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Summary 
 

Preventive, personalized treatment of biopsychosocial (BPS) functional decline or stagnation in the 

rehabilitation process requires early prediction of those at risk. Ambulant monitoring of objective 

physical activity using wearable accelerometers could be a quantitative, noninvasive, and affordable 

method to gain insight into current and future biopsychosocial functioning.  

In this retrospective study, Random Forest Regression was used to predict cross-sectional and 

longitudinal Functional Ambulation Category (FAC) and Six-item Cognitive Impairment Test (6CIT) 

after hip fracture using ambulatory accelerometry data. Accelerometry data and BPS functional 

assessments were available of 49 participants of the HIPCARE study, assessing prognostic 

determinants of outcome after hip fracture in the elderly. 

Overall, cross-sectional FAC scores three months after hip fracture could be predicted with 

moderately low error, and categorized regression predictions showed high precision and recall. 

Cross-sectional 6CIT and both longitudinal regression models underperformed, but categorized 

regression predictions revealed mixed but more promising precision and recall.  

It is expected that the predictive performance of models can be improved by increasing participant 

sample size with balanced samples over population-specific, prevalent ranges of BPS outcome scales 

and exploring additional machine learning models. In the future, accurate accelerometry-based 

predictions for individual patients needing rehabilitation could support personalized treatment and 

improve long-term biopsychosocial functioning. 
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1  

Introduction 
 

As chronic diseases continue to account for a significant portion of morbidity and mortality in 

Western countries, healthcare systems that traditionally revolve around acute biomedical care 

models are facing challenges in improving patient-reported outcomes and reducing healthcare costs 

[1]. The increase in healthcare costs is mainly due to increased treatment and care costs and more 

extended diagnosis and treatment processes of increasingly complex health problems [2]. To 

address these healthcare needs, there is an increasing demand for the application of the 

biopsychosocial (BPS) model in healthcare management [1, 3]. This model offers a comprehensive 

approach to understanding and addressing the complex interplay of factors affecting health and 

well-being, making it particularly relevant in the context of chronic diseases and rehabilitation 

medicine [1-3]. This BPS effect of illness can also be seen in the case of elderly hip fracture patients. 

Not only does it (temporarily) affect mobility, but it is also related to decreased psychosocial well-

being, such as social participation, depressive symptoms, fear of falling, and health-related quality of 

life [4-6]. 

While rehabilitation is essential for optimizing BPS functioning and improving the overall quality of 

life, creating and implementing successful rehabilitation programs is a complex undertaking that 

requires careful consideration of resource allocation, treatment efficacy, and the unique needs of 

each individual in the clinical and ambulant setting [7]. Rehabilitation does not only focus on 

biological recovery, it also strives to optimize BPS functioning using compensation techniques or 

substitution methods [8, 9]. In the field of rehabilitation medicine, wearable devices have emerged 

as valuable tools for implementing the principles of personalized medicine. 

Human movement is a multifactorial and complex phenomenon, affected by all BPS aspects [10]. 

Subjective assessment of movement behavior, for example by using questionnaires, or lab-based 

objective assessment in a controlled environment, for example by the use of force plates, often do 

not reflect true day-to-day physical activity [11, 12]. Objective quantification of movement behavior 

in early stages of rehabilitation can be crucial for early decision-making concerning the need of 

(preventive) interventions to optimize BPS functioning in later phases of a health condition. Over the 

past years, accelerometry emerges as a noninvasive and affordable method to achieve this, being a 

widely accepted method for the objective quantification of physical activity and behavior [13, 14]. 

This technology utilizes accelerometers, often worn on the wrist or waist, to record body movement. 

This allows researchers to collect data on the intensity, duration, and frequency of physical 

movements, offering valuable insights into various aspects of human movement behavior. While the 

link between accelerometry and physical fitness is intuitive, its connection to psychological wellbeing 

may be less evident [15-17]. Growing numbers of studies, as well as multiple reviews, have assessed 

the association between physical activity and psychological wellbeing using accelerometry. 

Unfortunately, these studies are primarily cross-sectional and assess a heterogenous range of 

psychosocial and accelerometric measures [18-21]. Review of available literature demonstrated the 

potential of some accelerometric outcome measures assessing both physical activity intensity (PAI) 
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and rest-activity rhythms (RAR) to be an early indicator of future psychological wellbeing in adults 

(Appendix C). 

So far, most papers either assess accelerometric features describing PAI or RAR (Appendix C). 

Combining these could result in more accurate findings on the interaction between physical activity 

and psychological wellbeing [22]. These results raise the question if accelerometry can be used to 

develop a model for the prediction of the expected biopsychosocial rehabilitative course of 

individual patients. High quality predictive models could help with the early identification of patients 

at a higher risk of complications or relapse during rehabilitation and to customize care plans based 

on individual traits. This individualized approach ensures that patients receive the most effective 

therapy techniques, maximizing BPS functioning. [7, 23, 24] Accelerometry can also be a 

fundamental component of remote rehabilitation healthcare and long-term follow-up [7, 25, 26]. 

Additionally, early information on the predicted course of recovery can also contribute to the 

efficiency of rehabilitation care concerning required equipment, staff and time when aiming to 

improve resource allocation and quality of treatment [7] Development of predictive models can be 

done using machine learning (ML), which is capable of processing large amounts of data and derive 

clinically relevant conclusions including diagnosis and morbidity risk assessment [7, 27, 28]. This 

makes it very suitable for processing raw accelerometric signals or large sets of accelerometric 

features for the prediction of biopsychosocial wellbeing [29-32]. There is a large range of machine 

learning algorithms, all using a different approach and use [33]. Random Forest (RF) models use a 

relatively simple technique based on the combination of a large number of decision trees and have 

proven to be useful for a wide range of medical applications, diagnostics and treatment 

considerations [34-37]. 

In this study it is explored how home-based accelerometry can be used for the prediction of 

biopsychosocial wellbeing three months and one year after hip fracture in the elderly. The aim of 

this study is to assess whether an accelerometry data-driven Random Forest machine learning model 

is able to correctly predict levels of BPS functioning three and twelve months after hip fracture. This 

would enable early detection of patients vulnerable for decline or stagnation of BPS functioning, 

paving the way for further personalized adaptation of treatment plans. 
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2 

Background 
 

For a deeper understanding of biopsychosocial functioning and preventive, predictive medicine, 

additional information on both topics is provided in this chapter. 

2.1 Biopsychosocial Model 
The biopsychosocial model emerged as a response to the limitations of the traditional biomedical 

model in explaining health and illness [1, 3]. Relying solely on diagnosis does not provide adequate 

prediction of necessary care, hospitalization duration and BPS functioning, nor the likelihood of 

(social) (re)integration [38]. Alternatively, the social model of disability only views disability as only 

an issue that arises from societal constructs and, although partially valid, it is like the biomedical 

model not adequate enough [38]. The central tenet of the biopsychosocial model is the recognition 

that health and illness result from intricate interactions among biological, psychological and social 

factors [1, 3, 38]. This model has gained widespread recognition and application in various aspects of 

healthcare such as in research on complex healthcare interventions, clinical practice, and the 

development of clinical guidelines, and serves as the foundation for the World Health Organization's 

International Classification of Functioning, Disability, and Health (ICF, Figure 1) [1, 38]. This model 

attempts to encourage a holistic approach of the patient, although it is not yet fully complete, for 

example by not taking into account the effect of time in the process of improvement or 

deterioration of disability [2]. 

 
Figure 1. Overview of the International Classification of Functioning, Disability, and Health (ICF) 
model. Reprinted from Towards a Common Language for Functioning, Disability and Health: ICF, 
WHO, 2002 [38]. 

 

The interaction between the different aspects within the biopsychosocial model holds significant 

relevance in the field of rehabilitation medicine, where the focus is on optimizing patients' functional 

recovery and overall quality of life, which are highly related to each other as well as to both 

biomedical illness and contextual factors of the patient [2]. Many studies highlight these 
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multidirectional interactions between psychosocial factors and functional outcomes assessing a wide 

range of outcomes during and after rehabilitation, including function, well-being, perceived pain and 

disability, work status, social participation and overall quality of life (QoL) [4, 39-43].  

For example, Adomaviciene and colleagues concluded that during the rehabilitation process after 

rotator cuff repair pain and psychosocial factors were of influence on functional shoulder recovery 

and that vice versa motor function, ability and pain relief had a long-term effect on subjective well-

being [44]. Bordne et al. showed that geriatric rehabilitation did improve affect as part of subjective 

well-being, but that psychological parameters like personality should be taken into account as part 

of geriatric rehabilitation when determining if patients are at risk for poor overall subjective well-

being [39].  

Eleuteri et al. highlight the importance of the use of a biopsychosocial approach in the treatment 

management of hip fracture patients and their caregivers [40]. There is an association between hip 

fractures and a reduction of QoL which is influenced by pre-existing care dependence, reduced 

function and cognitive state and depressive symptoms [40, 45]. A cohort of hip fracture patients 

reported a decrease of mobility and increased rates of depressive symptoms and activity 

participation in the first year after fracture, with a larger social network reducing the detrimental 

effect of fracture [4]. These psychosocial factors, as well as delirium, are associated with poorer 

functional recovery and increased mortality rate [40]. Finally, fear of falling can also have a negative 

effect on recovery [5, 40]. Falls have a negative impact on physical health, but also on psychological 

well-being and social participation, which are believed to be mediated by respectively perceived 

control and frailty [5, 41, 43]. Social isolation on its turn is associated with future functional status 

such as gait speed and (instrumental) activities of daily living ((I)ADL) disability, demonstrating the 

tight relations between biopsychosocial aspects [46, 47]. 

3.2 P4 Medicine 
Predictive, Preventive, Personalized, Participatory (P4) medicine is a transformative approach in 

healthcare that is revolutionizing disease management by emphasizing a proactive rather than 

reactive strategy. This approach focuses on individual patients and their unique characteristics, 

moving away from the traditional standardized model of healthcare. P4 medicine is characterized by 

the use of predictive methods, early disease identification, a personalized approach that considers 

each patient as a unique entity, and finally a responsibility of the individual for the optimization of 

their health. Furthermore, it is very suitable for the inclusion of all aspects of the biopsychosocial 

model, assessing physical, psychological and cognitive health. [7, 27, 48-50] 

The development P4 medicine depends on large databases of health related factors including, but 

not limited to, socio-demographic, biological and genetic details [27]. These databases can aid in the 

characterization of patient groups at risk of certain disease, and if taken even further be used to 

guide decision making and initiate screening or preventive treatment of patients at risk before actual 

disease onset [7, 27, 49]. It is important that these databases contain valuable, quantified data on 

different domains. Wearable devices have the potential to provide continuous health monitoring 

across various domains, including environmental, behavioral, physiological, and psychological 

factors, which all play a role in an individual's health and well-being. A sophisticated wearable could 

for example track exposure to sunlight (environmental), number of steps (behavioral) and heart rate 

(physiological). The integration of data from wearable devices allows for a more comprehensive and 

personalized assessment of a patient's health status. [27, 49] It aligns with the predictive aspect of 

P4 medicine by enabling the early detection of symptoms or changes in health status, promoting 

preventive measures, and ultimately optimizing the rehabilitation process.  
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3 

Method 
3.1 Study Design 
This study is a part of the HIPCARE single-center mixed-method inception cohort study assessing 

prognostic determinants of outcome after hip fracture in the elderly [51, 52]. Data was collected 

between January 2019 and November 2021 and assessed retrospectively. The study cohort consists 

of community-dwelling elderly aged 70 years or older with unilateral proximal femoral fractur, who 

were eligible for (geriatric) rehabilitation. All participants have given written informed consent. 

Patients received standard care as defined in the National guideline treatment protocol of the proximal 

femoral fracture in the older population of the Dutch trauma surgery society (Nederlandse Vereniging 

voor Heelkunde) and the HMC Bronovo care pathway for patients with hip fracture ('zorgpad 

heupfracturen', METC-nr: 18-029). Participants had outpatient check-up at three months and twelve 

months after surgery, at which a range of biopsychosocial questionnaires were administered (Figure 2). 

Additionally, home-based physical activity over seven days was assessed using accelerometry at three 

month check-up (Figure 2). 

3.2 Data Collection 

3.2.1 Accelerometry Data 
Participants were requested to wear the MoveMonitor triaxial accelerometer (McRoberts B.V. The 

Hague, The Netherlands) at the three month check-up timepoint for seven consecutive days, 

removing the accelerometer only during water activities (bathing, swimming) and main sleep period 

at night. The MoveMonitor is worn on the lower back and is attached to an elastic band which is 

worn around the waist at belt height. This triaxial accelerometer has a sample frequency of 100Hz, 

range of 8g and resolution of 1mg. Data is stored on a 1Gb flash memory which can contain up to 14 

days of collected data. The McRoberts MoveMonitor and corresponding movement behavior 

detection algorithm has previously been validated for multiple populations, including the elderly [53, 

54]. An extensive report on types of activities, transitions between activities, steps, movement 

durations, movement frequencies, movement intensities and energy expenditure is available in a 

minute-by-minute format [55].  

3.2.2 Biopsychosocial Outcomes 
Assessments concerning biopsychosocial functioning administered at three and twelve months after 

surgery were included for analysis, with the three month timepoint as baseline measurement (Figure 

2). Outcomes were the clinically validated Six-item Cognitive Impairment Test (6CIT) and Functional 

Ambulation Category (FAC) tools (Table 1). Additional questionnaires and tests including Short 

Physical Performance Battery SPPB, Harris Hip Score, Timed Up & Go test, Katz ADL scale, EuroQol 

5D and Parker Mobility Score were administered but not included for initial analysis. 
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Figure 2. Participant timeline with biopsychosocial functioning assessed at three and twelve month 
check-up, and accelerometry assessed at 3-month check-up. BPS, Biopsychosocial. 

 

3.3 Data Preprocessing 
All data processing and predictive model training and evaluation were performed using the Python 

programming language (Python Software Foundation, https://www.python.org/) within the Spyder 

IDE (https://www.spyder-ide.org/) and multiple open source packages including, but not limited to, 

NumPy, pandas and  Scikit-Learn [56-61]. 

3.3.1 Biopsychosocial Outcomes 
Biopsychosocial outcomes were analyzed as absolute value for regression analysis. For post-hoc 

classification purposes, true and predicted outcomes were grouped in three categories, roughly 

distinguishing between the (1) unimpaired, (2) impaired and (3) either a mildly impaired or risk 

group (Table 1). 

 Table 1. Biopsychosocial assessments and interpretation of scores into functional categories. 

  Tool Assesses Functional Categories 

  6CIT [62] Cognition 0-7 normal 
8-9 risk 
10-28 impaired 

  FAC [63] Mobility 0-3 dependent or not functional 
4 independent but limited  
5 independent 

6CIT, Six-Item Cognitive Impairment Test; FAC, Functional Ambulation Category. 

