
Improving GitHub Tag Recommender Systems Using Tag Hierarchies

Arend van der Rande
Supervisor(s): Dr. Maliheh Izadi, Prof. dr. Arie van Deursen

EEMCS, Delft University of Technology, The Netherlands
22-6-2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

Abstract
Programmers and software engineers often share
code and one of the largest platforms on which this
happens is GitHub, with an 87,58% market share in
the Source Code Management Category [1]. One
important part of sharing code is making sure that
others who might be interested in it are also able to
find it. One way to do that is by adding tags to a
repository, which is a feature on GitHub only since
2017. However, many repositories do not have any
assigned tags [2]. This can be solved by automati-
cally applying tags to repositories without any. This
comes with a problem: what algorithm can com-
plete such a task?
In this study, we attempt to solve this problem
using a class of algorithms called Hierarchical
Multilabel Classifiers(HMCs). As the name sug-
gests, these are a kind of classifier that can as-
sign multiple labels to one datapoint (repository),
but the labels must be organized in a hierarchy.
We present 4 different hierarchies and 4 different
HMCs to see which combination yields the best
results. These combinations are also compared to
a non-hierarchical baseline. We find that HMCN-
F, one of the HMCs, manages to marginally out-
perform the baseline with a difference in AUPRC
scores of 0,024. While not a groundbreaking re-
sult, it is promising, as other methods of creating
hierarchies may be able to beat the baseline by a
larger margin.

1 Introduction
Whether it is when answering questions on StackOverflow or
contributing to a public repository on Github, software de-
velopers often share code. These are but two well-known
code-sharing platforms and there are many more. Both of
these platforms have a very large amount of questions and
repositories, respectively. This poses a problem: how can a
software developer find the type of repository they are look-
ing for? The solution that is researched in this paper is to add
tags to repositories. These tags convey relevant information
for finding desirable repositories, such as what programming
language is used if it uses machine learning, or what license
it uses.

Since 2017 GitHub allows users to attach these tags to their
repositories. Ideally, every repository has tags attached to it,
as it would allow a searching software developer to find more
relevant repositories. Currently, this is not the case: ”as of
February 2020, only 5% of public repositories in GitHub had
at least one topic assigned to them” [2] (p. 93). A solution
would be to automatically suggest tags for repositories that
do not have enough tags to support the search algorithm or
have no tags at all. Multiple studies have already been done
that attempt to recommend tags for repositories based on their
contents and metadata such as the studies were done by Izadi
et al. [2] and Zhang et al. [3].

In this study, we consider a different approach. A hierar-
chical structure for these tags is developed, which can then be

used for training Hierarchical Multilabel Classifiers (HMCs).
HMCs have seen much development in the past 20 years. One
of the reasons for this is the rapid development of artificial
neural networks, caused by the introduction of powerful GPU
architectures [4]. The aim of this work then is to experiment
with different HMCs, including the current state-of-the-art
developed by Giunchiglia et al. [5], and see if these provide
an improved recommender system for tags on GitHub repos-
itories compared to baselines from previous works [2], [3].

Our results show that HMCs can have similar performance
to that of the baseline. With HMCN-F by Wehrmann et al. [6]
we were able to achieve an AUPRC of 0,570 compared to the
baseline of 0,556. The hierarchy for this achievement was
built using agglomerative clustering between the labels with
distance defined using the SED K-Graph, developed by Izadi
et al. [7].

2 Problem Definition
The problem we aim to solve is defined as follows: we
must find a hierarchy that can be used with an HMC to
recommend tags for repositories, improving upon the base-
line. To be exact: GitHub hosts a set of public repositories
S = {r1, r2, ..., rn}, with n being the amount of repositories
and ri being a repository. Each of these repositories always
has an author and a title. They may have a README file,
a description, wiki pages, and an arbitrary amount of files,
most often some kind of programming code. GitHub also al-
lows users to assign tags to their repositories. In theory, users
can define any text as a tag. Users can also attach any string
of text to their repository as a tag. In this research we con-
sider a subset of these tags T = {t1, t2, ..., tm} where m is
the amount of tags and ti is a tag. This set does not contain all
tags on GitHub but could be extended to an arbitrary amount.
Using an algorithm, we order these tags into a hierarchy H ,
which we limit to a tree in this research. The wider class,
DAGs, can be used for some HMCs such as AWX [4]. Then,
a recommender system is built with the set of repositories S
and the hierarchy H . This system can decide for each repos-
itory which of the tags from T are most relevant to assign to
it. What is relevant is learned from existing relations between
tags, repository information, and H .

3 Related Work
The related work is divided into 3 parts. The first part is
about works regarding Hierachical Multilabel Classifiers and
the second part is about approaches for applying tags to soft-
ware entities. The final part outlines the connection this paper
makes between the other two.

3.1 Hierachical Multilabel Classifiers
Early HMCs
In 2004, Lewis et al. developed an important implementation
of an HMC. It became a reference point as state-of-the-art
for other HMCs in the years to follow and is called Clus-
HMC [8]. It is based on a concept called Predictive Clus-
tering Trees (PCT). In 2010, an improved version of Clus-
HMC was developed by Schietgat et al. [9]. They used the

1

Bagging technique [10] to train multiple, different classifiers
using replication on the training set.

Another type of method was developed by Bi et al. in 2011,
called CSSA [11]. It isn’t restricted to tree-like hierarchies as
DAGs are also allowed. It uses a greedy algorithm to traverse
the tree and decide whether to assign nodes or not. It managed
to provide a small improvement over Clus-HMC when trained
on genetic datasets.

