

Delft University of Technology

HasBugs - Handpicked Haskell Bugs

Applis, Leonhard; Panichella, Annibale

DOI
10.1109/MSR59073.2023.00040
Publication date
2023
Document Version
Final published version
Published in
Proceedings of the 2023 IEEE/ACM 20th International Conference on Mining Software Repositories (MSR)

Citation (APA)
Applis, L., & Panichella, A. (2023). HasBugs - Handpicked Haskell Bugs. In L. O'Conner (Ed.), Proceedings
of the 2023 IEEE/ACM 20th International Conference on Mining Software Repositories (MSR) (pp. 223-
227). (Proceedings - 2023 IEEE/ACM 20th International Conference on Mining Software Repositories, MSR
2023). IEEE. https://doi.org/10.1109/MSR59073.2023.00040
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/MSR59073.2023.00040
https://doi.org/10.1109/MSR59073.2023.00040

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

HasBugs - Handpicked Haskell Bugs

1st Leonhard Applis
Delft University of Technology

Software Engineering Research Group (SERG)

Delft, Netherlands

L.H.Applis@Tudelft.nl

2nd Annibale Panichella
Delft University of Technology

Software Engineering Research Group (SERG)

Delft, Netherlands

A.Panichella@Tudelft.nl

Abstract—We present HasBugs, an extensible and
manually-curated dataset of real-world 25 Haskell Bugs
from 6 open source repositories. We provide a faulty,
tested, and fixed version of each bug in our dataset with
reproduction packages, description, and bug context.
For technical users, the dataset is meant to either help
researchers adapt techniques from other programming
languages to Haskell or to provide a human-verified
gold standard for tools evaluation and enable future
reproducibility. We also see applicability for qualita-
tive research, e.g., by analysis of bug lifecycles and
comparison to other languages. We provide a com-
panion website for easy access and overview under
https://ciselab.github.io/HasBugs/.

I. Introduction

Bugs are usually seen as obstacles - nuances and
failures resulting from mistakes. For researchers in
software engineering (SE), however, bugs are oppor-
tunities. They form the foundation for techniques such
as fault localization [1] [2], test generation/fuzzing [3]
[4], and program repair [5] [6]. Observations in these
fields show the age-old adage garbage in - garbage out
applies to these domains as well: It took the community
a while to realize that not all patches produced by
GenProg [7] actually fix the program [8] - despite pass-
ing the test suite. While we can blame individuals for
this, such mistakes happen and the more constructive
approach is to mitigate these issues with better input.
The information missing in Defects4J was a summary
of the bug, so generated patches could not (easily) be
checked by the respective researchers. The assumption
‘passing CI = fixed program‘ turned out to be insuffi-
cient.

In this light, we present HasBugs - an extensible,
high-quality dataset of Haskell Programs with bugs,
tests, and fixes. We emphasize three key aspects in
particular: (1) It provides a rich context of the bug
and fixes, (2) it includes different artifacts for Software
Engineering research tools and techniques, and (3) it
allows easy reproduction.

We link the repository, issues, and pull requests (PRs)
alongside a bug summary to capture the bugs context.

This enables future researchers to verify results for
their applicability within the domain - e.g., whether a
generated test actually asserts against the given bug
it was meant to find, or actually finds a new one.
Similarly, we hope that discussions in PRs and issues
help to understand implementation details; Why were
things changed the way they were? Was it a hard or
an easy bug?

Different research tools and techniques need dif-
ferent inputs. We address this by covering common
artifact types for various techniques: Within the dat-
apoint, we provide a fault location and location of the
fix to clearly specify the points of interest within the
patches. These locations can span multiple methods,
as from our observation, it became obvious that fixes
often need to be applied in connected methods. The
failing test is provided in a separate patch, which
helps comparing test generation tools and creates a
failing-but-tested -version. Running this tested version
produces output necessary for, e.g., fault localization
and program repair. This contrasts with many other
datasets - our faulty versions usually have a passing
build.