 

https://www.python.org/
https://www.spyder-ide.org/
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3.3.2 Accelerometry Data 
A subset of McRoberts’ movement parameters were selected for inclusion in the data analysis based 

on previously performed literature review (Appendix C). Movement parameters were included if 

they described total physical activity, moderate-to-vigorous physical activity, sedentary behavior or 

napping (Table 2). Even though not described as most relevant movement parameter, sedentary 

behavior was included as it was expected that the included participants would engage in little 

moderate to vigorous physical activity. Multiple preprocessing steps were followed (Figure 3A), 

starting by redefining days to start and end at 03:00 to reduce spillage of late-night activity to the 

next day. Then, first and last day were removed since they do not accurately describe full day 

activity. Even though patients were asked to remove the accelerometer during the main sleep period 

at night, not all patients complied to this request. As a result, for some patients sleep data was 

removed by detecting periods of consecutive minutes lying down, with a duration of at least 300 

minutes and onset between 16:00 and 06:00. Next, days with less than 12 hours of accelerometry 

data were removed and patients with less than 2 days of valid data were excluded from analysis. 

After data cleaning, minute-to-minute movement parameters were grouped in to one-hour blocks 

and transformed into multiple features, including metrics and statistical measures such as the sum, 

mean, median and standard deviation, describing average movement behavior per hour (Figure 3B). 

Next, a moving average with a 10-minute window was applied to the movement parameters to 

decrease the power of short-lasting events (Figure 4). The maximum value per hour was included as 

feature as an indication of both power and duration of events. Combining 27 movement parameters, 

six descriptive transformations and 24 hour blocks resulted in 3888 features that were averaged 

over all valid days for each patient. Finally, included features were scaled based on train data using 

the Scikit-Learn StandardScaler which centers the data by removing the mean and scales the data to 

unit variance [64]. 

 

Figure 3A. Preprocessing steps of accelerometry data. 

 

Figure 3B. Transformation steps of movement parameters into features. SD, standard deviation; IQR, 
interquartile range. 
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Figure 4. Example of difference between original feature and ten minute rolling mean of feature and 
corresponding hourly maxima. 

 

3.4 Predictive Model Development 
To assess whether home-based accelerometry data can be used to predict both cross-sectional and 

longitudinal BPS functioning, multiple supervised regression and classification methods were tested. 

These included the more basic linear and decision tree models as well as a regression tree model. 

Linear regression attempts to describe the relationship between variables and outcome using a 

linear function, whereas logistic regression predicts the outcome based on a logistic function. 

Decision tree models use a hierarchical tree structure, dividing samples into multiple groups based 

on feature based constraints (Figure 5A). Random forest trains multiple decision trees, with the most 

common label outputted by each tree being assigned to the sample (Figure 5B). [33] 

Since we expected best results for the prediction of cross-sectional FAC score as they both describe 

mobility at the same time point, initial feature selection and model development were based on this 

outcome, although method was similar for other BPS outcomes. 

A common problem in machine learning is overfitting, and cross-validation (CV) is a widely accepted 

method to reduce the effects of this pitfall [65]. Therefore, 4-fold CV was used, during which 

included samples were split into four batches, with each batch once being used as the test set and 

for the remaining three folds a part of the train set. This way the model is trained on three quarters 

of the data and its performance tested on a quarter of the data for each fold (Figure 5C). To increase 

accuracy each CV cycle was repeated five times, with performance estimation being based on 20 

train-and-test cycles. For estimation of final model performance after feature selection, repeats 

were increased to 10. 
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Table 2. Included movement parameters as described by McRoberts. 

Movement parameter UNIT MEASURE DESCRIPTION 

COUNTS_total amount TPA the sum of the counts for worn periods 
DUR_total_active seconds TPA total duration of standing, shuffling, walking, stair 

walking and cycling periods combined 
DUR_total_inactive seconds SB total duration of lying and sitting periods combined 
DUR_total_lying seconds NAP total duration of lying periods 
DUR_total_moving seconds TPA total duration of walking, stair walking and cycling 

periods combined 
DUR_total_sitting seconds SB total duration of sitting periods 
DUR_total_static seconds SB total duration of standing and shuffling periods 

combined 
MET_mean kcal/minute TPA average MET value for worn periods 
METS_moderate_time seconds MVPA total duration of periods above or equal to 3 METs 

and below 6 METs when not taking bouts* into 
account 

METS_sedentary_time seconds SB total duration of periods below 3 METs when not 
taking bouts into account 

METS_vigorous_time seconds MVPA total duration of periods above or equal to 6 METs 
when not taking bouts into account 

MI_active mg TPA mean movement intensity of standing, shuffling, 
walking, stair walking and cycling periods combined 

MI_inactive mg SB mean movement intensity of lying and sitting 
periods combined 

MI_lying mg NAP mean movement intensity of lying periods 
MI_moving mg TPA mean movement intensity of walking, stair walking 

and cycling periods combined 
MI_worn mg TPA mean movement intensity of worn periods 
PAR_active ratio TPA ratio between total energy expenditure and BMR of 

standing, shuffling, walking, stair walking and 
cycling periods combined 

PAR_inactive ratio SB ratio between total energy expenditure and BMR of 
lying and sitting periods combined 

PAR_lying ratio NAP ratio between total energy expenditure and BMR of 
lying periods 

PAR_moving ratio TPA ratio between total energy expenditure and BMR of 
walking, stair walking and cycling periods combined 

PERIODS_active amount TPA number of periods of consecutive standing, 
shuffling, walking, stair walking and cycling 

PERIODS_inactive amount SB number of periods of consecutive lying and sitting 
PERIODS_lying amount NAP number of lying periods 
PERIODS_moving amount TPA number of periods of consecutive walking, stair 

walking and cycling 
STEPS amount TPA number of steps (including steps from walking 

stairs) 
TRANSITIONS_ly amount - number of transitions from lying to 

shuffling/standing/walking 
TRANSITIONS_si amount - number of transitions from sitting to 

shuffling/standing/walking 

TPA, total physical activity; SB, sedentary behavior; NAP, napping or daytime sleeping; MVPA, moderate-to-
vigorous physical activity; MET, metabolic equivalent of task; BMR, basal metabolic rate. *A bout is a period 
during which the same movement behavior is performed for at least ten minutes with an allowed interruption 
of one minute. 
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Figure 5A. Visualization of Decision Tree structure with a depth of 3. Splits are based on feature 
constraints. 

 

Figure 5B. Visualization of Random Forest with a depth of 3 and n-estimators. 

 

Figure 5C. Visualization of repetitive cross-validation. 
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3.4.1 Feature Selection 
Large feature sets can compromise predictive performance of a machine learning model. Feature 

selection reduces the amount of correlated and redundant features whilst keeping those with high 

predictive value, resulting in the development of a model with lower complexity, improved 

predictions and smaller errors. [66] Ideally, selected features are highly correlated with the target (in 

this case, BPS performance) but minimally correlated with each other [67]. 

Many feature selection methods can be used, including basic methods such as the removal of 

constant features based on variance or assessing feature correlation and removing all but one of 

those with high correlation. [67] Initial basic feature selection was performed on the entire dataset 

to improve efficiency. First, correlations between features are assessed (Figure 6). It is expected that 

features that are highly correlated are equally informative and have similar predictive value. For 

example, Interquartile range and standard deviation both describe the spread of values in the 

dataset, where the IQR is less affected by outliers. It is expected that the IQR and std are equally 

informative and have similar predictive value, which can demonstrated by their correlation. 

Based on pairwise correlation between feature metrics the two transformations with highest 

correlation to remaining metrics and lowest correlation between each other were chosen. Entire 

metric feature group was removed, opposed to specific movement parameter features to ensure a 

more homogenous feature set. Next, constant features were removed by selecting all features with 

zero variance. 

Further feature selection was performed using the feature importance method. In this method, a 

model is trained using all features using cross-validation after which for each feature the average 

feature importance was determined. A higher feature importance indicates that the respective 

feature has a larger effect on the model and therefore predictions. By selecting only those features 

with highest importance, model dimensionality can be reduced without removing those features 

that are likely to have a high predictive power. 

First, the regression model was trained and evaluated using all features and top-20 features to 

assess most important time windows. Eight time windows of three hour blocks starting at 03:00 (e.g. 

03:00-06:00, 06:00-09:00, … 00:00-03:00) were separately included for model training and 

prediction after which features from time windows with poorest performance were removed from 

the feature set. 

Then, a range between 2-500 features with highest importance were used to train the same model 

again, determining the amount of features with highest performance. To validate used method, the 

SelectKBest method available from the Scikit-Learn package version 1.3.2 was used, which selects a 

given amount of best features based on univariate linear regression test F-statistic. [59, 68] 
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Figure 6. Process of feature selection. Upper half describes feature selection based on Random 
Forest feature importance, lower half describes feature selection based on feature coefficient and 
PLS component computation based on RF performance. RF, random forest; PLS, partial least squares. 

 

3.4.2 Partial Least Squares 
An alternative method for dimensionality reduction can be the use of Principal Component Analysis 

(PCA) or the lesser known Partial Least Squares (PLS). Both methods combine features into a 

predefined number of components after which these components are used as features in the 

predictive model. Methods like these find and combine accelerometric outcome parameters that 

have the highest possibility of containing relevant information. This is especially valuable in 

situations where only small sample sizes are available and parameters show significant covariance, 

which is the case for most physical activity intensity outcome measures, where an increase of a 

certain behavior always leads to a decrease of another behavior [69]. There are slight differences 

between PCA and PLS methods. PCA is a unsupervised method and aims to preserve as much 

variance in the original data as possible. PLS is a supervised method which aims to preserve as much 

covariance as possible between the accelerometric data and BPS outcomes. [70] In situations where 

the aim is to determine the components most predictive of known classes, PLS is preferred. [71, 72] 

For optimal performance, PLS is combined with feature selection. Therefore, all feature selection 

based on correlation and variance as described above were applied before continuing with the 

optimization process using PLS. Multiple parameters were tuned during this cross-validates process, 

including the amount of PLS components to be used for prediction (1-5 components) and the 

amount of features to be used for the construction of these PLS components based on their value to 

the PLS component (similar to feature importance described earlier). 

3.4.3 Hyperparameter Tuning 
Machine learning models use certain predefined configurations called hyperparameters. These 

hyperparameters guide and set boundaries for how the model trains on the data. Hyperparameter 

tuning is the process where for a selection of configurations a range of values are tried and 

evaluated on performance after which optimal values are used for the model with given data. For 

Random Forest models, many hyperparameters can be set, with the two most commonly tuned 

being n_estimators and max_depth. These hyperparameters respectively determine how many trees 

are built and how many levels can be used within a tree (Figure 5A-B) and were tuned using a Leave-

One-Out Cross-Validated grid search scoring values using negated root mean squared [73]. Initial 

grids were defined as [2,3,5] for max_depth and [50,70,90,150] for n_estimators. For the remainder 

of the hyperparameters standard values were used which can be found in documentation of scikit-
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learn version 1.3.2. [74-76] After feature selection, models were trained once more with a more 

extensive hyperparameter grid including as [2,3,5,7,9] for max_depth and 

[50,70,90,150,200,250,300] for n_estimators. 

3.5 Performance Evaluation 
Both during iterative model development and for final model performance of regression models 

were evaluated using Root Mean Squared Error (RMSE) and coefficient of determination or R2 over 

all iterations. The RMSE is a measure of the standard deviation of the difference between predicted 

and true values. Increased RMSE indicate worse performance. R2 represents how well the model fits 

the data by looking at the proportion of the variance of the data that is explained by the model. A R2 

of 1 indicates that entire variance is explained by the model, a negative value indicates that the 

model is worse than when using the sample mean as predicted value. [77]  

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝑦𝑖 − ŷ)2

𝑁

𝑖=1

 

with ŷ being the predicted value 

𝑅2 = 1 −  
∑(𝑦𝑖 − ŷ)2

∑(𝑦𝑖 − 𝑦̅)2
 

 
with ŷ being the predicted value and ȳ the mean of the 

observed data 
 

Finally, regression results were also grouped into functional categories as described in Table 1. Even 

though not predicted using a classification model, results could be interpreted in a similar matter, 

assessing performance with overall accuracy and class specific precision and recall. 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑡𝑝

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛
 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 𝑟𝑒𝑐𝑎𝑙𝑙 =  

𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 

With tp = true positives, fp = false positives, tn = true negatives, fn = false negatives 
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4 

Results 
4.1 Patient Characteristics 
Accelerometry data of 55 participants were gathered, of which 49 resulted in both valid 

accelerometry and BPS outcome data, suitable for analysis. Baseline and follow-up characteristics of 

included patients are shown in Table 3. Overall, 65% of participants was female, mean age at time of 

fracture was 81.5 and 78% of participants lived independent without any additional care. Not all BPS 

outcome measures were available for each participant, resulting in a variable selection of 

participants for each analysis. 

Table 3. Patient Characteristics and biopsychosocial functioning. 

 
At time of 

fracture (n=49) 
Baseline (n=49) 

Follow-up 
(n=39)* 

Female, n (%) 32 (65%)   
Age (y), mean +- SD 81.5 +- 6.8   
Fracture side right, n (%) 25 (51%)   
Living situation, n    
      Independent 38 34 30 
      Independent with additional care 8 11 6 
      Care facility 3 1 2 
      Unknown 0 3 1 
    
Readmitted, n (%)  2 (4%) 7 (18%) 
Physiotherapy in last 6 weeks, yes, n (%), 
       frequency, mean/week ± SD 

 47 (96%),  
3.0 ± 1.25 

 

    
FAC, mean ± SD  4.04 ± 0.61 4.39 ± 0.84 
FAC, group, n    
      Unknown  1 1 
      0-3 dependent  8 2 
      4 independent but limited  30 16 
      5 independent 
 

 10 20 

6CIT, mean ± SD  3.67 ± 4.35 4.35 ± 4.76 
6CIT, group, n    
      Unknown  1 5 
      0-7 normal  38 26 
      8-9 risk  5 3 
      10-28 impaired  5 5 

6CIT, Six-Item Cognitive Impairment Test; FAC, Functional Ambulation Category; SD, standard 
deviation. *two patients were lost to follow-up, eight patients provided neither FAC or 6CIT. 
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4.2 Feature Selection 
First, correlation between feature metrics computed over original movement parameters were 

assessed. It was expected that the IQR and SD are equally informative and have similar predictive 

value, which is demonstrated by their mean correlation coefficient of R = 0.85 (SD 0.12) (Table 4). 

This also holds for SD and the maximum with R = 0.86 (SD 0.17), but in lesser rates for SD and mean 

with an R = 0.73 (SD 0.25).  In this case, the removal of all features describing the interquartile range, 

maximum and the sum could be justified since most features show a good correlation with the 

standard deviation and/or mean (Table 4). Features describing maximum value of 10-minute rolling 

mean was not compared to original feature metrics and was included in feature set. 

Zero-variance filtering resulted in the removal of seven features when all participants were included, 

all describing hourly METS_vigorous_time between 00:00-06:00, with six out of seven being a 

measure of standard deviation. Since not all BPS outcomes were available for all participants, it is 

possible that exclusion of participants based on missing data resulted in zero-variance features. For 

example when removing all patients without baseline FAC score resulted in the removal of one 

feature: the maximum of the moving window average “METS_sedentary_time” at 19.00, which was 

60 seconds for all participants (one excluded patient had 59.1 seconds of sedentary time). 

