
Master of Science Thesis

Potential Field Methods for Safe
Reinforcement Learning

Exploring Q-learning and Potential Fields

A. Bhowal

August 2017

Faculty of Aerospace Engineering · Delft University of Technology

Potential Field Methods for Safe
Reinforcement Learning

Exploring Q-learning and Potential Fields

Master of Science Thesis

For obtaining the degree of Master of Science in Aerospace
Engineering at Delft University of Technology

A. Bhowal

August 2017

Faculty of Aerospace Engineering · Delft University of Technology

Copyright c© A. Bhowal
All rights reserved.

Delft University Of Technology
Department Of

Control and Simulation

The undersigned hereby certify that they have read and recommend to the Faculty of
Aerospace Engineering for acceptance a thesis entitled “Potential Field Methods for
Safe Reinforcement Learning” by A. Bhowal in partial fulfillment of the require-
ments for the degree of Master of Science.

Dated: August 2017

Supervisor:
Dr.ir. Erik-Jan van Kampen

Supervisor:
Tommaso Mannucci, MSc

Reader:
Dr.ir. Q. P. Chu

Reader:
ir. Jos Sinke

Acknowledgements

This work is the culmination of five years of learning, growth and self-discovery, none of
which would have been possible without the friends and acquaintances I have had the
pleasure to meet and get to know. You’ve all made me a better person, one way or
another.

I would like to thank my parents for always encouraging me to explore. Your support is
a model that I will take with me, regardless of what is to come. To Babai, for making me
realise the importance of emotional intelligence, and to Ma, for being the most supportive
shoulder a son could ask for. To Ryan, who’s always up for a discussion, be it about space,
football or Minecraft.

Special thanks to Erik-Jan and Tommaso, for making the world of Reinforcement Learning
seem so accessible. The discussions we’ve had over this thesis period have been genuinely
enjoyable and have led me to appreciate the fact that we definitely are at the brink of an
AI revolution.

This is for those who have been a part of this journey and for those who continue to do
so.

Thank you.

Delft, The Netherlands A. Bhowal
August 2017

v

vi Acknowledgements

List of Symbols and Abbreviations

Symbols

α Learning Rate

β Risk Sensitivity Parameter

ε Exploration Factor

γ Discount Factor

κ Potential Sensitivity Parameter

π Action Selection Policy

τ Softmax Temperature Parameter

ak Agent action at time step k

G Goal State

k Discrete Time Index

m Potential Merge Factor

p(a|s) Probability of selecting action a, given that the agent is in state s

P (s) Potential value in state s

q Potential Scaling Factor

Qt(s, a) Q-value for state s, with action a, at time t

r avg Performance Metric

Rk Return over a period of episodes

rk Immediate Reward

S Start State

sk Discretised State

safmet Safety Metric

vii

viii List of Symbols and Abbreviations

Abbreviations

APF Artificial Potential Fields

DP Dynamic Programming

GNRON Goal Non-Reachable with Obstacle Nearby

LfD Learning from Demonstration

LTF Lead-to-fatal

MC Monte Carlo

MDP Markov Decision Process

PI-SRL Policy Improvement through Safe Reinforcement Learning

RL Reinforcement Learning

SHERPA Safety Handling Exploration with Risk Perception Algorithm

UAV Unmanned Aerial Vehicle

Contents

Acknowledgements v

List of Symbols and Abbreviations vii

List of Figures xii

List of Tables xiii

1 Introduction 1

1.1 Safety in RL . 1

1.2 Artificial Potential Fields . 2

1.3 Problem Statement and Research Goals 2

I Article 5

II Background and Preliminary Analysis 29

2 Reinforcement Learning Basics 31

2.1 The RL Model . 31

2.2 Model Breakdown . 32

2.2.1 The Environment . 33

2.2.2 The Agent . 33

2.2.3 Markov Decision Process . 33

2.3 Choice of RL computation method . 34

3 Safe Reinforcement Learning 37

3.1 Types of safety . 37

ix

x Contents

3.1.1 Labelling . 37

3.1.2 Ergodicity . 40

3.1.3 Costs . 40

3.1.4 Variance of expected return . 40

3.2 Safe RL approaches . 41

3.2.1 Optimisation Criterion . 41

3.2.2 Exploration Process . 44

4 Potential Field Methods 47

4.1 Potential Functions . 47

4.2 Within Safe RL . 49

5 Preliminary Results 51

5.1 Developing the idea of ‘potential’ . 52

5.1.1 Changing V,Q,r . 54

5.1.2 Changing Policy . 54

5.1.3 Changing Agent Dynamics . 55

5.2 Analysis . 57

5.2.1 Framework . 57

5.2.2 Results and Conclusions . 61

6 Research Method 71

III Extended Results 73

7 Detailed Results and Analysis 75

7.1 Elaboration of Analysis Methods . 77

7.2 Detailed Results . 78

7.3 Parameter Analysis . 83

8 Different Simulation Setups 87

9 Conclusions and Recommendations 93

References 95

A Code Layout 99

A.1 Setup . 99

A.2 Run . 100

B RL Simulation Levels 101

List of Figures

1.1 Thesis Roadmap . 4

2.1 The Reinforcement Learning Scheme . 32

2.2 Setup of ’skydiving’ RL environment with wind profile, agent and S/G
positions . 32

2.3 Breakdown of RL approaches . 35

2.4 Benefits of Temporal Difference methods 35

2.5 Comparing SARSA and Q-Learning . 36

3.1 Safety summary . 38

3.2 Safety definitions (adapted from [12]) . 39

3.3 Garcia definitions [6] . 39

3.4 Safety summary (adapted from [7]) . 42

4.1 Examples of minima using APF (agent goes from start (S) to goal (G) . . 48

4.2 Virtual Water Flow visualised (adapted from [26]) 49

5.1 Gridworld testbed . 51

5.2 Interpreting ‘Potential’ in the grid . 52

5.3 ‘Potential’ visualisation options . 53

5.4 Visual explanation of the ‘policy changing’ approach 55

5.5 Agent action levels . 55

5.6 Example of sup-optimal situations with the current method 56

5.7 Sign convention, including 3 sectors and 3 levels 57

5.8 Levels of Analysis . 58

5.9 Modification of Softmax to include Potential 59

5.10 Pnet based action restriction option schematised 60

xi

xii List of Figures

5.11 Exploration strategy . 61

5.12 Simulation grid . 62

5.13 Potential strength for interfering fields . 63

5.14 Potential Field render . 64

5.15 Level 3 stochastic action selection . 65

5.16 Results for Levels 1 and 4 . 67

5.17 Results for Levels 2 and 3 . 68

5.18 Collisions over the whole run . 69

6.1 Next steps for the thesis . 72

7.1 Gridworld with obstacles, start (S) and goal (G) positions 75

7.2 Goal Overshoot scenario . 76

7.3 Model parameters . 76

7.4 Proposed Simulation Setups to analyse agent adaptability to local minima 77

7.5 Detailed simulation results for L1 (κ = 0) 79

7.6 Detailed simulation results for L1 (κ = 15) 79

7.7 Detailed simulation results for L4 (κ > 30) 80

7.8 Tradeoff between performance and safety with varying κ 82

7.9 Detailed simulation results for L3b . 84

7.10 Detailed simulation results for L3c . 84

7.11 Performance parameter analysis for L3b 86

7.12 Safety parameter analysis for L3b . 86

8.1 Setup 2: Potential field, as seen by the agent at the end of the run 88

8.2 Setup 2: Trace of conditioned path and collision velocities 88

8.3 Setup 2: Trace of conditioned path with κ = 2 88

8.4 Setup 2: Trace of conditioned path with κ = 20 88

8.5 Setup 2: Convergence behaviour with κ = 12 89

8.6 Setup 2: Goal profile with κ = 12 . 89

8.7 Setup 3: Trace of conditioned path and collision velocities 89

8.8 Setup 3: Potential field, as seen by the agent at the end of the run 90

8.9 Setup 3: A different optimum path, influenced by a higher κ 90

8.10 Setup 3: Convergence behaviour with κ = 14 91

8.11 Setup 3: Goal profile with κ = 14 . 91

A.1 First Layer of code . 99

A.2 ‘Episode’ block . 100

B.1 RL Simulation Hierarchy . 101

List of Tables

2.1 Commonly used TD methods . 35

5.1 Potential values assigned as a function of position relative to obstacle . . 54

5.2 Reward summary . 65

7.1 Detailed collision data (Red: no potential information used) 83

7.2 Parameter Analysis for Level 3 (Softmax based) 85

xiii

xiv List of Tables

Chapter 1

Introduction

Reinforcement Learning (RL) has demonstrated its potential as a powerful model-free
framework to accomplish tasks relevant to the aerospace field, such as control [1], planning
and sequential decision making [10]. The RL agent is intelligent by virtue of the fact that it
can process information sensed from its environment and use this to constantly modify its
subsequent actions. In order to perceive the state of the environment and ensure a steady
flow of information, the agent needs to explore. On the scale of a small simulation with
a few states, this exploration does not benefit from any restrictions. However, keeping
in mind a realistic aerospace scenario such as autonomous navigation of an Unmanned
Aerial Vehicle (UAV), the margins for error are low and it is always assumed that risks
and uncertainty are high.

In order to mitigate these risks, various methods for ‘Safe Exploration’ within RL have
been proposed and developed [7]. This thesis goes into detail about one of these methods,
which involves the use of Artificial Potential Fields (APF). Before the notion of safe
exploration can be expanded, however, ‘safety’ itself must be defined and put into context.
This is detailed in the first section. Introducing the concept of APFs as a promising
solution in the second section lays the groundwork for the problem statement. This is
introduced in the third section and the introductory chapter is then concluded with a
roadmap, detailing the scope of this thesis.

1.1 Safety in RL

The very first analogy presented by Sutton and Barto [23] in their seminal work, while in-
troducing ‘the Reinforcement Learning problem’, is that of a playing infant that ‘exercises
its sensorimotor connection to its environment to produce a wealth of information about
cause and effect and what to do in order to achieve its goals’. It is not difficult then to
imagine this inexperienced infant carrying out a certain action that, directly or otherwise,
leads to it harming itself. However, avoiding these undesirable situations and finding the
best solution to a certain problem would involve the infant exploring and trying out new

1

2 Introduction

things. Traditionally with RL, the discussion at this point leads towards the trade-off
between exploration and exploitation. ‘The agent has to exploit what it already knows
in order to obtain its reward, but it also has to explore in order to make better action
selections in the future.’ [23].

In the case of this thesis, however, the interest lies more with making sure that in this ‘trial
and error’ process of getting to know its environment, the infant does not cause itself any
harm. Considering now a UAV as the RL agent, during learning, it can experience unsafe,
damage inducing and possibly fatal occurrences, especially with high complexity tasks,
such as with uncertain systems and/or unknown environments. The concept of safety has
been incorporated within RL in two major branches, the ‘optimisation criterion’, and the
‘exploration process’ [7]. The first deals with optimising pre-defined performance metrics
(minimise costs, maximise rewards etc.), while the latter tries to prevent dangerous ex-
ploratory actions by the agent. Approaches such as ‘Safety Handling Exploration with
Risk Perception Algorithm (SHERPA)’ have been shown to enable an agent to success-
fully explore its environment under limited prediction capabilities. This algorithm was
also validated on a quadrotor model, further solidifying the applicability of this research
to an aerospace context [17]. A more thorough treatment and classification of Safe RL is
carried out in Ch. 3.

1.2 Artificial Potential Fields

Artificial Potential Field (APF) methods are a mature branch of control theory that
can perform state and obstacle evasion. Conventionally, however, APFs have been used
extensively for path planning of robotic manipulators and mobile robots [24]. The key
concept in APF methods is the allocation of a potential function that increases when
the system nears an undesired state or condition. If the corresponding generalised forces
are used to control the system, undesired states can be avoided. A challenge of APF
methods is that the potential must be feasible, i.e., the control surfaces and actuators
must be able to apply the generalized forces as indicated by the potential. Once an
appropriate potential is defined, APF methods are reliable and autonomous in providing
safety. Thus, applying these methods to RL agents appears to be a promising strategy
for Safe Exploration.

1.3 Problem Statement and Research Goals

This thesis investigates the use of APF methods in the context of RL agents acting on
uncertain systems and partially known or unknown environments. Despite APF methods
being used frequently in path planning tasks, that is not per-se the goal here. Instead,
these methods will be adapted and optimised to aid in the following of more generalised
goals, such as attitude or velocity targets. The APF approach will be required not only
to provide safety, but also to accommodate a degree of freedom for the agent, in order to
allow learning through state exploration. The following problem statement is used as a
leading question for this thesis:

1.3 Problem Statement and Research Goals 3

To what extent can Artificial Potential Fields (APF) be used to increase
safety of exploration within Reinforcement Learning (RL)?

Taking this as a starting point, the research goals to be considered in further detail in
this thesis are identified as follows:

1. Can APF methods be combined with RL in such a way that measurable improve-
ments in terms of safety are observed?

(a) Which previous work has addressed the combination of APF and RL methods?

(b) How can APF methods be applied to uncertain systems in partially known
environments?

(c) How has safety been classified within RL?

(d) How can APF methods best accommodate the trial-and-error nature of RL?

(e) Do RL methods using APF information show a decrease in computational time,
complexity and performance, while ensuring an increase in safe action selec-
tion?

2. How can APF methods be simulated within an RL environment in such a way that
a definitive conclusion about real-life feasibility can be made?

(a) Which of the available model-free RL algorithms presents the best return in
terms of implementation complexity and adaptability?

(b) To what extent can the APF concept be implemented in a discretised manner
while still retaining its key characteristics?

(c) To what extent can definitive statements about safety be made based on metrics
such as convergence, collision frequency and computation time?

(d) To what extent can ‘realism’ be approached within the simulation (e.g., in-
creasing the state-space or making it more continuous) in order to verify the
results and prove feasibility?

Leading on from this, Fig. 1.1 presents an overview of the steps taken in the thesis. After
introducing the basics of RL and defining some standard terminology in Ch. 2, safety is
further elaborated upon in Ch. 3. APF methods are then considered and put into the
context of the overall goal in Ch. 4. Once the theory has been treated in sufficient detail,
preliminary simulation results are presented and discussed in Ch. 5. Ch. 6 then presents
the research method by discussing and justifying the steps to be taken from this point
forward. This leads to the main findings of the thesis, which are discussed in detail in
Ch. 7 and Ch. 8, which make up the penultimate part of the document. Conclusions and
recommendations for future work are then presented in Ch. 9.

4 Introduction

Intro

Research question

RL Basics
-MDP
-Agent
-States

Exploration

Safe RL

-Risk
-Classification

APF Methods
-Path Planning
-Obstacle Avoidance
-Adaptation

Prelim. Results
-Sim Environment
-Innovation
-Next steps

Conclusions
and

Recommendations

Research

 Method

Final Results
-Parameter Analysis
-Detailed Results
-Extension to Setup

Figure 1.1: Thesis Roadmap

Part I

Article

5

Increasing Safety of Autonomous Exploration by

combining Artificial Potential Fields with

Reinforcement Learning

Abhranil Bhowal∗

Delft University of Technology, Delft, Zuid Holland, 2629HS, The Netherlands

A Reinforcement Learning (RL) agent learns about its environment through exploration.
For most physical applications such as search and rescue UAVs, this exploration must take
place with safety in mind. Unregulated exploration, especially at the beginning of a run,
will lead to fatal situations such as crashes. One approach to mitigating these risks is by
using Artificial Potential Fields (APFs). Various approaches to effectively use the potential
information gathered by the agent are proposed, tested and discussed. The agent is placed
in an environment-model-free setting, where it is still provided with knowledge of its own
dynamics. A gridworld simulation is developed using MATLAB to test the interoperability
of APFs with Q-learning. It is shown that safety of exploration benefits from adding this
layer of information to the agents’ decision making process. In effect, the Q-table gets
updated more efficiently due to the agent explicitly knowing of high potential ‘dangerous’
states.