HMC-LMLP and HMCN
In 2014 another approach was taken by Cerri et al. called
HMC-LMLP [12], where LMLP stands for Local Multi-
Layer Perceptron. This is detailed, as it explains how it
works: for locally classifying each level of the hierarchy,
it uses a Multi-Layer Perception, which is a type of artifi-
cial neural network. The approach goes from top to bottom,
where the classifier first learns to classify the high-level tree
nodes using an MLP. Next, it learns to classify the second-
highest level tree nodes from the predictions made by the
first classifier. It continues to cascade down like this until
it reaches the leaf nodes. After Clus-HMC, it managed to
establish itself as state-of-the-art. Through the years it was
improved upon, with HMCN as a significant result. It was
developed by Wehrmann et al. in 2018 and technically it has
two variants: HMCN-F and HMCN-R [6]. The difference
is that they use a feed-forward and recurrent architecture, re-
spectively. This has significant implications for the algorithm
design. The significant difference compared to HMC-LMLP
is that the input vector is used at all levels of the hierarchy, as
well as the addition of a global loss function, calculated from
the output from all levels of the hierarchy.

AWX
Using yet another approach is AWX. It was developed by
Masera et al. in 2018 [4]. The classifier is described as a layer
in a neural network. To adhere to the hierarchical constraints,
they developed a loss function ensuring that the neural net-
work’s output is always a subtree of the full hierarchy.

C-HMCNN(h)
The last HMC we discuss here is C-HMCNN(h) from 2020
by Giunchiglia et al. [5]. It is the most recent major improve-
ment in the field. It is somewhat similar to AWX, as it pro-
vides layers for a neural network. However, C-HMCNN(h)
provides two layers instead of just one. The first layer is a
constraint layer, which ensures that the hierarchy is not vio-
lated. The next layer is a loss function, which aids in teaching
the classifier when to use information from the lower levels.

3.2 Applying Tags to Software Entities
Two papers are considered here regarding tag application.
First, the paper by Zhang et al. from 2019 [3] introduces HiG-
itClass, and the paper by Izadi et al. from 2021 introduces a
non-hierarchical tag recommender.

HiGitClass was developed to deal with three issues the
authors encountered in recommending tags to repositories,
which are ” (1) the presence of multi-modal signals; (2)
supervision scarcity and bias; (3) supervision format mis-
match.” [3] (p. 1). They developed a three-part framework
that aims to tackle each of these problems. However, they

experimented only on a specific subset of the data with rela-
tively small hierarchies. A claim is made that their algorithm
beats the other algorithms with a significant margin, but there
are no comparisons made with the current or previous state-
of-the-art HMCs.

The recommender introduced by Izadi et al. lays a lot of
useful groundwork from which experiments can be set up for
recommending topics to GitHub repositories. The data col-
lection, tag mapping, and evaluation methods are all useful
for experimenting and comparing different algorithms.

3.3 This Study
This paper is an attempt to combine the two previous sections:
can we use HMCs for applying tags to software entities? The
answer to this question is obviously yes, but we must also find
out how this class of recommenders compares to the existing
recommenders.

4 Background
The next step then is to understand what the current state-of-
the-art classifier is. We also look at other classifiers, as it is
very well possible that one of the other very good classifiers
works better for this particular data set. From the classifiers
detailed in the related works section, four are chosen for fur-
ther experimentation. These are HMC-LMLP, AWX, HMCN,
and C-HMCNN(h). The following subsections provide fur-
ther detail, such as how they work and why they were chosen
for this experiment. In the end, the baseline is also discussed.
An overview is provided in Table 1.

From this table, we can see that there is high relative per-
formance for C-HMCNN(h) compared to the previous state-
of-the-art, HMC-LMLP. AWX and HMCN do both provide
an improvement over HMC-LMLP, but if the goal is to find
the best method, C-HMCNN(h) can be expected to perform
well. The following subsections provide additional back-
ground information for each of the algorithms.

4.1 C-HMCNN(h)
C-HMCNN(h) is part of a neural network, with a spe-
cial loss function that enforces the hierarchical constraints.
Giunchiglia et al. also provided a Python implementation [5]1

with an example, which made it relatively easy to adopt for
our experiments. The hierarchy itself needs to be represented
as a matrix for the loss function, where given n classes it is
a n × n matrix H where Hij = 1 if class i is an ancestor of
class j. This means that on column j there are multiple val-
ues equal to 1, as all classes have multiple ancestors, except
for the highest level nodes. An example of such a matrix is
visualized in Figure 1.

From this graph we can conclude a few things: by def-
inition, the root with index 0 is the ancestor of all items
and every node is its own ancestor. We know that there are
1 + 20 + 60 + 130 = 211 non-leaf nodes, which we can also
see in the figure: on the y-axis, we see that above y = 210
(indexing starts at 0) every node has five ancestors, which
corresponds with the definition.

1https://github.com/EGiunchiglia/C-HMCNN

2

Name Year Description Performance
C-HMCNN(h) [5] 2020 Comprised of two layers: the first is a constraint layer to enforce the

hierarchy and the second is a loss function, which teaches the classifier
when to use information from lower levels in the hierarchy.

1.238*HMC-LMLP,
1.123*Clus-Ens,
1.032*HMCNR

HMCN [6] 2018 Uses an artificial neural network in each of the hierarchical layers.
Feedback propagates locally and globally. Can use either a feed-
forward or recurrent architecture.

1.465*Clus-HMC,
1.340*CSSA,
1.110*Clus-ENS,
1.217*HMC-LMLP

AWX [4] 2018 Creates an output layer for an artificial neural network which is a subtree
containing the tags we want to recommend.

1.191*Clus-HMC,
1.108*HMC-LMLP

HMC-LMLP [12] 2014 Uses an artificial neural network in each of the hierarchical layers,
where each network is only given the output of the higher layer as input.
The difference from HMCN is the lack of a global function.

1.075*Clus-HMC,
1.667*Clus-HSC,
1.745*Clus-SC

Table 1: Comparison of four Hierarchical Multilabel Classifiers, with performance calculated as relative AUPCR scores on the CellCycle
dataset.