Lastly, we provide reproduction by capturing the cur-
rent builds in Docker-images available for download.
The used Dockerfiles capture the required environ-
ments as well as commands and empower users to
easily alter the code of the respective versions.

The contributions can be summarized as follows:

1) 25 datapoints from 6 FOSS Haskell programs and
libraries;

2) Rich context information linking source code and
GitHub;

3) Multi-point fault-locations, test-patches and 3-
stage-versions (faulty, tested & fixed);

4) Dockerfiles and pre-produced available images
running builds

Similar Datasets are Defects4J [9] for Java programs,
and in particular, the scripts and support created

223

2023 IEEE/ACM 20th International Conference on Mining Software Repositories (MSR)

2574-3864/23/$31.00 ©2023 IEEE
DOI 10.1109/MSR59073.2023.00040

20
23

 IE
EE

/A
C

M
 2

0t
h

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 M

in
in

g
So

ftw
ar

e
R

ep
os

ito
rie

s (
M

SR
) |

 9
79

-8
-3

50
3-

11
84

-6
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
M

SR
59

07
3.

20
23

.0
00

40

Authorized licensed use limited to: TU Delft Library. Downloaded on July 20,2023 at 12:47:54 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Overview of one data point in HasBugs

around it later1 [10]. We provide the same granu-
larity/content of bugs with the difference that our
bugs exist without a failing test case first. In case
of a passing CI, a failing test case is also provided
separately, constituting a third version. We hope to
increase the reproducibility by providing Dockerfiles
for most datapoints, saving researchers from the time-
intensive work of configuring necessary dependencies.
While there are multi-fault locations in the newer sup-
plements of Defects4J [11], we provide the multi-fault
locations within the dataset.
Another close dataset is Bugswarm [12], which is

mined from FOSS Java Projects using Travis CI. Bugs in
Bugswarms are, hence, not human-evaluated; with over
3000 data points, a manual inspection is unlikely at this
point. We tried to adapt ease-of-use from Bugswarm
and, in particular, their very accessible website. We
purposefully did not try to automate bug-mining to
keep high quality and double-check every entry.
The last related dataset is Simple Stupid Bugs [13],

which is automatically mined from FOSS Java Projects
with single-line fixes. By far the biggest dataset, it also
has the least context information, and its quality as-
sessment is based on sampling. Furthermore they rely
on SZZ [14], itself debated [15] [16], for fix-localization.
In general, HasBugs is meant to be a starting point

for re-implementing and progressing on software en-
gineering algorithms in the Haskell Domain, or to
be a gold standard in evaluation. We are aware that
the size of the dataset is not suitable to train deep
learning models, but such a model needs to be evalu-
ated against high-quality human-checked data before
production use. We see great potential for SE tools
in functional programming, with outstanding examples
like the Haskell Language Server (HLS), and want to
aid the development of a broader range of tools by
providing HasBugs as a resource to the community.

II. Dataset Description

Currently, HasBugs contains 25 bugs from 6 reposi-
tories as shown in Table I. Every bug consists of a pri-

1https://github.com/rjust/defects4j

Fig. 2. Example HasBugs Datapoint.json (edited for readability)

" id " : "cabal 1",
" repositoryurl " : "git@github .com: haskell / cabal " ,
" license " : "BSD 3",
"faultcommit " : "01844..." ,
"fixcommit " : "55e03 . . . " ,
. . .
"description " : "Cabal starts multiple processes to build a project .

’ cabal run ’ termination does not terminate a l l child
processes automatically as well . The solution is to use
’withCreateProcess ’ rather than ’createProcess ’ and throw
an asynchronous exception from the main thread when a
termination is wanted. " ,

"categories " : ["system test " ,"os" ,"multi threading" ,"multi processing "] ,

" relatedissues " : [" https : / / github .com/ haskell / cabal / issues /7914"] ,
" relatedprs " : [" https : / / github .com/ haskell / cabal / pull /7921",

