics
(SPH) to simulate the collapse of a vapor bubble attached to a solid surface and the re-
sulting plastic material deformation. They found that the intersection of the primary
collapse shock wave front with the shock wave front reflected from the material surface
leads to the highest observed surface pressures (see Fig. Fig. 1.3). The intersecting shock
wave front propagates from the center of initial impact in radial direction, where both
the pressure and the propagation speed gradually decrease. Joshi et al. [30] suggest that
while the local pressure is largest at the center of initial impact, the impact duration
might be too short for the material to reach its yield point. Taking both the impact pres-
sure and the material response time into account, Joshi et al. [30] suggest an effective
pressure to explain why most of the plastic strain depicted in Fig. 1.3 occurs at some dis-
tance away from the impact center. Based on their results, Joshi et al. [30] further argue
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that even though the local incubation time of surface erosion may be smaller for the liq-
uid micro-jet impact, the material volume plastified by a shock wave can be expected to
be significantly larger. Obviously, the availability of computational resources sets a limit
to the applicability of such highly resolving flow simulations. An example of the resolu-
tion that can be achieved when supercomputer resources are employed is shown in Fig.
1.4. In order to simulate the high ambient pressure collapse of a non-cavitating gas bub-
ble cloud including 12500 bubbles, nearly 232 · 109 computational grid cells were used
in the work by Rasthofer et al. [31]. To give an order of magnitude, this is approximately
O

(
104

)
times more than what is typically affordable in engineering practice. At the same

time, the time and length scales that are resolved in the work by Rasthofer et al. [31] with
the given computational effort are still orders of magnitudes smaller than the scales of
typical engineering flow problems.

1.2. APPROACH IN THE PRESENT RESEARCH

1.2.1. PROBLEM DEFINITION
In the present research, the potential energy concept is chosen as the basis of the cavita-
tion implosion load model to be developed. It is considered as a decisive advantage that
the computed impact loads are based on the evolution of the larger scale vapor struc-
tures in this modeling frame work. As it is discussed in more detail in Chap. 2, the evo-
lution of vaporous cavitating structures can be accurately predicted by engineering flow
simulation tools until the final collapse stage. From this moment on, both the insuffi-
cient resolution and the model simplifications affect the reliability of the impact load
prediction. A global energy balance describing the collapse of an isolated vapor bubble
in an infinite liquid was proposed by Tinguely et al. [14]. In slightly modified form, the
energy balance by Tinguely et al. [14] is written as

Epot,0 = ESW +∆Einternal +Ereb +Ekin, res. (1.2)

Eqn. (1.2) states that the initial potential energy Epot,0 is converted into different en-
ergy forms at and right after the final stage of the cavity collapse. The first three terms
on the right-hand side were adopted from Tinguely et al. [14]. The energy radiated with
the primary shock wave is denoted by ESW . The term ∆Einternal represents the change of
internal energy of non-condensable gas that is compressed in the collapse center, and
Ereb is the energy amount that feeds into the potential of a rebound bubble. In addition
to the energy partition by Tinguely et al. [14], the term Ekin, res is included to account for
residual kinetic energy that may still be present in the flow after the final collapse stage
when the collapse is not symmetric as in the experiment by Tinguely et al. [14]. In partic-
ular, the energy absorbed by the liquid micro jet in a near-wall collapse situation can be
thought to absorb a significant amount of Ekin, res. From the above considerations, the
erosive potential of the liquid micro jet stems from its ability to focus some fraction of
the residual kinetic energy Ekin, res in space due to the small area in which this kinetic en-
ergy is concentrated. Having in mind that it is not affordable to resolve the length scale
of individual vapor bubbles in larger scale flow simulations, and that the liquid micro jet
is even much smaller in cross-section, one may conclude that the length scale of energy
concentration associated with the micro jet impact is far beyond the currently affordable
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resolution of the numerical flow simulation.
While Eqn. (1.2) represents the energy balance at the beginning and after the bubble

collapse, the instantaneous energy balance during the collapse involves the conversion
of potential bubble energy into kinetic energy Ėkin of the surrounding liquid, such that

dEpot

d t
+ dEkin

d t
= 0. (1.3)

The acceleration of the liquid directly follows from mass conservation. It was shown
by Obreschkow et al. [13], and earlier by Mikic et al. [32] in the context of bubble growth,
how this conversion of potential into kinetic energy is directly related to the equation of
motion of the bubble interface, as described by the well known Rayleigh equation [33].

In the present research, it is formally assumed that the potential energy content com-
pletely feeds into a shock wave radiated from the primary collapse, being aware that this
is a strongly simplified representation of the events at and after the final collapse stage.
However, it is argued that irrespective of how the work acting on the impacted surface
is eventually partitioned into the different terms on the right-hand side of Eqn. (1.2), all
contributions eventually feed from the original potential energy content. Satisfying this
global energy balance, and knowing the involved numerical error sources when adopting
it for a cavitation implosion load model, is considered crucial when the aim is to achieve
quantitative impact load predictions. This means that by strictly following the modeling
assumption that the potential energy content predominantly feeds into a primary shock
wave, we do not imply that the impinging liquid jet does not potentially contribute to
local erosion damage. The idea is rather to absorb all contributions to impact into one
single quantity that satisfies the collapse energy balance at the length and time scales
that are resolved by the flow simulation.

The conversion of the different energy forms involved in the cavity collapse and the
surface impact is also vividly described in the work by Patella et al. [34], who have, to-
gether with Pereira et al. [19] and Bark et al. [24], shaped the concept of the energy cas-
cade leading to cavitation erosion. Starting from the initial content of the potential en-
ergy, Patella et al. [34] define ratios in order to describe the conversion of potential energy
into radiated shock wave energy ESW and the conversion of radiated shock wave energy
into plastic deformation energy of the material. The practical problems coming along
with the attempt to build an impact load model based on the collapse energy cascade
are illustrated in Fig. 1.5, which sketches four time instants A), B), C) and D) of a cav-
ity collapse sequence on a hydrofoil. Following the collapse sequence, the challenges in
describing the collapse energy cascade are identified as follows:

(A) Two cavitating structures are just about to collapse, where one structure is a large
collective cloud composed of multiple cavities, and the other one is an isolated
cavity. The collective structure is densely populated so that it behaves like one ho-
mogeneous structure with an equivalent vapor fraction [16, 17]. The entire cloud
energy Epot, collective then gets focused into the cloud center, instead of being dis-
tributed over the centers of the individual cavities. The energy cascade model
must be able to distinguish between a collective collapse behavior and an isolated
collapse of associated energy Epot, isolated.
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Figure 1.5: Sketch of a cavity collapse sequence on a hydrofoil; cavities have separated from a sheet cavity
(A), implode in the region of pressure recovery (B), radiate shock waves at the final collapse stage (C), which
propagate spherically and impact on the foil surface (D).

(B) As the cavities collapse, their potential energy content is reduced and distributed
over the surrounding liquid in the form of kinetic energy. The distribution of this
collapse-induced kinetic energy is known for an isolated bubble collapse, but not
for more complex flow situations. Furthermore, the collapse-induced kinetic en-
ergy in the liquid phase also cannot be extracted from the numerical flow simula-
tion, because it is an unknown part of the total flow velocity. The total flow velocity
further includes an evaporization induced component due to the local expansion
of the fluid. Also, different from an isolated bubble collapse in an infinite liquid,
the collapse driving pressure is not a constant reference pressure p∞, but actu-
ally varies both in space and time. In this particular case, the pressure recovery,
as it occurs towards the trailing edge of a lifting foil, has a major influence on the
collapse driving pressure distribution.

(C) At the final stage of the collapse, a shock wave is emitted. The radiated energy
content Erad feeds from the evolution of the collapse-induced kinetic energy. The
final collapse stage must be identified in such a way that the energy cascade in a
collective cloud collapse is supported.

(D) The energy radiated from each of the cavity collapses is assumed to propagate
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spherically, where energy conservation requires the energy content across the spher-
ical wave front (SphWF) to be constant. Hence, the local energy density decays
with increasing distance from the collapse center. While the decay law of spheri-
cal waves is straightforwardly adopted in the modeling approach, the main prob-
lem to be solved is to make the model computationally efficient. As each point
of the surface impact energy distribution is the result of a volume integral over all
emission sources and the corresponding distances and surface orientations, the
model can become expensive relative to the computational cost of the cavitation
flow solver.

1.2.2. SKETCH OF THE PROPOSED SOLUTION

The main contribution of the present work is a computationally efficient model trans-
port equation representing the collapse energy cascade described by Eqn. (1.3) and the
acoustic surface impact following from spherical wave propagation. In the following, the
transport equation is briefly sketched, as the present work essentially evolves around the
modeling assumptions for its individual terms. Details on the derivation of the individ-
ual terms are then presented in Chap. 3. The transport equation of the energy cascade
is formulated in the Eulerian reference frame and can be applied as a run-time post-
processing tool in the numerical simulation of cavitating flows.

As discussed in Sec. 1.2.1, the local kinetic energy of the flow is given by

ekin (t ,x) = ekin,c (t ,x)+ekin,v (t ,x)+ekin,a (t ,x) , (1.4)

where ekin,c and ekin,v represent the collapse/condensation-induced and the evaporation-
induced kinetic energy, respectively, and ekin,a is the remaining component, which is
thought to stand lose from the liquid kinetic energy induced by the cavity volume changes.
Both ekin,c and ekin,v can only exist because of the presence of divergence sources some-
where in the flow vicinity, whereas ekin,a is of purely advective nature. However, the ve-
locity fields of all three components are divergence free and cannot be distinguished
from each other. Consequently, the spatial distribution of the collapse-induced kinetic
energy ekin,c feeding into radiated shock wave energy is unknown. It is known from Eqn.
(1.3), however, that the total amount of kinetic energy induced by a collapsing cavity is
equal to the change of potential energy that the cavity has experienced. This motivates
the idea to artificially absorb the collapse-induced kinetic energy present at locations x
into the interface of the collapsing cavity, denoted by coordinates xP . The artificially ab-
sorbed kinetic energy is denoted by E , and the absorption process is illustrated by Fig.
1.6. As is later discussed in more detail in Sec. 3.1.1, the kinetic energy distribution in-
duced by a collapsing cavity focuses into the collapse center. This means that E evolves
into a physically correct representation of the induced kinetic energy when the final col-
lapse stage is approached.

The energy cascade from potential energy into collapse-induced kinetic energy into
radiated shock wave energy can then be described by
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∂E

∂t
− (

1−β)
φ (E )︸ ︷︷ ︸

conservative transport

= −(
1−β)(Depot

Dt

)
c︸ ︷︷ ︸

potential energy reduction

↓
kinetic energy generation

− β
∂Erad

∂t︸ ︷︷ ︸
energy radiation

↓
kinetic energy reduction

, (1.5)

where
∫

vol
φ (E )dV = 0 and

β (t ,xP ) =
{

1 at the final collapse stage
0 else.

Eqn. (1.5) is the transport equation of the absorbed collapse-induced kinetic energy
E . The first term on the right-hand side represents the generation of kinetic energy due
to the reduction of potential energy as a result of condensation. The second term on
the right-hand side represents the conversion of kinetic energy into radiated shock wave
energy. Both terms act as source terms in the kinetic energy balance. The term φ (E )
on the left-hand side denotes the conservative transport of E along the cavity interface.
It requires a modeling assumption, because it must allow for a redistribution of energy
between coherently cavitating structures in collective collapse situations. The parame-
ter β (t ,x) is equal to 1 when a final collapse stage is identified and thereby activates the
radiation source term in Eqn. (1.5). At any location, where no final collapse stage is iden-
tified, β is equal to 0 to keep the potential energy reduction term and the conservative
transport term φ (E ) active.

Figure 1.6: Illustration of how the collapse-induced kinetic energy distribution ekin,c (t ,x) is absorbed into
E

(
t ,xP

)
at the cavity interface; this artificial representation becomes physically correct at the final stage of the

collapse, where the distribution of ekin,c (t ,x) is entirely focused into the collapse center

The impact power on the solid surface is given by
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∂eS

∂t

∣∣∣∣
t ,xS

=
∫

vol

(
β
∂Erad

∂t

)
t ,xP︸ ︷︷ ︸

(∂erad/∂t)t ,xP

GxP→xS ,n︸ ︷︷ ︸
spherical wave projection

dV , (1.6)

where GxP→xS ,n = 1

4π

(xP −xS ) ·n

‖xP −xS ‖3

and
∫ t∗+TSW

t∗

∮
SphWF

(
∂erad

∂t

)
t ,xP

GxP→xS ,ndSd t = E (t ,xP ) .

The term GxP→xS ,n in Eqn. (1.6) is the operator that represents the spherical wave
propagation and projection from an emission source at location xP onto a point xS of
the impacted surface, where n is the local surface normal vector. The radiated energy
content E is conserved as the spherical wave front (SphWF) passes a fixed observation
point in a wave passage time TSW and the orientation of the impacted surface location
relative to the encountered wave is taken into account. It is noted that Eqn. (1.6) is
based on the assumption of infinite wave propagation speed and that the shock wave
front is thought to be infinitely thin, such that TSW → 0. This means that in the present
form, only the energy content of the radiated shock wave is well defined, but not its exact
shape across the spherical wave front.

1.3. OUTLINE OF THE PRESENT RESEARCH
In Chap. 2 of this work, the physical and the numerical model for the simulation of the
cavitating flow is presented. It is discussed why and under which operating conditions
the cavitation model is able to accurately reflect the kinematic features of a cavitating
flow, despite its simplifications. This finding justifies the applicability of the implosion
load model presented in Chap. 3, which essentially relies on an accurate representation
of the evolution of cavitating structures at larger scales.

In Chap. 3 detailed derivations and considerations are presented for the individual
terms in Eqns. (1.5) and (1.6) that describe the collapse energy cascade. These terms are
the conservative kinetic energy transport termφ (E ), the driving pressure involved in the
balance of epot, the criterion to identify the final collapse stage at which β = 1, and the
spherical wave propagation and surface projection operator GxP→xS ,n. Most importantly,
it is discussed how φ (E ) and β can be modeled in such a way that Eqn. (1.5) supports
the energy cascade mechanism in a collective collapse situation, as illustrated in Fig. 1.5.
The numerical efficiency of the approach is further elaborated, and a statistical analysis
method to identify extreme impact events in periodically cavitating flows is derived.

Chap. 4 is on the application of the implosion load model to three test cases. A col-
lapsing bubble cloud is investigated to show that the energy focusing mechanism of a
collective cloud collapse is captured by the model. Subsequently, the cavitating flow
around a hydrofoil is studied to derive best practice guidelines for the statistical analy-
sis method and the computation of the collapse driving pressure distribution. Finally, a
test case involving the cavitating flow in an axisymmetric nozzle is employed to compare
the model performance against experimental and numerical results from the literature.
It is demonstrated that the present model can give physically converged results for the
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energy impact distribution resulting from cavitation implosions. Here, physically con-
verged, means that the obtained energy distribution is independent of the resolution of
the numerical flow simulation and the involved cavitation model parameters. This can
be seen as a first step towards quantitative predictions of cavitation erosion in engineer-
ing flow scenarios.

Conclusions and recommendations are finally presented in Chap. 5.





2
NUMERICAL REPRESENTATION OF

THE CAVITATING FLOW DYNAMICS

In this chapter, the physical model and the governing equations of the cavitating flow are
introduced. The technique is presented in relation to alternative approaches to elabo-
rate on its expected accuracy and limitations on the one hand, and on its computational
efficiency on the other hand. In Sec. 2.1, it is discussed analytically, in how far rather
simplifying engineering cavitation flow models can mimic the behavior of more elaborate
thermodynamic models as long as the cavitating flow can be classified as inertia driven.

The implications from the analytical considerations in Sec. 2.1 are further discussed in the
light of the cavitating flow model presented in Sec. 2.2. Predictions about the cavitation
model behavior are derived. The numerical implementation of the flow model is presented
in Appx. A.

In order to demonstrate some of the predicted model features, the controlled situation of
an isolated vapor bubble collapse is employed in Sec. 2.3. It is shown that the bubble col-
lapse time is accurately predicted in the limit of large mass transfer coefficients, which is
explained against the theoretical considerations in Sec. 2.1. The dynamics leading to the
formation of violent cavitation implosion loads, however, are not accurately captured by
the flow model. This behavior is typical for computationally efficient cavitation flow mod-
els used for large scale engineering applications and motivates the design of a cavitation
implosion load model that strongly relies on kinematic flow features.

13
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2.1. INERTIA DRIVEN DYNAMICS OF CAVITATING FLOWS

2.1.1. CLASSIFICATION OF CAVITATION MODELING APPROACHES

Fig. 2.1 is an attempt to classify existing cavitation models into physical categories, hav-
ing in mind that this classification cannot be entirely sharp and complete due to the vast
amount of modeling approaches. In the context of the present work, however, cavitation
models can be classified into equilibrium and non-equilibrium models.

Figure 2.1: Classification of cavitation models existing in literature

On the macroscopic scale, cavitating flows are typically treated as homogeneous
mixtures of liquid, vapor and possibly non-condensable gas. The mixture flow states
are often assumed to satisfy the equilibrium flow assumption of macroscopic gas dy-
namics [35], which states that the phase equilibrium of all involved variables is estab-
lished at any time instant. This means that the macroscopic states of density, pressure
and temperature are unique. In order to achieve a most accurate representation of the
macroscopic fluid states, thermodynamic relations can be employed to describe their
dependency on each other. In the homogeneous equilibrium approach, the fluid flow
is typically treated as fully compressible. The equation of state of the cavitating mix-
ture is then often complemented by the ideal gas law of the gaseous phase and the Tait
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equation of state [36, 37] for the pure liquid. To increase the numerical efficiency of
these approaches, thermodynamic tables can be utilized alternatively [38, 39]. An en-
thalpy equation is needed to achieve closure in this modeling frame work [40] due to the
changes of internal energy involved in the phase transition process and the compress-
ibility of the mixed vapor/liquid and gas phases. When the involved thermodynamic
processes are assumed to be adiabatic and fully reversible, an isentropic equation of
state can be employed [41, 42]. Equations of state in which the pressure is directly linked
to the density, such that ρ = ρ (

p
)
, are referred to as barotropic equations of state [43–45].

Barotropic equations of state force the pressure and density gradients to be aligned with
each other because ∇ρ (

p
) = ∂ρ/∂p∇p, which implies that no baroclinic vorticity can

exist in such a flow [46]. Often, barotropic equations of state primarily aim to provide a
realistic sound speed distribution of the cavitating mixture, but do not necessarily obey
strict thermodynamic relations [43, 45]. The large compressibility of the cavitating mix-
ture in combination with the nearly incompressible behavior of the pure liquid phase
imposes considerable challenges from a numerical point of view, because a large range
of Mach numbers needs to be handled [44, 47–49].

When it comes to the simulation of flow situations encountered in large scale engi-
neering applications, the violation of the phase equilibrium constraint is therefore often
accepted for the sake of computational efficiency and numerical robustness. The cavi-
tating flow is then typically modeled by numerically less demanding mass transfer mod-
els, and the pure liquid phase is treated as incompressible, which allows for significantly
larger time steps as no fast propagating pressure waves in the liquid phase need to be
resolved. The modeling approaches belonging to this model family are often considered
as (semi-) empirical [50–52], even though for instance the model by Sauer and Schnerr
[53] is conceptually derived from sub-grid bubble dynamics considerations. In order to
describe the phase transition of the mixture fluid flow in terms of a mass transfer pro-
cess, an additional transport equation of the vapor-liquid fraction that includes the mass
transfer source term needs to be solved [47, 53, 54].

Another family of non-equilibrium mass transfer models aims to directly simulate
the phase change at the phase interface, [55] rather than the phase change of a homo-
geneous mixture fluid. The involved phases then need to be treated by separate sets of
governing equations that involve cross coupling terms to model the exchange of mass
and momentum and the heat transfer at the interfaces of the individual phases [56, 57].
Compared to aforementioned family of (semi-) empirical mass transfer models, these
models involve a significantly more accurate description of the phase transition physics,
as they essentially start from thermodynamic equilibrium and then introduce additional
process variables to describe the deviation from the equilibrium state [40, 58]. Examples
of situations where non-equilibrium effects become physically relevant are micro-scale
cavitation bubble dynamics [55] or flashing liquid flows [59]. Cristofaro et al. [60] present
a multifluid approach in which cavitation is still modeled as a mass transfer process in
a mixture fluid flow, but where slip velocities between the phases are allowed. They
have found that slip velocities between the liquid and the vapor phases are negligible
on a macroscopic scale, but that they play an important role between the liquid and the
gaseous phases of a combustion spray [60].

In the present work, a semi-empirical mass transfer modeling approach is employed
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to model the macroscopic cavitating flow dynamics. In order to better understand and
control the behavior of such models, it is useful to discuss how barotropic equilibrium
states can be achieved by a finite rate mass transfer processes and in how far common
engineering cavitation models deviate from the equilibrium mass transfer process.

2.1.2. EQUILIBRIUM VS NON-EQUILIBRIUM MASS TRANSFER
In this section, the apparent fluid compressibility, observed in the Eulerian and the La-
grangian reference frames, is derived for arbitrary mass transfer processes under the ne-
glect of temperature effects. It is shown how the existence of barotropic density-pressure
equilibrium states [43–45] is supported by an invariant of the compressiblity observed
in both reference frames and how this invariant is satisfied by a finite-rate mass transfer
process. The apparent flow compressibility allows to make analytical predictions on the
behavior of mass transfer models that violate the equilibrium flow assumption.

The mass transfer process is interpreted as a source of velocity divergence, denoted
by

∇·u = Γ, (2.1)

such that the continuity equation

∂ρ

∂t
+∇· (ρu

)= 0 (2.2)

can be rewritten as

Dρ

Dt
=−ρΓ, where

D

Dt
:= ∂

∂t
+u ·∇. (2.3)

In the absence of temperature effects, the apparent compressibility at some location
x and some time instant t is given by

∂ρ

∂p

∣∣∣∣
t ,x

= lim
δt→0

ρ (t +δt ,x)−ρ (t ,x)

p (t +δt ,x)−p (t ,x)
(2.4)

in the Eulerian reference frame and by

Dρ

Dp

∣∣∣∣
t ,x

= lim
δt → 0
δx → 0

ρ (t +δt ,x+δx)−ρ (t ,x)

p (t +δt ,x+δx)−p (t ,x)
(2.5)

in the Lagrangian reference frame, where the position x and the displacement δx of
the Lagrangian fluid particle is given with respect to the fixed Eulerian reference frame.
Furthermore, the local densities and pressures in Eqns. (2.4) and (2.5) can be expanded
in time by some infinitesimal δt , such that

ρ (t +δt ,x) = ρ (t ,x)+ ∂ρ

∂t

∣∣∣∣
t ,x
δt ,

p (t +δt ,x) = p (t ,x)+ ∂p

∂t

∣∣∣∣
t ,x
δt (2.6)
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and

ρ (t +δt ,x+δx) = ρ (t ,x)+ Dρ

Dt

∣∣∣∣
t ,x
δt ,

p (t +δt ,x+δx) = p (t ,x)+ Dp

Dt

∣∣∣∣
t ,x
δt , (2.7)

where the displacement contribution in Eqn. (2.7) follows from the advective term of
the material derivative multiplied by δt , such that ∇ρ·uδt =∇ρ·δx and ∇p ·uδt =∇p ·δx,
which also implies that δx → 0 as δt → 0. Substituting Eqns. (2.6) and (2.7) into Eqns.
(2.4) and (2.5), respectively, these can be rewritten as

∂ρ

∂p
= ∂ρ

∂t

/∂p

∂t
(2.8)

and

Dρ

Dp
= Dρ

Dt

/Dp

Dt
, (2.9)

respectively. Hence, the mass continuity equation as given by Eqn. (2.3) becomes

∂ρ

∂p
=−ρΓ+∇ρ ·u

∂p/∂t
(2.10)

in the Eulerian reference frame, and

Dρ

Dp
=− ρΓ

Dp/Dt
=− ρΓ

∂p/∂t +∇p ·u
(2.11)

in the Lagrangian reference frame. Unique equilibrium states of density and pressure
are obtained if they can be described by a unique invertible function ρ

(
p

)
, which implies

that also the slope of the ρ-p trajectory must be a unique function of ρ or p, regardless
of the reference frame in which this trajectory is observed. This means that unique equi-
librium states of ρ and p are only supported when the apparent compressiblity becomes
invariant with respect to the frame of reference, such that

∂ρ

∂p
= Dρ

Dp
= dρ

d p
:=ψ, (2.12)

where ψ is the mechanical compressibility and where the derivative operator d in-
dicates the invariant. From Eqns. (2.10), (2.11) and (2.12) it follows that this invariant is
satisfied if and only if, when

Γ=−ψ
ρ

Dp

Dt
=− 1

ρ

(
ψ
∂p

∂t
+∇ρ ·u

)
, (2.13)

where the relation ∇p
(
ρ
) ·u = (

d p/dρ
)∇ρ ·u = (

1/ψ
)∇ρ ·u is employed. As soon as

the equilibrium constraint for Γ given by Eqn. (2.13) is violated, the flow compressibilty
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cannot be uniquely described as a function of either ρ or p anymore. Mass transfer mod-
els, as typically employed for engineering applications, are usually given by a function of
p and/or ρ. Eqns (2.10) and (2.11) suggest that the apparent compressibilty obtained
from these models is then inversely proportional to ∂p/∂t . Eqns (2.10) and (2.11) further
suggest a dependency of the apparent compressibility on advected density ∇ρ ·u in the
Eulerian reference frame, and on advected pressure ∇p ·u in the Lagrangian reference
frame.

2.1.3. SCALE SEPARATION OF FLOW STATES
In this section, it is argued that the pressure scale at which phase transition occurs, typ-
ically separates from the characteristic pressure difference driving the inertial dynamics
of the cavitating flow in most engineering applications. Such flows are typically sub-
ject to very confined regions of evaporation, where high local flow accelerations cause
a local pressure drop necessary for cavitation inception to occur, even at relatively high
operating pressures. The mixture fluid then exists within a pressure range that is small
relative to the operating pressure, regardless of the exact vapor fraction of the mixture.
The primary problem is then to correctly represent the collapse behavior of the gener-
ated vapor structures, which again is strongly governed by the pressure difference be-
tween the operating ambient pressure p∞ and the vapor pressure pv . More specifically,
the above mentioned scale separation can be explained by the inverse Mach number
Ma−1 = cm/vinert, where in this context, cm is the associated mixture sound speed, and
vinert an inertial flow velocity that is characteristic of a cavity collapse. With the Rayleigh

collapse time being τ= 0.915R0

√
ρl /

(
p∞−pv

)
[33], a measure of the inertial flow veloc-

ity is given by the time averaged collapse speed [61] vinert = R0/τ = 1.09
√(

p∞−pv
)

/ρl

for an isolated bubble collapse. It is further noted that the mixture sound speed is re-
lated to the mechanical compressibility via the relation dρ/d p = 1/c2

m . Assuming the
sound speed cm to be approximately constant over the entire phase transition regime, as
illustrated in Fig. 2.2, the relation between the phase transition pressure range ∆pm and
the phase transition density range ρl −ρv can be approximated by c2

m =∆pm/
(
ρl −ρv

)
.

From the mixture sound speed distribution derived by Pelanti and Shyue [62] based on
the homogeneous equilibrium model by Stewart and Wendroff [63], the water-vapor
mixture is assumed to be represented by an equivalent constant value of cm = 2.0 m/s.
Neglecting the constant 1.09 (since it is close to unity), it follows from the above consid-
erations that

Ma−1 = cm

vinert
= cm

√
ρl

p∞−pv
. (2.14)

When ρl >> ρv , the mixture sound speed is approximately cm =√
∆pm/ρl and Eqn.

(2.14) can be expressed as the ratio between the pressure ranges ∆pm and p∞−pv , such
that

Ma−1 ≈
√

∆pm

p∞−pv
. (2.15)

The inverse Mach number as given by Eqn. (2.14) and, for ρl >> ρv , by Eqn. (2.15),
measures to what extent a cavitating flow is inertia driven. If the flow is assumed to
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exist in unique barotropic equilibrium states, the range ∆pm at which phase transition
occurs, is a well defined constant value that depends on the thermodynamic properties
of the fluid. The range p∞−pv characterizes the ambient condition and can be seen as
the driving force behind the cavity collapse. In typical practical flow situations, where
p∞ ≈ 1 bar or larger, we have Ma−1 << 1, and the flow can be seen as predominantly
inertia driven. As long as this condition holds, the macroscopic inertial flow dynamics
can be expected to be insensitive to the exact flow states in the phase transition regime.