0 100 200 300 431
0
20

80

210

431

Index of class

In
di

ce
s

of
an

ce
st

or
s

Figure 1: Ancestry matrix for hierarchy using the SED-K Graph
relations and Bisecting K-Means clustering

4.2 HMCN

HMCN has two variants, HMCN-F and HMCN-R. In this pa-
per, we focus only on the HMCN-F variant. It uses a neural
network for each layer of the hierarchy, all of which use the
output of the previous layer and the repository features as in-
put. The last layer is a classifier for all the available classes,
including the abstract layers. The output of each layer is also
used as input in a global classifier. The final output of the lo-
cal classifiers and that of the global classifier is combined at
the end. This way, the classifier uses both the local and global
information of the hierarchy. This is further explained in the
paper by Wehrmann et al. [6].

4.3 AWX

AWX is also part of a neural network and uses the hierar-
chical information for the loss function, in a quite similar
manner compared to C-HMCNN(h). An implementation is

0 100 200 300 431
0

100

200

300

431

Index of class

In
de

x
of

pa
re

nt

Figure 2: Parent matrix for hierarchy using the SED-K Graph rela-
tions and Bisecting K-Means clustering

provided by the researches [4]2. They also provide references
to datasets that can work with their system, such as genetic
data, which helps with figuring out how exactly it works. It
uses a matrix to represent the hierarchy, but this one is dif-
ferent from the one used in C-HMCNN(h). Instead of giving
all the ancestors for a node, it gives the index of the parent.
More formally: it is a matrix H such that Hij = 1 if j is the
parent of i. This results in a curve such as in figure 2.

4.4 HMC-LMLP
HMC-LMLP is relatively simple compared to the other
HMCs. All that is needed is a neural network between each of
the hierarchical layers: four in total in this case. The sklearn
library is used [13] for building, training, and predicting. The
structure of the model is presented in Table 2. Each layer of
the structure has an input layer, a hidden layer, and an out-
put layer. The input layer of the first layer is the set of input

2https://github.com/lucamasera/AWX

3

features and the output of the last layer is the desired set of
tags.

Training this model goes from top to bottom. The first layer
is trained with the input features as input. The target data is
a list l of length 20 where li = 1 if one of the leaves under
the i-th subtree is a true label and 0 otherwise. When that
layer is done training, it is used to make high-level abstract
predictions based on the input features. These predictions are
used as input data for the second layer. The target data is
a similar list as the previous one, but now of length 60. This
model is also trained and its predictions are then used as input
for the next model. This process is repeated until we end up
at the bottom, where we end up with a probability for each
tag of whether or not it should be recommended.

5 Proposed Approach
The solution for recommending tags to repositories using an
HMC consists of two parts: first, a hierarchy must be con-
structed. Second, an HMC must be created which can work
with the hierarchy, be trained, and finally be used to create
predictions for new data.

For the hierarchy, the reason and logic behind why a hier-
archy makes sense in this context are given. Then, the hierar-
chies are constructed using a distance metric and a clustering
algorithm. As there are two different distance metrics and
clustering algorithms this results in 4 different hierarchies.

The HMC is a type of classifier that needs a hierarchy in
the output classes, which it uses to its advantage. As ex-
plained in the Related Work section, 4 different HMCs are
used in this experiment: AWX, C-HMCNN(h), HMC-LMLP,
and HMCN-F. These are all trained using public data from
GitHub repositories and the tags which are currently assigned
to these repositories. This public dataset was preprocessed
as described by Izadi et al. [2] and then converted to a fea-
ture vector using a Tf-Idf vectorizer, for which we used the
sklearn implementation[13]. To evaluate each classifier we
use a portion of the GitHub data which is set aside for testing
and compare the predictions the model makes to the actual
tags.

5.1 Constructing a Tag Hierarchy
The idea of ordering these tags in a hierarchy may seem ar-
bitrary, but there are some contexts in which it makes sense.
Take for example the tags ”programming-language”, ”java”
and ”python”. It would make sense to say that both ”java” and
”python” are children of ”programming-language”, as these

p-l

java python

Figure 3: A simple example of a hierarchy, with programming-
language abbreviated to p-l

are examples or instances. This is illustrated in Figure 3. This
makes sense for this example, but there are two problems:

• Generalizing this concept is hard, as not all tags have a
clear parent instance, whether it be a superclass, abstrac-
tion, or generalization.

• Attempting to apply hierarchical concepts to all 220 tags
in our dataset by hand makes it harder to extend to a
context where there are more tags.

So the idea of creating a hierarchy might make sense, at least
in some cases, but a method is needed to do this automati-
cally. The approach we use for this is clustering algorithms
which have a hierarchical output. For such a clustering algo-
rithm a distance metric between the tags is needed.

Distance Between Tags It is essential for the clustering al-
gorithms that the distance between tags can be calculated.
The problem with this is that on their own, the tags don’t
have any context or relation to another. Nothing about the
word ”java” says that it should be placed lower in a hierarchy
of tags than ”programming-languages”. We identified four
sources of context for these tags: descriptions of these tags
from GitHub3, Wikipedia articles, the SED-KGraph devel-
oped by Izadi et al. [7], which defines relations between tags
and finally, the co-occurrence of tags in repositories. The de-
scriptions from GitHub seem too short to be used for calcu-
lating the distance between the tags. Wikipedia articles suffer
from the issue that there are a lot of tags related to specific
libraries or frameworks for which there is no Wikipedia page,
such as the CSS framework ”tailwind”. The SED-KGraph
already has information about relations between tags, but
not directly regarding hierarchy. Using the co-occurrence of
tags in repositories should provide a hierarchy where tags
are closer together in the hierarchy if they occur more of-
ten. From these four options, the SED-KGraph and the co-
occurrence matrix were chosen to be used in the rest of the
study.

