
Radar Resource Management for
Multi-Target Tracking Using
Model Predictive Control

by

Thies de Boer
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Thursday June 24, 2021 at 1:00 PM.

Student number: 4513614
Project duration: October 1, 2020 – June 24, 2021
Thesis committee: Prof. DSc. A. Yarovoy, TU Delft, chair professor

Dr. ir. J. N. Driessen, TU Delft, supervisor
M. I. Schöpe MSc., TU Delft, supervisor
Dr. ir. A. J. van Genderen, TU Delft
Dr. P. Mohajerin Esfahani, TU Delft, assistant professor

This thesis is confidential and cannot be made public until December 31, 2021.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

This thesis concludes my master Embedded Systems following my bachelor Electrical Engineering
at the Delft University of Technology. When I read about the topic of radar resource management
and the possibility of turning it into my master thesis topic, my interest was immediately drawn.

It has been an interesting and challenging journey at the Microwave Sensing, Signals and Systems
group and my thesis could not have been here before you if it were not for certain people. I would
like to thank my daily supervisor Max Schöpe for guiding me through my thesis project for the last
9 months. I would also like to thank my supervisor Dr. ir. Hans Driessen for the interesting discus-
sions we had that helped steer me into the right direction during my thesis project. Furthermore,
I would like to thank Prof. DSc. Alexander Yarovoy and the other members of the MS3 group for
their insightful feedback and suggestions. Finally, I would like to thank my family for their support
during my studies at TU Delft.

Thies de Boer
Tinte, June 2021

iii

Abstract

With modern multi-function radars becoming more flexible, handling the limited amount of re-
sources of these radars becomes increasingly important. In this thesis the radar resource manage-
ment (RRM) problem in a multi-target tracking scenario is considered. Partially observable Markov
decision processes (POMDPs) are used to describe each tracking task. By comparing the future ef-
fect of radar actions using model predictive control (MPC), the POMDPs are solved in a non-myopic
way. The model predictive control problem can be decoupled into sub-problems using Lagrangian
Relaxation to reduce the computational complexity of the solution method. An algorithm based on
golden section search is employed to find the Lagrange multiplier. An interacting multiple model
filter is used to allow the method to be effective in RRM problems involving the tracking of targets
performing a broad number of maneuvers. The novel approach is compared to an existing solution
method based on policy rollout and Monte Carlo sampling. Through simulations of dynamic multi-
target tracking scenarios in which the cost and computational complexity of different approaches
are compared, it was shown that the computational complexity is greatly reduced while the resulting
resource allocation results remain similar.

v

Contents

List of Figures ix

List of Tables xi

Nomenclature xii

1 Introduction 1
1.1 Introduction . 1
1.2 General radar introduction . 1
1.3 Radar Resource Management . 2
1.4 Problem Statement. 3
1.5 Thesis Structure . 3

2 Background information 5
2.1 Markov Decision Processes . 5
2.2 Partially Observable Markov Decision Processes . 6
2.3 Tracking . 7

2.3.1 Motion Model . 7
2.3.2 Measurement Model . 7
2.3.3 Extended Kalman filter . 9

2.4 Cost function . 9
2.5 Optimization Setup . 10
2.6 AODB algorithm . 10

2.6.1 Lagrangian Relaxation . 10
2.6.2 Policy Rollout . 11

2.7 Conclusion . 12

3 POMDP solutions in literature 13
3.1 Policy function approximations . 14
3.2 Cost function approximations. 14
3.3 Value function approximations . 14
3.4 Direct Lookahead Approximations . 14
3.5 Evaluation . 15

3.5.1 Rollout policies . 15
3.5.2 Monte Carlo tree-search . 15
3.5.3 Deterministic Lookahead . 15

3.6 Conclusion . 16

4 Proposed approach 17
4.1 Model Predictive Control . 17
4.2 Golden Section Search . 18
4.3 Scheduling conflict. 19
4.4 Solution overview . 20
4.5 Results and Simulations . 21
4.6 Simulation Scenario A . 21

4.6.1 Budget distribution. 22

vii

viii Contents

4.6.2 Execution Time Comparison . 23
4.6.3 Realized Cost Comparison . 23
4.6.4 Lagrangian Relaxation . 23
4.6.5 Converging to the Lagrange multiplier . 24

4.7 Simulation Scenario B . 25
4.7.1 Simulation Scenario C . 26

4.8 Simulation scenario D . 28
4.9 Conclusion . 30

5 Approach extended with IMM filter 31
5.1 IMM filter . 31
5.2 Results. 34

5.2.1 Model switching . 35
5.2.2 Tracking error . 35
5.2.3 Budget distribution. 36

5.3 Conclusion . 36

6 Conclusion 37
6.1 Conclusion . 37
6.2 Recommendations . 38

Bibliography 39

List of Figures

1.1 Different radar modes. [1] . 2
1.2 Fixed task length vs variable task length. 2

2.1 Example Markov Decision Process. 5
2.2 AODB algorithm block scheme [2]. 12

3.1 Different function approximation classes for the optimal policy function. [3] 13

4.1 Difference between available budget and budget needed resulting from optimization. 18
4.2 Absolute value of difference between available budget and budget needed resulting

from optimization. 18
4.3 Example budget distribution that leads to scheduling issues. 19
4.4 Overview of solution method. 20
4.5 Trajectories of the 5 objects to be tracked for a scenario of 100 seconds. 21
4.6 Budget allocation of the 5 objects over the simulation time obtained using MPC. . . . 22
4.7 Budget allocation of the 5 objects over the simulation time obtained using Policy Roll-

out. 22
4.8 Comparison between execution times of policy rollout and MPC algorithms. 23
4.9 Comparison between realized costs of equal distribution, policy rollout and MPC. . . 23
4.10 Execution time for distributing the budget between 5 objects with and without using

LR. 24
4.11 Execution time for distributing the budget between 10 objects with and without using

LR. 24
4.12 Execution time for distributing the budget between 20 objects with and without using

LR. 24
4.13 Execution time for distributing the budget between 30 objects with and without using

LR. 24
4.14 Golden section search vs subgradient method comparison. 25
4.15 Trajectories of the objects of scenario B. 25
4.16 Budget allocation of the 2 objects described in scenario B using MPC. 26
4.17 Budget allocation of the 2 objects described in scenario B using policy rollout. 26
4.18 Trajectory of the objects from scenario C. 27
4.19 Budget allocation of the 2 objects described in scenario C using MPC. 27
4.20 Budget allocation of the 2 objects described in scenario C using policy rollout. 27
4.21 Trajectory of the objects from scenario D. 28
4.22 Budget distribution of the two objects with a prediction horizon of 1. 29
4.23 Budget distribution of the two objects with a prediction horizon of 2. 29
4.24 Budget distribution of the two objects with a prediction horizon of 3. 29
4.25 Budget distribution of the two objects with a prediction horizon of 4. 29

5.1 Interconnection of the IMM filtering steps. 34
5.2 Trajectory of the 2 objects. 35
5.3 Model probabilities of object 1. 35

ix

x List of Figures

5.4 Tracking error using an IMM filter and a single model filter. 35
5.5 Budget distribution using a single model filter. 36
5.6 Budget distribution using an IMM filter. 36

List of Tables

2.1 Reference measurement values. 8
2.2 Extended Kalman filtering steps. 9

3.1 Evaluation of the classes of POMDP solution methods. 15

4.1 Example optimized actions. 19
4.2 Simulation parameters scenario A. 22
4.3 Simulation parameters scenario B. 26
4.4 Simulation parameters scenario C. 26
4.5 Simulation parameters scenario D. 28

5.1 IMM filtering steps. 33
5.2 Simulation parameters IMM. 34

xi

Nomenclature

AODB Approximately Optimal Dynamic Budget balancing

CFA Cost Function Approximation

CR Cognitive Radar

CT Constant Turn

CV Constant Velocity

DBF Digital Beamforming

DLA Direct Lookahead Approximation

EKF Extended Kalman Filter

EM Electromagnetic

IMM Interacting Multiple Model

LR Lagrangian Relaxation

MCTS Monte Carlo tree search

MDP Markov Decision Process

MFR Multi-function radar

MPC Model Predictive Control

PFA Policy Function Approximation

POMDP Partially Observable Markov Decision Process

RCS Radar Cross Section

RRM Radar Resource Management

SNR Signal-to-noise ratio

VFA Value Function Approximation

xii

1
Introduction

1.1. Introduction
The notion that conducting objects reflect radio waves goes back as far as the late 19th century. This
has been used to detect the presence of objects, for example ships, since 1903. Early work used con-
tinuous wave (CW) transmissions, and relied upon interference between a transmitted wave and
the signal received from a moving target. The main limitation of this method was that it could not
be used to detect range. By modulation the transmitter output, for example by sending out pulses,
the range could be measured based on the time it takes for a pulse to return. This technique formed
the foundation for radar systems, where the term radar is the contraction of RAdio Detection And
Ranging. Initially, the main drive behind the development of radar systems was to use them for
military purposes, such as detecting the presence of enemy targets. After World War II, more inter-
est arose to use radar systems for civilian applications, such as air traffic control, weather forecast,
navigation and spacecraft among others. In recent years, advances in the field of radar led to the
development of phased array antennas that allow the application of so-called digital beamform-
ing (DBF). Together with advanced signal processing and arbitrary waveform generation, modern
multi-function radars (MFR) became increasingly flexible. These radar systems can quickly adapt to
changes to the environment by automatically adjusting the measurement parameters during run-
time. This adaptive process is often called radar resource management (RRM) and can be consid-
ered to be a part of cognitive radar (CR) [4–8]. Possible applications for RRM can be found in many
domains, such as autonomous driving and traffic monitoring or maritime and air surveillance. In
this thesis a solution method to the RRM problem will be presented. This thesis shares part of its
content with the paper in [9] describing the same solution method.

