

Delft University of Technology

Software-Based Energy Profiling of Android Apps
Simple, Efficient and Reliable?
Di Nucci, Dario; Palomba, Fabio; Prota, Antonio ; Panichella, A.; Zaidman, Andy; De Lucia, Andrea

DOI
10.1109/SANER.2017.7884613
Publication date
2017
Document Version
Accepted author manuscript
Published in
Proceedings - 24th International Conference on Software Analysis, Evolution and Reengineering, SANER
2017

Citation (APA)
Di Nucci, D., Palomba, F., Prota, A., Panichella, A., Zaidman, A., & De Lucia, A. (2017). Software-Based
Energy Profiling of Android Apps: Simple, Efficient and Reliable? In M. Pinzger, G. Bavota, & A. Marcus
(Eds.), Proceedings - 24th International Conference on Software Analysis, Evolution and Reengineering,
SANER 2017 (pp. 103-114). IEEE. https://doi.org/10.1109/SANER.2017.7884613
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/SANER.2017.7884613
https://doi.org/10.1109/SANER.2017.7884613

Software-Based Energy Profiling of Android Apps:
Simple, Efficient and Reliable?

Dario Di Nucci∗, Fabio Palomba†∗, Antonio Prota∗, Annibale Panichella‡, Andy Zaidman†, Andrea De Lucia∗
∗University of Salerno, Italy

†Delft University of Technology, The Netherlands
‡SnT Centre, University of Luxembourg, Luxembourg

Abstract—Modeling the power profile of mobile applications is
a crucial activity to identify the causes behind energy leaks. To
this aim, researchers have proposed hardware-based tools as well
as model-based and software-based techniques to approximate
the actual energy profile. However, all these solutions present
their own advantages and disadvantages. Hardware-based tools
are highly precise, but at the same time their use is bound to
the acquisition of costly hardware components. Model-based tools
require the calibration of parameters needed to correctly create a
model on a specific hardware device. Software-based approaches
do not need any hardware components, but they rely on battery
measurements and, thus, they are hardware-assisted. These tools
are cheaper and easier to use than hardware-based tools, but
they are believed to be less precise. In this paper, we take a
deeper look at the pros and cons of software-based solutions
investigating to what extent their measurements depart from
hardware-based solutions. To this aim, we propose a software-
based tool named PETRA that we compare with the hardware-
based MONSOON toolkit on 54 Android apps. The results show
that PETRA performs similarly to MONSOON despite not using
any sophisticated hardware components. In fact, in all the apps
the mean relative error with respect to MONSOON is lower than
0.05. Moreover, for 95% of the analyzed methods the estimation
error is within 5% of the actual values measured using the
hardware-based toolkit.

Index Terms—Energy Consumption; Mobile Apps; Estimation

I. INTRODUCTION

Nowadays, over 2 billions users rely on smartphones and
tablets to perform their daily activities as reported by the
Statistics Portal association [1]. Not only do users play games
or send messages, they use mobile applications (a.k.a., apps)
for every type of need, including social and emergency con-
nectivity [2]. Due to this ever-increasing number of mobile
devices and apps, energy consumption is becoming a critical
factor in user satisfaction for both paid and free apps [3].

Energy related issues mainly involve the efficiency of
hardware components such as the CPU and other electronic
elements. However, Flinn and Satyanarayanan [4] pointed out
that “there is growing consensus that advances in battery tech-
nology and low-power circuit design cannot, by themselves,
meet the energy needs of future mobile computers” [4]. This
observation has been confirmed by recent advances in green
software engineering, which demonstrated how the source of
energy leaks can be software-related as well [5], [6], [7], [8].

For instance, Sahin et al. [5] have shown that good design
principles, and design patterns in particular, have a negative

impact on the energy efficiency of mobile apps. Along the
same line, previous studies have investigated the power ef-
ficiency consequences of refactoring, demonstrating the flip
side of operations that are supposed to improve non-functional
attributes of source code [7], [9].

Despite the aforementioned research efforts, Harman et
al. [10] highlight that there is a lack of tools that quickly
and efficiently measure the energy consumption of mobile
applications. Existing tools fall into three main categories: (i)
hardware-based, (ii) model-based, and (iii) software-based ap-
proaches. Together with their own advantages, such solutions
present various limitations that adversely affect their practical
applicability. While hardware-based tools are able to delineate
the exact energy profile of a mobile app, they require ad-hoc
hardware components that are expensive and difficult to set up.
Model-based approaches try to define mathematical functions
able to estimate the energy consumption of mobile apps on a
given hardware device. However, such tools require careful
calibration of the parameters to correctly estimate power
consumption. Finally, software-based approaches estimate the
power profile of a mobile application solely relying on the
system’s functionalities of a device, as an example the CPU
frequency. Thus, these tools can be considered hardware-
assisted since they rely on measurements obtained by physical
hardware components (e.g., cpu, battery, etc.), but without
needing any specialized hardware tools. By nature, they are
easier to use and cheaper than pure hardware-based solution.
As a drawback, they are supposed to be less precise than
hardware-based approaches [11].

In this paper, we aim at investigating to what extent
software-based tools are less precise than hardware-based tools
for energy consumption. In other words, is the higher cost of
hardware-based solutions justified by a sensibly more accurate
energy profiling? Can software-based solutions lead to close
measurements without any cost overhead? To answer these
questions, we built a novel tool for extracting the energy profile
of mobile applications, which we coined PETRA (Power
Estimation Tool for Android), specific for Android OS.
PETRA relies on the publicly available Project Volta
Android tools1 and has the following characteristics:
• Efficiency and Granularity. PETRA is able to quickly

estimate the energy consumed by an app at the method

1https://developer.android.com/about/versions/android-5.0.html

level. It is worth noting that this level of granularity
allows the developer to calculate the energy estimations
per test case. The tool does not require any human effort.

• Hawthorne Effect and Impact of Sampling Frequency.
The technologies on which PETRA relies are an integral
part of the core Android OS and the instrumentation
has little influence on the estimation process. In this
way, is possible to minimize the Hawthorne Effect in
which the measurements are affected by the measurement
process [10]. Moreover, since the tool does not rely
on hardware components, it does not suffer from the
sampling frequency highlighted by Saborido et al. [12].

• Specialized Hardware Requirements. PETRA does not
need any particular hardware and provides simple output
that can be easily analyzed.

For the evaluation, we run PETRA on 54 mobile appli-
cations belonging to the publicly available dataset provided
by Linares-Vasquez et al. [6]. Thus, we compare the energy
measurements provided by PETRA against the actual energy
consumption computed using the MONSOON hardware toolkit
[13] for the same apps and using the same hardware/software
setting (i.e., smartphone model, operating systems, etc.). The
collected results showed that the energy estimations produced
by PETRA are very close to the measurements obtained with
the MONSOON tool, with an error which is within 5% in 95%
of the source code units under analysis. A direct implication of
our study is that we recommend both the research community
and industry to further investigate software-based tools for
energy profiling of mobile applications as a viable alternative
to hardware-based ones.

Structure of the Paper. Section II discusses the related
literature in the context of power consumption measurement
and empirical studies aimed at investigating the causes of
energy leaks. Section III presents our software-based approach
PETRA. In Section IV the design of the empirical study is
described, while Section V reports the results achieved when
comparing the performance of our tool with the ones achieved
by a hardware-based approach. Section VI discusses the threats
that could affect the validity of our study. Finally, Section VII
concludes the paper.

II. BACKGROUND AND MOTIVATION

The attention toward energy efficiency issues have driven
the research community in spending a lot of effort on the
construction of new methods to extract the energy profiles of
devices, as well as providing guidelines to help developers in
writing green code. This section describes on the one hand the
tools proposed in recent years to measure energy consumption,
and on the other hand the empirical studies conducted in the
context of software maintenance and evolution.

A. Measuring the Energy Profile of Hardware Devices

A first category of strategies to measure the energy con-
sumption of devices is hardware-based since specific hardware
toolkits are required to perform measurements. While such

methodologies are quite popular in other research communi-
ties, such as high performance analysis [14] or large scale in-
tegration systems [15], they have been only partially explored
in the context of software engineering.