Nomenclature

α Learning rate
γ Discount factor
ε Exploration factor
κ Potential Sensitivity parameter
τ Softmax Temperature parameter
q Potential scaling factor
APF Artificial Potential Field
G Goal state
p(a|s) Probability of selecting action a, given that the agent is in state s
P (s) Potential value in state s
Qt(s, a) Q-value for state s, with action a, at time t
RL Reinforcement Learning
S Start state

I. Introduction

Exploration is a significant aspect of any Reinforcement Learning (RL) algorithm, and this is made
especially evident in situations where safety is paramount. A Search and rescue (SAR) drone surveying
its environment will be expected not to collide with the unknown obstacles in its path, from take-off to
goal location. An RL agent trained on an algorithm which views safety as a key performance indicator, is
expected to successfully achieve this objective. The RL agent is perceptive by virtue of the fact that it can
process information sensed from its environment and use this to constantly modify its subsequent actions.
In order to perceive the state of the environment and ensure a steady flow of information, the agent needs

∗MSc student, Aerospace Control and Simulation, Delft.

1 of 21

American Institute of Aeronautics and Astronautics

to explore. Keeping in mind a realistic aerospace scenario such as autonomous navigation of an Unmanned
Aerial Vehicle (UAV), the margins for error are low and it is always assumed that risks and uncertainty are
high.

In order to mitigate these risks, various methods for ‘Safe Exploration’ within RL have been proposed
and developed. This paper goes into detail about one of these methods, which involves the use of Artificial
Potential Fields (APF). Applying the concept of ‘safety’ to RL has been treated by labelling1–3 , ergodicity,4

costs2,5 and variance of expected return.2 Furthermore, safe RL approaches are classified into the Optimi-
sation Criterion6,7 and the Exploration Process6,8 . APFs, being a mature field of research, have been used
on manipulators and mobile robots,9 while combining them with RL is still a growing field of research.10

Investigating the use of APF methods in the context of RL agents acting on uncertain systems and
partially known or unknown environments is the leading motivation for this paper. Despite APF methods
being used frequently in path planning tasks, that is not per-se the goal here. Instead, these methods are
adapted to aid in the following of more generalised goals, such as attitude or velocity targets. The APF
approach is required not only to provide safety, but also to accommodate a degree of freedom for the agent,
in order to allow learning through state exploration.

Four levels of combining APFs with a Q-Learning based algorithm are proposed, ranging from a purely
potential based approach to one that is solely reward based. These are then analysed and tested in a
gridworld simulation including inertia effects. The paper first introduces the fundamentals of this research,
namely Safe RL and APFs in Section II, after which the experiment and analysis approach are detailed
in Section III. Section IV then presents the results and the paper is concluded, with recommendations for
future work, in Section V.

II. Fundamentals

II.A. Safe Reinforcement Learning

The concept of safety has been incorporated within RL in two major branches, the ‘optimisation criterion’,
and the ‘exploration process’.6 The first deals with optimising pre-defined performance metrics (minimise
costs, maximise rewards etc.), while the latter tries to prevent dangerous exploratory actions on the part of the
agent. Algorithms such as ‘Safety Handling Exploration with Risk Perception Algorithm (SHERPA)11’ have
been shown to enable an agent to successfully explore its environment under limited prediction capabilities.
This algorithm is also validated on a quadrotor model, further solidifying the applicability of this research
to an aerospace context. It must be noted here that ‘safety’ as a concept within RL is still a growing field.
However, some attempts have been made to propose and generalise the definitions of various types of safety.
This is presented in the following sections.

Types of Safety

‘Safe Exploration’ in this context could be intuitively thought of as any ‘schematic or algorithm that enables
the agent to avoid fatal states and suboptimal lead-to-fatal (LTF) states11 while rapidly learning about the
environment and its dynamics’. LTF states are defined as those that, ’when visited, will lead the agent to
end up in the fatal state space with probability one’.11 Pecka and Svoboda2 published an overview of safe
exploration in RL in 2014, where they collected the various definitions used so far in this non-standardised
field and a short discussion of each follows.

Labelling: Referring to a transition from state s to s0 while carrying out the action a and receiving reward
r with the tuple <s; a; r; s0 >, Hans1 defines four broad regions in order of decreasing safety, namely, ‘safe’,
‘critical’, ‘supercritical’ and ‘fatal’. A transition is fatal if r is below a certain threshold, while a safe policy
leads only to safe states by using non-fatal transitions. In a ‘supercritical’ state, ‘there exists no policy that
would guarantee no fatal transition for an agent starting from state s’,2 i.e., the state that the agent currently
is in, s, can, with a very high probability, give rise to a fatal transition. Finally, the state from which the
agent chose to take a supercritical or fatal action is itself called ‘critical’.

Garcia and Fernandes introduce the Policy Improvement through Safe RL (PI-SRL) algorithm which
aims to ‘improve baseline policies in dangerous domains using RL’.3 In order to determine what is safe, four
regions are defined, ‘Known States’, Unknown States, Non-Error States and Error States. The algorithm
first learns the ‘known-space’ from the baseline policy, which is assumed to be safe and suboptimal. The

2 of 21

American Institute of Aeronautics and Astronautics

‘unknown’ spaces are then adjusted in order to explore, while avoiding the ‘error’ areas. The exploration
is carried out by ‘perturbing the state-action trajectories with the addition of Gaussian random noise’. A
risk-parameter σ is defined which allows the user to set how much noise (and therefore risk) he/she is willing
to add to the exploration process.

Most other definitions of ‘safety’ in literature in terms of labels follow from the ones discussed above but
the crux of the matter is that there are safe states, fatal states and critical states, the latter being ones which
have the potential to lead to a fatal situation.

Ergodicity: Moldovan and Abbeel present an algorithm that ‘guarantees safe, but potentially suboptimal
exploration’4 by formulating safety through ergodicity. An ergodic MDP is defined as one where an agent
can (with probability of at-least a certain δ), by following a suitable policy, reach any state, starting from
any other state. The physical interpretation here is that any ‘mistake’ can be reversed. Safe policies are
defined as those that ‘preserve ergodicity with some well controlled probability’. However, ergodicity must
be carefully defined and discussed in terms of applicability. A UAV could find itself in a situation where,
due to a dynamic environmental change or a system fault, it cannot return back to its original state. This
violates ergodicity but does not automatically mean that the UAV is in an unsafe state.

Costs: Heger5 presents a discussion on why using policies derived from minimising the expected total dis-
counted cost is not always reliable in his paper on considering risk in RL. Here, a cost is assigned for taking
an action/being in a state and the worst-case cost of the generated policies is minimised. Pecka brings up the
valid point that using the cost method ‘leads only to the safest possible policies, which are not necessarily
safe’.2 Therefore, any formulation involving cost assignment must be carefully set up.

Variance of Expected Return: This is somewhat of an extension to the cost minimisation method of
ensuring safety, as it recommends minimising both cost and its variance. A safe policy is one that minimizes
the number of critical actions, since ‘fatal transitions are expected to yield much larger costs than safe
transitions, increasing the variance significantly’.2 This is also expected to be a highly restrictive approach
as there could be situation where the change in returned cost from episode to episode is high, without
necessarily putting the agent in a fatal situation.

Safe RL Approaches

Approaches to safe RL have been segmented into two distinct sections in literature, namely algorithms
that influence the Optimisation criterion and ones that modify the Exploration process.6 Despite these
two branches, a modification to the optimisation criteria will invariably influence the exploration process.
However, the first branch considers those methods that include some form of risk in the optimisation crite-
rion while the second branch considers those methods where there is a fixed optimisation criterion, but the
exploration process is modified to include risk.

Optimisation Criterion: Finding a function that guides which actions to take in which states (optimal
control policy), while optimising a defined criterion is the basis for most RL problems. One proposal is the
Worst-Case Criterion where the objective is ‘to compute a control policy that maximises the expectation
of the return with respect to the worst case scenario incurred in the learning process6.’ Using the minimax
equation, this approach mitigates variability due to system stochasticity and/or parameter uncertainty. This
is an attempt at decreasing risk and selection of actions that lead to undesirable states. Any approach that
includes a parameter that allows the ‘sensitivity to the risk ’ to be controlled, falls under the Risk-Sensitive
Criterion. There are methods based on exponential functions and on the weighted sum of return and risk.
This approach attempts to avoid catastrophic situations even if their probability of occurrence is very small.
However, typical behaviours here include the underestimation of risk due to the ignorance of improbable
but severe events. Furthermore, ‘mean-variance’ optimisation ‘can directly lead to counterintuitive policies’
(cited from Garcia,6 and inferred from a study on mean-variance optimisation infinite horizon MDPs7).

Exploration Process: Methods classified here include the consideration of ‘risk’ within the exploration
process while keeping the optimisation criterion unchanged. The motivation for doing this as opposed to
classic RL exploration strategies that rely on some randomness, e.g., ε-greedy, is that these random policies
require the agent to explore and learn from scratch, which will almost certainly lead to catastrophic actions

3 of 21

American Institute of Aeronautics and Astronautics

being taken. Furthermore, random exploration is time and resource consuming as irrelevant regions of
the state-action space are explored. The bulk of the methods here lead on from the conjecture that ‘it is
impossible to completely avoid undesirable situations in high-risk environments without a certain amount of
external knowledge’.6 Three approaches to using external knowledge are to Provide initial knowledge to
prompt the agents’ exploration in the right direction, to Derive a policy from a training set, or to Guide
exploration through teacher advice, where a ‘teacher’ model (generally a partial Q-function) is used to
provide information when it is considered necessary. Learning from Demonstration (LfD) or apprenticeship
learning is another often cited approach,8 where performance is heavily based on the training set. If the
initialisation does not provide information for all important states, the agent will end up with a suboptimal
and possibly fatal policy.

II.B. Artificial Potential Fields

Figure 1. Examples of minima using
APF (agent goes from start (S) to
goal (G)

APFs have traditionally been used to develop obstacle avoidance strate-
gies for manipulators and mobile robots. The APF itself is described by
Khatib as a ‘field of forces’ where the desired goal position is an ‘attrac-
tive pole’ for the manipulator and obstacles are surrounded by ‘repulsive
surfaces’.9 A defined potential function typically represents the gener-
alised shape of this field and is made up of two distinct ‘attractive’ and
‘repulsive’ definitions. The former can be thought of as an energy well in
a contoured surface which, by virtue of its shape, drives the agent to the
bottom (point of lowest potential). The ‘contours’ in this surface come
about due to the presence of repulsive potential barriers placed around
obstacles (or fatal regions).

The idea of using APFs can be generalised to undesirable regions in the
whole state-space that the agent should learn to avoid, not just physical
obstacles. An RL agent is expected to benefit from the direction provided by an APF in its environment, at
least in the context of increasing safety of exploration. Combining APFs and RL is not a very mature field
of research and the issues identified with the use of APFs for robots are expected to extend to an RL agent
as well. The key issue is that of the agent getting stuck in local minima, as illustrated in Fig. 1.

In order to mitigate this problem, the methods proposed in literature follow one or more of the following
strategies.

• Following of the same path out of the local minimum (backtracking) and then using another strategy.

• Random movements in order to ‘explore’ itself out of the minimum.

• Using a procedural planner.

• Designing more complex APFs that are minima free (harmonic PF) or adaptive based on whether the
minimum is local/global.

Keeping the aforementioned and the context of this paper in mind, a simulation is developed which allows
for an analysis of the interaction between RL and APFs. This is not necessarily intended to be a study in
designing the optimal artificial potential function and the values are therefore chosen procedurally and based
on experience. The RL agent is expected to use the APF as a substitute for an environment model, which
it is not provided in the beginning. Using this learnt information, it is expected that the action selection
behaviour of the agent will inherently be safer than not using APFs.

III. Experimental Setup

In order to explore the feasibility of combining APFs with RL algorithms with a view to increase safe
exploration, a MATLAB simulation environment is developed. The overall goal is to simulate an agent
traversing an environment which includes states that are to be avoided, e.g., a UAV with an obstacle
avoidance task. The choice to keep this simulation as a discrete, 2D world is taken in order to focus on the
APF + RL combination rather than visual extensions, which can always be included in future iterations.
Section III.A explains the model in more detail, after which the analysis approach to be taken is explained

4 of 21

American Institute of Aeronautics and Astronautics

in Section III.B. Finally, some implementation specifics are elaborated upon in Section III.C, followed by a
discussion of the results in Section IV.

III.A. Simulation

The simulation includes four states, namely velocities and positions in x and y directions Vx, Vy, x and y.
The environment is an 11x11 grid world, where some of the grid-squares are considered obstacles. The agent,
represented by a black cell in Fig. 2 has the task of learning about its environment, and over time, maturing
a policy that allows it to avoid the obstacles and reach its goal cell, G, with no overshoot, beginning from
the start cell, S.

Figure 2. Gridworld with obstacles,
start (S) and goal (G) positions

The goal state, G may be represented by Eq. 1. If the agent passes
over the goal position in its run, it is said to have overshot the goal. This
is elaborated upon in Fig. 3. Here, a represents the change in velocities
taken as action by the agent. On the left, the agent already has velocity
values of 3 in both x and y directions. The action taken is (0, 0), namely
no velocity change. This takes it through a path that goes over the goal
state. The agent carries out this movement one step at a time, where, at
the second step, the agent will be at the goal position. However, due to
the fact that it still has residual speed, it will end up overshooting. The
situation on the right is of a valid goal state. While there is no overshoot,
it must be noted here that both scenarios have residual inertia. It is not
imposed that the agent must reach the goal position with zero velocities, as discussed previously.

Figure 3. Goal Overshoot scenario

The goal state is made up of a user chosen position and velocity. For the latter, perhaps the most realistic
case would be to impose a zero-velocity condition on the agent, i.e. it should arrive at the goal location with
no residual speed. However, this is also the most restrictive and therefore difficult, condition. In order to
ensure that the simulation results can be interpreted and compared, a less restrictive goal condition is set,
namely that the agent should learn and condition its algorithm such that it arrives at the goal position with
no overshoot instead of no velocity. In order to clarify this, it is imperative to explain the actions that are
available to the agent. Every step, the agent has the option to increase or decrease its change in horizontal
and vertical velocity, namely ∆Vx and ∆Vy. Once this is set, the agent can move one block at a time, where
the number of blocks moved (and the direction) in that step is determined by the current position, velocity
and change in velocity at that state.

Gideal →< 0, 0, xgoal, ygoal >

Gsim →< Vx, Vy, xgoal, ygoal >
(1)

For completeness, the range of possible values for this simulation can be seen in Fig. 4. There are 49
combinations of velocities that are possible in this simulation (7 from Vx and Vy each, the values of which
both go from −3 to 3). As far as actions go, each step, the agent can choose from decreasing or increasing its

5 of 21

American Institute of Aeronautics and Astronautics

velocity in x and y direction by 1, or not changing it at all. For clarity, the whole set is written out in Fig.
4. These values are chosen based on an informal tradeoff between model size (and therefore computational
complexity and time), and return in terms of effect observability. What is meant by this is that the chosen
size still allows for the observation of potential based interaction effects. A bigger state-space by magnitude
would not add much.

Figure 4. Model parameters

Regarding the implementation of an APF, there
are two main questions to be tackled; how to store
the observed ‘potential’ information, and what to do
with it. Extending the Q-learning concept of assign-
ing what is essentially an ‘estimated utility’ value to
each state, a P-table is devised to store representa-
tions of potential for each state. This is an [nx1]
table, where n is the total number of states (in this
case, 5929 [7x7x11x11]), where the presence of po-
tential in each state is recorded in the appropriate
cell. The magnitude of this number represents the
strength. It is assumed that the agent has sensors
which allow it to see 1 step around its current posi-
tion, much like any proximity sensor (vision based or
otherwise) would work on a UAV. Consecutively, the
code is written such that when the agent is next to
an obstacle, it records its current position as a high
potential area, the position slightly further away as a
slightly lower potential area, and so on. The specific
potential values that are assigned based on agent
proximity to any obstacle (obs), are detailed in Ta-
ble 1. This is set arbitrarily following the only requirement that the magnitude of the potential should
decrease as the distance to the obstacle increases. The agent ‘perceives’ the 1-step away (in all directions)
potentials and stores it in a [3x3] construct known as Pnet. It must also be noted here that, since the
potential ‘field’ is only distance based, if a potential is detected at a certain state, that same potential is
assigned to every state with the same position values. Each position will therefore have 49 associated states
due to the possible velocity value combinations.

