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ABSTRACT:

Satellite-Derived Bathymetry (SDB) has been used in many applications related to coastal management. SDB can efficiently fill
data gaps obtained from traditional measurements with echo sounding. However, it still requires numerous training data, which
is not available in many areas. Furthermore, the accuracy problem still arises considering the linear model could not address the
non-relationship between reflectance and depth due to bottom variations and noise. Convolutional Neural Networks (CNN) offers
the ability to capture the connection between neighbouring pixels and the non-linear relationship. These CNN characteristics make
it compelling to be used for shallow water depth extraction. We investigate the accuracy of different architectures using different
window sizes and band combinations. We use Sentinel-2 Level 2A images to provide reflectance values, and Lidar and Multi Beam
Echo Sounder (MBES) datasets are used as depth references to train and test the model. A set of Sentinel-2 and in-situ depth sub-
image pairs are extracted to perform CNN training. The model is compared to the linear transform and applied to two other study
areas. Resulting accuracy ranges from 1.3m to 1.94m, and the coefficient of determination reaches 0.94. The SDB model generated
using a window size of 9x9 indicates compatibility with the reference depths, especially at areas deeper than 15 m. The addition of
both short wave infrared bands to the four visible bands in training improves the overall accuracy of SDB. The implementation of
the pre-trained model to other study areas provides similar results depending on the water conditions.

1. INTRODUCTION

Bathymetry data in shallow water areas is essential for coastal
management purposes. A number of bathymetry survey tech-
niques exist, such as single or multibeam echo sounder and
Lidar bathymetry. However, these methods still leave data gaps
due to various reasons. Single beam echo sounding (SBES) data
are limited to the sounding lines, where gaps occur in between
the sounding lines. Multibeam echo sounding (MBES) meas-
ures denser depth values than SBES, but it still cannot reach
areas with very shallow depth, such as along the coastline or
coral reefs areas. Lidar bathymetry is capable of measuring
these areas and producing higher resolution data than other
methods, but the survey plan must consider numerous factors
to minimize possible gaps in the final result Quadros (2016).

Optical remote sensing images are a promising alternative data
source to extract water depth information. Satellite-Derived Ba-
thymetry (SDB) is a way to model water depth in shallow water
areas using multispectral imagery. The advent of SDB and its
developments have been known to fill data gaps that occur with
echo sounding. Furthermore, SDB is a low-cost technique since
remote sensing images are used instead of field surveys. It also
has few environmental impacts and risks to personnel or equip-
ment since the model can be derived without directly accessing
the shallow water area.

SDB works based on the principle of light attenuation in the
water column. The light passes through the water and hits the
water bed before it arrives at the sensor. The bottom reflect-
ance can be retrieved from satellite images after removing the
∗ Corresponding author

atmospheric scattering, surface reflection, and in-water scatter-
ing. The bottom reflectance is then used to extract water depth
values.

There are two approaches of SDB: analytical and empirical.
The analytical method is based on modelling the behaviour of
light penetration in water. It requires several optical proper-
ties of shallow water region, such as the attenuation coefficient,
backscatter coefficient, coefficient of suspended and dissolved
materials, and bottom reflectance Spitzer and Dirks (1986); Gao
(2009). Since it needs many parameters and assumptions, many
studies used empirical or mixed-method to perform SDB.

The empirical method uses the relationship between reflected
radiation and in-situ depth empirically without considering light
transmission in water. Two well-known methods exist, which
are linear transform Lyzenga (1985); Lyzenga et al. (2006)
and ratio transform Stumpf et al. (2003). Much research on
SDB uses these methods Hamylton et al. (2015); Kabiri (2017);
Traganos et al. (2018). Some studies modified Lyzenga85’s
method to improve the accuracy Lyzenga et al. (2006); Kanno
et al. (2012); Kanno and Tanaka (2012); Kanno et al. (2013),
or used a different regression technique, such as Geographic-
ally Weighted Regression Vinayaraj et al. (2016). These meth-
ods rely on a linear relationship between water reflectance and
depth, while it may not be entirely linear due to bottom types
variation and noise. In the last five years, studies on SDB
have started to use machine learning approaches to address the
non-linear relationship, such as Random Forest Manessa et al.
(2016); Sagawa et al. (2019); Tonion et al. (2020) and Support
Vector Machines Misra et al. (2018); Manessa et al. (2018); To-
nion et al. (2020).
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The methods above use per pixel reflectance-depth pair, while
the spatial correlation may also influence SDB computations as-
suming that adjacent pixels have a relationship towards depth.
That being said, it is necessary to consider the spatial and
non-linear relationship in building SDB computations. Ex-
isting methods do not address both factors at the same time.
Thus, this study used another machine learning method, Con-
volutional Neural Networks (CNN), to estimate shallow water
depth. CNN has been widely used for classification purposes.
In this study, CNN was used to solve the regression problem.
CNN’s ability to capture the connection between neighbouring
pixels and the non-linear relationship in the training process
makes it interesting to be used for SDB. We try various con-
figurations of the CNN architecture to investigate the accuracy
of CNN for SDB. We verify the CNN model by comparing the
accuracy with the linear transform method. Furthermore, we
implemented the CNN model in different study areas.