1.2. General radar introduction
In this section a general radar introduction will be given to provide some background information
that is needed for the remainder of the thesis. This general radar introduction is loosely based on
the books of Lynn and Skolnik [10, 11]. A distinction can be made between three detection modes
of a radar (see Fig 1.1): monostatic, bistatic and electronic warfare support measures (ESM). ESM is
a form of passive radar, while the other two modes are forms of active radar. Passive radar means
that there is no dedicated transmitter in the system. For the rest of this thesis the use of active
radar is assumed. In the monostatic mode, the transmitter antenna and the receiver antenna are
at the same position. In the bistatic mode, the transmitter antenna and the receiver antenna are
at a distance from each other and the receiver can only detect a signal emitted from a transmitter
source at a different location. In this thesis only radars operating in the monostatic detection mode
are considered. To measure the distance, also called range, of a target, the transmitter of the radar

1

2 1. Introduction

Figure 1.1: Different radar modes. [1]

sends electromagnetic (EM) pulses towards a target. The range of the target can then be determined
by measuring the time TR it took for the pulse to travel to the target and back to the radar. As an EM
wave propagates at the speed of light (c ≈ 3.0 ·108[m/s]), the range R of the target is

R = cTR

2
. (1.1)

The ability of a target to reflect the EM energy sent by the radar can be summarized by the term
known as the radar cross section (RCS). It is a characteristic of a specific object and can be con-
sidered to be the surface area of the target as seen by the radar. The larger the RCS, the better the
target is at returning the EM wave back towards the radar. The RCS of a target depends, among other
things, on the size of the target, the shape of the target, the texture of the target and the material the
target consists of.

1.3. Radar Resource Management
RRM is the problem of assigning the limited amount of resources of a radar among the different
tasks the radar needs to perform. Countless heuristic solutions to this problem have been pre-
sented, many of them focusing on scheduling tasks with a fixed resource need (as mentioned in the
overviews in [12, 13]. In an overload situation, which is a situation where the available budget is not
enough to fully execute all tasks, this inevitably leads to tasks of lower priority being dropped. This
is exemplified in Fig. 1.2. In the upper case in this figure it can be seen that task 4 is fully dropped,

Figure 1.2: Fixed task length vs variable task length.

1.4. Problem Statement 3

while task 3 can only be executed in part. If all the tasks were to have the same priority, the decision
which task needs to be dropped would potentially be taken at random. Therefore, the full potential
of RRM can only be explored once the resource allocation fully depends on the tasks’ impact on the
mission. To allow all tasks to be considered equally, it is considered that the resource allocation is
adjustable and not restricted to specific predefined values, as can be seen in the lower case of the
figure. Most of the available RRM approaches focus on single tasks. For example, within a tracking
scenario, many approaches try to keep the track quality constant [14, 15]. These approaches solve
the RRM problem by applying POMDP solution methods, which was shown to be a good framework
for modelling RRM problems. When multiple tasks are considered, this problem becomes more dif-
ficult to solve. By design, an MFR system usually operates at its resource limit as it has the ability
to quickly move its attention from one target to another. Therefore, resource allocation can be con-
sidered to be a balancing act. Consequently, increasing the resources for one task will automatically
decrease the resources for all the other ones, which will deteriorate their sensing performance.

1.4. Problem Statement
In this section a high level overview of the RRM problem that will be tackled in the remainder of
this thesis will be given. Consider the situation where a single radar is tasked with tracking N differ-
ent moving objects in a two-dimensional plane and the sensor only has a limited amount of sensor
time, which is the time it spends taking observations, available. This leads to the problem of how
to allocate the sensor budget, which in our case is the sensor time, between the different objects to
be tracked. The goal of this thesis is to provide a solution method that, given such a tracking sce-
nario, provides an approximately optimal distribution of the radar resources over the tracking tasks.
It is important that this solution method manages to compute this budget distribution, while taking
into account changes that occur during operation. This includes changes to the environment in
which the objects are tracked, changes to the number of objects to be tracked and changes in the
movement of the objects to be tracked. This leads to a stochastic optimization problem, which can
be modelled as a Partially Observable Markov Decision Process (POMDP). In chapter 2 it will be dis-
cussed in detail what a POMDP is and how the problem described in this section can be formulated
as a POMDP. This thesis builds on the work done in [2], where a policy rollout solution method was
introduced to solve the budget distribution problem.

1.5. Thesis Structure
This chapter gave an introduction to the RRM problem and provided background information on
radar systems. This section describes how the remainder of this thesis is structured. In chapter 2
background information on POMDPs and target tracking will be provided. In chapter 3 a literature
review will be carried out presenting an overview of the available solution methods to POMDPs.
Chapter 4 provides a detailed explanation on the proposed solution method and provides an analy-
sis of the results obtained using this method. In chapter 5 an extension to the proposed solution will
be explained and analysed. Chapter 6 will summarize the results obtained and draw conclusions.
Finally, recommendations will be given for possible related future research.

2
Background information

In this chapter it will be explained what a POMDP is and how this can be used to formulate the
RRM problem. It will provide background information on target tracking using a Kalman filter and
will explain how the problem can be written as an optimization problem. Furthermore, an existing
solution to the formulated RRM problem will be described.

2.1. Markov Decision Processes
Many presented RRM solution methods assume a Markov decision process (MDP) in their RRM
solution method (e.g. [16, 17]). An MDP is defined in [18] as the tuple (S, A, T, R), where those 4
symbols relate to the following system information:

• S: Set of states. The state describes the features of a system that are evolving over time.

• A: Set of actions. Actions are the inputs that can be applied to the system.

• T : Transition function. When applying an action a ∈ A in a state s ∈ S, the state transitions
from s to a new state s′ ∈ S with probability T (s, a, s′).

• R: Reward function. The reward function specifies the reward for being in a state or for taking
an action when in a state.

Figure 2.1: Example Markov Decision Process.

5

6 2. Background information

A decision process is said to be Markovian if the result of taking an action in a state depends on the
history only through its current state. An example of such a decision process, where S, A, T and R are
given can be seen in Fig. 2.1. The numbers on the arrows indicate the transition probabilities. The
solution of such a decision process is called a policy. A policy π defines the action the agent selects
in each state. The optimal policy π∗ of, for example the MDP in Fig. 2.1 is one that maximizes the
discounted reward over some (potentially infinite) time horizon H:

π∗ = argmax
π

E
[H−1∑

k=0
γk R(s, s′)

]
, (2.1)

where γ ∈ [0,1] is called the discount factor, that weighs how important rewards now are compared
to future rewards. The resulting policy will inform the agent if action a0 or a1 should be applied
when in each of the states S0, S1 and S2. In the described RRM problem, the problem cannot quite be
modelled as an MDP, as it is not possible to fully determine the state, due to e.g. noisy measurements
and target maneuverability. Therefore, the decision process is said to be partially observable and
can be modelled as a POMDP. POMDPs are generalizations of MDP’s and will be discussed in the
next section.

2.2. Partially Observable Markov Decision Processes
In contrast to MDP’s, POMDPs can be used to describe a decision process in which the agent cannot
directly observe the underlying state. This section will provide basic background information and
will illustrate how the RRM problem described in section 1.4 can be modelled as a POMDP.

In literature (e.g. in [17, 19]) a POMDP is defined as the tuple (S, A, T, R, Ω, O). In the POMDP
configuration that models the RRM problem, those 6 symbols relate to the following system infor-
mation:

• S: Set of states.

• A: Set of actions.

• T : Transition function.

• R: Reward function.

• Ω: Observations. The observations of the system that can be used to gain more information
about the state and make better decisions.

• O: Observation law. The observation law provides the probability distribution of making an
observation given the state and the action.

Note that the first 4 items are the same as in the MDP definition in section 2.1. In POMDPs the state
is not fully observable. Instead, a probability distribution over the state space is computed. This
probability distribution over the state space is often referred to as the belief state. A solution to a
POMDP is provided in the form of a policy function π, which maps each belief state to an action
that should be taken. When optimizing over a certain time horizon H , the value function when in
belief state bk is given by

V π
H (bk) = R(bk , Aπ(bk))+E [V π

H−1(Bπ
k+1)|Bk = bk], (2.2)

where bk is the belief state, Aπ(bk)) is the mapping from the belief state bk onto the action space
following policy π and Bπ

k+1 is the belief state transition function when following policy π. This
value function can be seen as the accumulated reward the agent receives when it is in belief state bk

and following policy π for the next H time-steps. A solution to the POMDP can now be obtained by

2.3. Tracking 7

maximizing this value function, i.e. some policy π needs to be found that maps the action that leads
to the maximum value function for each belief state bk :

π∗ = argmax
π

V π
H (bk). (2.3)

In chapter 3 an overview of different methods of (approximately) solving POMDPs will be provided.
In the next sections, it will be explained how the RRM problem can be formulated as a POMDP.

2.3. Tracking
Since a tracking scenario is assumed in the RRM problem, a tracking filter needs to be chosen. For
purely linear scenarios, a Kalman filter is the optimal solution. When a non-linear measurement
transformation function or state transition function is assumed, an extended Kalman filter (EKF)
or a particle filter are possible solutions. Generally, the tracking algorithm aims at computing the
posterior density p(sn

t |zn
t) of the object state. For this thesis, an EKF is used to track the targets. In

this section it will be described how this EKF will be used in our RRM tracking problem.

2.3.1. Motion Model
There are N targets assumed in the scenario that are moving in a two-dimensional plane. The state
of each target at time t can be defined as

sn
t = [

xn
t yn

t ẋn
t ẏn

t

]> , (2.4)

where xn
t ,yn

t and ẋn
t ,ẏn

t are the position and velocity in x and y direction of a Cartesian coordinate
system, respectively. The new target state after a certain time T can be calculated following a state
transition function:

sn
t+T = f

(
T, sn

t , w n
t

)
, (2.5)

where sn
t+T is the state of target n at time t +T and w n

t ∈ R4 is its maneuverability noise at time t ,
which is zero-mean and Gaussian. For our RRM problem a constant velocity (CV) model is assumed
for the motion of the targets:

sn
t+T = F sn

t +w n
t =

1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 sn
t +w n

t , (2.6)

where F is the state transition matrix. The process noise covariance matrix for target n is defined as

Qn =

T 4

4 0 T 3

2 0

0 T 4

4 0 T 3

2
T 3

2 0 T 2 0

0 T 3

2 0 T 2

σ2
w,n , (2.7)

where σ2
w,n is the maneuverability noise variance.