Table 1. Potential values assigned as a function of position
relative to obstacle

Agent relative
position (to obs)

Potential
assigned

Obstacle -10

1 step -5

2 steps -3

>2 steps 0

These P-table values are then used to influence
the actions of the agent, which can only ‘see’ 1-step
around, but can take actions that take it much fur-
ther from its current position. This is a design choice
and may not be very appropriate as it could lead
to situations such as in Fig. 5 where the agent,
which is currently at cell (5,2), detects an obstacle
and following its potential field reactionary dynam-
ics, is told to take an immediate action to cell (2,5).
However, there is an obstacle spanning cells (3,4) to
(3,5).

Figure 5. Example of sup-optimal situations with the cur-
rent method

This is avoided by introducing further inner eval-
uation loops, i.e., if the agent decides to, based on
the potential information and current velocity, take
an action that would take it more than one step
away, the agent’s dynamics restrict it to make mul-
tiple action–re-evaluation steps. The agent takes a
single step action in the general direction of the ini-
tial suggested action and re-evaluates its immediate
potential field, which gives it new information. The
inner evaluation loops are identical to the outer except for the fact that they do not re-select an action for
the agent, unless, of course, there’s an obstacle in the way. In that case, the inner loop is broken and the
algorithm considers the current pre-obstacle state as the starting point for re-evaluation. The inner loop

6 of 21

American Institute of Aeronautics and Astronautics

actions also do not update the Q-table. This is only updated when the action set is completed or the inner
loop is broken.

This brings up the question of how the agent decides where precisely to go. The specific direction is
determined using a vector based system, which is best explained with an example. Referring back to Fig.
5, the Pnet perceived by the agent when it is at cell (5,2) is as shown to the right of the grid. The values
follow from Table 1. It must be noted here that a significant part of Pnet is influenced by the potential fields
of both obstacle clusters. However, for ease of explanation, the Pnet shown in the example is only due to
the closest obstacle cluster, i.e., bottom left. Interference of multiple potential fields and how they are dealt
with is explained in detail in Section III.C.

The next step is to generate vectors indexed from the agent’s current position. Considering the agent in
the middle of Pnet, the cartesian product of the position indices −1, 0 and 1 is taken as a reference table.
The respective vectors are multiplied with their values from Pnet and then added together to result in one
‘suggested vector’ called P_act. Using a sign convention of down—positive y and right—positive x, this
results in [y, x] = [−12, 12] being the suggested action vector as shown below:

[−5 ∗ (−1,−1)] + [−10 ∗ (0,−1)] + [−10 ∗ (1,−1)]+

[−5 ∗ (−1, 0)] + [−5 ∗ (0, 0)] + [−10 ∗ (1, 0)]+

[−3 ∗ (−1, 1)] + [−5 ∗ (0, 1)] + [−5 ∗ (1, 1)] = [- 12,12]

This tells the agent to go top-right, which makes sense since this takes it away from the immediate
obstacles, which were on the bottom-left, relative to the agent. The magnitude and direction of this vector
is then scaled to result in the action taken by the agent purely due to the potential field.

The P-table provided to the agent is initialised with all zeros. This, of course, implies that actions based
on P-values will not be optimal or even correct in the beginning. Therefore, the standard Q-learning update
is also implemented as in Eq. 2 and the ε-greedy scheme has been adapted to include potential based actions.

Q(s, a) = Q(s, a) + α[r + γmax(Q(s′, :))−Q(s, a)] (2)

This is done by programming the agent to carry out actions based on the Q-table (effectively a measure
of the ‘quality’ of each action in each state) if the magnitude of P_act is a certain value, κ, implying potential
information that is not strong enough to follow. This avoids the agent getting stuck in local minima and
helps for initialisation. Furthermore, the Q-table is also minimally perturbed with a small random value for
each action in order to move away from the deterministic nature of the problem, and also to ensure that the
algorithm can find a maximum Q-value in each state.

The choice of using Q-learning as opposed to other techniques that enable an agent to find an optimal
action selection policy, is motivated by ease of use. That being said, the key limitations of RL are expected
to be present and consistent across most techniques. Time and space complexity, input generalisation,
sensitivity to parameter values and selection of the reinforcement function are all issues that every RL
algorithm has to deal with.12 With Q-learning specifically, since it is a table-based scheme, it induces a high
memory requirement, with the ‘exponential relationship between the size of the input vector and the size
of the state space being a key problem’.12 In a physical context, pure Q-learning will need to be adapted.
This is because it requires visiting all states infinitely many times, which is impractical and would take a
prohibitively long time on a physical platform. Approaches such as Chapman-Kaelbling13 take a first step in
tackling this issue by using a statistics based initialisation where only the most relevant states are searched.
Despite the aforementioned drawbacks, the simplicity of implementation and the model-free nature of Q-
learning motivates the decision for its use as the basis for the test environment. In addition, by its nature,
Q-learning learns the values of all actions, rather than just finding the optimal policy and sticking to it.
This leads to exploration insensitivity, where ‘any action can be carried out at any time and information
is gained from this experience’.14 This is in contrast to on-policy methods such as Actor-Critic learning or
SARSA, where actions must follow or nearly follow the current policy. Exploration insensitivity also allows
Q-learning to ‘learn from other controllers where, even if they are directed toward achieving a different task,
they can provide valuable data’.14 This allows Q-learning to, over time, find a compromise action, having
the knowledge from several non-optimal actions.

7 of 21

American Institute of Aeronautics and Astronautics

III.B. Analysis Approach

Figure 6. Levels of Analysis

Now that the model is established, it is adapted to investigate combining potential fields. The agent can
perceive potential information on varying levels of autonomy. This can range from taking an action that
directly follows on from an obstacle’s potential field, to letting the agent use this field to only influence its
reward function. In the latter case, the agent is expected to, over time, condition its Q-table such that safe
‘potential-influenced’ actions are taken without being explicitly told to do so.

Four levels of analysis are identified and can be seen, represented from high to low level, in Fig. 6. All
these methods are implemented within an ‘ε-greedy’ shell. In order to avoid consistent exploration even after
a good policy is found, while still ensuring that the agent does not exploit its established policies excessively
in the beginning, ε has been designed as the monotonically decreasing function ε = a(b−nep). Here, ε is set
as a function of the current episode number nep and the coefficients, a and b, set empirically and respectively
as 0.6 and 1.0015.

1. Level 1: Here, the agent is directly given an action in the potential zone, effectively overwriting the
Q-table and anything learnt there. One parameter that influences how sensitive the agent is to the
potential information is κ. A very high κ implies that the agent will ignore the potential-based action
and stick to standard Q-learning (essentially Level 4), while a κ of zero means that the agent will
always follow the action suggested by the direction of the potential field. Neither leads to an optimal
policy and therefore κ must be carefully tuned, as shown in Section IV.

2. Level 2: Here, instead of directly affecting the actions in the potential zone, the agent deterministically
shapes the Q-values of the appropriate state-action pair (perhaps even ones in close proximity to it,
eg. similar actions or states around the current one). The Q-shaping could be stochastic, or simply
deterministic, such as in Eq. 3 where Qf is the final updated Q and Qp is the potential zone’s
contribution to the Q-value, and q is a tune-able gain.

Qf = Q+ qQp (3)

3. Level 3: Similar to Level 2, but using a non-deterministic operator such as ‘softmax’ for action
selection. The motivation for using ‘softmax’ is that it shows positive behaviour in ‘settings where
it is necessary to maximize utility but also to hedge against problems that arise from putting all
of ones weight behind a single maximum utility decision’.15 Adaptations of the softmax operator
for reinforcement learning have been explored with positive results by Asadi and Littman where the
motivation for proposing a slightly adapted version called ‘mellowmax’ was to present an operator that
is ‘both non-expansion (ensuring convergent behaviour in learning and planning) and differentiable
(making it possible to improve decisions via gradient-descent methods)’.15

Furthermore, this is interesting to explore since the implementation of the potential information within
the action-selection procedure is non-trivial. Fig. 7 shows the standard softmax equation and a few
suggested modifications to it.

Convergence to a locally optimal policy has been observed with the first two modifications. However,
there are two points to note here. Firstly, softmax includes a ‘temperature’ parameter, τ which is

8 of 21

American Institute of Aeronautics and Astronautics

p

p

p

p

q

q

q

q

q

q

Figure 7. Modification of Softmax to include Potential

not intuitive to tune. Starting from the fact that as τ tends to infinity, all the actions approach equi-
probability and as τ tends to zero, there is a greater difference in selection probability for actions that
differ in Q-values, a value of τ = 50 has been set. In addition to this, these modifications add another
tune-able parameter, q, which is intended to condition the potential strength values (Similar to the
factor ‘q’ in Level 2). Tuning these parameters requires a more thorough analysis of the system. At
the moment, no comparative study has been found on how to set these parameters (at-least on τ).

Secondly, as can be seen from Fig. 7, the ‘softmax’ equation returns a normalised probability of action
selection given that the agent is at a specific state. This is intuitive since the probability depends on
a Q-value that itself is dependent on a specific state-action pair. However, the potential information
available to the agent is only state-based. By including this information in the softmax equation,
the implicit assumption is being made that regardless of the action that is being taken at a given
state, the effect of the potential is the same. This is a conscious choice made to simplify the problem.
Suggestions to deal with this are discussed in Section V.

4. Level 4: This is the most ‘hands-off’ approach since only the rewards are influenced by the potential
information. The agent is not actively barred from going into a potential zone. Rather, it is expected
that the Q-update should eventually realise that the potential zones result in higher negative rewards
and should automatically suggest actions that lead the agent away. This is done by setting κ > 30, as
discussed in ‘Level 1’ a.

III.C. Potential Interaction

Ps = m
N∑

i=1

ps,i (4)

Potential fields around agents will interact if the obstacles are placed
close together. This interaction is shown in Fig. 9 where the raised
surfaces are obstacles and the ‘depressed’ cell represents the poten-
tial ‘pull’ of the goal. In case of potential fields interfering due to
obstacles being close to each other, the potential value for those cells
are determined by adding the original potential values (due to their respective obstacles) and then multiply-
ing it with a merge-factor, (0 < m < 1), 0.75 in this caseb. The only requirement while setting this value
is to ensure that the inter-obstacle space should not be able to have a higher negative potential than an
obstacle itself. This is done to prevent the agent from coming across any situations where it determines that
the best option is to go through an obstacle.

a30 is the highest possible magnitude of the vector ‘P_act’, based on the potential field values used throughout this paper
bThe value for m has to be optimised based on the potential strength magnitudes used. If a sequence of doubling

(−10,−5,−2.5,−1.25) is followed while setting the potential strength values, then, regardless of what the merge factor used is,
there will be no issues with overlapping potential strengths being higher than the obstacles themselves. In this simulation, the
sequence (−10,−5,−3) has been used arbitrarily and hence 0.75 has been determined to be an appropriate value for demon-
stration. Future work will be adapted to stick to the doubling sequence

9 of 21

American Institute of Aeronautics and Astronautics

This is visualised in Fig. 8, where it can be seen that potentials in the ‘interfering’ states do not exceed the
−10 value assigned to the obstacles. Eq. 4 presents a generalised formula for potential strength assignment
for each state, where Ps is the potential value at a given state, ps,i is the potential due to obstacle cluster i
and m is the aforementioned merge-factor. The total number of obstacle clusters in the simulated world is
denoted by N .

Figure 8. Potential strength for interfering fields

Figure 9. Potential Field render

10 of 21

American Institute of Aeronautics and Astronautics

IV. Results

The model is explored in 2 aspects, one in terms of framework and the other, in terms of setup. The
former refers to the 4 levels of analysis elaborated upon in Section III.B, out of which Level 1 and 4 are
taken as comparison baselines and Level 3, referring to the adaptation of softmax to include potential field
information, is explored in more detail. Level 2 will not be explored in this paper due to the difficulty of
obtaining an insight into how Q-values are actually affected. ‘Setup’ refers to the obstacle environment itself.
It is most interesting to put the agent in a situation where action selection and policy convergence is not
trivial. Any algorithms using APFs are naturally susceptible to areas of local minima and 3 different setups
have been proposed in Fig. 10 in order to observe how the agent would deal with these situations.

Figure 10. Proposed Simulation Setups to analyse agent adapt-
ability to local minima

In order to present the reader with a vi-
sual representation of the results, these are
presented in 2 distinct sections, one for Level
1 and 4 (essentially the same framework but
with different κ values) and one for 2 softmax
variations (classified as Level 3). Each section
contains 2 sets of results. The first set contains
a plot of rewards per episode, obtained over
the whole run of 2500 episodes and a graphic
of whether the goal has been reached per
episode. The second presents results of ob-
served collisions and convergence in more detail.

Fig. 7 first introduced the proposed softmax variations. The first and second modifications can be
considered similar, the only difference being a scaling with the temperature parameter, τ . Therefore, for this
analysis, the second and third modifications, shown in Eq. 5 and called Level 3b and Level 3c respectively,
are chosen. These are expected to show different behaviour patterns since, in the second case, when the
parameter q is set to zero, the exponent contains a pure Q-term and the agent is expected to act greedily.
However, in the third modification, the qP (s) term is multiplied, and setting q to zero would result in the
whole exponent being zero. This is expected to result in random behaviour on behalf of the agent.

p(a|s) =
e

(
Qt(s,a)

τ +qP(s)
)

n∑
b=1

e

(
Qt(s,b)

τ +qP (s)
)

p(a|s) =
e

(
qP(s)

Qt(s,a)
τ

)

n∑
b=1

e

(
qP (s)

Qt(s,b)
τ

)

(5)

In the first set of results, the second figure shows whether the
agent arrives at the goal state during any run in the episode. The
second set of figures shows two aspects of the simulation run, con-
vergence and collisions. Convergence can be shown by applying the
first distance norm, as shown in Eq. 6, on consecutive Q-tables.
Here, N and M refer to the dimensions of the Q-table, where NM
would then be the number of states. In order to make definitive
statements about policy convergence and to avoid interference ef-
fects from exploratory actions, this norm is applied to the Q-tables
obtained after every 100 episodes, where the last episode is run with
ε set to zero. This ensures a pure greedy policy and shows how the
agent is conditioned up to that point.

d1(Qk, Qk+1) =

N∑
i=1

M∑
j=1

|Qk(i, j)−Qk+1(i, j)|

NM
(6)

Since the velocity values in x and y directions are contained within the state, the magnitude of the
resultant vector is taken as the speed value. For situations where the agent takes an action that drives it into
a wall or into an obstacle, the average speed is taken as the collision value for that episode. A distinction
can be made between the magnitude and number of hits per episode. Furthermore, wall and obstacle hits
are differentiated and these are displayed in the last set of figures. For ease of interpretation, instead of
displaying the data points for each episode, only one data point is plotted for each 100 episodes. This is
obtained by taking the mean of all the data points for each 100 episode set.

This is then followed up by an analysis of the effects of changing key parameters of the L3 framework in
Section IV.B. Detailed results for all relevant levels are presented in Section IV.A, the general explanations
of which have been introduced in this section. It must be noted that up to this point, these results are

11 of 21

American Institute of Aeronautics and Astronautics

presented only for Setup 1 (refer to Fig. 10). Next, a discussion on velocity and convergence information for
the other setups is presented in Section IV.C.