The important implication of these considerations is that even semi-empirical non-
equilibrium mass transfer models can give realistic representations of the inertial dy-
namics of cavitating flows as long as the density-pressure trajectories obtained from the
model are steep such that Ma−1 << 1, and as long as the obtained scale separation is
physically justified. In physical situations where Ma−1 approaches 1, inertial forces be-
come a less and less dominant driver of the cavity collapse dynamics, whereas the phase
transition process becomes increasingly important. It can be expected that a correct
representation of the mixture fluid states becomes increasingly important in that case.

Figure 2.2: Illustration of the transition from vapor density ρv to liquid density ρl at constant mixture sound
speed cm

2.2. GOVERNING EQUATIONS AND CAVITATION MODEL

The flow model is a modified version of the flow solver interPhaseChangeFOAM that is
available in the open source CFD package OpenFOAM [64]. The flow is assumed to be
inviscid, and the Euler equations for momentum and mass continuity are solved:

∂

∂t

(
ρu

)+∇· (ρu⊗u
)=−∇p (2.16)

∂ρ

∂t
+∇· (ρu

)= 0 (2.17)

Furthermore, the flow is assumed to be incompressible in the pure liquid and vapor
phases, where ρl and ρv are the liquid and vapor densities, respectively. The mixture
density ρ is expressed in terms of the liquid fraction γ by the linear mixture relation

ρ = γρl +
(
1−γ)

ρv , where 0 ≤ γ≤ 1. (2.18)
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The mass transfer model by Merkle et al. [54] is employed in a slightly modified form [65]
to model cavitation:

∇·u = Γ=− 1

ρ

(
1

ρv
− 1

ρl

)(
p −pv

){ Cvγ for p ≤ pv

Cc
(
1−γ)

for p > pv
(2.19)

The constants Cv and Cc are model coefficients to adjust the source term magnitude for
the evaporation and condensation processes, respectively. Substituting the mixture den-
sity given by Eqn. (2.18) into Eqn. (2.17) gives the mass continuity equation expressed in
terms of the liquid fraction:

∂γ

∂t
+∇γ ·u+γ∇·u =−∇·u

ρv

ρl −ρv
(2.20)

Substituting the divergence term ∇·u on the right-hand side of Eqn. (2.20) by Eqn. (2.19)
yields the transport equation of γ, which must be solved to achieve phase transition:

∂γ

∂t
+∇· (γu

)=−p −pv

ρρl

{
Cvγ for p ≤ pv

Cc
(
1−γ)

for p > pv
(2.21)

In order to examine the phase transition behavior of the model, the source term Γ as
given by Eqn. (2.19) is substituted into Eqn. (2.10), which gives the apparent compress-
ibility

∂ρ

∂p
=− ∇ρ ·u

∂p/∂t
+

(
1

ρv
− 1

ρl

)
p −pv

∂p/∂t

{
Cvγ for p ≤ pv

Cc
(
1−γ)

for p > pv
(2.22)

in the Eulerian frame of reference. Next to the dependency on the partial pressure deriva-
tive ∂p/∂t and the advected density ∇ρ ·u, as discussed in Sec. 2.1.2, Eqn. (2.22) shows
that the apparent compressibility ∂ρ/∂p is proportional to the pressure difference p−pv ,
the mass transfer constants Cv and Cc , as well as the liquid and the vapor fractions, given
by γ and 1−γ, respectively. By choosing large enough values for the model coefficients
Cv and Cc , the apparent compressiblity of the mixture eventually becomes sufficiently
large such that a scale separation of the phase transition/mixture pressure range ∆pm

from the driving pressure difference p∞−pv , as described in Sec. 2.1.3, is achieved. This
means that the inertial dynamics of the flow become independent from the magnitude
of the mass transfer coefficients in the limit of large coefficient values. By these means,
the conditions of more physically correct thermodynamic equilibrium models can be
mimicked [66], given that the physics of the flow situation are indeed such that the in-
verse Mach number given by Eqn. (2.15), is significantly smaller than 1.

2.3. ISOLATED BUBBLE VAPOR COLLAPSE

2.3.1. NUMERICAL SET-UP
A section of a spherical bubble is initialized in the computational domain shown in Fig.
2.3. An axisymmetric wedge and a symmetry boundary condition are applied on the
patches specified in Table 2.1 to represent the spherical bubble. The wedge angle ^COD
includes one cell layer. A structured spherical computational grid is used. This com-
putationally efficient set-up has kindly been shared by M. H. Arabnejad (Marine Tech-
nology/Mechanics and Maritime Sciences at Chalmers University of Technology). The
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computational grid is identical with the one that is used in the work by Ghahramani et al.
[67]. Table 2.1 specifies the wedge angle as well as the sizes of the inner domain, where
the cells are uniformly distributed in radial direction, and the outer domain, where the
cell to cell expansion ration is such that a smooth cell size transition to the inner domain
is achieved. A grid sensitivity study is not carried out for this test case, but it has been
shown in previous work [2, 68] on similar cavity collapse test cases that a resolution of
only two cells per initial cavity radius is already sufficient to achieve grid convergence.
Therefore, the resolution of 20 cells per R0 in the present set-up is high enough with
margin.

Table 2.1: Mesh properties and boundary conditions for the isolated bubble collapse, where the reference
points O, A, B , C , D and E are indicated in Fig. 2.3

Surface AOD AOB COD AC D
Boundary type wedge - symmetry far field
^ [deg] - 90 5 -

Line OE E A
Length [mm] 1 (2.5R0) 499
Number of cells 50 50

Arc AB C D
Number of cells 50 1

Figure 2.3: Outline of the computational domain (distance O A relative to OE is not true to scale); the boundary
types of the individual patches are specified in Table 2.1

The initial bubble radius is Rb=0.4 mm and the liquid fraction γ is initially equal to 1
outside the bubble and equal to 10−5 inside the bubble (see Fig. 2.4, left). The liquid and
vapor densities are assumed to be ρl = 1000 kg/m3 and ρv = 0.02 kg/m3, respectively.
The bubble interface is initially at rest and then collapses under an ambient pressure of
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p∞ = 1 bar, which is imposed as a fixed value boundary condition at the far field patch.
The vapor pressure is assumed to be pv = 2340 Pa. The pressure field is initialized such
that it satisfies the Laplace equation ∇ · ∇p = 0 (see Fig. 2.4, right). The liquid frac-
tion γ is constrained by a zero gradient boundary condition at the far field. The bubble
collapse behavior is investigated for a systematic variation of the mass transfer conden-
sation constant Cc as given in Eqn. (2.19) and the time step size ∆t . In particular, it
is investigated how these two parameters affect the local phase transition behavior and
eventually the collapse time of the isolated bubble. Furthermore, the maximum pres-
sures are inspected. Iterative schemes, discretization schemes and residual controls are
described in Appx. A. Different from the settings in Appx. A.3, the residual tolerance is
chosen to be εr = 10−14 for all equations in this case. Ghahramani et al. [67] did a simi-
lar study on the effect of the mass transfer coefficient magnitude on the bubble collapse
time and the evolution of the pressure field. In the present study, it is investigated in
more detail how the states of pressure and density compare against the analytical pre-
dictions in Secs. 2.1.2 and 2.2 and how they affect the flow dynamics.

Figure 2.4: Initial γ distribution (left) with a sharp interface at R0 = 0.4 mm and initial pressure distribution
(right) with p satisfying the Laplace equation ∇·∇p = 0

2.3.2. THE EFFECT OF TIME STEP SIZE AND MASS TRANSFER COEFFICIENTS

ON THE COLLAPSE DYNAMICS

Figure 2.5 depicts the evolution of the bubble radius over time for three different con-
densation rates and three different time step sizes. The (quasi) analytical solution is ob-
tained from numerical integration of dR/d t , for which the analytical solution dR/d t =√

2
(
p∞−pv

)(
R3

0 /R3 −1
)

/
(
3ρl

)
[33] is given. The overall observation is that the collapse

time obtained from the numerical simulation converges to the Rayleigh [33] collapse

time τ = 0.915R0

√
ρl /

(
p∞−pv

)
with increasing magnitude of the mass transfer coef-

ficient Cc and with decreasing time step size ∆t . However, a closer look reveals that
the bubble collapse time does not unconditionally converge with increasing Cc . For the
medium time step ∆t = 5 · 10−8 s and even more for the largest time step ∆t = 5 · 10−7
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Figure 2.5: Evolution of the bubble radius R (t ) for different condensation rates Cc and time step sizes ∆t

s, the collapse time tends to slightly increase again for the largest mass transfer coeffi-
cient value Cc = 103 kg·s/m3. For the smallest time step ∆t = 5 · 10−9 s, however, the
collapse times obtained for Cc = 103 kg·s/m3 and Cc = 103 kg·s/m2 both coincide with
the Rayleigh [33] collapse time τ. The convergence of the bubble collapse time to the
Rayleigh [33] collapse time τ with increasing mass transfer coefficient value is in line
with the findings by Bhatt et al. [69] and Ghahramani et al. [67].

The convergence with increasing Cc is explained by the circumstance that the in-
creasingly steep ρ-p trajectories establish an inertia driven flow as discussed in Sec.
2.1.3. This is shown by the ρ-p trajectories in Fig. 2.6. The individual sub-figures rep-
resent different time steps, and each of them shows the trajectories for three different
values of Cc and at three different distances from the bubble center. The trajectories ap-
pear to be practically independent from the time step size, but are strongly dependent
on the location of the observation point and the condensation mass transfer coefficient.
Both dependencies are predicted by Eqn. (2.22). At a fixed observation point, the trajec-
tory slope increases with increasing Cc , because ∂ρ/∂p is proportional to Cc . For a fixed
value of Cc , the slope decreases as the bubble center is approached, because ∂ρ/∂p is
inversely proportional to the pressure change ∂p/∂t , which again increases towards the
collapse center.

An additional effect of large mass transfer coefficients is that the inertia driven liq-
uid mass flow upstream from the collapsing bubble interface diverges into the bubble
interface such that the flow velocity inside the bubble remains zero. In that sense, the
mass transfer coefficients Cc,v can be interpreted as a mass transfer capacity, which is
only exploited to an extent governed by the speed of the inertial flow. If the mass transfer
coefficient is chosen too low, however, there is a time instant from which on the mass
transfer model does not have enough capacity anymore to achieve the local phase tran-
sition within the time scale dictated by the incoming inertia driven flow. From that mo-
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Figure 2.6: ρ-p trajectories at three different observation points and for different condensation rates and time
step sizes

ment on, an increasing amount of mass flow is allowed to diffuse through the interface
before the local condensation process is complete. This mass diffusion goes along with
a non-physical pressure rise in the vapor phase. In order to demonstrate this effect, the
evolution of the radial flow velocity ur and the evolution of the pressure field are de-
picted in ur -t (Fig. 2.7) and p-t (Fig. 2.8) diagrams, respectively, both for different val-
ues of Cc,v . In both figures, the green dashed line indicates the evolution of the bubble
interface R (t ). As the bubble interface never appears to be perfectly sharp, the instan-

taneous interface position is reconstructed from R = [
3Vvap/(4π)

]1/3, where Vvap is the
instantaneous vapor volume in the computational domain.

Fig. 2.7 shows that the moment at which the bubble interface becomes diffuse, is
delayed towards the final collapse stage with increasing Cc . For the smallest mass trans-
fer coefficient Cc = 10 kg·s/m5, a pronounced mass flow starts to diffuses through the
interface at t ≈ 0.5τ and reaches the bubble center at t ≈ 0.9τ. For large values of Cc , the
interface sharpness is maintained reasonably well until close to the final collapse stage.
The evolution of the reconstructed bubble interface, represented by the green dashed
line, also indicates the formation of a rebound bubble for the larger mass transfer coef-
ficients.

Fig. 2.8 shows that for the smallest mass transfer coefficient Cc = 10 kg·s/m5, the
vapor pressure inside the bubble cannot be maintained anymore from t ≈ 0.8τ onward.
An artificial stagnation pressure forms at the bubble center when the diffusing mass flow
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Cc,v = 101 kg·s/m5 Cc,v = 102 kg·s/m5

Cc,v = 103 kg·s/m5 Cc,v = 104 kg·s/m5

Figure 2.7: Radial velocity ur over the non-dimensional distance r /R0 from the bubble center and over the
non-dimensional time t/τ for a variation of the mass transfer coefficients Cc , where R0 is the initial bubble
radius and τ the Rayleigh collapse time [33]; the green dashed line indicates the evolution of the bubble inter-

face, where the instantaneous interface position is reconstructed from R = [
3Vvap/(4π)

]1/3, with Vvap being
the instantaneous vapor volume in the domain.
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collides at the center. This artificial stagnation pressure is maintained as long as some
mass flow is directed towards the center. The moment at which the pressure drops back
to the ambient pressure p∞ (t/τ≈ 1.05) coincides with a pronounced decrease of mass
transfer rate, because the local mass transfer rate is proportional to p − pv (see Eqn.
(2.19)). This sudden decrease of mass transfer rate marks the point in Fig. 2.5 at which
the bubble interface velocity Ṙ suddenly drops for Cc = 10 kg·s/m5. For the larger Cc val-
ues, the vapor pressure inside the bubble is maintained, and the bubble fully collapses
as t approaches τ. It is also noted that the pressure field around the bubble is subject
to numerical perturbations which appear as short pulses increasing in amplitude with
increasing Cc . Such pressure perturbations were also found by Ghahramani et al. [67] for
large model coefficient values in the mass transfer model by Sauer and Schnerr [53]. Due
to their short duration, however, they do not affect the evolution of the bubble interface.
Furthermore, the numerical pressure perturbations, as well as the pressure pulse form-
ing at the final stage of the collapse, appear as horizontal lines in the p-t diagram. This
shows, as expected, that the pressure perturbations propagate infinitely fast through the
incompressible liquid phase. For reference, the black dashed line indicates a propaga-
tion speed of 1500 m/s, which is approximately equal to the sound speed cl in pure water.

The delayed bubble collapse at large time steps is explained by truncation errors that
occur when the solution is forwarded in time by means of a linear discretization scheme,
which affects the time that it takes for the ρ-p trajectory to evolve from vapor to liq-
uid density. This effect is shown by Fig. 2.9, which depicts the evolution of the mixture
density ρ over time for different mass transfer coefficients Cc,v , at different observation
points and for different time step sizes. It can be seen that the local phase transition time
converges with increasing values of Cc,v and decreasing time step ∆t . For the smallest
time step∆t = 5·10−7 s, however, the largest condensation coefficient Cc = 103 = kg·s/m5

causes an additional delay of the local phase transition, especially for the inner obser-
vation point r /R0 = 0.25, where the most rapid density change occurs. This is in line
with the previous observation that sufficient temporal resolution is needed to converge
the bubble collapse time in the limit of large mass transfer coefficient values. Presum-
ably, this behavior is related to the numerical convergence of the discretized γ transport
equation and the pressure equation. The local residual as given by Eqn. (A.24) is in-
versely proportional to the maximum value max

(‖aCφC‖
)

of the matrix diagonal. As a
result of the semi-implicit source term treatment, the mass transfer coefficients are in-
cluded in the aC coefficient in both the γ transport and the pressure equation. Due to
the normalization by max

(‖aCφC‖
)
, the L1 norm can be artificially reduced, while the

solution quality itself has actually not improved.
Furthermore, Fig. 2.10 shows that the peak pressures caused by the bubble collapse

at different observation points converge with increasing condensation coefficient Cc for
a fixed time step size ∆t . However, no convergent behavior is achieved with respect to
∆t , where the peak pressure pmax tends to increase linearly with decreasing ∆t and at
approximately the factor at which ∆t decreases.
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Figure 2.8: Non-dimensional pressure p/p∞ over the non-dimensional distance r /R0 from the bubble center
and over the non-dimensional time t/τ for a variation of the mass transfer coefficients Cc,v , where R0 is the
initial bubble radius and τ the Rayleigh collapse time [33]; the slope of the black dashed line indicates the
liquid sound speed cl = 1500 m/s and the green dashed line indicates the evolution of the bubble interface,

where the instantaneous interface position is reconstructed from R = [
3Vvap/(4π)

]1/3, with Vvap being the
instantaneous vapor volume in the domain.
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Figure 2.9: Evolution of the mixture density ρ versus time during the condensation process for the same three
observation points, condensation rates and time step sizes as in Fig. 2.6.
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Figure 2.10: Collapse peak pressure over the condensation mass transfer coefficient value Cc at different ob-
servation points r /R0 and for different time step sizes ∆t .



2.3. ISOLATED BUBBLE VAPOR COLLAPSE

2

29

2.3.3. IMPLICATIONS WITH RESPECT TO CAVITATION EROSION MODELING
Together with the instantaneous occurrence of the collapse peak pressure in the entire
flow domain due to the incompressibility of the pure liquid phase, the non-convergent
behavior of the pressure peaks strongly indicates that cavitation erosion indicators based
on the local pressure are not able to reliably predict the erosive aggressiveness of a cavi-
tating flows within the presented numerical frame work. A similar conclusion was drawn
by Eskilsson and Bensow [70]. Based on their comparative study on the capability of
several erosion indicators available in literature, they also highlight the need for further
development in this field [70]. As far as the kinematic features of the cavity collapse are
concerned, e.g. the cavity collapse time, semi-empirical mass transfer models give ac-
curate predictions in the limit of large mass transfer coefficients and sufficient temporal
resolution. In Sec. 4.3, it is further demonstrated that also the characteristic shedding
frequency of periodic cavitating flows and the time averaged vapor content exhibit con-
vergent behavior in the limit of large coefficient values. This suggests that the prediction
of cavitation implosion loads should preferably be determined from the kinematic evo-
lution of the imploding vaporous structures.





3
DEVELOPMENT OF A CAVITATION

IMPLOSION LOAD MODEL

Against the findings from the previous chapter, a model is developed which couples the
kinematics of the cavity collapse to the implosion load via the potential energy content
[12] Epot = V

(
pd −pv

)
of the collapsing cavity, where V is the cavity volume and pd the

collapse driving pressure. Analytical considerations on an isolated vapor bubble collapse,
mostly based on existing literature, are presented in Sec. 3.1.

The analytical considerations on the simplifying situation of the isolated spherical col-
lapse build the foundation of the modeling approach by linking the potential energy con-
tent to the equations of motion of the collapsing bubble and the surrounding liquid as
well as the energy content of the pressure wave radiated at the final stage of the collapse,
which is interpreted as an acoustic wave in this modeling framework. Under some mod-
eling assumptions, the energy balance of the collapsing bubble is rewritten in a local form
for arbitrary flow situations. In particular, the non-trivial role of the driving pressure pd

is discussed in more detail.

In Sec. 3.2.1, a novel transport equation of collapse induced kinetic energy is derived to
account for the kinetic energy that a cavity collapse induces in the liquid flow. As a result,
a focusing of collapse energy into the collapse center is obtained. The transport equation
is formulated in such a way that it can also account for the energy focusing mechanism in
a collective vapor bubble cloud collapse as described by Wang and Brennen [16]. Similar
to the work by Leclercq et al. [27], a projection approach is employed to convert the energy
radiated from the source location into local acoustic impact power and acoustic pressure.

The numerical implementation of the acoustic implosion load model is subject of Sec. 3.3.
Most importantly, a computationally efficient approach is presented to obtain accumu-
lated surface energy distributions from the model. Sec. 3.4 presents a statistical analysis
method to isolate extreme events from accumulated surface energy distributions.

Parts of this chapter were published in Physics of Fluids 31, 052102 (2019) [1] and in the International Journal
of Multiphase Flow 111, 200 (2019) [2].

31



3

32 3. DEVELOPMENT OF A CAVITATION IMPLOSION LOAD MODEL

3.1. CONSIDERATIONS ON THE POTENTIAL CAVITY ENERGY

3.1.1. INSTANTANEOUS ENERGY BALANCE OF THE ISOLATED BUBBLE COL-
LAPSE

The potential energy hypothesis [11, 12] implies that the potential energy of a cavity is
equal to the work that the driving pressure difference pd −pv can do on its vapor volume
throughout the collapse, where pd is the driving pressure and pv the vapor pressure.
During the collapse, the initial potential cavity energy Epot,0 can be partitioned into dif-
ferent forms of energy, such that the total energy amount Epot,0 is conserved at any time
instant [13, 14]. In order to discuss the relevance of the instantaneous energy balance
with respect to cavitation implosion loads, we first consider the simplified case of an
isolated vapor bubble collapse. In this case, the driving pressure pd is equal to the ambi-
ent pressure p∞ and the potential cavity energy reduces to the potential bubble energy
[12]

E b
pot,0 =

4

3
πR3

0

(
p∞−pv

)
, (3.1)

where R0 is the initial bubble radius, and where the superscript b indicates that the
relation is valid for a spherical undisturbed bubble. In order to formulate the instan-
taneous energy balance during the collapse process, the entire liquid body around the
collapsing bubble needs to be taken into account [13]. As the bubble collapses, its po-
tential energy decreases. The reduction of potential energy feeds into kinetic energy of
the liquid body. The local kinetic energy per unit volume at some distance r from the
center is 1/2ρl‖u‖2 (r, t ). Given the spherical symmetry of the problem, it is convenient
to integrate the kinetic energy per unit volume over the surface of a sphere around the
bubble center, which gives the radial kinetic energy density. With the continuity rela-
tion r 2‖u‖ = R2Ṙ for constant liquid density and r > R, the instantaneous radial kinetic
energy density at some distance r from the bubble center becomes

dEkin

dr
= 2πρl R4 Ṙ2

r 2 for r ≥ R, (3.2)

where R = R (t ) is the instantaneous bubble radius. The instantaneous kinetic energy
of the entire liquid body follows from the radial integration of Eqn. (3.2), which gives [13]

E b
kin =

∫ ∞

R

(
dEkin

dr

)
dr = 2πρl Ṙ2R3 (3.3)

and hence the instantaneous change of kinetic energy around the collapsing bubble
becomes [71]:

dE b
kin

d t
= 2πρl R2Ṙ

[
2RR̈ +3Ṙ2] (3.4)

From Eqn. (3.1) follows the change of potential energy :

dE b
pot

d t
= 4πR2Ṙ

(
p∞−pv

)
(3.5)
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As pointed out by Obreschkow et al. [13], the change of kinetic energy in the liquid
body and the change of potential bubble energy must cancel out each other, such that

dE b
pot

d t
+ dE b

kin

d t
= 0, (3.6)

which gives the Rayleigh equation [13, 33]

RR̈ + 3

2
Ṙ2 =−p∞−pv

ρl
. (3.7)

Substituting the analytical solution [33]

Ṙ =−
√√√√2

3

p∞−pv

ρl

(
R3

0

R3 −1

)
(3.8)

into Eqn. (3.3), one finds that

E b
kin (R = 0) = E b

pot,0. (3.9)

This means that the initial potential bubble energy is fully converted into kinetic en-
ergy as the final collapse stage is approached. Also, the kinetic energy around a spherical
collapsing bubble focuses towards the bubble interface over time. This is shown by com-
bining Eqn. (3.2) with the analytical solution for Ṙ given by Eqn. (3.8), which gives the
dimensionless radial kinetic energy density at some distance r from the collapse center:(

dE b
kin

dr

)∗
= R0

Epot,0

dE b
kin

dr
=

(
R0

r

)2 R

R0

[
1−

(
R

R0

)3]
(3.10)

Evaluating Eqn. (3.10) at the interface shows that limR→0
(
dE b

kin/dr
)∗

r=R
=∞, which

means that the radial kinetic energy density at the bubble interface tends towards infin-
ity as the final collapse stage is approached. As we further know from Eqn. (3.9) that the
kinetic energy of the entire liquid body around the bubble approaches the finite value
E b

pot,0, we can conclude that all the kinetic energy of the liquid body focuses into the col-
lapse center at the final collapse stage. The focusing of kinetic energy is illustrated by
Fig. 3.1, which depicts the radial distribution of the dimensionless kinetic energy den-
sity given by Eqn. (3.10) for different bubble radii, i.e. for different time instants of the
bubble collapse. According to these simplified considerations, the shock wave emitted
at the final collapse stage propagates from an idealized point source. The relation be-
tween the power radiation ∂erad/∂t associated with the shock and the acoustic pressure
pa at some distance r from the source is given by [15]

p2
a (t ,r ) = ρl cl

4πr 2

∂erad

∂t
. (3.11)

With TSW being the pulse duration at some distance r from the source, the radiated
shock wave energy is then given by [15]

ESW = 4πr 2

ρl cl

∫
TSW

p2
a (t ,r )d t . (3.12)
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As discussed by Tinguely et al. [14], the initial potential bubble energy is eventu-
ally partitioned into shock wave energy, dissipative thermal energy, and rebound en-
ergy, where they show the latter to be relevant for low ambient pressures significantly
below 1 bar only. Thermal dissipation was shown to be negligible [14]. Under these cir-
cumstances, the shock wave energy ESW is approximately equal to the initial potential
bubble energy E b

pot,0. In addition to the energy balance by Tinguely et al. [14], which
addresses the collapse of spherical bubbles in particular, we also mention that some
residual kinetic energy may remain in the flow due to asymmetries in the collapse. This
residual kinetic energy may again transform into potentially erosive energy forms, e.g.
the waterhammer and stagnation pressure imposed by the impinging liquid jet forming
during the collapse of a near wall vapor bubble [5]. The energy partition is further af-
fected by the presence of non-condensable gas, where the size of the rebound bubble
tends to increase with increasing gas content [72].
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0
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Figure 3.1: Distribution of the dimensionless radial kinetic energy density around a collapsing vapor bubble
(see Eqn. (3.10)) for different time instants associated with the corresponding bubble radii R/R0; the integral
of each curve represents the kinetic energy of the entire liquid body as given by Eqn. (3.3).

3.1.2. COLLAPSE POTENTIAL IN ARBITRARY FLOW SITUATIONS

A local formulation of the cavity potential suitable for arbitrarily shaped cavities is ob-
tained from the vapor fraction 1−γ [73], such that

epot =
(
1−γ)(

pd −pv
)

. (3.13)

For arbitrary flow situations, the ambient pressure p∞ is replaced by the collapse
driving pressure pd (t ,x). The driving pressure is still interpreted as an ambient condi-
tion, which, however, is not necessarily constant in space and time. Integration of Eqn.
(3.13) over the vapor mixture volume gives the total amount of potential cavity energy
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Epot =
∫

v.vol

(
1−γ)(

pd −pv
)

dV. (3.14)

The time derivative of the total potential is

dEpot

d t
=−

∫
v.vol

Dγ

Dt

(
pd −pv

)
dV +

∫
v.vol

(
1−γ) Dpd

Dt
dV. (3.15)

The change of vapor volume induces a flow in the surrounding liquid. This con-
densation/evaporation induced liquid flow, denoted by uc,v , is a component of the total
liquid flow velocity u. The liquid volume integral of the induced kinetic energy is then
given by

Ekin,c,v = 1

2

∫
l.vol

ρl uc,v ·uc,v dV , (3.16)

and the time derivative of Eqn. (3.16) is

dEkin,c,v

d t
=

∫
l.vol

ρl uc,v ·
∂uc,v

∂t
dV + 1

2

∫
l.vol

Dρl

Dt
uc,v ·uc,v dV. (3.17)

As stated by Eqn. (3.6), the change of potential cavity energy must balance the change
of induced liquid kinetic energy in case of an isolated cavity collapse at constant ambient
pressure [13]. In that case, the system consisting of the vapor cavity and the surround-
ing liquid can approximately be considered as conservative, meaning that no external
energy source or energy dissipation [14] is involved in the energy conversion. For non-
conservative systems, Eqn. (3.6) is rewritten as

dEpot

d t
+ dEkin,c,v

d t
= dW

d t
, (3.18)

where W represents an external or dissipative source that can feed energy into the
system or extract energy from the system. Substituting Eqns. (3.15) and (3.17) into Eqn.
(3.18) and assuming the liquid phase to be incompressible (Dρl /Dt = 0) gives the fol-
lowing instantaneous energy balance:

−
∫

v.vol

Dγ

Dt

(
pd −pv

)
dV +ρl

∫
l.vol

uc,v ·
∂uc,v

∂t
dV +

∫
v.vol

(
1−γ) Dpd

Dt
dV += dW

d t
(3.19)

The first two terms on the left-hand side of Eqn. (3.19) describe the instantaneous
conversion of potential cavity energy into kinetic liquid energy due to cavity volume
changes. They are directly coupled to each other via continuity of the incompressible
liquid, because the induced liquid flow must follow the collapsing or growing cavity in-
terfaces in such a way that∇·uc,v = 0. This means that only the first term on the left-hand
side of Eqn. (3.19) can directly feed into the induced flow velocity uc,v . The third term
on the left-hand side of Eqn. (3.19) represents the change of collapse driving pressure at
constant cavity volume (Dγ/Dt = 0) and is balanced by the source term dW /d t .