2. MATERIALS AND METHOD

Figure 1. The area of study on several locations around Puerto
Rico main island, with the visualization from Sentinel-2 images.

Bottom-right, bottom-left, and top are Ponce, Southwest, and
San Juan respectively.

2.1 Study area

The study was conducted in three locations around Puerto Rico
main island as shown in Figure 1. Two sites are located in
the south part and one in the north, more precisely Ponce, the
Southwest part of the island, and San Juan with an area of
12 km2, 79 km2, and 100 km2 respectively. These sites were
chosen considering the availability of in-situ bathymetry, satel-
lite images, as well as water conditions. Ponce and Southw-
est Puerto Rico are considered to have low to moderate turbid-
ity; meanwhile San Juan is categorized as having high turbid-
ity based on its natural colour composite from the image. This
study uses Ponce as the main site to compare CNN model archi-
tectures. Then, SDB model accuracies are compared between
all sites.

Figure 2. In-situ depth acquired from Lidar or MBES. From top
to bottom: Ponce, Southwest, San Juan.

2.2 Data

The study used Sentinel-2 Level-2A images and bathymetry
data measured using MBES and Lidar. These data sets are
open and accessible through the Copernicus1 and the National
Oceanic and Atmospheric Administration (NOAA)2 open-
access websites. In addition, NOAA also provides tides data
that are used for depth correction3.

Sentinel-2 Level-2A images are corrected for radiometric, geo-
metric, and atmospheric distortion, and provide surface reflect-
ance pixels. It consists of 13 spectral bands with spatial res-
olutions between 10, 20, and 60 m. This study uses various
combinations of nine spectral bands as listed in Table 1. Since
clouds affect SDB calculations, images used in this paper were
filtered on the cloudy percentage level, where an image with
the least clouds was selected for each site. The filtering process
results in an image acquired on 3 January 2020 for use in the
Ponce and Southwest area and 2 February 2020 for San Juan.
The visualization of natural colour composite, red-green-blue
(RGB), on each location is shown in Figure 1.

In-situ depth data sets were taken in 2018. Ponce and San Juan
have both MBES and Lidar data available, ranging from 0 to
roughly 20 m in Ponce and 30 m in San Juan. The spatial res-
olution of the two data is different, specifically 1 m for Lidar

1 https://scihub.copernicus.eu/
2 https://coast.noaa.gov/digitalcoast/data/home.html
3 https://tidesandcurrents.noaa.gov/
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Table 1. Sentinel-2 multispectral bands used in this study.

Spectral band Wavelength Resolution
(nm) (m)

Band 2 - Blue 490 10
Band 3 - Green 560 10
Band 4 - Red 665 10
Band 5 - Vegetation 705 20
Red Edge (VRE1)
Band 6 - Vegetation 740 20
Red Edge (VRE2)
Band 7 - Vegetation 783 20
Red Edge (VRE3)
Band 8 - NIR 842 10
Band 11 - Short Wave 1,610 20
Infrared (SWIR1)
Band 12 - Short Ware 2,190 20
Infrared (SWIR2)

and 32 m for MBES. Both data complement each other so that
our sites have a complete set of depths in shallow water areas,
especially in the Ponce area, as shown in Figure 2. Meanwhile,
only Lidar is available in the Southwest, having a similar depth
range to Ponce. All measurements are compliant with the IHO
Standards for Hydrographic Surveys (S-44) 5th Edition. The
measurements of Lidar pass uncertainty standards for special
and 1a Order.

