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Abstract 

Over the last few years, the United States has experienced a shortage of fly ash and slag that 
consequently created a need for an alternative material that is locally available, sustainable, and 
provides desirable concrete properties. Recent studies have shown that Ground Glass Pozzolan 
(GGP) offers favorable attributes as a supplementary cementitious material (SCM) for concrete. 
However, there are limited studies demonstrating freeze-thaw (FT) resistance of concrete with 
GGP, as well as assessing the FT resistance in relation with the air-void system of GGP mixtures. 
In response, this study aimed to evaluate both macro- and micro-level behavior of GGP on FT 
resistance, and characterize mixtures with different contents of GGP. Six concrete mixtures were 
evaluated: three mixtures with 20, 30, and 40% GGP as cement replacements and three other 
reference mixtures with 30% fly ash and 40% slag and 100% Ordinary Portland cement (OPC). 
Following ASTM standards, concrete beam samples were tested for accelerated FT resistance and 
dynamic modulus of elasticity up to 1000 cycles. All concretes showed high FT resistance with a 
durability factor over 90% and, consequently, minimal deterioration and scaling. Core samples 
extracted from the FT conditioned beams were scanned with the X-ray micro-tomography (CT-
scan) to identify air-void parameters. Through image analysis a quantification of air-void 
parameters was obtained, and their relationship to FT resistance was established. Using CT scan 
analysis, we demonstrated that concretes with the highest cement replacement with GGP and slag 
developed the most desirable spacing factor and specific surface for FT resistance. 
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1. INTRODUCTION
Supplementary cementitious materials (SCMs), such as fly ash and granulated blast-furnace slag,

are commonly used worldwide to produce more sustainable concrete with better mechanical and 
durability properties. The availability of fly ash in the USA has declined significantly due to recent 
environmental protection rules [1-2]. Slag is generally produced outside the USA and imported 
what makes it relatively expensive [3]. The shortage and cost of SCMs in the USA are of concern 
to the concrete industry. Consequently, there is a need for an alternate SCM to overcome the 
reduced supply of fly ash, particularly in the USA’s Northeastern region. In recent years, the 
recycled soda-lime glass has received increased attention in the concrete industry since it can be 
effectively and economically transformed into pozzolanic material for concrete [4-7]. 

Freezing and thawing resistance is an essential durability property of concrete in inclement 
weather environments. Concrete structures are, besides mechanical loads, also exposed to 
environmental effects (e.g., low-temperature weather conditions), which can be damaging to 
porous brittle materials such as concrete. The durability of concrete is affected when subjected to 
repetitive freezing and thawing (FT) cycles, leading to accelerated deterioration and loss of 
stiffness and strength. Considering the freeze–thaw response, the most important factor of air void 
properties is pore interconnectivity. In normal concrete, the capillary pores (usually between 5 nm 
and 1 mm) are responsible for creating a network of voids [8]. Capillary forces in such small 
volumes are very important for allowing the water transport inside the paste matrix. One of the 
severe types of deterioration in concrete structures is associated with the cyclic volume expansion 
and contraction due to internal water freezing and thawing [9]. The volume expansion results in 
pressure build-up inside the pores if not accommodated with sufficient pore space and inter-
connectivity in the matrix [10]. When the pressure exceeds the tensile strength of the cement paste 
at any point, it will lead to local cracking; hence the strength of concrete will decrease after several 
FT cycles [11]. 

Adding air-entraining agents is a well-known technique to improve the FT resistance. Compared 
to accidental entrapped air, entrained air bubbles are intentional and range from 1 µm to 100 µm 
[12]. Apart from increased air void content, it is believed that it is vital for freeze–thaw resistant 
concrete to have a spacing factor smaller than 0.2 mm (200 µm) and a specific surface of air void 
system greater than 24 1/mm [13]. Air void analysis is usually carried out as conventional testing 
method ASTM C457 [14], and it requires a tedious preparation of large samples dependent on 
aggregate size. Firstly, samples are viewed in 2D through an optical microscope or flatbed scanner 
[15], and then a standardized stereological method is applied (linear traverse method or point 
counting). X-ray computed tomography (CT-scan) can be also applied to characterize the air void 
system of cementitious materials, and it is a nondestructive method that uses high resolution for 
the characterization of materials in 3D [16]. It does not require elaborate sample preparation, 
however the limitation of micro CT is the size of samples that can fit into the machine and still 
accomplish an appropriate resolution to see the air voids [17]. 
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There are limited studies [18] that have evaluated the freeze–thaw resistance of concrete with 
GGP replacements. Hence, this study aims to establish correlations among freeze–thaw resistance 
and air void parameters for concrete with different cement replacements with GGP. After the 
macroscopic characterization was completed, air void analysis was conducted using micro CT-scan 
to correlate macro and micro-evaluations. This work demonstrates a multiscale understanding of 
concrete durability properties with GGP as SCM, and the results contribute to practical 
implementations of concrete in inclement weather environments. 