Table 4. Correlations between feature metrics. 
Metric IQR Max Mean SD 

 
R  (abs) 

Mean 
(SD) 

≥0.70 ≥0.90 
Mean 
(SD) 

≥0.70 ≥0.90 
Mean 
(SD) 

≥0.70 ≥0.90 
Mean 
(SD) 

≥0.70 ≥0.90 

Sum 0.68 
(0.27) 

54% 27% 
0.77 
(0.18) 

70% 25% 
0.83 
(0.21) 

76% 55% 
0.70 
(0.26) 

59% 29% 

SD 0.85 
(0.12) 

84% 37% 
0.86 
(0.17) 

85% 60% 
0.73 
(0.25) 

65% 34%    

Mean 0.69 
(0.26) 

54% 29% 
0.84 
(0.15) 

84% 45%       

Max 0.68 
(0.22) 

48% 16%          

R, correlation coefficient; abs, absolute value; SD, standard deviation; max, maximum; IQR, interquartile range. 

 

4.2.1 3-Month Cross-sectional analysis 
Since we expected best results for the prediction of cross-sectional FAC score, and both initial linear 

and decision tree regression showed poor performance compared to random forest regression, 

initial feature selection based on feature importance was based on the prediction of baseline FAC 

score using a cross-validated and repeated Random Forest regression model. This initial model used 

the following hyperparameter grid: max depth: 2,3,5; n_estimators: 50,70,90,150 and CV 

random_state: 346469 for reproducibility reasons. Time slot analysis using all features and top-20 

features showed best performance for timeslots between 12:00-21:00 (Table 5). An additional 

analysis was run for all features within this larger timeslot, as well as the SelectKBest feature 

selection to verify generalized performance during that timeslot using correlation instead of feature 

importance. Based on these results, features describing movement behavior before 12:00 or after 

21:00 were excluded from the feature set. Since feature selection based on feature importance was 

better compared to the results of the SelectKBest approach, this method was continued. 

Next, optimal amount of features with highest importance was determined by adding different 

amounts of features (2-11,13,15,20,25,30,40,50,75,150,250,500) to the Random Forest model and 

assessing which amount resulted in smallest errors (RMSE) and highest R2 score (Figure 7A). Cross-

validated and repeated model was run twice to improve accuracy of results. An optimal performance 
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was found when only top-six features with highest importance were included. Repetitive running of 

the model resulted in slight shifts in which features were in the top-six of highest importance. These 

features described mainly duration and intensity of moving (non-sedentary) behavior (Table 6). As 

can be seen in Table 6, feature importance cannot be explained based on post-hoc analysis of linear 

correlation between feature and baseline FAC score. Of selected features, only DUR_total_moving 

parameters demonstrate a high interfeature correlation of R = 0.87, overall mean interfeature 

correlation R = 0.43, SD 0.16 (Appendix B, Table B1). 

Similar methods were applied to the prediction of cross-sectional 6CIT score, demonstrating optimal 

performance with features describing movement behavior between 06:00-09:00 and 12:00-18:00 

(Table 7). Optimal amount of features was established at five, which included measures of energy 

expenditure and transitions during both sedentary and active time (Figure 7B, Table 8). Linear 

correlations between features with highest importance and cross-sectional 6CIT score were low with 

a mean of 0.45 (SD 0.16). Of selected features mean interfeature correlation R = 0.34, SD 0.21 

(Appendix B, Table B2), with highest interfeature correlation between PAR_moving_mean_14:00:00 

and PAR_active_max_14:00:00 (R = 0.74) 

Table 5. 3-month FAC, time window performance 

  03:00-
06:00 

06:00-
09:00 

09:00-
12:00 

12:00-
15:00 

15:00-
18:00 

18:00-
21:00 

21:00-
00:00 

00:00-
03:00 

12:00-
21:00 

All 
features 

RMSE 0.65 0.56 0.61 0.48 0.47 0.5 0.59 0.68 0.44 
R2 -0.05 0.17 -0.02 0.33 0.42 0.32 0.11 -0.22 0.47 

Top 20 
features* 

RMSE 0.63 0.54 0.57 0.42 0.4 0.46 0.54 0.68 0.36 

R2 -0.01 0.23 0.09 0.45 0.55 0.41 0.21 -0.18 0.61 

Select-

KBest† 

RMSE         0.46 

R2         0.40 

Results of three best performing time windows shown in bold. FAC, functional ambulation category; 
RMSE, root mean square error; R2, coefficient of determination. * based on mean feature importance 

of all features. †k=[4,6,10,20,50,75] 

 

Table 6. 3-month FAC, features with highest importance 

Feature Mean feature 
importance 

Correlation (Pearson) 
Movement parameter Metric Timeslot FAC 

DUR_total_moving* Mean 14:00-15:00 0.0265 0.55 
DUR_total_moving* SD 14:00-15:00 0.026 0.63 
MI_active Mean 19:00-20:00 0.0292 0.59 
MI_active SD 13:00-14:00 0.0279 0.67 
MI_active SD 15:00-16:00 0.0919 0.66 

MI_active**† SD 16:00-17:00 0.0263 0.44 

MI_moving SD 15:00-16:00 0.0411 0.48 

Descriptions of movement parameters can be found in Table 2. SD, standard deviation; FAC, 
functional ambulation category. * featured in top-six features of highest importance in 3/4 
repetitions, ranked seventh in remaining repetition. ** featured in top-six features of highest 

importance in 2/4 repetitions, ranked seventh and eighth in remaining repetitions. †not included in 
final feature set.   
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Figure 7A. Amount of features with highest 
performance for cross-sectional FAC. Highest 
performance at 6 features.  

Figure 7B. Amount of features with highest 
performance for cross-sectional 6CIT. Highest 
performance at 5 features. 

FAC, Functional ambulation category; 6CIT, Six-item Cognitive Impairment Test; RMSE, root mean 
square error; R2, coefficient of determination 

 

Table 7. 3-month 6CIT, time window performance 

  
03:00-
06:00 

06:00-
09:00 

09:00- 
12:00 

12:00-
15:00 

15:00-
18:00 

18:00-
21:00 

21:00-
00:00 

00:00-
03:00 

06:00-
09:00 

& 
12:00-
18:00 

All 
features 

RMSE 4.41 4.01 4.25 4.15 4.08 4.57 4.22 4.35 4.06 
R2 -0.61 -0.25 -0.37 -0.31 -0.26 -0.68 -0.39 -0.42 -0.24 

Top 20 
features* 

RMSE 4.18 3.65 3.91 3.69 3.72 4.23 3.84 4.24 3.46 

R2 -0.35 -0.05 -0.17 -0.08 -0.07 -0.41 -0.13 -0.34 0.06 

Results of three best performing time windows shown in bold. 6CIT, Six-item Cognitive Impairment 
Test; RMSE, root mean square error; R2, coefficient of determination. * based on mean feature 
importance of all features. 

 

Table 8. 3-month 6CIT, features with highest importance 

Feature Mean feature 
importance 

Correlation (Pearson) 
Movement parameter Metric Timeslot 6CIT 

METS_sedentary_time* Mean 06:00-07:00 0.0163 0.38 
METS_vigorous_time*** † SD 15:00-16:00 0.016 0.07 
PAR_active Max 14:00-15:00 0.0464 0.46 
PAR_inactive*** † Max 16:00-17:00 0.0116 0.55 
PAR_inactive SD 16:00-17:00 0.0322 0.64 
PAR_moving** Mean 14:00-15:00 0.0167 0.58 
PERIODS_lying*** † SD 16:00-17:00 0.0155 0.45 
TRANSITIONS_ly SD 17:00-18:00 0.0289 0.50 

Descriptions of movement parameters can be found in Table 2. SD, standard deviation; max, 
maximum; 6CIT, Six-item Cognitive Impairment Test. * featured in top-five features of highest 
importance in 3/4 repetitions, ranked nineth in remaining repetition. ** featured in top-five features 
of highest importance in 2/4 repetitions, ranked sixth and seventh in remaining repetitions. *** 

featured in top-five features of highest importance in 1/4 repetitions.  †not included in final feature 
set.   
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4.2.2 12-Month Longitudinal analysis 
For prediction of one year follow-up FAC score, the inclusion of only features describing movement 

behavior between 09:00-12:00 resulted in the best performance. An additional analysis was done 

including both 09:00-12:00 and 15:00-18:00 but since performance did not improve, a smaller time 

window and therefore feature set was chosen for further analysis (Table 9). Contrary to cross-

sectional analysis, the best amount of features to be included was not evidently clear (Figure 8A). By 

assessing mainly RMSE and R2 score, it was decided that best 37 features would be included. Over 

four iterations, 52 individual features were included in top-37 features, of which 23 features were 

present in all iterations and 9 were present in three out of four iterations. For the final model, these 

features, along with five features with highest mean importance out of the 2/4 group were included 

(Table 10). Of selected features mean interfeature correlation R = 0.34, SD 0.21 (Appendix B, Table 

B4), with highest absolute interfeature correlation between DUR_total_inactive_mean_11:00:00 and 

DUR_total_active_mean_11:00:00 (R = -1)  

Again, feature selection was applied for the prediction of follow-up 6CIT score. Time window with 

highest performance was between 03:00-06:00 and 21:00-00:00. An additional analysis was done 

including 03:00-06:00, 09:00-15:00 and 21:00-00:00 but since performance did not improve, a 

smaller time window and therefore feature set was chosen for further analysis (Table 11). Optimal 

amount of features was established at five, which included measures of vigorous activity, mean 

movement intensity, sedentary behavior and energy expenditure whilst lying (Figure 8B, Table 12). 

Of selected features, METS_vigorous_time parameters demonstrate a high interfeature correlation 

of R = 0.87 , overall mean absolute interfeature correlation is 0.28, SD 0.24 (Appendix B, Table B3). 

Table 9. 12-month FAC, time window performance 

  
03:00-
06:00 

06:00-
09:00 

09:00-
12:00 

12:00-
15:00 

15:00-
18:00 

18:00-
21:00 

21:00-
00:00 

00:00-
03:00 

All 
features 

RMSE 0.78 0.8 0.7 0.78 0.81 0.85 0.9 0.82 
R2 -0.59 -0.8 -0.2 -0.79 -0.9 -1.12 -1.48 -0.73 

Top 20 
features* 

RMSE 0.78 0.78 0.68 0.75 0.67 0.76 0.81 0.73 

R2 -0.56 -0.69 -0.03 -0.49 -0.1 -0.57 -0.81 -0.27 

Results of best performing time window shown in bold. FAC, Functional ambulation category; RMSE, 
root mean square error; R2, coefficient of determination. * based on mean feature importance of all 
features. 
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Table 10. 12-month FAC, features with highest importance 

Feature Mean feature 
importance 

Correlation (Pearson) 
Movement parameter Metric Timeslot FAC 

COUNTS_total SD 09:00-10:00 0.008544 0.23 
DUR_total_active Max 11:00-12:00 0.010737 0.22 
DUR_total_active* Mean 11:00-12:00 0.00855 0.01 
DUR_total_inactive Mean 11:00-12:00 0.010334 -0.01 
DUR_total_inactive** SD 11:00-12:00 0.008554 0.22 
DUR_total_moving** SD 10:00-11:00 0.006946 0.42 
DUR_total_sitting* Max 09:00-10:00 0.007975 -0.14 
DUR_total_sitting* Mean 10:00-11:00 0.009669 -0.21 
DUR_total_sitting SD 11:00-12:00 0.012651 0.2 
DUR_total_static Max 11:00-12:00 0.009575 0.12 
DUR_total_static Mean 11:00-12:00 0.024169 -0.07 
DUR_total_static SD 09:00-10:00 0.015094 0.05 
DUR_total_static SD 11:00-12:00 0.019182 0.14 
MET_mean* Max 10:00-11:00 0.008244 -0.12 
MET_mean Mean 09:00-10:00 0.009678 0.11 
METS_moderate_time** Max 11:00-12:00 0.007278 0.24 
METS_moderate_time* Mean 09:00-10:00 0.007624 -0.43 
METS_moderate_time SD 10:00-12:00 0.01372 -0.18 
MI_active Mean 10:00-11:00 0.011249 -0.45 
MI_active SD 10:00-11:00 0.126699 0.43 
MI_active SD 11:00-12:00 0.031494 0.22 
MI_moving Mean 10:00-11:00 0.009348 -0.03 
MI_moving Mean 11:00-12:00 0.011896 -0.52 
MI_moving* SD 10:00-11:00 0.007738 0.48 
MI_moving* SD 11:00-12:00 0.009687 -0.66 
PAR_active Max 10:00-11:00 0.024782 0.34 
PAR_active Mean 10:00-11:00 0.008582 -0.19 
PAR_active SD 10:00-11:00 0.047444 0.42 
PAR_inactive* Max 10:00-11:00 0.009107 -0.45 
PAR_lying* Max 10:00-11:00 0.00892 -0.52 
PAR_moving Max 11:00-12:00 0.009434 -0.2 
PAR_moving SD 09:00-10:00 0.018824 0.28 
PAR_moving SD 10:00-11:00 0.021145 0.31 
PERIODS_active Mean 11:00-12:00 0.013642 0.03 
PERIODS_inactive SD 11:00-12:00 0.015588 0.15 
TRANSITIONS_si** Max 10:00-11:00 0.009 0.32 
TRANSITIONS_si** Mean 11:00-12:00 0.007611 -0.01 

Descriptions of movement parameters can be found in Table 2. SD, standard deviation; max, 
maximum, FAC, Functional ambulation category. * featured in top-37 features of highest importance 
in 3/4 repetitions. ** featured in top-37 features of highest importance in 2/4 repetitions. 
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Figure 8A. Amount of features with highest 
performance for longitudinal FAC. Highest 
performance at 37 features.  

Figure 8B. Amount of features with highest 
performance for longitudinal 6CIT. Highest 
performance at 5 features. 

FAC, Functional ambulation category; 6CIT, Six-item Cognitive Impairment Test; RMSE, root mean 
square error; R2, coefficient of determination 

 

Table 11. 12-month 6CIT, time window performance 

  
03:00-
06:00 

06:00-
09:00 

09:00-
12:00 

12:00-
15:00 

15:00-
18:00 

18:00-
21:00 

21:00-
00:00 

00:00-
03:00 

03:00-
06:00 + 
21:00 -
00:00 

All 
features 

RMSE 4.51 4.91 4.61 4.72 4.88 5.07 4.55 4.71 4.40 
R2 -1.26 -1.92 -1.22 -1.47 -1.67 -1.84 -1.1 -1.5 -0.88 

Top 20 
features* 

RMSE 4.14 4.52 4.19 4.22 4.29 4.37 4.06 4.49 3.90 

R2 -0.71 -1.37 -0.97 -0.91 -1.01 -0.81 -0.45 -1.2 -0.30 

Results of best performing time windows shown in bold. 6CIT, Six-item Cognitive Impairment Test; 
RMSE, root mean square error; R2, coefficient of determination. * based on mean feature importance 
of all features. 