Further defining the {}+ and {}− operators applied to some scalar quantity • as

{•}+ := max[•,0] , {•}− := min[•,0] , (3.20)
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the local change of potential energy per unit volume can be written as follows:

Depot

Dt
=−(

pd −pv
){Dγ

Dt

}+

︸ ︷︷ ︸
(Depot/Dt)c

−(
pd −pv

){Dγ

Dt

}−

︸ ︷︷ ︸
(Depot/Dt)v

+ (
1−γ) Dpd

Dt︸ ︷︷ ︸
change of the ambient condition

(3.21)

The terms
(
Depot/Dt

)
c and

(
Depot/Dt

)
v in Eqn. (3.21) represent the material deriva-

tive of the potential energy epot due to condensation and evaporization, respectively.
The third term on the right-hand side of Eqn. (3.21) is interpreted as the change of the
ambient condition experienced at a certain location in the mixture phase. From the in-
terpretation of Eqn. (3.19) follows that only

(
Depot/Dt

)
c can directly feed into collapse

induced kinetic energy, which is again converted into radiated shock wave energy at the
final collapse stage. Nevertheless, an increase of the driving pressure pd during a cavity
collapse enhances the collapse aggressiveness, because it increases the driving pressure
difference in the term

(
Depot/Dt

)
c over time. This is further discussed by following an

associated Lagrangian particle and by expanding pd in time using a first-order Taylor
series expansion, which gives

pL
d (t +∆t ) = pd (t )+

(
∂pd

∂t

)
t
∆t + (

u ·∇pd
)

t ∆t︸ ︷︷ ︸
(Dpd /Dt)t∆t

+O
(
∆t 2) . (3.22)

The superscript L on the left-hand side of Eqn. (3.22) indicates that the Taylor se-
ries expansion is carried out in the Lagrangian reference frame. The second term on
the right-hand side of Eqn. (3.22) represents the change of the driving pressure due to
the unsteadiness of the driving pressure field, and the third term represents the change
of driving pressure experienced by an associated Lagrangian particle as it moves along
the driving pressure gradient. This interpretation of the driving pressure reflects that
it is thought of as an ambient condition to which the associated Lagrangian particle is
subjected, rather than a material property transported by the particle itself. In other
words, the derivative u · ∇pd is only visible in the Lagrangian reference frame, whereas
the advective derivative of a transported quantity is only visible in the Eulerian reference
frame.

An illustrative example to further motivate this interpretation is given by a vapor bub-
ble collapsing along a driving pressure gradient, such that u ·∇pd > 0 and pd (x) = const.
As far as the change of potential energy according to Eqn. (3.21) is concerned, the in-
crease of driving pressure and the reduction of bubble volume counteract each other
in this situation, because

(
Depot/Dt

)
c < 0 and Dpd /Dt > 0. However, employing the La-

grangian time expansion of pd given by Eqn. (3.22), one finds that the reduction of vapor
volume and the increase of driving pressure both work in the same direction in the sense
that they both feed into collapse induced kinetic energy, which can eventually be con-
verted into shock wave energy at the final stage of the collapse. Such a flow situation is
likely to occur in cavitating flows along lifting bodies, where vapor cavities can implode
into a region of pressure recovery. If pd is uniform in space but not in time, the bub-
ble experiences a variation of the driving pressure over time due to the unsteady term
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∂pd /∂t in Eqn. (3.22). As the first two terms on the left-hand side of the instantaneous
energy balance given by Eqn. (3.19) must balance each other, an increase of pd implies
that dW /d t > 0. This means that energy feeds into the system, which is responsible for
the increase of pd . On the other hand, a decrease of pd means that energy dissipates
from the system (dW /d t < 0), which might be the result of a viscous pressure drop for
example.

It is concluded from the above considerations that the collapse induced kinetic en-
ergy of the liquid phase, fed by the volume reduction of the imploding cavities, plays a
key role in the energy cascade from potential cavity energy into radiated shock wave en-
ergy. The local kinetic energy of the condensation induced flow is denoted by ekin,c , and
the total kinetic energy ekin per unit volume is formally decomposed into the conden-
sation induced component, an evaporization induced component ekin,v , and a purely
advective component ekin,a , such that

ekin (t ,x) = ekin,c (t ,x)+ekin,v (t ,x)+ekin,a (t ,x) . (3.23)

The condensation as well as the evaporization induced liquid flow can only exist be-
cause of the presence of divergence sources in which the mixture flow is compressed
or expanded, respectively. The condensation/evaporization induced liquid flow itself,
however, is (approximately) divergence free. Therefore, the distribution of the collapse
induced kinetic energy ekin,c , which feeds into the radiated shock wave energy, cannot
directly be extracted from the flow velocity field.

3.1.3. COLLAPSE DRIVING PRESSURE
The driving pressure pd , which is effectively driving the cavity collapse, involves the
largest uncertainty in defining the potential energy content of a cavitating flow. This
quantity is typically unknown in complex flow situations. An example would be the cav-
itating flow around a hydrofoil or any other obstacle, where pressure recovery gradients
along the obstacle are important for the dynamics of the cavitating flow. For a bubble
collapsing close to a solid wall, the driving pressure across its interface varies due to the
effect of wall interaction, leading to deformation of the bubble and, finally, to the forma-
tion of a liquid jet impacting the wall [5]. Even for an isolated bubble, the presence of the
hydrostatic pressure gradient leads to deformation at a certain stage of the collapse [74].
Thus, the driving pressure is practically never exactly constant in space. An approach
to determine the driving pressure in complex flow situations is suggested and imple-
mented by Arabnejad and Bensow [25]. In their work, coherent cavition structures are
identified and simplified to an isolated spherical bubble of equivalent volume. Thus, the
driving pressure can be determined from the Rayleigh-Plesset equation [33, 75] and a set
of kinematic parameters uniquely defining the state of the collapse [24]. However, this is
at the cost of not reflecting the exact shape of the collapsing structure and its orientation
relative to the impacted surface.

In order to provide an approximation of the conditions to which arbitrarily shaped
cavities are subjected, the time averaged pressure [68]

pd
(
t∗

)= 〈p〉t∗ = 1

Tmov

∫ t∗

t∗−Tmov

p (t )d t , where t∗ ≥ Tmov, (3.24)
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is proposed as a measure of the collapse driving pressure. The average given by Eqn.
(3.24) is a moving average over a time window of size Tmov that can be adjusted to the
periodicity of the flow.

3.2. CONVERSION OF POTENTIAL ENERGY INTO SURFACE IM-
PACT POWER

3.2.1. TRANSPORT EQUATION OF COLLAPSE INDUCED KINETIC ENERGY

It was shown in Sec. 3.1.1 that the potential energy is gradually converted into kinetic en-
ergy [13] and focused into the collapse center, where it is eventually released in a shock
wave. With this in mind, the reduction of potential cavity energy due to condensation
is absorbed into the accumulated collapse induced kinetic energy field ekin,c (t ,x) until
a criterion for the conversion of this kinetic energy into radiated acoustic energy is met.
This process can formally be expressed by a transport equation of collapse induced ki-
netic energy, given by

∂ekin,c

∂t
− (

1−β)
φ

(
ekin,c

)=−(
1−β)(Depot

Dt

)
c
−β∂ekin→rad

∂t
. (3.25)

The terms
(
Depot/Dt

)
c and ∂ekin→rad/∂t in Eqn. (3.25) represent the conversion of

potential cavity energy into kinetic energy and the conversion of collapse induced ki-
netic energy into radiated acoustic energy, respectively. Therefore, they are both inter-
preted as source terms in the kinetic energy balance. Physical models are needed to
describe both processes.

The term φ
(
ekin,c

)
represents the conservative advective transport of ekin,c , which is

responsible for the spatial focusing of the accumulated kinetic energy. The fraction β is
either 1 or 0 based on a local flow condition to identify the final collapse stage. By this
means, β activates either the radiation source term or the kinetic energy flux term in
such a way that the overall amount of energy is conserved. From Eqn. (3.6), it is known
that the amount of collapse induced kinetic energy in the entire liquid body is equal to
the change of potential energy that the collapsing cavities have undergone, such that

∫
vol

∂ekin,c

∂t
dV︸ ︷︷ ︸

dEkin,c /d t

+
∫

vol

(
Depot

Dt

)
c

dV︸ ︷︷ ︸
(dEpot/d t)c

= 0. (3.26)

However, the exact spatial distribution of ekin,c is unknown. For this reason, the con-
servative transport of the accumulated kinetic energy requires a modeling assumption
as well. We essentially assume that locations of potential energy reduction act as attrac-
tors of the collapse induced kinetic energy that is already present in the flow field. Based
on this consideration, we further assume that this kinetic energy can be absorbed by the
interface of the collapsing cavities until a criterion for the conversion of this energy into
radiated acoustic energy is met. To this end, the actual collapse induced kinetic energy
distribution ekin,c (t ,x) is absorbed into the cavity interface region xP , where the collapse
induced kinetic energy distribution is then represented by the artificial quantity
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E (t ,xP ) = ekin,c (t ,x → xP ) , such that δs
∮

cav. surf.
E (t ,xP )dS =

∫
vol

ekin,c (t ,x)dV.

(3.27)
Eqn. (3.27) states that the volume integral over the actual collapse induced kinetic

energy ekin,c must be equal to the cavity surface integral of the absorbed kinetic energy
E times an associated cavity interface thickness δs, which can be considered as arbi-
trarily small. As a result of the artificial kinetic energy absorption, the model cannot
correctly reflect the spatial kinetic energy distribution around the cavity before the final
collapse stage. At the final collapse stage, however, where the kinetic energy is shown to
entirely focus into the collapse center (see Sec. 3.1.1), the model approaches the correct
representation of the kinetic energy distribution. With the above definitions, Eqn. (3.25)
is rewritten as

∂E

∂t
= (

1−β)[
φ (E )−

(
Depot

Dt

)
c

]
︸ ︷︷ ︸

kinetic energy flux

− β
∂Erad

∂t︸ ︷︷ ︸
radiated energy flux

. (3.28)

As indicated by Eqn. (3.28), the generation of kinetic energy, given by the negative
change of potential energy

(
Depot/Dt

)
c , as well as the conservative kinetic energy trans-

port φ (E ) contribute to the kinetic energy flux. The negative change of potential energy
is given by [73] (

Depot

Dt

)
c
=−

{
Dγ

Dt

}+ (
pd −pv

)
. (3.29)

The positive material derivative of γ directly follows from the continuity equation ex-
pressed in terms of the liquid fraction γ:{

Dγ

Dt

}+
=− {∇·u}−

ρ

ρl −ρv
(3.30)

In order to derive an appropriate model for the conservative transport termφ (E ) in Eqn.
(3.28), φ (E ) is formally decomposed into a production term and a reduction term, such
that

φ (E ) = {
φ (E )

}++{
φ (E )

}− . (3.31)

For the amount of transported energy to be conserved, the transport term must satisfy∫
vol

[{
φ (E )

}++{
φ (E )

}−]
dV = 0. (3.32)

It is first assumed that the reduction rate given by
{
φ (E )

}− is proportional to E to ensure
that E ≥ 0 everywhere. Secondly, the fraction of E reduced by

{
φ (E )

}− per time δt is
assumed to be given by the normalized projection of ∇E (xP ) on the local flow velocity
vector u (xP ). With the projection operator

Pu (∇E ) := {u ·∇E }+

‖u‖‖∇E ‖ ∈ [0,1] , (3.33)
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this gives

{
φ (E )

}− =


− E

δt
Pu (∇E ) , for: ‖u‖ > 0∧‖∇E ‖ > 0

0, elsewhere.

(3.34)

This formulation is motivated by the assumption that the flow at the interface of a col-
lapsing cavity is directed into the collapse center and therefore aligned with ∇E , since E

is stored in the cavity interface. The underlying assumption for the formulation of the
production term

{
φ (E )

}+ is that the kinetic energy accumulated throughout the cavity
collapse is attracted by locations where kinetic energy is induced by the collapse. To this
end, it is assumed that

{
φ (E )

}+ is proportional to −(
Depot/Dt

)
c , such that

{
φ (E )

}+ =
−k

(
Depot/Dt

)
c , where k is assumed to be constant in space and must be determined

such that

−k
∫

vol

(
Depot

Dt

)
c

dV =−
∫

vol

{
φ (E )

}− dV (3.35)

at any time instant to comply with the conservation requirement given by Eqn. (3.32).
Thus, we get

{
φ (E )

}+ =−k

(
Depot

Dt

)
c

, where k =


−

∫
vol

E

δt
Pu (∇E )dV∫

vol

(
Depot

Dt

)
c

dV
, for:

(
Depot

Dt

)
c
< 0

0, elsewhere.
(3.36)

A conceptually similar mechanism to describe the interaction between cavitation bub-
bles based on the volume distribution of the velocity divergence field was proposed by
Maiga et al. [76]. Combining the above equations, Eqn. (3.28) becomes

∂E

∂t
= (

1−β)[− (1+k)

(
Depot

Dt

)
c
− E

δt
Pu (∇E )

]
︸ ︷︷ ︸

kin. energy flux

−β∂Erad

∂t
, (3.37)

where
(
Depot/Dt

)
c ,Pu (∇E ) and k are specified by Eqns. (3.29), (3.33) and (3.36), respec-

tively. With the model terms for
{
φ (E )

}− and
{
φ (E )

}+ given by Eqns. (3.34) and (3.36),
respectively, the conservative transport term φ (E ) is not continuous in the sense of an
advection term, because the conservation of E is enforced by an integral balance for k in
Eqn. (3.36). However, this approach allows to redistribute the collapse induced kinetic
energy between coherent vapor structures in situations where they are interacting with
each other. This interaction plays an essential role in the collapse of densely populated
vapor bubble clouds [16] and is further discussed in Sec. 3.2.2.

3.2.2. ENERGY RADIATION - ENERGY FOCUSING VS NO ENERGY FOCUSING
The fraction 0 ≤β≤ 1 in Eqn. (3.28), which is splitting the local energy flux into a kinetic
energy flux and a radiated energy flux, essentially is an identifier of the final collapse
stage. If the energy radiation is considered as a discrete event, β becomes a Heaviside
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function, such that β= 1 at the final collapse stage and otherwise β= 0. The task is then
to find an adequate criterion to identify the final collapse stage. Most obviously, all the
vapor must be condensed at the final collapse stage (γ= 1). In case of an isolated cavity
collapse, this criterion would already be sufficient. In case of a collective vapor bubble
cloud collapse, however, a second criterion is needed. The reason for this is illustrated
by Fig. 3.2. In a cloud, where the bubbles are so densely packed that the pressure can
hardly recover in the liquid phase between the bubbles, the bubble cloud tends to be be-
have like a homogeneous mixture of equivalent vapor fraction [16, 17], whose collapse is
driven by the difference between the distant ambient pressure and the low pressure in-
side the cloud. As a result, the kinetic energy of the liquid phase accumulates upstream
from a discontinuity, which can be seen as the cloud interface and which is propagating
towards the cloud center as the cloud collapses. Wang and Brennen [16] have identified
this discontinuity as an inward directed condensation shock, which implies a sharp pres-
sure jump from the low cloud pressure to the upstream side of the condensation shock
front. This has the effect that prior to shock wave radiation, the energy of the individual
bubbles is not only transported into the individual bubble centers, but also further to-
wards the center of the collective cloud. In order to allow for this transport mechanism,
the kinetic energy flux is assumed to remain active as long as the local pressure has not
exceeded the ambient pressure. This suggests the following Heaviside function for β:

β= H
(
γ, p

)= {
1 for p > p∞ and γ= 1
0 otherwise

(3.38)

With this formulation, the transport term in Eqn. (3.28) can fully focus the collapse
induced kinetic energy E into the collapse center before the conversion into radiated
shock wave energy takes place. Releasing the energy E in a discrete event within a time
δt , the radiated energy flux is modeled by,

∂erad

∂t
=β∂Erad

∂t
= E

δt
(3.39)

and the transport equation of E given by Eqn. (3.37) becomes

∂E

∂t
= (

1−β)[− (1+k)

(
Depot

Dt

)
c
+ E

δt
(1−Pu (∇E ))

]
− E

δt
. (3.40)

From Eqn. (3.39) then follows that ∂erad/∂t → ∞ as δt → 0. This is the equivalent
situation to the events at the final collapse stage of an isolated vapor bubble, as found
from the simplified considerations in Sec. 3.1.1, where the energy density in the collapse
center tends to infinity at the final collapse stage, although the absolute amount of en-
ergy remains finite. This behavior is the result of not resolving the events at the finite
collapse stage, which eventually determine the exact energy density distribution within
the radiated pressure wave. This energy density distribution is formally reflected by Eqn.
(3.12), where the total amount of shock wave energy ESW is proportional to the time in-
tegral of pa over the impact duration TSW as the wave passes some arbitrary location at
a distance r from the center. Practically, this means that the radiation time δt is equal to
the simulation time step size∆t . By this means, the energy content of the radiated shock
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wave is consistently predicted, but an entirely time accurate solution for the shape of the
impact power signal cannot be expected from this approach.

In order to investigate the effect of energy focusing due to the kinetic energy involved
in the collapse process, a second model formulation was considered in which the con-
version of potential energy into kinetic energy is omitted. In that case, the change of po-
tential energy at negative flow divergence (condensation) is assumed to instantaneously
feed into radiated power, such that [73]

∂erad

∂t
=−

(
Depot

Dt

)
c
=− {∇·u}−

ρ

ρl −ρv

(
pd −pv

)
. (3.41)

Due to its collapse energy focusing ability, Eqn. (3.39) is also referred to as the energy
focusing approach, whereas Eqn. (3.41) is referred to as the non-focusing approach.

Figure 3.2: Illustration of the energy cascade governing the focusing of potential energy; the collapse induced
change of potential energy is represented by

{
ėpot

}− = (
Depot/Dt

)
c .

3.2.3. SURFACE PROJECTION OF THE RADIATED ENERGY
The surface impact power caused by a cavity collapse is computed by projecting the
energy flux radiated from the collapse source onto the impacted surface. The projection
is instantaneous, which means that an infinite propagation speed of the radiated shock
wave is assumed. This assumption is justified by the fact that the liquid sound speed is
typically orders of magnitudes larger than the advective velocities of the cavitating flow.
Let the power per unit volume radiated at some location xP and some time instant t be
(∂erad/∂t )t ,xP

, then the impact power per unit surface caused by the isolated point source
is given by (

deS

d t

)
t ,xP→xS

=
(
∂erad

∂t

)
t ,xP

GxP→xS ,n, (3.42)
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where the projection operator GxP→xS ,n to achieve the projection of a monopole source
at xP on a surface location at xS with corresponding surface normal vector n (see Fig. 3.3)
is given by

GxP→xS ,n = 1

4π

(xP −xS ) ·n

‖xP −xS ‖3 . (3.43)

The instantaneous impact power per unit surface at some surface location xS result-
ing from the distribution of all emission sources in the domain is then given by

(
deS

d t

)
t ,xS

=
∫

vol

(
∂erad

∂t

)
t ,xP

GxP→xS ,ndV , (3.44)

Eqns. (3.44) and (3.43) are a fully continuous form of the solid angle projection ap-
proach by Leclercq et al. [27]. Here, fully continuous, means that they represent the
impact power per unit surface at a point location, whereas Leclercq et al. [27] employ
the solid angle Ω (see Fig. 3.3) to project the radiated power on triangular surface el-
ements of finite size. Nevertheless, both formulations represent an energy conserving
conversion of radiated energy into local surface impact power. In spherical coordinates(
r,θ,ϕ

)
, we have (xP −xS ) ·n = r sinθ, where r = ‖xP −xS ‖. Surface integration of the

projection operator, given by Eqn. (3.43), then gives

∫
surf

GxP→xS ,ndS = 1

4π

∫
∆ϕ

∫
∆θ

sinθdθdϕ= Ω

4π
, (3.45)

whereΩ is the solid angle as used in the work by Leclercq et al. [27]. With the surface
integrated impact power caused by a single point radiation source given by

(
dES

d t

)
t ,xP→S

=
∫

surf

(
deS

d t

)
t ,xP→xS

dS, (3.46)

Eqn. (3.46) can be rewritten in terms of the solid angle as follows:

(
dES

d t

)
t ,xP→S

= Ω

4π

(
∂erad

∂t

)
t ,xP

(3.47)

The solid angle notation allows for straightforward analytical predictions of the sur-
face integrated power caused by a single radiation source for any surface for which the
corresponding solid angle is known. For a closed convex surface, for instance, we have
∆θ = π, ∆ϕ = 2π, and hence Ω = 4π. From Eqn. (3.47) then follows that all the power
released from the point source is impacting the surface. For a point source impacting
a flat surface stretched to infinity, the overall surface integrated impact rate can be ex-
pressed in polar coordinates

(
rs ,ϕ

)
as depicted in Fig. 3.4. Let the source be located at an

arbitrary height hs above the surface such that (xP −xS ) ·n = hs and ‖xP −xS‖2 = r 2
s +h2

s ,
then the solid angle becomes
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Ω=
∫ ∞

0

∫ 2π

0

hs(
r 2

s +h2
s
) 3

2

rs dϕdrs

= 2πhs

∫ ∞

0

r(
r 2

s +h2
s
) 3

2

drs = 2π. (3.48)

Since Eqn. (3.48) holds for any arbitrary point source impacting the flat infinite sur-
face, it follows from Eqns. (3.47) and (3.48) that the surface integrated impact power as
the result of an arbitrary distribution of radiation sources becomes [77](

dES

d t

)
flat surf

= 1

2

dErad

d t
, where

(
dErad

d t

)
t
=

∫
vol

(
∂erad

∂t

)
t ,xP

dV. (3.49)

The intuitive result of Eqn. (3.49) is that half of the emitted potential cavity energy is
eventually distributed on the flat surface, irrespective of the cavity shape, its orientation,
and initial distance from the impacted surface. However, the latter three aspects may
have strong influence on how the same total amount of energy is distributed and focused
on the surface, both in space and time.

Figure 3.3: Coordinate definitions for the conversion of the power per unit
volume radiated at location xP into local impact power per unit surface at
the surface location xS (left) and illustration of the solid angle projection
of radiated power on triangular surface elements as proposed by Leclercq
et al. [27] (right).

Figure 3.4: Point source im-
pacting a flat surface stretch-
ing to infinity.

As Eqn. (3.44) represents the impact power per unit surface associated with a pres-
sure wave, it can be rewritten in terms of the acoustic power density dP /dS. The acous-
tic power P is equal to the radiated power ∂erad/∂t in Eqn. (3.11), and the acoustic
power density is the acoustic power per unit surface area projected on the propagating
wave front, such that

deS

d t
= dP

dS
= ∂erad/∂t

4πr 2 cosθ = p2
a

ρl cl
cosθ. (3.50)

In Eqn. (3.50), ρl and cl are the liquid density and sound speed, respectively, and
pa is the acoustic pressure perturbation. The term cosθ reflects the orientation of the
reference surface dS relative to the propagation direction of the encountered sound
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wave. Since P is the radiated power, it must be conserved across any spherical sur-
face around the isolated source. The acoustic power density dP /dS can then be in-
terpreted as the acoustic energy flux through an arbitrary point on that surface, and it
can further be associated with the impact power per unit surface when the surface is
thought to be the solid surface [78, 79]. In Eqn. (3.44), cosθ is substituted with the re-
lation cosθ = (xP −xS ) ·n/‖xP −xS‖. Thus, combining Eqns. (3.44) and (3.50) with the
relation for cosθ allows to reconstruct the acoustic pressure perturbation:

pa (t ,xS ) = 1

2

√
ρl cl

π

∫
vol

(∂erad/∂t )t ,xP

‖xP −xS ‖2 dV (3.51)

Analogous to Eqn. (3.44) and in accordance with the solid angle projection approach
by Leclercq et al. [27], the wave propagation time from the source location xP to the
impact location xS is assumed to be zero. However, the liquid sound speed cl in Eqn.
(3.51) is considered to be finite.

3.3. NUMERICAL IMPLEMENTATION

3.3.1. DISCRETIZATION
The solution of the additional transport equation describing the spatial focusing of po-
tential cavity energy, is explicitly forwarded in time. This means that all terms on the
right-hand side of Eqn. (3.40) are assumed to be known from the previous time step t ,
such that E (t +δt ) is obtained by forward substitution. The updated solution is then
given by a first order Taylor series expansion: E (t +δt ) = E (t )+ (∂E /∂t )t δt +O

(
δt 2

)
.

The time increment δt , by which the solution is expanded, is equal to the time step size
∆t . To achieve exact energy conservation for the splitting of the energy field into the ki-
netic energy flux (β= 0) and the radiation energy flux (β= 1), E and the radiated power
∂erad/∂t are forwarded in such a way that the blending factors β= 1 and β are applied at
the same time level t +∆t . With

(
Depot/Dt

)
c , Pu (∇E ), k, and β being specified by Eqns.

(3.29), (3.33), (3.36), and (3.38), respectively, this gives

E ∗ (t +∆t ) =
[
−∆t (k +1)

(
Depot

Dt

)
c
+E (1−Pu (∇E ))

]
t

, (3.52)(
∂erad

∂t

)
t+∆t

=β (t )
E ∗ (t +∆t )

∆t
, (3.53)

E (t +∆t ) = (
1−β (t )

)
E ∗ (t +∆t ) . (3.54)

Also, the updated solution for E is bound by 0, because (k ≥ 0) ∧ ((
Depot/Dt

)
c ≤ 0

) ∧
(0 ≤Pu (∇E ) ≤ 1), which means that no negative collapse induced kinetic energy can be

produced by the numerical time integration. The evaluation of the terms
{
φ (E )

}− and{
φ (E )

}+ given by Eqns. (3.34) and (3.36), respectively, requires some special treatment,
because they are only to be evaluated at locations where the corresponding denomi-
nator is different from zero. To avoid a point-wise check of the denominator value, a
small number δ is added to the denominator of Eqn. (3.34) and subtracted from the de-
nominator of Eqn. (3.36) to prevent a division by zero. The value of δ is chosen to be
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10−15, such that it does not affect the accuracy of the final result. All quantities that are
needed to evaluate the transport equation of collapse induced kinetic energy and the
radiated power are evaluated at the cell centers, except for the negative velocity diver-
gence {∇·u}−, which is needed to compute the material derivative Dγ/Dt and finally
the acoustic power radiation given by Eqn. (3.29). The latter term is reconstructed from
the face fluxes such that (∇·u)C VC =∑

f u f ·S f for each cell. The subscripts C and f re-
fer to the cell center and face center location, respectively; VC is the cell volume, and S f

the face area times the outward directed face normal vector n, given at the face center.
The volume integration over all sources contributing to one surface impact location (see
Eqn. (3.44)) is done by multiplying the locally radiated energy per unit volume by the
corresponding cell volume Vc and by summation over all contributing cells. Similar to
the reconstruction of the cell-centered velocity divergence, the cell centered gradient of
E in Eqn. (3.33) is computed from the finite volume representation (∇E )C VC =∑

f E f S f .
It is further noted that the emitting grid cell of volume Vc can be thought of as a sphere
of equivalent volume, which gives an equivalent radius req = [3Vc /(4π)]1/3. The radiated
power is then given by a corresponding flux across the sphere surface. It is argued that
req is the smallest distance that is locally resolved by the computational grid. There-
fore, near wall grid cells are treated such that the distance ‖xP −xS ‖ from the impact
location in Eqns. (3.43) and (3.44) is substituted by the equivalent sphere radius when
‖xP −xS ‖ < req.