"https : / / github .com/ haskell / cabal / pull /7757"] ,

" faultlocations " : [{
" startl ine " : 127,
"endline " : 127,
" f i l e " : "cabal / src / distribution / simple /program/run .hs" ,
"module" : " distribution . simple .program.run" ,
" function " : "runprograminvocation"
}, . . .] ,

" fixlocations " : [{
" startl ine " : 127,
"endline " : 127,
" f i l e " : "cabal / src / distribution / simple /program/run .hs" ,
"module" : " distribution . simple .program.run" ,
" function " : "runprograminvocation"} ,

{
" startl ine " : 175,
"endline " : 175,
" f i l e " : "cabal insta l l /main/Main.hs" ,
"module" : "Main" ,
" function " : "main"

},
. . .

Repository Bugs Stars .hs-Files Domain

Cabal 6 1.5k 1.3k Build System
Pandoc 6 27.7k 291 Document Conversion

ShellCheck 5 31.2k 24 Linter
HLS 4 2.3k 1.3k IDE Language Server

Purescript 1 8.0k 220 Transpiler
HLedger 3 2.3k 156 Accounting

TABLE I
Summary of HasBugs per Repository

mary json file that holds the unique information of the
bug: the Git repository, relevant commits, PRs, descrip-
tions, etc. A subset of the information is shown in Fig-
ure 2, which has been shortened for the sake of read-
ability. With each datapoint, we provide a Dockerfile
for a reproducible build, alongside the bug-asserting
test isolated into a git patch. The HasBugs-Dockerfile
exists alongside potential project-inherent Dockerfiles
and performs the compilation during build-stages and
has the test-command as the entrypoint. This addresses
Haskell‘s long compilation times - pulling the image
from a container registry2 starts from compiled source-
code immediately with running tests.

These reference-files are a lightweight set of
information that can either be used directly or
be manifested into heavier artifacts (using shell
scripts). The download of repositories is auto-
mated from a data point, providing an artifact

2https://github.com/orgs/ciselab/packages?repo_name=HasBugs

224

Authorized licensed use limited to: TU Delft Library. Downloaded on July 20,2023 at 12:47:54 UTC from IEEE Xplore. Restrictions apply.

of the repository usable for static analysis. The
archived projects in their three-fold states can be ac-
cessed under https://doi.org/10.5281/zenodo.7569135.
On top of that, the repositories can be built in-
side docker containers either by using the provided
HasBugs-Dockerfiles or by pulling pre-compiled im-
ages from the repository. Both activities are supported
by shell scripts accompanying the data repository.
To ease access and provide a barrier-free

entry, we developed a companion website:
https://ciselab.github.io/HasBugs/.
The website contains a summary of our motivation

and a lightweight entry to the features presented in
this paper. Outside of advertisement, the website al-
lows browsing the data points and their respective
features directly without pulling the repositories and
setting up your local machine. This covers the de-
scriptions, links to GitHub, and categorical informa-
tion, e.g., the license. Lastly, the website contains a
more elaborate tutorial on how to approach different
artifacts with concrete shell commands to run. We aim
for the website to quickly enable researchers to assess
whether the dataset fits their objectives and to ease
adoption. For qualitative research, the website itself
mitigates barriers for a less tech-savvy audience.

III. Data Collection and Challenges

The data collection was primarily a manual process.
We started by gathering a list of high-star repositories
from GitHub and Hackage3 and filtered it for suitable
FOSS licences, which resulted in a list of 44 libraries
and programs.
These projects have been assessed in various

categories by the authors, such as quality of
issues, linkage pr to issue, linkage commit to
issue, etc. A total of 7 categories were considered,
forming a (subjective) score of the ease of access
for each repository. This overview is provided in the
resources of the dataset repository.
From the most suitable projects, the authors decided

on the initial data points by diversity: We aimed to
cover as many domains as possible, to cover a variety of
different bugs. This led, e.g., to the inclusion of Cabal
(a build framework for Haskell), while Stack (another
build framework) was left out. In general, many tasks
covered by Haskell libraries revolve around parsing
and compiling, but we consider the projects shown
in Table I a good, diverse view of the mainstream
applications of Haskell.
From the chosen repositories, we looked into issues

and PRs labeled bug, extracting faulty and fixed com-
mits. For simplicity’s sake, we consider the ’last known