 

Table 12. 12-month 6CIT, features with highest importance 

Feature Mean feature 
importance 

Correlation (Pearson) 
Movement parameter Metric Timeslot 6CIT 

DUR_total_sitting* Mean 22:00-23:00 0.0156 -0.31 
METS_vigorous_time Max 23:00-24:00 0.0418 0.18 
METS_vigorous_time Mean 23:00-24:00 0.1311 0.28 

MI_inactive** † Mean 22:00-23:00 0.0147 -0.19 

MI_moving** † Mean 22:00-23:00 0.0139 -0.17 
MI_moving SD 23:00-24:00 0.0347 0.07 
PAR_lying Max 22:00-23:00 0.0219 -0.05 

Descriptions of movement parameters can be found in Table 2. SD, standard deviation; max, 
maximum; 6CIT, Six-item Cognitive Impairment Test. * featured in top-five features of highest 
importance in 3/4 repetitions  ** featured in top-five features of highest importance in 2/4 

repetitions.  †not included in final feature set.   

 

4.3 Model performance 
To estimate model performance, models were run once more using 4-fold cross-validation repeated 

10 times. Only best performing features were included and a larger hyperparameter grid was used. 
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Cross-sectional FAC model could explain 68% of variance (R2 = 0.68) and predicted scores with a 

mean RMSE of 0.30 (Table 13). When assessing all predictions over all iterations, it is clear that there 

is a tendency to over-predict values as beween 3.5-4.5 (Figure 9A). Keeping in mind the categories 

described in Table 1, this results in mainly the misclassification of both fully independent walkers 

and dependent walkers as independent but limited walkers (Figure 9B). Evaluation of these grouped 

regression predictions results in good to excellent precision and recall for all functional categories 

(Table 14). 

Follow-up FAC score regression showed poor performance, with only 5% of variance being explained 

by the model and a RMSE of 0.66 (Table 13). When assessing individual sample predictions, it is 

evident that the majority of participants with FAC scores 4 and 5 are predicted in the correct range, 

whereas participants with FAC score 1 are not (Figure 10A-B). This is clearly demonstrated when 

looking at regression results grouped by functional categories. This shows moderate to excellent 

precision and recall for FAC groups with normal/independent and risk/limited function, but poor 

predictive performance of those with lowest functioning (Table 14). 

Both cross-sectional and longitudinal 6CIT score regression models show poor performance with 

respectively a RMSE of 3.07 and 3.81 and R2 of 0.08 and -0.29 (Table 13). Regression results grouped 

by functional categories show good to excellent precision and recall for cross-sectional 6CIT 

prediction of the cognitively normal, as well as moderate precision for the cognitively impaired 

(Table 14). Remaining cross-sectional performance was poor. Similarly, good to excellent 

performance was seen for the longitudinal prediction of the cognitively normal. Moderate precision 

and high recall was seen for those at risk for cognitive impairment, and respectively poor 

performance for those cognitively impaired. 

Addition of baseline FAC and 6CIT score to the feature set for the prediction of longitudinal scores 

did not result in improved performance of the regression model. Substituting part of feature 

selection with PLS also did not improve performance (Table 13). 

Table 13. Final model performances of cross-sectional and longitudinal analyses. 

 Analysis  Based On RMSE R2  

 Cross-sectional FAC Features 0.30 0.68  
   PLS 0.56 0.14  
       
  6CIT Features 3.07 0.08  
   PLS 4.41 -0.58  
       
 Longitudinal FAC Features 0.66 0.05  
   PLS 1.08 -2.18  
   Features + baseline 0.67 0.02  
       
  6CIT Features 3.81 -0.29  
   PLS 6.23 -4.72  
   Features + baseline 3.87 -0.38  

Final model performances of cross-sectional and longitudinal 6CIT and FAC regression models using 
feature selection, PLS and for longitudinal analysis only feature selection with baseline 6CIT and FAC 
included. FAC, Functional ambulation category; 6CIT, Six-item Cognitive Impairment Test; RMSE, root 
mean square error; R2, coefficient of determination; PLS, partial least squares. 
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Figure 9A. Distribution of predicted FAC scores  
per true 3-month FAC score.  

 
Figure 9B. Discrete predicted FAC 
scores per true 3-month FAC score.  

 
Figure 9C. Distribution of predicted 6CIT scores  
per true 3-month 6CIT score. 

 
Figure 9D. Discrete predicted 6CIT 
scores per true 3-month 6CIT score. 

Class border and acceptable range are defined based on functional categories as described in Table 
1. FAC, Functional ambulation category; 6CIT, Six-item Cognitive Impairment Test. 

 

Table 14. Model performance based on regression predictions grouped by functional categories. 

 Functional Category Cross-sectional Longitudinal 
  FAC 6CIT FAC 6CIT 

Overall accuracy* 85.6% 84.6% 72.8% 87.2% 

Precision Normal/Independent 0.87 0.88 0.78 0.88 
 Risk/Limited 0.85 0.28 0.66 0.67 
 Impaired/Dependent 0.84 0.64 0.0 0.0 

Recall Normal/Independent 0.77 0.99 0.74 1.0 
 Risk/Limited 0.91 0.10 0.77 0.80 
 Impaired/Dependent 0.81 0.35 0.0 0.0 

Functional categories can be found in Table 1. Good to excellent precision and recall scores displayed 
in bold. FAC, Functional ambulation category; 6CIT, Six-item Cognitive Impairment Test. * note that 
high overall accuracy scores are biased due to data imbalance. 
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Figure 10A. Distribution of predicted FAC scores  
per true 12-month FAC score.  

 
Figure 10B. Discrete predicted FAC 
scores per true 12-month FAC score. 

 
Figure 10C. Distribution of predicted 6CIT scores  
per true 12-month 6CIT score.  

 
Figure 10D. Discrete predicted 6CIT 
scores per true 12-month 6CIT score. 

Class border and acceptable range are defined based on functional categories as described in Table 
1. FAC, Functional ambulation category; 6CIT, Six-item Cognitive Impairment Test. 
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5 
Discussion 

5.1 Key Findings 
In this study it was found that cross-sectional Functional Ambulation Categories could be predicted 

using accelerometry data and a Random Forest Regression model with RMSE of 0.30 and R2 of 0.68, 

indicating that the model fits the data well (Table 13). When grouping regression results into 

functional categories, high precision and recall values were found for all functional categories (Table 

14). For cross-sectional 6CIT and both longitudinal models, regression performance was poor (Table 

13). However, when assessing grouped regression predictions, performance differed between 

functional categories (Table 14). For cross-sectional 6CIT, the cognitively normal group could be 

predicted with high precision and recall (respectively 0.88 and 0.99). Prediction of those at risk of 

cognitive impairment was poor (precision 0.28; recall 0.10), and of the cognitively impaired had fairly 

good precision (0.64) but poor recall (0.35). For both longitudinal FAC and 6CIT, overall performance 

for normal and risk (6CIT) or limited function (FAC) groups was good to excellent, but poor for group 

with lowest functioning. 

When taking a closer look at feature selection, it is remarkable to see that different time windows 

and behavior parameters have highest predictive value for each model. For cross-sectional FAC 

movement behavior in the afternoon and early evening (12:00-21:00) had highest predictive power 

(Table 5). For cross-sectional 6CIT, this respectively was the morning and afternoon (06:00-09:00, 

12:00-18:00; Table 7). Different timeslots were seen for longitudinal predictions, with respectively 

the late morning (09:00-12:00) for FAC and early morning and evening (03:00-06:00, 21:00-00:00) 

for 6CIT (Table 9, Table 11). Especially the large differences between cross-sectional and longitudinal 

time windows were not expected. Surprisingly, available cross-sectional and longitudinal studies 

describing associations between physical activity throughout the day and BPS outcomes comply with 

found cross-sectional time windows of FAC and 6CIT, but not with found longitudinal time windows. 

Yi Lee and colleagues showed that participants with a delayed (after 15:00) acrophase, which 

describes moment of peak activity throughout the day, had worse cognitive scores after one year 

compared to those with averaged acrophase (between 13:24 – 15:00), which was supported by 

multiple other studies [78-80]. Daytime napping was also described as a risk factor for cognitive 

impairment, which corresponds with some features that describe sedentary behavior and lying 

behavior in the afternoon (Table 8) [81, 82]. Regarding feature selection for cross-sectional FAC 

prediction, multiple studies showed that higher total daily activity or less sedentary behavior was 

associated with better (long-term) physical functional status [83-87]. Schrack and colleagues also 

demonstrated that higher age was associated with a decrease in mainly afternoon activity, possibly 

explained by the preservation of routine morning activities, which could explain why the physical 

activity in the afternoon and evening hours may be the most informative for our predictions [83]. It 

is important to realize that main sleeping period at night was not included in the data. This possibly 

affects the results of time window analysis, reducing valuable nighttime information.  
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5.2 Model Performance 
There are many factors of influence on how well a model is able to predict. The most important 

limitations and alternative methods are described in the following paragraphs, as well as the effect 

of covariates on predictive performance. 

5.A.1 Participant Sample Size 
It is important to keep in mind that model performance is biased due to small sample size and data 

imbalance. Only a small dataset was available for the development of the predictive models. This 

implies even smaller sample sizes for train and test sets when using  (nested) cross-validation. Small 

datasets contain little data for model training, which makes them more prone to overfitting, 

resulting in a poorly generalized model with low performance. Due to this small sample size, an 

additional set of unseen data to validate a final model was also not available. Compared to other 

studies using accelerometry for the prediction of BPS outcomes, sample size was also low [88-90].  

5.2.2 Partial Least Squares 
Including PLS dimensionality reduction did not improve regression performance (Table 13). When 

training PLS using nested cross-validation for the determination of optimal features and PLS 

components, performance of tests within this extra layer of CV was superior to feature selection 

performance, but test set performance was equal or inferior. This suggests that possibly overfitting 

might (partially) explain poor performance compared to only feature selection, which is something 

this method is prone to [70]. Additionally, this extra layer of CV requires the already small train set 

to be split, reducing sample size and generalizability. Alternatively, PLS might not be a suited method 

for this population. Kikkert and colleagues found that gait-characteristic based PLS-discriminant 

analysis (PLS-DA) did correctly differentiate healthy old adults from geriatric adults, but did not 

differentiate between geriatric adults with and without cognitive impairment [91]. This was possibly 

due to non-linearity which is not captured by discriminant analysis or the effect of comorbidities and 

polypharmacy [90]. Since a random forest regression model was used, the problem of non-linearity 

should be resolved. However, Zhou and colleagues found that a random forest classification model 

did not result in adequate classification of geriatric patients with and without cognitive impairment, 

where the use of an Artificial Neural Network did [90]. This suggests that PLS may still be beneficial if 

the right model is chosen. 

5.2.3 Baseline BPS Outcomes as Features 
Surprisingly, including baseline 6CIT and FAC scores for longitudinal analysis did not improve 

regression performance compared to accelerometry features alone (Table 13). In fact, when adding 

baseline 6CIT and FAC to both longitudinal analysis as features, their importance was low compared 

to remainder of included features. Even if model performance would have improved, the use of 

baseline questionnaires as input feature in the longitudinal predictive model is an interesting 

methodological consideration. If the addition of this information improves model performance, 

which was expected, it may be useful in clinical practice. On the other hand, it increases the 

dependency on questionnaires with suboptimal performance themselves as described above. If the 

aim is to reduce our dependency on subjective questionnaires, adding their results as input of the 

predictive model along the accelerometric data will inhibit this development. Furthermore, it will 

require that these questionnaires (or more extensive alternatives) keep being conducted at baseline, 

possibly increasing patient burden. 

5.2.4 Covariates 
Different aspects of BPS functioning are closely related, suggesting that clinical variables should be 

considered as covariates when predicting future BPS functioning. Zhou and colleagues found that 
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adding clinical variables such as maximal hand grip strength, frailty index, polypharmacy and BMI did 

not improve RF classification, but did improve Artificial Neural Network classification [90]. Casanova 

and colleagues used Random Forest Classification to determine cognitive decline based on 

demographic and clinical characteristics, which showed that top ranked predictors included 

education, age, gender, stroke, NSES, diabetes, BMI and APOE ε4 carrier status [92]. Shi and 

colleagues showed that the additional use of accelerometry features next  to demographical and 

clinical variables improved the prediction of one-year and five-year cognitive decline [93]. 

Additionally, a previous study on HIPCARE data demonstrated that recovery success by three months 

(cross-sectional timepoint) was significantly related to comorbidity (American Society of 

Anesthesiologists classification), prefracture mobility, prefracture fear of falling and prefracture 

independence [51]. The included population consists of elderly hip fracture patients, who commonly 

have high comorbidity rates [94]. These comorbidities can be confounders when predicting BPS 

outcomes based on accelerometry [95].  

A limitation of this study is the effect of the COVID-19 pandemic. Most participants had the 3-month 

baseline measurements just before the arrival of the COVID-19 in the Netherlands early 2020. The 

pandemic may have influenced the results of the biopsychosocial functioning at follow-up, both 

affecting overall biopsychosocial wellbeing of the general population due to for example restricted 

social interactions, reduction of exercise possibilities and the effects of possible COVID-19 infection 

[96]. Furthermore, it is assumed that cross-sectional analysis of accelerometry and baseline 

biopsychosocial functioning is not influenced by the pandemic, but since accelerometry and 

biopsychosocial assessment at 3-month baseline was conducted before COVID-19 restrictions were 

imposed for all but one participant, longitudinal analysis with follow-up biopsychosocial functioning 

is expected to be affected by lockdown measures. On the bright side, since only one patient was 

discharged from clinical geriatric rehabilitation institution after March 2020, largest part of initial 

(intensive) rehabilitation care had been conducted before the arrival of COVID-19. 

5.2.5 Recommendations 
Confounders and bias are known to be a pitfall for machine learning algorithms, since they are solely 

trained to minimize their error and do not differentiate between bias and true features of interest 

[97, 98]. To address the effect of covariates, future research should assess the effect of age, sex, 

BMI, smoke status, polypharmacy, previous hip fracture, comorbidity classification (ASA), living 

situation at time of admittance, measures of prefracture ADL independence (KATZ), mobility (PMS), 

fear of falling and nutritional state (SNAQ, MNA-SF), discharge destination and mobility at discharge, 

which are all available in the HIPCARE study. Furthermore, a more intricate machine learning 

regression model such as Artificial Neural Network could improve predictive performance of future 

BPS wellbeing based on accelerometry. 

5.3 Biopsychosocial Outcomes 
Model performance relies on high quality data, in this case both accelerometric data as well as 

biopsychosocial outcomes. In this chapter, it is explained how BPS assessments affect model 

performance and how this could be improved. 