3.3.2. COMPUTATIONAL EFFICIENCY
The computational efficiency of the acoustic model is a key factor when it comes to
its applicability in engineering practice. Fig. 3.5 illustrates that the computational ef-
ficiency of the model can be problematic indeed. It depicts a schematic of a compu-
tational domain with Ncells = Nx × Ny × Nz cells. The solid bottom surface, where the
acoustic model is evaluated as a run-time post-processing function, is discretized into
Ns.faces = Nx ×Ny surface faces.

Figure 3.5: The sketch depicts 4 parallel CPUs, each including 27 grid cells, such that Ncells = 108. The solid
boundary is shared by CPUs 2 and 3. Hence, Ns.faces = 18. In this context, xP denotes the cell center location
in the inner domain and xS the face center location on the boundary with n being the corresponding surface
normal vector. According to Eqn. (3.55), a volume integration (over xP ) is needed to compute the impact at xS ,
which also involves parallel CPU communication. As this has to be done for each xS , the number of evaluations
of Eqn. (3.55) is up to Ncells ×Ns.faces = 1944.

One would expect that the model evaluation time relative to the flow simulation
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time remains constant for different grid densities when the number of floating point
operations needed for the model evaluation is proportional to the number of grid cells
Ncells. In case that each grid cell acts as a radiation source, however, the number of

floating point operations to evaluate Eqn. (3.44) is proportional to
(
Nx ×Ny

)2 × Nz =
Ncells ×Ns.faces. Hence, the model evaluation time relative to the flow simulation time is
proportional to the number of surface faces, which makes the model increasingly expen-
sive as the number of grid cells increases. The communication between parallel CPUs
that is needed to project each acoustic source on each surface face, further increases the
relative model evaluation time per time step. If, however, one is not primarily interested
in the temporal evolution of ėS , but rather in the distribution of the accumulated energy
eS , one finds from Eqn. (3.44) that

eS
(
t∗,xS

)= ∫ t∗

0

(
deS

d t

)
t ,xS

d t

=
∫ t∗

0

∫
vol

GxP→xS ,n

(
∂erad

∂t

)
t ,xP

dV d t

=
∫

vol
GxP→xS ,n

∫ t∗

0

(
∂erad

∂t

)
t ,xP

d tdV , (3.55)

because the surface projection operator GxP→xS ,n is not time dependent. This means
that the volume integration needs to be carried out only once at the end of the simulation
and that it can be applied as a separate post-processing step. As a result, the model eval-
uation time becomes proportional with Ncells. Since the solution for ∂erad/∂t is obtained
from explicit time integration, as given by Eqns. (3.52), (3.53), and (3.54), the relative
evaluation time of the acoustic model becomes practically negligible.

Another practical problem is concerned with the computation of the moving av-
erage of p as defined by Eqn. (3.24), which assumed to be a measure of the collapse
driving pressure pd . The exact computation of the moving average requires to store the
corresponding time window of the p-signal in a buffer

[
p (t −n∆t ,x) , ..., p (t ,x)

]
, where

n∆t = Tmov. This buffer must be updated at each time step. As this needs to be done for
every cell of the computational grid, the amount of data to be stored in the buffer can
easily exceed the random-access memory (RAM) limit when the number of time steps n
in the buffer is large. For this reason, the method by Welford [80] is employed to approx-
imate the moving average for window size Tmov [68] by

〈p〉t ≈ 〈p〉t−∆t + ∆t

Tmov

(
p (t )−〈p〉t−∆t

)
. (3.56)

3.4. STATISTICAL ANALYSIS OF IMPLOSION IMPACT PATTERNS
The aggressiveness of the cavitating flow is assessed from the distribution of the energy
eS accumulated on a sample surface per sample time T , also referred to as the time-
averaged impact power eS /T . In cyclic cavitating flows, the accumulated surface energy
distribution is the result of repetitive impact events. However, the frequency and am-
plitude, at which different surface locations of the sample surface are impacted, can
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differ significantly. As a result, one and the same amount of accumulated energy can
result either from repetitive small-amplitude impacts, or from one single extreme event.
Whether the sample surface is mostly vulnerable to repetitive events, or whether isolated
extreme events play a major role in the cavitation erosion process, may depend on the
material properties of the sample surface. For this reason, it is useful to have a statistical
analysis method available that can isolate surface areas on which the accumulated sur-
face energy level has been achieved by isolated extreme events rather than repetitive low
amplitude impacts. The idea is to construct a filter that attenuates low amplitude events
such that only the energy levels resulting from high amplitude events remain visible in
the time averaged impact power distribution. In Sec. 3.4.1, it is explained how the low
amplitude events are attenuated, and in Sec. 3.4.2, the filter function applicable to the
surface energy distribution is derived. For better readability, the compact notation ėS is
used for the local impact power caused by all radiation sources as given by Eqn. (3.44),
ėS |xP

is used for the local impact power caused by an isolated point source at xP given by
Eqn. (3.42), ėrad for the radiated power given by Eqn. (3.39), and the surface projection
operator given by Eqn. (3.43) is written in the short form G .

3.4.1. POWER MEAN ANALYSIS

The statistical identification of extreme events is based on the idea to amplify the surface
impact power by an intensity exponent n. This is achieved by the power or Hölder mean
[81] of the impact power per unit surface, given by

M{n} (ėS ) =
(

1

T

∫
T

(ėS )n d t

) 1
n

. (3.57)

The power mean given by Eqn. (3.57) approaches the amplitude of the input signal
ėS as the intensity exponent n increases. The discrete form of Eqn. (3.57) is given by

M{n} (ėS ) =
[

1

T

I∑
i=1

(
ėS,i

)n
∆ti

] 1
n

, where
I∑

i=1
∆ti = T. (3.58)

In the discrete form, the time step size ∆t is interpreted as a weight of the amplified
impact power. Eqn. (3.58) evolves into the non-weighted form when the simulation time
step size is constant. Substituting Eqn. (3.44) into Eqn. (3.58) gives

M{n} (ėS ) =
[

1

T

I∑
i=1

(
J∑

j=1
G j ėrad,i j VP, j

)n

∆ti

] 1
n

. (3.59)

The practical problem with Eqn. (3.59) is that the inner sum is non-linear with re-
spect to the outer sum due to the intensity exponent n applied to the inner sum. This
means that the inner and the outer sums cannot be interchanged to make the evalua-
tion of Eqn. (3.59) computationally more efficient, analogous to the computation of the
accumulated surface energy given by Eqn. (3.55). To this end, Eqn. (3.57) is modified in
such a way that the intensity exponent n is applied to the surface impact ėS |xP caused
by the individual source terms, which gives
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M{n}
(

ėS |xP

)= (
1

T vol

∫
T

∫
vol

(
ėS |xP

)n dV d t

) 1
n

, (3.60)

With the surface impact power caused by an isolated point source, as given by Eqn.
(3.42), we now get

(
ėS |xP

)n =Gn (ėrad)n , and hence

M{n}
(

ėS |xP

)= [
1

T vol

∫
vol

Gn
∫

T
(ėrad)n d tdV

] 1
n

, (3.61)

which is the computationally more efficient equivalent of Eqn. (3.60) as the volume
integration needs to be carried out only once at the end of the time integration. In dis-
crete form, Eqn. (3.61) becomes

M{n}
(

ėS |xP

)= [
1

T vol

J∑
j=1

Gn
j VP, j

I∑
i=1

(
ėrad,i j

)n
∆ti

] 1
n

, where
I∑

i=1
∆ti = T,

J∑
j=1

VP, j = vol,

(3.62)
and where vol is the total volume. Eqn. (3.62) is a two-dimensional weighted power

mean of the impact power caused by the individual radiation sources, where now both
the time step size ∆t and the grid cell volume VP act as weights. Again, Eqn. (3.62)
becomes non-weighted with respect to ∆t when the simulation time step size is con-
stant. An entirely non-weighted form is only obtained when also the grid cell volume
VP is constant within the integration volume. For the sake of computationally efficiency,
the power mean M{n}

(
ėS |xP

)
, given by Eqn. (3.61), is preferred over the power mean

M{n} (ėS ), given by Eqn. (3.57), and used in the further course of this work.

3.4.2. ENSEMBLE AVERAGES
Based on the technique introduced in Sec. 3.4.1, a filter is constructed that attenuates the
contributions of low amplitude events to the time averaged surface impact power distri-
bution. Attenuation means that the filter is constructed in such a way that the filtered
time averaged impact power distribution, denoted by 〈ėS〉{n}, satisfies 〈ėS〉{n} ≤ eS /T at
any point on the target surface. It is further noted that the unfiltered time averaged im-
pact power eS /T is obtained for n = 1.

Figure 3.6: Subdivision of the local impact power signal of length T into equidistant intervals of length Tp ,
where T = K Tp ; with increasing intensity exponent n, the averaged impact power obtained from the filtering
method approaches the (maximum) amplitude of the input signal.
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The power mean M{n}
(

ėS |xP

)
, given by Eqn. (3.61), involves the integration over a

certain sample time T . The sample time T can be divided into sub-intervals Tp , at the
end of which the amplified radiation sources (ėrad)n are projected on the target surface.
Due to the non-linearity introduced for n 6= 1, the filtered average may be affected by
the choice of the frequency 1/Tp , at which the amplified radiation sources are projected.
For this reason, the projection frequency 1/Tp is introduced as an additional parameter
in the analysis method. As illustrated in Fig. 3.6, the impact signal is decomposed into
equidistant intervals of length Tp , where k indicates the projection time interval, and K
is the total number of projection intervals within the length K Tp of the entire signal. The
filter is then applied individually to each of the intervals. The power mean given by Eqn.
(3.60) is now applied to each of the k time intervals individually, such that

M{n}k
(

ėS |xP

)= (
1

Tp vol

∫ kTp

(k−1)Tp

∫
vol

(
ėS |xP

)n dV d t

) 1
n

. (3.63)

The power mean given by Eqn. (3.63) is applied to the entire impacted surface, and a
filter F{n}k is constructed by normalizing the M{n}k distribution by its maximum value:

F{n}k = M{n}k
(

ėS |xP

)
max

[
M{n}k

(
ėS |xP

)]
surf

, where F{n}k ∈ [0, 1] (3.64)

The filtered surface energy distribution accumulated during the period Tp of time
interval k is then obtained by multiplying the unfiltered surface energy distribution eS,k

accumulated in interval k with the filter function, such that

〈eS,k〉{n} = eS,k F{n}k , where eS,k =
∫ kTp

(k−1)Tp

ėS d t . (3.65)

Following the same procedure as for the individual time intervals k, a filter of the en-
tire ensemble comprising of K intervals is derived from the power mean of the individual
filtered surface energy distributions, given by

M{n}
(〈eS,k〉{n}

)= (
1

K

K∑
k=1

(〈eS,k〉{n}
)n

) 1
n

. (3.66)

Analogous to Eqn. (3.64), the ensemble filter is obtained by dividing the surface dis-
tribution, given by Eqn. (3.66), by its maximum value, such that

F{n} (eS ) = M{n}
(〈eS,k〉{n}

)
max

[
M{n}

(〈eS,k〉{n}
)]

surf

, where F{n} ∈ [0, 1] . (3.67)

The filtered surface energy distribution accumulated during the entire sample time
of duration K Tp = T is then obtained by multiplying the surface energy distribution eS

with the ensemble filter, given by Eqn. (3.67). Dividing by the sample time K Tp = T gives
the filtered averaged impact power

〈ėS〉{n} =
eS

K Tp
F{n} (eS ) , where eS

(
T = K Tp

)= ∫ T

0
ėS d t . (3.68)



4
APPLICATION OF THE CAVITATION

IMPLOSION LOAD MODEL

This chapter includes three numerical test cases to verify and validate the acoustic im-
plosion load model presented in Chap. 3. The first test case in Sec. 4.1 was originally
designed by Schmidt et al. [17]. It involves the numerical simulation of a vapor bubble
cloud collapsing close to a target surface. As the initial potential energy content of the
cloud is known, based on at least the modeling assumptions, the acoustic model can be
verified against analytical predictions for the surface integrated impact energy. Another
aspect that makes this test case particularly interesting is the circumstance that the dis-
tribution of bubble sizes and locations results in a situation where a few bubbles tend to
exhibit a rather isolated behavior, whereas the majority of bubbles collapse in a collective
manner. Therefore, this numerical simulation is well suited to test in how far the acoustic
model can reflect the cascade of energy in both situations. Finally, the acoustic pressure
perturbation predicted by the acoustic model is compared to the cloud collapse pressure
computed by Schmidt et al. [17], who used a fully compressible density-based approach.

The second test case in Sec. 4.2 addresses the periodic cavitating flow around a NACA0015
hydrofoil. The main focus is on the model parameters that are involved in the compu-
tation of the accumulated surface energy distribution resulting from repetitive cavity col-
lapses. These parameters concern the computation of the collapse driving pressure distri-
bution, needed in the potential energy balance, and the isolation of extreme event con-
tributions to surface energy distribution. As a result of Sec. 4.2, recommendations on the
model parameter settings are derived. The obtained surface energy distribution is dis-
cussed against experimental paint test observations by van Rijsbergen et al. [82] and a
numerical erosion risk assessment method by Li et al. [29] for the same operating condi-
tions. Furthermore, the effect of energy focusing during the cavity collapses is investigated
by comparing results obtained from both the focusing and the non-focusing approach, as
described in Sec. 3.2.2.

Parts of this chapter were published in Physics of Fluids 31, 052102 (2019) [1].
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The third test case in Sec. 4.3 aims to reproduce experimental observations on the flow ag-
gressiveness of a cavitating flow in an axisymmetric nozzle experiment by Franc et al. [83].
Due to its particular design, the experimental set-up by Franc et al. [83] can indeed be seen
as a prototype example of an aggressive and potentially erosive cavitating flow. Concern-
ing the flow sensitivity study and the acoustic model parameter settings, the approach to
the flow problem can be seen as an application of the best practice guidelines derived in
Sec. 4.2. Most importantly, it is demonstrated, that both the average vapor content of the
cyclic flow and the cavity shedding frequency converge in the limit of large mass trans-
fer coefficients, and furthermore, that this also results in a converged distribution of the
accumulated surface impact energy obtained from the acoustic model. This is a step to-
wards quantitative erosion risk predictions. Qualitative comparisons against the erosion
damage pattern obtained by Franc et al. [83], and results from other numerical studies in
literature, are presented.
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4.1. COLLAPSING VAPOR BUBBLE CLOUD
The acoustic cavitation implosion load model derived in Chap. 3 is applied to a cloud of
125 vapor bubbles collapsing under a high ambient pressure of 40 bar. The numerical
test case was earlier set up by Schmidt et al. [17], where they investigated the charac-
teristic of a numerically computed pressure signal on a virtual pressure sensor located
on a solid surface underneath the collapsing cloud. The results by Schmidt et al. [17],
which they have kindly shared together with the bubble cloud specifications, are consid-
ered as a reliable reference data set, because it was obtained from a fully compressible
density-based numerical approach, and because grid size independence of the results
was demonstrated for a fixed acoustic Courant number[17]. To test the cavitation im-
plosion load model against the collapse pressure signal obtained by Schmidt et al. [17],
the reconstructed acoustic pressure given by Eqn. (3.51) is employed. Results obtained
from both the energy focusing and the non-focusing approaches, as discussed in Sec.
3.2.2, are compared to each other.

4.1.1. COMPUTATIONAL GRID, INITAL AND BOUNDARY CONDITIONS

The bubble cloud consists of 125 non-intersecting, bubbles as depicted in Fig. 4.1. The
positions and corresponding radii (0.70 mm to 1.65 mm) are the same as in the study by
Schmidt et al. [17], who generated a set of bubbles that are randomly distributed both in
space and in diameter in such a way that the population density increases towards the
cloud center. This data set was kindly provided by TUM/AER (see Schmidt et al. [17])
in a private communication as part of the EU H2020 CaFE Project. The cloud is em-
bedded in a cubic inner domain with a 20 mm edge length. The bottom surface of the
inner domain depicted in Fig. 4.1 is highlighted in green, and the virtual pressure sen-
sor located exactly in the center of the bottom surface is indicated in black color. The
pressure sensor signal is obtained by averaging the reconstructed acoustic pressure pa

over the sensor surface. The entire computational domain is depicted in Fig. 4.2. With
the bottom surface area and height being 4 m × 4 m and 2 m, respectively, it is con-
sidered to be sufficiently large so that it can be assumed that the far field boundaries
are undisturbed. The computational mesh is block structured and consists of uniform
cubic cells in the inner domain. The outer domain, connecting the inner domain with
the far field boundaries, consists of hexahedral cells. The number of cell layers between
the inner domain and the far field boundaries is 25, where the cell expansion ratio to-
wards the far field boundaries is chosen such that a smooth cell size transition to the
inner domain is achieved. In order to perform a grid sensitivity study, the inner domain
is systematically refined in the x, y and z directions. Three different grid resolutions are
investigated in this study. Following the sensitivity study by Schmidt et al. [17], the inner
domains of grid 1, 2 and 3 contain 283, 553 and 1103 cells, respectively. The grids and
the corresponding bubble resolutions are depicted in Fig. 4.4 for the central plane cross
section view indicated in the upper left sub-figure. The liquid fraction field is initialized
such that cells entirely located within one of the bubbles are assigned a liquid fraction of
γ= 0, and cells entirely located in the liquid phase are assigned a value of γ= 1. A sam-
pling algorithm is applied to determine the liquid fraction of those cells that are cut by
any bubble interface [2]. The density field is given by the linear mixture relation given by
Eqn. (2.18), where the liquid and vapor densities are assumed to be ρl = 1000 kg/m3 and
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ρv = 0.02 kg/m3, respectively. The initial pressure field is determined in exactly the same
way, with the vapor pressure being pv = 2340 Pa and the liquid pressure being equal to
the far field pressure, i.e. p∞ = 40 bar. This is not yet an appropriate initial condition
for the liquid pressure field, which must satisfy the Laplace equation ∇·∇p = 0 in order
to eliminate spurious acoustics [17]. With one minor modification, the segregated iter-
ative approach described in Appx. A.1 allows to establish this condition during the first
time step of the simulation. With the flow being initially at rest, the pressure equation
given by Eqn. (A.11) evolves into a Laplace equation for p. Different from the original
arrangement of the equations in the PISO (Pressure-Implicit with Splitting of Operators
[84]) loop, as implemented in OpenFOAM [64, 85], the pressure equation must be solved
before the transport equation of γ in order to avoid numerical instabilities that may oc-
cur in the equation for γ as a result of the pressure field initialization in the cut-cells. If
the γ equation is solved first, instabilities can result from the sharp initial pressure jump
between locations where γ = 1 and γ = 0 in combination with the linear interpolation
in between, which results in exhaustive mass transfer magnitudes in the cut-cells, and
thereby making the equation numerically unstable.

A single near-wall bubble is marked as B1 in Figs. 4.1 and 4.4, because its collapse is
shown to cause a localized high impact load on the bottom wall, which is discussed in
more detail below. The driving pressure pd in Eqn. (3.29) is assumed to be constant in
space and time and equal to the ambient pressure p∞.

Figure 4.1: Bubble cluster and 1 cm × 1 cm numerical pressure sensor indicated in black color on the bottom
surface.

Recall from Sec. 3.3.1 that the negative velocity divergence {∇·u}−, needed to com-
pute the material derivative

{
Dγ/Dt

}+ and eventually the acoustic power radiation, is
reconstructed from the face fluxes. It was shown [2] that this reconstruction involves
numerical errors, which would eventually violate the overall energy balance. To correct



4.1. COLLAPSING VAPOR BUBBLE CLOUD

4

55

Figure 4.2: Computational domain with 4 m × 4 m bottom surface area and grid refinement towards the inner
part of the domain.

Figure 4.3: Cubic inner part (2 cm × 2 cm × 2 cm) of the computational domain depicted in Fig. 4.1; the inner
domain contains the bubble cluster depicted in Fig. 4.1.

for this error in at least an integral sense, we calculate the condensation induced reduc-
tion of potential energy, given by Eqn. (3.29), based on a corrected negative velocity
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bubble cluster - side view Grid 1: 283 cells in the inner domain

Grid 2: 553 cells in the inner domain Grid 3: 1103 cells in the inner domain

Figure 4.4: Cross section view (indicated in the top left) on the bubble cluster initialalized for different grid
densities in the inner domain; the near-wall bubble B1 is also marked in Fig. 4.1.

divergence κ (t ) {∇·u}−, where κ (t ) is determined such that the balance [2]

κ (t )
Ncells∑
i=1

[(
Dγ

Dt

)
C ,i

VC ,i

]
=

Ncells∑
i=−1

[(
∂γ

∂t

)
C ,i

VC ,i

]
(4.1)

is satisfied. This correction is motivated by the circumstance that the volume integral
of the partial time derivative of γ, represented by the right-hand side of Eqn. (4.1), cor-
rectly reflects the overall change of vapor volume because it directly results from solving
the transport equation for γ, given by Eqn. (A.16). It is noted that ∂γ/∂t includes an ad-
vective component that does not contribute to the change of vapor volume. However,
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the advective components cancel each other out in the volume integral. By this means,
the numerical errors made during the reconstruction of {∇·u}− are eliminated from the
integral balance, and the numerical conversion of radiated power into surface impact
power can be checked against the analytical prediction, given by Eqn. (3.49). The cor-
rection factorκ (t ) must be re-computed at each time step, because the error that is made
in the reconstruction of ∇·u changes when the magnitude of the cavitation model source
term changes. It is important to note that this correction can be done in this particular
case only. As there is only condensation involved during the cavity collapse, the volume
change cannot be subject to the cancellation of competing condensation and evapora-
tion processes at different locations in the domain, which again may be subject to dif-
ferent error magnitudes. For this reason, the velocity divergence correction cannot be
applied to arbitrary flow situations involving both condensation and evaporation. It can
only serve as a means to isolate the numerical error that stems from the reconstruction
of {∇·u}− in a cavity collapse test case in order to verify that both the transport equa-
tion of collapse induced kinetic energy and the term to achieve the surface projection of
radiated energy, as derived in Sec. 3.2, are correctly implemented.

4.1.2. SENSITIVITY STUDY

In order to obtain a physically converged result for the collapse characteristic of the bub-
ble cloud, it is essential to investigate the sensitivity of the collapse time τwith respect to
the mass transfer coefficients of the cavitation model and the temporal resolution. This
is done for grid 2. Fig. 4.5 shows the evolution of the total vapor volume over time for a
fixed time step size of∆t = 10−8 s and for different magnitudes of the condensation con-
stant Cc . For very small values of Cc , a significant delay of the collapse time is observed.
In the limit Cc → 0, no condensation can take place at all. For values of Cc ≥ 1 kg·s/m5,
the curves collapse. However, this independence with respect to the model parameter
can only be achieved when the time step∆t is sufficiently small. Fig. 4.6 shows the evolu-
tion of vapor volume over time for a systematic variation of ∆t , where the condensation
constant is kept constant at Cc = 1000 kg·s/m5. Significant delays of the collapse time
are observed for large time step sizes. As ∆t approaches 10−8 s, the curves converge to a
solution that is independent of the time step size. Fig. 4.7 further depicts the evolution
of vapor volume over time for the three different grids in Fig. 4.4. It is found that the evo-
lution of total vapor volume is practically insensitive of the grid resolution. This finding
is in line with the results by Schmidt et al. [17], even though their results were obtained
from a fundamentally different method based on a thermodynamic equation of state
describing the mixture fluid, and a density-based numerical solution technique. The re-
sults are further supported by similar findings in related studies [66, 67, 69]. The collapse
time of the bubble cloud is identified by a change of sign of V̇ at the final collapse stage
and found to be τ= 6.5 ·10−5 s, which is in good agreement with the results by Schmidt
et al. [17]. The insensitivity of τ with respect to the grid resolution is explained by the
circumstance that the bubble population density of the cloud is so high that is does not
allow for any significant pressure recovery between the bubbles. This is illustrated in Fig.
4.8, which is depicting cross sectional views of the pressure field at t = 0.08τ. The above
findings can be generalized in so far that the time step size must be chosen sufficiently
small, while the mass transfer coefficients must be adequately large. In this limit, the
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mass transfer model always has sufficient capacity to achieve phase transition within
the time scale that is determined by the inertia driven flow, and the local phase transi-
tion event is adequately resolved in time so that no truncation errors occur. Based on this
sensitivity study, the configuration of Cc = 10 kg·s/m5, ∆t = 10−8 s and grid 2 is found to
provide a converged solution that is independent of the mass transfer coefficients.
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Figure 4.5: Evolution of the dimensionless vapor vol-
ume over time (V0 is the initial vapor volume of the
cloud) for grid 2 in Fig. 4.4,∆t = 10−8 and a systematic
variation of the condensation mass transfer constant
Cc in Eqn. (A.16).
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Figure 4.6: Evolution of the dimensionless vapor vol-
ume over time (V0 is the initial vapor volume of the
cloud) for grid 2 in Fig. 4.4, Cc = 1000 kg·s/m5 and a
systematic variation of the time step size ∆t .
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Figure 4.7: Evolution of the dimensionless vapor vol-
ume over time (V0 is the initial vapor volume of the
cloud) for ∆t = 10−8, Cc = 1000 kg·s/m5 and for the
three different grids depicted in Fig. 4.4.

Figure 4.8: γ = 0.5 iso-surfaces of the vapor bubbles
at time instant t = 0.08τ and cross sectional views on
the corresponding pressure field for grid 2 in Fig. 4.4,
Cc = 1000 kg·s/m5 and ∆t = 10−8.
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4.1.3. THE EFFECT OF ENERGY FOCUSING ON THE ACOUSTIC POWER AND

ACOUSTIC PRESSURE SIGNATURE
Fig. 4.9 depicts the evolution of the dimensionless accumulated surface energy ES /Epot,0,
obtained from integration of the surface impact power over time and over the entire 4 m
× 4 m bottom surface area. The red dashed line represents the result obtained from
the non-focusing approach, where the condensation induced change of potential en-
ergy is instantaneously converted into radiated acoustic power (see Eqn. (3.41)). The
black solid line is obtained from the energy focusing approach introduced in Secs. 3.2.1
and 3.2.2. If no potential energy focusing is applied, then the amount of ES relative to
0.5Epot,0 corresponds exactly to the percentage of dimensionless volume V /V0 by which
the cavity has shrunk. When the transport equation of collapse induced kinetic energy
(see Eqn. (3.37)) is applied, the initial potential energy is focused towards the collapse
center in the form of collapse induced kinetic energy, thereby delaying the main impact
towards the final stage of the collapse. In both cases, however, the amount of accumu-
lated surface energy converges to the analytically predicted value of 50% initial potential
energy (see Eqn. (3.49)) with reasonable accuracy. With the energy focusing approach, a
major amount of energy is focused towards the final collapse stage and then released in
a rather sudden step.
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Figure 4.9: Evolution of the dimensionless energy accumulated on the entire bottom surface for the focusing
and the non-focusing approach.

In view of the acoustic pressure analysis, it is noted that the total pressure computed
by Schmidt et al. [17], depicted by the red solid line in Fig. 4.11, is not entirely compara-
ble with the acoustic pressure pa . The most obvious difference is that the total pressure
must be equal to the far field pressure p∞ once the pressure perturbations caused by the
cloud collapse have decayed, whereas the acoustic pressure is a pressure perturbation it-
self which tends to zero after the collapse event. At the beginning of the collapse, the total
wall pressure in close vicinity to the vapor bubble cloud is significantly lower than the far
field pressure. This is explained by the fact that the small distance of the vapor bubble
cloud to the solid wall hardly allows the liquid pressure to recover on the bottom wall.
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Figure 4.10: Evoution of the acoustic pressure signal averaged over the numerical pressure sensor surface de-
picted in Fig. 4.1 for the focusing (right) and the non-focusing (left) approach.
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Figure 4.11: Comparison of the acoustic pressure signal obtained from the energy focusing approach with the
total pressure signal computed by Schmidt et al. [17]; the focusing parameter h is defined in [1], where h →∞
represents the energy focusing method as described in Sec. 3.2.