IV.A. Detailed Results

This section presents detailed simulation results for Levels 1, 4 and 3 of the framework introduced previously.
The key tunable parameter for L1 and 4 is κ, which essentially regulates the sensitivity of the agent to the
potential field. The presented results are for κ values of 0, 15 and > 30. This is because κ > 30 is equivalent
to the agent taking purely reward based actions without taking into account any potential based action
suggestions. On the other hand, κ = 0 only uses potential-based actions. The analysis in this section will
tackle the various aspects of the presented graphs individually. The effect of changing κ on the reward profile
will be discussed first, followed by a discussion on the collisions. This is then concluded with an analysis of
the convergence behaviour.

Level 1
0κ =

Figure 11. Simulation results for L1 (κ = 0)

Reward behaviour over the whole training set of 2500 episodes displays significant change as κ is
increased. For κ = 0, referring to Fig. 11, the agent shows reluctant and slow learning. Visually, slight
convergence to a final baseline value can be seen. This is the value around which the reward per episode
fluctuates for about the last 500 episodes. This is by no means optimal. The decrease in the scale of reward
fluctuations over the whole run can be attributed to the decreasing ε profile that is used in the simulation.
This exploration factor is decreased over the whole run as it is expected that the agent, after learning and
conditioning its behaviour over the initial episodes, will not need to explore so much and can instead exploit
what it has learnt. Looking at the same plot for increasing κ values in Figs. 12 and 13, it can be seen that
the agent converges to an optimal value more quickly and maintains this baseline value for the rest of the
run. This occurs earlier for higher values of κ. What this also means is that the reward over the whole run
is higher as κ is increased. To put these observations in context, κ = 0 fully uses the potential information
without any regulation. This is counter-productive since the agent avoids any zones which could potentially
lead to conflict. It is more content to move around where it started, where it does not observe any potential
fields. The goal is therefore effectively never reached despite the actions taken being extremely safe. On the
other hand, Level 4 behaviour in Fig. 13 shows favourable performance while having a larger magnitude of
fluctuation in the beginning of the run where the agent did not have the potential information as a guide.
Another significant observation is that of the goal-reaching behaviour. The lower the κ, the less favourable
this is. With a κ value of 0, the agent reaches the goal in the beginning due to some lucky exploratory
actions, but fails to successfully learn and over time conditions itself to carry out safe but unfavourable (in

12 of 21

American Institute of Aeronautics and Astronautics

Level 1
15κ =

Figure 12. Simulation results for L1 (κ = 15)

Level 4
35κ =

Figure 13. Simulation results for L4 (κ > 30)

terms of performance) behaviour. In contrast, ignoring the potential field in Level 4 shows behaviour where,
for about the final 1000 episodes, the agent consistently reaches the goal. Learning here has therefore been
successful. As expected, an intermediate κ setting of 15 shows behaviour that is in between the two discussed
cases.

Up until this point, Level 4, where the potential field influence is not felt by the agent, seems to be showing
more favourable behaviour. However, the over-arching goal of this paper is to explore safety promoting
methods. In order to investigate this, collision behaviour must be analysed. An initial observation on all

13 of 21

American Institute of Aeronautics and Astronautics

three settings is that the number and velocity of collisions goes down as the runs progress. This simply shows
that the learning is working as expected. However, this is also where the benefits of using potential fields can
be seen. Referring to the obstacle collision trend lines on all three figures, both the number and velocity of
collisions are consistently higher for Level 4 (no potential) than for either of the Level 1 runs. These values
can be seen on Figs. 11-13, 15 and 16 and have also been compiled in Table 2 for ease of comparison. This
shows much safer behaviour on behalf of the agent when exposed to the effects of a potential field. It can
also be observed over all three frameworks that the number and velocity of wall collisions is much higher
than that of the obstacle collisions. This is because the walls are not treated in the simulation as critical
and therefore are not considered must-avoid regions. A potential field has also only been imposed on the
obstacles and not on the walls.

A thorough analysis has been carried out in order to generalise these observations and the results are
presented in Fig. 14. The data for this plot is generated by running the simulation for varying κ values with
a Level 1 setting. These values range from 1 to 35, increasing in increments of 5 in order to keep the scale of
the simulation manageable. In order to analyse both the performance and the safety of the various settings,
two metrics are used, r avg and safmet. As can be seen in Eq. 7, the former is essentially the mean return
over all the episodes, where i refers to each episode out of 2500 and ri is the total reward in episode i.
This is an indication of performance, as the higher this value, the more reward the agent has accumulated,
likely by reaching the goal more times while avoiding too many negative-reward inducing steps. The second
metric, safmet, reflects safety and is the sum of squares of all the resultant obstacle collision velocity values,
over all episodes. Here, Vti is the resultant velocity value for obstacle collisions in episode i. This, in turn,
is calculated by taking the square root of the addition of the squares of the x and y components of the
collision velocities. Here, only obstacle collisions are taken into account. The reader is reminded here that
the potential field has only been imposed around the obstacles and not on the walls. Collisions into walls,
while interesting to observe model behaviour, do not directly reflect the influence of the potential field on
safety, and have therefore not been included in the calculation of this metric.

r avg =

2500∑
i=1

ri

2500

safmet =

2500∑
i=1

(Vti)
2

2500

(7)

For each run, the values of r avg and safmet−1 are recorded as indicators of performance and safety
behaviour respectivelyc. Fig. 14 shows that there is a tradeoff to be made and an optimal setting where both
performance and safety of exploration can benefit. For the current case, this results in a κ value between
10 and 15 but, as discussed previously, this is subject to change, based on the experiment setup. It is also
interesting to observe in this plot, as mentioned earlier, that a low κ value, while being extremely safe, suffers
from lack of performance. Conversely, a high κ run will potentially learn quickly and reach the goal more
times (high performance) at the cost of colliding more often and with higher velocities in the beginning,
thereby brining its safety rating down. Neither case is acceptable for an autonomous drone and a trade-off
is therefore essential.

The final plot in Figs. 11, 12 and 13 shows convergence behaviour. The norm used to generate these
values essentially calculates the distance between subsequent Q-tables, as per Eq. 6. As this value goes
down, the interpretation is that the variance in the Q-values decreases. This reflects agent conditioning as
it is not exploring and changing the relative weights of its actions as much. Towards the end, as this norm
approaches zero, it can be said that, for the majority of states, the agent has picked the actions that it
has decided are most favourable. With the exception of κ = 0 (Fig. 11) where the trend is consistently
decreasing, these plots also show an initial spike after which the expected decreasing behaviour resumes.
This can be explained by high initial exploration. As this takes place, the Q-table changes drastically every

cFor consistency, the reciprocal of safmet is taken as the metric for comparison. This way, a higher value is better for both
metrics.

14 of 21

American Institute of Aeronautics and Astronautics

Figure 14. Tradeoff between performance and safety with varying κ

run. Only when the effects of learning can be felt by the agent to some significance and it starts repeating
certain actions per state, does the norm start decreasing again. For κ = 0, the exploration is, from the
very beginning, heavily regulated by the restrictions imposed by the potential field. This results in even the
initial exploratory actions being conditioned, resulting in relatively less positive change between subsequent
Q-tables. Over time, the changes only get smaller as the agent settles into what has been trained.

The discussion so far has focussed on the Level 1 and 4 settings, where κ is the main potential field
influencer. However, as discussed previously, the same results can be presented for the softmax based Level
3b and Level 3c modifications, where q = 40 and τ = 5. Fig. 16 shows the results for the softmax modification
that is not explored in more detail previously and shows precisely why. The fluctuations in the reward plot
only marginally improve over the whole run, suggesting minimal learning. Furthermore, it almost never
reaches the goal, and in this sense, displays the worst performance seen so far. Furthermore, despite the
number and velocity of collisions decreasing over the whole run, the average value is still higher than the
rest of the settings, which is undesirable. With regards to the reward plot for Level 3b, shown in Fig. 15,
the behaviour here is more favourable and over time, the agent also learns to reach the goal more often as
its Q and P-tables get more conditioned. Convergence shows similar behaviour to that of Level 1 and 4, as
discussed previously.

Table 2. Detailed collision data (Bold: no potential information used)

Obstacle Collisions Wall Collisions

Level Max Velocity Max Number Max Velocity Max Number Mean Reward

1 (kappa = 0) 0.097 1 3.169 26 -1406

1 (kappa = 15) 0.124 1 1.915 23 -511.7

4 (kappa = 35) 0.217 2 2.416 28 -300

3b 0.248 2 2.332 28 -511.6

3c 0.483 5 2.02 23 -1367

Table 2 summarises the collision data for all the considered frameworks, with Level 4, where no potential
information is used, being shown in red. So far, Level 1 and Level 4 have shown the most favourable
behaviour. Comparing the number and maximum velocity of wall and obstacle collisions, keeping in mind
that it is desired for these numbers to be as low as possible, Level 1 with κ = 15 displays better performance
than Level 3b. However, in terms of the whole run, these two levels display very similar mean reward values,

15 of 21

American Institute of Aeronautics and Astronautics

indicating similar performance.

Level 3b

Figure 15. Simulation results for L3b

Level 3c

Figure 16. Simulation results for L3c

IV.B. Parameter Analysis

For the softmax framework, based on the disucssion in Section IV.A, Level 3b is chosen for detailed analysis.
The experiment can be broken down into the following:

• Independent Variables: τ , q

16 of 21

American Institute of Aeronautics and Astronautics

• Control Variables: κ, setup, potential strengths (and interpretation method of P-table), reward
distribution, number of actions and number of states, maximum number of steps, learning rate (α),
discount factor (γ), exploration factor (ε) profile

• Dependent Variables: performance metric (r avg) and safety metric (safmet)

A standard set of values for τ and q are used to run the simulation, as shown in Table 3. The previously
introduced metrics, r avg and safmet are then recorded in Table 3 for a combination of τ and q values.
Each combination is run in the simulation four times and the mean value is then taken for analysis. This
is done to mitigate, to some extent, the effects of the stochasticity in the simulation and to achieve result
consistency.

Table 3. Performance and Safety Analysis for Level 3 (Softmax based) with varying parameters τ and q

r avg

HHHHHτ
q

0 1 20 40 60 100

1 -256.96 -304.29 -399.79 -265.18 -338.39 -426.31

5 -373.22 -230.61 -221.78 -433.12 -392.28 -360.07

15 -372.18 -479.11 -476.43 -426.93 -473.36 -395.98

20 -474.63 -540.75 -399.59 -406.15 -393.8 -485.45

30 -540.5 -499.41 -467.61 -594.76 -570.47 -508.09

safmet

HHHHHτ
q

0 1 20 40 60 100

1 0.0383 0.0472 0.0482 0.0393 0.0581 0.0517

5 0.0560 0.0451 0.0424 0.0584 0.0458 0.0565

15 0.0578 0.0654 0.0591 0.0678 0.0635 0.0567

20 0.0678 0.06 0.0594 0.0594 0.0623 0.0610

30 0.0690 0.0711 0.0638 0.0745 0.0719 0.0684

For r avg, it is desirable for the number to be as large as possible as this indicates the highest performance.
Conversely, for safmet, a lower number indicates safer behaviour for that parameter combination. It must
be noted that the table also includes values for simulation runs with q = 0. Referring to Fig. 7, this is
essentially pure softmax with no potential field influence and has been included for comparison. Furthermore,
the italicised numbers signify the best values for each set of τ settings, while the number in bold is the best
value over the whole experiment. For the safmet table, since the optimum value is for q = 0, the next lowest
value, which is for q = 40 is also brought to the reader’s attention and is presented in bold. These results
are visualised in Figs. 17 and 18, the former showing the performance analysis and the latter, the analysis
for safety. The optimum parameter combinations are also highlighted in these figures.

It must be noted here that these optimal settings are subject to change based on experiment setup and
no investigation has been made into the scalability of this algorithm. However, that is outside the scope
of this paper. It is interesting to observe that while performance seems to benefit from the addition of the
potential scaling factor, q, the trend for safety is harder to generalise. Perhaps counter intuitively, the lowest
safmet value is for the no potential case (q = 0). Looking at Fig. 18, while the expectation is for safmet
to show a decreasing trend for increasing q, this is not the case. Some trendlines increase while others show
a slight decrease. This is not conclusive and at the moment suggests no safety benefits to introducing the
q factor to a Level 3b framework. One reason for this may be the assumption that the potential value is
not dependent on the action taken and is simply state based. Both Fig. 18 and Table 3 highlight a value of
q = 40 as optimal from the ones that do include q. With regards to the temperature parameter, τ , it is used
to regulate the probability of action selection per action, over the whole action set. As τ → inf, all actions
have the same probability, whereas as τ → 0, the probability of action selection approaches 1 for the action

17 of 21

American Institute of Aeronautics and Astronautics

q

Figure 17. Performance parameter analysis for L3b

q

Figure 18. Safety parameter analysis for L3b

with the highest expected reward. Since the potential field information does not directly influence τ in any
of the modifications, it is expected to behave and affect action selection in a similar manner. It then follows
that a relatively low τ value is seen as optimal. Too high and the effects of learning from the potential field
would not be evident (adversely affecting both performance and safety, as can be seen in Figs. 17 and 18)
whereas a τ of zero would not be mathematically consistent. A relatively low τ ensures that quick learning
takes place, in order to promote safety.

IV.C. Results for Different Simulation Setups

Keeping the previous discussion in mind, a few other simulation setups are explored in more detail here.
Specifically, using a Level 1 setting with a κ value of 13 to ensure a favourable balance between performance
and safety, this analysis looks at collision behaviour and how the agent adapts to difficult setups. Some
examples are proposed in Fig. 10 and are taken as a starting point.

For Setup 2, the trace of the path that the agent takes from start to goal state, after conditioning its
Q-table, is presented in Fig. 19. This is expected since the agent gets equally repulsed from both sets of
obstacles as it searches for a way out of the ‘corridor’. The other hypothesised agent movement would be
a ‘bouncing’ action where it gets repelled by one set of obstacles, only to get repelled back by the other,
thereby resulting in an undesirable back and forth action. However, this is avoided by carefully tuning the
potential field values.

18 of 21

American Institute of Aeronautics and Astronautics

Setup 2

S

G

Figure 19. Setup 2: Trace of conditioned path and collision velocities

Fig. 20 shows the trace and collision values for Setup 3. This setup is devised in order to observe how the
agent can get out of a highly undesirable potential region and get to the goal which is placed on the other
side. As can be seen from the trace, the agent has not totally optimised its behaviour and does not take the
shortest path to the goal. However, it has identified that it is more beneficial to go through the gap, despite
it having a relatively high negative potential due to interference from both obstacle clusters. Furthermore,
the meandering behaviour in the beginning is perhaps necessary to get rid of any excess velocity it may have
built up before entering the gap since there is not much room (between the obstacle and the wall) to slow
down after the gap.

Setup 3

S

G

Figure 20. Setup 3: Trace of conditioned path and collision velocities

Both setups, despite being more challenging, show favourable behaviour in terms of collision avoidance.
Along with the fact that the collision velocities start at a relatively low value for both, they also decrease as
the episodes go by, and for both setups, almost approach zero. This shows the adaptability of using APFs
in order to increase safety of exploration. Despite not having a model of the environment in the beginning
of the run, the agent quickly learns which states to avoid. This learning process is made safer by adding
another layer of information that the agent can extract from its environment, namely the potential field.

V. Conclusion and Recommendations

One of the key issues within RL is the balance between exploration and exploitation. However, before
a policy can be considered mature enough to exploit, sufficient exploration needs to take place in order
to enable the agent to learn. This process is inherently dangerous. For a software agent, approaching or
traversing through a critical state is acceptable and perhaps even desired in the beginning of the episode,
since it promotes quicker learning. However, a drone using an RL algorithm to dictate its control laws and
overall movement behaviour will need significantly more safeguards to ensure safety. Obstacle collisions, in
this case, are considered unacceptable and identified critical states are to be avoided.