Flinn and Satyanarayanan [16] proposed a tool named POW-
ERSCOPE. It is based on the adoption of a digital multi-meter
connected to a computer, which is used to monitor the energy
variations – recorded by the multi-meter – of processes that
are running on a laptop. Hindle et al. devised GREENMINER
[2], a hardware mining testbed based on an Arduino board
with an INA219 chip [17]. Besides the extraction of the energy
consumption of mobile devices, GREENMINER also provides a
web application2 for (i) automating the testing of applications
running on a device, and (ii) analyzing the results. Finally,
other researchers exploited the MONSOON power monitor [13]
to measure energy consumption of APIs of Android apps [6].

The costly hardware requirements needed for hardware-
based energy profiling encouraged researchers to find alter-
native ways to approximate the energy consumption. A proxy
measure can be computed by constructing models, which are
based on the definition of specific functions to estimate the
energy consumed by a device during its usage. Bourdon et
al. [18] defined POWERAPI, an approach that leverages on
analytical models characterizing the consumption of various
hardware components (e.g., CPU). Noureddine et al. [19]
introduced JALEN, a Java agent which uses statistical sampling
for the energy estimations. The model proposed by Pathak
et al. [20] [21] is based on system calls, and it was imple-
mented in EPROF, an energy counterpart of gprof, the gnu
profiler tool, for profiling application energy drain. V-EDGE
[22] considers the battery voltage dynamics for generating
a power model. It neither needs external power meters nor
relies on the battery current sensing capability. Along the
same line, Balasubramanian et al. [23] defined an energy
consumption model, named TAILENDER, to estimate to what
extent modules such as 3G and GSM contribute to the battery
drain by mobile apps. Ding et al. [24] proposed SEMO, a
monitoring tool powered by an energy model based on the
usage of the battery and its temperature. Zhang et al. [25]
proposed a model-based solution with POWERBOOTER and
POWERTUTOR. POWERBOOTER is a technique for automated
power model construction that relies on battery voltage sen-
sors and knowledge of battery discharge behavior. It does
not require external power meters. POWERTUTOR uses the
model provided by POWERBOOTER for generating online
power estimation. Lastly, it is worth mentioning Microsoft’s
JOULEMETER tool3, which uses energy models specific for
each hardware configuration.

Finally, software-based approaches exclusively use the sys-
tem functionalities to estimate the power consumption, with-
out constructing any specific model or requiring any ad-
ditional hardware. An example of this kind of functional-
ity is ACPI (Advanced Configuration and Power

2http://softwareprocess.es/static/GreenMining.html
3http://tinyurl.com/jkvo9qa

Interface), an industry specification for efficiently han-
dling the power consumption in desktop and mobile com-
puters. For this reason, these approaches can be considered
hardware-assisted. In this category, Do et al. [26] developed
PTOP, an approach proposed that takes into account CPU
frequency, hard disk and memory consumption as sources of
information to estimate the joules consumed by a process.
ELENS [11] provides a more fine-grained estimation of energy
consumption at method, path or line-of-source level. It relies
on a combination of program analysis and energy modeling
and it produces visual feedback to help developers in better
understanding the application behavior.

Differently from the techniques/tools discussed above, PE-
TRA does not require any additional hardware equipment and
therefore any strong experience in the setup of the test bed. It
uses reliable tools coming from the Android Toolkit and does
not exploit energy models that need to be calibrated. Finally,
unlike the tools measuring energy consumption at process
level, PETRA works at method-level granularity. In addition
to that, most of the approaches proposed in the literature
(including PTOP and ELENS) are not publicly available.4

B. Empirical Studies in Green Software Engineering

In recent years an ever increasing number of empirical
studies aimed at understanding the reasons behind energy
leaks in source code have been carried out. On the one hand,
researchers have investigated the possibility to predict the
energy consumption of mobile devices relying on empirical
data, paving the way for new prediction models able to alert
developers of the presence of energy bugs [27], [28]. On the
other hand, Zhang et al. [29] and Gupta et al. [30] have
proposed dynamic analysis based approaches for detecting
portions of source code affected by energy leaks, while Li
et al. [31] have put forward a technique for detecting specific
lines of code affected by an energy bug.

Hindle [32] has investigated to what extent changes made
by developers across software versions affect the energy
consumption. He found that (i) software change can affect the
power consumption and (ii) there seems to exist a relationship
between software metrics and power consumption.

Other researchers focused their attention on the relationship
between the development practices adopted by programmers
and the energy consumption. Sahin et al. [33] showed that
code obfuscation can negatively affect energy consumption,
but the observed difference with non-obfuscated code unlikely
impacts end-users. The same authors have also reported on
an analysis of the role of design patterns [5]. In particular,
they found that some patterns (e.g., the Decorator pattern)
negatively influence energy efficiency. Similar results have
been found by Noureddine and Rajan [34].

Hasan et al. [8] analyzed the impact of the data structures
used by the developers, specifically the influence of different
Java Collections types. Results of their study showed that the
use of the wrong type of data structure can increase the energy

4PETRA is available at http://tinyurl.com/je2nxkd.

consumption by up to 300%. Other factors that have been
studied that have a negative impact on energy efficiency are
(i) the different sorting algorithms exploited [35], (ii) the use
of lock-free data structures [36], (iii) the colors used in the
GUI of software projects [37], (iv) the API usage of Android
apps [6], and (v) the different refactorings applied to simplify
the source code [7], [9].

Most of the studies mentioned above relied on hardware-
based tools (e.g., MONSOON). The final goal of the approach
proposed in this paper is to provide researchers and practition-
ers an easier way to approximate the energy consumption of
the methods of a mobile app without specialized hardware
requirements: this can possibly help (i) the research com-
munity in conducting more studies aimed at understanding
and solving energy-related issues and (ii) practitioners to take
energy efficiency into account when developing mobile apps.

III. PETRA: A POWER ESTIMATION TOOL FOR ANDROID
APPLICATIONS

This section presents our novel software-based approach,
coined PETRA (Power Estimation Tool for Android), suitably
developed to measure the power consumption of mobile apps
at a method-level granularity. As depicted in Listing 1, its
main process is composed of three main blocks: (i) app
preprocessing, (ii) energy profile computation, and (iii) output
generation. In the following paragraphs, we detail each part
independently.

App Preprocessing. In the first step, PETRA needs to set the
software environment before measuring the energy consumed
when executing a mobile app. To this aim, it uses as input an
executable version of the app under analysis in the form of an
apk file. The app is identified by the apk location and the name
of the app to profile, which correspond to apkLocation,
and appName in Listing 1 respectively. Then, PETRA installs
the apk on a mobile phone able to run it (e.g., a smartphone
having an arbitrary version of the Android operating system)
and enables the debuggable option. Enabling debugging is
mandatory, because otherwise the instrumentation of the app,
needed to profile it, would not be possible.

Listing 1: PETRA workflow
1 computeEnergyConsumption(apkLocation, appName, tCase,

nRuns){
2 installApp(apkLocation);
3 for (run=0; run<nRuns; run++) {
4 clearAppCache(appName);
5 resetBatteryStats();
6 startProfiler();
7 exerciseApp(appName, tCase);
8 stopProfiler();
9 collectBatteryStatsData();

10 collectSysTraceData();
11 collectDMTraceDumpData();
12 loadPowerProfile();
13 for each method call in trace file {
14 computeCallEnergyConsumption();
15 }
16 saveResults();
17 stopApp(appName);
18 }
19 uninstallApp(apkLocation)
20 }

Energy Profile Computation. Once the app is properly set
up, PETRA exercises the app under consideration using a test
case given as input, i.e., tCase in Listing 1. This test case
can be created with automated tools (e.g., MONKEYRUNNER
or MONKEY) or with manual operations performed by the
software engineer. Once the test case is run, the core process
behind PETRA starts.