However, the collapse peak pressure computed by Schmidt et al. [17], is supposed to be
governed by the energy transported by the shock wave through the nearly incompress-
ible liquid phase, and it should therefore exhibit a similar characteristic as the acoustic
peak pressure reconstructed from the acoustic model.

Fig. 4.10 shows the acoustic pressure signals obtained from averaging the acoustic
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pressure pa over the virtual pressure sensor depicted in Fig. 4.1 for the focusing (right)
and the non-focusing (left) approach. Compared to the results by Schmidt et al. [17],
a strong smearing of the signal is observed for the non-focusing approach. The pro-
nounced peak at the end of the collapse that is observed in the results by Schmidt et al.
[17], is not at all present in the acoustic pressure signal obtained from the non-focusing
approach. This clearly demonstrates the inability of the non-focusing approach to re-
flect the instantaneous energy balance, as discussed in Sec. 3.1.1. The energy focusing
approach on the other hand results in a pronounced peak of the acoustic pressure per-
turbation due to the delay of power radiation towards the final collapse stage. However,
various spurious high amplitude peaks are observed before the final collapse stage. They
are identified as spurious peaks, because of the fact that most of the energy is impact-
ing the surface at the end of the collapse event (see Fig. 4.9), which implies that there is
no significant energy content in the peaks before the final collapse stage. This is further
supported by Fig. 4.11, which shows a Fourier reconstruction of the pa-signal obtained
from the energy focusing approach (see Fig. 4.10, right). The Fourier reconstruction in-
volves the first 200 modes, such that modes higher than that are filtered out. It can be
seen that the spurious peaks before the final collapse stage are not present in the recon-
structed acoustic pressure signal. In accordance with the distribution of accumulated
surface energy versus time in Fig. 4.9, this indicates that the spurious acoustic pressure
peaks before the final collapse stage contain very little energy. This behavior is further
explained by Eqn. (3.12), which suggests that despite the large amplitude of the spuri-
ous acoustic pressure peaks, their impact energy contribution is small because of their
very short impact duration. When significantly more than 200 modes are included in
the Fourier reconstruction of the acoustic pressure signal, the spurious peaks before the
final collapse stage start to become noticeable. Fig. 4.11 further depicts for reference
the total pressure signal computed by Schmidt et al. [17]. It is observed that the total
pressure peak value occurs somewhat later than the acoustic pressure peak. This delay
is due to the time that it takes for the pressure wave to propagate from the cloud collapse
center to the bottom wall in the compressible simulation by Schmidt et al. [17], whereas
the wave propagation speed of the associated wave in the acoustic model is assumed to
be infinite. A rough estimation of the wave propagation time can be made by assuming
a propagation speed of cl = 1500 m/s and by assuming that the cloud collapse center
is in the middle of the inner domain, which gives an approximate propagation time of
6.7 · 10−6 s. Also, the impact duration of the acoustic pressure peak is found to be sig-
nificantly smaller than the impact duration of the total pressure peak by Schmidt et al.
[17]. As discussed in Sec. 3.2.2, this difference is attributed to the tendency of the en-
ergy focusing approach to convert the accumulated collapse induced kinetic energy into
radiated acoustic energy in a sudden step at the final collapse stage.

A measure of the impact aggressiveness is given by the distribution of surface energy
accumulated on the bottom surface throughout the cloud collapse. Fig. 4.12 depicts
the accumulated surface energy distribution on the bottom wall underneath the cloud,
normalized by the cloud collapse time τ = 6.5 · 10−5 s. The left figure shows the distri-
bution obtained from the non-focusing approach and the right figure the distribution
obtained from focusing approach described in Secs. 3.2.1 and 3.2.2. In both cases, one
distinct isolated footprint is observed, which is caused by the isolated close wall bubble
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no energy focusing energy focusing

Figure 4.12: Distribution of the accumulated surface energy normalized by the cloud collapse time τ= 6.5·10−5

s for the non-focusing approach (left) and the focusing approach (right); the accumulated surface energy is
obtained from time integration of the surface impact power per unit surface.

marked as B1 in Fig. 4.1. The energy focusing approach predicts only one more isolated
footprint, which is located outside the virtual pressure sensor surface and which was
caused by a bubble initially located in the outer periphery of the cloud. The original ap-
proach predicts another isolated footprint located on the virtual pressure sensor surface
and generally tends to leave a more asymmetric impact pattern. With the major part of
the initial potential cloud energy being focused towards the collapse center, the focusing
approach leaves a rather axisymmetric footprint on the virtual pressure sensor as would
be observed if the impact was caused by an isolated point source. The surface energy
distribution obtained from the energy focusing approach is also of larger magnitude as
compared to the original approach. Another effect of the collective focusing of potential
energy is that the peak value of the accumulated surface energy distribution is caused
by the collective collapse event, whereas the original approach predicts the peak value
in the vicinity of the isolated collapse of bubble B1.

The collective cloud collapse behavior observed in the present study is in agreement
with the findings by Schmidt et al. [17], who showed that, in this particular case, the
bubble cloud can be replaced by a homogeneous structure of equivalent volume frac-
tion without changing the collapse characteristics. As shown by Wang and Brennen [16],
it strongly depends on the density of the bubble population whether a bubble cloud ex-
hibits this collective behavior. In sparsely populated clouds, the bubbles tend to behave
as individual bubbles [16]. Based on their early numerical computations on collaps-
ing vapor bubble clouds, Wang and Brennen [16] suggest that the focusing of potential
energy across the individual bubbles into the inner peripheries of a densely populated
cloud is governed by an inward directed bubbly shock or condensation shock wave. The
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bubbly shock in bubbly mixtures of high vapor fraction can be thought to exhibit the
same wave propagation behavior as a condensation shock in a homogeneous water-
vapor mixture of equivalent vapor fraction [86]. This mechanism is supported by the
model of the kinetic energy transport term φ (E ), which allows for a redistribution of en-
ergy between coherently collapsing cavities, together with Eqn. (3.38), which suppresses
the energy radiation until the pressure in the liquid phase has exceeded the driving pres-
sure. Thus, the potential cavity energy is accumulated and transported on the low pres-
sure side of the bubbly shock front. This also means that the capability of the energy
focusing approach to reflect the potential energy focusing driven by the inward directed
condensation shock strongly depends on the capability of the flow solver to resolve this
flow phenomenon. It was shown that even semi-empirical mass transfer approaches
involving adjustable model coefficients can resolve condensation shock states [66, 77],
when the prerequisites discussed in Sec. 4.1.2 are met. Indeed, the formation of an in-
ward directed bubbly shock, as described by Wang and Brennen [16] is shown in Fig.
4.13, which depicts a cross sectional view of the distribution of the total pressure (left)
and the velocity magnitude (right) for different time instants. It can be seen how a dis-
continuity in both the pressure and the velocity field forms across the outer periphery of
the cloud at t = 0.83τ, which becomes more pronounced as t = τ is approached.

The focusing of collapse induced kinetic energy is further illustrated by Fig. 4.14,
which depicts the distribution of accumulated kinetic energy E obtained from Eqn. (3.22).
It can be seen how the collapse induced kinetic energy accumulation starts in the outer
cloud periphery, and how it focuses and intensifies towards the cloud collapse center as
the collapse time τ is approached. A significant portion of the initial potential cloud en-
ergy is thereby focused into the cloud collapse center. One isolated region of pronounced
kinetic energy accumulation prior to the final collapse stage is observed at the collapse
location of bubble B1 in Fig. 4.1, which is also in agreement with the results by Schmidt
et al. [17].
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0.92τ

Figure 4.13: Cross section view (as indicated in Fig. 4.4) on the distribution of the total pressure (left) and the
velocity magnitude (right) for different time instants relative to the cloud collapse time τ= 6.5 ·10−5; the black
outline represents the cubic inner domain (2 cm × 2 cm × 2 cm).
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t = 0τ t = 0.15τ t = 0.23τ

t = 0.31τ t = 0.38τ t = 0.46τ

t = 0.54τ t = 0.62τ t = 0.77τ

t = 0.85τ t = 0.92τ t = τ

Figure 4.14: Top view on the collapsing vapor bubble cloud and iso-surfaces of the accumulated collapse in-
duced kinetic energy per unit volume E (see Eqn. (3.28)) absorbed in the bubble interfaces at different time
instants of the bubble cloud collapse; the bubble interfaces are indicated by γ = 0.5 iso-surfaces of the liquid
fraction.
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4.1.4. REMAINING UNCERTAINTIES IN THE ENERGY BALANCE
Despite the fact that the impact load characteristics are well captured by the method pre-
sented in this study, some uncertainties remain. One uncertainty concerns the driving
pressure pd in Eqn. (3.29), which is assumed to be constant and equal to the ambient
pressure p∞ for the entire cloud surface. However, due to the effects of wall interaction
and the interaction of rather isolated bubbles with the close by bubble cloud, the driving
pressure distribution is in fact neither constant in space nor constant in time and the
assumption that pd (t ,xP ) = p∞ can only be an approximation of the actual condition
experienced by the collapsing cloud. The problem of not exactly knowing the effective
driving pressure pd in the potential energy balance was discussed in detail in previous
work [2]. It is also noted that, as discussed in Sec. 3.2.2, one cannot expect an entirely
time accurate representation of the acoustic impact signal. Nevertheless, the present
modeling approach captures the delay of the collapse impact towards the final collapse
stage due to the temporal and spatial focusing of the implosion energy, and therefore
reflects the bubble cloud dynamics more accurately than the original non-focusing ap-
proach. However, the exact events at the final collapse stage are beyond the model res-
olution. As a result, the model theoretically allows to radiate the shock wave energy
within an infinitely thin wave front. It is also mentioned that the transmitted shock wave
energy computed in the present study is associated with the idealized situation of zero
non-condensable gas content. The relation between gas content and shock wave energy
derived by Tinguely et al. [14], Patella et al. [34], and Brennen [87] might be employed
in future work to complement the model by the effect of non-condensable gas. Finally,
the reconstruction of the velocity divergence needed for the computation of the local
acoustic power source terms, is subjected to numerical errors, which is why the correc-
tion given by Eqn. (4.1) was applied. By means of this correction, the volume integrated
energy balance could be satisfied in the present study. However, as already discussed
in previous work [2], this correction cannot be applied to any arbitrary flow situation.
Therefore, a best possible reconstruction of the velocity divergence field is a key factor
for the reliability of the method presented in this study.

4.2. NACA0015 HYDROFOIL
The hydrofoil test case is based on an experiment by van Rijsbergen et al. [82], where a
NACA0015 hydrofoil is mounted in a cavitation tunnel section under 8◦ angle of attack.
Despite the steady state inflow condition, the involved sheet cavitation dynamics lead to
a periodic cavitating flow. Next to acoustic measurements and high-speed video obser-
vations of the cavitating flow, van Rijsbergen et al. [82] have also conducted paint tests in
order to identify erosive zones on the suction side of the hydrofoil surface. The erosion
damage patterns obtained by van Rijsbergen et al. [82] allow for a qualitative compari-
son against potentially erosive zones identified by the cavitation implosion load model.
The extent of potentially erosive zones, as indicated by the surface impact energy dis-
tribution obtained from the simulation for a periodic cavitating flow, depends on the
non-uniform and unsteady driving pressure distribution, which is approximated by the
moving time averaged pressure distribution as discussed in Sec. 3.1.3. A sensitivity study
on the moving time window length is carried out 4.2.4. Extreme collapse events are iden-
tified with the statistical analysis method introduced in Sec. 3.4. The statistical method
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involves the definition of another time window, for which a sensitivity study is carried
out as well in Sec. 4.2.5. Based on the sensitivity studies, recommendations are derived
for the length of both time windows.

4.2.1. NUMERICAL SET-UP
Fig. 4.15 shows the dimensions of the computational set-up. The dimensions of the
tunnel cross section, the foil and its position and angle of attack are in line with the ex-
perimental set-up by van Rijsbergen et al. [82] and a corresponding numerical set-up by
Li et al. [29]. The tunnel width is wt = 0.04 m and equal to the foil span, and the tunnel
height is ht = 2wt , with the cord center of the foil located at ht /2. The tunnel length is
lt = 0.57 m. Cord length and span of the foil are 0.06 m and 0.04 m, respectively. The
study is carried out for a downstream ambient pressure of p∞ = 302.3 kPa, a uniform
horizontal inflow speed of 17.3 m/s and an angle of attack of 8◦. The fixed value veloc-
ity boundary condition is specified at the inlet and the fixed value pressure boundary
condition at the outlet as indicated in Fig. 4.15. In order to get rid of pressure fluctua-
tions at the outlet boundary, where a fixed value pressure boundary condition is applied,
the flow is diffused in a diffuser section, starting at 6.5 cord lengths downstream from the
foil’s leading edge (x =0.39 m in Fig. 4.15). Since the flow is inviscid, mass continuity and
Bernoulli’s equation can be used to determine the outlet pressure such that the aimed
tunnel tunnel pressure p∞ is obtained under wetted flow conditions and, on average
over time, under cavitating flow conditions [88]. The liquid volume fraction γ is con-
strained by a zero gradient boundary condition at all boundaries except for the inflow
boundary, where a fixed value of γ = 1 is applied. The unstructured mesh as depicted
in Fig. 4.16 includes four refinement levels. The cell length is scaled by 2−n , with n = 0
for the base mesh, and n = 4 on the finest level. A variation of grid density is achieved by
changing the number of cells in the base mesh. For all refinement levels and all grids, the
characteristic cell dimensions are∆x =∆y = 0.5∆z. By this means, geometrically similar
grids are obtained, and a uniformly spaced grid is achieved in the region where the flow
is expected to cavitate. The characteristic longitudinal cell lengths ∆x on the finest level
for the four different grid configurations investigated in this study are listed at the bot-
tom of Table 4.1. The grid depicted in Fig. 4.16 corresponds to grid 1 from Table 4.1. The
time step size ∆t is systematically decreased until a converged solution is obtained.

Since the dynamics of the larger scale cavitation structures are of primary interest
in this study, the frequency of large pressure pulses, associated with the cyclic collapse
of larger scale structures, and hence the shedding frequency, is employed as a measure
for the convergence of the unsteady flow solution. The collapse frequency is obtained
from a frequency analysis procedure that is further described in Sec. 4.2.2. Following
the study by Li et al. [29], the vapor pressure is pv = 1854 Pa, and the densities of the
vapor and the liquid phases are ρv = 0.014 kg/m3 and ρl = 998.85 kg/m3, respectively.
This corresponds to a downstream cavitation number ofσ= 2.01. From previous studies
[88], the values Cc = 5000 kg·s/m5 and Cv = Cc /2 for the mass transfer coefficients (see
Eqn. (2.19)) were found to be large enough to obtain a cavity shedding frequency that is
independent of the model parameter value. Gravitational forces are taken into account,
although they are presumably negligible. The operating conditions are summarized in
Tab. 4.1.
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Figure 4.15: Computational domain including the tunnel section and a downstream diffuser section; the origin
of the coordinate system is located at the leading edge of the foil.

Figure 4.16: Refinement levels around the NACA0015 hydrofoil for grid 1 from Table 4.1; the origin of the coor-
dinate system is located at the leading edge of the foil.
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Table 4.1: Geometrical specifications, operating conditions and grid densities for
the NACA0015 hydrofoil

Geometry specifications

Profile: NACA0015 Angle of attack: α= 8◦
Tunnel length: lt = 0.57 m Cord: cfoil = 0.06 m
Tunnel width: wt = 0.04 m Foil span: s = 0.04 m
Tunnel height: ht = 0.08 m Cord center pos.: 0.5ht

Leading edge position: 6.5cfoil from diffuser

Fluid properties

Liquid density: ρl = 998.85 kg/m3

Vapor density: ρv = 0.014 kg/m3

Vapor pressure: pv = 1854 Pa
Ambient tunnel pressure: p∞ = 302.995 kPa

Boundary conditions

Uniform inflow speed: ux = 17.3 m/s
Diffuser outlet pressure: pout = 451.759 kPa
Solid walls: free slip condition (u ·n = 0)

Grid densities

∆x =∆y = 0.5∆z on the finest level in Fig. 4.16:
Grid 0: ∆x = 0.15625 mm (1794140 cells)
Grid 1: ∆x = 0.31250 mm (919944 cells)
Grid 2: ∆x = 0.62500 mm (393096 cells)
Grid 3: ∆x = 1.25000 mm (114694 cells)
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4.2.2. FREQUENCY ANALYSIS

The dominant frequency, i.e. the cavity shedding frequency of the flow, is identified from
the power spectral density (PSD) estimates of several local (virtual) pressure probes. The
PSD is estimated by the square of the discrete Fourier transform (DTF) obtained using
a fast Fourier transform (FFT) algorithm of the input signal p (t ). A number of nprobes

pressure probes is sampled at different locations in the computational domain at which
the dominant frequency can be expected to be noticeable. An average PSD distribution is
determined from the individual PSD distributions, such that PSD = 1/nprobes

∑nprobes

i=1 PSDi .
A low pass filter is applied to the input signal p (t ) to attenuate frequencies that are sig-
nificantly higher than the expected dominant frequency. The low pass filtered signal is
obtained from the Welford [80] approximation of the moving time average of p (t ), as
given by Eqn. (3.56), where 1/Tmov is the cut-off frequency from which on the signal
is increasingly attenuated. Furthermore, the p (t ) signal of length Ts is split into half
overlapping equidistant windows of length Th , such that the total number of overlap-
ping windows is nh = 2Ts /Th −1. Each of these windows is multiplied by the Hanning
function h (t ) = sin2 (πt/Th) to avoid effects of discontinuities at the periodic Fourier
domains.

4.2.3. SENSITIVITY STUDY ON THE CAVITY SHEDDING FREQUENCY

Fig. 4.18 depicts the density-pressure trajectory at observation P0 in Fig. 4.17, located
on the foil surface at half span and 20% cord length. The trajectory stays close to vapor
pressure during phase transition and only evolves into high amplitude pressure peaks at
the final stage of the condensation process. This confirms that the mass transfer coeffi-
cients are large enough to enforce a scale separation between the phase transition and
the driving pressure range, as discussed in Sec. 2.1.3. In this regime, the characteristic
frequency of the inertia driven flow can be expected to be insensitive with respect to the
mass transfer coefficients. With the fluid properties and ambient conditions in Table
4.1 and an associated mixture sound speed of cm = 2.0 m/s (see Sec. 2.1.3), the inverse
Mach number given by Eqn. (2.14) becomes Ma−1 = 0.12. Since Ma−1 << 1, the scale
separation enforced by the large mass transfer coefficients is physically justified due to
the reasons discussed in Sec. 2.1.3.

Figure 4.17: Centerline (z = 0) observation points at the indicated x-y coordinates for the (virtual) pressure
and density probes.

The grid and time step sensitivity of the flow around the NACA0015 hydrofoil is as-
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Figure 4.18: ρ-p trajectory on the foil surface at observation point P0 in Fig 4.17 (half span and 20% cord length)
for ∆t =7.5 ·10−7 s and grid 1 from Table 4.1.

sessed from the pressure fluctuations at the observation points P1, P2, P3 and P4 in Fig.
4.17. The frequency analysis described in Sec. 4.2.2 is applied to obtain the averaged
power spectral density PSD, with the number of probes being nprobes=4. For each probe,
the sample time is Ts = 0.18 s, and the length of the half overlapping Hanning windows
is Th = Ts /3, such that the total number of Hanning windows is nh = 5. The moving
average frequency/cut-off frequency of the low pass filter is 1/Tmov = 2000 Hz.

Fig. 4.19 depicts the PSD distributions for different grid densities, where∆t =7.5·10−7

s. As the magnitude of the distribution is not of interest for the frequency analysis, all
distributions are normalized by the maximum peak value max(PSD) of all four distribu-
tions. It is observed that coarse grids tend to result in rather low frequencies of the first
harmonic. The frequency of the first harmonic converges to a mesh independent value
with increasing grid resolution. The same analysis is carried out for grid 1 from Table
4.1 and different time step sizes. For rather large time steps, the PSD distribution tends
to get smeared out into the low frequency regime. The dominant frequencies are deter-
mined from a second order polynomial least square regression through the peak value
of the PSD distribution, its two left-hand neighbors, and its two right-hand neighbors.
The smallest time step size ∆t =7.5 ·10−7 s in combination with grid 1 from Table 4.1 is
considered to provide a physically converged solution for the further course of this study.
The corresponding frequency of 192 Hz is in good agreement with the frequency of 188
Hz found by van Rijsbergen et al. [82] in the experiment. It is assumed that the solution
of the unsteady cavitating flow field that is obtained in this manner provides a reason-
able estimate of the flow conditions in the experiment by van Rijsbergen et al. [82], even
though viscosity effects, such as the viscous pressure drop along the tunnel section or
tunnel sidewall effects, are not present in the numerical simulation.
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Figure 4.19: Power spectral density (PSD) of the mov-
ing time averaged pressure 〈p〉 against frequency, av-
eraged over the observation points P1, P2, P3 and P4
in Fig. 4.17 for the different grid densities in Tabel 4.1
and fixed time step size ∆t = 7.5 ·10−7 s.
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Figure 4.20: Power spectral density (PSD) of the mov-
ing time averaged pressure 〈p〉 against frequency, av-
eraged over the observation points P1, P2, P3 and P4
in Fig. 4.17 for different time step sizes ∆t and grid 1
in Tabel 4.1.

4.2.4. EFFECT OF THE MOVING AVERAGE WINDOW SIZE ON THE DRIVING

PRESSURE AND SURFACE ENERGY DISTRIBUTION

The accumulated surface energy computed from Eqn. (3.55) is evaluated on the hydro-
foil surface. It is investigated how the sliding window size Tmov affects the distribution
of the driving pressure pd given by Eqn. (3.24), which again has an effect on the surface
energy distribution, because the driving pressure difference pd −pv is needed to com-
pute the change of potential energy given by Eqn. (3.29). For the longest sliding window,
which comprises an entire simulation length, the exact moving average, as given by Eqn.
(3.24), can be computed by successively integrating the entire pressure signal at each
grid cell, and by dividing by the sample time at the end of the simulation. This was done
in a separate simulation, and the driving pressure distribution obtained in this manner
is used as a steady state field in Eqn. (3.29). For the smaller moving time windows, where
the computation of the exact average requires to store the window data in a buffer that is
updated at each time step, the Welford [80] approximation, given by Eqn. (3.56), is em-
ployed. Table 4.2 gives an overview over the averaging methods applied to the different
test case configurations. Both the moving average window size and the sample time are
expressed as a fraction of the characteristic shedding period Tshedd = f −1

shedd, where the
characteristic cavity shedding frequency for this test case is identified as fshedd = 192 Hz
in Sec. 4.2.3.

Figs. 4.21 and 4.22 depict the time averaged pressure at the observation points P0 and
P3 in Fig. 4.17, each for two different sliding window sizes applied to the same pressure
signal. The black solid line represents the exact moving average, and the red solid line
represents the corresponding approximation of the moving average obtained from the
method by Welford [80], as given by Eqn. (3.56). The mean value obtained from averag-
ing over the entire signal length is depicted by the yellow circular markers for reference.
As the sliding window length is reduced, the moving average approaches the input sig-
nal more accurately and eventually tends to reproduce its high amplitude peaks caused
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Table 4.2: Test case configurations to investigate the effect of the moving average window size on the time
averaged pressure distribution.

Averaging method Welford [80] Exact

Moving average window sizes
Tmov/Tshedd

0.1 0.5 1.0 69

Sample time Tsample/Tshedd = 53.8

Shedding frequency T −1
shedd = fshedd = 192 Hz

Tmov = 0.1Tshedd

Tmov = Tshedd

Figure 4.21: Exact moving average, its Welford [80] approximation and the total mean for a pressure signal
sampled at observation point P0 in Fig. 4.17 for two different sliding windows.

by periodic cavity collapses, where the exact moving average exhibits a somewhat more
sensitive response than the Welford [80] approximation. When the moving window size
approaches the characteristic shedding period Tshedd of the cavitating flow, the oscilla-
tions of the moving average signal around the absolute mean appear to be small relative
to the ambient pressure p∞. Consequently, the distribution of the driving pressure pd ,
which is assumed to be equal to the time averaged pressure 〈p〉, can be expected to be
rather insensitive to the sliding window size Tmov when Tmov is of the order of the charac-
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Tmov = 0.1Tshedd

Tmov = Tshedd

Figure 4.22: Exact moving average, its Welford [80] approximation and the total mean for a pressure signal
sampled at observation point P3 in Fig. 4.17 for two different sliding windows.

teristic shedding period Tshedd or larger. This is further supported by Fig. 4.23, depicting
the instantaneous distribution of the time averaged pressure 〈p〉 on the foil surface and
the tunnel side wall for four different sliding window sizes (see Table 4.2) and the same
instantaneous flow situation. The distributions appear to be very similar, except for the
smallest sliding window Tmov = 0.1Tshedd, where the low pressure footprints caused by
the presence of the cavities become more noticeable. The reason for this behavior is that
a large sliding window gives more time to filter out the cavity footprint as it passes some
observation point.

Fig. 4.24 shows the distribution of surface energy accumulated on the hydrofoil sur-
face per sample time, given by 〈ėS〉{n=1} = 〈ėS〉 = eS

(
Tsample

)
/Tsample. The results are

obtained from the energy focusing approach. Again, the four sliding windows given in
Table 4.2 were employed to compute the driving pressure pd in Eqn. (3.29). For the
larger sliding windows Tmov ≥ 0.5Tshedd, the surface energy distribution appears to be
rather insensitive to the sliding window size, which is due to the insensitivity of the driv-
ing pressure distribution in this sliding window range. However, for the small sliding
window Tmov = 0.1Tshedd, a pronounced decrease of the surface energy magnitude is ob-
served in Fig. 4.24. Again, this is explained by the fact that the local moving average of
the pressure is increasingly affected by the low pressure footprint of the cavities as the
sliding window size is reduced. In the limit Tmov → 0, where the driving pressure would
be equal to the instantaneous pressure p, we would have pd ≈ pv in the phase transition
regime. From Eqn. (3.29) then follows

(
Depot/Dt

)
c ≈ 0, such that the resulting surface

energy distribution would practically become zero.

Fig. 4.24 reveals another effect of the sliding window size on the surface energy dis-
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Tmov = 0.1Tshedd Tmov = 0.5Tshedd

Tmov = Tshedd Tmov = 69Tshedd

Figure 4.23: Instantaneous distribution of the time averaged pressure 〈p〉, which is assumed to be a measure
of the driving pressure pd in Eqn. (3.29). The different distributions represent different sliding time windows,
over which p is averaged. The distribution for Tmov = 69Tshedd represents the exact time average of the pres-
sure field, whereas the remaining three distributions are obtained from the Welford [80] approximation (see
Eqn. (3.56)) of the moving average.

tribution. For the case Tmov = 0.1Tshedd, the distribution peak values are observed from
approximately 0.4cfoil onward towards the trailing edge of the foil, whereas for the larger
sliding windows, the maximum values are observed close to the leading edge of the foil.
This relative shift occurs because the local moving average 〈p〉 is most effectively re-
duced by the presence of the large sheet cavities developing at the leading edge of the
foil. A larger initial cavity volume means that it takes more time for the cavity to entirely
collapse or to be entirely advected along some fixed observation point, so that this obser-
vation point is subjected to the low cavity pressure for a longer time. It can be concluded
from these considerations that the driving pressure computed from a sliding window
significantly smaller than Tshedd may not give an appropriate estimate of the ambient
condition that the collapsing cavities experience throughout a shedding cycle. A sliding
window size of the order of the characteristic cavity shedding period or larger is therefore
recommended.
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Figure 4.24: Distribution of surface energy accumulated per sample time Tsample = 53.8Tshedd for the different
sliding windows Tmov in Table 4.2 to compute the driving pressure pd in Eqn. (3.29); flow from left to right;

the results are obtained from the energy focusing approach; 〈ėS 〉 = eS

(
Tsample

)
/Tsample, which corresponds

to the unfiltered distribution 〈ėS 〉{n=1}.