Clustering Algorithms In order to build a hierarchy from
these tags, a clustering algorithm able to provide a hierar-
chy is needed. Looking at a list of options, such as from
sklearn4, there seem to be two clustering algorithms with de-
sirable properties: agglomerative clustering and bisecting K-
Means. They both work with large amounts of samples and
clusters. More importantly: building a hierarchy from these
algorithms is a part of the algorithm. Agglomerative cluster-
ing (AC) provides a dendrogram, which can be converted to
a hierarchy by cutting at certain points. These points can be
chosen such that they give us the desired amount of nodes at
a certain level. Bisecting K-Means (BK) follows a top-down
approach: in each step of the algorithm, a cluster is divided.
Thus, if we want a hierarchy with 10 layers at the highest
level and 50 below that, we can divide until we get 10 lay-
ers and use that for the high-level hierarchy. Then, we can
continue dividing clusters until we end up at 50 clusters and
use that for the second-highest level cluster. In that case, it is
guaranteed that if two tags are in the same lower-level cluster,

3https://github.com/github/explore/tree/main/topics
4https://scikit-learn.org/stable/modules/clustering.html

4

Layer Input layer size Hidden layer size Output layer size
1 #Input features #Input features 20
2 20 60 60
3 60 130 130
4 130 220 220

Table 2: Sizes of the various layers of the HMC-LMLP classifier

More abstract
node

Abstract node

HTML, CSS

node.js, react

typescript

Abstract node

ruby, PHP

git

cli

Abstract node
Go, Java

Python, library

Figure 4: A subtree of a hierarchy constructed using the Co-
Occurrence Matrix and Agglomerative Clustering

they are also in the same higher-level cluster. Now, these two
algorithms and datasets can be used to generate hierarchies.
However, before we use them for training the classifiers, a
short analysis of the size and content is performed.
Analysis The trees generated from this algorithm are too
large to fit in this paper, but there is space for a part of the tree,
which can be found in Figure 4. Especially the top abstract
node seems useful, as it contains many web-development re-
lated languages. However, some additional insight into their
construction is useful, as it allows us to reason why these trees
might have different performances when used for classifica-
tion. One such interesting property is the size of the clusters
at each level of the hierarchy. While at this moment it is hard
to say what exactly makes a good hierarchy for classifica-
tion, having one cluster be significantly larger compared to
the other clusters is assumed to have a negative influence on
the performance.

As can be seen in Figure 5, most methods provide a decent
cluster size spread. Combining the co-occurrence matrix with
bisecting K-means seems to be the most imbalanced, but not
drastically. Using the co-occurrence matrix with bisecting K-
means provides two rather large clusters, which is reflected
in the rest of the curve. What we can conclude is that these
methods aren’t skewed to a certain cluster, which we want
to avoid. If that were the case, the hierarchical information
wouldn’t be used as much as it would be with a more balanced

0 5 10 15 20
0

15

30

45

60

Index of cluster, sorted

Si
ze

of
th

e
cl

us
te

r

COM with AC
COM with BK
SEDK with BK
SEDK with AC

Figure 5: The cluster size for different algorithms at the highest level

hierarchy.

For this implementation of a hierarchy, we have chosen not
to assign the target labels to higher-level nodes and have the
higher-level nodes be abstract instead. This way, only the
leaves are the desirable classes or tags. It does however still
allow us to use the hierarchical information. We end up with
the 4 different clusters (COM-AC, COM-BK, SEDK-BK, and
SEDK-AC) each of which have a total of 5 layers. First
the root node, then a layer of 20 high-level abstract classes,
then 60 mid-level abstract classes, next 130 low-level abstract
classes, and finally 220 concrete classes, connected to the ac-
tual tags.

5.2 Classifiers

The classifiers were used in their described form as can be
found in the Background section. Some changes did have to
be made to the classifier code that could be found on GitHub,
such that it could work with the rest of the code, our hierarchy
and the dataset. Most of them were set up to work with a
standard HMC testing dataset, which is often genetic data. A
modification to HMC-LMLP was considered where the input
vector was appended to each layer of the hierarchy. It was
decided to not continue experiments with this variant as it
would be impractical to train and testing showed that it didn’t
provide much improvement over the standard variant.

5

6 Experiment Design
With the experiment, we want to answer three research ques-
tions. These are answered using the previously described
recommenders and hierarchies. These are trained with the
dataset. When the training is done, predictions for a seper-
ated subset of the dataset are made to compare to the actual
values. These predictions are then evaluation with some met-
rics, which we can compare to the baseline. In the following
subsections, the research questions, datasets, evaluation met-
rics and baseline are described.

6.1 Research Questions
With the experiment we want to answer the following ques-
tions:

RQ1: Can a HMC perform better compared to the base-
line?

RQ2: What has more influence on the performance of a
HMC, the recommender or the hierarchy?

RQ3: What impact does the construction of the hierarchy
have on the performance of the model?

6.2 Dataset
The dataset used is a set of 152K GitHub repositories, each
of which has a number of tags from the 220 derived from
the preprocessing step developed by Izadi et al. [2]. The in-
put data for the models consists of the repositories project
names, descriptions, README files, wiki pages if present,
and the file names concatenated together. Using each of
these five data fields does increase the performance of the
model: ”adding more sources of information such as descrip-
tions and file names indeed helps boost the models’ perfor-
mance” [2] (p. 25).

6.3 Evaluation Metrics
To evaluate the models, 20% of the dataset is set aside to
compare performances. The input data for these datasets is
fed through the model and the results are expressed for each
repository as a chance for each tag to be relevant to that repos-
itory. For evaluating classifiers, precision and recall are stan-
dard options, which are calculated as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

with TP , FP , and FN being the number of true positives,
false positives, and false negatives, respectively.