19 of 21

American Institute of Aeronautics and Astronautics

Keeping the above context in mind, a Q-learning based test environment is developed, where using nested
functions, an RL algorithm is implemented. Various approaches are then proposed where the standard
Bellman update equation is modified to include potential values as felt by the agent as it explores its
environment. This has an effect on the learning behaviour of the agent and ranges from the potential directly
influencing the agent’s actions, to it only influencing the reward function. An intermediate approach, Level
2, introduces the concept of a potential based deterministic Q-penalty. This is not explored in detail and can
be taken as a recommendation for future work. Level 3, a softmax P-based action selection, is considered
in more detail in this paper. An assumption is made that regardless of the action that is being taken at a
given state, the effect of the potential is the same.

This research is carried out with a view to demonstrate the applicability of APFs to increasing the safety
of autonomous exploration in RL. Despite the need for more research on physical implementation specifics,
this paper has shown that safety can, in fact, be improved by interfacing an APF model with a standard RL
algorithm. APFs have been shown to be robust and accommodating of the trial-and-error nature of RL and
can be applied to uncertain systems in partially known environments. One of the goals of this research that
has not been met is the demonstration of a decrease in computational time and complexity while ensuring
an increase in safe action selection. This, while being a prompt for future research, can be justified by the
exploratory nature of this paper. Novel concepts introduced include the P-table, which stores the agent’s
perception of the environment as it explores. Furthermore, parameters such as κ, τ and q (the latter two
introduced for the softmax based Level 3 approaches) only serve to increase the computational complexity
of these methods. However, proof of concept, rather than optimisation, is taken to be the leading motivation
of this research, and, in that domain, this paper has met its objectives. The introduction of the velocity
states (x and y) have been an attempt in approaching ‘realism’. The effects of inertia that inherently lead
on from including velocity states complicate this problem and make the results more applicable to a real life
situation. That being said, it must be kept in mind that the decision was made early on to use a discrete
RL setting in a discrete environment.

In addition, the parameter, κ is introduced, which regulates the sensitivity of the agent to the potential
information. This essentially puts the approach under the general classification of the ‘Risk-Sensitive Cri-
terion’, though not quite entirely. In terms of the Safe RL approaches introduced previously, namely the
‘Optimisation Criterion’ and the ‘Exploration Process’, the proposed methods falls in between the two. The
fact that the APF is available to the agent means that, through exploring and filling in information about
the potential distribution across the states, it is considering ‘risk’ already in its action selection. Through
multiple trials, it is found that there is a tradeoff to be made between safety and performance.

Furthermore, using the artificial potential field (APF) concept itself does not come without drawbacks.
Susceptibility to local minima and oscillations due to similar attractive and repulsive forces are a few of the
issues faced. In addition, a standard problem here is Goal Non-Reachable with Obstacle Nearby (GNRON).
This occurs when the goal is placed close to an obstacle and the agent/robot is repulsed by the obstacle to
such an extent that it cannot overcome this force and get to the goal. Most of these issues can be resolved
by tuning the actual forces felt by the agent. However, that is not the intention of the research carried out
in this paper. For the sake of the simulation, simple values that allow the agent to not encounter these
issues have been selected. No attempt has yet been made to generalise at this stage. The fact that minimal
previous research has been carried out on the application of APFs to RL further motivates its exploration
in this paper.

One of the observations made in this paper was that Level 3b did not perform as expected in terms of
safety. The proposed reason is that the potential information is only state based and does not take the action
into account. For future work, two suggestions for extension which perhaps make more effective use of the
potential information available, are suggested here:

1. The agent also has access to a construct called ‘Pnet’ which allows it to observe the potential values
in a grid extending one step in every direction from its current state. Using this, one option is to
immediately restrict the accessible action-base to those that correspond to potential values over a
certain threshold value (this cutoff point can be pre-determined) and then continue with softmax/ε-
greedy action selection. Using the same Pnet as introduced previously, Fig. 21 shows how this works.
Here, the cutoff point for no-go actions is a potential value of -10 or lower. Hence, the only available
actions are as shown.

However, there are 2 problems with this. First, it is a brutal approach and perhaps does not belong
in this level of autonomy. It is akin to pre-allocating specific potential-based actions for the agent,

20 of 21

American Institute of Aeronautics and Astronautics

Figure 21. Pnet based action restriction option schematised

similar to Level 1. Secondly, this could lead the agent into getting stuck in local minima as, given a
choice between staying in a zone where there is no potential vs going into a negative potential-rich
zone, it would choose the former, regardless of the fact that the goal may require it to pass through
the potential-rich zone.

2. The other option is to completely rethink what ‘potential’ means to the agent and to treat it much like
the Q-value, where there would be a different ‘potential value’ for each state-action pair. The risk here
is running into problems of dimensionality as now, two rather large data-sets will need to be stored
and interpreted. There would then be a need to look at graph-based methods.

The next step would be to adapt these methods to a continuous world. Furthermore, the agent in this
simulation moves in two dimensions, x and y. The addition of a third position state would directly make this
more applicable to a real life aircraft scenario. The results are expected to be the same, albeit at the cost
of computational complexity due to the increase in size of the Q and P tables. Taking these ideas forward
with an end goal of implementation on a real drone platform is the next step towards validation.

References

1A. Hans, D. Schneegaß, A. M. Schäfer, and S. Udluft, “Safe Exploration for Reinforcement Learning,” in ESANN2008,
Proceedings of the 16th European Symposium on Artificial Neural Networks, no. April, (Bruges, Belgium), pp. 143–148, 2008.

2M. Pecka and T. Svoboda, “Safe Exploration Techniques for Reinforcement Learning An Overview,” Lecture Notes in
Computer Science, pp. 1–19, 2014.

3J. Garcia and F. Fernandez, “Safe exploration of state and action spaces in reinforcement learning,” Journal of Artificial
Intelligence Research, vol. 45, pp. 515–564, 2012.

4T. M. Moldovan and P. Abbeel, “Safe Exploration in Markov Decision Processes,” Proceedings of the 29th International
Conference on Machine Learning, 2012.

5M. Heger, “Consideration of Risk in Reinforcement Learning,” Proceedings of the 11th International Conference on
Machine Learning (ICML), pp. 105–111, 1994.

6J. Garćıa and F. Fernández, “A Comprehensive Survey on Safe Reinforcement Learning,” Journal of Machine Learning
Research, vol. 16, pp. 1437–1480, 2015.

7S. Mannor and J. N. Tsitsiklis, “Mean-Variance Optimization in Markov Decision Processes,” in Proceedings of the 28th
International Conference on Machine Learning, (Bellevue, Washington, USA), pp. 177–184, 2011.

8J. de Lope and J. H. Antonio Mart́ın, “Learning Autonomous Helicopter Flight with Evolutionary Reinforcement Learn-
ing,” in Computer Aided Systems Theory - EUROCAST 2009 (R. Moreno-Dı́az, F. Pichler, and A. Quesada-Arencibia, eds.),
no. December, (Las Palmas de Gran Canaria, Spain), pp. 75–82, Springer, 2009.

9O. Khatib, “Real Time obstacle avoidance for manipulators and mobile robots,” The International Journal of Robotics
Research, vol. 5, no. 1, pp. 90–98, 1986.

10L.-j. Xie, G.-r. Xie, H.-w. Chen, and X.-L. Li, “Solution to reinforcement learning problems with artificial potential field,”
Journal of Central South University of Technology, vol. 15, pp. 552–557, 2008.

11T. Mannucci, E.-J. van Kampen, C. C. de Visser, and Q. Chu, “SHERPA: A safe exploration algorithm for RL controllers,”
in AIAA Guidance, Navigation, and Control Conference, (Kissimmee, Florida), p. 15, AIAA SciTech, 2015.

12M. J. Mataric, “A Comparative Analysis of RL Methods,” tech. rep., Massachusetts Institute of Technology, Boston,
Massachusetts, 1991.

13D. Chapman and L. P. Kaelbling, “Input Generalization in Delayed Reinforcement Learning: An Algorithm And Per-
formance Comparisons,” Proceedings of the Twelfth International Joint Conference on Artificial In- telligence (IJCAI-91),
pp. 726–731, 1991.

14C. Gaskett, D. Wettergreen, and A. Zelinsky, “Q -Learning in Continuous State and Action Spaces,” Australian Joint
Conference on Artificial Intelligence, vol. 1747, pp. 417–428, 1999.

15K. Asadi and M. L. Littman, “A New Softmax Operator for Reinforcement Learning,” Cornell University Library,
no. Property 3, 2016.

21 of 21

American Institute of Aeronautics and Astronautics

28

Part II

Background and Preliminary
Analysis

29

Chapter 2

Reinforcement Learning Basics

The analogy of an exploring infant as an RL agent has been introduced in Ch. 1 in order
to give the reader an intuitive understanding of the mode of operation in RL. This chapter
will formalise the RL process and introduce some terms and their definitions as will be
used throughout the rest of this thesis.

2.1 The RL Model

The RL setting introduces two explicitly separated entities, the agent and the environ-
ment, as can be seen in Fig. 2.1. The agent makes certain decisions where the goal is to
accomplish a given task. The environment then represents the ‘system in which this task
is defined’ [4]. The agent interacts with the environment by carrying out actions which in
turn change the state of the environment. The environment then responds by returning
a reward, which gives the agent some information about the fitness (how good or bad)
of its action in that particular state. This information is important since it allows the
agent to adapt its behaviour for subsequent actions. Finally, to complete the cycle, the
agent then observes the state of the environment and determines what action should be
performed next.

This general framework can be applied to various learning problems, such as the one
shown in Fig. 2.2. This is a visual representation of an RL agent interacting with its
environment and was developed by the author for a previous assignment. The theme of
‘dropping’ an object such as a camera from an aircraft is taken as the context for the agent.
The world is then discretised and modelled as a 20x8 grid, at each end of which there is
a start (S) and goal (G) position. This camera could have a high-level goal of following
a skydiver. However, the goal is to learn to avoid certain obstacles programmed into this
world. Furthermore, a wind profile is included in certain states, which pushes the agent
with a certain magnitude in a certain direction if the agent traverses those states. Fig.
2.2 shows the initial schematic of the world as described above, with the grey grids (next
to G) being the buildings, and the blue grids (next to S) the wind profile. Additionally, in

31

32 Reinforcement Learning Basics

Agent

Environment

ActionObservation

Reward

World

Figure 2.1: The Reinforcement Learning Scheme

order to model an object that has reached terminal velocity and is approaching the Earth
at a constant speed, the agent is programmed to move ’down’ one position regardless
of any action that it may take. This is just one example of the versatility of RL and
literature has countless others, such as inverted pendulum control[11] or playing classic
Atari games[19].

Figure 2.2: Setup of ’skydiving’ RL environment with wind profile, agent and S/G positions

2.2 Model Breakdown

This subsection details the various key elements of the standard RL Model, as introduced
in Section 2.1 and defines certain conventions that will be carried on throughout the rest
of the thesis.

2.2 Model Breakdown 33

2.2.1 The Environment

The state of the environment is represented by x(t) and varies over time. However, for
the purposes of this thesis, most of the discussion will be regarding discrete time RL
algorithms. Therefore, the state variable is considered to be observed in discrete time:
xk, for k = 1, 2... It is also to be noted here that most RL algorithms require the state of
the environment to be perceived by the agent as discretised, taken here to mean that the
whole state space is finely divided into individual units. The discretised state is denoted
as sk ∈ S, where S is the set of possible states (state space) and k is the discrete time
index. It follows then that the granularity of this discretisation determines how closely
the discussion approximates a continuous case.

The environment alters its state based on the action input received by the agent and
then provides a reward back to the agent. It is important to distinguish here between
immediate and total reward, the latter conventionally called return. The reward received
immediately after time step k is denoted by rk, while the return, perceived by the agent
over a period of episodes (or steps in the case of multiple step episodes)1 is defined as a
function of the immediate rewards, Rk = f(..., rk−1, rk, rk+1, ...). This function could be
a simple sum or could use a discount factor, γ (0 ≤ γ ≤ 1), as shown in Eq. 2.1 (adapted
from [23]). This allows for control over how much weight to assign to current vs. future
rewards.

Rk =
∞∑

k=0

γkrk+1 (2.1)

2.2.2 The Agent

The agent needs to carry out an action in order to observe an immediate reward. This
action, ak ∈ A, where A is the set of possible actions, is translated into a physical input
to the environment (uk) in a realistic setting. This uk can be continuous, while ak can
only take values from the set A. Similarly, the actual physical output of the environment
may be denoted as yk, but the observed state is sk, as defined before. In this thesis, the
discussions will be limited to actions ak and states yk.

The agent is tasked with finding an optimal mapping from states to actions (sk → ak)
and this mapping is called the policy. A distinction could be made between policies that
define a deterministic mapping and ones that give a probability distribution over states
and actions. However, for the purposes of this thesis, any policy is denoted as πk, and may
be dependent on only the state or on state-action pairs based on the specific discussion.

2.2.3 Markov Decision Process

The concept of state, as used so far, has been taken to mean any observable signal from
the environment. It is important to note here that while state signals do include immedi-
ately observable measurements based on the sensors available to the agent, the definition

1This is schematically represented in Appendix B

34 Reinforcement Learning Basics

is not restricted here. State representations can be ‘highly processed versions of original
sensations, or they can be complex structures built up over time from the sequence of
sensations’ [23]. The state is therefore constructed and maintained based on immediate
sensory data along with information retained from previously sensed inputs. State signal
processing is not discussed in detail in this thesis. The emphasis is rather put on novel
decision-making concepts while assuming the availability of appropriately processed sen-
sory data. To put this into context, a simulation of an obstacle avoiding task may take
position and velocity data as states, even though the velocity information may not be
explicitly available to the agent using it’s sensors. It is perhaps calculated instead from
the position and time sensors.

A state signal that retains all relevant information is said to have the Markov property.
The general state-action transition model of the environment that defines the probability
of transition to a certain new state s′ with a certain immediate reward, r, given the
complete sequence of current state, action and all past states and actions, is presented in
Eq. 2.2, where p{x|y} is the probability of x, given y.

p{sk+1, rk+1|sk, ak, rk, sk−1, ak−1, rk−1, ..., r1, s0, a0} (2.2)

Following the Markov property, Eq. 2.2 may be expressed as in Eq. 2.3.

p{sk+1, rk+1|sk, ak} (2.3)

An RL task that satisfies the Markov property can be considered a Markov Decision
Process (MDP). Based on the previous definitions, it can therefore be claimed that ‘the
best policy for choosing actions as a function of a Markov state is just as good as the best
policy for choosing actions as a function of complete histories’ [23].

2.3 Choice of RL computation method

Having now introduced the components of a typical RL model, a decision must be made
on how to put them together and compute the simulation. There are various approaches
available in literature, each with their own pros and cons. Fig. 2.3 puts the three main
classes on a scale, from ones that need a complete definition of the model, to ones that
do not.

Dynamic Programming (DP) methods need a perfect model of the environment, including
a full definition of the state and action spaces and a transition model; essentially the whole
MDP. In this sense, it is closer to planning than to learning. Value functions are then
used to structure the search for good policies. Starting from an arbitrary policy, π0, an
evaluation and improvement loop is iterated until convergence to the optimal policy, V ∗.
A key characteristic of DP is that it updates using an estimate of its successor state,
referred to as bootstrapping.

Monte Carlo (MC) methods, on the other hand, do not need full knowledge of the envi-
ronment but still carry out a similar policy evaluation and improvement loop. However,
these methods only learn when an episode ends, making them infeasible for non-episodic
tasks. Furthermore, the expected return starting from state s and following policy π is

2.3 Choice of RL computation method 35

DP MC TD

Model
needed

Model
free

0V π 1π 1V π0π

Bootstraps

Averages
sample returns

Episodic
learning

Updates
every step

Bootstraps

Figure 2.3: Breakdown of RL approaches

computed as the average of observed returns in state s. Being an averaging technique,
this also leads to a high variance [23].