5.3.1 Assessment of Biopsychosocial Outcomes 
A strength of this study is that true labels were determined based on clinically validated 

assessments, making interpretation of predicted scores easy and clinically valuable. On the other 

hand, these assessments still largely rely on subjective interpretation of either participant or 

researcher and deal with a rather rough scale with little room for nuance. Furthermore, both 

assessments deal with floor and ceiling effects, with large proportions of participants scoring highest 
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or lowest possible scores, lowering sensitivity at respective end of the scale [99]. Ideally, true labels 

would be determined based on more objective and extensive observation of biopsychosocial 

wellbeing with a large functional coverage. Or alternatively on no questionnaires at all, relying on for 

example data-driven, unsupervised models using clustering methods to identify patient groups and 

assessing their biopsychosocial characteristics after clustering. 

A possible explanation for the spread between predicted cross-sectional FAC scores 3-5 is the fact 

that patients functional mobility could be in transition between these scores. The FAC scale is quite 

rough and even though clinically validated, a range of patients are grouped within each category. A 

possible method to improve differentiation between patient mobility is the additional assessment of 

the Short Physical Performance Battery (SPPB) and/or Timed Up-and-Go test results which were also 

conducted at both baseline and follow-up. Unfortunately, there were multiple shortcomings 

concerning these results in this study. First, SPPB and TUG were only performed for participants with 

a FAC score equal to or higher than 3 out of 5, resulting in the loss of data of a select group of 

participants in the data analysis, introducing bias, reducing representativeness of samples, and 

further decreasing overall sample size [100]. Since this may be the most relevant patient group 

(those with poor functional performance may benefit the most from early intervention), these BPS 

outcomes were not included for initial analysis. An alternative method could have been used to fill 

missing data by arbitrarily assigning SPPB score of 0 and TUG time of 60 seconds to this group. This 

does introduce a new bias, especially for regression models, assigning equal score to all poor 

performing patients. Second, presumably due to COVID-19 restrictions, both SPPB and TUG 

assessments were not conducted for the large majority of patients at time of follow-up. Since all 

patients at baseline had a FAC score of 3 or higher, a post-hoc analysis was done for the prediction 

of cross-sectional TUG (Appendix X). This demonstrates good performance of both regression 

predictions itself, as well as grouped predictions. This supports the hypothesis that an additional 

assessment with more precise scaling could be used to differentiate between patients within a single 

FAC score. 

5.3.2 Data Imbalance 
Not all BPS outcome score levels were evenly represented. For example, for cross-sectional FAC 

score only scores 3-5 out of the 0-5 scale were represented in the dataset, which becomes a 

problem if it is expected that this does not represent true patient population.  

Additionally, distribution between represented scores was not even. For baseline FAC score, scores 

3-5 were represented by respectively 8, 30 and 10 participants. Imbalanced data can result in a 

prediction preference by the model towards the values with highest occurrence in the dataset. This 

bias can be seen in both classification and regression models, where the model is rewarded for high 

performance within the training set. Favoring the majority class or value region will result in a 

decreased RMSE for the largest amount of samples and therefore the overall performance, whilst it 

actually reduces predictive performance for minority classes. [101] For example, if you have a 

sample of one participant with FAC score 3, four with score 4 and one with score 5, simply predicting 

mean score 4 for all samples results in a RMSE of 0.58, whereas if the distribution between the 

scores was even, RMSE would have been 0.82.  

There are multiple methods to decrease the bias of imbalanced data in classification, including data-

based methods (oversampling minority classes or undersampling majority classes) or model-based 

methods, by for example class weights or adjusting loss functions. Whilst methods like these could 

be used for discrete variables with limited range such as the 0-5 FAC score, they are not suited for 

continuous data or data where interpolation or extrapolation is needed for non-represented 
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outcome values. Furthermore, most resampling methods are not very suited for very small datasets 

since undersampling will even further reduce sample size and too little data is available for 

representative oversampling. Alternative methods for data imbalance in regression problems with 

continuous values are available but are less common. [102-104]  

5.3.3 Recommendations 
To improve BPS outcome prediction, a larger dataset with uniform distribution over the entire range 

expected in the hip fracture population, should be used. Additionally, if still slightly skewed, more 

advanced methods for data imbalance could be used. Finally, addition of TUG prediction next to FAC 

prediction could improve insights into patient mobility. 

5.4 Movement Parameters and Feature Selection 
Predictive power of accelerometry data largely depends on how raw data is processed into features 

and how features are selected. In this chapter considerations, strengths and recommendations 

concerning the selection of accelerometric data is discussed. 

5.4.1 Movement Parameters 
A strength of our study is the use of validated movement parameters as extracted by the McRoberts 

accelerometry algorithm [53]. On the other hand, it complicates the comparison between studies or 

the analysis of additional datasets that do not use McRoberts’ MoveMonitor since we have little 

insight in their raw data analysis. Furthermore, movement parameters are developed to address a 

wide range of people, not specifically for the elderly. For example, using universal cut-off points for 

vigorous activity may not be valid for the elderly population [105].  

The selection of which movement parameters to include in the analysis was based on previously 

performed literature review (Appendix C). This shows that total PA, moderate-to-vigorous PA, 

daytime sleeping, rest-activity-rhythm amplitude and relative amplitude are most feasible to have a 

high predictive value for future biopsychosocial wellbeing. Since our population contains 

community-dwelling elderly, we decided to add measures sedentary behavior to our analysis, 

expecting very little moderate or vigorous physical activity in our population and more predictive 

value within low energy activities. This selection of movement parameters was then processed and 

resulted in a large number of features.  

5.4.2 Interfeature Correlations 
There are multiple possibilities to reduce the amount of features that strongly correlate within the 

prediction model. First, all individual features that show high correlation with another feature could 

be removed, keeping only one. For example, if the feature that describes “maximum amount of 

steps per minute, between 14:00-15:00 during weekdays” is highly correlated to the feature that 

describes not the maximum but the standard deviation, one of them could be removed. This would 

possibly result in a heterogenous feature set, with different metrics for different movement 

parameters and time windows, and possible an overfitted model. The alternative is the removal of 

larger selections of features, possibly removing some individual features that do not correlate as 

much with others, but keeping a more homogenous feature set. After selecting features with highest 

predictive power for each model, some features showed high interfeature correlations. This shows 

that the removal of large sections of features based on metric correlations is not sufficient. 

It is interesting to see that some correlations are lower than expected, for example the correlation 

between mean and sum. Further inspection of individual correlations showed that some features 

showed near-zero correlation between mean and sum. These correlations could be explained by 

non-wear time. Partially missing data within an hour can result in low sum scores and high mean 
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scores. For example, one patient wore the accelerometer for 15 minutes during one hour and 

remained sedentary during that time. This will result in a mean of 60 sedentary seconds per minute 

and a sum of 900 sedentary seconds for that hour. If this person had worn the accelerometer for the 

entire hour, a mean of 60 sedentary seconds per minute would result in a sum of 3600 sedentary 

seconds for that hour. If this occurs for multiple patients, correlation between sum and max reduces.  

In our data analysis, we performed feature selection before tuning our hyperparameters. 

Theoretically, feature selection affects optimal hyperparameters, but choice of hyperparameters 

may also affect feature selection. Ideally, feature selection and hyperparameter tuning should be 

performed “at the same time”, assessing all possible combinations, resulting in a very 

computationally expensive process which can be simplified by splitting these optimization steps. 

Although this is a valid approach, it may result in slightly less optimized model. [106, 107] 

5.4.3 Recommendations 
For future research, it would be interesting to investigate the added value of other available 

movement parameters, for example those describing specific activities such as walking, stair walking 

or cycling, as alternative measures for light, moderate and vigorous PA. Moreover, addition of heart 

rate monitoring could improve the quantification of movement intensity and energy expenditure, 

especially at lower intensities or during non-walking based activities [105, 108, 109]. Either an 

additional wearable or a wearable combining accelerometry and heart rate detection such as 

commercially available smart watches could provide this additional information.  

Correlation based feature selection was a very important step in the development of the predictive 

models. It is recommended that correlations between metrics are further investigated, especially 

when correlations are lower than expected. This can be useful for the decision which metric to 

remove from feature set. After rough selection, additional feature removal based on interfeature 

correlation should be performed to prevent final feature sets containing features with high 

correlation. 

5.5 Study Protocol 
This study used a retrospective approach, which has the consequence that study protocol could not 

be influenced. Even though the protocol had its strengths such as the choice of accelerometer, it 

also resulted in some shortcomings that could be improved for future research. 

5.5.1 Accelerometry 
A strength of this study is the use and placement of a tri-axial accelerometer on the lower back. This 

captures movement with more precision compared to wrist-worn or uniaxial accelerometers [110, 

111]. Keep in mind that although the placement of an accelerometer on the lower back is more 

desirable for data acquisition compared to placement on the (non-dominant) wrist, it may hinder 

patients from sleeping comfortably. Next, the use of the advanced McRoberts algorithm eliminates 

the need of the complementary activity diary for interpretation of accelerometry data. This reduces 

patient burden and decreases reliability on accurate log behavior of the patient, especially important 

for those with cognitive impairment. 

A downside of the study protocol is that patients included in the database were asked to not wear 

the accelerometer at night and during water activities such as bathing. First of all, this reduces the 

ability to determine Rest-Activity Rhythms and corresponding features such as amplitude or relative 

amplitude. It also removes potentially relevant information on nighttime PA. Gianfredi and 

colleagues showed that patients developing depressive symptoms had a significantly higher 

sedentary time at night (00:00-03:00) [22]. It was also demonstrated that the relative amplitude, 
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which describes the ratio between daytime and nighttime activity, could be an indicator of cognitive 

impairment and/or dementia, which requires both valid day and night time accelerometry data [112, 

113]. Second, some patients did not adhere to these instructions, requiring manual removal of main 

periods lying down. Both shortcomings resulted in a less uniform dataset, with some patients 

removing accelerometer shortly before going to sleep and replacing shortly after waking up in the 

morning, some patient removing the accelerometer for longer and some not removing them at all 

with manual removement of sleeping period. Third, by allowing participants to remove the 

accelerometer, some patients did not wear the accelerometer for large periods of time during the 

day, reducing accuracy of data analysis. Even more complicating the matter, the behavior of wearing 

may also reflect someone’s cognitive functioning [114]. 

5.5.2 Duration and Timing of Accelerometric Measurement 
A strength of our study is that we took the average movement behavior over multiple days. Taking 

the average over multiple days creates a more general image of someone’s behavior and therefore is 

an indicator for behavior over a larger period of time [115, 116]. In this study, patients were 

instructed to wear the accelerometer for 7 constructive days. However, since not all participants 

adhered to these instructions, those with at least two valid days were included for analysis. There is 

no clear consensus whether there is an added value to separately analyze week- and weekend days 

[22, 117]. Since patients with at least two valid days were included, this sometimes resulted in either 

missing data if there was no week or weekend data available, or not being able to take the average 

over multiple days if only a single day was available. This reduces the generalizability of the samples, 

possible reducing quality of the predictive model. Combined with the knowledge that most of 

included patients were retired, week and weekend days were not analyzed separately. 

Participants in our study were asked to wear the accelerometer three months after hip fracture. 

Declined BPS functioning including mobility, social isolation and depressive symptoms after hip 

fracture can take up to 2-3 years until returned to peer group levels [4]. It is possible that the timing 

of accelerometry, 3-months after hip fracture, may not be ideal to predict long-term BPS outcomes 

for this patient population. 

5.5.4 Recommendations 
There are some considerations that should be kept in mind when further developing the use of 

accelerometry. Firstly, homogeneity of accelerometry data collection should be increased, for 

example by using stick-on accelerometers with waterproof coating to enable 24h/day measuring 

without the need of patients to adhere to specific instructions. It would also be useful to assess how 

many days are needed at a minimum for the analysis of movement behavior to keep patient burden 

as low as possible whilst keeping the highest data quality for analysis [115, 116, 118-120]. 

Additionally, other locations should be considered if patient burden and wear compliance is an 

important factor. Furthermore, the type of accelerometer should be considered. Alternatives for 

devices like the MoveMonitor could be the use of widely available smartwatches or fitness trackers 

such as a Fitbit devices or smartphones. Tradeoffs between patient comfort, accuracy and costs 

should be considered. Finally, alternative timelines for accelerometric measurement should be 

considered, e.g. after 1 month (for even earlier intervention), 6 months (more time for rehabilitation 

before assessment) or personalized to each patient, for example after clinical rehabilitation facility 

discharge. 
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5.6 Clinical Relevance 
The applicability of new techniques in the medical scene is arguably the most important part of the 

development process. Here it is illustrated how results could affect medical care, but especially how 

clinical issues could influence model development. 

5.6.1 Interpretation of Physical Activity 
Although some studies show that physical activity behavior changes can alter for example mental 

wellbeing or decrease risk of depression [121-123], it can also be hypothesized that physical activity 

behavior as described in this study does not cause functional decline but is a marker of underlying 

(subclinical) morbidities causing long-term decline or lack of improvement [124, 125]. For example, 

Maasakkers and colleagues found some associations between physical activity and follow-up 

measures of cognition, but also some associations between physical activity and preceding cognitive 

changes [126]. Furthermore, it has been suggested that subtle changes in physical activity may be a 

marker for impending functional decline and disability [105]. This indicates that differences in 

physical activity throughout the day are not necessarily the cause, but merely a symptom or marker 

of BPS functioning. 

5.6.2 Intervention Oriented Modeling 
Intervention availability determines which patient groups should be detected with highest sensitivity 

and specificity. For example, the predictive model could be trained to have high sensitivity for those 

patients that are expected to be at risk of impairment or show mild impairment at follow-up if they 

are most likely to benefit from additional preventive treatment. Additionally, even though BPS 

outcomes are clinically validated, ranges could be slightly altered for the interpretation of model 

predictions. For example, if a patient would score a 6CIT score at the edge between normal and risk 

group, a medical specialist may be tempted to monitor the patient more closely compared to 

someone scoring at the far end of the normal range. This effect of caution may even increase when 

interpreting long-term predictions. Knowing which patient groups are main focus of intervention can 

determine how to interpret predictive error magnitude.  

It is possible that not endpoint functioning but rate of decline or improvement is most valuable for 

the initiation of treatment. Both for BPS outcomes with a larger scale range such as the 6CIT, where 

a decline within the same functional category may indicate a subclinical deterioration which could 

be stopped with adequate intervention, as well as small scale range such as the FAC, where a long-

term prediction of say, 3.9, could indicate a steady state for a patient with a baseline score of 4, but 

a prediction of 3.6 could indicate a slow decline over time which could become clinically relevant a 

few months later. Assuming that this is possible, adding additional follow-up measurements or a 

more detailed mobility assessment would be essential to demonstrate a trend of deterioration or 

improvement since FAC score itself is limited to discrete values and therefore can only describe 

larger changes in functioning 

5.6.3 Recommendations 
First of all, it is important to determine what early interventions can be performed to alter long-term 

BPS outcome after hip fracture. A separate study should demonstrate that early intervention results 

in improved BPS functioning on the long-term. Similar to the general principles of screening, there 

should be an acceptable treatment or  for predicted risks and impairments [127]. If no intervention 

is available, acquired knowledge should for example enable carefully considered choices improving 

quality of life. It could also be considered if only a subset of patients should be included for 

accelerometry monitoring, keeping both costs and patient burden as low as possible. For example, it 
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could be assessed if patients that are admitted for clinical rehabilitation benefit more or less of this 

prediction model than those discharged from the hospital with only outpatient rehabilitation care. 