4.2.5. IDENTIFICATION OF EXTREME EVENTS

Prior to applying the statistical analysis method introduced in Sec. 3.4 to the accumu-
lated surface energy distribution, a typical cavity collapse sequence is investigated in
detail. Figs. 4.25 and 4.26 depict exactly the same collapse sequence for both the non-
focusing and the focusing approaches, respectively. The sequence shows multiple vapor
structures collapsing directly downstream from the region of the maximum pressure re-
covery gradient at 0.4cfoil, and one structure collapsing towards the trailing edge of the
foil. It can be seen from Fig. 4.25 that the non-focusing approach has a tendency to
smear out the radiated energy across the foil surface. This smearing occurs because the
energy is radiated continuously throughout the cavity collapses, while the cavities are
advected downstream by the mean flow. Especially the structure collapsing towards the
trailing leaves a pronounced trace-like footprint. In comparison, Fig. 4.26 shows much
more focused energy footprints, which is the result of the energy being radiated only at
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the final stage of a cavity collapse. Where the non-focusing approach predicts the largest
energy concentration right downstream from the pressure recovery region, the focusing
approach predicts the largest concentration at the spot where the trailing edge collapse
occurs. Also, the impact energy magnitudes predicted by the focusing approach are sig-
nificantly higher than the ones predicted by the non-focusing approach.

t = t0 t = t0 +0.7500 ms t = t0 +1.0875 ms

t = t0 +1.1625 ms t = t0 +1.2750 ms t = t0 +1.3500 ms

t = t0 +1.4250 ms t = t0 +1.5000 ms t = t0 +1.7250 ms

t = t0 +1.9125 ms t = t0 +1.9875 ms t = t0 +2.5875 ms

Figure 4.25: Visualization of the surface energy accumulation process over time for a typical collapse sequence
obtained from the non-focusing approach (instantaneous conversion of the potential energy change induced
by condensation into radiated acoustic energy).
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t = t0 t = t0 +0.7500 ms t = t0 +1.0875 ms

t = t0 +1.1625 ms t = t0 +1.2750 ms t = t0 +1.3500 ms

t = t0 +1.4250 ms t = t0 +1.5000 ms t = t0 +1.7250 ms

t = t0 +1.9125 ms t = t0 +1.9875 ms t = t0 +2.5875 ms

Figure 4.26: Visualization of the surface energy accumulation process over time for a typical collapse sequence
obtained from the focusing approach (instantaneous conversion of the potential energy change induced by
condensation into kinetic energy of the liquid and conversion of the accumulated kinetic energy into radiated
acoustic energy at the final collapse stage).

To investigate the long term distribution of accumulated surface energy per sample
time as well as the distribution of its extreme events, the statistical analysis method in-
troduced in Sec. 3.4 is applied to a simulation long enough for the impact distribution to
exhibit convergent behavior. As explained in Sec. 3.3.2, the surface energy distribution
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is determined from the computationally efficient form given by Eqn. (3.55), where the
rather expensive projection of the radiated energy accumulated from the time integrated
radiation source terms is only carried out after a certain time T . In the same way, Eqn.
(3.61) is employed to isolate the extreme events from the surface energy distribution. As
explained in Sec. 3.4.2, the power mean analysis to attenuate the low amplitude events
is again applied to the ensembles obtained from the evaluation over the individual time
windows of length Tp . Where the choice of the projection frequency 1/Tp has no effect
on the unfiltered surface energy distribution per sample time, it may well affect the fil-
tered distribution due to the non-linearity introduced by the intensity exponent n. For
this reason, the filtered time averaged impact power distribution 〈ėS〉{n} is not only com-
puted for a variation of the intensity exponent n, but also for a variation of the projection
frequency 1/Tp .

In order to investigate the effect of the intensity exponent n on the filtered averaged
impact power distribution, the projection frequency is kept constant at 1/Tp = 1/Tshedd.
The simulation time is 0.469 s, which corresponds to 90 shedding cycles at a shedding
frequency of fshedd = 192 Hz. As it can be seen from Eqn. (3.61), n = 1 gives the unfil-
tered accumulated surface energy distribution per sample time. Two more variations of
the intensity exponent (n = 1.5 and n = 5.0) are investigated. Fig. 4.27 shows the results
for both the non-focusing (left) and the focusing approach (right). For both approaches,
the impact scatter increases with increasing n, because the extreme events are highly
local phenomena. It can also be seen that the impacts occurring downstream from the
pressure recovery region at 0.4cfoil become more pronounced relative to the leading edge
impacts as the intensity exponent n increases. This observation indicates that not only
the impact scatter, but also the intensity of the individual events, increases towards the
trailing edge. Close to the leading edge, the impact events are mostly associated with the
collapse of some part of the sheet cavity. The downstream surface energy distribution
is governed by the cyclic collapse of vapor structures pinched off from the sheet cavity.
In this particular case, the re-entrant jet mechanism is the driving shedding mechanism
[29, 82, 88], where the adverse pressure gradient caused by the stagnation point at the
sheet cavity closure drives a thin upstream liquid film. When this liquid jet looses its
momentum, it is deflected away from the foil surface, thereby pinching off some part
of the sheet cavity [89]. The pinch-off leads to the formation of vorticity [89]. In the
simulation of cavitating flows, the formation of vorticity is observed even in the absence
of viscous forces [90], and it is interpreted as an intrinsic inertia controlled instability
[71, 90]. Furthermore, baroclinic instabilities may occur when the gradients of pressure
and densities are not aligned [91]. However, this can only be the case in non-barotropic
flows [46]. As the shed cavities are advected downstream, the flow vorticity is further
amplified in regions where the divergence of the mixture fluid is negative [92], as well
as by vortex stretching [91]. Due to the enhanced vorticity, the shed cavities can break
up into secondary vortical ring structures [93], which may form horseshoe type cavitat-
ing vortices when attached to the solid surface [94]. Compared to the scattered impacts
caused by the collapse of vortical vapor structures downstream from the pinch-off re-
gion, the collapses close to the leading edge can, despite their lower amplitude, more
efficiently accumulate in the unfiltered surface energy distribution, because they occur
at practically every cycle and in a very confined area around 0.1cfoil. The more the lower
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amplitudes are attenuated by the intensity exponent n, the more they are filtered away
from the energy distribution, and hence from the time averaged impact power distribu-
tion. Fig. 4.27 further shows that the filtered time averaged impact power distribution
obtained from the focusing approach is less sensitive to a variation of n compared to the
filtered distribution obtained from the non-focusing approach. This can be explained
by the fact that the focusing approach itself already leads to more isolated and extreme
impacts compared to the non-focusing approach.

The effect of the projection frequency 1/Tp on the filtered time averaged impact
power distribution is investigated for n = 2 and three different projection frequencies
as shown in Fig. 4.28. Again, the simulation time is 0.469 s (90 shedding cycles). For
both the non-focusing approach (left) and the focusing approach (right), the lower mag-
nitudes of the distribution tend to become more attenuated with increasing Tp . That is,
because extreme events are more likely to occur within the period Tp when Tp increases.

From the analysis so far, it can also be seen that especially the averaged impact power
distribution obtained from the focusing approach requires a significant amount of shed-
ding cycles until the statistics exhibit sufficient convergence. This behavior is due to
the focusing of the radiated energy into the collapse center, which enhances the scat-
ter of the surface energy distribution. For this reason, a long simulation involving 200
shedding cycles (1.04175 s) is carried out to investigate the averaged impact power dis-
tribution obtained from both the non-focusing and the focusing approach. The corre-
sponding unfiltered distributions (n = 1.0) shown in Fig. 4.29 appear to be very similar
as far as the magnitude downstream from the pressure recovery region at x = 0.4cfoil is
concerned. In particular, the difference in surface energy magnitude observed in this
area is significantly smaller than what is obtained from a short duration analysis. This
effect can be seen by comparing the n = 1.0 distributions in Fig. 4.29 with the accumu-
lated surface energy distribution depicted in Fig. 4.30. The surface energy distributions
in Fig. 4.30 were obtained from a relatively short sample time of 1.43Tshedd, where the
differences in energy magnitude are much more pronounced than in Fig. 4.29. The rea-
son for this difference is that the events computed from the focusing approach can only
form a smooth surface energy distribution in a statistical sense, when the sample time
T is large enough. As the time averaged amount of radiated energy is the same for both
approaches, the surface energy distribution obtained from the focusing approach even-
tually resembles the one obtained from the non-focusing approach, despite the fact the
individual events computed from the focusing approach are of significantly larger am-
plitude. However, it is also observed that the energy extent obtained from the focusing
approach reaches further downstream by a distance of approximately 0.1cfoil. This is the
result of the shed cavities being advected downstream during their collapse. As the fo-
cusing approach allows the energy radiation to take place only at the final collapse stage,
the involved advection has a tendency to stretch the surface energy distribution further
downstream compared to the non-focusing approach. For the same reason, the focusing
approach has a tendency to focus the energy radiated in the vicinity of the leading lead-
ing onto a more confined surface area. The same behavior is observed for the filtered
time averaged impact distributions (n = 5.0). However, even after 200 shedding cycles,
the filtered distribution obtained from the focusing approach appears to be highly scat-
tered and far from forming a smooth time averaged distribution.
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Figure 4.27: Distribution of the accumulated surface energy per sample time (involving 90 shedding cycles)
obtained from the non-focusing approach (left) and the focusing approach (right) for a variation of the inten-
sity exponent n introduced in Sec. 3.4, where n = 1 represents the unfiltered surface energy distribution and
n > 1 the filtered surface energy distribution in which the contributions resulting from low amplitude impacts
are attenuated to an extent governed by the value of n; the projection frequency 1/Tp (see Sec. 3.4.2) is equal
to the shedding frequency 1/Tshedd; flow from left to right.
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Figure 4.28: Distribution of the accumulated surface energy per sample time (involving 90 shedding cycles)
obtained from the non-focusing approach (left) and the focusing approach (right) for a variation of the projec-
tion frequency 1/Tp introduced in Sec. 3.4.2, where 1/Tp is the frequency at which the accumulated filtered
radiation source terms are projected onto the foil surface and where Tshedd is the cavity shedding frequency;
the value of the intensity exponent (see Sec. 3.4) is constant and equal to n = 2; flow from left to right.
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Figure 4.29: Distribution of the unfiltered (top, n = 1) and the filtered (bottom, n = 5) accumulated surface
energy per sample time obtained from the non-focusing approach (left) and the focusing approach (right)
after 200 shedding cycles.

no energy focusing energy focusing

Figure 4.30: Distribution of the accumulated surface energy (n = 1) obtained from the non-focusing approach
(left) and the focusing approach (right) after 1.43 shedding cycles.
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4.2.6. COMPARISON AGAINST EXPERIMENTAL PAINT TEST RESULTS
Fig. 4.31 shows a comparison of the extreme event distribution (n = 5.0) obtained from
both the focusing (A) and the non-focusing (B) approaches against the experimental
damage pattern found by van Rijsbergen et al. [82] (C) and numerical results by Li et al.
[29] (D). The damage pattern obtained by van Rijsbergen et al. [82] from experimen-
tal paint tests shows qualitative agreement with the numerical results in the sense that
the main impact region stretches from approximately 0.1cfoil onward towards the trail-
ing edge of the foil up to approximately 0.9cfoil. It is noted that the comparison can be
of qualitative nature only. It was shown by Mantzaris et al. [95] that the reproducibil-
ity of paint tests is limited, because the painting procedure or other parameters such as
paint thickness, can strongly affect the results. Different from the numerical results, the
experimentally obtained damage pattern is more focused towards the mid-span of the
foil. This difference is most likely attributed to viscous forces causing a deflection of the
re-entrant jet from the tunnel side wall, thereby focusing the shed cavities towards the
mid-span [82, 89]. Different from the approach presented in the present work, Li et al.
[29] assumed the local partial time derivative of the pressure ∂p/∂t to be a measure for
the impact aggressiveness. They derived an erosion risk indicator IErosion = 1/N

∑N
i=1 Ii ,

where Ii = ∂p/∂t if ∂p/∂t exceeds a predefined threshold level and Ii = 0 otherwise [29].
The aggressiveness distribution obtained by Li et al. [29] for the same test case and op-
erating conditions in Fig. 4.31 (D) indicates the most aggressive region right next to the
leading edge, where the threshold level was equal to 3 ·109 [29]. Even though the close
vicinity of the leading edge had to remain unpainted in the experiment by van Rijsber-
gen et al. [82], due to the presence of roughness grains, it is likely that Li et al. [29] over-
predict the flow aggressiveness at the leading edge relative to the flow aggressiveness
further downstream. However, the most important difference is that the relative flow ag-
gressiveness predicted from the pressure time derivative does not seem to shift towards
the trailing edge when the threshold level is increased. The downstream impacts even
disappeared in the study by Li et al. [29] when exceeding a certain threshold, whereas
the leading edge impacts were still captured. On the contrary, the cavitation implosion
load model and the statistical analysis method introduced in the present work, predict
an increasing aggressiveness of the downstream collapse events as the value of the in-
tensity exponent n increases. Another beneficial feature of the present model is that it
is designed to rigorously control the energy balance of the macroscopic cavitating struc-
tures, thereby allowing for quantitative predictions of the impact loads. On the other
hand, Li et al. [29] predict a distinct impact region close to the tunnel side wall, which
is also observed in the experiment by van Rijsbergen et al. [82]. Such a distinct region is
not observed in the present work, which is again attributed to neglecting viscous forces,
because the deflection of the re-entrant jet due to the presence of the side-wall bound-
ary layer [29] may lead to the formation of a cavitating vortex in the corner between the
foil surface and the tunnel side wall.
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A) energy focusing, n = 5.0 B) no energy focusing, n = 5.0

C) experimental damage pattern [82] D) ∂p/∂t-criterion [29]

Figure 4.31: Comparison of the extreme event distribution (n = 5.0) obtained from the energy focusing (A) and
the non-focusing approach (B) to the damage pattern (C) on the NACA0015 hydrofoil surface obtained by van
Rijsbergen et al. [82] from experimental paint tests (rotated by 180◦) and high erosion risk areas identified by
Li et al. [29] (D) from numerical modeling (the colored figure is found in [96], rotated by 180◦); the results by
Li et al. [29] are obtained from the erosion risk indicator IErosion = 1/N

∑N
i=1 Ii , where Ii = ∂p/∂t if ∂p/∂t ≥

threshold (=3 ·109) and Ii = 0 otherwise; the flow is from left to right.

4.2.7. RECOMMENDATIONS FOR THE AGGRESSIVENESS ASSESSMENT OF PE-
RIODIC CAVITATING FLOWS

The summarized findings from the study of the cyclic cavitating flow around the NACA0015
hydrofoil address three parameters that must be specified in the analysis procedure to
assess the aggressiveness of periodic cavitating flows.

The first parameter is the length of the moving time window Tmov to estimate the
instantaneous driving pressure distribution. The driving pressure pd is assumed to be
equal to the moving time averaged pressure for which the approximation by Welford
[80] (see Eqn. (3.56)) is employed. It is concluded from a systematic variation of the time
window length Tmov that the driving pressure distribution is rather insensitive to Tmov

when Tmov ≥ Tshedd, where Tshedd is the characteristic shedding period. Exhaustively
large moving time windows are not preferred, because the initial build-up of the mov-
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ing time averaged pressure takes at least as long as the time window length itself. It is
therefore recommended to choose Tmov equal to Tshedd or, in case of doubt, somewhat
larger.

The second parameter is the frequency 1/Tp at which the accumulated radiation en-
ergy is projected from the sources onto the target surface. In order to keep the simulation
computationally efficient, Tp should be much larger than the simulation time step ∆t ,
especially for simulations involving a large number of grid cells. Where the choice of
Tp has no effect on the unfiltered surface energy distribution, it may well affect the ex-
tent by which the low amplitude events are attenuated in the filtered energy distribution
due to the non-linearity introduced by the intensity exponent n in Eqn. (3.61). Irrespec-
tive of whether the unfiltered energy distribution or the extreme event distribution is of
interest, it is recommended to choose the projection frequency 1/Tp equal to the charac-
teristic shedding period Tshedd. The reason is that the energy distribution per shedding
cycle that is obtained in this manner can be assumed to approximately represent the
distribution of isolated events that occurred during that specific cycle. Knowledge of the
energy content resulting from isolated events may allow a coupling of the implosion load
model to material properties of the target surface.

The third parameter is the intensity exponent n needed in the filtering method to
attenuate the low amplitude events from the surface energy distribution as described in
Sec. 3.4. Large values of n ≥ 2 are generally recommended to obtain a clear indication
of the extreme event distribution. In order to prevent precision errors, n should not be
chosen arbitrarily large, because of the excessive magnitudes of the amplified radiation
source terms (ėrad)n that are possible in Eqn. (3.61). If necessary in future work, this
numerical problem could be solved by an appropriate normalization of the radiation
source term ėrad prior to its amplification by the intensity exponent n.

4.3. AXISYMMETRIC NOZZLE

4.3.1. NUMERICAL SET-UP

The axisymmetric nozzle test case was originally designed and investigated experimen-
tally by Franc et al. [83]. The geometry depicted in Fig. 4.32 essentially consists of a cir-
cular vertical inflow section of tube diameter rt at the end of which the flow is deflected
into a small gap of height hg between two horizontal discs. The connection between
the vertical inflow section and the horizontal upper disc is rounded, with ra being the
rounding radius. At the center of the lower disc, the incoming flow forms a stagnation
point. The geometry of the set-up and the flow conditions are such that the cavitating
flow is very likely to result in erosive cavitation. Such conditions are achieved by rather
high inflow speeds in the vertical tube section at high ambient pressure, such that the
inflow has a relatively high energy content. Due to the high ambient pressure, a strong
local flow acceleration is needed to achieve a pressure drop large enough for cavitation
to occur. This acceleration is for one part achieved by forcing the flow into the small
gap between the discs and for the other part by the small rounding radius ra . Down-
stream from the location of cavitation inception, the rapid increase of cross sectional
area in radial direction causes a pronounced pressure recovery gradient. As a result, the
vapor cavities rapidly implode under relatively high ambient pressure and in a rather
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confined zone around the disc center. The dimensions and geometrical specifications
of the computational domain depicted in Fig. 4.32 as well as the fluid properties and
operating conditions for the numerical simulation are given in Table 4.3. The fluid prop-
erties are associated with water at 20◦C, keeping in mind, however, that the simplifying
mass transfer cavitation model employed in this work cannot reflect the exact variation
of thermodynamic states during operation. The inflow speed uin and the corresponding
inflow cross sectional area πR2

1 as well as the exit pressure pout at the outlet are in line
with the numerical set-ups used by Mihatsch et al. [97], Peters et al. [98], and Schreiner
et al. [99]. With these operating conditions, the experimental conditions at which a pres-
sure drop of ∆p = pup −pout = 21.1 bar was obtained, are mimicked. This corresponds
to a cavitation number of σ= (

pout −pv
)

/∆p = 0.9 [83]. The large downstream reservoir
attenuates pressure fluctuations at the outlet, where a fixed value (Dirichlet) boundary
condition for the pressure is applied. Further boundary conditions are specified in Table
4.3. The computational grid depicted in Fig. 4.33 corresponds to the second coarsest
mesh in Table 4.3 with 15 cells over the gap height hg . A slight refinement of the overall
expansion ratio of 2 towards the upper disc is applied to better capture the sheet cavity
development and the shedding process. In order to conduct a grid sensitivity study, the
grid density is systematically varied in the cavitating region, where the number of cells
in the vertical, radial, and circumferential directions are varied by the same factor, such
that geometrically similar grids are obtained.

In the experiment by Franc et al. [83], the lower disc is chosen to be the sample disc
to measure the pitting rate and the erosion pattern caused by the cavitating flow. An
example of the eroded target disc obtained by Franc et al. [83] is depicted in Fig. 4.34,
where the red circles at r1 = 19 mm and r2 = 32 mm were added by Mihatsch et al. [97]
to indicate the region of most erosive cavitation. This erosion pattern is compared to
the distribution of accumulated surface energy predicted by the acoustic model intro-
duced in Sec. 3.2, where r1 and r2 are indicated for reference. The driving pressure pd

needed to determine the potential energy content in the collapse energy balance, is as-
sumed to be given by the moving time averaged pressure as specified in Sec. 3.1.3. The
frequency of the moving time window is chosen to be 1/Tmov = 1000 Hz. This choice is
based on the finding from Sec. 4.2.4 that the surface energy distribution obtained from
the acoustic model becomes insensitive with respect to Tmov if Tmov is larger than the
characteristic cavity shedding period Tshedd. As it will be shown from the flow sensitivity
analysis for the present set-up, that non of the obtained shedding frequencies falls below
1000 Hz, which means that also the convergence of the surface energy distribution can
be checked for this frequency without being affected by the choice of Tmov.

It is further important to note that the radius of curvature ra of the rounded edge
connecting the inlet throat with the upper horizontal disc is not consistently reported in
literature, where both the values 1.5 mm [17, 100] and 1.0 mm [97, 98, 101] are found.
Therefore, we briefly reflect here to what extent the value of ra may affect the sheet cav-
itation dynamics. With the velocity definitions in Fig. 4.35, the flow velocity uθ (θ) along
the rounded edge is expressed as follows:

uθ =
(
u2 −u1

)
f (θ)+u1 (4.2)

In Eqn. (4.2), u2 −u1 represents the velocity increase due to the reduction of cross



4

88 4. APPLICATION OF THE CAVITATION IMPLOSION LOAD MODEL

Figure 4.32: Computational domain of the axisymmetric nozzle; cavitation develops at the small rounding
(radius ra ) conntecting the inlet throat with the upper horizontal disc; the lower horizontal disc is the target
surface on which the erosive aggressiveness of the cavitating flow is observed.

Figure 4.33: Computational grid corresponding to a resolution of 15 cells/hg in Table 4.3 with a cross-sectional
view (A-A) at the gap (height hg ) between the upper and the lower disc.

sectional area, where u1 and u2 are the velocities averaged over the cross section areas
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Figure 4.34: Eroded target disc from the experiment
by Franc et al. [83], image taken from [97] who have
included the red circles at r1 = 19 mm and r2 = 32 mm
to indicate the erosive zone.

Figure 4.35: Illustration of the velocities ob-
tained from simplifying considerations based on
Bernoulli’s equation; cavitation inception is ex-
pected at the point of maximum flow velocity uθ ,
where the maximum value of uθ depends on the
change of cross-sectional area between the refer-
ence locations 1 and 2 and the rounding radius
ra .

indicated in Fig. 4.35. A2 is evaluated at the downstream end of the rounded edge and
A1 at some arbitrary point in the throat section of radius rt just upstream from the bend.
From mass continuity follows that u2 −u1 = u1 (A1/A2 −1), where A1 = πr 2

t and A2 =
2π(rt + ra)hg , which makes A2 a function of ra . The function f (θ) represents the local
increase of the cross sectional velocity change u2−u1 due to the curvature of the rounded
edge. The cavitation inception velocity uinc follows directly from Bernoulli’s equation,
where pout = pv +ρu2

inc/2. Also, pout = p1 +ρu2
1/2. Assuming that cavitation inception

occurs when the local pressure is equal to the vapor pressure, we find from Bernoulli’s
equation that the function value of f (θ) in Eqn. (4.2) must become

finc (ra) = A2 (ra)

A1 − A2 (ra)

(√
pout −pv

pout −p1
−1

)
(4.3)

somewhere along the bend to achieve cavitation inception. In the case that finc ≤
1, the reduction of cross sectional area is already enough to achieve cavitation incep-
tion. For the operating conditions at hand, Eqn. (4.3) gives finc (ra = 1.0 mm) = 1.23 and
finc (ra = 1.5 mm) = 1.49. Since finc > 1, the reduction of cross section area is not enough
to achieve cavitation inception, such that cavitation inception can only occur as a re-
sult of the flow acceleration along the rounded edge for both values of ra . Assuming
a non-cavitating flow, one can further determine the maximum flow velocity along the
rounded edge from a numerical flow simulation, which gives umax = 83 m/s. This gives
the corresponding velocity increase factor
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Table 4.3: Geometrical specifications, operating conditions, and grid densities for
the axisymmetric nozzle test case

Geometry specifications

Length of convergent inlet: h1 = 200 mm Inlet radius: R1 = 43.5 mm
Throat height: ht = 40 mm Throat radius: rt = 8 mm
Gap height: hg = 2.5 mm Rounding radius: ra = 1.5 mm
Target disc radius: R2,i = 100 mm Upper disc radius: R2,o = 120 mm
Outer reservoir radius: R3 = 250 mm Reservoir height: h2 = 456 mm

Fluid properties

Liquid density: ρl = 999 kg/m3 Vapor density: ρv = 0.017 kg/m3

Vapor pressure: pv = 2340 Pa

Boundary conditions

Uniform inflow speed: uin = 1.37 m/s Outlet pressure: pout = 18.9 bar
Solid walls: free slip condition (u ·n = 0) Liquid fraction: γin = 1
Zero gradient (Neumann boundary condition) if not further specified

Grid densities

Grid density in the refinement region (detail in Fig. 4.33)
vertical: 10 cells/hg , circumferential: ∆ϕ=π/28: (308700 cells in total)
vertical: 15 cells/hg , circumferential: ∆ϕ=π/42: (659282 cells in total)
vertical: 20 cells/hg , circumferential: ∆ϕ=π/56: (1208816 cells in total)
vertical: 25 cells/hg , circumferential: ∆ϕ=π/70: (2018768 cells in total)

fmax (ra) = A2 (ra)

A1 − A2 (ra)

(
umax

u1
−1

)
(4.4)

under wetted flow conditions. The ratio

ηinc = fmax

finc
=

(
umax

u1
−1

)/(√
pout −pv

pout −p1
−1

)
(4.5)

is then interpreted as the available capacity to achieve cavitation inception at the
point of maximum flow velocity along the rounded edge, where η ≥ 1 for cavitation in-
ception to occur. With these values at hand, we get ηinc = 2 for the rounding radius
ra = 1.5 mm. The corresponding wetted flow pressure following from Bernoulli’s equa-
tion is pmin =−15.5 bar. For ra = 1.0 mm, ηinc further increases, because finc decreases
and umax increases due to the larger rounding curvature. Therefore, cavitation inception
is likely to occur for both rounding radii. As it was shown for both rounding radii that
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cavitaiton inception can only occur along the rounding surface and that the cavitation
inception capacity is large, it is concluded that the evolution of the sheet cavity is not
affected by the choice for either of these two radii.

4.3.2. SENSITIVITY AND UNCERTAINTY STUDY ON THE CAVITY SHEDDING

FREQUENCY, THE VAPOR VOLUME CONTENT AND THE IMPACT EN-
ERGY DISTRIBUTION

The frequency analysis described in Sec. 4.2.2 is employed to investigate the sensitivity
of the dominant shedding frequency with respect to grid density, time step size, and the
magnitude of the mass transfer coefficients Cc and Cv as given in Eqn. (2.19). Analogous
to the procedure described in Sec. 4.2.3, the averaged power spectral density PSD is
computed from the pressure signals at the eight probe locations (nprobes=8) indicated
in Fig. 4.36. The probe locations are on the upper disc, right after the small rounding
at a radial distance of 9.5 mm from the center line and at equidistant circumferential
distances from each other. For each probe, the sample time is Ts = 0.013 s, and the
length of the half overlapping Hanning windows is Th = Ts /4 such that the total number
of Hanning windows is nh = 5. The moving average window is Tmov = 5 ·10−5 s, which
gives a cut-off frequency of 20000 Hz of the low pass filter.

It should be mentioned that the pressure probe locations are different from the ones
in the experiment by Franc et al. [83] and the fully compressible simulations by Mihatsch
et al. [97], who sampled the pressure signals further downstream. The reason for choos-
ing the pressure sample locations close to the rounded edge is that this region can be ex-
pected to be subject to the cyclic development of sheet cavities, which can be expected to
exhibit a more homogeneous and stable behavior in this region as compared to further
downstream. This applies to the pressure field in particular, because locations occupied
by liquid are likely to experience a significant pressure drop caused by nearby vaporous
structures of the growing sheet. Therefore, it is expected that the power spectral density
distribution of pressure obtained from the chosen probe locations give a good indication
of the characteristic cavity shedding frequency identified by Mihatsch et al. [97] for the
same operating condition.

The time averaged vapor volume present in the computational domain is measured
for each configuration of the grid density, time step size, and mass transfer coefficient
values. It is shown that the averaged vapor content appears to be very sensitive to the
settings when the temporal or spatial resolution of the simulation is insufficient, or when
the mass transfer coefficients are too small, such that the scale separation between the
phase transition pressure range and the driving pressure range as discussed in Sec. 2.1.3
is not established. For this reason, an uncertainty analysis is carried out for the vapor
content.