Temporal Difference (TD) methods strike a balance between DP and MC. These methods
are model-free and can be fully incremental. Unlike MC, learning can take place before
knowing the final outcome, i.e. from incomplete sequences. The advantage here is a lower
memory and peak computation requirement. Furthermore, much like DP, it bootstraps
and ‘can be applied on-line, with a minimal amount of computation, and follow from
experience generated from interaction with an environment’ [23].

TD Bootstraps

Samples

No model
needed

MC DP

MC DP

Figure 2.4: Benefits of Temporal Difference methods

Table 2.1: Commonly used TD methods

On-Policy Off-Policy

SARSA Q-Learning

Actor-Critic R-Learning

Fig. 2.4 summarises the advantages offered by TD methods, while Table 2.1 presents a
summary of the most common TD methods, divided by those that are on-policy and those
that are off-policy. The difference is the way these methods either use the same policy
for all their computations or change it based on the information learnt every step. The
on vs off-policy elements in SARSA and Q-Learning are highlighted in their respective

36 Reinforcement Learning Basics

pseudo-codes in Fig. 2.5.

SARSA

Q-Learning

Figure 2.5: Comparing SARSA and Q-Learning

Based on this discussion and the relative ease of implementation, Q-Learning is used as
the basis of the simulations to be performed in this thesis. It is preferred to use such a TD
method, as opposed to Dynamic Programming (DP) in order to generalise the approach
and ensure that it does not require a model of the world in order to perform satisfactorily.
The Q-update, as proposed by Watkins [25], is shown in Eq. 2.4.

Q(St, At)← Q(St, At) + α
[
Rt+1 + γmax

a
Q(St+1, a)−Q(St, At)

]
(2.4)

Here, α is the learning rate and γ the discount factor. Despite α generally being assigned
a single value for the whole run, in order to ensure convergence of the Q-values, it must
be a function that decreases based on the number of times a state has been visited. The
‘Q-value’ is dependent on the agent’s current state and the action that it chooses to take.
It can therefore be seen as a measure of the estimated utility for each state-action pair.
Watkins presents it as ‘a simple way for agents to learn how to act optimally in controlled
Markovian domains and works by successively improving its evaluations of the quality of
particular actions at particular states’ [25].

Chapter 3

Safe Reinforcement Learning

A higher level motivation of why safety is important within the RL context has been
provided in the previous chapters. The trial and error nature of pure RL methods make
them largely infeasible in an aerospace guidance and control task. An autonomous UAV
flying from point A to point B cannot afford to learn certain fatal behaviours by trying
them out. Hitting an obstacle is generally not an option. This chapter details how safety
has been defined in this field so far and places it in the context of autonomous exploration,
which is used to guide the methods for safe RL as developed in the rest of this thesis.

3.1 Types of safety

‘Safe Exploration’ in this context could be intuitively thought of as any ‘schematic or
algorithm that enables the agent to avoid fatal states and suboptimal lead-to-fatal (LTF)
states[17] while rapidly learning about the environment and its dynamics’. LTF states
are defined as those that, ’when visited, will lead the agent to end up in the fatal state
space with probability one’[17]. Pecka and Svoboda [22] published an overview of safe
exploration in RL in 2014, where they collected the various definitions used so far in this
non-standardised field. Fig. 3.1 schematises their findings and a short discussion follows.

3.1.1 Labelling

Various authors define safety by labelling certain states and/or actions based on what
they consider to be safe. These vary based on the author and the context in which their
research takes place.

Hans defines safety as those ‘states or transitions that can lead to damage and thus
must be avoided’ [12]. The research was carried out to optimise the control of industrial
plants with a goal to ensure that the exploration of the state-action space does not cause
damage to the plant. The major contribution of this paper was the introduction of two
components, a safety function and a backup policy. The former is used to determine a

37

38 Safe Reinforcement Learning

Figure 3.1: Safety summary

state’s ‘degree of safety’ while the latter ‘is able to lead the system from a critical state
back to a safe one’. In order to take appropriate actions after identifying the degree of
safety of a state, it first has to be classified. Referring to a transition from state s to
s′ while carrying out the action a and receiving reward r with the tuple < s, a, r, s′ >,
Hans defines four broad regions in order of decreasing safety, namely, ‘safe’, ‘critical’,
‘supercritical’ and ‘fatal’. A transition is fatal if the r is below a certain threshold,
while a safe policy leads only to safe states by using non-fatal transitions. These are
logical and follow from our intuitive understanding of safety. However, the definitions
of ‘critical’ and ‘supercritical’ are more subtle. In a ‘supercritical’ state, ‘there exists no
policy that would guarantee no fatal transition for an agent starting from state s [22],
i.e., the state that the agent currently is in, s, can, with a very high probability, give rise
to a fatal transition. Any action that brings an agent to a supercritical state is itself also
called supercritical. Finally, the state from which the agent chose to take a supercritical
or fatal action is itself called ‘critical’. Taking this one step back, any action that leads
to a critical state is itself called ‘critical’ as well. These definitions can be visualised in a

3.1 Types of safety 39

discretised 2-D world as in Fig. 3.2. It must, however, be noted here that this figure is
simply for the reader’s understanding and is a simplification which, in some cases, does
not strictly adhere to Hans’ definitions. For example, an agent in a pink state, called
supercritical here due to its proximity to the no-go state (obstacle), could be following
a policy that takes it away, i.e., to a critical state, therefore guaranteeing a non-fatal
transition.

Figure 3.2: Safety definitions (adapted from [12])

Garcia and Fernandes introduce the PI-SRL (Policy Improvement through Safe Reinforce-
ment Learning) algorithm which aims to ‘improve baseline policies in dangerous domains
using RL’ [6]. A predefined baseline policy is available and assumed to be suboptimal.
Two steps are then taken. The first approximates baseline behaviour using behavioural
cloning techniques. This is similar to the famous Stanford RL helicopter [1] project by
Abbeel et al where a baseline behaviour is approximated by learning using Learning from
Demonstration (LfD) techniques. Abbeel calls this ‘Apprenticeship Learning’ and this
is discussed in detail in Section 3.2. In the second step, the algorithm carries out pol-
icy improvement by safely exploring the state-action space. It does this by randomly
introducing small amounts of Gaussian noise to the greedy actions of the baseline policy.

In order to determine what is safe, four regions are defined, ‘Known States’, Unknown
States, Non-Error States and Error States. Fig. 3.3 is reproduced from their paper
and graphically represents the relationship between the definitions. The algorithm first

Figure 3.3: Garcia definitions [6]

learns the green ‘known-space’ from the baseline policy, which is assumed to be safe and
suboptimal. The yellow (unknown) and green spaces are then adjusted in order to explore,
while avoiding the red (error) area. The exploration is carried out by ‘perturbing the
state-action trajectories with the addition of Gaussian random noise’. A risk-parameter
σ is defined which allows the user to set how much noise (and therefore risk) he/she is

40 Safe Reinforcement Learning

willing to add to the exploration process. This approach applies under the assumptions
that Nearby states have similar optimal actions and that Similar actions in
similar states tend to produce similar effects. This may be restrictive in terms
of the applicability of this approach to model a nondeterministic physical system, which
depends on what is considered to be ‘nearby’.

Most other definitions of ‘safety’ in literature in terms of labels follow from the ones
discussed above but the crux of the matter is that there are safe states, fatal states and
critical states, the latter being ones which have the potential to lead to a fatal situation.

3.1.2 Ergodicity

Moldovan and Abbeel[20] present an algorithm that ‘guarantees safe, but potentially
suboptimal exploration’ by formulating safety through ergodicity. They define an ergodic
MDP as one where an agent can ([ref: Fig.3.1] with probability of at-least a certain δ), by
following a suitable policy, reach any state, starting from any other state. The physical
interpretation here is that any ‘mistake’ can be reversed. Safe policies are defined as
those that ‘preserve ergodicity with some well controlled probability’. However, there
are drawbacks, as by their own admission, ‘ergodicity rarely holds in interesting practical
examples and consequently, these methods are rarely applicable for physical systems’.

Ergodicity is not an assumption that will be adopted in this thesis due to its high imposed
level of constraint on the agent. A UAV could find itself in a situation where, due to a
dynamic environmental change or a system fault, it cannot return back to its original
state. This violates ergodicity but does not automatically mean that the UAV is in an
unsafe state and therefore perhaps should not be labelled as such.

3.1.3 Costs

Heger[13] presents a discussion on why using policies derived from minimising the ex-
pected total discounted cost is not always reliable in his paper on considering risk in RL.
Here, a cost is assigned for taking an action/being in a state and the worst-case cost of
the generated policies is minimised. Pecka[22] brings up the valid point that using the
cost method ‘leads only to the safest possible policies, which are not necessarily safe’.
Therefore, any formulation involving cost assignation must be carefully set up.

3.1.4 Variance of expected return

This is somewhat of an extension to the cost minimisation method of ensuring safety, as
it recommends minimising both cost and its variance. A safe policy is one that minimizes
the number of critical actions, since ‘fatal transitions are expected to yield much larger
costs than safe transitions, increasing the variance significantly’ [22]. This is also expected
to be a restrictive approach as there could be situation where the change in returned cost
from episode to episode is high, without necessarily putting the agent in a fatal situation.

3.2 Safe RL approaches 41

3.2 Safe RL approaches

A comprehensive survey on safe reinforcement learning techniques has been recently car-
ried out by Garcia and Fernandes[7], where they define ‘Safe RL’ as ‘the process of learning
policies that maximise the expectation of the return in problems where it is important to
ensure reasonable system performance and/or respect safety constraints during
the learning and deployment process’. They then go on to segment Safe RL algorithms
into two branches, ones that influence the Optimisation criterion and ones that modify
the Exploration process. It is noted here that, despite these two branches, a modification
to the optimisation criteria will invariably influence the exploration process. However,
the first branch considers those methods that include some form of risk in the optimi-
sation criterion while the second branch considers those methods where there is a fixed
optimisation criterion, but the exploration process is modified to include risk. Fig. 3.4
is a reproduced version of the overview tree presented in their paper and is used in this
section to detail a few of the methods and their appropriateness in relation to this thesis.

3.2.1 Optimisation Criterion

Finding a function that guides which actions to take in which states while optimising a
defined criterion is the basis for most RL problems. This function is then also known as an
optimal control policy. The criteria are generally based on a cost metric, such as ‘minimise
time’ or ‘maximise rewards’ and are denoted by multiple terms in literature, such as
‘expected return, expected sum of rewards, cumulative reward, cumulative discounted
reward or return’ [7]. The term ‘return’ is used throughout this discussion and refers to
the (possibly discounted) sum of individual rewards obtained for evaluating an action in
a particular state, over the whole process time. Four subcategories are defined in Fig. 3.4
and the most relevant ones are detailed in the sections below.

Worst-Case Criterion

Here, the objective is to ‘compute a control policy that maximises the expectation of
the return with respect to the worst case scenario incurred in the learning process’ [7].
Maximising the worst case return can be formally defined with the ‘minimax’ equation
in Eq. 3.1, where rt is the immediate reward for action selection, γ ∈ [0, 1] and is used
to discount future rewards, Ωπ is a set of state-action combinations that occur while
following policy π and Eπ,w(.) is the expectation with respect to policy π and trajectory
w.

max
π∈Π

min
w∈Ωπ

Eπ,w(R) = max
π∈Π

min
w∈Ωπ

Eπ,w(
∞∑

t=0

γtrt) (3.1)

The motivation for using this approach is to mitigate variability due to system stochas-
ticity and/or parameter uncertainty. This is an attempt at decreasing risk and selection
of actions that lead to undesirable states.

However, update methods developed based on minimax, such as Q̂-learning [13] display

42 Safe Reinforcement Learning

Figure 3.4: Safety summary (adapted from [7])

3.2 Safe RL approaches 43

some behaviour which make them suboptimal for the purposes of this thesis. The ap-
proach assumes that actions with the highest known worst-values will be expected after
performing them once, i.e., that the worst possible state transitions will occur. This is
inherently pessimistic and leads to highly conservative policies. Gaskett[8] analyses this
problem in a cliff-world setting and concludes that the minimum operator is to blame
here and that ‘since the action-values can only move downward in value, they must be
initialised optimistically’. A similar concern is voiced by Neuneier and Mihatsch[21] where
they claim that this approach is ‘too restrictive in real world applications because it takes
very rare events fully into account, leading to policies with a low average performance’.

There have been attempts at improving the minimax criterion, such as β-pessimistic
Q-learning [8] where β ∈ [0, 1] and effectively switches the equation between standard
Q-learning (optimism) and pure minimax (pessimism). In a cliff-walking setting and with
a properly tuned β, this does indeed show better behaviour.

Risk-Sensitive Criterion

Any approach that attempts to include a parameter that allows the ‘sensitivity to the risk
to be controlled’ [7] is classified under this section. In most literature, this parameter is
denoted as β, where β > 0 implies risk aversion, β < 0 implies risk-seeking behaviour and
β = 0 implies risk neutrality. There are methods based on exponential functions and on
the weighted sum of return and risk. In the former, instead of maximising the expected
value of the return, the objective is presented as in Eq. 3.2 [14].

max
π∈Π

β−1 logEπ(eβR) = max
π∈Π

β−1 logEπ(e
β

∞∑
t=0

γtrt
) (3.2)

An alternate formulation is when the objective function is expressed as the weighted sum
of return and risk, as in Eq. 3.3 [7]. Here, the ω parameter can take different forms to
represent risk. Markowitz[18] replaces ω with the variance of the return, while Neuneier
and Mihatsch[21] use the temporal difference errors during learning as their ω. Finally,
Geibel and Wysotzki[9] replace the ω with the probability with which a state sequence
terminates in an error state.

max
π∈Π

(Eπ(R)− βω) (3.3)

This approach attempts to avoid catastrophic situations even if their probability of oc-
currence is very small. However, typical behaviours here include the underestimation of
risk due to the ignorance of improbable but severe events. Furthermore, ‘mean-variance’
optimisation ‘can directly lead to counterintuitive policies’ (cited from [7], and inferred
from a study on mean-variance optimisation in finite horizon MDPs [16]). Neuneier and
Mihatsch[21] also conclude in their study that the limiting behaviours of using exponential
utility functions are also seen here. Finally, these methods generally ‘require error states
to be visited repeatedly in order to approximate the risk function and, subsequently, to
avoid dangerous situations’ [7]. This has implications for an aircraft guidance and control
task as visiting error states, e.g., UAV crash, is simply not an option.

44 Safe Reinforcement Learning

Constrained Criterion

The objective here is to maximise the return while keeping other types of expected mea-
sures within some specified bounds. Formally, this could be considered a constrained
MDP, defined by the tuple < S,A,R, T, C >, where T is the transition from state S
to state S′, while taking action A and receiving return R, and C is a set of constraints
applied to the policy. The constraint(s) serve to effectively reduce the total policy space
Π to a smaller subspace of allowable policies, Γ, resulting in the objective as shown in
Eq. 3.4. The space, Γ itself may be constrained based on a minimum threshold for the
expectation of the return, a maximum threshold for the variance of the return, or to
enforce ergodicity.

max
π∈Γ

Eπ(R) (3.4)

However, as discussed in Section 3.1, the difficulty here lies in the tuning of the threshold
value. Taking ergodicity as a constraining criterion heavily restricts the domain and is
not very representative of physical processes. Setting too high a threshold value does not
ensure safety to an acceptable degree, while not setting it high enough makes the selected
policies too restrictive. Furthermore, these approaches ‘do not prevent fatal consequences
in the short term’ [7].

3.2.2 Exploration Process

Methods classified here include the consideration of ‘risk’ within the exploration process
while keeping the optimisation criterion unchanged. The motivation for doing this as
opposed to classic RL exploration strategies that rely on some randomness, e.g., ε−greedy
is that these random policies require the agent to explore and learn everything from
scratch, which will almost certainly lead to catastrophic actions being taken. Furthermore,
random exploration is time and resource consuming as irrelevant regions of the state-
action space are explored. The bulk of the methods here lead on from the conjecture
that ‘it is impossible to completely avoid undesirable situations in high-risk environments
without a certain amount of external knowledge’ [7].