For the profiling phase, we leverage the Project Volta
Android tools, which are based on the self-modeling paradigm
proposed by Dong and Zhong [38], i.e., the definition of a mo-
bile system that automatically generates its energy model with-
out any external assistance. Such tools are dmtracedump5,
Batterystats6, and Systrace7. Specifically:
• dmtracedump provides an alternate way to show trace

log files. The files generated by dmtracedump are easy
to parse and allow the developers to establish precisely,
at microseconds granularity, when a method call has been
invoked and when it returned. PETRA relies on this
component in order to store the execution traces of the
app under analysis. For each method call dmtracedump
provides the entry and the exit time. The final output is
a list of the executed method calls during the run.

• BatteryStats is an open source tool of the Android
framework able to collect battery data from the device
under evaluation. In particular, it is able to show which
processes are consuming battery energy and which tasks
should be modified in order to improve battery life. It
is executable via the command line. The data collected
can be analyzed as a log file or can be converted
to an HTML visualization that can be viewed in a
browser using Battery Historian6. PETRA uses
the Batterystats log in order to retrieve the active
smartphone components and their status in a specific
time window. Furthermore, it can provide the information
about the device voltage. Given this information, it is
then possible to calculate the energy consumed by the
smartphone during a time window.

• Systrace is a tool that can be used to analyze application
performance. It captures and displays the execution times
of the active processes of a smartphone, combining data
from the Android kernel, i.e., the CPU scheduler, disk ac-
tivity, and application threads. The data can be viewed as
an HTML report that shows the overview of the processes
in a given time window. In PETRA, the information
provided by Systrace is used to capture the frequency
of the CPU in a given time window. Considering that
CPUs have different consumptions as their frequency
varies, this information completes the one provided by
Batterystats improving the estimations.

After gathering the information related to the active compo-
nents with their status, the CPU frequencies and the method
call invocations, the power profile file is loaded. The

5https://developer.android.com/studio/profile/traceview.html
6 https://developer.android.com/studio/profile/battery-historian.html
7https://developer.android.com/studio/profile/systrace-commandline.html

power profile values define the current consumption for
a component along with an approximation of the battery drain
caused by each component over time. For instance, it specifies
how many MilliAmperes of current are required to run the
CPU at a certain frequency. Every smartphone has its own
power profile. It is worth noting that each device manufacturer
must provide this information and that this info can be found
in a defined location in the device8.

Given the previous data, it is possible to compute the
energy consumed for every method call invocation. First of
all, given a method call invocation and its termination we
can calculate the overall time window Tw as the arithmetic
difference between the two time instants when these two
events occurred. However, the energy consumed within one
single time window is not constant but may change because
of a CPU frequency variation or a component state change
happened. Therefore, we divided the time windows in smaller
time units, i.e., data frames T∆. When the entry to a method is
registered, a new time window Tw and a new time frame T∆

start. Whenever a component changes its state, the existing
time frame T∆ is terminated and a new one (for the new
state) is started. When the exit point to a method is registered,
then the corresponding time window Tw is terminated as well
as the latest time frame T∆. In this way, each data frame
T∆ is characterized by coherent component states (e.g., CPU
frequency) and by a coherent (constant) energy drain. For
example, if the CPU is working at the maximum frequency and
none of the components change their state, the time windows
Tw will be composed by only one time frame T∆ of the same
duration, i.e., be the difference between the method entry and
exit. Therefore, we can calculate the current power intensity
at each time frame T∆ as follows:

I∆ =
∑
∀c∈C

I∆,c,s (1)

where C is the set of smartphone hardware components, I∆,c,s

is the current intensity of the component c with the state s
within the current time frame T∆. For example, 92.6 is the
number of MilliAmpere consumed in one second by a Nexus
4 when the CPU frequency is fixed to 384Mhz.

After calculating the current intensity, it is possible to
calculate the energy consumed in a time frame, as follows:

J∆ = I∆ × V∆ × T∆ (2)

where J∆ is the consumed energy in Joule, I∆ is the current
intensity in Ampere, V∆ is the device voltage in Volt and T∆

is the length of the time frame in seconds.
Finally, the energy consumed by a method call can be

calculated by summing up the energy consumed in each time
frame in which the method call was active:

J =
∑

T∆∈Tw

(I∆ × V∆ × T∆) (3)

Output Generation. The final output provided by PETRA is
a csv file, containing the energy estimation for each method

8https://source.android.com/devices/tech/power/values.html

call. More precisely, it provides the signature of each executed
method call, along with the consumption in Joule and the
execution time in seconds.

By default, PETRA uses Monkey to generate test cases,
which are used to exercise the mobile app under analysis
and to store the energy drain information for every exercised
method call. It is important to highlight that the usage of
Monkey is not mandatory, as other tools can be also used
with PETRA. However, in order to have a fair comparison
with the oracle data, we used Monkeyrunner (i.e., we used
the same test cases).

Finally, PETRA relies on the Android Activity
Manager9, so the apk must be enabled for debugging. Fur-
thermore, in order to provide a better estimation, PETRA
exercises the app multiple times (nRuns in Listing 1). Note
that in our experiments nRuns is fixed to 10 and that in order
to avoid any bias due to multiple runs, at the start of each run
the app cache is cleaned and Batterystats is reset (lines
4 and 5 in Listing 1).

IV. EVALUATING THE ESTIMATIONS PROVIDED BY PETRA

The goal of the study is to analyze the accuracy of PETRA
in providing energy consumption estimations of mobile apps
at method-level granularity with the purpose of investigating
whether the proposed approach can be used as a valid alterna-
tive to hardware-based solutions. More specifically, the study
aims at addressing the following research question:

RQ1: How close are the estimations from PETRA
to a hardware-based tool?

A. Context Selection and Oracle Extraction

The context of the study consisted of a set of 54 Android
apps from the Google Play Store having different cate-
gories and scope. Table I reports for each app (i) an identifier
we assigned to simplify referencing the app, (ii) its name, (iii)
its Google Play Store identifier, (iv) the specific version
taken into account, and (v) the number of APIs used by the
app. The choice of using these apps is not random, but rather
guided by the need of having a set of applications for which
an oracle reporting the consumption measured at the method
level with hardware-based tools is publicly available. Indeed,
since we had no hardware-based tool available to perform
measurements we had to look for alternative solutions.

Some available datasets provide data about the energy
consumption of software changes [39] or system calls [40].
However, these datasets are not suitable for our purpose
because they (i) do not provide detailed measures for source
code at the method level and (ii) contain data from desktop
and web applications (e.g., FIREFOX) rather than mobile apps.
For this reason, we relied on the dataset provided by Linares-
Vasquez et al. [6], that reports the actual power consumption
of the methods belonging to the APIs used by the 54 mobile
apps considered in the study. The authors computed the

9https://developer.android.com/studio/command-line/shell.html

Fig. 1: Test environment

measurements relying on the MONSOON toolkit [13]. Note
that the dataset also contains the test data needed to exercise
the app in the same manner as done by Linares-Vasquez
et al. [6] (more details on the measurement process come
later in this section). A direct consequence of our choice
to rely on this dataset is that we had to limit the focus of
our analysis to methods belonging to APIs. However, we
still took into account the energy consumption of 414.899
API calls belonging to the 321 APIs used by the considered
apps. Moreover, according to recent findings achieved by Li
and Gallagher [41], method invocations represent the more
influencing energy consuming operation and, therefore, it is
particularly interesting the analysis of the context of API calls.

B. Test Environment Setup and Energy Profiles Extraction

Figure 1 shows our test environment. As PETRA is a
software-based approach, it requires a simple test environment
composed only of a smartphone and a PC. While seemingly
simple, we need to ensure a well-isolated test environment in
order to avoid biases. To this aim, we carefully followed the
guidelines from previous work in the field [2], [6], [11], [42].
The subsequent subsections detail each setup choice.