2.3.2. Measurement Model
The assumed radar sensor takes noisy measurements of the state sn

t by executing sensor actions an
t

that are adjustable and influence the accuracy of the observations. At time t , the measurement of
target n can be defined by

zn
t = h

(
sn

t , v n
t , an

t

)
, (2.8)

8 2. Background information

where h(·) is the measurement transformation function, v n
t with variance σ2

n = [σ2
r,nσ

2
θ,n]> is the

measurement noise, which is Gaussian and zero-mean and an
t is the chosen action for target n

at time t . For our RRM problem the measurements are made in range (r) and azimuth (θ). The
following measurement model is introduced to convert the state from Carthesian coordinates into
polar coordinates:

h(sn
t) =

[√
(xn

t)2 + (yn
t)2 atan2(

yn
t

xn
t

)
]>

. (2.9)

Now, the measurement function can be defined as follows:

zn
t = h(sn

t)+v n
t . (2.10)

The observation matrix H is the Jacobian of the measurement transformation function h(sn) de-
fined as (2.9):

H n
k = ∂h

∂s

∣∣∣∣
sk

(2.11)

and will be used in the EKF in section 2.3.3. Based on the range of an object, the signal-to-noise
ratio (SNR) of a measurement is determined in the same way as was described in [20], following
equations by Koch [21]:

SNR = SNR0(
RCS

RCS0
)(
τ

τ0
)(

r

r0
)−4e−2∆b , (2.12)

where RCS is the radar cross section, τ is the dwell time of the object and r is the distance between
the target and the radar. The dwell time is the time the sensor spends on observing a target. ∆b is a
measure of relative beam positioning error. As it is assumed that the prediction is accurate enough
to steer the beam towards the object, ∆b is assumed to be 0, which results in the exponential term
vanishing. Note that in this equation τ replaces the beam energy e in the original equations in [21].
In this equation τ is the action the radar takes. Thus, by changing τ the measurement quality for the
different targets can be controlled.

Table 2.1: Reference measurement values.

Reference parameter Value
Measurement variance in range (σ2

r,0) 25 m2

Measurement variance in angle (σ2
θ,0) 2e-3 rad2

Reference SNR (SN R0) 1
Reference RCS (RC S0) 10 m2

Reference dwell time (τ0) 1 s
Reference range (r0) 50 km

In Table 2.1 example values of RCS0, τ0 and r0 as well as other measurement parameters can be
found. These reference values will be used in this thesis to calculate the SNR. Finally, after comput-
ing the SNR of a target its measurement noise variance can now be calculated as:

σ2
r,n =

σ2
r,0

SN Rn,k
(2.13)

and

σ2
θ,n =

σ2
θ,0

SN Rn,k
. (2.14)

Finally, the measurement noise covariance matrix R can be constructed as follows:

R =
[
σ2

r,n 0
0 σ2

θ,n

]
. (2.15)

2.4. Cost function 9

2.3.3. Extended Kalman filter
An EKF is a filter that combines the predictions made using the motion model with the measure-
ments to minimize the tracking uncertainty. This filtering process consists of two stages. Firstly,
during the predict stage the next state of a target is predicted based on the assumed motion model:

ŝk|k−1 = Fk ŝk−1|k−1. (2.16)

This state estimate ŝk|k−1 is called the a priori state estimate. Secondly, during the update stage the
state prediction made during the predict stage is updated by multiplying the difference between the
predicted state ŝk|k−1 and the measured state z̃k with the Kalman gain Kk :

ŝk|k = ŝk|k−1 +Kk z̃k . (2.17)

This state estimate is often referred to as the a posteriori state estimate. In Table 2.2 the equations
to compute the state estimates during every predict and update step are listed. In this table Pk|k−1

is the predicted error covariance matrix, which will be used in the next section to define the cost
function.

Table 2.2: Extended Kalman filtering steps.

Predict stage:
A priori state estimate: ŝk|k−1 = Fk ŝk−1|k−1

A priori estimated error covariance: Pk|k−1 = Fk Pk−1|k−1F>
k +Qk

Update stage:
Innovation residual: z̃k = zk −h(ŝk|k−1)
Innovation covariance: Sk = Hk Pk|k−1H>

k +Rk

Kalman gain: Kk = Pk|k−1H>
k S−1

k
A posteriori state estimate: ŝk|k = ŝk|k−1 +Kk z̃k

A posteriori estimated error covariance: Pk|k = (I −Kk Hk)Pk|k−1

2.4. Cost function
In contrast to a reward function that is frequently used in literature about stochastic optimization
as well as in the literature review in this thesis, for our RRM problem a cost function is used. A
cost function is simply a reward function with its sign swapped. The aim of the cost function is to
let the radar gather as much information about the targets as possible. Conversely, the solution of
the problem should be one that minimizes the uncertainty about the targets. For this reason it was
chosen to minimize the first two diagonal terms of the predicted error covariance matrix Pk|k−1,
corresponding to the predicted variance in x and y position of the objects:

c(τn
k ,T n

k , sn
k) = trace (E P n

k|k−1E>)+ 500

T n
k

, (2.18)

where

E =
[

1 0 0 0
0 1 0 0

]
. (2.19)

The second term of the cost function, 500
T n

k
, is a penalty for switching between the different targets too

frequently. In this cost function τn
k is the dwell time at time-step k of target n and T n

k is the revisit
time at time-step k of target n. This function only comprises of the cost of a single target at a single
time-step k. To obtain the total cost over some horizon, the costs of all targets at all time-steps
within this horizon need to be summed. Note that this cost function only serves as an example.
Different cost functions can be used based on the demands of the user of the radar system.

10 2. Background information

2.5. Optimization Setup
The RRM problem is solved by finding the revisit times and dwell times {T n

k ,τn
k } for n = 1...N and k =

0...H −1 that minimize the cost function in 2.18 summed over some horizon H and over n objects.
The solution can be considered to be a budget distribution over the tasks, deciding which share of

the radar resources each target receives. The fraction that target n receives at time-step k is
τn

k
T n

k
. As

the total fraction of all targets must not exceed Bmax the minimization problem is constrained. The
optimization problem can be defined as follows:

min
τ,T

H−1∑
k=0

(
N∑

n=1
c(τn

k ,T n
k , sn

k))

s.t.
N∑

n=1

τn
k

T n
k

≤ Bmax for k = 0. . . H −1.

(2.20)

Solving this problem comes down to minimizing the cost of the N objects summed over the time
horizon H. The result of this optimization problem provides the actions of the radar system:

τ=

τ1

1 τ1
2 . . . τ1

H
τ2

1 τ2
2 . . . τ2

H
...

...
. . .

...
τN

1 τN
2 . . . τN

H

and T =

T 1

1 T 1
2 . . . T 1

H
T 2

1 T 2
2 . . . T 2

H
...

...
. . .

...
T N

1 T N
2 . . . T N

H

 , (2.21)

where τi
j and T i

k+ j correspond to the dwell time and the revisit time of the i -th object and the (k+ j)-
th time-step respectively. Note that in traditional control problems, the actions or inputs to the sys-
tem usually directly affect the state of the system. In the control problem described in this chapter
the inputs to the system do not affect the state, i.e. the actions do not influence the movement the
target makes. Instead, the actions in this RRM problem affect the quality of the sensor measure-
ments.

2.6. AODB algorithm
An existing solution method to the specified RRM problem is the approximately optimal dynamic
budget balancing (AODB) algorithm introduced in [2]. This section will describe how the solution
method provided in that paper is used to solve the RRM problem. Firstly, the problem is split into
a sub-problem per target using Lagrangian Relaxation. Then, policy rollout is used to find {τ,T } for
each of these sub-problems.

2.6.1. Lagrangian Relaxation
Using Lagrangian Relaxation the constraints of the optimization problem described in 2.20 can be
brought into the objective function. The optimization function now becomes:

max
λ

(
min
τ,T

k+H∑
t=k

(N∑
n=1

c(τn
t ,T n

t , sn
t)+λ τ

n
t

T n
t

)
︸ ︷︷ ︸
sum of independent minimization problems

− λBmax

)
. (2.22)

In this optimization problem it can be seen that the minimization problem consists of the sum of N
minimization problems which are now, for a fixed iteration of λ, independent of each other as they
are no longer linked to each other by the constraints. As a result, the problem can be rewritten into
N sub-problems for the N different objects that need to be tracked:

min
τ,T

k+H∑
t=k

c(τn
t ,T n

t , sn
t)+λ τ

n
t

T n
t

. (2.23)

These sub-problems are independent of each other and are solved by performing policy rollout.

2.6. AODB algorithm 11

2.6.2. Policy Rollout
Policy rollout is a Monte Carlo sampling based technique. Firstly, the action space is discretized,
generating a finite number of {τ,T }-pairs as trial actions for each of the targets. A number of sam-
ples of horizon length H of the future are generated for each {τ,T }-pair. Each of these samples is
considered a rollout. For the first action of the rollout τ and T are applied as inputs. After that, for
the remainder of the horizon length, the action provided by the base policy is used. In this algo-
rithm, the base policy was assumed to repeat τ and T as inputs for the full horizon length. For a
{τ,T }-pair, the average cost over its rollouts is computed using 2.23. Finally, the actions that resulted
in the lowest average cost is the solution to a sub-problem. The values of τ and T that are found
for each of the sub-problems are combined to determine if the available radar budget Bmax is not
exceeded:

|
N∑

n=1

τn
t

T n
t
−Bmax | ≤ ε, (2.24)

where ε is some constraint tolerance parameter. Until this constraint is satisfied, policy rollout is
repeated with a new value of λ, which is determined using the subgradient method described in
Algorithm 1, where l indicates the iteration index:

Algorithm 1: Subgradient method for finding λ.

Step 1 Set initial λ=λ0

Step 2 Generate policy rollout solution using λ

Step 3 Compute subgradient to be µλl = |∑N
n=1

τt
n

T t
n
−Bmax |

Step 4
if µλl ≤ ε then

return λ
else

λl+1 ← max{0,λl +γlµ
λ
l }

l ← l +1
Go back to step 2

end

An overview of the AODB algorithm is provided in Fig. 2.2. In this figure θn
k refers to the resulting

budget {τn
k ,T n

k } of object n at time-step k. While the AODB algorithm reported good results in terms
of realized cost, the computation time can be quite large. This stems from the fact that multiple
rollouts are needed to make proper use of the sampling in this method. Moreover, a sufficiently low
discretization step size in the action space is required to return good results.

12 2. Background information

Figure 2.2: AODB algorithm block scheme [2].

2.7. Conclusion
In this chapter it has been explained what a POMDP is and how this framework can be used to
formulate our RRM problem. It was then described how this POMDP formulation could be solved
with the AODB algorithm using Lagrangian relaxation and policy rollout. The main goal in this
thesis is to build on the work done in [2] and construct an algorithm that is less computationally
intense, while still providing good results compared to the AODB algorithm. In chapter 3 different
POMDP solution methods will be explored.