Three methods of using external knowledge are identified here:

• Provide initial knowledge, effectively prompting the agents’ exploration and
value-function approximation in the right direction.

• Derive a policy from a training set where the time needed for exploration and
discovery is decreased.

• Guide exploration through teacher advice, where a ‘teacher’ is used to provide
information when it is considered necessary.

These methods assume some prior knowledge of the system. Generally, a finite set of
demonstrations are recorded from a teacher and later interpreted (for example using re-
gression) to generate a policy that learns from these demonstrations. A partial Q-function

3.2 Safe RL approaches 45

is built which then guides further exploration. This helps the agent spend less time with
random inefficient actions. A particularly successful implementation of this approach
was by Martin and de Lope[5] for their RL competition helicopter where several teachers
provided the initial training set. Their algorithm restricted crossovers and mutations,
meaning that only slight changes were allowed to the teachers’ policies and convergence
to near-optimal was achieved rapidly. This is an example of Learning from Demonstration
(LfD), or apprenticeship learning, as referred to in Section 3.1. These generally consist
of the following steps:

• Teacher demonstrates task to be learnt and state-action trajectories of this demon-
stration are recorded.

• All state-action trajectories are used to generate a model of system dynamics.

• A near-optimal policy is found using any RL algorithm.

• Policy is tested by running on the real system.

The issue that comes up with LfD, however, is that performance is heavily based on the
training set. If the initialisation does not provide information for all important states, the
agent will end up with a suboptimal and possibly fatal policy. The resulting exploration
process may result in the agent visiting states for which there is no previous information.
This is unsafe and unacceptable in situations where the costs of fatal transitions are high.

A modification of this approach is to consider a separate ‘teacher’ entity, which can be
thought of as an external agent that guides the main agents’ tasks. This could be through
advisory actions that the main agent carries out for that step, a complete sequence of
actions, or a reward provided by the teacher and used to judge (and by extension, influ-
ence) the agents’ behaviour. The teacher senses a state from the environment, just like
the agent does, and, based on the algorithm, decides when it should step in and advise.
The problem with applying these methods to an autonomous aircraft is the assumption
that an all-knowing ‘teacher’ is always present to guide the agents’ actions. This compro-
mises autonomy and increases reliance on constant monitoring. While this approach may
be discussed in future extensions of the thesis due to its successful applications in recent
work, it is not considered as the starting point.

46 Safe Reinforcement Learning

Chapter 4

Potential Field Methods

The Artificial Potential Field (APF) concept has traditionally been used to develop obsta-
cle avoidance strategies for manipulators and mobile robots. The APF itself is described
by Khatib[15] as a ‘field of forces’ where the desired goal position is an ‘attractive pole’
for the manipulator and obstacles are surrounded by ‘repulsive surfaces’. A defined po-
tential function typically represents the generalised shape of this field and is made up of
two distinct ‘attractive’ and ‘repulsive’ definitions. The former can be thought of as an
energy well in a contoured surface which, by virtue of its shape, drives the agent to the
bottom (point of lowest potential). The ‘contours’ in this surface come about due to the
presence of repulsive potential barriers placed around obstacles (or fatal regions). This
chapter first addresses how these attractive and repulsive potentials are formally defined,
after which the motivation for their use within safe RL are elaborated upon.

4.1 Potential Functions

An often-used example of a repulsive APF is the FIRAS function (Eq. 4.1), developed
to be non-negative, continuous and differentiable with values that tend to infinity as
the distance to the obstacle’s surface gets smaller [15]. Here, k is a gain and ρ0 is the
maximum distance where the agent feels this repulsive potential. Outside this region, the
repulsive force felt is equal to zero. ρ(x) then represents the shortest distance from the
agent to the obstacle.

Urepulsive(x) =

{1
2kr(

1
ρ(x) − 1

ρ0
)2, if ρ(x) ≤ ρ0

0, if ρ(x) > ρ0
(4.1)

Conversely, Eq. 4.2 details an attractive potential function, designed to increase as the
agent moves away from the goal point, analogous to the increase in potential energy as an
object moves away from the Earth’s surface [26]. The concept here is that the agent will
seek to settle at the zone of lowest potential based on a gradient descent search method.

47

48 Potential Field Methods

This equation combines parabolic and conic wells and has been proposed by Andrews [2].

Uattractive(x) =

{ 1
2kaρ

2
goal, if ρgoal(x) ≤ d

dkaρgoal(x), if ρgoal(x) > d
(4.2)

Here, d is the radius of a quadratic range, k is a function gain and ρgoal(x) is the Euclidean
distance from the agent’s current position to that of the goal.

Both the attractive and repulsive potential functions then combine to make up the global
potential definition of the APF, U(x), as shown in Eq. 4.3. This formulation assumes
one goal (attractive) point and multiple obstacles (repulsive), hence the sum.

U(x) = Uattractive + ΣUrepuslive (4.3)

APF methods have been developed as an on-line collision avoidance method to be used
when the agent does not have a prior model of the environment or the obstacle. It can
only ‘sense’ the obstacle as it moves closer to it. This can result in the agent getting stuck
in local minima, illustrated by the cases in Fig. 4.1.

Figure 4.1: Examples of minima using APF (agent goes from start (S) to goal (G)

In order to mitigate this problem, the methods proposed in literature follow one or more
of the following strategies.

• Following of the same path out of the local minimum (backtracking) and then using
another strategy.

• Random movements in order to ‘explore’ itself out of the minimum.

• Using a procedural planner.

• Designing more complex APFs that are minima free (harmonic PF) or adaptive
based on whether the minimum is local/global.

4.2 Within Safe RL 49

In addition, a standard problem here is Goal Non-Reachable with Obstacle Nearby (GN-
RON). This occurs when the goal is placed close to an obstacle and the agent/robot is
repulsed by the obstacle to such an extent that it cannot overcome this force and get to
the goal.

It has to be noted that these equations have been proposed with robotic manipulators
and physical obstacles in mind, which is only a subset of the cases being considered in the
case of a UAV, where instead of direct physical obstacles, certain areas of its state-space
are being restricted in the interest of safety. That being said, the scope of this thesis does
not cover a detailed design of the potential functions themselves and the ones presented
are therefore being used as a starting point for discussion.

4.2 Within Safe RL

Despite the conduciveness of RL methods to autonomous exploration, they still stand
to benefit from the direction provided by APFs. Combining the two would allow for
safer exploration and has the potential to offer a powerful approach to model dynamical
systems. Combining APFs and RL is not a very mature field of research. However, an
interesting approach, called the ‘virtual water flow’ method, has been proposed by Xie et
al [26] to solve the local minimum problem, which any RL agent subject to APF forces is
expected to face.

The RL framework is first directly applied by defining a set of attractive and repulsive
sources as ones where the reward received by the agent is either higher or lower than a
design threshold respectively. Following on from Eq. 4.2, a potential value at the current
state, Uatt(s), can be obtained by setting the function gain k to the reward obtained at
the goal state and ρgoal, as before, to the Euclidean distance from the current state to the
goal. Similarly, the repulsive potential follows on from Eq. 4.1 and only applies within
the region of influence around the obstacle, set by ρ0.

The agent first determines whether the current state is at a local minimum by checking
if its global potential value (sum of attractive and repulsive at the current state), U(s) is
less than minU(s′), interpreted as the minimum of the potential values in the ‘neighbour
set’. This set consists of states (s′) reachable from the current state of the agent.

Figure 4.2: Virtual Water Flow visualised (adapted from [26])

If the agent is at a local minimum, the potential at this state is increased and regulated

50 Potential Field Methods

by a ‘speed of filling factor’. This new adjusted potential value is retained by the agent
for further action selection where the agent eventually does find itself able to reach a state
of lower potential, effectively releasing itself from the local minimum. This can be seen
in Fig. 4.2 where the agent is currently at state (3,3), denoted by the red block. The
potentials of the neighbour set are visualised as bars protruding around the agent. The
potential is then increased as seen in the second half of the figure. Here, the ‘neighbour
set’ consists of those for which the potential ‘bars’ have been visualised.

Xie et al[26] tested this framework within a grid-world where the agent has two goal states
to be reached one after the other, in series. The grid world is set up as a 8x8 maze and
therefore lends itself to multiple local minima. The reward function simply assigns a high
reward (10) if the agent is at the goal state, -1 if it encounters obstacles and 0 otherwise.
The agent takes about 45 trials with this problem set-up to converge to an optimum
policy, meeting all its goals while avoiding the obstacles using the APF definitions and
getting out of local minima using the ‘water flow method’.

It must be noted here that while this method seems promising, the one constraint is that
the agent must know the exact ‘potential’ values of its neighbouring (reachable) states to
a high degree of confidence. However, with the assumption of certain sensors, this can be
taken to be the case for most practical applications.

Chapter 5

Preliminary Results

The two key concepts in this work, namely safe exploration and artificial potential
fields, have now been discussed in detail and put into context. In order to get a bet-
ter understanding of how these ideas can be combined and whether their application is
feasible, a MATLAB simulation environment is set up.

This takes the form of a simple 2D grid-world such as in Fig. 5.1 in which the agent,
represented by a black cell, has the task of learning about its environment and, over time,
maturing a policy that allows it to avoid certain obstacles and reach its goal cell. In
this case, the so-called ‘states’ can be seen as the x and y positions. However, since this
research is being done with an autonomous UAV in mind, it is expected that the next
phase will include more states and ones that are relevant to flight in a stochastic real-life
environment. Ch. 7 details the extensions made to this model in order to generate the
final results. The purpose of setting up the simulation as such is to test out novel ideas
of incorporating APF’s within an RL framework. A discussion on the next steps and
research method to be carried forward is presented in Ch. 6.

Figure 5.1: Gridworld testbed

The problem of incorporating an APF within the gridworld and then allowing the agent
to interpret this in order to promote safe exploration has been divided into three main
branches. This can be seen in Fig. 5.2 where the following is proposed:

51

52 Preliminary Results

• A potential field could warrant a change either in the Value/Q function and, by
extension, in the way that the reward system is set up.

• The APF could affect the policy directly by stochastically influencing the likelihood
of certain actions when exposed to a ‘potential’.

• The dynamics of the agent could be influenced by the APF either heuristically or
adaptively.

Figure 5.2: Interpreting ‘Potential’ in the grid

The setup of the code used to generate the simulation environment used in this the-
sis is elaborated upon in Appendix A in order to provide the reader with an intuitive
understanding.

This chapter first details the idea of ‘potential’ in Section 5.1 and is then concluded in
Section 5.2 with preliminary results based on a detailed analytical framework. The choices
made for the rest of the thesis work are also discussed and motivated.

5.1 Developing the idea of ‘potential’

As soon as any implementation of an APF is looked at, it is realised that the concept itself
needs some work. A significant part of the research carried out so far defines a potential
field, be it discrete or continuous, as a distance based function whose output values are
then mapped to a value that influences the action taken by the agent.

There are two main questions to be tackled here; how to store the observed ‘potential’
information, and what to do with it. Extending the Q-learning concept of assigning what
is essentially an ‘estimated utility’ value to each state, a P-table is devised to store
representations of potential for each state. Fig. 5.3 shows the two ways this can be
visualised.

The top branch shows the states put on a 2/3D grid where each cell would then be filled
as the potential values become more available over many episodes. The other option is
similar to the Q-table where all n states are listed in a ‘n x 5’ table where there are 5

5.1 Developing the idea of ‘potential’ 53

Figure 5.3: ‘Potential’ visualisation options

defined potential strengths 1, ranging from -2 to 2. Each state would then get an assigned
strength over time. The other construct here would be to record whether there is a
potential field or not as seen in the bottom right option. Potential ‘strengths’ can still
be taken into account by filling in appropriate values in the appropriately indexed state
cells.

The second approach has been adopted since it does not impose any size-based restrictions
on the strength values, i.e., any number can be filled in. It is assumed that the agent has
sensors which allow it to see 1 step around its current position, much like any proximity
sensor (vision based or otherwise) would work on a UAV. Consecutively, the code is
written such that when the agent is next to an obstacle, it records its current position as
a high potential area, the position slightly further away as a slightly lower potential area,
and so on. It must be clarified here that the agent can only assign potential values for the
state that it is currently in and does so based on distance to objects of interest. (obstacles,
walls, goal etc.) The specific potential values that are assigned based on agent proximity
to any obstacle (obs), are detailed in Table 5.1. This is set arbitrarily following the only
requirement that the magnitude of the potential should decrease as the distance to the
obstacle increases. The agent ‘perceives’ the 1-step away (in all directions) potentials in
a construct known as Pnet 2. Over time, this fills up the potential table based on how
the environment is built. Pnet is visualised for clarity in Fig. 5.6.

The next question is how to use this potential to influence the agent’s actions. The
following subsections go through some of the proposals which follow on from the branches

1The number ‘5’ is chosen arbitrarily and may be adapted to fit the situation at hand.
2This can be found under the section Generation of ‘Potential Field’ net in the e_greedy_selection.m

function contained within Episode.m. For details about these sections, refer to Appendix A.

54 Preliminary Results

Table 5.1: Potential values assigned as a function of position relative to obstacle

Agent relative position (to obs) Potential assigned

Obstacle -10

1 step -5

2 steps -3

>2 steps 0

in Fig. 5.2.

5.1.1 Changing V,Q,r

The first branch suggests an adaptation of the Q-learning update in Eq. 5.1 to include
the generated potential information. There are two suggested options.

Q(s, a) = Q(s, a) + α[r + γmax(Q(s′, :))−Q(s, a)] (5.1)

One is within the max operator. Q-learning is a fairly optimistic update law because
it simply takes the maximum value in its calculations. There may be other, less brutal
operators that select based on measures that already process the Q-values before selection
(eg. based on frequency of occurrence, distribution of values etc.).

The second option is to look at the discount factor, γ. This is used to condition the effect
of the delayed reward in relation to the immediate reward. The P-table could eventually
lead to a potential factor, 0 < γpot ≤ 1 which, when multiplied with the discount factor
as already defined, would give the new conditioning factor. This suggestion is made in
order to make action selection a decision that is significantly influenced by the potential
information available. An example would be choosing a γpot that leads to an increase of
the γ value if the potential value is large and consistently obtained over multiple runs.
This means that the algorithm will give more weight to the immediate reward as opposed
to the delayed ones. In a case where the potential value is not-available, or is inconsistent
over multiple runs (large variance), it would give the immediate reward less ‘importance’
and the delayed rewards would be discounted less. Yoshida et al [27] carried out a study
where they introduced a state-dependent discount factor to a conventional Q-learning
setup. In order to find this discount factor, a discount function is introduced and then
optimised using an evolutionary algorithm.

5.1.2 Changing Policy

This method suggests influencing the likelihood of certain actions stochastically, perhaps
by the introduction of some randomisation factor, subject to their exposure to a strong
potential. The idea behind this is to identify when the agent is receiving a strong impulse
from the potential field (P-table) and to treat that as a special case. The final follow-on
action would be randomly picked from a set of suggested actions. This also has the added
advantage of avoiding getting stuck in minima.

5.1 Developing the idea of ‘potential’ 55

Fig. 5.4 illustrates this method with a Q-table. Here, the agent is at state 1 and has
the possibility to choose from 3 actions. Action a3 has the highest Q-value and therefore
would be chosen following standard Q-learning. However, using information from the
P-table, a probability distribution could be imposed where each action now has a chance
of being selected. This distribution would be designed based on how safe the potential
field around the agent is and which actions are therefore more appropriate. Of course,
over time, as the Q and P-tables get properly conditioned, they should both suggest the
same optimum action.

Figure 5.4: Visual explanation of the ‘policy changing’ approach

5.1.3 Changing Agent Dynamics

In the current iteration of the code, the agent has been given 3 so-called ‘levels’ of mobility,
as can be seen in Fig. 5.5. This simulates various speeds of movement and can be chosen
by the agent based on its immediate requirements, eg., if it finds itself within one cell of
an obstacle, it can choose to apply a strong (Level 3) impulse in the opposite direction.
A disclaimer here is that this method does not take any inertia effects into account.
However, this has been included in the final iteration, used to generate the final results
in Part III of this thesis and is explained in detail in those chapters.