Choice of the Smartphone. Table II reports the characteristics
of the phone used in the experiment. Specifically, we selected a
factory resetted LG Nexus 4 having Android 5.1.1 Lollipop
as the operating system, and equipped with a 1.5 GHz quad-
core Snapdragon S4 Pro processor with 2 GB of RAM, and
having a 2100 mAh, 3.8V battery. The choice is guided by
the need to have the same smartphone used in the paper by
Linares-Vasquez et al. [6] in order to conduct a fair evaluation.
Moreover, it is worth noting that this particular hardware
allows to be connected via a data cable, namely a cable
where the USB charging can be disabled10. Thus, during the
experiment no energy is transferred over the cable, allowing
more stable measurements.

10http://android.stackexchange.com/questions/54902/disable-usb-charging

TABLE I: The mobile apps considered in our evaluation

Name ID Version # of APIs
1 Battery HD ch.smalltech.battery.free 1.16 3
2 Textgram codeadore.textgram 2.3.15 3
3 Write Now Notepad com.aerodroid.writenow 1.1.5 5
4 AndRecorder Free com.andrconstruction.andrecord 3 2
5 Antivirus Free com.antivirus - 2
6 Botanica com.app.botanica.layout 1 3
7 Sleep Sound Aid com.arcdroid.sleep 20121007 2
8 Battery Drainer com.batterydrainer 1.4.0 3
9 Better Browser com.browser.sogood.ui 2.3 2
10 AudioPlayer com.bytemystery.audioplayer 1.2 3
11 gReminders com.diegoyarza.greminders 0.9.7 3
12 Dr.Web Antivirus Light com.drweb - 2
13 Sniper shooter com.fungamesforfree.snipershooter.free 1.6.0 2
14 Despicable me (minion rush) com.gameloft.android.ANMP.GloftDMHM 1.1.0 2
15 10,000 Quotes DB (FREE!) com.hmobile.quotesmegacollection 3.0.4 3
16 Icey Slot com.jbiz.iceyslotz 2.9 1
17 Android Music Player com.jrtstudio.music 4.0.4b3 3
18 Android Antivirus com.lab4apps.antivirus 2.0.1 1
19 Bubble blast 2 com.magmamobile.game.BubbleBlast2 1.0.34 2
20 Map quest com.mapquest.android.ace 1.8.1 3
21 Oxford AZ of English Usage com.mobisystems.msdict.embedded.wireless.oxford.azenglishusage 4.3.059 2
22 Livo Recorder Lite com.mp1.livolite 3.7.0.a 1
23 Simple Weather com.netthreads.android.weather 1.1.3 2
24 Opera Mini web browser com.opera.mini.android 7.5.3 2
25 MasterCard ATM Hunter com.orbiscom.ATMHunter 1.4 2
26 SimpleNews com.prss.simplenews 1.4 1
27 Punjab Radio com.prstudio.radio.punjabi 1.0.4 5
28 25000 Best Quotes com.puissantapps.quotesapp.free 1.0.7 2
29 aTimer com.r4ph4.timer 1.3 3
30 Star Wars Angry birds com.rovio.angrybirdsstarwars.ads.iap 1.3.0 2
31 Classical Music Radio Lite com.rslclasslite 1.0.3 3
32 Activity Express Task Manager com.sayhello2theworld.te 1.22 1
33 news|swipe com.segvic.news 1.0.0 2
34 Video Poker com.sg.js.VidPoker 1.2.1 2
35 Galaxy Torch com.swijaya.galaxytorch 1.4 3
36 TED com.ted.android 2.0.1 3
37 Easy Birthday Reminders com.tencentapps.bdays 1.2.1 2
38 World Travel Guide by Triposo com.triposo.droidguide.world 2.1 2
39 8,500+ Drink Recipes com.webworks.drinkscocktails 1.0.6 3
40 Droid Notepad com.williamkingdom.droidnotepad 1.11 2
41 5001 Amazing Facts Free com.ximad.wff 3.2.0 3
42 Inspiring Quotes com.xstudio.inspiringquotes 1.2 3
43 Battery Info com.zgame.batteryinfo 1.6 2
44 Anti Mosquito Sonic Repellent com.zodinplex.antimosquito - 2
45 AnEq Equalizer Free de.ebbert.audioeq 1.0.9 4
46 Anime Radio Online free.animeradioonline.gutisoft 1.06 3
47 Wifi Radar girsas.wifiradar 1.06 2
48 Rome hu.pocketguide.bundle.Rome 10-Jul-13 3
49 Battery Info Always jp.dip.sys1.android.battery 1.2.0 2
50 Advanced Task Manager mobi.infolife.taskmanager 2.1.2 3
51 Anti dog mosquito whistle mz.anti.dog.cat.mosquito.insect.repellent.whistle 1.3 2
52 Meridian Media Player Revolute org.iii.romulus.meridian 2.4.5 2
53 Better Notepad org.strive.notes 0.0.5 2
54 Arcane legends sts.al 1.0.7.0 1

Isolating the execution of an app. To isolate the behavior of
an application being executed on the smartphone, we adopted
a number of precautions. In particular, we firstly disabled all
the unnecessary apps and processes (e.g., Google Services)
running on the phone to avoid race conditions. Then, we
avoided asynchronous events, such as incoming messages or
calls by removing the sim card from the phone. Finally,
we held the phone steady to avoid energy measurements by
sensors and WiFi signal changes.

Extraction of the Energy Profiles of APIs. To ex-
tract the energy profiles of the apps in our dataset,
we have to enable the debug mode. This entails manu-
ally adding android:debuggable="true" in the file
AndroidManifest.xml and regenerating the apk file for
each app (i.e. the executable), using ANDROID STUDIO [43].

Once we created these debuggable and executable versions
of the apps, we applied PETRA to them. As explained in
Section III, our approach receives as input a set of test cases
for exercising the app under consideration and measuring the
energy consumption at method-level granularity. In the context
of this experiment, we exercised the apps in our dataset by
using exactly the same Monkeyrunner11 test cases used
by Linares-Vasquez et al. [6]. This allows a fair comparison
between the energy profiles extracted using our approach and
the oracle provided using the MONSOON toolkit [13].

The output of this step consisted of a set of files report-
ing the execution traces of each app, accompanied by the
information on the energy consumed by each method during
that execution. It is important to note that in this stage we

11https://developer.android.com/studio/test/monkeyrunner/

TABLE II: Characteristics of the smartphone used in our study

Component Specification
Name LG Nexus 4
Screen 4.7” diagonal

1280x768 pixel resolution (320 ppi)
WXGA IPS
Corning Gorilla Glass 2

Size 133.9 x 68.7 x 9.1mm
Weight 139g
Cameras 8 MP (main)

1.3 MP (front)
Memory 16GB

2GB RAM
CPU Qualcomm Snapdragon S4 Pro 1.5GHz
Sensors Microphone

Accelerometer
Compass
Ambient light
Barometer
Gyroscope
GPS

Network Unlocked GSM/UMTS/HSPA+
GSM/EDGE/GPRS (850, 900, 1800, 1900 MHz)
3G (850, 900, 1700, 1900, 2100 MHz)
HSPA+ 42

Wireless Wi-Fi (802.11 a/b/g/n)
NFC (Android Beam)
Bluetooth

Battery 2,100 mAh non-removable battery
OS Android 5.1.1 (Lollipop)

collected the information for all the methods belonging to an
application. However, to compare the energy profiles extracted
by PETRA with the ones extracted using MONSOON [13], we
needed to select only the methods belonging to an API. To this
aim, we selected from the final output produced by PETRA
only the Android public methods, removing also the calls to
other Java APIs.

Moreover, to be more confident about the energy profiles
built by PETRA, we repeated the measurements 10 times.
Similarly to Linares-Vasques et al. [6], we aggregated the
results of the 10 runs (i.e., the joules consumed by the methods
in each run) using the mean operator. Therefore, the final
output consisted of a unique value representing the average
energy consumed by the method belonging to an API exercised
during the test execution.