3
POMDP solutions in literature

This section will discuss different solutions methods that can be found in literature for solving
POMDP problems. The solution methods are mostly those that followed from [22–24]. As described
in section 2.2, these solution methods should provide a policy that maps an action to a belief state,
such that the value function is maximized. In order words, for each belief state the action needs to
be found that maximizes its value function:

A∗(bk) = argmax
ak∈A

R(bk , Aπ(bk))+E [V π
H−1(Bπ

k+1)|Bk = bk], (3.1)

where A∗ is the optimal mapping from the belief space to the action space and A is the action
space. However, with growing state and action space, the optimal solution of a POMDP becomes
increasingly intractable. Therefore, real-time approaches inevitably require approximate POMDP
solution methods to be applied. Following the framework presented in [3, 23], these approximate
solution methods can be divided into four classes:

• Policy Function Approximation methods,

• Cost Function Approximation methods,

• Value Function Approximation methods,

• Direct Lookahead Approximation methods.

It is shown graphically in Fig. 3.1 which part of the optimal policy function the first three of these
classes approximate. In the next sections, each of these approximate solution methods will be dis-
cussed.

Figure 3.1: Different function approximation classes for the optimal policy function. [3]

13

14 3. POMDP solutions in literature

3.1. Policy function approximations
In policy function approximations (PFA’s) the policy function is parameterized in a way that the
policy function depends on some parameter vector θ. The chosen action now follows directly from
the policy function that we approximate:

A f ,θ(bk) = f (bk ;θ). (3.2)

For example in portfolio optimization this policy function could be to sell a certain stock if the price
goes above a threshold θsel l and to buy this stock if it goes below a threshold θbuy . The approach of
PFA is for example used in [25] and [15]. For a solution method involving PFA to be applied in our
RRM problem one would need to find some suitable (parameterized) heuristic function. It seems
difficult to come up with functions that could fully exploit the information known about the objects
and give solutions that yield good results over a given time rather than a single time instance. The
implementations in [25] and [15] were simplified such that the functions used can no longer be
extended to the multi-target tracking scenario considered in this thesis.

3.2. Cost function approximations
In cost function approximations (CFA’s) the cost function needs to be parameterized based on some
parameter vector θ. The policy in this case is to take the action that results in the highest value of
the reward function:

Aπ,θ = argmax
ak∈A

[r̃π(bk , ak ;θ)]. (3.3)

This class of POMDP solution methods is discussed in detail in [26]. For the RRM problem, it is
considered important to evaluate how the actions taken now affect the future. For example, to deal
with changes to the system that are known in advance. Generally, in CFA solution methods the
impact of a decision now on the future is not considered.

3.3. Value function approximations
By using Value Function Approximations (VFA’s), the value function term from equation 3.1, which
encapsulates the future rewards can be replaced by an approximation. The equation now becomes:

A(bk) = argmax
ak∈A

R(bk , Aπ(bk))+E [Ṽ π
H−1(Bπ

k+1)|Bk = bk]. (3.4)

The objective becomes to find a good approximation Ṽ π
H−1(Bk+1) of the value function. Approxi-

mating value functions is a large part in the fields of approximate dynamic programming [27] and
Reinforcement Learning [28]. There is a lot of literature available where POMDP solutions belong-
ing to the VFA class are used, e.g. [22, 24, 29–31]. It seems challenging to use a VFA solution method
for our RRM problem. The value of all belief states would need to be approximated. In the RRM
problem considered in this thesis, the state of the system consists of the two-dimensional position
and velocity of the objects. Each of these state elements can assume a lot of different values. Fur-
thermore, there could be any reasonable number of targets to be tracked. Each of these reasons
contribute to a very large belief state space. It seems infeasible to approximate the value functions
for all belief state spaces using VFA-based solution methods.

3.4. Direct Lookahead Approximations
The last of the four classes of POMDP solution established in [23] is the class of Direct Lookahead
Approximations (DLA). Here an approximate lookahead model of the system needs to be made.
Using this lookahead model the future evolution and reward of the system can be approximated
following some actions that we take now. In this manner, the reward of taking a sequence of actions

3.5. Evaluation 15

Table 3.1: Evaluation of the classes of POMDP solution methods.

Characteristic PFA CFA VFA DLA
Feasible to find solution + + - +
Performance (future predicting ability) - - + +

can be evaluated. Finally, the action needs to be found for which the future reward is the largest.
This action can then be applied to the system.

3.5. Evaluation
In Table 3.1 the discussed classes of POMDP solution methods are compared with respect to their
ability to be applied to the RRM problem. As stated earlier, the RRM problem that is considered
in this thesis has a state space that is too large for VFA solution methods to be implemented. PFA
solution methods do not appear to be suited enough to provide a good performance by taking into
account all information known to the system. In CFA solution methods the impact that taking ac-
tions has on the future is not considered, while this is a goal for our RRM solution. Based on these
reasons, in the remainder of this chapter different DLA solution methods will be investigated fur-
ther.

3.5.1. Rollout policies
Rollout policies predict the future in a state following all policies π̃ ∈ Π̃, where Π̃ is a restricted set of
policies. Afterwards, the rewards obtained by following each of the policies can be computed. Then,
the policy that led to the highest reward is applied. This method is applied in [2] in combination
with Monte Carlo sampling, where for each policy multiple samples are evaluated and averaged.
This was described in detail in section 2.6.2.

3.5.2. Monte Carlo tree-search
Another approach is to use a Monte Carlo tree-search (MCTS). In this solution method the goal is to
model the entire system by a decision tree and find optimal decisions to take at each decision node.
Each decision node represents a belief state in the system. The following process must be repeated
for a sufficient number of times:

1. Select an action out of a decision node (which represents a state).

2. Expand the tree if the resulting observation results in a node not already in the tree.

3. Perform rollout policy to determine the value of the node that was reached.

4. Go backwards through the tree to update the value of being at each node.

The problem is that each belief state in the system needs to be reached and at each of these belief
states all actions must be evaluated. In [23] it is suggested that MCTS is feasible for problems only
when there are a few dozen actions per state. Consequently, this solution method is useful only for
problems where the state space and the action space are small.

3.5.3. Deterministic Lookahead
Deterministic Lookahead methods use an approximate lookahead model of the system to predict
the effect that actions taken now have on the future. These methods are often referred to as Model
Predictive Control (MPC). The future evolution of the system for some sequence of chosen actions is
predicted using the lookahead model. A cost function is then used to compute the resulting cost of
taking these actions at each future time-step until some horizon. The sequence of actions resulting

16 3. POMDP solutions in literature

in the lowest value for the cost function is then considered to be the solution of the POMPD at that
time-step. This method can in fact also be considered a hybrid CFA solution method using a deter-
ministic lookahead, negating the downside of CFA solution methods, which is that they generally do
not take into account the future effect of actions. An example of such a solution method for an en-
ergy storage problem can be found in [32]. In contrast to computing different rollouts using Monte
Carlo sampling now the most likely future evolution based on the underlying model is considered,
rather than the future evolution of some randomized samples.

3.6. Conclusion
In this chapter different POMDP solution methods are categorized in 4 classes. These classes were
then explained and their applicability to the RRM problem was compared. It was found in section
3.5 that a DLA solution method would be most suited to solve the RRM problem. Subsequently, dif-
ferent DLA solution methods were discussed. MCTS was determined to be unfit for the RRM prob-
lem as the state space and action space must be small to apply this solution method. While policy
rollout methods showed promising results, the computation time was quite large. The deterministic
lookahead approach, often referred to as model predictive control (MPC), has been shown to be an
approximation of policy rollout [33]. Due to its ability to provide non-myopic solutions and due to
the goal to lower the computation time compared to policy rollout, the possibility of employing an
MPC solution method to the RRM problem will be explored in this thesis. As MPC can be seen as an
approximation of policy rollout, it will be compared to the Policy Rollout method implementation
discussed in [2]. Based on their performances in terms of computational time and cost in different
scenarios it will be investigated if MPC could be a viable alternative to policy rollout methods for
RRM problems. In chapter 4 the MPC solution method to the RRM problem will be described and
evaluated.

4
Proposed approach

The proposed POMDP solution method for the RRM problem in this thesis is model predictive con-
trol (MPC). MPC is a receding horizon approach meaning that the prediction horizon is shifted for-
ward after every iteration. The basic operating principle can be summarized as follows, where H
indicates the prediction horizon, which in this thesis is always assumed to be equal to the control
horizon:

1. Minimize the cost function c(at , st) over prediction horizon:

at = argmin
at

k+H∑
t=k

c(at , st), (4.1)

where at are the actions taken at time t and st is the state at time t . The output at of the
minimization problem gives the approximately optimal actions to take for the upcoming H
time-steps.

2. Apply only the actions corresponding to the upcoming time-step of the computed action se-
quence, i.e. ak .

3. Repeat 1 and 2 at next time-step k +1.

In the next section it will be explained how the MPC framework is used to solve the RRM problem
defined in chapter 2.

4.1. Model Predictive Control
Recall the optimization problem of N different sub-problems obtained using Lagrangian relaxation:

min
τ,T

k+H∑
t=k

c(τn
t ,T n

t , sn
t)+λ τ

n
t

T n
t

. (4.2)

Each of these minimization problems are solved using MPC for some value of the Lagrange multi-
plier λ. Next, it is evaluated if the imposed constraint on the available budget is approximately met.
A budget distribution needs to be found where the total assigned budget is close to Bmax . If the
total assigned budget is too large, the determined actions cannot be applied. If the total assigned
budget is too small, the available radar resources are not sufficiently exploited. Therefore, a value

17

18 4. Proposed approach

of λ must be found for which (4.3) is met, where ε is some small number indicating the tolerance of
the constraint:

|
N∑

n=1
(
τn

t

T n
t

)−Bmax | ≤ ε. (4.3)

It will be discussed in section 4.2 how this λ is found using golden section search.

4.2. Golden Section Search
Recall that the goal is to find the Lagrange multiplier λ such that 4.3 is met. In Fig. 4.1 values of∑N

n=1(
τt

n

T t
n

)−Bmax for different Lagrange multipliers λ are plotted. The absolute value is plotted for
different values of the Lagrange multiplier in Fig. 4.2.

Figure 4.1: Difference between available
budget and budget needed resulting from
optimization.

Figure 4.2: Absolute value of difference be-
tween available budget and budget needed
resulting from optimization.