3The central Haskell package archive https://hackage.haskell.org/

faulty version’, i.e., the commit before the fix was ap-
plied. We limit our search to bugs of at most two years
of age and Haskell framework versions above 8.10
(released march 2020) to provide an accurate snapshot
of today’s Haskell Project rather than a historical view.
The suggested bug-summary and categories were pro-
vided by one author and evaluated by one other author.
We later normed the granularity of entries in joint
meetings.
While we initially considered providing our own tests

for bugs, this was unnecessary: Most bug fixes in
the repositories provide a test within the fix-commit,
that was provided by the author of the fix. We hence
extracted the test from the fix-commit and verified that
it failed once applied to the faulty commit.
The provided Docker images are built using the

project’s documents, e.g., their READMEs, configura-
tions, or existing Dockerfiles. The docker builds formed
a unique challenge for this project, as they come with
big space and computation requirements. We hence de-
cided to diverge slightly from the repositories intended
GHC-version that was used at the time of commit,
and tried to minimize the number of our base images
to utilize better caching and save disk space. As a
heuristic, we bumped versions up, assuming newer
GHC versions generally remove more issues than they
introduce.
The list of bugs provided for the initial version of this

dataset is not exhaustive for their respective reposito-
ries: Projects such as Pandoc still have bugs left, but
we decided to focus on other repositories for a wider
variety of domains.

IV. Research Opportunities

From our initial perspective of the dataset, we see
two directions: 1 Technical solutions and their vali-

dation and 2 qualitative analysis of the Haskell FOSS
ecosystem.
Technical contributions consists of tools for fault

localization, test generation, test amplification &
carving or automated program repair (APR). As our
dataset has (often) multiple fault and fix locations, the
field of multi-location fault-localization [11] could be
investigated, as well as automatic analysis of which
part of a patch contributes to the fix. Test genera-
tion [17], [18], amplification [19], carving [20], and
regression testing [21] are particularly supported as
we provide the fixed version and a sample test, which
cover the requirements for most common techniques in
the field. Comparing the existing test can help to assess
readability, coverage, and functionality. Further rele-
vant research approaches in the field on mining soft-
ware repositories (MSR) that can highly-benefits from

225

Authorized licensed use limited to: TU Delft Library. Downloaded on July 20,2023 at 12:47:54 UTC from IEEE Xplore. Restrictions apply.

our dataset include bug prediction, crash replication,
fault localization, bug severity classification, and bug-
introducing commit identification. Inspired by Sobreira
et al. [10], program repair benefits from the speci-
fied bug-reason which supports humans in assessing
automatically produced patches. The two significant
challenges for APR - a stable running build as well as
failing tests - are addressed by our dataset and the
containers.
For qualitative analysis, we see good opportunities

in the communication patterns of the ecosystem. The
Haskell community is often perceived as slightly alien
or elitist, with one of the prominent mantras being:
"you don’t write bugs in Haskell - once it compiles, it
works". Judgments aside, our faulty versions compile
and pass tests, and the presented self-admitted bugs
can originate from manifold sources, for example ac-
tual implementation errors, missed requirements, or
environmental factors (e.g., OS changes). We consider
it fruitful to investigate the nature of the bugs and their
fixes, and compare it to studies on Java [22].
Another point of interest is the type of test: Most

supplied tests were system- or integration-level tests,
although they could be translated into unit tests. Why
did contributors choose high-level over low-level tests?
We can imagine many factors, e.g. "being closer to
the bug report", easier adaption of end-to-end-tests by
copying existing ones, or implementation challenges
for unit tests. Despite Haskell being fully functional,
many functions rely on context-heavy constructs such
as monadstacks or self-implemented data types.
The above-mentioned qualitative analysis could also

help to address one of the limitations of this work:
It is not imminent if we are looking at a dataset of
survivors. While we see mostly integration- or system-
level issues and their corresponding tests, we are lack-
ing similar findings on the unit level. This could be an
under-reporting of unit-level issues; maybe unit-level
problems are caught at higher levels. On the other
hand, it could be that Haskell unit-level development is
outstanding and produces little errors. Findings from
this could help in education by catalyzing them into
best-practices for later stages of development.