2.3 Method

We try different CNN hyper-parameters and architectures in or-
der to find the optimum CNN architecture for extracting shallow
water depth. The linear transform method was used in compar-
ison to assess the accuracy of the SDB model generated from
CNN. Additionally, the CNN architecture was implemented in
a different number of channels and different locations. Here we
describe the workflow of this study.

Figure 3. General workflow of this study.

As shown in Figure 3, a number of sequential data pre-
processing steps need to be implemented. The spatial resolu-
tion for all data sets was resampled to 10 m, following the satel-
lite image product. To synchronize disparate times between in-
situ and satellite images, a tidal correction was applied to the
MBES and Lidar bathymetry data depending on the satellite
image sensing time.

The satellite images were corrected using average deep water
pixels to extract the bottom reflectance Lyzenga et al. (2006).
This method assumes that there is no bottom reflectance present
in deep water considering the attenuation of light through water.

Deep water is usually represented as darker pixels. This paper
selected this area manually based on image visualization. Then,
the corrected value is given by Green et al. (2000):

X(λ)i = log(L(λ)i −mean(L∞(λ)i)) (1)

where X(λ)i is transformed radiance of band λ at ith point,
L(λ)i and L∞(λ)i are the pixel values in shallow and deep wa-
ter respectively.

Figure 4. An illustration of sub-image extraction for training
data (left) and SDB model generation (right).

Subsequently, we apply raster alignment to depth and multis-
pectral images to avoid shifting between pixels. Then, sub-
images with a particular window size were extracted from the
data. Figure 4 provides an example of the sub-image extraction
for a window size of five and stride of five, note that this paper
use stride of three. As we can see, the amount of training data
was reduced by striding the image pixels. Three different win-
dow sizes, i.e. 5×5, 7×7, and 9×9, are implemented during
CNN architecture building process. Furthermore, Lidar bathy-
metry still captures the elevation on the land, so we filter the
elevation to include only areas up to 2 m above sea level. At the
end of the pre-processing stage, the sub-images were separated
into 80% for training, including validation, and 20% for testing.

CNN architecture. The main difference in CNN for classific-
ation and regression is in the output activation layer function.
We use a linear activation function in the last layer instead of
softmax or other activations that are usually used in the classi-
fication task. We use ReLU as the activation function for other
layers to address the non-linear trend between reflectance and
water depth. We also implement batch normalization in our ar-
chitecture to reduce overfitting. As for the hyper-parameters,
we tried a different number of configurations. They include
learning rate, batch size, and dropout rate.

We evaluate the training results by monitoring the validation ac-
curacy on each epoch, in this case Mean Absolute Error (MAE)
and Root Mean Square Error (RMSE). Based on our experi-
ment, the validation accuracy in the training process was op-
timal with a learning rate of 0.0001, batch size of 512, and a
dropout rate of 0.3. Thus, these parameters were used for fur-
ther study in this paper.

To build up a complete architecture, we try different numbers of
convolutional layers, kernel sizes, and pooling layers. Table 2
provides a list of the configurations that were implemented. Our
experiments suggest that the training cannot converge with only
a single convolutional layer and not yielded considerable valid-
ation accuracy. Thus, experiments with a single convolutional
layer were excluded from this paper. We limit the number of
convolutional layers and kernel size to three since our max-
imum window size is 9x9. The use of the pooling layer intends

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-201-2021 | © Author(s) 2021. CC BY 4.0 License.

 
203



to reduce the processing time without adding parameters during
the training process. We also examined whether it can improve
the quality of the result.

Table 2. Different CNN architectures used in this study.

Architecture Conv2D Kernel size Polling layer
CNN1 2x 2x2 No
CNN2 2x 2x2 Yes
CNN3 3x 3x3 No
CNN4 3x 3x3 Yes

Up to this stage, we used the Ponce site with only three chan-
nels: red, green, and blue. Furthermore, we tried different com-
binations of bands, as shown in Table 3, to see whether they can
improve our model or not.

Table 3. Band combinations.

Channels Number of channels Bands
RGB 3 Red, Green, Blue

RGBN 4 Red, Green, Blue, NIR
RGBNSS 6 Red, Green, Blue, NIR,

SWIR1, SWIR2
All bands 9 Red, Green, Blue, NIR,

SWIR1, SWIR2, VRE1,
VRE2, VRE3

Model verification. The assessment of the SDB model from
CNN was carried out by comparing the predicted and in-situ
depth from testing data. We used a standard accuracy assess-
ment by estimating the Root Mean Square Error (RMSE) to
measure the error and the coefficient of determination (R2) to
measure the variance of the model and ground truth values.
These metrics were compared to the linear transform method
to verify the SDB-CNN model. Furthermore, we implemented
the CNN with the same architecture to generate the SDB model
of other areas of interest.