From this figure it can be seen that this forms a unimodal function, i.e. a function monotonically
decreasing for x ≤ xmi n and monotonically increasing for x ≥ xmi n . Based on this, it is known that
its minimum can be found using golden section search [34]. The standard golden section search
method, as described in for example [35], is extended due to the fact that initially the lower and
upper bounds of λ are unknown. To find these bounds, λ is increased after every time-step k. As it
is known that the value of λ must ensure that (4.3) is met, our initial values for the upper and lower
bounds are those values of λk and λk+1 for which there is a change in sign when going from f (λk)
to f (λk+1). Here a function evaluation f (λ) is defined as follows:

f (λ) =
N∑

n=1

τn
t

T n
t
−Bmax , (4.4)

where τn
t and T n

t result from solving the sub-problems in (2.23) using λ. These lower and upper
bounds will be referred to as xL and xU . Once these bounds are found the next step to find λ is
to perform function evaluations of values of λ between xU and xL . An efficient way of choosing

these intermediate points is using the golden ratio conjugate (r =
p

5−1
2 ≈ 0.618). Initially, the two

intermediate points x1 = xL + r (xU −xL) and x2 = xU − r (xU −xL) are evaluated. Then, based on the
values f (x1) and f (x2) at those points a new intermediate point is chosen and xL or xU is shifted to
x1 or x2 respectively after which the function is evaluated at the newly chosen point. This procedure
is repeated until a point is found that meets the criterion set in (4.3). The whole search method is
summarized in Algorithm 2.

4.3. Scheduling conflict 19

Algorithm 2: Finding the Lagrange multiplier using golden section search

Step 1 Starting from λ= 0, increase λ and compute f(λ) until f(λ) becomes negative
Step 2 This λ becomes xU while the previous λ becomes xL

x1 = xU − r (xU −xL)
x2 = xL + r (xU −xL)
Compute f(x1) and f(x2)
Step 3;
while f(x1) ≤ ε∩ f (x2) ≤ ε do

if f(x1) ≤ f (x2) then
xU = x2

x2 = x1

x1 = xU − r (xU −xL)
Compute f(x1)

else
xL = x1

x1 = x2

x2 = xL + r (xU −xL)
Compute f(x2)

end
end

As the value of λt that results from this process is in general close to that at the next budget update
interval λt+T , it is better to not initialize λ at 0 again. Instead, the initial value of λ can be set to
the previously determined λ to reduce the number of function evaluations. As this initial λ might
already be larger than the optimal λ, it must first be checked if f (λ) is increasing when λ increases
to determine the search direction of the first step of the algorithm.

4.3. Scheduling conflict
Consider the situation where 2 objects are tracked and the optimization problem results in the fol-
lowing values for τ and T, which is visually represented in figure 4.3:

Table 4.1: Example optimized actions.

τ1[s] τ2[s] T1[s] T2[s]
1 1.5 2 3

Figure 4.3: Example budget distribution that leads to scheduling issues.

20 4. Proposed approach

Assuming that Bmax = 1, with these values the constraint imposed in (4.3) is satisfied. It can, how-
ever, clearly be seen from the figure that the tasks cannot be executed while maintaining the com-
puted values for τ and T , considering that the radar can only take measurements of a single object
at once. Evidently, to ensure that the matrices τ and T that result from an optimization step can be
directly translated into actions for the radar, some more advanced constraints are needed. To avoid
such scheduling issues, for the remainder of this thesis it is assumed that the revisit time is equal
for all the tasks. It can easily be confirmed that when the revisit time for all objects are the same, no
scheduling issues will arise as long as the constraint listed in (4.3) is satisfied.
Furthermore, as it is assumed that the budget update interval is kept constant, for some values of
the revisit time it may be the case that not all objects that are scheduled have been executed when a
new budget update is issued, leading to some tasks being dropped. To prevent this, the value of the
revisit time of the tasks needs to be a divisor of the budget update interval. For instance for a budget
update interval of 5 s, 5

T should return a natural number: 5
T ∈N.

4.4. Solution overview
Finally, it is summarized in this section using Fig. 4.4 how the different parts of the solution methods
are interconnected for a time-step in which a budget update takes place. The inputs are the object
parameters and the initial λ. Based on this, the sub-problems for the N different targets can be

Figure 4.4: Overview of solution method.

solved using MPC. With these found solutions it is checked if the budget constraint in (4.3) is met. If
this is the case, the solution {τk ,T k } is found. The entries of {τk ,T k } corresponding to the next time-
step are then applied to the radar system. If this is not the case, the golden section search algorithm
is used to find new values forλuntil the budget constraint is met. At the next budget update interval,
the described process in this section is repeated. Comparing the MPC solution method with the
policy rollout solution method introduced in [2], there are a couple of key differences. Firstly, in
the case of policy rollout the action space is discretized, while for the MPC solution method the
action space can be continuous. Moreover, there is a fundamental difference in the way the future
is predicted in order to minimize over the action space. Using policy rollout, for every action the
future is predicted by sampling the random variables, such as maneuverability and measurement
noise, a number of times, after which the cost is averaged over these samples. In the MPC solution
method, for these random variables the most likely value is chosen based on the underlying model,
and the cost of only one future sample needs to be computed. Lastly, in the policy rollout method,
some base policy needs to be assumed and you can practically only optimize the first action to take

4.5. Results and Simulations 21

of the horizon. In the MPC method, you can compute different actions for each measurement step.
Note that theoretically the same could be done using the policy rollout method, but the action space
and consequently the computation time would increase exponentially with the number of different
actions that you optimize at once.

4.5. Results and Simulations
In the remainder of this chapter, the proposed solution method will be compared to the method of
policy rollout introduced in [2]. Using MATLAB simulations, both solution methods will be tasked
with computing the budget distributions in four different dynamic tracking scenarios. Furthermore,
the importance of Lagrangian relaxation and the method of finding the Lagrange multiplier will be
investigated. For the reference measurement parameters the values listed in Table 2.1 will be used.

4.6. Simulation Scenario A
Simulation scenario A consists of targets moving in a straight line at a constant velocity, as can be
seen in Fig. 4.5 for 5 targets. Scenarios with varying numbers of targets moving in a straight line at a
constant velocity are used in the following sections for the following purposes:

• Compare the effect that certain events have on the budget distribution using MPC and policy
rollout (subsection 4.6.1),

• compare the execution time and realized cost using MPC and policy rollout (subsections 4.6.2
and 4.6.3),

• investigate the importance of Lagrangian relaxation in the solution method (subsection 4.6.4),

• compare the implementation of the golden section search algorithm with the subgradient
method for finding λ (subsection 4.6.5).

Figure 4.5: Trajectories of the 5 objects to be tracked for a scenario of 100 seconds.

22 4. Proposed approach

4.6.1. Budget distribution
In this example situation, some events took place during the simulation time so that their effect on
the budget distribution could be evaluated:

• t = 20 s: A new object (task 5) needs to be tracked.

• t = 60 s: Total available budget decreases from 1.0 to 0.9.

• t = 90 s: Maneuverability of task 1 increases.

Table 4.2: Simulation parameters scenario A.

Reference parameter Value
Maneuverability noise variance (σ2

w) 2.5 (m
s2)2

Radar cross section (RCS) 10 m2

Prediction horizon length (H) 15
Number of rollouts 10
Simulation update interval 5 s
Budget precision (ε) 0.002

For the simulation the parameters listed in Table 4.2 were used. Fig. 4.6 and 4.7 show the budget
distributions for the example scenario shown in Fig. 4.5 using the MPC and the policy rollout algo-
rithm, respectively. It can be seen that objects located further away from the radar are allocated a

Figure 4.6: Budget allocation of the 5 ob-
jects over the simulation time obtained using
MPC.

Figure 4.7: Budget allocation of the 5 objects
over the simulation time obtained using Pol-
icy Rollout.

larger amount of the budget than those closer to the radar. This is due to the way the cost function
is constructed. Measurements of objects further away will have a smaller signal-to-noise ratio and
this is compensated for by increasing the budget available for tracking these objects. This behaviour
is specific to the cost function choice and might not always be desired, so given the demands of the
user, a different cost function can be constructed. Furthermore, the figure reflects the changes to
the system at the set time-steps. At t = 20 s, a new object needs to be tracked and some budget is
made available for this task. At t = 60 s, the total available budget decreases and the budgets of all
tasks decrease. At t = 90 s, the maneuverability noise variance of the first task increases, resulting in
the need to take better measurements of this object and therefore increasing the budget of task 1.
When comparing the budget distributions from the policy rollout and MPC, it can be seen that the

4.6. Simulation Scenario A 23

budgets are mostly the same. The main difference is seen at the change in maneuverability at t = 90
s. It can be seen that the effect of this change shows only after 90 s in the case of MPC, while in the
case of policy rollout the effect of this change shows already at 80 s. This is due to the fact that in the
policy rollout optimization the same action is chosen for the full prediction horizon, while for MPC
this is not necessarily the case. As a horizon of 15 s is used, at the budget update that takes place at
80 s this change in maneuverability already needs to be taken into account, and thus the actions are
already slightly influenced by this change.

4.6.2. Execution Time Comparison
A goal of employing MPC was to lower the computational complexity compared to the policy rollout
algorithm. This is evaluated by comparing the execution time of an average budget update of both
algorithms. Here scenarios with linearly moving targets similar to scenario A are used with varying
numbers of moving objects. To compare the execution time as well as the realized cost in the next
section, a prediction horizon of 5 s is assumed. In Fig. 4.8 the results from running each simulation
3 times and averaging the execution times are shown. It can be seen that the execution times when
using MPC are significantly lower than when policy rollout is used.

Figure 4.8: Comparison between execution
times of policy rollout and MPC algorithms.

Figure 4.9: Comparison between realized
costs of equal distribution, policy rollout and
MPC.

4.6.3. Realized Cost Comparison
It is important that the performance of the resulting budget distribution is not degraded compared
to the policy rollout case. To investigate this their realized costs were compared using the same
scenarios as for the execution time comparison. The realized cost is defined as the sum of the eval-
uated cost function at every time-step during the simulation. In Fig. 4.9 the results from running
each simulation 3 times and averaging the realised costs are shown. For comparison, the realised
cost of using an equal distribution, i.e. allocating the same budget to all targets at every time-step, is
also included. From the figure it can be seen that MPC and Policy Rollout have similar performances
when looking at realized costs, while both outperform an equal distribution scheme.