V. Limitations and Future Work

The primary limitation for the SE community is that
the size of the programs is likely insufficient for model-
fitting. It might be possible to fit approaches like deci-
sion trees, however, neural networks can only be used
with other techniques, e.g., transfer learning. We aim
to assist these tasks by providing a dataset big enough
for validation and benchmarking, as well as providing
actionable results due to rich contextual information.

Similarly, the high compilation times of Haskell pro-
grams might impact the development of tools utilizing
dynamic analysis, but analog to the above, we hope to
aid their evaluation.
An internal threat to validity is the data collection -

we only took into account self-admitted bugs that have
been made visible through either PRs or issues. This
can lead to a set of biases, e.g., our over-representation
of system-level tests, as the user-reported bugs are
expressed as issues. Unit-tests and their bugs might be
solved by developers before publishing and are hence
invisible to us.
We aim to address this after publication through a

community effort — we want to reach Haskell devel-
opers to verify our assumptions and gain more data
points. This discussion can also shape the tools that
the community needs.

VI. Conclusion

Drawing from existing datasets, HasBugs provides a
rich data points suitable for most SE applications. We
enable qualitative research by linking to social artifacts
in issues and PRs, static analysis by providing code,
diffs, and locations, as well as supporting dynamic
approaches with containerization. Due to the limited
size, we aim for HasBugs to become a benchmark
for tool and model evaluation, as well as to provide
a starting point for the next generation of Haskell SE
tools.

Link-Tree

The repository is found on GitHub under
https://github.com/ciselab/HasBugs and its archived
form at https://doi.org/10.5281/zenodo.7569327.
The manifested datapoints are archived under

https://doi.org/10.5281/zenodo.7569135 and the
docker images are in the GitHub container registry.

Acknowledgment

We would like to thank our student Chris Lemaire,
who contributed greatly to the collection of data and
the surrounding tooling.

References

[1] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey
on software fault localization,” IEEE Transactions on Software
Engineering, vol. 42, no. 8, pp. 707–740, 2016.

[2] A. Zakari, S. P. Lee, R. Abreu, B. H. Ahmed, and R. A. Rasheed,
“Multiple fault localization of software programs: A systematic
literature review,” Information and Software Technology,
vol. 124, p. 106312, 2020. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0950584920300641

[3] P. McMinn, “Search-based software test data generation: a
survey,” Software testing, Verification and reliability, vol. 14,
no. 2, pp. 105–156, 2004.

226

Authorized licensed use limited to: TU Delft Library. Downloaded on July 20,2023 at 12:47:54 UTC from IEEE Xplore. Restrictions apply.

[4] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Co-
hen, W. Grieskamp, M. Harman, M. J. Harrold, P. McMinn,
A. Bertolino et al., “An orchestrated survey of methodologies for
automated software test case generation,” Journal of Systems
and Software, vol. 86, no. 8, pp. 1978–2001, 2013.

[5] M. Martinez and M. Monperrus, “Astor: A program repair
library for java (demo),” in Proceedings of the 25th
International Symposium on Software Testing and Analysis,
ser. ISSTA 2016. New York, NY, USA: Association for
Computing Machinery, 2016, p. 441–444. [Online]. Available:
https://doi.org/10.1145/2931037.2948705

[6] T. Durieux, F. Madeiral, M. Martinez, and R. Abreu, “Empirical
review of java program repair tools: A large-scale experiment
on 2,141 bugs and 23,551 repair attempts,” in Proceedings
of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, 2019, pp. 302–313.

[7] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog:
A generic method for automatic software repair,” Ieee transac-
tions on software engineering, vol. 38, no. 1, pp. 54–72, 2011.