3. RESULTS AND DISCUSSIONS

Using 10,820 sub-images in the training process, Table 4 de-
picts the accuracy of different CNN architectures for 2,705 test-
ing sub-images. The RMSE ranges from 1.48 m to 1.94 m. The
use of the pooling layer in CNN2 and CNN4 speeds up the train-
ing execution time but did not improve the accuracy. A deeper
network shows small improvements on the result, but the valid-
ation accuracy is smoother for three than two network layers.

Table 4. Accuracy assessment on different CNN architectures.

Models 5x5 7x7 9x9
RMSE R2 RMSE R2 RMSE R2

CNN1 1.59 0.91 1.58 0.92 1.55 0.93
CNN2 1.94 0.89 1.63 0.91 1.55 0.93
CNN3 1.53 0.92 1.48 0.94
CNN4 1.64 0.90

Based on the metric accuracy, a larger window size increases
the result’s accuracy by approximately 10 cm. If we compare
the predicted depth in Figure 5 and the in-situ depth in Fig-
ure 2, we can see that larger window sizes improve the result,
especially in deeper depth areas. Figure 6 shows the predicted
depth over the reference depth for overall depth within the same
test data sets. It illustrates that the CNN model tends to fit the
data. In comparison, with more training data, the linear trans-
form method results in an overall accuracy of 4.05m with R2 of
0.41. For comparison, a linear transform using the same amount

of in-situ data as CNN yielded a lower accuracy, roughly 5.30m
with R2 of 0.13. As we can see in Figure 6, the linear transform
method cannot fit the values as well, mainly in the very shal-
low, between 0 to 2 m, or in depths deeper than 10 m. It is
likely that the linear transform method cannot capture the non-
linearity due to bottom reflectance variation in this area since it
predicts very shallow depths to be deeper and deep areas to be
shallower.

However, we can also see that some significant errors are still
present in Figure 5. For example, there is a significant vari-
ation in depth in the east part that is not visible in the reference
data. The difference between prediction and reference in this
area is up to 10 m. However, there are no peculiar patterns of
reflectance and depth distribution in the area. The errors might
reflect the difficulty of CNN in predicting a particular depth
range. Table 5 points out that the accuracy tends to increase
as the depth increases since the bottom reflectance component
becomes less accurate with increasing depth.

Table 5. SDB based CNN model accuracy over different depth
ranges.

Depth ranges (m) RMSE (m)
0-5 0.61

5-10 1.53
10-15 2.07
15-20 1.22

Furthermore, Table 6 depicts the impact of different band com-
binations on the accuracy of depth calculations. The accuracy
was increased again with larger window sizes, especially for a
window size of 9×9 with six bands. As we can see in Figure 7,
a different number of channels affects the SDB model. If we
focus on the large error present in the eastern part, we can see
that the model can obtain a better prediction as we increase the
number of bands to train. Additionally, Figure 8 illustrates the
accuracy for depts ranging from 0m to 20m. The results demon-
strate that the combination of RGBNSS outperforms other con-
figurations, except in the depth range between 1 m and 2 m, and
depths deeper than 17 m. It can be due to the lack of sufficient
training data or because too many bands may cause a bias in a
certain depth range of the CNN model. In general, the combin-
ation of RGB, RGBN, and RGBNSS have similar accuracies up
to 7 m. Deeper than that, SWIR bands contribute to keeping the
accuracy lower than others. Meanwhile, the use of all bands
did not indicate any particular improvement compared to other
combinations.

Table 6. Accuracy assessment of SDB using CNN with different
number of channels.

Channels 5x5 7x7 9x9
RMSE R2 RMSE R2 RMSE R2

RGB 1.59 0.91 1.53 0.92 1.48 0.94
RGBN 1.64 0.91 1.40 0.93 1.37 0.94
RGBNSS 1.63 0.91 1.53 0.91 1.31 0.94
All bands 1.68 0.90 1.55 0.91 1.45 0.94

Two cross profiles were generated in order to assess SDB mod-
els over in-situ measurements. As shown in Figure 9, profile
section a-b indicates that the SDB produced a good fit to the
measurements in depths shallower than 14 m. In the deeper
ranges, SDB tends to be more distracted. Meanwhile, profile
section b-c describes the trend over the area shallower than 14m
with land present in between. The cross section illustrates a
good fit in the SDB model as it can detect the coastline area
quite precisely.
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Figure 5. Visualization of SDB result generated with different window sizes.