4.6.4. Lagrangian Relaxation
Next, the importance of using Lagrangian Relaxation was evaluated. To do this, again simulations
were ran using different numbers of objects. To compute the budget distributions for these tasks,
two solution methods were used. The first solution method was the one described in this chapter,
while the second solution method used MPC, but did not split the problem into sub-problems us-

24 4. Proposed approach

ing Lagrangian relaxation. Instead, a single large optimization problem was solved at every budget
update. The simulations using both algorithms were ran using 6 different values for the prediction
horizon. In Fig. 4.10-4.13 the results are shown. Here it can be seen that for small values for the
horizon and for the number of tasks, using Lagrangian Relaxation increased the computation time
needed for the budget update. However, when the number of objects or the prediction horizon in-
creases, the added value of Lagrangian Relaxation becomes clear. For tracking more than 20 objects,
Lagrangian Relaxation greatly reduces the computation time needed for the budget update.

Figure 4.10: Execution time for distributing
the budget between 5 objects with and with-
out using LR.

Figure 4.11: Execution time for distributing
the budget between 10 objects with and with-
out using LR.

Figure 4.12: Execution time for distributing
the budget between 20 objects with and with-
out using LR.

Figure 4.13: Execution time for distributing
the budget between 30 objects with and with-
out using LR.

4.6.5. Converging to the Lagrange multiplier
In this section the performance of the golden section search algorithm was investigated. To do this,
it was compared to the subgradient method that was implemented as described in Algorithm 1. For
both algorithms it was evaluated how many function evaluations f (λ) were needed until conver-
gence to some allowed tolerance ε took place. The number of function evaluations until conver-
gence was averaged over 20 budget updates. The results can be seen in Fig. 4.14. For small numbers
of targets, both methods show similar performance. When the amount of tasks is increased, the

4.7. Simulation Scenario B 25

Figure 4.14: Golden section search vs subgradient method comparison.

required function evaluations of the subgradient method increases, while for the golden section
search it stays nearly constant. Another downside of the subgradient method is the need to manu-
ally select a step size. The number of function evaluations needed depends on this step size and an
optimal step size differs per problem (e.g. as the number of targets go up, typically a larger step size
is needed). For the subgradient method in this simulation, the initial step size was set to be nearly
optimal for all the different numbers of objects through trial and error.

4.7. Simulation Scenario B
Simulation scenario B consists of a static and a moving target. The moving target is first moving
straight before making a turn towards the radar sensor and then continuing a linear trajectory. This
trajectory is shown in Fig. 4.15. For the simulation the parameters listed in Table 4.3 were used.

Figure 4.15: Trajectories of the objects of scenario B.

26 4. Proposed approach

Table 4.3: Simulation parameters scenario B.

Reference parameter Value
Maneuverability noise variance object 1(σ2

w1) 2.5 (m
s2)2

Maneuverability noise variance object 2(σ2
w2) 0.1 (m

s2)2

Radar cross section (RCS) 10 m2

Prediction horizon length (H) 5
Number of rollouts 10
Simulation update interval 5 s
Budget precision (ε) 0.002

Fig. 4.16 and 4.17 show the resulting budget distributions of this scenario for MPC and policy rollout
respectively. In this case the budget distributions again are very similar. Furthermore, the resulting
realised costs over the simulation time are again very close to each other.

Figure 4.16: Budget allocation of the 2 objects
described in scenario B using MPC.

Figure 4.17: Budget allocation of the 2 objects
described in scenario B using policy rollout.

4.7.1. Simulation Scenario C

Table 4.4: Simulation parameters scenario C.

Reference parameter Value
Maneuverability noise variance object 1 (σ2

w1) 2.5 (m
s2)2

Maneuverability noise variance object 2 (σ2
w2) 2.5 (m

s2)2

Radar cross section (RCS) 10 m2

Prediction horizon length (H) 5
Number of rollouts 10
Simulation update interval 5 s
Budget precision (ε) 0.002

Simulation scenario C consists again of two targets. The first target makes an unexpected maneuver
at t = 15 s. In the scenario an area

15000 [m] ≤xn
k ≤ 20000 [m]

15000 [m] ≤yn
k ≤ 20000 [m] (4.5)

4.7. Simulation Scenario B 27

exists in which the quality of the measurements is negatively affected due to e.g. weather conditions.
If an object enters this area at least 80% of the budget is needed or else the radar loses track of the
target, which is known to the radar system. This trajectory can be seen in Fig. 4.18. The second target

Figure 4.18: Trajectory of the objects from scenario C.

makes the same maneuver but in the negative x and y quadrant, where there is no such grey area.
For the simulation the parameters listed in Table 4.4 were used. The resulting budget distributions
for MPC and policy rollout can be seen in Fig. 4.19 and 4.20. From these figures it can be seen
that policy rollout adapts earlier to the unexpected maneuver, as in some of the rollouts object 1
maneuvers into the grey area between t = 15 s and t = 20 s, while the MPC approach at that point still
assumes that the target continues moving in the same direction, avoiding the grey area. As a result,
in the MPC case the track would be lost in this scenario. This downside of MPC only assuming a
perfect system model can be negated by using a more robust MPC scheme, similar to [36], where
different disturbances in the state are considered. However, this will lead to a more computationally
intense control law.

Figure 4.19: Budget allocation of the 2 objects
described in scenario C using MPC.

Figure 4.20: Budget allocation of the 2 objects
described in scenario C using policy rollout.

28 4. Proposed approach

4.8. Simulation scenario D
In the final simulation of this chapter the importance of the prediction horizon H is investigated.
This horizon refers to how far ahead the lookahead model predicts at every optimization step. Events
taking place in the future can only be taken into account if the prediction horizon is sufficiently
large, such that the event occurs within the prediction window. To illustrate this the scenario in Fig.
4.21 was constructed.

Figure 4.21: Trajectory of the objects from scenario D.

In this scenario there is a specific region where, similar as in scenario C, again at least 80% of the
budget is needed to not lose track of the target. This region is defined as

0.3 [rad] ≤ θ ≤ 0.32 [rad] (4.6)

and can for example be caused by some object blocking this azimuth interval, negatively affecting
the measurements. In the figure it can be seen that both objects traverse the grey area. In this simu-
lation T is fixed to 1 s so every time-step will be 1 s. Object 1 is in this area during the measurements
taken at time-steps 29 and 30, while object 2 traverses this area during time-steps 18, 19 and 20. The
budget updates take place at every 5 time-steps, so at k=0, 5, 10, etc. At the budget update at time-
step 15, at least a prediction horizon of 3 steps ahead is needed to take into account the expected
deteriorated measurements ahead and assign 80% of the budget to tracking object 2. Similarly, at

Table 4.5: Simulation parameters scenario D.

Reference parameter Value
Maneuverability noise variance object 1 (σ2

w1) 2.5 (m
s2)2

Maneuverability noise variance object 2 (σ2
w2) 2.5 (m

s2)2

Radar cross section (RCS) 10 m2

Simulation update interval 5 s
Revisit time (T) 1 s
Budget precision (ε) 0.002

4.8. Simulation scenario D 29

the budget update at time-step 25 at least a prediction horizon of 4 is needed for the optimization
to take into account that at least 80% of the budget is needed for object 1 at time-steps 29 and 30.
The budget distributions for the described trajectory were simulated for prediction horizon values
of 1, 2, 3 and 4 using the parameters listed in Table 4.5. The resulting budget distributions can be
seen in Fig. 4.22 to 4.25. From Fig. 4.22 and 4.23 it can be seen that for prediction horizons of 1 and
2 the budget distribution did not adapt to either of the two objects entering the grey area. This is a
result of this event not taking place within the prediction horizon.

Figure 4.22: Budget distribution of the two
objects with a prediction horizon of 1.

Figure 4.23: Budget distribution of the two
objects with a prediction horizon of 2.

In Fig. 4.24 it can be seen that the budget distribution adapts only to object 2 entering the grey area,
as the prediction horizon is not large enough to predict object 1 entering the grey area at time-step
29. In the simulation with prediction horizon of 4, the prediction horizon is large enough to predict
and adapt to both objects entering the grey area. Consequently, with a prediction horizon of 1 and
2 both tracks would be lost, with a prediction horizon of 3 only the first track would be lost, while
with a prediction horizon of (at least) 4, the radar can continue to track both objects.

Figure 4.24: Budget distribution of the two
objects with a prediction horizon of 3.

Figure 4.25: Budget distribution of the two
objects with a prediction horizon of 4.

30 4. Proposed approach

4.9. Conclusion
In this chapter the proposed solution method using MPC to the RRM problem has been described.
This solution method was then compared to the existing method of policy rollout using four dy-
namic tracking scenarios. It was shown that the proposed method greatly reduced the computation
time needed to provide a very similar budget distribution. The next chapter will provide an exten-
sion to the proposed solution method. An IMM filter will be used to improve the tracking perfor-
mance while the targets are maneuvering.

5
Approach extended with IMM filter

Until now an EKF using a constant velocity (CV) model has been used to track the objects. This
greatly limits the tracking capability when tracking objects whose movement does not closely re-
semble the CV model, resulting in large tracking errors. One way of improving the tracking capa-
bility in such cases is by using an Interacting Multiple Model (IMM) filter. Now, instead of by a
filter using a single CV model, the objects are tracked using multiple models. In this chapter it is
first explained how this IMM filter is implemented for the tracking of targets, following the theory
described in [37]. Then, it is explained how the IMM filter is integrated in the MPC optimization
problem. Next, the behaviour of the solution method extended with the IMM filter is evaluated. It
is investigated if the tracking error is in fact reduced in scenarios where the CV model does not ap-
proximate the movement of the objects. Lastly, it is looked at how the integration of the IMM filter
affects the budget distribution in a scenario where one of the objects makes a maneuver.