This being established, it is important to determine which patient groups should be identified with 

highest accuracy and what level of predictive accuracy is needed to add value to patient treatment 

in daily practice. If satisfactory predictive performance is achieved, methods and models should be 

validated on a larger patient population to determine generalizability. 

5.7 Take Home Message 
To my knowledge, this study is the first attempt to use objective home-based accelerometric data-

driven machine learning models to predict cross-sectional and longitudinal biopsychosocial 

functioning of individual patients after hip fracture in the elderly. Overall, cross-sectional predictive 

model for mobility (FAC) had a good performance. Cross-sectional cognition (6CIT) and both 

longitudinal regression models underperformed, but categorized regression predictions revealed 

more promising performance. It is expected that predictive performance of models can be improved 

by increasing participant sample size with balanced samples over population specific prevalent range 

of BPS outcome scales and the exploration of additional machine learning models. In the future, 

accurate accelerometry-based predictions for individual patients in need of rehabilitation could 

support personalized treatment and improve long-term biopsychosocial functioning. 
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Appendix 
Appendix A. Cross-sectional Timed Up-and-Go 
 

Table A1. 3-month TUG, time window performance 

  03:00-
06:00 

06:00-
09:00 

09:00-
12:00 

12:00-
15:00 

15:00-
18:00 

18:00-
21:00 

21:00-
00:00 

00:00-
03:00 

15:00-
21:00 

All 
features 

RMSE 11.54 10.09 9.41 8.82 7.83 7.36 8.68 12.49 7.63 
R2 0.07 0.26 0.38 0.4 0.57 0.6 0.45 -0.15 0.59 

Top 20 
features* 

RMSE 10.95 9.7 8.83 7.74 6.51 6.4 8.22 12.34 6.11 

R2 0.16 0.32 0.46 0.54 0.7 0.69 0.49 -0.12 0.74 

Results of best performing time windows shown in bold. TUG, timed up & go; RMSE, root mean 
square error; R2, coefficient of determination. * based on mean feature importance of all features. 

 

Table A2. 3-month TUG, features with highest importance 

Feature 
Mean feature importance  

Movement parameter Metric Timeslot 

COUNTS_total Max 15:00:00 0.030191  
COUNTS_total SD 15:00:00 0.025221  
COUNTS_total** SD 19:00:00 0.017535  
METS_moderate_time Mean 17:00:00 0.01754  

METS_moderate_time** † Mean 18:00:00 0.013177  

METS_sedentary_time Mean 15:00:00 0.018861  

METS_sedentary_time** † Mean 17:00:00 0.012775  

METS_sedentary_time Mean 19:00:00 0.018499  

MI_active** † Mean 18:00:00 0.01552  

MI_active SD 15:00:00 0.022269  
MI_moving Mean 15:00:00 0.015293  
MI_moving Mean 17:00:00 0.053175  
MI_moving Mean 19:00:00 0.024674  
MI_moving Mean 20:00:00 0.02704  
MI_worn* SD 15:00:00 0.015602  
PAR_moving SD 15:00:00 0.024209  

Descriptions of movement parameters can be found in Table 2. SD, standard deviation; max, 
maximum; TUG, timed up & go. * featured in top-13 features of highest importance in 3/4 

repetitions. ** featured in top-13 features of highest importance in 2/4 repetitions. †not included in 
final feature set.   

 



 

48 
 

 

Figure A1. Amount of features with highest performance for cross-sectional TUG. Highest 
performance at 13 features. TUG, timed up & go; RMSE, root mean square error; R2, coefficient of 
determination 

 

 

 
Figure A2a. Distribution of predicted TUG scores  
per true 5 second range 3-month TUG score. 

 
Figure A2b. 5 Second range predicted 
TUG scores per true 5 second range 3-
month TUG score. 

Class border and acceptable range are defined based on functional categories as described in Table 
A3. Five second ranges were chosen to improve interpretability of figures. TUG, timed up & go. 

 

Table A3. Regression and grouped regression predictive performance of 3-month TUG 

Functional Category Regression Grouped Regression 
 RMSE R2 Accuracy Precision Recall 

Overall 5.95 0.74 73,8%   
0-19 low fall risk [63]     0.93 0.71 
20-29 high fall risk [63]    0.46 0.71 
30+ dependent [63]    0.86 0.80 

TUG, timed up & go; RMSE, root mean square error; R2, coefficient of determination; PLS, partial 
least squares. 
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Appendix B. Interfeature Correlations 
 

Table B1. Interfeature Correlations, 3-month FAC. 
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DUR_total_moving_mean_14:00:00 1      
DUR_total_moving_std_14:00:00 0.87 1     
MI_active_mean_19:00:00 0.2 0.33 1    
MI_active_std_13:00:00 0.43 0.43 0.54 1   
MI_active_std_15:00:00 0.35 0.33 0.29 0.58 1  
MI_moving_std_15:00:00 0.32 0.28 0.38 0.59 0.51 1 

 

Table B2. Interfeature Correlations, 3-month CIT. 
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PAR_active_max_14:00:00 0.16 1    
PAR_inactive_std_16:00:00 0.39 0.36 1   
PAR_moving_mean_14:00:00 0.28 0.74 0.44 1  
TRANSITIONS_ly_std_17:00:00 0.26 0.04 0.62 0.13 1 

 

Table B3. Interfeature Correlations, 12-month CIT. 
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DUR_total_sitting_mean_22:00:00 1.0     
METS_vigorous_time_max_23:00:00 0.09 1.0    
METS_vigorous_time_mean_23:00:00 0.13 0.87 1.0   
MI_moving_std_23:00:00 0.22 0.28 0.35 1.0  
PAR_lying_max_ 22:00:00 0.08 0.47 0.32 -0.03 1.0 
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Table B4. Interfeature Correlations, 12-month FAC. 
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Appendix C. Literature Review (TM30003) 
 

Using Home-Based Accelerometry for Prediction of Future 

Psychological Wellbeing: A Scoping Review 

Nadine L.A. de Jong 

Abstract 

To keep up with increasing pressure on health care systems, innovative and cost-effective solutions 

are essential. Personalized rehabilitation care seeks for better indicators of individual wellbeing to 

efficiently apply early therapeutic interventions. Accelerometry could be a noninvasive and 

affordable tool to contribute to the prediction of future biopsychosocial wellbeing. This review 

explores the available literature on studies relating baseline accelerometry-quantified physical 

activity and subsequent psychological wellbeing.  

A PUBMED database search resulted in the inclusion of 35 papers. Accelerometric and psychological 

outcome measures were extracted and findings were summarized.  

This review showed the potential of some accelerometric outcome measures assessing both physical 

activity intensity and rest-activity rhythms to be an early indicator of future psychological wellbeing 

in adults. Nevertheless, this is not the case of all frequently described accelerometric outcome 

measures. Large variations in patient cohorts, accelerometric methods, accelerometric and 

psychological outcome measures and follow-up duration complicate the comparison of study 

findings.  

Combining multiple accelerometric parameters, including measures of total physical activity, 

moderate-to-vigorous physical activity, napping, amplitude and relative amplitude, will likely 

improve prediction of future psychological wellbeing. 

List of Abbreviations 

AD Alzheimer’s Disease 
AD8 Ascertain Dementia Questionnaire 
AP Anteroposterior 
C&D Ccognition and Dementia 
CVLT-II California Verbal Learning Test 
D-KEFS Delis-Kaplan Executive Function System 
EE Energy Expenditure 
EEG Electroencephalography 
GDS Geriatric Depression Scale 
ICF International Classification of Functioning, Disability and Health 
IQR Interquartile Range 
IS Interdaily Stability 
IV Intradaily Variability 
L5  Activity during 5 hours of lowest activity 
LPA Light Physical Activity 
M10 Activity during 10 hours of highest activity 
MCI Mild Cognitive Impairment 
METmin Metabolic Equivalent of Task Minutes 
mg milligravities 
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MH&D Mental Health and Depression 
(M)MMS (Modified) Mini Mental State 
MPA Moderate Physical Activity 
MrOS Osteoporotic Fractures in Men Study 
MVPA Moderate-to-Vigorous Physical Activity 
PA Physical Activity 
PAI Physical Activity Intensity 
PCA Principle Component Analysis 
PHQ-9 Patient Health Questionnaire 
PLS-DA Partial Least Squares Discriminant Analysis 
RA Relative Amplitude 
RAR Rest-Activity Rhythms 
SB Sedentary Behavior 
SDQ Strengths and Difficulties Questionnaire 
SOF Study of Osteoporotic Fractures 
TPA Total Physical Activity 
UK United Kingdom 
USA United Stated of America 
VPA Vigorous Physical Activity 
WAIS Wechsler Adult Intelligence Scale 

 

1 Introduction 

The pressure on the health care system is rising. With increased longevity, the population of elderly 

with multimorbidity and chronic conditions is growing. [1, 2] Furthermore, healthcare advancements 

have led to significant improvements in survival rates for traumatic injuries and acquired brain 

injuries such as stroke [3-5]. The incidence of stoke in the Netherlands was 2.0 per 1000 inhabitants 

in 2020, and it substantially increases with age. In 2019, mortality rate within 30 days was 11.4% and 

35.5% for respectively ischemic and hemorrhagic stroke. [6] Surviving patients often need 

rehabilitation till some extend, dealing with both immediate and delayed (in)visible effects [7]. For 

instance, this may involve primary care physiotherapy, multidisciplinary rehabilitation at an 

outpatient clinic or temporary admittance to a nursing home. 

To minimalize the consequences of especially the delayed and invisible effects of health conditions, 

personalized, secondary preventive medicine can play an important role [8, 9]. The International 

Classification of Functioning, Disability, and Health (ICF) model emphasizes biopsychosocial 

wellbeing as a comprehensive approach to healthcare [10, 11]. Further development of 

rehabilitation methods using this ICF model seeks for better prediction of individual future wellbeing 

to efficiently apply early therapeutic interventions. Personalized rehabilitation programs could offer 

all-round care based on the ICF model whilst preventing unnecessary costs and patient burden. 

Objective quantification is crucial for early decision-making, and accelerometry emerges as a 

noninvasive and affordable method to achieve this [12, 13]. While the link between accelerometry 

and physical fitness is intuitive, its connection to psychological wellbeing may be less evident [14-

16]. 

Growing numbers of studies, as well as multiple reviews, have assessed the association between 

physical activity and psychological wellbeing using accelerometry. Unfortunately, these studies are 

primarily cross-sectional and assess a heterogenous range of psychosocial and accelerometric 

measures. [17-20] This review aims to fill this gap by exploring the available literature on studies 

relating baseline accelerometry-quantified physical activity and subsequent psychological wellbeing, 

including cognition and mental health, providing valuable insights for enhancing patient care and 
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early intervention strategies. Specifically, an overview will be provided of (1) the use of 

accelerometry as an indicator for future psychological wellbeing, (2) common methods utilized for 

the analysis of accelerometry data in this context, and (3) the most promising methods for 

application as predictor for biopsychosocial wellbeing. 

2 Methods 

2.1 Search Strategy 

A literature search was performed to identify prospective studies reporting on the relationship 

between quantification of home-based physical activity (PA) using accelerometry data and 

psychological wellbeing. The search was performed in the PubMed electronic database in May 2023 

using a combination of keywords aiming at objectively measured physical activity (Acceleromet* OR 

actigraph* OR gyroscop* OR movemonitor OR "physical activity monitoring" OR "fitness trackers"), 

psychological wellbeing and cognition ("mental health" OR "clinical course" OR "psychological 

health" OR cognit* OR biopsychosocial), and study method (prospective OR (longitudinal AND follow 

up)). 

Figure 1. Flowchart of article search and selection. 

 

 
 

Abbreviations: EEG, electroencephalography; PA, physical activity 

 

391 Records identified 

through PubMED 

Records screened on 

title (n=391) 

Records screened on 

abstract and/or full-

text (n=228) 

35 Papers included 

Records excluded (n = 163) 

• Not within the scope of this review (n=71) 

• Focus on sleep quality or insomnia (treatment) (n=30) 

• Accelerometry used to monitor treatment (n=4) 

• Accelerometry used as motivational tool for PA (n=7) 

• Uses brain imaging or EEG as outcome measure (n=10) 

• Bipolar symptoms as outcome measure (n=13) 

• Change of PA instead of PA as outcome measure (n=2) 

• No follow-up or follow-up less than one month (n=6) 

• Study protocol or methodology (n=15) 

• Review (n=4) 

• Full text not available (n=1) 

Records excluded (n = 193) 

• Not within the scope of this review (n=58) 

• Focus on sleep quality or insomnia (treatment) (n=28) 

• Accelerometry used to monitor (any)  treatment (n=4) 

• Accelerometry used as motivational tool for PA (n=9) 

• Uses brain imaging or EEG as outcome measure (n=2) 

• Bipolar symptoms as outcome measure (n=1) 

• Change of PA instead of PA as outcome measure (n=12) 

• No follow-up or follow-up less than one month (n=52) 

• Study protocol or methodology (n=20) 

• Review (n=4) 

• Full text not available (n=3) 
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2.2 Exclusion Criteria 

Papers were excluded if they were a review, study protocol or if full text was not available. 

Furthermore, they were excluded if they had no follow-up or had a follow-up time of less than one 

month. Papers were not eligible for inclusion if they did not use objective physical activity 

assessment, assessment was laboratory-based and not home-based, used sleep quality, insomnia as 

outcome measure or used accelerometry as motivational tool for PA. Papers assessing only the 

change in physical activity were also excluded, as this requires at least two accelerometric 

measurement periods instead of only one at baseline.  Studies were also excluded if they did not 

include psychological and/or social outcome measures, or used neurophysiological or neuroimaging 

as outcome measurement. Papers reporting bipolar symptoms were excluded since they are known 

to be present in episodes. The research flow diagram describing paper selection is shown in figure 1. 

2.3 Data Extraction 

For each paper, data associated with study design, accelerometric materials and methods and 

psychological assessment methods was extracted and summarized. This included global patient 

characteristics, accelerometer type, wearing time and location, both PA and psychological 

assessment methodologies and time between baseline (PA assessment) and follow-up (psychological 

state). 

3 Results 

PubMED search resulted in 391 articles published between 2011 and 2023, which were first 

screened on title, resulting in exclusion of 163 records (figure 1). Remaining articles were screened 

on abstract and/or full-text, after which an additional 193 papers were excluded.  