C. Data Analysis and Metrics

Once extracted the energy profiles using PETRA, we an-
swered RQ1 by comparing the energy profiles computed using
PETRA with the oracle data [6]. To evaluate to what extent
the energy consumption provided by our approach is close to
the values measured with a hardware based tool, we employed
a set of metrics widely used in the area of cost estimation [44]
[45]. Specifically, we used the Mean Magnitude Relative Error
(MMRE) [44] defined as follow:

MMRE =
1

N

n∑
i=1

MREi (4)

where n is the number of energy estimations computed by
PETRA on each app (i.e., number of methods), and MRE

indicates the Magnitude Relative Error [44] and has values in
the range defined by the following formula:

MREi =
|Ji − Ĵi|

Ji
(5)

where Ji and Ĵi are the energy estimations produced by
MONSOON and PETRA respectively for the method i.

Besides determining the mean error in the estimations
provided by our approach, we also computed the PRED(x)
metric, namely the Relative Error Deviation Within x [46].
This measure gives an indication of how many methods have
estimation errors with our approach within x of the estimation
values provided by MONSOON. In particular, PRED(x) is
defined as the average fraction of the MREs off by no more
than x as defined by Jorgensen [47].

PRED(x) =
1

n

n∑
i=1

{
1 if MREi ≤ x
0 otherwise

(6)

In the field of cost estimation, the parameter x is usually set
to 25, i.e., the estimated cost is within 25% of the actual
cost of a project [45]. However, in our context an estimation
error of 25% could be very large. For instance, a variation of
25% is very large when estimating the energy consumed by a
data structure used in the source code [8]. An analysis done
in this way would be too coarse-grained. Thus, we verified
whether PETRA can achieve a lower estimation error, by
setting x=2; 5; 7; 10; 20. In this way, we were able to control
how the estimation errors of our approach are distributed.

Obviously, the estimation errors in PRED(5) are also
included in PRED(2), the estimation errors in PRED(5)
in PRED(7) and so on. This means that the distribution over
the different PRED(x) measures is cumulative. For instance,
if PRED(2) is equal to 0.91 and PRED(5) is 0.96, then 5%
of the estimation errors are between 2% and 5%.

Finally, we performed a fine-grained analysis aimed at
understanding the types of errors achieved by PETRA during
the energy profile estimations. To this aim, we (i) measured
the ratio of over/under estimations provided by our approach,
and (ii) provided motivations behind the estimation errors.

V. ANALYSIS OF THE RESULTS

For each app considered in the empirical study, Table III
shows the MMRE and the distribution of the PRED(x)
achieved when comparing the estimations provided by PETRA
with those reported by the oracle data [6]. Table III also reports
the percentage of over/under estimations given by PETRA.
Finally, the row Average shows the results obtained when
considering all the estimations as a unique dataset.

A first point to discuss is the mean estimation error pro-
vided by our tool (column MMRE). From Table III we
observe that for all 54 mobile apps the mean relative error
(MMRE) is always lower than 0.05, being 0.01 on average.
To have a practical idea of the magnitude of the error, an
MMRE = 0.01 corresponds to a percentage of battery
discharge of 3.1×10−6%, and thus we can claim that PETRA
misses the correct energy consumption by a small factor. For

TABLE III: MMRE, PRED(x), over estimations, and under estimations computed for the apps under evaluation

MMRE PRED(2) PRED(5) PRED(7) PRED(10) PRED(20) Over Estimations Under Estimations
1 0.04 0.71 1.00 1.00 1.00 1.00 1.00 0.00
2 0.01 0.92 0.94 0.94 0.95 0.95 0.91 0.09
3 0.01 0.89 0.99 0.99 0.99 0.99 0.99 0.01
4 <0.01 0.82 0.92 1.54 0.92 0.92 0.92 0.08
5 <0.01 0.91 1.00 1.00 1.00 1.00 1.00 0.00
6 0.01 0.78 1.00 1.00 1.00 1.00 0.89 0.11
7 0.02 0.75 0.99 0.99 1.00 1.00 0.89 0.11
8 0.01 0.83 1.00 1.00 1.00 1.00 0.84 0.16
9 0.01 0.89 1.00 1.00 1.00 1.00 1.00 0.00
10 <0.01 0.69 0.89 0.90 0.91 0.94 0.87 0.13
11 0.01 0.93 1.00 1.00 1.00 1.00 0.94 0.06
12 <0.01 0.71 0.98 0.98 0.99 0.99 0.94 0.06
13 0.02 0.91 0.95 0.95 0.96 0.97 0.85 0.15
14 <0.01 0.84 0.99 0.99 1.00 1.00 0.88 0.12
15 <0.01 0.89 0.99 0.99 0.99 1.00 0.99 0.01
16 0.02 0.91 0.99 0.99 1.00 1.00 1.00 0.00
17 <0.01 0.87 0.99 0.99 0.99 0.99 0.99 0.01
18 <0.01 1.00 1.00 1.00 1.00 1.00 1.00 0.00
19 0.02 0.96 0.97 0.97 1.00 1.00 0.95 0.05
20 0.02 0.87 1.00 1.00 1.00 1.00 0.82 0.18
21 <0.01 0.78 0.81 0.87 1.00 1.00 0.92 0.08
22 <0.01 1.00 1.00 1.00 1.00 1.00 1.00 0.00
23 <0.01 0.88 0.98 0.98 0.98 0.99 0.98 0.02
24 0.01 0.77 0.99 0.99 0.99 0.99 0.93 0.07
25 0.01 0.91 0.96 0.97 0.97 0.98 0.96 0.04
26 <0.01 0.30 0.32 0.32 0.32 0.38 0.28 0.72
27 0.02 0.95 0.99 1.00 1.00 1.00 0.76 0.24
28 <0.01 1.00 1.00 1.00 1.00 1.00 1.00 0.00
29 0.01 0.96 0.98 0.98 0.98 0.99 0.79 0.21
30 0.02 0.96 0.97 0.97 1.00 1.00 0.89 0.11
31 0.01 0.96 1.00 1.00 1.00 1.00 1.00 0.00
32 0.01 0.99 1.00 1.00 1.00 1.00 0.91 0.09
33 <0.01 0.10 0.11 0.12 0.13 0.17 0.11 0.89
34 0.01 0.88 0.98 0.99 1.00 1.00 0.78 0.22
35 0.01 0.91 0.94 0.95 0.96 0.97 0.82 0.18
36 0.01 0.63 0.94 0.94 1.00 1.00 0.91 0.09
37 0.02 0.93 1.00 1.00 1.00 1.00 0.97 0.03
38 <0.01 0.95 1.00 1.00 1.00 1.00 0.81 0.19
39 0.01 0.92 1.00 1.00 1.00 1.00 0.78 0.22
40 <0.01 0.92 0.99 0.99 0.99 0.99 0.99 0.01
41 0.02 0.94 0.99 0.99 0.99 0.99 0.85 0.15
42 <0.01 0.83 0.92 0.92 0.92 0.92 0.92 0.08
43 0.01 0.99 1.00 1.00 1.00 1.00 1.00 0.00
44 0.01 0.95 1.00 1.00 1.00 1.00 0.91 0.09
45 0.02 0.97 0.99 0.99 0.99 0.99 0.94 0.06
46 0.01 0.97 0.98 0.98 0.98 0.99 0.98 0.02
47 0.03 0.09 0.95 0.95 0.95 0.95 0.95 0.05
48 0.02 0.68 1.00 1.00 1.00 1.00 0.82 0.18
49 <0.01 0.91 0.97 0.97 0.97 0.97 0.96 0.04
50 0.01 0.91 1.00 1.00 1.00 1.00 0.82 0.18
51 0.02 0.77 1.00 1.00 1.00 1.00 0.89 0.11
52 0.01 0.92 1.00 1.00 1.00 1.00 1.00 0.00
53 0.02 0.95 1.00 1.00 1.00 1.00 1.00 0.00
54 <0.01 0.97 1.00 1.00 1.00 1.00 1.00 0.00
Average 0.01 0.85 0.95 0.96 0.96 0.96 0.89 0.11

instance, let us consider the case of the SIMPLENEWS app
(row #26 in Table III): during its execution, the app makes 15
calls to the API method writeCommStatusAndClose of
the class android.os.ParcelFileDescriptor. This
is done to update the status of the events requested when the
application is running. The average energy consumption of
the method invocation is 1.602×10−5 Joules when computed
by the MONSOON toolkit, while PETRA estimates a value of
1.605 × 10−5 Joules. Thus, our tool overestimates the actual
consumption by 3.0× 10−8 Joules (MRE = 0.0018).