5.1. IMM filter
In theory, one could implement an IMM filter with as many different models describing different
types of object movements as desired. Increasing the number of models will increase the number of
filters that need to be updated and will let the mixing step, as will become clear later in this section,
take more operations to compute. Both these factors will attribute to an increase in the compu-
tational load. As the goal here is to investigate how the tracking performance can be increased by
using a more advanced filter than an extended Kalman filter and how this will behave in combi-
nation with a budget distribution algorithm, it was chosen to implement an IMM filter using only
two models: a CV model and a constant turn (CT) model. For the CV model, the same model as
described in section 2.3.1 is used:

sCV
k+1 =

xk+1

yk+1

ẋk+1

ẏk+1

=

1 0 Tk 0
0 1 0 Tk

0 0 1 0
0 0 0 1

 sk +wk , (5.1)

where wk is the maneuverability noise of the target at time-step k. For the CT model, the following
model is used to update the state:

sC T
k+1 =

xk+1

yk+1

ẋk+1

ẏk+1

ωk+1

=

1 0 sin(ωk Tk)/ωk −(1−cos(ωk Tk))/ωk 0
0 1 (1−cos(ωk Tk))/ωk sin(ωk Tk)/ωk 0
0 0 cos(ωk Tk) −sin(ωk Tk) 0
0 0 sin(ωk Tk) cos(ωk Tk) 0
0 0 0 0 1

 sk +wk , (5.2)

31

32 5. Approach extended with IMM filter

where the angular velocityωk is appended to the state and wk is again the maneuverability noise of
the target at time-step k. Now that the motion model is non-linear in the case of this CT model, the
state transition matrix F is now the Jacobian of the state transition function

Fk = ∂ f

∂s

∣∣∣∣
sn

k

. (5.3)

At every time-step a predict step is carried out using both models. Then, based on the update step,
the likelihood of model j at time-step k can be calculated as follows:

L j
k = 1√

(2π)2 det(S j
k)

exp
−(z̃ j

k)>(S j
k)−1 z̃ j

k

2
, (5.4)

where S j
k is the innovation covariance of model j at time-step k:

S j
k = H j

k Pk|k−1(H j
k)>+R j

k (5.5)

and z̃k is the innovation residual of model j at time-step k:

z̃ j
k = zk −h(ŝ j

k|k−1). (5.6)

Next, the probability of the target movement following model j can be computed as shown below:

p j
k =

2∑
i=1

Ptr (j , i)
Li

k p i
k−1

L1
k p1

k−1 +L2
k p2

k−1

, (5.7)

where

Ptr =
[

p11 p12

p21 p21

]
=

[
0.98 0.02
0.02 0.98

]
(5.8)

is the transition probability matrix. This matrix can be seen as a weighing of the previously estab-
lished model probabilities and the model likelihoods that are calculated using (5.4). Finally, once
the model probabilities are known, the predicted state and predicted error covariance matrix can be
computed by mixing the predicted state vectors and predicted error covariance matrices based on
the model probabilities:

ŝk =
2∑

j=1
p j

k ŝ j
k (5.9)

and

P̂k|k =
2∑

j=1
p j

k P̂ j
k|k (ŝk − ŝ j

k)(ŝk − ŝ j
k)

>
. (5.10)

5.1. IMM filter 33

Table 5.1: IMM filtering steps.

Predict stage:

A priori state estimate: ŝ j
k|k−1 = Fk ŝ j

k−1|k−1

A priori estimated error covariance: Pk|k−1(j) = F j
k P j

k−1|k−1(F j
k)>+Q j

k

Update stage:

Innovation residual: z̃ j
k = zk −h(ŝ j

k|k−1)

Innovation covariance: S j
k = H j

k P j
k|k−1(H j

k)>+R j
k

Kalman gain: K j
k = P j

k|k−1(H j
k)>(S j

k)−1

A posteriori state estimate: ŝ j
k|k = ŝ j

k|k−1 +K j
k (zk − z̃ j

k)

A posteriori estimated error covariance: P j
k|k = (I −K j

k H j
k)P j

k|k−1

Model Probabilities:

Model likelihood: L j
k = 1√

(2π)2 det(S j
k)

exp
−(z̃ j

k)>(S j
k)−1 z̃ j

k
2

Model probability: p j
k =∑2

i=1 Ptr (j , i)
Li

k p i
k−1

L1
k p1

k−1+L2
k p2

k−1

Mixing stage:

State estimate: ŝk =∑2
j=1 p j

k ŝ j
k

Error ovariance estimate: P̂k|k =∑2
j=1 p j

k

[
P̂ j

k|k + (ŝk − ŝ j
k)(ŝk − ŝ j

k)
>]

The IMM filtering steps and equations are summarized in Table 5.1. In these equations the following
process noise covariance matrices are used for the CV and CT models:

QCV =

0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1

σ2
w,CV , QC T =

0.1 0 0 0 0
0 0.1 0 0 0
0 0 0.1 0 0
0 0 0 0.1 0
0 0 0 0 0.002

σ2
w,C T . (5.11)

An overview of IMM filtering steps is shown in Fig. 5.1. This figure follows the evolution of the
predicted state of a target. Note that the predicted error covariance will evolve following a similar

path. Here ŝi j
k+1|k following from the transition functions is the prediction using model i converted

into the dimensions of model j . The prediction ŝ12
k+1|k is ŝ1

k+1|k augmented with a 0 entry and ŝ21
k+1|k

takes the first 4 elements of ŝ2
k+1|k .

Recall the solution method overview provided in Fig. 4.4. The integration of the IMM filter results in
an additional input parameter for each of the objects. At the time of the budget update, it is for each
object determined which of the models used in the IMM filter has the largest model probability.
This model will in turn be used in the MPC sub-problem of that object to predict its future state
evolution and find the budget distribution.

34 5. Approach extended with IMM filter

Figure 5.1: Interconnection of the IMM filtering steps.

5.2. Results
The objective of replacing the single model extended Kalman filter used in chapter 4 with an IMM
filter was to make the solution method more generally applicable, so that it provides good results
also in cases where targets do not follow a CV model. To investigate if this is indeed the case a
number of simulations were run. Consider the scenario shown in Fig. 5.2 where two objects are
tracked. Object 2 moves along a straight line at a constant velocity, while object 1 performs two
maneuvers:

• A turn between t = 55 s and t = 89 s of -5 rad/s.

• A turn between t = 145 s and t = 179 s of 5 rad/s.

The simulation parameters used in this section can be seen in Table 5.2.

Table 5.2: Simulation parameters IMM.

Reference parameter Value
Maneuverability noise variance CV model (σ2

w,CV) 2.5 (m
s2)2

Maneuverability noise variance CT model (σ2
w,C T) 25 (m

s2)2

Radar cross section (RCS) 10 m2

Prediction horizon length (H) 5
Number of rollouts 10
Simulation update interval 5 s
Budget precision (ε) 0.002

5.2. Results 35

Figure 5.2: Trajectory of the 2 objects.

5.2.1. Model switching
The first thing to look into is to see if the IMM filter correctly estimates what movement the object
is currently making. As described in section 5.1, at every time-step the IMM filter considers both
models to hold with a certain likelihood. Consider object 1 following the trajectory described in
section 5.2, it is investigated how the likelihoods of the two models are evolving over time. This is
shown in Fig. 5.3. It can be seen that for times where the object is moving along a straight line the
CV model has a large likelihood, while at times where the object is making a turn, the CT model has
a large likelihood.

Figure 5.3: Model probabilities of object 1.
Figure 5.4: Tracking error using an IMM filter
and a single model filter.

5.2.2. Tracking error
Secondly, it is investigated if employing an IMM filter results in a better tracking of targets that are
maneuvering. To see if this is indeed the case, the first object following the trajectory described in

36 5. Approach extended with IMM filter

section 5.2 is tracked using two filters: A single model filter using a CV model and an IMM filter
using both a CV model and a CT model. For both filters the tracking error at every time-step k is
computed:

TEk =
√

(xk − x̂k)2 + (yk − ŷk)2, (5.12)

where xk and yk are the ground truth x and y positions of the object and x̂ and ŷ are the estimated
x and y positions of the filter. The tracking error of both simulations can be seen in Fig. 5.4. As
expected, it can be seen that when the object is making a turn, the CV model filter fails to make a
good prediction of the object. Using the IMM filter, the tracking error increases only slightly when
the object is making a turn.

5.2.3. Budget distribution
Lastly, it is evaluated how the budget distribution is affected by the implementation of the IMM
filter. When the object is making a turn, the uncertainty in its position increases. This is reflected
by an increase in the maneuverability noise of the object in the CT model. In Fig. 5.5 and 5.6 the
budget distributions of the scenario described in section 5.2 are shown. It can be seen that in the

Figure 5.5: Budget distribution using a single
model filter.

Figure 5.6: Budget distribution using an IMM
filter.

single model Kalman filter case, the budget of tracking object 1 decreases, as the object is moving
closer towards the radar. In the case of the IMM filter, the budget of tracking object 1 increases when
the object is making a turn, as the maneuverability noise of the target is greater when making a turn.
When object 1 is moving along a straight line, the budget distribution is roughly the same as in the
single model filter case.

5.3. Conclusion
To make the proposed approach of using MPC to solve the RRM problem more generally applicable,
an IMM tracking filter was employed. It was shown that using an IMM filter greatly improved the
tracking of targets that do not follow a CV model. Furthermore, using this IMM implementation a
larger amount of the radar resources could be allocated to those objects that have a large likelihood
of making a turn.

6
Conclusion

6.1. Conclusion
This thesis introduces a novel algorithmic solution to the radar resource management (RRM) prob-
lem in multi-target tracking. Using this method, the problem is decoupled into sub-problems using
Lagrangian relaxation after which these sub-problems are solved using model predictive control
(MPC). The Lagrange multiplier is found iteratively using the golden section search method.

This novel solution method provides an alternative to the existing method of using policy rollout in
combination with Lagrangian relaxation to solve the RRM problem. Four different dynamic tracking
scenarios are considered to evaluate the performance of this approach in terms of computational
efficiency and realised costs in comparison to policy rollout.

In the first scenario objects moving at a constant velocity in a straight line are tracked. It could be
seen that MPC performs similarly compared to policy rollout in terms of realised cost and that MPC
achieves a similar budget distribution within a much smaller execution time. It was shown that the
usage of Lagrangian relaxation greatly helped in reducing the computation time, while the cost re-
mained the same. Finally, the replacement of the subgradient method with golden section search to
find the Lagrange multiplier reduces the number of function evaluations needed, especially when
there are a lot of objects to track.

In the second scenario two objects are tracked of which one is stationary and the other one is mov-
ing in a straight line at a constant velocity with a turn halfway through the trajectory. It could again
be seen in this scenario that MPC performs similarly compared to policy rollout in terms of realised
cost and that MPC achieves a similar budget distribution within a much smaller execution time.

In the third scenario two objects are tracked of which one is stationary and the other one makes an
unexpected maneuver into an area in which the quality of measurements is significantly lowered. In
this case it could be seen that using MPC results in the track being lost, while by using policy rollout
the target could continue to be tracked.

In the fourth scenario the objects cross some area, where the quality of measurements is signifi-
cantly lowered. It was investigated what the importance of the prediction horizon is for the budget
distribution. It could be shown that a sufficiently large prediction horizon needs to be chosen to
adapt in time to events happening in the future.