The uncertainty analysis essentially follows the method developed by Eça and Hoek-
stra [102], where the non-linear power functionφ f (h) =φ f 0+αhp is fitted to the discrete
data set given by n data points

(
hi ,φi

)
following the Richardson extrapolation [103].

The coefficients φ f 0, α and p are determined such that the least square error estimate

SRE = ∑n
i=1

(
φi −φ f (hi )

)2 is minimized. Eça and Hoekstra [102] derived a straightfor-
ward way to determine the solution for p, α and φ f 0 from the conditions ∂SRE /∂p = 0,
∂SRE /∂α = 0, and ∂SRE /∂φ f 0 = 0. The standard deviation σ, as derived in the work by
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Eça and Hoekstra [102] for this non-linear regression, is an uncertainty measure for the
entire data set. The uncertainties corresponding to the individual data points

(
hi ,φi

)
are

further composed of two additional measures. One is given by the deviation of each data
point φi from the corresponding fitted power function value φ f (hi ), i.e.

∣∣φi −φ f (hi )
∣∣.

The other one is given by the discretization error εφ
(
φi

)= ∣∣φi −φ f 0
∣∣ with respect to the

extrapolated valueφ f 0. Eça and Hoekstra [102] further define different uncertainty mea-
sures depending on the convergence behavior of the data set. However, in this study
the same uncertainty measure is used for all data sets for better comparability between
the data sets, which are given by the averaged vapor volume in the computational do-
main for the systematic variations of the grid resolution, the time step size, and the
mass transfer coefficients, respectively. With the definitions above, the uncertainty is
given by Uφ

(
φi

)= Fsεφ
(
φi

)+σ+ ∣∣φi −φ f (hi )
∣∣ [102]. In the context of grid convergence

studies, the safety factor Fs is chosen according to the Grid Convergence Index (GCI)
[102, 104, 105]. In this study, Fs is chosen to be equal to 1 for all data sets, again for the
sake of better comparability between the data sets.

The data φ is represented by the time averaged vapor volume Vvap. Since the time
step size ∆t , the mass transfer coefficients Cc,v , and the characteristic cell volume VC

in the region of interest are approximately varied on a logarithmic scale, they are trans-
formed on approximately equidistant scales as follows: h∆t ,i = log(∆ti /∆tmin)+1, hCc,v i =
log(Cc,v,max/Cc,v,i )+1, and hVC i = log(VC ,i /VC ,min)+1, respectively. For the uncertainty
estimation with respect to the grid density, a weighting factor wi = 1/

(
hi

∑n
i=1 1/hi

)
is in-

cluded in the SRE -function, such that SRE =∑n
i=1 wi

(
φi −φ f (hi )

)2 and
∑n

i wi = 1 [102].
This weighting yields a smaller standard deviation of the fitted function in this case,
where the hi -values of the data set are increasingly densely distributed towards h = 1.
Since the number of grid cells is varied by the same factor in vertical, radial and circum-
ferential direction, the ratio VC /VC ,min can be expressed by (1/ncells)3 /(1/25)3, where
ncells is the number cells per height hg as given in Table 4.3 and indicated in Fig. 4.33,
and where ncells = 25 for the finest grid.

Figs. 4.37 to 4.39 depict the normalized averaged power spectral density distribu-
tion of the pressure obtained from the procedure described in Sec. 4.3.2 for a systematic
variation of grid density, time step size∆t , and the value of the mass transfer coefficients
Cc,v = Cc = Cv , respectively. As explained in Sec. 4.3.2, the frequency obtained from
this analysis can be seen as characteristic for the cavity shedding process. The sam-
ple time is 0.013 s in all cases. For the configuration that is shown to give a converged
solution, the sample time corresponds to 20.5 shedding cycles. The grid sensitivity anal-
ysis in Fig. 4.37 shows that the characteristic frequency is rather insensitive with respect
to the grid density. Only a slight tendency towards higher frequencies is observed for
the coarser grids. The time step size ∆t on the other hand appears to have more effect
on the shedding behavior, where too large time steps in the order of 10−6 s tend to de-
crease the characteristic frequency. However, with decreasing∆t , a convergent behavior
of the power spectral density distribution in Fig. 4.38 is observed. Fig. 4.39 shows that
the characteristic frequency also converges with increasing values of the mass transfer
coefficients Cc,v . In this particular case, convergence is achieved for magnitudes of 5
kg·s/m5 or larger. Only for the smallest magnitude Cc,v = 0.5 kg·s/m5, the higher fre-
quencies become strongly attenuated. For the largest magnitude Cc,v = 5 ·104 kg·s/m5,
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Figure 4.36: Instantaneous vapor structures between the horizontal discs; pressure probes are taken at the
eight indicated locations on the upper disc (r = rt + ra , uniformly distributed in circumferential direction);

a slight stretch of the PSD distribution to lower frequencies is observed. As it can be
seen from Fig. 4.40, this stretch is counteracted by further decreasing the time step from
∆t = 1 ·10−7 s to ∆t = 5 ·10−8 s. This indicates that a converged solution can only be ob-
tained when sufficient temporal resolution in combination with sufficient mass transfer
capacity is provided.

The convergence behavior of the time averaged vapor volume Vvap in the computa-
tional domain is investigated for the same variations of grid densities, time step sizes,
and mass transfer coefficient values as for the frequency analysis. Again, the simula-
tion time is 0.013 s. The results are shown in Figs. 4.41, 4.42 and 4.43, where the varied
quantities are shown on a logarithmic scale to apply the uncertainty estimation proce-
dure described in Sec. 4.3.2. At this scale, the value 1 represents the finest grid, the
smallest time step, and the largest mass transfer coefficient, respectively. All data sets
exhibit convergent behavior with increasing grid resolution, decreasing time step size
and increasing mass transfer coefficient values, respectively. Also, for all three data sets,
the uncertainties of the individual data points are predominantly governed by the dif-
ference between the simulated value Vvap and the extrapolated value for infinitesimal
grid cells, time steps, and infinitely large mass transfer coefficient values, respectively.
Fig. 4.41 shows that the uncertainty obtained for the finest grid (25 cells/hg ) is still rela-
tively large compared to the uncertainties for the smallest time step and the largest mass
transfer coefficient in Figs. 4.42 and 4.43. One of the possible reasons for this behavior
is the smaller amount of data points involved in the uncertainty estimation. While in-
sufficient spatial resolution leads to an underestimation of the vapor volume content,
Fig. 4.42 shows that insufficient temporal resolution results in an overestimation of va-
por content. An underestimation of vapor volume is again obtained for very small values
of the mass transfer coefficients Cc,v in Fig. 4.43. Obviously, no vapor can be produced
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Figure 4.37: Normalized power spectral density distri-
bution of pressure (averaged over the probe locations
in Fig. 4.36) for different grid densities; ∆t = 1.0 ·10−7

s and Cc,v = 5 ·103 kg·s/m5.
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Figure 4.38: Normalized power spectral density distri-
bution of pressure (averaged over the probe locations
in Fig. 4.36) for different time steps; 15 cells/hg and

Cc,v = 5 ·103 kg·s/m5.

104

Figure 4.39: Normalized power spectral density dis-
tribution of pressure (averaged over the probe loca-
tions in Fig. 4.36) for different mass transfer coeffi-
cient magnitudes; 15 cells/hg and ∆t = 1.0 ·10−7 s.
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Figure 4.40: Normalized power spectral density distri-
bution of pressure (averaged over the probe locations
in Fig. 4.36) for both different time steps and mass
transfer coefficient values; 15 cells/hg .

in the limit Cc,v → 0 kg·s/m5. Compared to the spatial and the temporal resolutions, the
value of the mass transfer coefficient Cc =Cv is associated with the smallest uncertainty
at h = 1.

The convergence of both the characteristic shedding frequency and the time aver-
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Figure 4.41: Uncertainty of the average vapor vol-
ume Vvap in the computational domain for a vari-
ation of the grid density; hVC = 1 corresponds

to the finest grid; ∆t = 1.0 · 10−7 s (h∆t = 1.3);
Cc,v = 5 ·103 kg·s/m5 (hCc,v = 2.0).
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Figure 4.42: Uncertainty of the average vapor vol-
ume Vvap in the computational domain for a vari-
ation of the time step size; h∆t = 1 corresponds
to the smallest time step; 15 cells/hg (hVC = 1.7);

Cc,v = 5 ·103 kg·s/m5 (hCc,v = 2.0).
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Figure 4.43: Uncertainty of the average vapor vol-
ume Vvap in the computational domain for a vari-
ation of the mass transfer coefficients; hCc,v = 1
corresponds to the largest coefficient value; 15
cells/hg (hVC = 1.7); ∆t = 1.0 ·10−7 s (h∆t = 1.3).

aged vapor volume content with respect to the investigated parameters is explained by
the phase transition behavior of the cavitation model. In order to indicate the flow states
during phase transition, Fig. 4.44 depicts the density-pressure trajectory recorded at ob-
servation point P0 indicated in Fig. 4.36. The trajectory is again shown for a systematic
variation of grid density, time step size, and mass transfer coefficient values. It can be
seen that on statistical average and for fixed∆t and Cc,v , the evolution of the trajectory is
hardly affected by the grid density. The same applies to the variation of the time step size
∆t for fixed grid density and Cc,v value. On the contrary, the value of the mass transfer
coefficient appears to have significant influence on the evolution of the ρ-p trajectory.
It is observed that the ρ-p trajectories tend to sway increasingly around the vapor pres-
sure pv for a decreasing value of Cc,v . For Cc,v = 50 kg·s/m5 and even more for Cc,v = 0.5
kg·s/m5, this results in the occurrence of negative pressures as well as unphysically high
pressures in the cavitating mixture regime. This behavior is typical for the mass transfer
model and can be explained by the proportionality of the observed flow compressibility
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Grid density variation (∆t = 1.0 ·10−7 s, Cc,v = 5.0 ·103 kg·s/m5)
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Mass transfer coefficient variation (15 cells/hg , ∆t = 1.0 ·10−7 s)
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Figure 4.44: Density-pressure trajectories at probe location P0 in Fig. 4.36 for a variation of the grid density
(first row), the time step size (second row) and the mass transfer coefficient value (third row)
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∂ρ/∂p to the mass transfer coefficient value as discussed in Secs. 2.1.2 and 2.2. These two
sections further predict a proportionality of the observed compressibility to 1/

(
∂p/∂t

)
,

which suggests that those trajectories evolving at smaller slopes are associated with more
rapid temporal pressure changes along the trajectory. In the limit of large values of Cc,v ,
the trajectories are kept close to the vapor pressure pv relative to the pressure difference
pout −pv . Thereby, a scale separation between the driving pressure range and the phase
transition pressure range is established, as discussed in Sec. 2.1.3, which makes the in-
ertial flow dynamics insensitive to the exact flow states in the phase transition regime.
With the fluid properties and operating conditions given in Table 4.3 and assuming an
associated mixture sound speed of cm = 2.0 m/s (see Sec. 2.1.3), the inverse Mach num-

ber as defined in Sec. 2.1.3 becomes Ma−1 = cm

√
ρl /

(
Pout −pv

)= 0.05 << 1, suggesting
that the assumption of an inertia driven flow is physically justified.

Finally, the accumulated surface impact energy distribution obtained from the acous-
tic model derived in Sec. 3.2 is computed for the same variation of the grid density, time
step size, and mass transfer coefficient values. Only the energy focusing approach as
specified in Sec. 3.2.2 is employed in the present study. While the simulation time is
still 0.013 s, the effective sample time is only 0.010 s, because the moving time averaged
pressure 〈p〉, which is assumed to be equal to the collapse driving pressure pd in the po-
tential energy balance (see Sec. 3.1.3), requires a build-up time of at least one shedding
cycle.

Fig. 4.45 shows the distribution of accumulated surface energy eS per sample time for
the different grid densities. It can be seen that the surface energy distribution per sam-
ple time converges with increasing grid resolution. For the coarsest grid (10 cells/hg ),
the surface integrated energy content is only half of the one observed for the two finest
grids. The finest grid (25 cells/hg ) only results in a slightly higher energy content than the
second finest grid (20 cells/hg ). The differences in surface energy content are attributed
to the differences in average vapor volume content as found from Fig. 4.41, also having
in mind that the frequency at which vapor, and hence potential cavity energy, is period-
ically generated and reduced, was found to be approximately the same for all grids from
Fig. 4.37.

Fig. 4.46 shows the surface energy distributions accumulated per sample time for
the time step variation. Convergent behavior of the surface energy distribution with de-
creasing time step size ∆t is observed. It can be seen from the two largest time steps,
i.e. ∆t = 2.5 · 10−6 s and ∆t = 1.0 · 10−6 s, that insufficient temporal resolution has two
effects. The first effect is an overestimation of the surface energy content relative to the
converged distribution. This overestimation is attributed to the overestimation of the
average vapor volume in the domain, as is observed in Fig. 4.42. However, the accumu-
lated surface energy content also depends on the rate at which potential energy is peri-
odically increased and reduced and hence on the characteristic shedding frequency. Fig.
4.38 shows a decrease of frequency for large time steps, which counteracts the increase
of surface impact energy accumulation resulting from the higher average vapor volume.
However, the average vapor volume obtained from the largest time step ∆t = 2.5 ·10−6 s
exceeds the vapor volume obtained from the smallest time step by more than a factor of
2, which is more than the relative decrease of the characteristic frequency. The second
effect of insufficient temporal resolution is that the distribution of accumulated surface
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impact energy stretches significantly further downstream as compared to the converged
distributions. As discussed in Sec. 2.3, this effect is explained by the circumstance that
the local phase transition process is insufficiently resolved when the time step size is too
large, which results in a delayed collapse of the vapor cavities while they are advected
downstream by the mean flow.

The convergence behavior of the surface impact energy accumulated per sample
time with respect to the mass transfer coefficients Cc,v can be seen from Fig. 4.47. For
the smallest mass transfer coefficient, i.e. Cc = Cv = 0.5 kg·s/m5, practically no surface
energy is visible on the depicted scale. Fig. 4.47 shows that with the convergence of the
average vapor volume in the computational domain for increasing values of the mass
transfer coefficients (see Fig. 4.43), also the accumulated surface energy converges to a
distribution that is independent from the value of the mass transfer coefficient. As Fig.
4.39 shows that the dominating frequency is very similar for all tested values of Cc,v , the
underprediction of surface energy magnitude for small values of Cc,v relative to the con-
verged distribution can be fully attributed to the smaller average vapor volume content
in the computational domain.

10 cells /hg 15 cells /hg

20 cells /hg 25 cells /hg

Figure 4.45: Accumulated surface energy distribution per sample time (0.010 s) on the target disc for a system-
atic variation of the grid density; ∆t = 1.0 ·10−7 s and Cc,v = 5 ·103 kg·s/m5.
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∆t = 2.5 ·10−6 s ∆t = 1.0 ·10−6 s ∆t = 5.0 ·10−7 s

∆t = 2.5 ·10−7 s ∆t = 1.0 ·10−7 s ∆t = 5.0 ·10−8 s

Figure 4.46: Accumulated surface energy distribution per sample time (0.010 s) on the target disc for a system-
atic variation of the time step size; 15 cells/hg and Cc,v = 5 ·103 kg·s/m5.

It is observed that for large mass transfer coefficients and small time steps, most of
the surface impact energy accumulates right downstream from the reference position
r1. This is explained by the location of the pressure recovery gradient as indicated by Fig.
4.48, which depicts the time averaged pressure distribution on the target disc after 0.010
s for the second coarsest grid in Table 4.3. On average, a stagnation pressure forms at
the center of the disc, where the flow is deflected in radial direction. In the vicinity of
the gap entrance, the strong flow acceleration causes a rapid pressure drop, which can
be maintained further downstream due to the presence of sheet cavities, in which the
pressure must be close to vapor pressure. A region of pronounced pressure recovery ap-
proximately starts at the inner reference radius r1, from which on the most erosive events
were observed in the experiment by Franc et al. [83]. In addition, Fig. 4.49 shows three
instantaneous cross sectional views on the velocity magnitude distribution (left) and the
pressure distribution (right), where the left and right images depict the same cross sec-
tional view, but only mirrored with respect to each other. Vapor cavities are indicated by
white iso-lines of the liquid fraction γ= 0.0...0.5. The time instant t0 shows a larger scale
vapor structure that separated from the sheet cavity. At time instants t0 +2 ms and t0 +4
ms, developed sheet cavities are observed. In all three situations, the blockage due to the
increase of specific volume caused by the presence of vapor cavities in the gap results
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Cc,v = 5 ·10−1 kg·s/m5 Cc,v = 5 ·100 kg·s/m5 Cc,v = 5 ·101 kg·s/m5

Cc,v = 5 ·102 kg·s/m5 Cc,v = 5 ·103 kg·s/m5 Cc,v = 5 ·104 kg·s/m5

Figure 4.47: Accumulated surface energy distribution per sample time (0.010 s) on the target disc for a system-
atic variation of the mass transfer coefficient magnitude; 15 cells/hg and ∆t = 1.0 ·10−7 s.

in an upstream stagnation pressure at the lower disc center that is significantly higher
than the exit pressure pout. However, the absolute upstream pressure of 40 bars that is
found in the experiments [83], tends to be underpredicted. This may well be explained
by the neglecting the viscous forces in the present flow simulation. For a Large Eddy
Simulation (LES) without a cavitation model, but otherwise identical operating condi-
tions, Gavaises et al. [101] found a pressure drop reduction by 38% as compared to their
cavitating flow simulation. This suggests that the viscous pressure drop along the radial
direction between the discs makes a significant contribution to the upstream working
pressure. Franc et al. [83] further estimated the flow velocity along the cavity surface
from Bernoulli’s equation applied to the liquid phase under the assumption that p = pv

on the cavity surface. Their estimated value of 90 m/s appears the to be well in line with
the velocity distribution in Fig. 4.49.

Based on the convergence study of the characteristic shedding frequency, the time
averaged vapor content, and the accumulated surface impact energy distribution, it is
concluded that the grid resolution is associated with the largest uncertainty for the given
variation of input parameters. For this reason, only the finest grid from Table 4.3 is em-
ployed for the study. Concerning the temporal resolution, the second smallest time step
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Figure 4.48: Time averaged pressure distribution on the lower disc for 15 cells/hg , ∆t = 1.0 ·10−7 and Cc,v =
5 · 103 kg·s/m5 after a sample time of 0.010 s; a pronounced pressure recovery gradient is observed from r1
onward in downstream direction.

size ∆t = 1 · 10−7 s is considered to provide a sufficiently converged solution. For the
mass transfer coefficients Cc,v , the second largest value Cc =Cv = 5 ·103 is considered as
large enough. From the above mentioned configuration of grid density, time step size,
and mass transfer coefficient value, the dominating shedding frequency is determined
from a second order polynomial fit through the peak value of the PSD distribution and its
two neighbors. The peak location of this interpolation curve gives a dominant shedding
frequency of fshedd = 1595 Hz, which is in close agreement with the frequency of 1550
Hz that was found by Mihatsch et al. [97]. A comparison with the experimental result
by Franc et al. [83], which can be found in the work by Mihatsch et al. [97], shows that
both the numerical results by Mihatsch et al. [97] and from the present work slightly un-
derpredict the characteristic shedding frequency found in the experimental data. How-
ever, most importantly, the sensitivity study indicates that a converged distribution of
the accumulated surface impact energy can be obtained. This surface energy distribu-
tion becomes independent of the grid density, the time simulation time step size and the
values of the cavitation model coefficients, when converged results for the time averaged
amount of vapor volume and the characteristic cavity shedding frequency are achieved.
As far as the grid density is concerned, such a convergent behavior is achieved by pro-
viding sufficiently high spatial resolution to resolve the growth and decay of the periodic
sheet cavity and the larger scale cavitating structures shed from the sheet. Convergence
with respect to time step size and mass transfer coefficient magnitude is achieved in the
limit of sufficiently small time steps in combination with large values of the mass trans-
fer coefficients. However, in order to avoid numerical inaccuracies due to source term
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t = t0 ms

t = t0 +2 ms

t = t0 +4 ms

Figure 4.49: Cross-sectional view of the instantaneous velocity magnitude distribution (left) between the
horizontal discs and the corresponding instantaneous pressure distribution (right) obtained for 25 cells/hg ,

∆t = 1.0 ·10−7 and Cc,v = 5 ·103 kg·s/m5; vapor structures are indicated by iso-lines of γ from 0.0 to 0.5; figures
on the left and right are mirrored views and depict the same flow situation.

dominance, the mass transfer coefficients should not be chosen exhaustively large, but
only as large as necessary to achieve a converged solution. The mass transfer coefficient
values are considered sufficiently large when the scale separation between the phase
transition or mixture pressure range ∆pm and the driving pressure range p∞−pv as dis-
cussed in Sec. 2.1.3 is established. So far, it is checked by visual examination whether
the density-pressure trajectories as shown Fig. 4.44 are sufficiently steep relative to the
driving pressure range for the scale separation to be established. In future work, a met-
ric should be defined to evaluate the averaged steepness of the trajectories in the phase
transition regime relative to the driving pressure range.

4.3.3. IDENTIFICATION OF POTENTIALLY EROSIVE ZONES

The erosive aggressiveness of the flow is investigated by isolating those contributions to
the accumulated surface energy distribution that were caused by extreme events. Con-
tributions of extreme events to the distribution 〈ėS〉{n} are identified by means of the
statistical analysis method introduced in Sec. 3.4. It is recalled that n = 1 represents the
unfiltered accumulated surface energy distribution per sample time. For n > 1, the con-
tributions caused by low amplitude impacts are attenuated to an extent governed by the
value of n in such a way that the filtered distribution satisfies 〈ėS〉{n>1}

∣∣
xS

≤ 〈ėS〉{n=1}
∣∣

xS
at any surface location xS . The intensity exponent is chosen to be n = 2. This value was
shown to strongly attenuate the lower amplitudes in Sec. 4.2.5. The source term projec-
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tion frequency is 1/Tp = 1000 Hz, which is equal to the frequency 1/Tmov of the moving
averaged pressure field to compute the driving pressure distribution. Fig. 4.50 shows
a comparison between the unfiltered surface energy distribution per sample time (left)
and the corresponding filtered distribution (right) after a sample time of 0.010 s. Two dif-
ferences between the two are observed from the raw data distributions depicted at the
top of the figure. First, the filtered distribution (n = 2) appears to be more scattered than
the unfiltered one (n = 1). This is the result of attenuating the low amplitude impact con-
tributions, such that the less frequent and more scattered extreme events appear more
prominently. Second, the filtered distribution is more concentrated in radial direction,
and it also appears to have a slight shift downstream along the radial direction relative
to the unfiltered distribution. This downstream shift becomes even more visible in the
circumferential averages of the two distributions, which are depicted at the bottom of
Fig. 4.50. The shift is explained by the radial pressure recovery. With increasing radial
distance r from the disc center, cavities are more and more unlikely to be present, but
if they are, they can collapse more violently due to their larger potential energy content.
These rather rare but high amplitude implosions become more prominent in the filtered
surface energy distribution, whereas the more frequent upstream events can more effi-
ciently accumulate in the unfiltered distribution.

For further comparison, the filtered surface energy distribution (n = 2), associated
with the distribution of the most aggressive impact loads, is compared to the experimen-
tal erosion damage pattern by Franc et al. [83] and several numerical results from liter-
ature. The corresponding results are depicted in Fig. 4.51. For reference, the 〈ėS〉{n=2}

distributions from Fig. 4.50 are shown at the top, with the circumferential averaged
distribution on the left (A) and the raw data distribution on the right (B). The experi-
mental erosion damage pattern obtained by Franc et al. [83] is depicted in sub-figure C.
Sub-figure D is found in the work by Peters et al. [98], who used an unsteady Reynolds-
averaged Navier-Stokes (URaNS) approach and a mass transfer approach with incom-
pressible liquid phase to model the cavitating flow. The left half of sub-figure D shows
the distribution of a deformation coefficient derived by Peters et al. [98]. The defor-
mation coefficient is based on a liquid micro-jet model by Dular and Coutier-Delgosha
[10], where the distribution of water hammer pressure impacts above a critical threshold
level occurring on the sub-grid level is estimated from the macroscopic local flow con-
ditions provided by the numerical simulation. Sub-figures E and F are taken from the
work by Mihatsch et al. [97], who developed a collapse detector methodology to iden-
tify high erosion risk areas. Sub-figure E shows the distribution of near-wall (distance <
0.5 mm) collapse pressures in the computational domain. The distribution of maximum
surface pressures obtained from the simulation is depicted by sub-figure F. The results
by Mihatsch et al. [97] are obtained from a fully compressible density-based approach to
model the cavitating flow.

The comparison shows all numerically obtained impact distributions to be in sat-
isfactory qualitative agreement with the experimental erosion pattern. A quantitative
comparison is not possible, because the metrics used by the different authors are very
different. The deformation coefficient by Peters et al. [98] is dimensionless per defini-
tion. Even though the impact load model applied in the present work is based on the
spherical propagation of energy radiation sources, the obtained impact distribution can-
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Unfiltered accumulated surface
energy per sample time

n = 1, raw data

Filtered accumulated surface energy
per sample time

n = 2, raw data

n = 1, circumferential average n = 2, circumferential average

Figure 4.50: Distribution of the accumulated surface energy per sample time, where n = 1 represents the unfil-
tered distribution (left), whereas for n = 2 (right), the low impact amplitudes have been attenuated according
to the extreme event filtering technique introduced in Sec. 3.4.

not directly be compared to the collapse pressures and surface pressure lofads reported
by Mihatsch et al. [97]. The essential difference is that the fully compressible approach
by Mihatsch et al. [97] allows to directly compute the pressure rise at the cavity collapse
center and the subsequent propagation of the pressure wave impacting the surface. In
the present work, the transport equation of collapse induced kinetic energy allows to
compute the energy content of the radiated shock wave, which is then projected on the
impacted surface in a discrete event. Therefore, the model can give a reliable estimate



4.3. AXISYMMETRIC NOZZLE

4

105

of the time integrated impact power and acoustic pressure, but not a time accurate solu-
tion of the instantaneous acoustic power and pressure. The exact temporal evolution of
the impact power signals would require an additional assumption in the modeling about
the impact duration of the individual events.

The capability of a cavitation erosion model to allow for quantitative erosion risk
predictions strongly depends on its capability to provide physically converged solutions
of the surface impact distribution for different grid densities, time step sizes, and pos-
sibly other flow model parameters. For the fully compressible density-based numerical
approach employed by Mihatsch et al. [97], it was shown by Schmidt et al. [17] that the
maximum local pressure of a collapse scales with the inverse of the characteristic cell
length. As a result, the obtained pressure decreases with the linear decay law of spher-
ical waves [17]. In order to compensate for this grid density effect, Mihatsch et al. [97]
scale the local collapse pressure with a non-dimensionalized characteristic cell length.
The surface pressure obtained from the fully compressible density-based approach was
shown to be independent of the grid size even without correction [17], given that the
distance from the collapse center to the impacted wall, hence, the spherical wave prop-
agation is resolved. The linear decay law, as referred to by Mihatsch et al. [97], is also
found back in the reconstructed acoustic pressure given by Eqn. (3.51), if only a sin-
gle radiation source is considered, such that pa (t ,xS ) ∼ p

ėrad/‖xP −xS‖. Even though
the modeling approach in the present work is conceptually very different from the ero-
sion risk assessment procedure, as proposed by Mihatsch et al. [97] in the context of
fully compressible flow simulations, the underlying mechanism to achieve grid inde-
pendence is very similar. By focusing the potential energy of a collapsing cavity into the
collapse center, the resolution of the focusing process is still limited by the characteris-
tic cell size. However, as the focused energy content in the limiting grid cells is tracked
down from the volume change of the imploding structures, it can be conserved across
the spherical front of the radiated shock wave. This makes the present model inherently
energy conserving, provided that the volume change, and therefore the change of poten-
tial energy of the resolved cavitating structures, is accurately captured. A best possible
numerical reconstruction of the local velocity divergence plays a key role when an accu-
rate reconstruction of the potential energy change, according to Eqns. (3.29) and (3.30),
is the principal aim.
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A) See Fig. 4.50, n = 2, circumf. average B) See Fig. 4.50, n = 2, raw data

C) Erosion pattern from the experiment by
Franc et al. [83], image taken from [97]

D) Distribution of the deformation coeffi-
cient cdef in the work by Peters et al. [98]

E) Detected collapse pressures scaled with
the linear decay law for spherical waves
[97], figure taken from Mihatsch et al. [97]

F) Maximum surface pressure distribution,
figure taken from Mihatsch et al. [97]

Figure 4.51: Qualitative comparison of the high amplitude impact load distribution computed in the present
work (A, B) with the experimentally obtained erosion pattern [83] (C), the deformation coefficient distribution
by Peters et al. [98] (D), and the collapse pressures by Mihatsch et al. [97] (E, F).
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4.3.4. DISCUSSION OF THE RESULTS
A recently developed cavitation implosion load model based on a model transport equa-
tion to describe the collapse energy cascade is applied to the cavitating flow in an ax-
isymmetric nozzle. The accumulated surface energy distribution on the erosion tar-
get disc obtained from the implosion load model is in satisfactory agreement with the
damage pattern observed in an experiment by Franc et al. [83]. This particularly applies
to the distribution of extreme impact events. The impact energy distribution is further
compared to other numerical results reported in literature. Even though the erosion risk
metrics of the presented results are fundamentally different from each other, they all
yield good qualitative agreement with the experimentally observed damage pattern. In
this case it may be attributed to the high operating pressure and the pronounced pres-
sure recovery gradient, which forces the shed cavitites to collapse in a very confined area
on the target disc.