If we consider the other mobile apps in the study, we
observe that the results are mostly consistent. Specifically,
for 39 out of the 54 apps that we considered, the mean
estimation error (MMRE) is equal to or less than 0.01. For
the remaining 15 apps, we experienced an average error

of 0.022. One of the worst estimations regards the app
BATTERY HD (row #1 in Table III). This app monitors the
battery discharge of mobile phones and tables, by proposing
the user a set of statistics about the energy consumption
of the apps installed on the device. The app also provides
real-time monitoring of the apps that are active on the de-
vice, which is implemented through the invocation of the
API method ArrayAdapter.notifyDataSetChanged.
This method simply implements an Observer design pat-
tern [48] that monitors the changes in the status of the applica-
tions currently opened on the device. As reported by Linares-
Vasquez et al. [6], this is a well-known energy bottleneck,
object of several discussions among Android developers12.

12http://stackoverflow.com/questions/15990849/

Indeed, on average the method consumes 2.43×10−4 Joules,
i.e., 35% more energy compared to the average consumption of
the other methods. This confirms previous findings on the high
energy consumption of (instance of) this design pattern [5]. In
this particular case, PETRA estimates that 2.48×10−4 Joules
of energy are consumed by the API, thus leading to an error of
5.00 × 10−6 Joules (MRE = 0.02). We further investigated
the behavior of our tool in this case in order to understand
the reason behind this error. Specifically, we found that every
time a change status notification is sent (i.e., each call to the
method notifyDataSetChanged), PETRA accumulates
small errors, which leads to a total of 5×10−6 Joules because
of the 24 times the method has been called. Putting things into
perspective, we see that although on one of the worst cases
the estimation error is still small, the particular example that
we highlighted does indicate a potential drawback of using
software-based approaches for energy profiling. Indeed, a high
frequency of method calls in a method under observation can
result in an accumulation of estimation errors.

Observation 1. In 72% of mobile apps the mean estimation
error provided by PETRA is at most 0.01. Although in
the other cases the difference is slightly larger, it still only
reaches at most 0.04. Thus, the proposed software-based
solution provides energy estimations that are quite close to
the actual values.

Observation 1 only provides a partial view on the perfor-
mance of our tool as we also need a better understanding
of the relative difference between the estimation of PETRA
and the hardware based solution. This is why we use the
PRED(x) metric, which indicates the percentage of methods
in each app with an error (MRE) lower than x. Table III
shows that in 95% of the methods our tool is able to
provide an estimation error within 5% of the actual values
measured using the MONSOON toolkit. Moreover, in 85%
of the methods our tool provides estimation within 2% of
error. These data confirm what we found when analyzing
the MMRE metric: a software-based solution built using
public Android APIs performs similarly to a hardware-based
solution that computes the energy consumption of Android
apps. The result is particularly evident on 23 apps of our
dataset (43%), where we observed that all the estimations of
PETRA falls back into 5% of the actual energy consumption
(i.e., PRED(5) = 1.00). For example, the app BETTER
NOTEPAD (row 53 in Table III) implements a notepad which
allows the import/export of the notes and their sharing on
the main social networks, besides common features such as
writing/editing/deleting of notes. The app relies on a single
external API, named android.os.Message, and in par-
ticular it called 5 times the method sendToTarget during
its executions. The method is in charge to exchange messages
with the Handler of the app, thus providing a way to
monitor the correct execution of the application. In this case,
PETRA perfectly estimated the actual energy consumption
of the method twice (i.e., 1.27×10−5 Joules), while on the

remaining three calls the errors (MRE values) are 0.002 and
0.001, respectively.

While the results for PRED(5) already revealed the effec-
tiveness of PETRA, it is also important to mention that only
2% of methods have estimation errors outside the 50% of the
actual energy consumption. To understand the characteristics
of the outliers, let us discuss the cases of SIMPLENEWS (row
26 in Table III) and NEWS—SWIPE (row 33 in Table III)
apps, where we observed an unusual behavior of our tool.
Indeed, in the former app only 32% of the estimations are
within 5% of the actual values, while a still lower percentage
of them (11%) is within the 5% of the oracle values in the
NEWS—SWIPE app. Both the apps are newspaper readers that
function as integrators of news items published on online
websites. The need of retrieving news over the network
implies a non-deterministic waiting time due to delay that
querying the external websites induces. As a consequence,
such communication overhead makes it difficult to compare
different approaches as the experiments where done under
different network conditions.

While PETRA generally works well and provides estima-
tions very close to the actual values, there are a few methods
where such errors are higher than the ones discussed above. In
particular, for 5% of methods the corresponding estimations
are not within 5% of the oracle values. Further analyzing the
factors behind such deviations, we observed that these are due
to the usage of sensors (i.e., motion, environmental, and posi-
tion sensors). Unfortunately, the measurement of the power
consumption of sensors is still an open issue in software-
based energy measurement [49]. In the case of PETRA these
components are not analyzed by Android tools and as such,
we inherit this weakness. We plan to analyze this aspect as a
future work, in order to improve the performance of our tool.

Observation 2. In 95% of the methods PETRA provides
an estimation error within 5% of the actual values mea-
sured with the MONSOON toolkit, confirming the good
performances of our tool. Errors in measurement mainly
occur in cases where there is significant use of network
capabilities or when the sensors are used.

Finally, regarding the types of estimations provided by
PETRA, we observed that our tool rarely underestimates the
energy consumption (overall, in 11% of the cases), while
89% of the estimations are slightly higher than the actual
values. This is mainly due to the fact that in each energy
estimation some noise is summed up during the measurement
(see, for instance, the case of the app SIMPLENEWS previously
discussed). Thus, the estimation results are typically higher
than the actual values. However, as previously shown, our
tool is able to achieve a good compromise between the errors
committed and the accuracy of the evaluations.

On the other hand, the few underestimations are gener-
ally due to the usage of sensors. For instance, the class
SensorManager used by the app ANDROID ANTIVIRUS
(row #18 in Table III) is responsible for the management

of the environmental sensors needed to check the status of
external factors possibly threatening the security of the device.
In this case, PETRA is not able to take into account the
energy consumption of such sensors, therefore providing a
lower estimation (i.e., 1.35×10−5 Joules) with respect to the
actual one (i.e., 1.37×10−5 Joules).

Observation 3. In 89% of the methods PETRA overes-
timates the energy consumed. This is mainly due to the
noise accumulated over the different APIs estimations. In
the remaining 11% of the methods, our tool underestimates
the actual energy consumption because of the presence of
sensors.

Once we evaluated the three different aspects described
above (i.e., MMRE, PRED(x), and over/under estimations),
we can provide an answer to our RQ. First of all, we can
conclude that PETRA provides estimations close to the actual
ones: indeed, the mean relative error (MMRE) produced
by our tool is always lower than 0.05 (0.01 on average).
At the same time, 95% of the estimation errors are within
5% of the actual values computed using a hardware-based
tool: this confirms that a software-based approach can actually
perform similarly to the alternative hardware solution. Finally,
our analyses highlighted some potential drawbacks of our tool.
Indeed, the significant use of network capabilities as well as
the usage of sensors can lead to higher estimation errors.

VI. THREATS TO VALIDITY

This section discusses the threats to the validity of our
empirical evaluation, classifying them into construct, internal,
external, and conclusion validity.

The main threats related to the relationships between theory
and observation (construct validity) are due to imprecisions
in the measurements we performed. PETRA relies on differ-
ent sources of information, so imprecisions in those sources
could affect the quality of the estimations. For example, the
values contained in the power profile file, provided by
the device manufacturer, define just an approximation of the
battery drain caused by a component in a second. Moreover,
PETRA does not consider the consumption due to the usage
of sensors and GPU. For this reason, PETRA could not be
the best solution for energy estimations of apps that strongly
stress this kind of hardware.