37

38 6. Conclusion

To make the approach more generally applicable, an IMM tracking filter was employed. In contrast
to a standard extended kalman filter, an IMM filter can track objects using multiple different motion
models. It was shown that using an IMM filter greatly helped in reducing the tracking errors of the
object in scenarios where the movements of the objects are not following a constant velocity model.
Furthermore, using this IMM implementation a larger amount of the radar resources could be allo-
cated to those objects that have a large likelihood of making a turn.

From the results in this thesis it can be concluded that MPC provides a computationally less intense
alternative to policy rollout, while producing similar budget distributions and realised costs. This
is a result of the MPC approach being an approximation of policy rollout: in MPC only the most
likely future evolution is considered, while in policy rollout a number of future evolutions is con-
sidered and the actions are chosen based on the average of these evolutions. The drawback of this
approximation can be seen in scenarios where small perturbations to the state evolution can lead to
major differences in the cost, such as in the third scenario. In those scenarios the most likely future
evolution does not properly approximate all future evolutions.

6.2. Recommendations
For optimizing the Lagrange multiplier λ, the golden section search was used in this thesis. While
this showed a significant reduction in computation time compared to the subgradient method, it
could be improved upon further by using more advanced non-derivative based optimization tech-
niques such as Brent’s method [34].

Furthermore, in this thesis the scenario was considered where only a single radar was tracking the
different objects. To improve tracking performance, the number of radars can be increased. Then,
the solution method needs to be extended to optimize the joint tracking performance of the multi-
radar network, like it has been done for the policy rollout method in [38].

Recall the issue when scheduling the tasks while freely choosing τ and T , only taking into account
that the maximum available budget is not exceeded. This issue was resolved by only choosing be-
tween certain values of T . This assumption limits the performance of the tracking, as this drastically
reduces the action space. It is worth investigating the use of more advanced scheduling techniques,
such that the value of T is not limited only to a small number of values.

Lastly, an example cost function was presented in this thesis. In practice, this cost function could be
any function depending on the needs of the radar system user.

Bibliography

[1] “Matlab sensor fusion and tracking toolbox.” https://www.mathworks.com/help/pdf_doc/
fusion/fusion_ug.pdf, R2021a. The MathWorks, Natick, MA, USA.

[2] M. Schöpe, H. Driessen, and A. Yarovoy, “Multi-task sensor resource balancing using lagrangian
relaxation and policy rollout,” 07 2020.

[3] A. Charlish, K. Bell, and C. Kreucher, “Implementing perception-action cycles using stochastic
optimization,” in 2020 IEEE Radar Conference (RadarConf20), pp. 1–6, 2020.

[4] A. Charlish, F. Hoffmann, and I. Schlangen, “The development from adaptive to cognitive radar
resource management,” IEEE Aerospace and Electronic Systems Magazine, vol. 35, 06 2020.

[5] S. Haykin, “Cognitive Radar: a Way of the Future,” IEEE Signal Processing Magazine, vol. 23,
pp. 30–40, Jan 2006.

[6] M. Bockmair, C. Fischer, M. Letsche-Nuesseler, C. Neumann, M. Schikorr, and M. Steck, “Cog-
nitive Radar Principles for Defence and Security Applications,” IEEE Aerospace and Electronic
Systems Magazine, vol. 34, pp. 20–29, Dec 2019.

[7] R. Klemm, H. Griffiths, and W. Koch, Novel Radar Techniques and Applications, Volume 2 -
Waveform Diversity and Cognitive Radar, and Target Tracking and Data Fusion. Scitech Pub-
lishing, 2017.

[8] S. Brüggenwirth, M. Warnke, S. Wagner, and K. Barth, “Cognitive radar for classification,” IEEE
Aerospace and Electronic Systems Magazine, vol. 34, pp. 30–38, Dec 2019.

[9] T. de Boer, M. I. Schöpe, and H. Driessen, “Radar resource management for multi-target track-
ing using model predictive control,” Journal of Advances in Information Fusion, 2021, Submit-
ted for Publication.

[10] P. A. Lynn, The Radar Equation, pp. 11–30. London: Macmillan Education UK, 1987.

[11] M. I. Skolnik, Introduction to Radar Systems /2nd Edition/. New York: McGraw Hill Book Co.,
2 ed., 1980.

[12] A. O. Hero and D. Cochran, “Sensor Management: Past, Present, and Future,” IEEE Sensors
Journal, vol. 11, pp. 3064–3075, Dec 2011.

[13] P. W. Moo and Z. Ding, Adaptive Radar Resource Management. London: Academic Press, 1st ed.,
2015.

[14] A. Charlish and F. Hoffmann, “Anticipation in Cognitive Radar using Stochastic Control,” in
2015 IEEE Radar Conference (RadarCon), pp. 1692–1697, May 2015.

[15] V. Krishnamurthy, “POMDP Sensor Scheduling with Adaptive Sampling,” in 17th International
Conference on Information Fusion (FUSION), pp. 1–7, July 2014.

[16] D. A. Castanon, “Approximate Dynamic Programming for Sensor Management,” in Proceedings
of the 36th IEEE Conference on Decision and Control, vol. 2, pp. 1202–1207 vol.2, Dec 1997.

39

https://www.mathworks.com/help/pdf_doc/fusion/fusion_ug.pdf
https://www.mathworks.com/help/pdf_doc/fusion/fusion_ug.pdf

40 Bibliography

[17] E. K. P. Chong, C. M. Kreucher, and A. O. Hero, “Partially Observable Markov Decision Process
Approximations for Adaptive Sensing,” Discrete Event Dynamic Systems, vol. 19, pp. 377–422,
Sep 2009.

[18] M. Otterlo and M. Wiering, “Reinforcement learning and markov decision processes,” Rein-
forcement Learning: State of the Art, pp. 3–42, 01 2012.

[19] M. T. J. Spaan, Partially Observable Markov Decision Processes, pp. 387–414. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012.

[20] M. I. Schöpe, H. Driessen, and A. Yarovoy, “A Constrained POMDP Formulation and Algorith-
mic Solution for Radar Resource Management in Multi-Target Tracking,” Journal of Advances
in Information Fusion, 2021, Accepted for Publication.

[21] W. Koch, “Adaptive parameter control for phased-array tracking,” in Signal and Data Processing
of Small Targets 1999 (O. E. Drummond, ed.), vol. 3809, pp. 444 – 455, International Society for
Optics and Photonics, SPIE, 1999.

[22] S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa, “Online planning algorithms for pomdps,” The
journal of artificial intelligence research, vol. 32 2, pp. 663–704, 2008.

[23] W. B. Powell, “A unified framework for stochastic optimization,” European Journal of Opera-
tional Research, vol. 275, no. 3, pp. 795 – 821, 2019.

[24] E. Chong, C. Kreucher, and A. Hero, “Partially observable markov decision process approxima-
tions for adaptive sensing,” Discrete Event Dynamic Systems, vol. 19, pp. 377–422, 09 2009.

[25] T. Brehard, P. Coquelin, E. Duflos, and P. Vanheeghe, “Optimal policies search for sensor man-
agement : Application to the esa radar,” in 2008 11th International Conference on Information
Fusion, pp. 1–8, 2008.

[26] R. T. Perkins and W. B. Powell, “Stochastic optimization with parametric cost function approx-
imations,” 2017.

[27] W. Powell, “Approximate dynamic programming: Solving the curses of dimensionality,” 08
2011.

[28] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cambridge, MA, USA: A
Bradford Book, 2018.

[29] C. Topliff, W. Melvin, and D. Williams, “Application of pomdps to cognitive radar,” in 2019 53rd
Asilomar Conference on Signals, Systems, and Computers, pp. 1662–1666, 2019.

[30] Y. He and E. Chong, “Sensor scheduling for target tracking: A monte carlo sampling approach,”
Digital Signal Processing, vol. 16, pp. 533–545, 09 2006.

[31] J. Pineau, G. Gordon, and S. Thrun, “Point-based value iteration: An anytime algorithm for
pomdps,” in Proceedings of International Joint Conference on Artificial Intelligence (IJCAI),
pp. 1025 – 1032, August 2003.

[32] S. Ghadimi, R. Perkins, and W. Powell, “Reinforcement learning via parametric cost function
approximation for multistage stochastic programming,” Submitted.

[33] D. P. Bertsekas, “Dynamic programming and suboptimal control: A survey from adp to mpc*,”
European Journal of Control, vol. 11, no. 4, pp. 310–334, 2005.

Bibliography 41

[34] R. Brent, Algorithms for minimization without derivatives. Prentice-Hall, 1973.

[35] S. C. Chapra, Applied Numerical Methods with MATLAB for Engineers and Scientists. McGraw-
Hill Science/Engineering/Math, 2006.

[36] P. Scokaert and D. Mayne, “Min-max feedback model predictive control for constrained linear
systems,” IEEE Trans. Autom. Control., vol. 43, pp. 1136–1142, 1998.

[37] E. Mazor, A. Averbuch, Y. Bar-Shalom, and J. Dayan, “Interacting multiple model methods in
target tracking: a survey,” IEEE Transactions on Aerospace and Electronic Systems, vol. 34, no. 1,
pp. 103–123, 1998.

[38] B. van der Werk, “Approximately optimal radar resource management for multi-sensor multi-
target tracking,” Master’s thesis. TU Delft, Delft, The Netherlands, May 2021.

	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Introduction
	General radar introduction
	Radar Resource Management
	Problem Statement
	Thesis Structure

	Background information
	Markov Decision Processes
	Partially Observable Markov Decision Processes
	Tracking
	Motion Model
	Measurement Model
	Extended Kalman filter

	Cost function
	Optimization Setup
	AODB algorithm
	Lagrangian Relaxation
	Policy Rollout

	Conclusion

	POMDP solutions in literature
	Policy function approximations
	Cost function approximations
	Value function approximations
	Direct Lookahead Approximations
	Evaluation
	Rollout policies
	Monte Carlo tree-search
	Deterministic Lookahead

	Conclusion

	Proposed approach
	Model Predictive Control
	Golden Section Search
	Scheduling conflict
	Solution overview
	Results and Simulations
	Simulation Scenario A
	Budget distribution
	Execution Time Comparison
	Realized Cost Comparison
	Lagrangian Relaxation
	Converging to the Lagrange multiplier

	Simulation Scenario B
	Simulation Scenario C

	Simulation scenario D
	Conclusion

	Approach extended with IMM filter
	IMM filter
	Results
	Model switching
	Tracking error
	Budget distribution

	Conclusion

	Conclusion
	Conclusion
	Recommendations

	Bibliography