Figure 6. Depth prediction vs ground truth.

Figure 7. SDB model generated using different number of
channels.

Figure 8. CNN accuracy metric on different number of channels
per depth range 1 m.

Based on the experiments on several CNN architectures, we im-
plemented the CNN architecture shown in Figure 10 in other

Figure 9. Cross profile showing comparison between SDB
model from CNN and the in-situ measurements.

Figure 10. Final CNN architecture for SDB.

sites. We used CNN4 with a 9x9 window size and RGBNSS
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Figure 11. SDB results in Southewest (a, b) and San Juan (c, d).

bands combination as our final architecture. For other areas,
we implemented the pre-trained CNN model obtained using the
Ponce site first before we train the model using depth data from
the area itself. As illustrated in Figure 11a, by using the pre-
trained model, the Southwest SDB model has an accuracy of
3.16 m with R2 of 0.82. The model indicates a similar trend
with Ponce since the Southwest area is located near Ponce, in
the south part of the Puerto Rico main island, so the water con-
dition is similar as well as the reflectance since they came from
the same image.

On the contrary, the pre-trained model is not suitable for the San
Juan area, as shown in Figure 11c. The coefficient of determ-
ination yields a negative value. It means that the SDB model
has an opposite trend than the in-situ measurements. San Juan
has a large port with different and more turbid water conditions
than Ponce and the Southwest. This condition causes different
variations in the reflectance, so the relationship with depth is
less clear. Using training data from the San Juan area, the SDB
model improved but is still missing some details. For example,
there is a clear channel of the entry to the port shown in Fig-
ure 1 bottom while it is missing in Figure 11d. The predicted
result did not indicate a precise depth near the coastline since,
in turbid water, the reflectance is noisier due to sediments in the
water column.

4. CONCLUSIONS AND FURTHER WORK

In this paper, we tested different configurations of CNN archi-
tectures to generate SDB models. The results were discussed
and compared to the linear transform method and in different
locations having different water conditions. The accuracy of
different architectures ranges from 1.31 m to 1.94 m, with R2

values between 0.89 and 0.94. Table 7 depicts the overall CNN
configuration that obtained the lowest RMSE with the highest
R2.

Based on the analysis, SDB generated from CNN outperforms
the linear transform method. A larger window size improves
the SDB model, especially in areas deeper than 15 m. The use

Table 7. Summary of CNN architecture.

Parameters Setting
Window size 9x9
Number of channels 6 (RGBNSS)
Convolution layers 3
Kernel size 3x3
Activation ReLu
Padding Valid
Batch normalization Yes
Pooling layer No
Dropout rate 0.3
Dense layer 1
Output activation Linear
Learning rate 0.0001
Batch size 512

of both SWIR bands in the training process raises the overall
depth accuracy, especially between 2 m and 16 m. However,
CNN results are worse where more noise is present, such as in
turbid water.

Some of our observations regarding the implementation of the
pre-trained model in other sites suggest that it works in neigh-
bour areas with similar water conditions, but is not suitable to
be used in different conditions. The model probably needs to be
tested in areas farther apart. Further work still needs to be done
in order to perform training with more data, preferably combin-
ing the data from several sites having different water conditions;
or using multi-temporal images to enrich the variation of the re-
flectance and depth data pairs as data input for training.

ACKNOWLEDGEMENTS

This study has received funding from the Indonesian Endow-
ment Fund for Education (LPDP), Republic of Indonesia, and
the European Research Council (ERC) under the European
Union’s Horizon2020 Research Innovation Programme (grant
agreement no. 677312 Urban modelling in higher dimensions).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-201-2021 | © Author(s) 2021. CC BY 4.0 License.

 
206



References

Gao, J., 2009. Bathymetric mapping by means of remote sens-
ing: Methods, accuracy and limitations. Progress in Physical
Geography, 33(1), 103–116.

Green, E. P., Mumby, P. J., Edwards, A. J., Clark, C. D., 2000.
Remote Sensing Handbook for Tropical Coastal Manage-
ment.

Hamylton, S. M., Hedley, J. D., Beaman, R. J., 2015. Deriva-
tion of high-resolution bathymetry from multispectral satel-
lite imagery: A comparison of empirical and optimisation
methods through geographical error analysis. Remote Sens-
ing, 7(12), 16257–16273.