3.1 Study Design Characteristics 

3.1.1 Population and Sample Size 

There were several papers reporting on the same studies. Four papers reported the association with 

physical activity intensity and psychological measures as a part of the two-year follow-up study 

targeting community-dwelling people aged ≥65 years in the Hunei District, Kaohsiung, Taiwan [21-

24]. Four articles were part of the Osteoporotic Fractures in Men Study (MrOS), which included men 

aged ≥65 years, or its ancillary study assessing sleep. This United States of America (USA)-based 

multicenter cohort study recruited community-dwelling men aged ≥65 years. [25-28] Three papers 

reported on the Rush Memory and Aging Project (USA), with participants mainly being recruited 

from retirement communities [29-31]. Three included papers described results found in the 

multicenter Study of Osteoporotic Fractures (SOF), targeting women aged ≥65 years in the USA [32-

34]. Two papers were a part of the Women’s Health Initiative (USA), including postmenopausal 

women [28, 35]. Finally, three papers included their samples from the United Kingdom (UK) Biobank, 

a large prospective study with participants between ages 40-69 years at baseline [36-38]. In total, 

the 35 included papers described 22 unique studies. 

Not all papers describing the same study included the same number of participants due to their 

specific study criteria. Due to this discrepancy, the following population characteristics are 

calculated using all papers (including duplicate studies). Included papers had a large range of 

included sample size, ranging from 58 [39] to 60235 [38], median sample size was 1203. Most papers 

included only older participants, only 5 studies reported a mean or median age below 25 years old 

[39-43]. Median age of remaining studies was 74.52 (IQR 65.75-81.47). All papers reported gender of 

participants. Four papers only included males (MrOS), five papers only included females (SOF, 

Women’s Health Initiative), median percentage female was 54.4% (IQR 51-76). 
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Table 1. Included papers and main information on method. 

1st author 
(publ. year) 

[ref nr.] 

Study Psych. 
Cat. 

Acc. Cat. N Age 
(years) 

Sex 
(%women) 

Follow-
up 

(years) 

Acc Type Acc 
Location 

Acc 
Wear 
days 

Ekegren(2021) 
[44] 

- MH&D PAI 58 range 19-
69 

44,8 0.5† ActiGraph GT3X+  &  
activPAL3 

anterior mid-thigh & 
right hip 

4 - 10† 

Chong (2021) 
[43] 

- MH&D PAI 88 11.8 (SD 
0.4) 

59,1 1 (SD 
0.17) 

GENEActiv ND wrist 3 - 6† 

Yi Lee (2021) 
[45] 

- C&D RAR 174 75.6 (SD 
7.1) 

79,3 1† GENEActiv ND wrist 5 - 7† 

Slykerman (2020) 
[41] 

Auckland Birthweight 
Collaborative study (ABC 

study) 

MH&D PAI 547 7** 51 4† ActiGraph AM71256 not reported 1† 

Sewell (2023) 
[46] 

Australian Imaging, 
Biomarkers and Lifestyle 

study (AIBL) 

C&D PAI 199 68.7 (SD 
5.9) 

55,8 8.4 (SD 
2.5) 

ActiGraph GT1M waist 7† 

Tian (2021) 
[47] 

Baltimore Longitudinal 
Study of Aging 

C&D RAR 520 73 (SD 8) 51 7.3 (SD 
2.7) 

ActiHeart chest 3 - 7† 

Whitaker (2021) 
[48] 

Coronary Artery Risk 
Development in Young 

Adults (CARDIA) 

C&D PAI 1970 45.27 (SD 
3.56) 

58,27 5 & 10† ActiGraph 7164 right hip 4 - 7† 

Hsueh (2021)  
[24] 

Hunei District, Taiwan MH&D PAI 274 74.52 (SD 
6.12) 

54,4 1.84 (SD 
0.13) 

ActiGraph GT3X+ waist 5 - 7† 

Chen (2020)  
[23] 

Hunei District, Taiwan C&D PAI 274 74.52 (SD 
6.12) 

54,4 1.84 (SD 
0.12) 

ActiGraph GT3X+ waist 5 - 7† 

Ku (2017)  
[22] 

Hunei District, Taiwan C&D PAI 274 74.5 (SD 
6.1) 

54,4 1.84 (SD 
0.12) 

ActiGraph GT3X+ waist 5 - 7† 

Stubbs (2017)  
[21] 

Hunei District, Taiwan C&D PAI 274 74.52 (SD 
6.12) 

54,4 1.84 (SD 
0.12) 

ActiGraph GT3X+ waist 5 - 7† 

Maasakkers 
(2021)  

[49] 

Irish Longitudinal Study 
on Ageing 

C&D PAI 1276 67.3 (SD 
9.0) 

53 4† GENEActiv wrist 4 - 7† 

Jeon (2023)  
[50] 

Korean Brain Aging Study 
for the Early Diagnosis 

and Prediction of 
Alzheimer Disease 

(KBASE) 

C&D RAR 129 69.3 (SD 
7.7) 

54,3 2.25 (SD 
0.16) 

ActiWatch 2 ND wrist 7.52 (SD 
1.03) 

Xiao (2022)  
[51] 

Osteoporotic Fractures in 
Men Study (MrOS) / 

C&D RAR 2496 76 0 6.8 (SD 
3.7) 

SleepWatch-O ND wrist 4.8 (SD 
0.8) 
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1st author 
(publ. year) 

[ref nr.] 

Study Psych. 
Cat. 

Acc. Cat. N Age 
(years) 

Sex 
(%women) 

Follow-
up 

(years) 

Acc Type Acc 
Location 

Acc 
Wear 
days 

MrOS Sleep 

Leng (2019)  
[27] 

Osteoporotic Fractures in 
Men Study (MrOS) / 

MrOS Sleep 

C&D RAR 2751 76.0 (SD 
5.3) 

0 12† SleepWatch-O ND wrist 5.2 (SD 
0.9) 

Rogers-Soeder 
(2018)  

[26] 

Osteoporotic Fractures in 
Men Study (MrOS) / 

MrOS Sleep 

C&D RAR 2754 76.0 (SD 
5.3) 

0 3.4 (SD 
0.5) 

SleepWatch-O ND wrist ≥3† 

Smagula (2015)  
[25] 

Osteoporotic Fractures in 
Men Study (MrOS) / 

MrOS Sleep 

MH&D RAR 2124 76.24 (SD 
5.48) 

0 1.2 (SD 
0.32) 

SleepWatch-O ND wrist ≥3† 

McNeill (2020)  
[39] 

Preschool Activity, 
Technology, Health, 

Adiposity, Behaviour and 
Cognition study (PATH-

ABC) 

Both PAI 185 4.19 (SD 
0.64) 

39,5 1 ActiGraph GT3X+ right hip 6.8 (SD 
1.6) 

Zhu (2017)  
[52] 

Reasons for Geographic 
and Racial Differences in 

Stroke (REGARDS) 

C&D PAI 6452 69.7 (SD 
8.5) 

55,3 2.9 (SD 
1.1) 

Actical right hip 6.6 (SD 
0.8) 

de Feijter(2023)  
[53] 

Rotterdam Study MH&D RAR 947 61.1 (SD 
7.6) 

52 6 (IQR = 
5.6-6.3) 

ActiWatch AW4 ND wrist 7† 

Li (2023)  
[31] 

Rush Memory and Aging 
Project 

C&D RAR 1203 81.42 (SD 
7.47) 

76,6 ≥6† Actical ND wrist 10 (SD 1) 

Li (2020)  
[30] 

Rush Memory and Aging 
Project 

C&D RAR 1401 81.8* 
(IQR 
76.3-
85.7) 

77 15† Actical ND wrist 7 

Buchman (2012) 
[29] 

Rush Memory and Aging 
Project 

C&D PAI 716 81.6 (SD 
7.12) 

76 3.5 (SD 
1.54) 

Actical ND wrist 9.3 (SD 
1.1) 

Cabanas-Sánchez 
(2021)  

[54] 

Seniors-ENRICA-2 MH&D PAI 1679 71.40 (SD 
4.15) 

51,7 2.31 (SD 
0.31) 

ActiGraph GT9X ND wrist 4 - 7† 

Chan (2022)  
[55] 

StandingTall MH&D PAI 322 75.5* 
(range 
72.3-
80.1) 

62,1 2 McRoberts 
MoveMonitor 

lower back 6* (IQR 1) 

Wickel (2019)  
[40] 

Study of Early Child Care 
and Youth Development 

C&D PAI 559 9** 54 6† ActiGraph 7164 not reported 4 – 7† 
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1st author 
(publ. year) 

[ref nr.] 

Study Psych. 
Cat. 

Acc. Cat. N Age 
(years) 

Sex 
(%women) 

Follow-
up 

(years) 

Acc Type Acc 
Location 

Acc 
Wear 
days 

(SECCYD) 

Posner (2021)  
[32] 

Study of Osteoporotic 
Fractures (SOF) 

C&D RAR 1232 82.6 (SD 
3.3) 

100 4.9 (SD 
0.6) 

SleepWatch-O ND wrist 3.6 

Walsh (2014)  
[34] 

Study of Osteoporotic 
Fractures (SOF) 

C&D RAR 1287 82.81 (SD 
3.11) 

100 5† SleepWatch-O ND wrist ≥3† 

Tranah (2011)  
[33] 

Study of Osteoporotic 
Fractures (SOF) 

C&D RAR 1282 82.69 (SD 
3.34) 

100 4.9 SleepWatch-O ND wrist ≥3† 

Gianfredi (2022)  
[56] 

The Maastricht Study MH&D PAI 5113 60.1  (SD 
8.5) 

50 5.1* ActivPal3 anterior mid-thigh 1 - 7† 

Opdal (2020)  
[42] 

The Tromsø Study MH&D PAI 686 16.25 (SD 
0.94) 

54,5 2† ActiGraph GT3X+ dominant hip 4 - 7† 

Campbell (2023)  
[36] 

UK Biobank C&D PAI 34058 55.46 (SD 
7.50) 

49,23 8.64 (SD 
1.76) 

Axivity AX3 wrist 7† 

Ho (2022)  
[37] 

UK Biobank MH&D PAI 37327 56.41 (SD 
7.76) 

54,6 6.8 (IQR 
6.3-7.4) 

Axivity AX3 dominant wrist 6.91* 

Kandola (2021)  
[38] 

UK Biobank MH&D PAI 60235 55.9 (SD 
7.7) 

56 2 Axivity AX3 wrist 7† 

Nguyen (2023)  
[35] 

Women's Health Initiative C&D PAI 1346 81.8 (SD 
6.2) 

100 4.2 (IQR 
2.1 - 6.3) 

ActiGraph GT3X+ right hip 1 - 7† 

Xiao (2022)  
[28] 

Women's Health Initiative C&D RAR 763 83.5* 100 4.5 (SD 
2.2) 

ActiGraph GT3X+ right hip 7† 

Included papers, what study they belong to (if applicable) and main information on method including outcome measure categories, participant characteristics, follow-up 
time and accelerometric methods.  
Abbreviations: Pysch. Cat. = Psychological Outcome Category; Acc. Cat. = Accerelometric Outcome Category; MH&D = Mental Health & Depression; C&D = Cognition & 
Dementia; PAI = Physical Activity Intensity; RAR = Rest-Activity Rhythms; N = number of participants; Acc = accelerometer; ND = non-dominant. * median, **age as inclusion 
criteria, no mean or median given, †as described in method  
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3.1.2 Accelerometric Methods 

The most commonly used accelerometer brand was ActiGraph (Actigraph Corporation, Pensacola, 

USA), which was used in 10 studies (Table 1) [21-24, 28, 35, 39-42, 44, 46, 48, 54]. Most studies used 

accelerometers worn on the (non-dominant) wrist (n = 9) [25-27, 29-34, 36-38, 43, 45, 49, 51, 53, 54] 

or hip (n = 6) [28, 35, 39, 42, 44, 48, 52]. Other locations included the waist (n = 2) [21-24, 46], 

anterior mid-thigh (n = 2) [44, 56], lower back (n = 1) [55] and chest (n = 1) [47]. For two studies, 

placement location of accelerometer was not reported [40, 41]. Accelerometer wear time differed 

between studies and ranged between a mean of 1 [41] and 10 [31] days (Table 1). Most studies 

aimed at approximately one week of accelerometric data. Generally, wear time during the day was 

recorded either exclusively during waking hours (only excluding water activities) or extended to 

include sleep periods. Follow-up time ranged between 6 months [44] and 15 years [30], with a 

median follow-up time of 4 years (IQR 1.84-6). 

3.1.3 Accelerometric Outcome Measures 

The endpoint parameters used for the analysis of accelerometric data varied significantly among 

studies (Table S1). Roughly, accelerometric outcome measures could divided into two groups, those 

mainly assessing physical activity intensity (PAI) or those mainly assessing Circadian- or Rest-Activity 

Rhythms (RAR). Among the included papers, 22 focused on PAI [21-24, 29, 35-44, 46, 48, 49, 52, 54-

56] and 13 focused on RAR (Table 1) [25-28, 30-34, 45, 47, 51, 53]. Commonly used PAI parameters 

include Sedentary Behavior (SB), Light Physical Activity (LPA), Moderate-to-Vigorous Physical Activity 

(MVPA), Total Physical Activity (TPA, including step count) and Energy Expenditure (EE) (Figure 2, 

Table S1). Commonly used RAR parameters include Acrophase, Amplitude, Mesor, Pseudo-F Statistic, 

L5, M10, Interdaily Stability (IS) and Intradaily Variability (IV) (Figure 2, Table S1). 

To further complicate the comparison of results, several studies employed similar outcome 

measures, but varied in their methodological approaches. Some utilized different measurement 

techniques, such as counts or milligravities (mg), while others adopted diverse cut-off points for 

determining the outcomes. For example, for the quantification of daily LPA duration, Chong et al. 

(2021) determined the amount of minutes the accelerometer measured gravity-corrected vector 

magnitude units between 52-191 mg, where Ho et al. (2022) used 30-125 mg as cut-off values [37, 

43]. For the same outcome measure, multiple studies used counts/minute (with different cut-off 

values) [21, 35, 39, 40, 48] and finally Gianfredi et al. (2022) determined LPA using standing minutes 

combined with time spend moving with <100 steps/minute [56]. 

3.1.4. Psychological Outcome Measures 

Similarly to the accelerometric outcome measures, there was also a great variation in the 

methodology for psychological assessment (Table S1). Studies could also be grouped into two main 

categories based on their psychological outcome measures, focusing on cognition and/or dementia 

(‘C&D’, n = 22) [21-23, 26-36, 40, 45-49, 51, 52], mental health and/or depression (‘MH&D’, n = 12) 

[24, 25, 37, 38, 41-44, 53-56] or both (n = 1) [39]. Commonly used assessment tools for cognition and 

dementia symptoms included the California Verbal Learning Test (CVLT-II), Ascertain Dementia 

Questionnaire (AD8), D-KEFS (mainly Trail Making subtest), Wechsler Adult Intelligence Scale (WAIS) 

subtests and the (Modified) Mini Mental State ((M)MMS). Common questionnaires for the 

assessment of depression and mental health were the Strengths and Difficulties Questionnaire 

(SDQ), Patient Health Questionnaire (PHQ-9) and the Geriatric Depression Scale (GDS).  
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Figure 2. Performed accelerometric analyses, categorized. 