However, for multilabel classification these metrics are in-
sufficient. The output of the model is a chance between 0 and
1, so we need to set a threshold. Preferably, we use a met-
ric that is independent of the quality of the threshold, as that
is not what is being experimented with here. Instead, we can
use precision and recall at k. These are defined as follows and
calculated for every prediction:

P@k =
|{ti with pi among k highest predictions}|

k

R@k =
|{ti with pi among k highest predictions}|

min(k,
∑

i ti)

with ti = 0 if label i is not assigned, ti = 1 if label i is
assigned and pi the chance of label i being predicted by the
algorithm. From this precision and recall, we can also cal-
culate the F@k-value as the harmonic mean of the two. The
F-value can be used to directly compare two pairs of precision
and recall values.

Another method of evaluating the performance of multi-
label classifiers is using the Average area Under Precision-
Recall Curve (AUPRC). It measures the area under the
precision-recall curve. This curve is obtained by first setting
the threshold for predictions to 1. In this case, the recall is 0
and the precision is 1, as every prediction is negative. Then,
the threshold is slowly lowered to 0, where the recall becomes
1 and the precision is 0, as every prediction is positive. The
curve in the precision-recall graph obtained from this proce-
dure is the Precision-Recall Curve. Next, we calculate the
average area under it, which is the AUPRC [14]. Together,
all these metrics should provide an accurate idea of how the
performance of the algorithms compares to each other.

6.4 Baseline
As the goal here is to evaluate GitHub tag recommenders, a
good but non-hierarchical recommender is needed as a base-
line. From Izadi et al.’s 2021 paper we can see that using
logistic regression in combination with a TF-IDF vectorizer
gives the best results [2] in all the metrics. This makes it a
simple and logical choice as a baseline for our experiments.

6.5 Implementation Details
For each stage of the process, the necessary details and pa-
rameters are provided in this section.

Hierarchy Generation
As discussed previously, two hierarchy generation meth-
ods were used: Agglomerative Clustering and Bisecting K-
Means. Both AC and BK use the sklearn library [13]. AC is
used with ’precomputed’ affinity and ’average’ linkage. BK
uses a ’k-means++’ for the initialization algorithm, targets
the largest cluster when deciding which to bisect, and runs
16 times, each with different starting points, after which it
chooses the best cluster.

Recommender Parameters
There are both general and specific parameters for the recom-
menders, which are detailed below.
General The input feature vector is generated with 24000
inputs, 20000 for training, and 4000 for testing. It is made
with a Tf-Idf vectorizer from sklearn [13] and has 10000 fea-
tures. Each recommender ran for 128 epochs, or less if there
were time constraints. All recommenders were trained on the
TU Delft ”DelftBlue” high-performance cluster, which uses
Intel XEON E5-6248R 24C 3.0GHz for the CPU nodes and
NVIDIA Tesla V100S 32GB for the GPU nodes [15].
AWX AWX is built using Keras and uses a neural network.
To train AWX we chose to have a network with an input vec-
tor of 10000 features, a hidden layer with 5000 features, and
an output layer of 471 features, which corresponds to the tree.

6

Hierarchy AWX HMCN-F
Thin High Cluster 0,500 0,542
Thick High Cluster 0,498 0,526
Best hierarchy 0,546 0,570

Table 3: AUPRC scores for the simple hierarchies.

The first two layers use a hypertan activation function and the
output layer uses a sigmoid activation. The ”Adam” opti-
mizer is used for optimizing and the loss function is binary
cross-entropy.

C-HMCNN(h) C-HMCNN(h) is built with torch instead of
Keras but is also a neural network. The input layer has 10000
features, the hidden layer 5000, and the output layer 471. It
uses the ”Adam” optimizer with a learning rate of 10−4 and
weight decay of 10−5. For the activation function it uses the
rectified linear unit function (ReLU): f(x) = max(0, x).

HMC-LMLP Details for the number of layers in HMC-
LMLP can be found in the implementation section. For the
neural networks, the ”MLPClassifier” from sklearn [13] was
used, also with the ”adam” solver. The default activation
function and learning rate were used, which are ReLU and
10−3 respectively.

HMCN-F For details on what size certain neural network
layers are, the original paper by Wehrmann et al. provides
all the necessary details [6]. Again, the ”Adam” optimizer
is used, with a learning rate of 2 ∗ 10−4. The default value
for β = 0, 5, which controls the balance between global and
local influence, was kept.

LR The sklearn library also has an implementation for lo-
gistic regression, using the ”MultiOutputClassifier” with lo-
gistic regression [13]. The only parameter that was changed
is the class weight, which was changed to balanced.

7 Results
To answer RQ1, we can compare the AUPRC scores of
the combinations of recommenders and hierarchies with that
when using logistic regression. These scores are aggregated
in Table 4. The highest AUPRC score for the HMCs is 0,570
when using HMCN-F with SEDK-AC. The score for LR is
0,556, which gives a difference of 0,014. It is a small differ-
ence, but it does show that HMCs can surpass LR in terms of
AUPRC.

To answer RQ2, we can also again look at the same table.
We see that for these recommenders and hierarchies, the rec-
ommenders have a larger influence on the AUPRC. To put this
more formally: the main cause of deviation between AUPRC
scores seems to be the change in recommender and not the
hierarchy.

However, these hierarchies are all structured very similarly.
They all consist of 5 layers including the root and leaves and
have 20, 60 and 130 nodes in the layers between the root and
leaves. There are other ways to construct these hierachies,
with different amount of nodes, or even using less or no ab-
stract nodes. These fall outside of the scope of this research

however, so for this context we can conclude that the larger
influence on the performance is the recommender.

Finally, we answer RQ3. From Table 4 we can’t conclude
that one of the hierarchies always gives significantly better
results overall. The Co-Occurence matrix seems to perform
worse for C-HMCNN(h), but does quite well with HMC-
LMLP, at least when combined using Agglomerative Clus-
tering. With Bisecting K-Means it performs the worst for that
recommender. From these results we can’t make claims on
the impact of the hierarchy on the performance.