2. MATERIALS AND METHODOLOGY
This study evaluated six mixtures of air-entrained concrete for FT resistance up to 1000 cycles

and air void system properties: three mixtures with 20, 30, and 40% GGP as cement replacements 
per weight, and three other reference mixtures with 30% fly ash (FA) and 40% slag (S) and 100% 
Ordinary Portland cement (OPC). The particle size distribution of cementitious raw materials, is 
presented in Table 1, and median particle size of OPC, S, FA and GGP is 14, 11, 15, and 10 μm 
respectively. Chemical composition (oxides and total alkalis) of raw cementitious materials was 
obtained with x-ray fluorescence (XRF) (see Table 2).  

Table 1: Particle size distribution of raw materials 

OPC S FA GGP 
Mean: μm 19.8 13.9 25.9 11.8 
Median: μm 14.2 11.3 14.9 10.0 
S.D.: μm 19.1 10.7 34.2 8.4 
d10: μm 2.9 2.1 3.3 2.3 
d50: μm 14.2 11.3 14.9 10.0 
d90: μm 45.7 30.0 65.4 24.2 

Table 2: Chemical compositions of raw materials obtained through XRF. 

Chemical 
Composition 

Ordinary Portland 
Cement 

(PC) 

Slag 
(S) 

Fly Ash Class F 
(FA) 

Ground Glass 
Pozzolan 
(GGP) 

SiO2, % 20.2 38.00 47.58 72.5 
Na2O, % 0.19 0.32 1.5 13.7 
CaO, % 61.9 39.84 5.54 9.7 

Al2O3, % 4.7 7.52 26.42 0.4 
MgO, % 2.6 10.54 0.9 3.3 
K2O, % 0.82 0.38 1.9 0.1 

Fe2O3, % 3.0 0.31 12.19 0.2 
SO3, % 3.9 0.16 1.08 0.1 

Total alkalis Na2O 
+ 0.658K2O, % 0.73 0.6 2.75 13.77 
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All six concretes were tested simultaneously for dynamic modulus and freeze-thaw resistance 
according to ASTM standards [19, 20]. X-ray micro computed tomography (Micro CT) was used 
to evaluate air-void properties of the same concrete mixtures (samples not exposed to freeze-thaw 
cycles). Micro CT- scanner was (Phoenix Nanotom, Boston, MA, USA), with digital GE DXR 
detector, and 3-D reconstruction was carried out with the software Phoenix datos|x 2.0. Core 
samples for air-void analysis (23 mm tall and 20 mm in diameter) were scanned with the voxel 
resolution of 10 µm, and the voltage and current of 140 kV and 170 µA respectively. The image 
analysis was performed with open source ImageJ [21], and there were two different approaches 
applied for calculating the air-void content for comparison of results. The first approach consisted 
of 2-D images equally spaced, 1 mm apart along the entire image stack (Figure 1 image 1.b). The 
assumption was made that air voids are not larger than 1 mm in vertical direction. For quantification 
of air void parameters; air content, spacing factor, specific surface, the linear-traverse method 
(ASTM C457 and EN 480-11) [14, 22], was downsized as shown in the Figure 1, (images 1.c 
through 1.f). The second approach was based on converting the entire stack of 1100 images into 
binary images and applying a threshold, black value for voids (0 GV) and white for everything else 
(256 GV). The area of voids was calculated as per each 2D image, and they were generated 
throughout the entire height of the image stack, 3D (see Figure 1, images 2.a through 2.d). 

Figure 1: Approach 1.a-f: Downsized linear traversed method (2D), Approach 2.a-d: 
Threshold method of entire stack (3D). [23 24] 

3. RESULTS AND DISCUSSION

3.1 Freeze-thaw resistance and dynamic modulus 
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The mass loss and durability factor are presented in Table 3. The mass loss was less than 1% 
for all concretes except for CM (1.6%). The durability factor was above 90% for all six concretes 
(0.9 for CM, and 0.94 for S-40 and G-40). The results indicate there was negligible deterioration 
of specimens, partly due to entrained air of ~6%. Although, it is widely recognized that air-
entrainment enhances the freeze–thaw resistance of concrete, it was observed that the mixes with 
the highest cement replacement of 40% by S and GGP showed the highest durability factor and 
least mass loss of concrete (0.56, and 0.52 for S-40 and G-40 respectively).  