In order to limit the factors that can affect our results
(internal validity) we disabled the mobile connections (not
WiFi), did a factory reset of the device before starting the
experiments, and avoided any unneeded processes on the
device. Lastly, in order to avoid imprecisions due to battery
degradation and provide more accurate results, we repeated the
measurements 10 times and we aggregated the results using
the mean operator, as was previously done by Linares-Vasquez
et al. [6].

Regarding the generalization of our findings (external va-
lidity) we considered 54 apps of different categories from the
Linares-Vasquez et al. dataset [6]. Relying on this dataset,

we had to limit our analysis to methods belonging to APIs
that could not represent the full variety of methods. For this
reason, further studies aiming at replicating our work on larger
datasets are desirable and part of our future agenda. Another
threat could be related to the smartphone that we used in our
study. It is worth to note that we used a LG Nexus 4 in order
to compare our estimations with those provided by the oracle
data [6].

Finally, the threats related to the relationship between the
treatment and the outcome (conclusion validity) are repre-
sented by the analysis methods exploited in our study. We
discuss our results applying widely used metrics (i.e., MMRE
and PRED) able to compare our numerical outcomes with
numerical oracles.

VII. CONCLUSION AND FUTURE WORK

This paper investigates the wide-spread assumption that
energy consumption profiles calculated using software-based
tools are less precise than the actual values as measured using
hardware-based tools. To this end, we propose PETRA, a new
Android-specific tool for estimating the energy consumption of
mobile applications. Our tool relies on public available tools,
developed by Google in the context of Project Volta.

We evaluated PETRA on 54 mobile applications from the
dataset provided by Linares-Vasquez et al. [6]. For each
application, this dataset contains the energy consumption of
methods belonging to APIs using the MONSOON hardware
toolkit [13]. Our results showed that the estimations produced
by PETRA are very close to the actual values, more precisely:

• Error Magnitude. The mean estimation error achieved us-
ing PETRA is 0.04 with respect to actual value calculated
using MONSOON.

• Error Reasons. The measurement errors are mainly due
to a significant use of network capabilities or sensors.

• Error Type. 89% of the estimations are overestimations,
mainly due to the accumulated noise achieved during the
estimations. In the remaining cases, the use of sensors
and network produces underestimations.

These observations represent the main input for our research
agenda. We will focus on designing and developing new
techniques that better estimate the energy consumption of
components such as sensors and network. As such, i) we will
investigate Android tools able to give more precise information
regarding the state of components (i.e., GPU Monitor13 and
Network Monitor14), ii) we will design new services able to
capture those components not analyzed by Android tools,
e.g. sensors. We should carefully design these services in order
to avoid the Hawthorne Effect [10], that currently has little
influence on our tool. Moreover, in order to asses these new
techniques and to validate the currently achieved results, we
plan to replicate our study on a larger set of applications,
considering also other methods than API methods.

13https://developer.android.com/studio/profile/am-gpu.html
14https://developer.android.com/studio/profile/am-network.html

REFERENCES

[1] The statistics portal association. [Online]. Avail-
able: http://www.statista.com/statistics/330695/number-of-smartphone-
users-worldwide/

[2] A. Hindle, A. Wilson, K. Rasmussen, E. J. Barlow, J. C. Campbell,
and S. Romansky, “Greenminer: A hardware based mining software
repositories software energy consumption framework,” in Proceedings
of the 11th Working Conference on Mining Software Repositories, ser.
MSR 2014. New York, NY, USA: ACM, 2014, pp. 12–21. [Online].
Available: http://doi.acm.org/10.1145/2597073.2597097

[3] C. Wilke, S. Richly, S. Götz, C. Piechnick, and U. Aßmann, “Energy
consumption and efficiency in mobile applications: A user feedback
study,” in Green Computing and Communications (GreenCom), 2013
IEEE and Internet of Things (iThings/CPSCom), IEEE International
Conference on and IEEE Cyber, Physical and Social Computing. IEEE,
2013, pp. 134–141.

[4] J. Flinn and M. Satyanarayanan, “Energy-aware adaptation for
mobile applications,” in Proceedings of the Seventeenth ACM
Symposium on Operating Systems Principles, ser. SOSP ’99. New
York, NY, USA: ACM, 1999, pp. 48–63. [Online]. Available:
http://doi.acm.org/10.1145/319151.319155

[5] C. Sahin, F. Cayci, I. L. M. Gutiérrez, J. Clause, F. Kiamilev,
L. Pollock, and K. Winbladh, “Initial explorations on design pattern
energy usage,” in Proceedings of the First International Workshop
on Green and Sustainable Software, ser. GREENS ’12. Piscataway,
NJ, USA: IEEE Press, 2012, pp. 55–61. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2663779.2663789

[6] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto,
M. Di Penta, and D. Poshyvanyk, “Mining energy-greedy api usage
patterns in android apps: An empirical study,” in Proceedings of
the 11th Working Conference on Mining Software Repositories, ser.
MSR 2014. New York, NY, USA: ACM, 2014, pp. 2–11. [Online].
Available: http://doi.acm.org/10.1145/2597073.2597085

[7] C. Sahin, L. Pollock, and J. Clause, “How do code refactorings affect
energy usage?” in Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, ser.
ESEM ’14. New York, NY, USA: ACM, 2014, pp. 36:1–36:10.
[Online]. Available: http://doi.acm.org/10.1145/2652524.2652538

[8] S. Hasan, Z. King, M. Hafiz, M. Sayagh, B. Adams, and A. Hindle,
“Energy profiles of java collections classes,” in Proceedings of the
38th International Conference on Software Engineering, ser. ICSE ’16.
New York, NY, USA: ACM, 2016, pp. 225–236. [Online]. Available:
http://doi.acm.org/10.1145/2884781.2884869

[9] J.-J. Park, J.-E. Hong, and S.-H. Lee, “Investigation for software power
consumption of code refactoring techniques,” in Proceedings of the
Twenty-Sixth International Conference on Software Engineering and
Knowledge Engineering, ser. SEKE ’14, 2014.

[10] M. Harman, Y. Jia, and Y. Zhang, “Achievements, open problems and
challenges for search based software testing,” in 2015 IEEE 8th In-
ternational Conference on Software Testing, Verification and Validation
(ICST). IEEE, 2015, pp. 1–12.

[11] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan, “Estimating mobile
application energy consumption using program analysis,” in Proceedings
of the 2013 International Conference on Software Engineering, ser.
ICSE ’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 92–101.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2486788.2486801

[12] R. Saborido, V. V. Arnaoudova, G. Beltrame, F. Khomh, and G. An-
toniol, “On the impact of sampling frequency on software energy
measurements,” PeerJ PrePrints, Tech. Rep., 2015.

[13] Moonsoon-solutions. power monitor. [Online]. Available: http:
//www.msoon.com/LabEquipment/PowerMonitor/

[14] I. Hur and C. Lin, “A comprehensive approach to dram power man-
agement,” in 2008 IEEE 14th International Symposium on High Perfor-
mance Computer Architecture, Feb 2008, pp. 305–316.

[15] P. Choudhary and D. Marculescu, “Power management of voltage/fre-
quency island-based systems using hardware-based methods,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 17,
no. 3, pp. 427–438, March 2009.

[16] J. Flinn and M. Satyanarayanan, “Powerscope: A tool for profiling the
energy usage of mobile applications,” in WMCSA’99, 1999, pp. 1–9.

[17] Arduino. [Online]. Available: https://www.arduino.cc
[18] A. Bourdon, A. Noureddine, R. Rouvoy, and L. Seinturier, “Powerapi:

A software library to monitor the energy consumed at the process-level,”
in PoweERCIM News, 2013.