What we can do however, is compare these hierarchies
to trivial hierarchies. Two additional hierarchies were con-
structed. The first is a hierarchy where instead of using 20,
60 and 130 as layer sizes, we use only 1s. The second uses
a similar idea, but has 220 nodes at every layer. We compare
the AUPRC scores of these three hierarchies to that of the
best score with AWX and HMCN-F. These results are pre-
sented in Table 3. We see that there is some improvement
in using a non-trivial hierarchy. AWX gives an increase of
0,046 when using a hierarchy and HMCN-F 0,028. It seems
that using a non-trivial hierarchy does yield some improve-
ment in performance over using a non-trivial one, but in this
case it is of small significance.

7.1 Sample Recommendations
In order to provide additional insight into what the results
from these models look like a sample is presented. In Table 5
there are a total of 10 predictions from logistic regression and
HMCN-F with SKG-AC, as well as the true labels. As the
predictions from the models are probabilities, we decided to
take the top 3 predictions for each recommender. We take two
rows as examples: the 2nd and the 8th.

With the 2nd row, there is a significant amount of mismatch
between the labels. Express, JWT and KOA all are absent in
the predictions, with HMCN-F not retrieving any of the true
labels. Conceptually however, a project with JWT (JSON
web tokens), KOA (a web framework) and security can rea-
sonably be expected to be written in Javascript and use HTTP.
Even if the true labels weren’t predicted, the predicted labels
would fit with the project.

With the 8th row, Bootstrap and HTML are present in the
true labels, but not in the predictions. In fact, both LR and
HMCN-F predicted Composer instead. One might expect
Composer to be close to Bootstrap and HTML in the hier-
archy. However, this is not the case as Composer does not
share a high-level cluster with Bootstrap and HTML.

In this research we didn’t perform a qualitative analysis,
instead focussing more on a statistical one. However, a qual-
itative analysis might show that while some recommenders
are not very good at retrieving the exact same set of labels
as the true labels, they do provide labels that could fit with a
repository.

8 Discussion
The results are not as conclusive as we might like. The dif-
ferences between the baseline and best-performing HMC are
very small. For precision and recall at k with k being 3 or 5
the baseline even outperforms the best performing HMC, as

7

Hierarchy Classifier
AWX C-HMCNN(h) HMC-LMLP HMCN-F LR

COM-AC 0,542 0,357 0,128 0,566 0,556
COM-BK 0,546 0,355 0,091 0,568 -
SEDK-AC 0,542 0,372 0,107 0,570 -
SEDK-BK 0,539 0,373 0,121 0,564 -

Table 4: AUPRC scores for all hierarchy-recommender combinations, with LR placed at COM-AC for convenience

True labels LR HMCN-F
monitoring API, Ethereum, monitoring cryptocurrency, Ethereum, monitoring
express, JWT, KOA, security HTTP, Javascript, security HTTP, Javascript, node.js
Java framework, Java, library framework, Java, Python
Android, Firebase, Flutter, iOS, mobile Dart, Firebase, Flutter Dart, firebase, Flutter
algorithm, api, bot, Python algorithm, cryptocurrency, Python Bitcoin, Javascript, Python
Docker, server Docker, server, shell Docker, server, shell
Dart, Flutter Dart, Flutter, library Dart, Flutter, library
Bootstrap, HTML, Laravel, PHP Composer, PHP, Laravel Composer, PHP, Laravel
Scala library, Java, Scala library, machine-learning, Scala
AI AI, machine-learning, Python AI, deep-learning, machine-learning

Table 5: Comparison of 10 tuples of true labels, LR predictions and HMCN-F predictions, using the top 3 results for the recommenders

can be seen in Table 6. What we did learn is that HMCN-F is
a good HMC to be used for repository recommendation. With
the limited experiments done in this research, it managed
to perform nearly as well as logistic regression, which, one
could argue, is a rather high baseline. We did choose to con-
tinue using LR as a baseline as the goal of the research was to
find out if HMCs can outperform non-hierarchical classifiers,
of which LR is the best performing [2].

The other HMCs also provide interesting results. AWX
comes very close to the baseline, but cannot outperform it.
It does seem to have a larger impact on the quality of the
hierarchy compared to HMCN-F, so perhaps with a better hi-
erarchy, it can outperform the baseline. C-HMCNN(h) and
HMC-LMLP fall far behind the other two. For HMC-LMLP
we can think of a reason why this happens. In the first layer of
the model, you can say that all the 10000 features get ”com-
pressed” down into just 20. From those 20 features, the rest of
the features must be inferred. This amount is just too limited
to yield accurate results in the lower hierarchies. This prob-
lem is fixed in the later iterations such as HMCN-F, where the
input at each layer is not just the previous layer, but also the
input feature vector

9 Responsible Research
This section is split in three parts: data collection, code usage
and reproducibility. For all of these parts, we will discuss
what the ethical risks are and how these are mitigated.

9.1 Data Collection
To train the recommender systems and build the hierarchies,
data has to be used. All the data was retrieved from GitHub’s
public API. As the same dataset was used as by Izadi et al.
in 2021, their paper has a more detailed description of how

the raw information from the API was used to create the final
dataset. As this is all public, non-personal, information it is
deemed that there are no ethical issues with using it. How-
ever, the dataset itself was not investigated and checked for
any unethical items, whatever that may entail. It is not im-
possible that data was used from repositories that could be
considered unethical, but the effect of such repositories on
this research is absolutely minimal and practically zero.

9.2 Code Usage
In order to train the different models, code was used from
other people. Specifically, for AWX, HMCN-F and C-
HMCNN(h), repositories were found on GitHub (not using
tags) with the code for these models present, which was then
used. LR and HMC-LMLP were both built using the sklearn
Python library.

9.3 Reproducibility
The experiment effectively comes down to running a
Python program. As this is available at https://github.com/
AvdRande/AvdR-TUD-RP, it should be doable for anyone
with spare computing power to train and run the models. Run-
ning the experiment with new data is probably more difficult,
as that would require a new dataset from GitHub and prepro-
cessing as described by Izadi et al. [2]. With such a dataset, it
should be possible for a programmer with a third year com-
puter science student level of skill to run the experiment.