The main added value of the present study is to demonstrate that the recently devel-
oped implosion load model is able to give numerically converged results in agreement
with physical properties for the impact energy distribution. This means that the sur-
face energy distribution accumulated per sample time becomes independent of the grid
density, the simulation time step, and the mass transfer coefficient magnitude of the cav-
itation model. Grid size independence of the accumulated surface energy distribution
is an integral part of the modeling approach. The prerequisite to achieve grid size inde-
pendence is that the large-scale cavitating structures, which can be assumed to include
most of the potential energy, are reasonably well resolved. More specifically, the aver-
age volume of the separated vapor structures imploding on the target surface needs to
be captured, without the necessity to capture the detailed break-up of those structures
into small-scale structures. The conversion of the potential energy content into surface
impact energy is strictly governed by the transport equation of the energy cascade and
the spherical wave propagation law. By this means, the energy content radiated from
the cavity collapses is not derived from local instantaneous quantities such as pressure,
but rather from the history of the cavity collapse, which again is reliably predicted by
the numerical flow solver. Next to the minimum spatial resolution that is needed to re-
solve the large-scale cavitating structures, the temporal resolution and the mass transfer
coefficient magnitude play an important role to obtain a converged solution for the char-
acteristic shedding frequency of these structures. It is shown that a converged shedding
frequency is obtained in the limit of large mass transfer coefficients in combination with
sufficiently small time steps.





5
CONCLUSION

5.1. SUMMARY OF THE RESEARCH FINDINGS
A novel model transport equation describing the energy cascade involved in vapor cav-
ity collapses has been proposed in this research. The design of this transport equation
is strongly driven by the capability of engineering flow simulation tools to predict flow
quantities that can be linked to the erosive aggressiveness of the cavitating flow. To this
end, the present research has two goals. The first goal is an improved understanding of
the capabilities and limitations of engineering flow solvers to predict cavitation implo-
sion loads. It has been found that the kinematic features of the cavitating flow, e.g. cav-
ity collapse times and characteristic cavity shedding frequencies, are reliably predicted
if the cavitating flow can be classified as predominantly inertia driven. Based on the im-
proved understanding of the flow solver capabilities and limitations, the second goal is
the development of a cavitation implosion load model that allows for quantitative pre-
dictions of cavitation implosion loads.

5.1.1. FINDINGS ABOUT CAVITATING FLOW DYNAMICS
Flow solvers labeled as "engineering tools" in the context of this work have two main fea-
tures that distinguish them from physically more correct but also computationally more
expensive flow simulation tools. First, the pure liquid phase is treated as incompressible.
This means that implosion impacts are not the result of propagating waves, but the result
of instantaneous pressure pulses associated with an infinite propagation speed. Second,
the cavitation model is a (semi-) empirical mass transfer source term, whereas high fi-
delity models would rather explicitly enforce the thermodynamic equilibrium states of
the macroscopic mixture fluid.

As discussed in Sec. 2.1.2, the mass transfer rate to support unique equilibrium states
of the cavitating mixture can be derived from the constraint that the apparent com-
pressibility of the mixture fluid must be invariant with respect to the observer’s reference
frame. In engineering mass transfer models, the violation of this equilibrium constraint
is accepted for the sake of numerical robustness and computational efficiency. However,
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these models can be tuned by means of mass transfer coefficients. In the limit of large
coefficient values, a scale separation is enforced between the phase transition pressure
range and the pressure range driving the collapse of vapor cavities. As a result of this
scale separation, the flow dynamics get insensitive to the exact flow states of the cavitat-
ing mixture. The inverse Mach number Ma−1 is proposed in Sec. 2.1.3 to check whether
the flow can be classified as predominantly inertia driven and whether the enforced scale
separation is physically justified. This is the case if Ma−1 << 1, which typically applies to
flow situations encountered in engineering problems. In the limit of large mass transfer
coefficients and with sufficient temporal resolution, the mass transfer model has enough
capacity to achieve the local phase transition within the time scale that is dictated by the
inertia driven flow. Thereby, the mass transfer model can mimic the mixture compress-
ibility behavior of high fidelity equilibrium models in the sense that the inertial flow dy-
namics are not affected by the violation of the equilibrium constraint. In Secs. 2.3.2 and
4.1.2, it has been shown how the collapse time of an isolated bubble and of a collective
bubble cloud, respectively, converges in the limit of large mass transfer coefficients and
sufficiently small time steps. With the same procedure, the convergence of the charac-
teristic shedding frequency and the averaged vapor volume content has been demon-
strated for a re-entrant jet dominated flow in Sec. 4.3.2. In order to avoid numerical in-
accuracies and instabilities due to source term dominance of the governing equations,
the mass transfer coefficients should be chosen as large as necessary to achieve physical
convergence, but not excessively large. A practical way to check whether the coefficients
are large enough, without the need to perform exhaustive sensitivity studies, is to sam-
ple a density-pressure trajectory at a location of high evaporation rate and possibly at
another location at which rapid condensation processes are expected. If the observed
trajectories remain close to vapor pressure during evaporation and if their evolution is
steep relative to the range between vapor and ambient pressure during condensation,
the coefficients can be considered as large enough. The error that is introduced by the
infinite propagation speed of a pressure pulse in an incompressible liquid can typically
be considered as negligible, because the time that it would take for a sound wave to prop-
agate through the flow region of interest at liquid sound speed is typically much smaller
than the advective time scale of the flow. However, one cannot expect reliable results for
the implosion peak pressures if the liquid is treated as incompressible.

5.1.2. MODELING CAVITATION IMPLOSION LOADS

The findings about the flow solver capabilities have led to the conclusion that a cavita-
tion implosion load model is needed and that it should be based on kinematic features
of the cavitating flow. Furthermore, the computation of implosion loads should not ex-
clusively be based on instantaneous local flow quantities, as they are inaccurately pre-
dicted at the final cavity collapse stage. With this in mind, the potential energy concept
has been considered as a suitable starting point for the design of the cavitation implosion
load model, because it provides "a priori" information about the energy content of a cav-
ity which can eventually feed into the radiated shock wave. The task is then to track the
collapse energy throughout the cavity collapse, the radiation of the collapse shock wave,
its spherical propagation and eventually the impact on the solid surface. The main diffi-
culty in deriving a model transport equation describing this process is that a conversion
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of different energy forms takes place. This energy conversion is also referred to as the
energy cascade of the cavity collapse [19, 21, 24].

Prior to the final collapse stage, the energy cascade involves the conversion of po-
tential cavity energy into kinetic energy of the surrounding liquid [13, 32]. In complex
flow situations, the spatial distribution of kinetic energy induced by a cavity collapse is
unknown. The total amount of kinetic energy induced by the collapse, however, can be
derived from its change of potential energy [13, 32]. For the simplifying situation of an
isolated bubble collapse, it has further been shown in Sec. 3.1.1 that the collapse in-
duced kinetic energy distribution focuses towards the cavity interface and thereby into
the collapse center as the final collapse stage is approached. Together with the knowl-
edge of the instantaneous rate of kinetic energy generation induced by the cavity, this
focusing effect is utilized in the novel transport equation by artificially absorbing the
collapse induced kinetic energy into the cavity interface. Thereby, the absorbed energy
is focused towards the collapse center and converted into radiated energy when a final
collapse stage is identified. The conservative transport along the collapsing interface is
achieved by destroying kinetic energy right upstream from the interface and by absorb-
ing the same amount into the interface and at a rate that is proportional to the local rate
of potential energy reduction. Together with the criterion to identify the final collapse
stage, this integral balance allows for a redistribution of absorbed kinetic energy between
interacting cavities in a collective collapse situation as described by Wang and Brennen
[16] . Compared to related approaches by Arabnejad and Bensow [25] and Leclercq et al.
[27], the capability to capture the collective collapse of interacting cavities can be seen as
the most distinct physical feature of the present modeling approach. The surface impact
power is calculated from the spherical wave propagation law. Similar to the approach
by Leclercq et al. [27] and different from almost any other related technique, the local
surface orientation relative to the radiation source is taken into account to fully comply
with the energy conservation requirement.

The computational efficiency of the approach can be problematic because each ra-
diation source must be propagated onto the entire target surface. In other words, each
local surface impact is the result of a volume integral over all radiation sources. This ef-
ficiency problem has been solved by integrating the energy radiation field over time and
by propagating the accumulated radiation energy at the end of specified time intervals
only. This can be done because the energy propagation from the radiation source to the
impacted surface only involves geometrical information. If the temporal evolution of an
impact signal is needed, it is recommended to restrict the analysis to a few probe loca-
tions of interest. Furthermore, a statistical analysis method has been developed to iden-
tify extreme impact events by attenuating low amplitude events in the surface energy
distribution. By this means, one can distinguish between locations that are impacted
frequently but at rather low amplitudes and locations that are subject to few isolated
extreme events.

5.1.3. APPLICATION OF THE IMPLOSION LOAD MODEL

The cavitation implosion load model has been applied to three test cases, each focusing
on different aspects of the model. The first test case in Sec. 4.1 involved the close wall
collapse of a vapor bubble cloud. It has been demonstrated with this test case, that the
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model is able to automatically distinguish between isolated and collective collapse situa-
tions. In Sec. 4.1.3, the model has been shown to capture the collective energy transport
along the low pressure side of an inward directed condensation shock as described by
Wang and Brennen [16]. To further demonstrate the effect of energy focusing, the results
obtained from the transport equation of collapse induced kinetic energy (energy focus-
ing approach) have been compared to an alternative approach similar to Leclercq et al.
[27] in which the change of potential energy is assumed to directly feed into radiated
power (non-focusing approach) instead of being converted into kinetic energy prior to
the final collapse stage. In fact, the majority of cavitation erosion models based on the
potential energy concept follows the latter assumption. The impact signals have been
shown to be fundamentally different for the two approaches. Only with the kinetic en-
ergy focusing approach, the reconstructed acoustic wall impact pressure could mimic
the impact pressure signal obtained by Schmidt et al. [17] from a fully compressible
density-based simulation. In the second test case in Sec. 4.2, the cavitating flow around a
NACA0015 hydrofoil has been investigated, mainly to test the statistical analysis method
to identify extreme impact events. Best practice guidelines for the use of the developed
methodology to assess the aggressiveness of periodic cavitating flows have been derived
and summarized in Sec. 4.2.7. With the third test case, involving the cavitating flow in
an axisymmetric nozzle, it has been demonstrated that the surface impact energy distri-
bution accumulated per sample time converges if the averaged vapor volume content in
the computational domain and the characteristic cavity shedding frequency converges.
This can be seen as a step towards quantitative predictions of cavitation erosion damage.

5.2. OUTLOOK
Some aspects of the presented modeling approach need further improvement, so that
the computed cavitation implosion impact loads can reliably be coupled to material
models. This will allow to make quantitative predictions of cavitation erosion damage
in future work.

The collapse driving pressure has turned out to be the most difficult quantity to
model in the present modeling framework. The reason is that the collapsing driving
pressure is a non-uniform and unsteady ambient condition rather than a material quan-
tity. For periodic cavitating flows as typically encountered in engineering problems, the
moving time averaged pressure is proposed as an approximation of the collapse driving
pressure (see Sec. 3.1.3). From a systematic variation of the moving average time window
in Sec. 4.2.4, it is concluded that the length of the moving time window should be equal
to the characteristic cavity shedding period or larger. Even though this approach allows
to capture the effect of pressure recovery gradients on statistical average, an improved
model for the driving pressure with stronger physical foundation would be desirable.

The conservation of energy throughout the collapse energy cascade is a key factor
when reliable quantitative predictions of the energy distribution on the impacted sur-
face are aimed for. The transport equation to describe the focusing and radiation of
collapse energy is given Eqn. (3.28) and by Eqn. (3.40) in its final form, and the spher-
ical wave propagation and surface projection of the radiated energy is given by Eqn.
(3.44). The transport term φ (E ) and the radiation source term as well as the spher-
ical wave propagation and surface projection operator are formulated in such a way
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that energy conservation is strictly enforced. The term
(
Depot/Dt

)
c measuring the lo-

cal change of potential energy, however, can be subject to inaccuracies due to numerical
errors involved in the reconstruction of the velocity divergence field (see Eqns. (3.29)
and (3.30)). For this reason, the numerical technique to reconstruct the velocity diver-
gence needs further investigations. In recent research, Melissaris et al. [68] have found a
way to achieve exact energy conservation under two prerequisites. First, the velocity di-
vergence at the cell center should be reconstructed from the cavitation model source
term Γ [68] such that (∇·u)C = ΓC and not from the sum of the face fluxes given by
(∇·u)C = 1/VC

∑
f u f · S f as it has been done in the present work. Even though both

formulations should be equal because of the definition ∇·u = Γ, they do not necessarily
give the same result in practice due to interpolation and iterative errors in the numerical
scheme [106]. Second, higher order time discretization schemes help to further mini-
mize the numerical errors involved in the reconstruction of ∇·u [68].

In the present form, the impact signals computed from the cavitation implosion
model are not time accurate because the radiation source and the spherical wave propa-
gation and surface projection operator can only control the energy content in the spher-
ical wave front, but not the exact energy density distribution across the wave front. Also,
the wave propagation speed is assumed to be infinite. An additional modeling assump-
tion is needed to make the computed impact signal time accurate. The additional model
term could comprise an assumption about the wave passage time and an energy den-
sity distribution function across the wave front. With the knowledge of both, the energy
radiation could be modeled in a time accurate fashion rather than as a discrete event as
it happens in the present form. Patella et al. [34] have found a linear relation between
the wave passage time and the initial radius of a collapsing vapor/gas bubble. Know-
ing the amount of energy that is focused into the collapse collapse, an equivalent initial
radius could be computed in the present modeling approach to finally obtain the wave
passage time. Analogous to the propagation of acoustic sources in the acoustic analogy
by Lighthill and Newman [107] and by Williams et al. [108], a time retardation could be
introduced to account for the wave travel time from the source to the impact location.
Furthermore, Tinguely et al. [14] formulated the collapse energy partition of an isolated
vapor/gas bubble as a function of a single parameter that involves the driving pressure
difference and also the pressure of non-condensable gas. When either the amount of
non-condensable gas is high or the driving pressure is low so that the amount of energy
feeding into a rebound bubble is not negligible, the energy partition by Tinguely et al.
[14] could be employed in the present modeling approach.

Finally, the transport terms
{
φ

}+ and
{
φ

}− in the transport equation of collapse in-
duced kinetic energy are subject to modeling assumptions discussed in Sec. 3.2.1 in or-
der to achieve the transport of absorbed kinetic energy along the collapsing cavity inter-
faces as well as the non-trivial energy redistribution between interacting cavities. Even
though the validity of these modeling assumptions is supported by the numerical test
cases in the present work, more testing is recommended to further validate them against
results from literature.
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A.1. SEGREGATED EQUATIONS
A segregated pressure-based approach is employed to solve the equations on a collo-
cated grid. Pressure-velocity coupling is achieved by solving a pressure equation, involv-
ing a Laplacian term of the pressure field, followed by a correction of the velocity field
which is directly obtained by forward substitution of the previously computed pressure
field [85]. The pressure equation and the velocity correction step provide a solution of
the Euler equations given by Eqn. (2.16) and Eqn. (2.17). Phase transition is achieved by
solving the transport equation of liquid volume fraction given by Eqn. (2.21). In the fol-
lowing, the procedure to obtain the set of discretized equations to be solved is described
in more detail.

The momentum equation is written in the linearized semi-discrete form (discrete in
the momentum field U) [85]

AuC UC +BPC = Hu (U) , (A.1)

where UC and PC are the velocity and the pressure field assembled at the cell centers
and the matrix AuC contains the diagonal discretization coefficients only, such that it is
cheaply inverted. The vector Hu (U) contains the neighbor coefficients multiplied by the
corresponding velocities known from the previous iteration step as well as the explicit
part of the discretized time derivative term. Furthermore, the operator B represents the
gradient operator ∇ applied to the entire field, such that

BPC =
[ (∇pC ,1

)T , ...
(∇pC ,i

)T , ...
(∇pC ,ncells

)T
]T

, where i ∈ [1,ncells] (A.2)

and where ncells is the number of grid cells in the computational domain. Analogous, the
mass continuity equation is written in the semi-discrete form

ApC PC +B T UC = Hp (P ) , (A.3)

as well (discrete in the pressure field P ), where B T represents the divergence operator ∇·
applied to the entire field such that

B T UC = [ ∇·uC ,1, ..., ∇·uC ,i , ..., ∇·uC ,ncells

]T
, where i ∈ [1,ncells] . (A.4)

The matrix ApC denotes the coefficient matrix, being implicit with respect to PC , and
the vector Hp (P ) represents the corresponding explicit term. Both ApC and Hp (P ) stem
from the discretization of the cavitation model source term, which is explained in more
detail in Appx. A.2. Assembling Eqn. (A.1) and Eqn. (A.3), the following coupled linear
system is obtained: [

AuC B
B T ApC

]
︸ ︷︷ ︸

M

[
UC

PC

]
︸ ︷︷ ︸

X

=
[

Hu (U)
Hp (P )

]
︸ ︷︷ ︸

RHS

(A.5)

Boundary operators have already been applied to UC and PC in Eqns. (A.1) and (A.3) so
that the system matrix M in Eqn. (A.5) has full rank. The solution technique described
in the following has originally been developed for entirely incompressible flows, where
B T UC = 0. Eigenvalue analysis of M then shows that the linear system given by Eqn. (A.5)
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evolves into a saddle-node problem [109]. In order to adapt iterative solution techniques
designed for large and sparse problems [109] of this kind, it is convenient to decompose
Eqn. (A.5) into sub-systems of more favorable eigenvalues [110]. Essentially, two pos-
sible sets of segregated equations equivalent to Eqn. (A.5) can be obtained from Schur
complement reduction of M [109]. This reduction is obtained from the block triangular
factorization of M , given by [109]

M =
[

I O
B T A−1

uC I

][
AuC O
O S

][
I A−1

uC B
O I

]
, (A.6)

The matrix S= ApC −B T A−1
uC B is the Schur complement [109] and I is the identity ma-

trix. By either multiplying the first and the second matrix on the right-hand side of Eqn.
(A.6) or the second and the third matrix, two different left-right (L−U) factorizations of
M can be obtained, eventually leading to different sets of segregated equations. In this
work, the first option is followed, where the left-right decomposed system becomes

M =
[

AuC 0
B T S

]
︸ ︷︷ ︸

L

[
I A−1

uC B
0 I

]
.︸ ︷︷ ︸

U

(A.7)

A solution of Eqn. (A.5) is then obtained step wise by first computing an interim solution
X ∗ from LX ∗ = RHS and then the final solution from UX = X ∗. The term LX ∗ = RHS
gives

AuC U∗
C = Hu (U) , (A.8)

B T U∗
C + [

ApC −B T A−1
uC B

]
P∗

C = Hp (P ) . (A.9)

The term UX = X ∗ gives
UC + A−1

uC BPC = U∗
C (A.10)

and the trivial solution PC = P∗
C . Solving Eqn. (A.8) for U∗

C , substituting into Eqn. (A.9)
and further substituting U∗

C into Eqn. (A.10) and solving for UC yields the pressure equa-
tion given by Eqn. (A.11), which needs to be solved for the collocated pressure field PC ,
and the momentum correction equation given by Eqn. (A.12), from which the updated
collocated momentum field UC is obtained by forward substitution of PC :[

ApC −B T A−1
uC B

]
PC = Hp (P )−B T [

A−1
uC Hu (U)

]
(A.11)

UC = A−1
uC [Hu (U)−BPC ] (A.12)

The transport equation of the liquid fraction γ (see Eqn. (2.21)) is solved in a separate
step. The solver is run in a PISO (Pressure-Implicit with Splitting of Operators [84]) mode
as implemented in OpenFOAM (see [85], [64]), which means that the γ equation, placed
in the outer iteration loop, is solved once per time step only. Three inner iteration loops
over pressure equation and velocity correction are performed. No relaxation is applied.

An important detail that cannot be seen from the above equations is how the im-
plicit Laplacian term of Eqn. (A.11) and the explicit gradient term of Eqn. (A.12) are
discretized. By employing the face interpolated form of A−1

uC and by utilizing the Gauss
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theorem to discretize both terms, an oscillation free solution is obtained for the collo-
cated grid arrangement [85, 111], which would otherwise require the Rie-Chow correc-
tion [112] of the velocity field. The procedure to discretize the momentum equation
resulting in the semi-implicit form as given by Eqn. (A.1) and hence the coefficient ma-
trix AuC is described in the work by Jasak [85]. The discretized terms of the γ equation
(Eqn. (2.21)) as well as the terms ApC and Hp (P ) of the pressure equation (Eqn. (A.11))
are presented in more detail in Appx. A.2 as they require some modification compared
to the original solver due to the modified cavitation model.

A.2. DISCRETIZATION PROCEDURE
The modified form [65] of the Merkle model [54] source term given by Eqn. (2.19) is
rewritten in two different forms to derive a semi-implicit form of the pressure equation
and the liquid fraction transport equation, respectively. In order to be treated (partially)
implicitly in the pressure equation, the mass transfer source term must be expressed as
a function of pressure, such that

∇·u = [
ṁpv +ṁpc

](
p −pv

)
, (A.13)

where

ṁpv =
{
γCv
ρ

(
1
ρl

− 1
ρv

)
if p ≤ pv

0 if p > pv

and

ṁpc =
{

0 if p ≤ pv(
1−γ) Cc

ρ

(
1
ρl

− 1
ρv

)
if p > pv

Evaluating the source term of A.13 at the cell center location, referred to by the subscript
C , gives the semi-discrete equation

∇·uC +
(
ṁ0

pc,C −ṁ0
pv,C

)
︸ ︷︷ ︸

apC

pC =
(
ṁ0

pc,C −ṁ0
pv,C

)
pv︸ ︷︷ ︸

hp (p)

, (A.14)

where the superscript 0 indicates that the corresponding terms are assumed to be known
from the previous iteration step. Assembling the underbraced terms apC and hp

(
p

)
in

Eqn. (A.14) for the entire computational domain gives the matrices ApC and Hp (P ) in
the pressure equation as given by Eqn. (A.11). To be treated (partially) implicitly in the
liquid fraction transport equation, the mass transfer source term must be expressed as a
function of the liquid fraction γ, which gives

∇·u =−[
γṁγv +

(
1−γ)

ṁγc
]︸ ︷︷ ︸

ṁγ

(
1

ρv
− 1

ρl

)
, (A.15)

where

ṁγv =
{

Cv
ρ

(
p −pv

)
if p ≤ pv

0 if p > pv
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and

ṁγc =
{

0 if p ≤ pv
Cc
ρ

(
p −pv

)
if p > pv

.

To obtain an implicit form of the liquid fraction transport equation, Eqn. (2.21) is rewrit-
ten as follows:

∂γ

∂t
+∇· (γu

)= ṁγ

ρl
+γ

(
1

ρv
− 1

ρl

)
ṁγ−γ

(
1

ρv
− 1

ρl

)
ṁγ (A.16)

Substituting Eqn. (2.19) for only the second term on the right-hand side of Eqn. (A.16)
gives

∂γ

∂t
+∇· (γu

)= [
1

ρl
−γ

(
1

ρv
− 1

ρl

)]
ṁγ︸ ︷︷ ︸

V̇

+γ∇·u. (A.17)

With the definition of ṁγ in Eqn. (A.15), we get

V̇=−γ
[

1

ρl
−γ

(
1

ρv
− 1

ρl

)]
ṁγv︸ ︷︷ ︸

V̇v

+γ
[

1

ρl
−γ

(
1

ρv
− 1

ρl

)]
ṁγc︸ ︷︷ ︸

V̇c

−
[

1

ρl
−γ

(
1

ρv
− 1

ρl

)]
ṁγc︸ ︷︷ ︸

V̇c

,

(A.18)
and the integral form of Eqn. (A.16) becomes∫

CV

∂γ

∂t
dV +

∫
CV

∇· (γu
)

dV −
∫

CV

γ∇·udV +
∫

CV

γ
(
V̇v −V̇c

)
dV =−

∫
CV

V̇c dV. (A.19)

Employing the Gauss theorem, the discrete convection term of Eqn. (A.19) is constructed
from the face fluxes, which are obtained from interpolation between the cell center as-
sociated with index C and the neighboring cell centers associated with index N :∫

CV

∇· (γu
)

dV ≈∑
f

(
γu0)

f ·S f ≈ ãγCγC +∑
N

ãγNγN (A.20)

A linear scheme is employed for the time derivative term in Eqn. (A.19), such that∫
CV

∂γ

∂t
dV ≈ γC −γ0

C

∆t
VC , (A.21)

where again the superscript 0 refers to the previous time step, for which the value of γC

is already known. Further normalizing by the cell volume VC , the discrete liquid fraction
transport equation becomes

aγCγC +∑
N

aγNγN − 1

VC

(∑
f

u0
f ·S f

)
γC +V̇0

vγC −V̇0
cγC = γ0

C

∆t
−V̇0

c , (A.22)

where

aγC = 1

∆t
+ ãγC

VC
and aγN = ãγN

VN
.
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For discretization of the convective terms in the momentum equation and the liquid
fraction transport equation, the upwind-biased linear scheme [113] and the Van Leer
[114], respectively, is employed. The Laplacian term of pressure in the pressure equation
is discretized by using a linear scheme as described by Jasak [85].

A.3. RESIDUAL CONTROLS
The presence of the mass transfer source term in the governing equations demands spe-
cial attention to the residual measure of the algebraic equations because they can be-
come strongly source term dominated., which may affect the accuracy of the solution.
The discretized equations to be solved can be written in the simplified notation [110]

aCφC +∑
N

aNφN = bC . (A.23)

In Eqn. (A.23), φ is the unknown quantity to be solved for. The index C refers to
the local cell center and the index N to the cell centers of the corresponding neighbors.
The coefficients aC and aN stem from the temporal and spatial discretization and the
interpolation step that is needed in the finite volume formulation on a collocated grid to
express face quantities in terms of the adjacent cell centered values. In the open source
CFD environment OpenFOAM [64], the local residual remaining after solving the equa-
tions iteratively, is expressed in the normalized form [110]

r
(
φC

)= 1

max
(‖aCφC‖

) (
aCφC +∑

N
aNφN −bC

)
, (A.24)

where max
(‖aCφC‖

)
is the maximum value of aCφC of all cells. The global residual

is given by the L1 norm of Eqn. (A.24), where L1 (r) = 1/ncells
∑ncells

i=1 ‖ri‖. The solution of
an equation is considered as converged if L1 (r) falls below the residual tolerance εr. In
the present work, the solver iterates over the discretized γ-transport equation until the
residual drops below εr = 10−13. The final residual tolerance of the pressure equation is
chosen to be εr = 10−11.
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