Table 3: Durability properties. 

CM G-20 G-30 S-40 G-40 FA-30 
Mass Loss % 1.58 0.75 0.6 0.56 0.52 1.01 

Durability factor 0.90 0.920 0.93 0.94 0.94 0.91 

3.2 Air-void analysis of hardened concrete using x-ray computed tomography 
Air content of fresh concrete and air-void content of hardened concrete by both approaches were 

compared for all six concrete mixtures and summarized in Figure 2. The difference in results could 
be due to numerous reasons, a slightly different geometry of a sample considered for calculating 
air content, or in the case of a linear traverse method it is possible that human error can likely occur. 
The Threshold method of an entire stack did not account for any voids smaller than 50 µm, while 
the linear traverse method did. The linear traverse method applied through micro CT-scan is a 
tedious procedure and it is difficult to make a decision as to whether the air voids are smaller than 
50 µm, so it is easier to account for all of them. Therefore, it is reasonable that the linear traverse 
method gives a slight overestimation of the air void content [24].  

          Figure 2: Summary of air void content obtained with different methods. 
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The spacing factor L (mm) is presented in Figure 3, and shows that all concretes had smaller 
than 0.3 mm except for CM (0.45 mm). Both S-40 and G-40 had the spacing factor smaller than 
recommended 0.2 mm (0.15 mm and 0.19 mm, respectively). Results for specific surface α, are 
presented in Figure 4. CM had only 11.9 1/mm, while S-40 had 26.2 1/mm. Both G-20 and FA-30 
had ~21 1/mm, while G-30 and G-40 measured ~24 1/mm. The linear traverse method, showed 
negligibly higher percent air void content than the approach completely based on Threshold of an 
entire stack (see Figure 2). From the air void analysis it was also demonstrated that G-40 and S-40 
showed the most desirable parameters prescribed for freeze–thaw resistant concrete as measured 
by spacing factor smaller than 0.2 mm and specific surface greater than 24 1/mm [13]. According 
to this study 40% GGP replacement showed that it is as successful as 40% S to improve the FT 
resistance of concrete, by maintaining a recommended spacing factor and specific surface which 
are crucial parameters. 

Figure 3: Spacing factor of all concretes 
L (mm) 

Figure 4: Specific surface of all concretes 
α (1/mm) 

4. CONCLUSION

This study is a succinct summary [24] of an assessment of the freeze–thaw resistance of
concretes containing cement replacement by GGP of up to 40% by weight, and comparing the 
performance with fly ash and slag. Macroscopic properties such as air content of fresh concrete, 
mass loss, and durability factor were attained through standard ASTM methods. The air void 
properties of hardened concretes that were not exposed to freeze-thaw cycles, were evaluated with 
X-ray computed tomography, and the image analysis was performed with ImageJ. Based on the
combined macro and micro-evaluations of concretes with GGP in this study, the following
conclusions can be drawn:

• A mass loss of ~1%, and durability factor of above 90%, for all concretes except for CM,
indicated improved freeze–thaw resistance with increased cement replacements by GGP
regardless to air-entraining agent, due to its pozzolanic activity, and perhaps consuming
more CH for C-S-H formation.

0.452

0.292
0.242

0.192
0.148

0.281

0.00

0.10

0.20

0.30

0.40

0.50

CM G-20 G-30 G-40 S-40 FA

11.9

20.7
24.3 23.8

26.2

21.4

0.0

5.0

10.0

15.0

20.0

25.0

30.0

CM G-20 G-30 G-40 S-40 FA-30

4th International RILEM conference on Microstructure Related Durability of Cementitious Composites (Microdurability2020)

451



• Using GGP as an alternate SCM, serves as nucleation for air bubbles due to its angular 
particle shape and finer particle size than CM, and subsequently its larger specific surface 
area. With higher cement replacement with GGP, spacing factor decreases and specific 
surface increases, which are favorable for FT resistance. 

• The air void analysis by micro CT-scan coupled with ImageJ can be successfully utilized 
for evaluating the microstructure of cementitious materials. It is a nondestructive method, 
and it can provide 3D information that is especially useful for air void analysis. This 
method requires minimum sample preparation, unlike the standard method ASTM C457; 
however, it has a limitation on a sample size. 
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