10 Future Work
The current experiment was limited in quite some dimen-
sions, such as the recommenders, hierarchies, and the dataset.
Each of these could be expanded and investigated further.
Other HMCs might be more fitting for a task such as this one

8

https://github.com/AvdRande/AvdR-TUD-RP
https://github.com/AvdRande/AvdR-TUD-RP

(maybe examples?). To us, it seems that most improvement
can come from other ways of building a hierarchy. For this
paper, hierarchies are used where only the leaves correspond
to actual tags. While it may not be reasonable to assign actual
tags to all abstract nodes, it would probably work better with
the strengths of HMCs. Alternatively, one could also exper-
iment with using a DAG instead of a tree, as HMCs such as
AWX and C-HMCNN(h) can already work with these as well.
They might better represent the structure of tags in GitHub.
For example, one might consider javascript to be both a
child of programming-language and web-development.
Finally, the used dataset has 220 tags for every repository,
which is significantly less than the number of tags used in
the platform or even the number of curated tags, which is
709 at the time of writing [16]. Using more tags and more
data points will always yield more accurate results and in this
case, might allow for a better hierarchy construction.

11 Conclusion
The goal of this paper was to find out if HMCs can be used
to improve over non-hierarchical classifiers when assigning
tags to GitHub repositories. We also wanted to find out which
HMCs and hierarchies work the best and which of those two
has the bigger influence on performance.

From the experiments we conclude that using HMCN-F
yields the best results of the HMCs, but it barely outperforms
the baseline, logistic regression, using AUPCR as a perfor-
mance measurement. AWX also produces relatively good re-
sults but is slightly worse compared to the baseline. Between
recommenders and hierarchies, the recommenders seem to
have a larger impact on the performance of the model. The
construction of the hierarchy using our approach has such a
low impact on the performance that even using a trivial or
simple hierarchy with HMCN-F has AUPCR scores compa-
rable to the baseline. To be clear: with HMCN-F the AUPCR
scores when using a constructed hierarchy versus a simple
hierarchy differ by only 0,028.

9

References
[1] Justine Lyon, Market Share of Github, Jun. 2022. [On-

line]. Available: https://www.slintel.com/tech/source-
code-management/github-market-share.

[2] M. Izadi, A. Heydarnoori, and G. Gousios, “Topic rec-
ommendation for software repositories using multi-
label classification algorithms,” Empirical Software
Engineering, vol. 26, no. 5, p. 93, Sep. 2021, ISSN:
1382-3256. DOI: 10.1007/s10664-021-09976-2. [On-
line]. Available: https: / / link.springer.com/10.1007/
s10664-021-09976-2.

[3] Y. Zhang, F. F. Xu, S. Li, et al., “HiGitClass: Keyword-
Driven Hierarchical Classification of GitHub Repos-
itories,” in 2019 IEEE International Conference on
Data Mining (ICDM), vol. abs/1910.07115, IEEE,
Nov. 2019, pp. 876–885, ISBN: 978-1-7281-4604-1.
DOI: 10.1109/ICDM.2019.00098. [Online]. Available:
https://ieeexplore.ieee.org/document/8970799/.

[4] L. Masera and E. Blanzieri, “AWX: An Integrated
Approach to Hierarchical-Multilabel Classification,”
Tech. Rep., 2018, pp. 322–336.

[5] E. Giunchiglia and T. Lukasiewicz, “Coherent Hier-
archical Multi-Label Classification Networks,” Oct.
2020. [Online]. Available: http://arxiv.org/abs/2010.
10151.

[6] J. Wehrmann, R. Cerri, and R. C. Barros, “Hierarchi-
cal Multi-Label Classification Networks,” Tech. Rep.,
2018. [Online]. Available: https : / / proceedings . mlr .
press/v80/wehrmann18a.html.

[7] M. Izadi, M. Nejati, A. Heydarnoori, M. Izadi, and A.
Heydarnoori, “Semantically-enhanced Topic Recom-
mendation Systems for Software Projects,” Tech. Rep.,
2022.

[8] D. D. Lewis, Y. Yang, T. G. Rose, F. Li, and F. Li
LEWIS, “RCV1: A New Benchmark Collection for
Text Categorization Research,” Journal of Machine
Learning Research, vol. 5, pp. 361–397, 2004, ISSN:
1532-4435.

[9] L. Schietgat, C. Vens, J. Struyf, H. Blockeel, D. Kocev,
and S. Džeroski, “Predicting gene function using hi-
erarchical multi-label decision tree ensembles,” BMC
Bioinformatics, vol. 11, no. 1, p. 2, 2010, ISSN: 1471-
2105. DOI: 10.1186/1471-2105-11-2. [Online]. Avail-
able: https://doi.org/10.1186/1471-2105-11-2.

[10] L. Breiman, “Bagging predictors,” Machine Learning,
vol. 24, no. 2, pp. 123–140, 1996, ISSN: 1573-0565.
DOI: 10.1007/BF00058655. [Online]. Available: https:
//doi.org/10.1007/BF00058655.

[11] W. Bi and J. T. Kwok, “Multi-Label Classification on
Tree- and DAG-Structured Hierarchies,” Tech. Rep.,
2011, pp. 17–24.

[12] R. Cerri, R. C. Barros, and A. C. De Carvalho, “Hierar-
chical multi-label classification using local neural net-
works,” in Journal of Computer and System Sciences,
vol. 80, Academic Press Inc., Feb. 2014, pp. 39–56.
DOI: 10.1016/j.jcss.2013.03.007.

[13] F. Pedregosa, G. Varoquaux, A. Gramfort, et al.,
“Scikit-learn: Machine Learning in {P}ython,” Jour-
nal of Machine Learning Research, vol. 12, pp. 2825–
2830, 2011.