[19] A. Noureddine, A. Bourdon, R. Rouvoy, and L. Seinturier, “Runtime
monitoring of software energy hotspots,” in Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineer-
ing, ser. ASE 2012. New York, NY, USA: ACM, 2012, pp. 160–169.
[Online]. Available: http://doi.acm.org/10.1145/2351676.2351699

[20] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang, “Fine-
grained power modeling for smartphones using system call tracing,”
in Proceedings of the sixth conference on Computer systems. ACM,
2011, pp. 153–168.

[21] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the energy spent inside
my app?: fine grained energy accounting on smartphones with eprof,” in
Proceedings of the 7th ACM european conference on Computer Systems.
ACM, 2012, pp. 29–42.

[22] F. Xu, Y. Liu, Q. Li, and Y. Zhang, “V-edge: Fast self-constructive
power modeling of smartphones based on battery voltage dynamics,” in
NSDI’13, 2013, pp. 43–56.

[23] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani,
“Energy consumption in mobile phones: A measurement study and
implications for network applications,” in Proceedings of the 9th ACM
SIGCOMM Conference on Internet Measurement Conference, ser. IMC
’09. New York, NY, USA: ACM, 2009, pp. 280–293. [Online].
Available: http://doi.acm.org/10.1145/1644893.1644927

[24] F. Ding, F. Xia, W. Zhang, X. Zhao, and C. Ma, “Monitoring energy
consumption of smartphones,” in Internet of Things (iThings/CPSCom),
2011 International Conference on and 4th International Conference on
Cyber, Physical and Social Computing. IEEE, 2011, pp. 610–613.

[25] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao,
and L. Yang, “Accurate online power estimation and automatic battery
behavior based power model generation for smartphones,” in Pro-
ceedings of the eighth IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis. ACM, 2010, pp.
105–114.

[26] T. Do, S. Rawshdeh, and W. Shi, “ptop: A process-level power profiling
tool,” in in Proceedings of the 2nd Workshop on Power Aware Computing
and Systems (HotPower09, 2009.

[27] N. Amsel and B. Tomlinson, “Green tracker: A tool for estimating
the energy consumption of software,” in CHI ’10 Extended Abstracts
on Human Factors in Computing Systems, ser. CHI EA ’10. New
York, NY, USA: ACM, 2010, pp. 3337–3342. [Online]. Available:
http://doi.acm.org/10.1145/1753846.1753981

[28] K. Aggarwal, C. Zhang, J. C. Campbell, A. Hindle, and E. Stroulia, “The
power of system call traces: Predicting the software energy consumption
impact of changes,” in Proceedings of 24th Annual International
Conference on Computer Science and Software Engineering, ser.
CASCON ’14. Riverton, NJ, USA: IBM Corp., 2014, pp. 219–233.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2735522.2735546

[29] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M.
Mao, and L. Yang, “Accurate online power estimation and automatic
battery behavior based power model generation for smartphones,” in
Proceedings of the Eighth IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis, ser. CODES/ISSS
’10. New York, NY, USA: ACM, 2010, pp. 105–114. [Online].
Available: http://doi.acm.org/10.1145/1878961.1878982

[30] A. Gupta, T. Zimmermann, C. Bird, N. Nagappan, T. Bhat, and
S. Emran, “Mining energy traces to aid in software development: An
empirical case study,” in Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, ser.
ESEM ’14. New York, NY, USA: ACM, 2014, pp. 40:1–40:8.
[Online]. Available: http://doi.acm.org/10.1145/2652524.2652578

[31] D. Li, S. Hao, W. G. J. Halfond, and R. Govindan, “Calculating source
line level energy information for android applications,” in Proceedings
of the 2013 International Symposium on Software Testing and Analysis,
ser. ISSTA 2013. New York, NY, USA: ACM, 2013, pp. 78–89.
[Online]. Available: http://doi.acm.org/10.1145/2483760.2483780

[32] A. Hindle, “Green mining: A methodology of relating software
change and configuration to power consumption,” Empirical Softw.
Engg., vol. 20, no. 2, pp. 374–409, Apr. 2015. [Online]. Available:
http://dx.doi.org/10.1007/s10664-013-9276-6

[33] C. Sahin, P. Tornquist, R. Mckenna, Z. Pearson, and J. Clause, “How
does code obfuscation impact energy usage?” in Proceedings of the
2014 IEEE International Conference on Software Maintenance
and Evolution, ser. ICSME ’14. Washington, DC, USA:
IEEE Computer Society, 2014, pp. 131–140. [Online]. Available:
http://dx.doi.org/10.1109/ICSME.2014.35

[34] A. Noureddine and A. Rajan, “Optimising energy consumption of
design patterns,” in Proceedings of the 37th International Conference
on Software Engineering - Volume 2, ser. ICSE ’15. Piscataway,
NJ, USA: IEEE Press, 2015, pp. 623–626. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2819009.2819120

[35] C. Bunse, H. Hpfner, E. Mansour, and S. Roychoudhury, “Exploring the
energy consumption of data sorting algorithms in embedded and mobile
environments,” in 2009 Tenth International Conference on Mobile Data
Management: Systems, Services and Middleware, May 2009, pp. 600–
607.

[36] N. Hunt, P. S. Sandhu, and L. Ceze, “Characterizing the performance and
energy efficiency of lock-free data structures,” in 2011 15th Workshop on
Interaction between Compilers and Computer Architectures, Feb 2011,
pp. 63–70.

[37] M. Linares-Vásquez, G. Bavota, C. E. B. Cárdenas, R. Oliveto,
M. Di Penta, and D. Poshyvanyk, “Optimizing energy consumption of
guis in android apps: A multi-objective approach,” in Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering,
ser. ESEC/FSE 2015. New York, NY, USA: ACM, 2015, pp. 143–154.
[Online]. Available: http://doi.acm.org/10.1145/2786805.2786847

[38] M. Dong and L. Zhong, “Self-constructive high-rate system energy
modeling for battery-powered mobile systems,” in Proceedings of the 9th
international conference on Mobile systems, applications, and services.
ACM, 2011, pp. 335–348.

[39] C. Zhang and A. Hindle, “A green miner’s dataset: Mining the impact
of software change on energy consumption,” in Proceedings of the 11th
Working Conference on Mining Software Repositories, ser. MSR 2014.
New York, NY, USA: ACM, 2014, pp. 400–403. [Online]. Available:
http://doi.acm.org/10.1145/2597073.2597130

[40] C. Zhang, J. Campbell, and A. Hindle, “Green trace: The impact
of software change on system calls and energy consumption,” in in
submission to Mining Software Repositories (MSR), 2014 11th IEEE
Working Conference on. IEEE, 2014.

[41] X. Li and J. P. Gallagher, “Fine-grained energy modeling for the source
code of a mobile application,” PeerJ PrePrints, Tech. Rep., 2016.

[42] D. Li, S. Hao, J. Gui, and W. G. J. Halfond, “An empirical study of the
energy consumption of android applications,” in Software Maintenance
and Evolution (ICSME), 2014 IEEE International Conference on, Sept
2014, pp. 121–130.

[43] Android studio. [Online]. Available:
https://developer.android.com/studio/index.html

[44] L. C. Briand and I. Wieczorek, “Resource estimation in software
engineering,” Encyclopedia of software engineering, 2002.

[45] S. D. Conte, H. E. Dunsmore, and V. Y. Shen, Software engineering
metrics and models. Benjamin-Cummings Publishing Co., Inc., 1986.

[46] D. P. U. V. Nguyen and T. M. WVU, “Studies of confidence in software
cost estimation research based on the criterions mmre and pred,” 2009.

[47] M. Jorgensen, “Experience with the accuracy of software maintenance
task effort prediction models,” IEEE Transactions on software engineer-
ing, vol. 21, no. 8, pp. 674–681, 1995.

[48] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-oriented Software. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1995.

[49] P. Hurni, B. Nyffenegger, T. Braun, and A. Hergenroeder, “On the
accuracy of software-based energy estimation techniques,” in Proceed-
ings of the 8th European Conference on Wireless Sensor Networks,
ser. EWSN’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 49–64.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1966251.1966257