 
Number of analyses desribed in included papers and corresponding significance of associations with 
respectively C&D or MH&D psychological outcome measures. Value above each bar indicates percentage of 
significant findings for the respective analyses. Abbreviations: C&D, cognition and dementia; MH&D, mental 
health and depression; EE, energy expenditure; TPA, total physical activity; RA, relative amplitude; MVPA, 
moderate-to-vigorous physical activity; SB, sedentary behavior; L5, activity during 5 hours of lowest activity; 
LPA, light physical activity; M10, activity during 10 hours of highest activity. 

 
3.2 Key Findings 

Studies often included multiple analyses assessing the association between several accelerometric 

measures and cognitive and/or mental health outcomes. The results across these individual analyses 

are presented in Figure 2. Note that one study can be described in multiple papers, of which each 

describes the relationships between multiple accelerometric and multiple psychological outcome 

measures. In some cases, results were categorized as ‘mixed’, in that case there was no clear 

conclusion to be drawn from the results, e.g. there was an association for only a specific patient 

subgroup. 

Based on the results described in Figure 2, assessment methods that had a relatively high rate of 

significant findings were napping, total physical activity, moderate-to-vigorous physical activity, 

amplitude of rest-activity rhythm and relative amplitude (RA). 
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Figure 3. Performed accelerometric analyses, subcategories. 

 
Number of analyses desribed in included papers and corresponding significance of associations with 
respectively C&D or MH&D psychological outcome measures shown in separate columns. Only subcategories 
of TPA, MVPA, Amplitude, Nap and RA are shown. Value above each bar indicates percentage of significant 
findings for the respective analyses. Abbreviations: C&D, cognition and dementia; MH&D, mental health and 
depression TPA, total physical activity; MVPA, moderate-to-vigorous physical activity; RA, relative amplitude;  
h, hour; AP, anteroposterior; MPA, moderate physical activity; VPA, vigorous physical activity. 

 

3.2.1 Total physical activity (TPA) 

TPA can be determined using multiple methods, including total daily step count, total daily 

accelerometric counts and daily duration of physical activity (Figure 3, Table S1).  

Various studies have found significant associations between accelerometer quantified overall 

activity and cognitive health [23, 29, 35, 46]. They found that higher levels of total daily physical 

activity (TPA) were associated with a reduced risk of developing Alzheimer's disease (AD), better 

cognition and slower cognitive decline. [29, 46] Buchman et al. (2012) found that participants with 

lowest daily activity had a 2.3 times higher risk to develop AD compared to those with the highest 

daily activity. [29] Positive associations have also been observed between TPA and aspects of 

cognition such as memory and processing speed [29, 46]. Similarly, higher daily step counts have 

been linked to lower rates of subjective cognitive decline and lower risks of incident mild cognitive 

impairment (MCI) and/or dementia [23, 35]. Nguyen et al. (2023) reported that participants in the 

highest step count quartile had a 63% lower risk of MCI/probable dementia compared to those with 

lowest daily step count [35]. Regarding mental health, engaging in higher levels of overall physical 

activity, quantified as either TPA or daily steps, appears to be correlated with a lower risk of 

depressive disorders and reduced depressive symptoms [24, 37, 55].  
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Nevertheless, not all studies have consistently demonstrated significant correlations between overall 

activity and cognitive or mental health outcomes [29, 36, 39, 44, 46]. Campbell et al. (2023) found 

correlations with neither global cognition nor any specific cognitive function [36]. Multiple studies 

that did report a relationship between global cognition and TPA, also found that certain specific 

cognitive functions (e.g. executive function or memory) did not (consistently) show significant 

associations [29, 39, 46]. Both studies reporting nonsignificant findings with mental health outcomes 

studied patient populations that diverged from the average study population, specifically young 

children or adults after upper/lower limb fracture [39, 44]. 

3.2.2 MVPA 

Several studies have investigated the relationship between moderate and/or vigorous physical 

activity (MVPA) and cognitive and mental health outcomes. Included studies reported multiple 

methods for the quantification of MVPA, including time spend in MVPA, MPA and VPA based on 

accelerometric counts, time spend in MVPA relative to other behaviors and amount of steps taken 

during periods of MVPA (Figure 3, Table S1). 

Some studies reported positive associations between MVPA and cognitive health, including a 

reduced rate of cognitive decline, lower risk of incident MCI and memory and executive function [21, 

35, 52]. Nguyen et al. (2023) found that participants with highest MVPA had a 31% lower risk of 

MCI/probable dementia compared to those with lowest MVPA [35]. Zhu et al. also found that minor 

differences in MVPA between those least and most active resulted in similar sized effects, with a 

>35% difference [52]. Controversially, Wickel et al. (2018) found that in adolescents, those with 

higher MVPA duration had lower cognitive scores compared to those with lower MVPA [40]. 

Similarly, there is evidence suggesting that engaging in MVPA and moderate physical activity (MPA), 

is associated with lower risk and improved outcomes for global mental health, depressive symptoms 

and affective disorders including depression and anxiety [37, 54, 56]. Gianfredi et al. (2022) assessed 

the patterns of MVPA over time, concluding that the difference in MVPA between those with and 

without depressive symptoms was predominantly seen on weekend day afternoons (12-15h and 15-

18h; Figure 4) [56]. 

However, some studies did not observe significant associations between MVPA and mental health 

measures [37, 39, 41, 43, 44, 54]. Similarly to TPA outcomes, studies including children reported no 

significant findings concerning the association between MVPA and emotional and behavioral 

problems, psychological distress, psychosocial development and executive function [39, 41, 43]. 

Furthermore, there were three studies reporting no or limited association between (M)VPA and 

depression, of which one included adults after upper/lower limb fracture [37, 44, 54]. 

3.2.3 Napping 

Generalized sedentary behavior was only significantly associated with psychological outcome 

measures in a small percentage of performed analyses. An alternative, less popular, outcome 

measure assessing non-active behavior is napping. Napping, also known as daytime sleeping outside 

of the main sleeping period, was used as an outcome measure in two research papers which both 

demonstrated significant associations. Both studies assessed the duration of naps, while one of 

them also examined the frequency of napping. Their findings revealed that longer napping durations 

were associated with an increased risk of developing cognitive impairment or incident Alzheimer's 

disease (AD). [27, 31] Additionally, Li et al. (2023) showed that a higher frequency of napping was 

also linked to a heightened risk of developing incident AD [31].  
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Figure 4. Hourly distribution of moderate-to-vigorous physical activity. 

 
Hourly distribution of moderate-to-vigorous physical activity (MVPA) stratified by week and weekend days in 
individuals with (orange) and without (blue) incident depressive symptoms. Figure adapted from Gianfredi et 
al. (2022). Statistically significant differences in time slots are reported with *. [56] 

 

Figure 5. Rest-activity rhythm (RAR) parameters. 

 
 

 

3.2.4 Amplitude 

As part of circadian rhythm analysis, the amplitude represents the difference between highest and 

either lowest or mean activity. It is calculated by either subtracting lowest activity level (nadir) or 

mean activity level (mesor) from the highest activity level (peak) of that day (Figure 5). It’s value 

depends on which definition is used, as well as on the model used to describe the rhythm (e.g. an 

extended cosine model). A larger amplitude indicates a more pronounced difference between the 

two, suggesting a well-defined pattern over a 24-hour period. The correlation between (normalized) 

amplitude and cognition was examined in several studies. [26, 28, 30, 33, 34, 45] Two studies found 
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a significant association between lower amplitudes and detrimental effects on risk of dementia, MCI 

or cognitive decline [26, 28], against two studies that did not [34, 45]. Furthermore, Tranah et al. 

(2011) did find significant results for those with MCI, but not for incident dementia alone, with it 

being the other way around for Li et al. (2020) [30, 33]. Concerning mental health, Smagula (2015) 

found that after adjustments for some covariates, low (standardized) amplitude was associated with 

higher odds ratios for the development of depressive symptoms, although further adjustments 

attenuated these results into non-significance [25]. 

3.2.5 Relative Amplitude (RA) 

Relative Amplitude is a non-parametric measure similar to (normalized) amplitude that does not use 

assumptions about the model of the rhythm. It can be calculated by taking the difference between 

the activity during the 10 consecutive hours of highest activity (M10) and the 5 consecutive hours of 

lowest activity (L5) and dividing that by the sum of M10 and L5. A higher value indicates relatively 

higher activity during waking hours and lower activity when resting/sleeping. Three studies 

demonstrated a significant relationship between lower relative amplitude and incident dementia 

[28, 32] and/or cognitive impairment [28, 51], although one study lost significance after further 

adjustment for sleep and daily steps [28]. Even though Posner et al. (2021) did find an association 

between relative amplitude and incident dementia, they did not when assessing incident MCI [32]. 

3.3 Additional relevant findings 

3.3.1 Bidirectionality of associations 

Multiple studies attempted to address possible reverse causality bias by conducting sensitivity 

analyses that excluded participants with confounding pre-existing conditions at baseline, such as 

cognitive impairment, history of depression, or difficulty with activities of daily living [21, 23, 24, 28, 

29, 35, 37, 38, 51]. Some studies went further by excluding participants who developed these 

conditions within the first two years after baseline accelerometric assessment to further minimize 

reverse causation [27-29, 35, 37, 51]. 

A few studies directly explored the possibility of a bidirectional relationship [29-31, 40, 49, 53]. Li et 

al. (2023) demonstrated that nap duration or frequency was correlated to cognitive performance 

one year later, but also that cognitive performance was correlated to subsequent napping behavior 

[31]. In a previously published paper studying the same cohort Li et al. also described a bidirectional 

relationship between AD and circadian dysregulation [30]. This is not only the case for cognition 

related outcome measures, De Feijter et al. (2023) demonstrated a bidirectional association 

between 24h activity fragmentation and depressive symptoms [53]. However, not all studies found a 

consistent bidirectional relationship [29, 40, 49]. For instance, Buchman et al. (2012) found that rate 

of cognitive decline before accelerometric assessment was not associated with TPA and that 

baseline global cognition was not associated with rate of decline of TPA [29]. 

3.3.2 Compensatory strategies 

Tian et al. (2021) investigated the association between activity fragmentation and cognitive change, 

which depended on the level of gait speed. Slow walkers with less fragmentation showed cognitive 

decline over time, whereas slow walkers with more fragmentation remained stable. The presence of 

more fragmentation in slow walkers indicated the ability to apply compensation strategies (more 

frequent rests), which served as an indicator of cognitive function. [47] 

4 Discussion 

This review showed the potential of some accelerometric outcome measures assessing both physical 

activity intensity and rest-activity rhythms to be an early indicator of future psychological wellbeing 
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in adults. Nevertheless, this is not the case of all frequently described accelerometric outcome 

measures. Large variations in patient cohorts, accelerometric methods, accelerometric and 

psychological outcome measures and follow-up duration complicate the comparison of study 

findings. Although some accelerometric outcome measurements were seldomly or never found to 

be significantly associated with subsequent psychological wellbeing, for most parameters findings 

differed between studies. 

So far, few papers assessed a combination of both PAI and RAR parameters. Based on our findings, 

combining these different approaches to the quantification of physical activity could be a valuable 

approach. Chan et al. (2022) extracted many parameters from accelerometric data and performed a 

principal components analysis (PCA) to reduce that number. Then, they determined which initial 

variables contributed the most to the first five principal components to determine what aspect of 

gait was mainly assessed. [55] PCA aims to preserve as much variance in the original data as possible 

[57]. Methods like these may enable us to identify and combine accelerometric outcome parameters 

that have the highest possibility of containing relevant patterns. This is especially valuable in 

situations where parameters exhibit significant covariance, which is the case for PAI outcome 

measures, where an increase of a certain behavior always leads to a decrease of another behavior 

[54]. It can also be especially relevant if combinations of multiple parameters indicate a certain level 

of wellbeing, for example as described in the compensation theory of Tian et al. (2021), see 

compensatory strategies above [47]. An alternative approach could be Partial Least Squares 

Discriminant Analysis (PLS-DA), which aims to preserve as much covariance as possible between the 

accelerometric data and psychological state at follow-up [57]. This may help to determine which 

(combination of) accelerometric outcome measures at baseline predict a specific psychological 

outcome at follow-up. Based on our findings, when performing PCA or PLS-DA on accelerometric 

data, it is essential to include both PAI and RAR features. For both approaches the potential to 

predict future psychological wellbeing has been demonstrated, but they have not yet been 

combined. Assessing both PAI and RAR features will likely elevate the predictive value. This 

assumption is strengthened by the findings regarding the PA behavior changes during the day as 

described by Gianfredi et al. (2022) [56]. At a minimum, the selected parameters should include 

measures of TPA, MVPA, napping, amplitude, and relative amplitude. 

There were some limitations to this review. First of all, assessment of reference lists of included 

papers revealed that the used search strategy was not exhaustive. Brief exploration of the first three 

additionally found papers did not reveal any findings that were not in line with included papers and 

therefore the search strategy was not expanded further [58-60]. It is possible that results presented 

in Figure 2 and 3 are not fully representable for all published papers on the topic. Second, this 

review did not assess cross-sectional studies, studies assessing sleep parameters, studies reporting 

circadian rhythm interventions or physical activity interventions or those with other interventions 

that were monitored using PA accelerometry, studies with laboratory based set-ups or studies that 

only assessed change of PA over time as accelerometric outcome measure. Some studies were also 

excluded because they did not specifically describe cognitive or mental health related outcome 

measures. Although they do not shed any insight into the possible predictive value of accelerometry 

or are outside the scope of this study, investigation of these studies could broaden the insights into 

possible accelerometric parameters that have not yet been studied in this context and provide 

additional methods to predict future psychologic wellbeing using accelerometry. Furthermore it is 

important to realize the effect of publication bias on our results. Nonsignificant findings are less 

likely to be published than significant associations [61]. Fortunately, many of the included papers 

assess basic combinations of either PAI or RAR (e.g. the RAR combination of amplitude, acrophase, 

mesor and pseudo-f statistic) and report both significant and nonsignificant findings. Additionally, 
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we did not assess the possible effect of underpowered samples in included studies, possibly leading 

to a faulty assumption that non-significant findings demonstrate an absent effect (false-negatives) 

[62]. Moreover, multiple papers have reported on the same study cohorts, which can also lead to 

bias in our results. We did not further investigate the possible effect of confounders between studies 

such as participant age, sex and comorbidities, as well as accelerometric wear duration and location, 

and follow-up time. Finally, we did not assess the limitations and drawbacks of the use of (solely) 

accelerometry in the home environment, such as faulty use, discomfort and the lack of insight into 

the participants social support system. 

Further development of personalized, secondary preventive rehabilitation medicine requires 

improved prediction of individual future wellbeing to tailor early therapeutic interventions such as 

occupational therapy to individual needs. Unfortunately, only one of included papers studied patient 

recovery from a health condition, in this case lower or upper extremity fracture [44]. Based on the 

findings of this review, some accelerometric outcome measures show promise in predicting future 

psychological wellbeing in healthy adults. Combining multiple outcome measures, including both 

RAR and PAI parameters may be most informative on future psychological wellbeing. However, it is 

essential to note that this predictive capacity may not necessarily hold when being assessed after 

illness. Future research should study the association between accelerometric outcome measures 

and subsequent psychological wellbeing as part of rehabilitation after illness. 
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