[14] Rachel Draelos, Measuring Performance: AUPRC and
Average Precision, Mar. 2019. [Online]. Available:
https://glassboxmedicine.com/2019/03/02/measuring-
performance-auprc/.

[15] D. H. P. C. C. (DHPC), Delft-
Blue Supercomputer (Phase 1),
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1,
2022.

[16] GitHub, GitHub Explore Topics, Jun. 2022. [Online].
Available: https : / / github. com / github / explore / tree /
main/topics.

10

https://www.slintel.com/tech/source-code-management/github-market-share
https://www.slintel.com/tech/source-code-management/github-market-share
https://doi.org/10.1007/s10664-021-09976-2
https://link.springer.com/10.1007/s10664-021-09976-2
https://link.springer.com/10.1007/s10664-021-09976-2
https://doi.org/10.1109/ICDM.2019.00098
https://ieeexplore.ieee.org/document/8970799/
http://arxiv.org/abs/2010.10151
http://arxiv.org/abs/2010.10151
https://proceedings.mlr.press/v80/wehrmann18a.html
https://proceedings.mlr.press/v80/wehrmann18a.html
https://doi.org/10.1186/1471-2105-11-2
https://doi.org/10.1186/1471-2105-11-2
https://doi.org/10.1007/BF00058655
https://doi.org/10.1007/BF00058655
https://doi.org/10.1007/BF00058655
https://doi.org/10.1016/j.jcss.2013.03.007
https://glassboxmedicine.com/2019/03/02/measuring-performance-auprc/
https://glassboxmedicine.com/2019/03/02/measuring-performance-auprc/
https://github.com/github/explore/tree/main/topics
https://github.com/github/explore/tree/main/topics

A Complete results
In the results chapter only the AUPRC scores are presented,
here are also the precision and recall scores, both with top 1,
3 and 5. Additionally, the F scores are also provided, which
is the harmonic mean between precision and recall.

Hierarchy Recommender P@1 P@3 P@5 R@1 R@3 R@5 AUPRC F@1 F@3 F@5
COM-AC AWX 71,1% 42,7% 29,4% 71,1% 73,1% 78,6% 0,542 71,1% 53,9% 42,8%
COM-BK AWX 71,4% 42,4% 29,2% 71,4% 72,9% 78,1% 0,546 71,4% 53,6% 42,5%
SKG-AC AWX 71,0% 42,2% 29,0% 71,0% 72,4% 77,4% 0,542 71,0% 53,3% 42,2%
SKG-BK AWX 70,9% 42,2% 29,0% 70,9% 72,6% 77,9% 0,539 70,9% 53,3% 42,2%
thick high AWX 73,0% 44,6% 29,2% 73,0% 75,9% 83,4% 0,498 73,0% 56,2% 43,2%
thin high AWX 73,3% 44,6% 31,3% 73,3% 76,0% 83,0% 0,500 73,3% 56,2% 45,4%
COM-AC C-HMCNN(h) 65,6% 38,6% 27,5% 65,6% 66,0% 73,4% 0,357 65,6% 48,7% 40,0%
COM-BK C-HMCNN(h) 64,2% 38,6% 27,4% 64,2% 65,9% 72,8% 0,355 64,2% 48,7% 39,8%
SKG-AC C-HMCNN(h) 66,5% 40,1% 28,4% 66,5% 67,8% 75,0% 0,372 66,5% 50,4% 41,2%
SKG-BK C-HMCNN(h) 66,0% 39,7% 27,9% 66,0% 67,2% 74,2% 0,373 66,0% 49,9% 40,6%
COM-AC HMC-LMLP 26,2% 19,2% 15,4% 26,2% 32,8% 41,8% 0,128 26,2% 24,3% 22,5%
COM-BK HMC-LMLP 21,2% 16,2% 12,9% 21,2% 28,4% 35,5% 0,091 21,2% 20,7% 18,9%
SKG-AC HMC-LMLP 29,7% 20,2% 15,4% 28,7% 34,4% 42,0% 0,107 29,2% 25,4% 22,6%
SKG-BK HMC-LMLP 30,1% 20,8% 15,7% 30,1% 35,6% 43,0% 0,121 30,1% 26,2% 23,1%
COM-AC HMCN-F 74,4% 43,5% 29,9% 74,4% 74,4% 79,8% 0,566 74,4% 54,9% 43,5%
COM-BK HMCN-F 74,1% 43,3% 29,9% 74,1% 74,2% 80,0% 0,568 74,1% 54,7% 43,5%
SKG-AC HMCN-F 73,7% 43,2% 29,7% 73,7% 73,9% 79,7% 0,570 73,7% 54,5% 43,3%
SKG-BK HMCN-F 74,7% 43,3% 29,8% 74,7% 74,3% 79,9% 0,564 74,7% 54,7% 43,4%
thick high HMCN-F 72,3% 41,6% 28,4% 72,3% 71,6% 76,7% 0,526 72,3% 52,6% 41,4%
thin high HMCN-F 72,4% 42,6% 29,2% 72,4% 73,1% 78,4% 0,542 72,4% 53,8% 42,5%

LR 73,5% 45,5% 31,7% 73,5% 77,3% 83,9% 0,556 73,5% 57,3% 46,0%

Table 6: Complete results of the experiment, where thick high and
thin high are two simple hierarchies.

11

	Introduction
	Problem Definition
	Related Work
	Hierachical Multilabel Classifiers
	Applying Tags to Software Entities
	This Study

	Background
	C-HMCNN(h)
	HMCN
	AWX
	HMC-LMLP

	Proposed Approach
	Constructing a Tag Hierarchy
	Classifiers

	Experiment Design
	Research Questions
	Dataset
	Evaluation Metrics
	Baseline
	Implementation Details
	Hierarchy Generation
	Recommender Parameters

	Results
	Sample Recommendations

	Discussion
	Responsible Research
	Data Collection
	Code Usage
	Reproducibility

	Future Work
	Conclusion
	Complete results