Kabiri, K., 2017. Discovering optimum method to extract depth
information for nearshore coastal waters from Sentinel-
2A imagery-case study: Nayband Bay, Iran. International
Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences - ISPRS Archives, 42(4W4), 105–110.

Kanno, A., Koibuchi, Y., Isobe, M., 2012. Shallow Water Ba-
thymetry from Multispectral Satellite Images: Extensions of
Lyzenga’s Method for Improving Accuracy. Coastal Engin-
eering Journal, 53(4), 431–450.

Kanno, A., Tanaka, Y., 2012. Modified lyzenga’s method for es-
timating generalized coefficients of satellite-based predictor
of shallow water depth. IEEE Geoscience and Remote Sens-
ing Letters, 9(4), 715–719.

Kanno, A., Tanaka, Y., Kurosawa, A., Sekine, M., 2013.
Generalized Lyzenga’s Predictor of Shallow Water Depth
for Multispectral Satellite Imagery. Marine Geodesy, 36(4),
365–376.

Lyzenga, D. R., 1985. Shallow-water bathymetry using com-
bined lidar and passive multispectral scanner data. Interna-
tional Journal of Remote Sensing, 6(1), 115–125.

Lyzenga, D. R., Malinas, N. P., Tanis, F. J., 2006. Multispectral
bathymetry using a simple physically based algorithm. IEEE
Transactions on Geoscience and Remote Sensing, 44(8),
2251–2259.

Manessa, M. D. M., Haidar, M., Hartuti, M., Kresnawati, D. K.,
2018. Determination of the Best Methodology for Bathy-
metry Mapping Using Spot 6 Imagery: a Study of 12 Em-
pirical Algorithms. International Journal of Remote Sensing
and Earth Sciences (IJReSES), 14(2), 127.

Manessa, M. D. M., Kanno, A., Sekine, M., Haidar, M.,
Yamamoto, K., Imai, T., Higuchi, T., 2016. Satellite-
Derived Bathymetry Using Random Forest Algorithm and
Worldview-2 Imagery. Geoplanning: Journal of Geomatics
and Planning, 3(2), 117.

Misra, A., Vojinovic, Z., Ramakrishnan, B., Luijendijk,
A., Ranasinghe, R., 2018. Shallow water bathy-
metry mapping using Support Vector Machine (SVM)
technique and multispectral imagery. International
Journal of Remote Sensing, 39(13), 4431–4450. ht-
tps://doi.org/10.1080/01431161.2017.1421796.

Quadros, N., 2016. Technology in Focus: Bathymetric Lidar.

Sagawa, T., Yamashita, Y., Okumura, T., Yamanokuchi, T.,
2019. Shallow water bathymetry derived by machine learn-
ing and multitemporal satellite images. IGARSS 2019 - 2019
IEEE International Geoscience and Remote Sensing Sym-
posium, 8222–8225.

Spitzer, D., Dirks, R., 1986. Remote sensing for resources de-
velopment and environmental management: Classification of
bottom composition and bathymetry of shallow waters by
passive remote sensing. Proceedings of the Seventh Interna-
tional Symposium, Enschede, Netherlands, 2, 775–777.

Stumpf, R. P., Holderied, K., Sinclair, M., 2003. Determin-
ation of water depth with high-resolution satellite imagery
over variable bottom types. Limnology and Oceanography,
48(1part2), 547–556.

Tonion, F., Pirotti, F., Faina, G., Paltrinieri, D., 2020. A ma-
chine learning approach to multispectral satellite derived
bathymetry. ISPRS Annals of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, 5(3), 565–570.

Traganos, D., Poursanidis, D., Aggarwal, B., Chrysoulakis, N.,
Reinartz, P., 2018. Estimating satellite-derived bathymetry
(SDB) with the Google Earth Engine and sentinel-2. Remote
Sensing, 10(6), 1–18.

Vinayaraj, P., Raghavan, V., Masumoto, S., 2016. Satellite-
Derived Bathymetry using Adaptive Geographically
Weighted Regression Model. Marine Geodesy.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-201-2021 | © Author(s) 2021. CC BY 4.0 License.

 
207


	INTRODUCTION
	MATERIALS AND METHOD
	Study area
	Data
	Method

	RESULTS AND DISCUSSIONS
	CONCLUSIONS AND FURTHER WORK