[8] Z. Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch
plausibility and correctness for generate-and-validate patch
generation systems,” in Proceedings of the 2015 International
Symposium on Software Testing and Analysis, 2015, pp. 24–36.

[9] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of
existing faults to enable controlled testing studies for java pro-
grams,” in Proceedings of the 2014 International Symposium
on Software Testing and Analysis, 2014, pp. 437–440.

[10] V. Sobreira, T. Durieux, F. Madeiral, M. Monperrus, and
M. de Almeida Maia, “Dissection of a bug dataset: Anatomy of
395 patches from defects4j,” in 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering
(SANER), 2018, pp. 130–140.

[11] G. An, J. Yoon, and S. Yoo, “Searching for multi-fault programs
in defects4j,” in Search-Based Software Engineering, U.-M.
O’Reilly and X. Devroey, Eds. Cham: Springer International
Publishing, 2021, pp. 153–158.

[12] D. A. Tomassi, N. Dmeiri, Y. Wang, A. Bhowmick, Y.-C. Liu,
P. T. Devanbu, B. Vasilescu, and C. Rubio-González, “Bugswarm:
Mining and continuously growing a dataset of reproducible
failures and fixes,” in 2019 IEEE/ACM 41st International Con-
ference on Software Engineering (ICSE). IEEE, 2019, pp. 339–
349.

[13] R.-M. Karampatsis and C. Sutton, “How often do single-
statement bugs occur? the manysstubs4j dataset,” in
Proceedings of the 17th International Conference on Mining
Software Repositories, ser. MSR ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 573–577.
[Online]. Available: https://doi.org/10.1145/3379597.3387491

[14] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes
induce fixes?” ACM sigsoft software engineering notes, vol. 30,
no. 4, pp. 1–5, 2005.

[15] G. Rodríguez-Pérez, G. Robles, and J. M. González-Barahona,
“Reproducibility and credibility in empirical software engineer-
ing: A case study based on a systematic literature review
of the use of the szz algorithm,” Information and Software
Technology, vol. 99, pp. 164–176, 2018.

[16] S. Herbold, A. Trautsch, F. Trautsch, and B. Ledel, “Problems
with szz and features: An empirical study of the state of prac-
tice of defect prediction data collection,” Empirical Software
Engineering, vol. 27, no. 2, pp. 1–49, 2022.

[17] A. Panichella, F. M. Kifetew, and P. Tonella, “Automated test case
generation as a many-objective optimisation problem with dy-
namic selection of the targets,” IEEE Transactions on Software
Engineering, vol. 44, no. 2, pp. 122–158, 2017.

[18] M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and J. Bene-
felds, “An industrial evaluation of unit test generation: Finding
real faults in a financial application,” in 2017 IEEE/ACM 39th
International Conference on Software Engineering: Software
Engineering in Practice Track (ICSE-SEIP). IEEE, 2017, pp.
263–272.

[19] B. Danglot, O. Vera-Perez, Z. Yu, A. Zaidman, M. Monperrus,
and B. Baudry, “A snowballing literature study on test amplifi-
cation,” Journal of Systems and Software, vol. 157, p. 110398,
2019.

[20] S. Elbaum, H. N. Chin, M. B. Dwyer, and J. Dokulil, “Carving
differential unit test cases from system test cases,” in Proceed-
ings of the 14th ACM SIGSOFT international symposium on
Foundations of software engineering, 2006, pp. 253–264.

[21] S. Yoo and M. Harman, “Regression testing minimization, selec-
tion and prioritization: a survey,” Software testing, verification
and reliability, vol. 22, no. 2, pp. 67–120, 2012.

[22] B. Mosolygó, N. Vándor, G. Antal, and P. Hegedűs, “On the rise
and fall of simple stupid bugs: a life-cycle analysis of sstubs,”
in 2021 IEEE/ACM 18th International Conference on Mining
Software Repositories (MSR), 2021, pp. 495–499.

227

Authorized licensed use limited to: TU Delft Library. Downloaded on July 20,2023 at 12:47:54 UTC from IEEE Xplore. Restrictions apply.