Figure 5.5: Agent action levels

56 Preliminary Results

It must be noted that the agent can only see 1-step around, but can take actions up to 3-
steps around its current position. This is a design choice and may not be very appropriate
as it could lead to situations such as in Fig. 5.6 where the agent, which is currently at cell
(5,2) detects an obstacle and following its potential field reactionary dynamics, is told to
take an immediate Level 3 action. This would result in it moving (in the next step) to
cell (2,5). However, there is an obstacle spanning cells (3,4) to (3,5).

This is avoided by introducing further inner evaluation loops, i.e., if the agent decides to,
based on the potential information, take a Level 3 action, the agent’s dynamics restrict it
to make 2 action–re-evaluation steps. The agent takes a single step action in the general
direction of the initial Level 3 action and re-evaluates its immediate potential field, which
gives it new information. The inner evaluation loops are identical to the outer except for
the fact that they do not re-select an action for the agent, unless, of course, there’s an
obstacle in the way. In that case, the inner loop is broken and the algorithm considers
the current state as the starting point for re-evaluation. The inner loop actions also do
not update the Q-table. This is only updated when the action set is completed or the
inner loop is broken.

Figure 5.6: Example of sup-optimal situations with the current method

This brings up the question of how the agent decides where precisely to go. So far, all the
agent does is act on Potential strengths to determine which level of action it should take.
The specific direction is determined using a vector based system, which is best explained
with an example. Referring back to Fig. 5.6, the Pnet perceived by the agent when it is
at cell (5,2) is as shown to the right of the grid. The values follow from Table 5.1. It must
be noted here that a significant part of Pnet is influenced by the potential fields of both
obstacle clusters. However, for ease of explanation, the Pnet shown in the example is only
due to the closest obstacle cluster, i.e., bottom left. There is a more nuanced method
used to deal with interfering potential fields, and this is elaborated upon in Section 5.2.2.

The next step is to generate vectors indexed from the agent’s current position. Considering
the agent in the middle of Pnet, it can move -1, 0 or 1 steps and the cartesian product
of these values is taken as a reference table. The respective vectors are multiplied with
their values from Pnet and then added together to result in one ‘suggested vector’ called
P_act. Using the sign convention as shown in Fig. 5.7, this results in [−12, 12] being the
suggested action vector as shown below:

[−5 ∗ (−1,−1)] + [−10 ∗ (0,−1)] + [−10 ∗ (1,−1)]+

[−5 ∗ (−1, 0)] + [−5 ∗ (0, 0)] + [−10 ∗ (1, 0)]+

[−3 ∗ (−1, 1)] + [−5 ∗ (0, 1)] + [−5 ∗ (1, 1)] = [- 12,12]

5.2 Analysis 57

This tells the agent to go top-right, which makes sense since this takes it away from the
immediate obstacles, which were on the bottom-left, relative to the agent. As can be seen
in Fig. 5.7, the angle of P_act is also taken into consideration. In this discrete case, the
inclusion of the angle does not offer much of an advantage as the directions could have
been hard-coded by cell, but this now allows a smoother transition when the method is
made more continuous. At the moment, the agent is assigned a sector based on its α and
the end cell is chosen accordingly.

Figure 5.7: Sign convention, including 3 sectors and 3 levels

It must be noted that the agent is not provided with any information about its environ-
ment in the beginning and must build up its P-table over multiple runs from scratch. The
reader may recall that the P-table provided to the agent was initialised with all zeros.
This, of course, implies that actions based on P-values will not be optimal or even correct
in the beginning. Therefore, standard Q-learning is implemented as in Eq. 5.1 and the
ε-greedy scheme has been adapted to include potential based actions. This is done by
programming the agent to carry out actions based on the Q-table (effectively a measure of
the ‘quality’ of each action in each state) if the magnitude of P_act is a certain value, κ,
implying potential information that is not strong enough to follow (refer to the discussion
on κ in Section 5.2.1). This avoids the agent getting stuck in local minima and helps for
initialisation. Furthermore, the Q-table is also minimally perturbed with a small random
value for each action in order to move away from the deterministic nature of the problem,
and also to ensure that the algorithm can find a maximum Q-value in each state.

5.2 Analysis

Section 5.1 broadly presented some approaches to incorporating potential information
within a standard RL setup. However, in order to make an informed decision on the most
effective research path to follow, this section will present simulation results in a bit more
detail, culminating in a recommendation for the direction of the final thesis work, the
results of which are presented in Part III.

5.2.1 Framework

The agent can perceive potential information on varying levels of autonomy. This can
range from taking an action that directly follows on from an obstacle or associated poten-
tial field, to letting the agent use the potential field to only influence its reward function.

58 Preliminary Results

In the latter case, the agent is expected to, over time, condition its Q-table such that safe
‘potential-influenced’ actions are taken without being explicitly told to do so.

Four levels of analysis have been identified and can be seen, represented from high to low
level, in Fig. 5.8 3. The reader may, at this point, draw parallels between these levels and
the three branches of Fig. 5.2. ‘Level 1’ here essentially corresponds to Changing agent
‘dynamics’ while ‘Level 4’ encompasses, among others, a purely reward-based approach.

Figure 5.8: Levels of Analysis

1. Level 1: Here, the agent is directly given an action in the potential zone, effectively
overwriting the Q-table and anything learnt there. This is done using the methods
described in Section 5.1.3. One parameter that influences how sensitive the agent is
to the potential information is κ. A very high κ implies that the agent will ignore the
potential-based action and stick to standard Watkins’ Q-learning (essentially Level
4), while a κ of zero means that the agent will always follow the action suggested by
the direction of the potential field. Neither leads to an optimal policy and therefore
κ must be carefully tuned.

2. Level 2: Here, instead of directly affecting the actions in the potential zone, the
agent deterministically shapes the Q-values of the appropriate state-action pair
(perhaps even ones in close proximity to it, eg. similar actions or states around the
current one). The Q-shaping could be stochastic, or simply deterministic, such as in
Eq. 5.2 where Qf is the final updated Q and Qp is the potential zone’s contribution
to the Q-value, and q is a tune-able gain.

Qf = Q+ qQp (5.2)

The original implementation included this within the Q-learning, effectively mod-
ifying the Q-update as in Eq. 5.3, where α is the learning rate and Terr is the
temporal difference error. However, what this does is essentially introduce another
‘reward’, making it a Level 4 approach. Furthermore, since this is included in the
update itself, every step of every episode that the agent is in a potential zone in-
troduces this factor, meaning that the penalty on the agent is compounded each

3All these methods are implemented within an ‘ε-greedy’ shell, implying that some exploration always
takes place, based on the decaying ε value.

5.2 Analysis 59

time.

Qf = Q+ αTerr + qQp (5.3)

3. Level 3: Similar to Level 2, but using a non-deterministic operator such as ‘soft-
max’ for action selection. The motivation for using ‘softmax’ is that it shows positive
behaviour in ‘settings where it is necessary to maximize utility but also to hedge
against problems that arise from putting all of ones weight behind a single max-
imum utility decision’ [3]. Adaptations of the softmax operator for reinforcement
learning have been explored with positive results by Asadi et al. where their mo-
tivation for proposing a slightly adapted version called ‘mellowmax’ was to present
an operator that is ‘both non-expansion (ensuring convergent behaviour in learn-
ing and planning) and differentiable (making it possible to improve decisions via
gradient-descent methods)’ [3].

Furthermore, this is interesting to explore since the implementation of the potential
information within the action-selection procedure is non-trivial. Fig. 5.9 shows the
standard softmax equation and a few suggested modifications to it.

p

p

p

p

q

q

q

q

q

q

Figure 5.9: Modification of Softmax to include Potential

Convergence to a locally optimal policy has been observed with the first two mod-
ifications. However, there are two points to note here. Firstly, softmax includes a
‘temperature’ parameter, τ which is not intuitive to tune. Starting from the fact
that as τ tends to infinity, all the actions approach equi-probability and as τ tends
to zero, there is a greater difference in selection probability for actions that differ
in Q-values, a value of τ = 50 has been set. In addition to this, these modifications
add another tune-able parameter, q, which is intended to condition the potential
strength values (Similar to the factor ‘k’ in Level 2). Tuning these parameters re-
quires a more thorough analysis of the system. At the moment, no comparative
study has been found on how to set these parameters (at-least on τ).

Secondly, as can be seen from Fig. 5.9, the ‘softmax’ equation returns a normalised
probability of action selection given that the agent is at a specific state. In the
original form, this is intuitive since the probability depends on a Q-value that itself
is dependent on a specific state-action pair. However, the potential information

60 Preliminary Results

available to the agent is only state-based. By including this information in the
softmax equation, the implicit assumption is being made that regardless of the action
that is being taken at a given state, the effect of the potential is the same. This is
perhaps not the most effective use of the information available. Two suggestions to
deal with this are discussed here:

(a) The agent also has access to a construct called ‘Pnet’ (used up until this point,
only for Level 1) which allows it to observe the potential values in a grid
extending one step in every direction from its current state. Using this, one
option would be to immediately restrict the accessible action-base to those that
correspond to potential values over a certain threshold value (this cutoff point
can be pre-determined) and then continue with softmax/epsilon-greedy action
selection. Using the same Pnet as introduced previously, Fig. 5.10 shows how
this would work. Here, the cutoff point for no-go actions is a potential value
of -10 or lower. Hence, the only available actions are as shown.

Figure 5.10: Pnet based action restriction option schematised

However, there are 2 problems with this. First, it is a brutal approach and
perhaps does not belong in this level of autonomy. It is akin to pre-allocating
specific potential-based actions for the agent, similar to Level 1. Secondly,
this could lead the agent into getting stuck in local minima as, given a choice
between staying in a zone where there is no potential vs going into a negative
potential-rich zone, it would choose the former, regardless of the fact that the
goal may require it to pass through the potential-rich zone.

Another option is to check which ‘sector’ the actions fall into and then to
index these sections with Pnet. If that sector in Pnet has a low potential, the
probability of selecting that action should be restricted. This is more in line
with the level of autonomy desired in Level 3. However, more analysis must
be made on what the best way is, to influence this probability. One option
is to use the previously introduced parameter, q. The agent, while assigning
probabilities to the action-space, first checks which sector (top-left, up, top-
right etc.) the action falls in. This sector is then indexed with Pnet. If the
corresponding potential value for that sector in Pnet is undesirable, a higher k
could be set and vice versa. This allows for the influence of the action to also
be taken into account.

(b) The other option is to completely rethink what ‘potential’ means to the agent
and to treat it much like the Q-value, where there would be a different ‘potential
value’ for each state-action pair. The risk here is running into problems of

5.2 Analysis 61

dimensionality as now, two rather large data-sets will need to be stored and
interpreted.

4. Level 4: This is the most ‘hands-off’ approach since only the rewards are influenced
by the potential information. The agent is not actively barred from going into a
potential zone. Rather, it is expected that the Q-update should eventually realise
that the potential zones result in higher negative rewards and should automatically
suggest actions that lead the agent away. This is done by setting κ > 30, as discussed
in ‘Level 1’ 4.

5.2.2 Results and Conclusions

This subsection presents the results of simulation runs carried out following the four levels
as described in Section 5.2.1. In order to avoid consistent exploration even after a good
policy had been found while still ensuring that the agent does not exploit its established
policies excessively in the beginning, ε has been designed as the monotonically decreasing
function in Eq. 5.4. Here, ε is set as a function of the current episode number nep and
the coefficients, a and b are set empirically and respectively as 0.6 and 1.0015.

ε = a(b−nep) + c (5.4)

Despite this, it could be that the final policy is still sometimes found to be suboptimal.
The epsilon rapidly decreases, so the agent learns a policy and then over time, does not
have enough ‘residual’ left in the epsilon equation to look for a more optimal one. This
could be solved by temporarily increasing the epsilon after it has already decayed to its
minimum once, in order to promote finding a better policy through exploration. This
is then again allowed to decay to the residual. The Q-table after the first decay is then
compared to the table after the second decay in order to see if the agent does indeed
converge on a more optimal policy. This can be seen schematically in Fig. 5.11.

Figure 5.11: Exploration strategy

The simulation world is set up as in Fig. 5.12 where the agent is, for the first 500 episodes,
initialised in a random location at the bottom left of the grid, after which the start position
is fixed.

430 is the highest possible magnitude of the vector ‘P_act’, based on the potential field values used
throughout this paper

62 Preliminary Results

Figure 5.12: Simulation grid

The goal is placed such that the agent will have to interact with the potential field
generated by the obstacles. This is shown in Fig. 5.14 where the raised surfaces are
obstacles and the ‘depressed’ cell represents the potential ‘pull’ of the goal. In case of
potential fields interfering due to obstacles being close to each other, the potential value for
those cells are determined by adding the original potential values (due to their respective
obstacles) and then multiplying it with a merge-factor, (0 < m < 1), 0.75 in this case5.
The only requirement while setting this value is to ensure that the inter-obstacle space
should not be able to have a higher negative potential than an obstacle itself. This is done
to prevent the agent from coming across any situations where it determines that the best
option is to go through an obstacle. This has been visualised in Fig. 5.13 where it can
be seen that the potential values in the ‘interfering’ states do not exceed the −10 value
assigned to the obstacles. Eq. 5.5 presents a generalised formula for potential strength
assignment for each state, where Ps is the potential value at a given state, ps,i is the
potential due to obstacle cluster i and m is the aforementioned merge-factor. The total
number of obstacle clusters in the world is denoted by N .

Ps = m
N∑

i=1

ps,i (5.5)

A summary of the reward assignments in this simulation can be seen in Table 5.2 where
the rewards are based both on the state that the agent is in (‘position’) and the action
that it chooses to take (‘action’). The latter could be a single action or a Level 2/3 action
(‘within the loop’).

Fig. 5.16 shows the simulation results for Level 1 and Level 4. The first column shows
the reward value return per episode over the whole run. While simulations 2 and 3 seem

5The value for m has to be optimised based on the potential strength magnitudes used. If a sequence
of doubling (−10,−5,−2.5,−1.25) is followed while setting the potential strength values, then, regardless
of what the merge factor used is, there will be no issues with overlapping potential strengths being higher
than the obstacles themselves. In this simulation, the sequence (−10,−5,−3) has been used arbitrarily
and hence 0.75 has been determined to be an appropriate value for demonstration. Future work will be
adapted to stick to the doubling sequence

5.2 Analysis 63

Figure 5.13: Potential strength for interfering fields

to increase the return per episode over the entire run, simulation 1 barely shows any
improvement. Column 2 shows the most visited states, which can be interpreted as a
visualisation of the final policy of the agent. Here, the goal state is marked with a black
circle. The third column shows, over the whole run, whether the agent has reached the
goal. A mark is placed on ‘one’ if, in any given episode, the agent reaches the goal,
and ‘zero’ otherwise. It can be seen that for the second and third simulations, the agent
eventually adopts a policy where it reaches the goal every episode. This is not the case
for the first simulation. Finally, the fourth column uses the first distance norm, as shown
in Eq. 7.2, on consecutive Q-tables, to show convergence. Here, N and M refer to the
dimensions of the grid, where NM would be the number of states.

d1(Qk, Qk+1) =

N∑
i=1

M∑
j=1
|Qk(i, j)−Qk+1(i, j)|

NM
(5.6)

Two settings for Level 1 are included to highlight the effect of the κ variable. In the
case where this is set to zero, the agent only follows the suggested action by the potential
field. As can be seen, this leads to it exploring aimlessly and getting stuck since the goal
is beyond a sizeable potential heavy zone. Every time the agent approaches this zone
with the aim of getting to the other side, the suggested potential-based action is to go
back. When κ is set to larger than 30 (the maximum possible ‘potential’ magnitude), the
potential information is totally ignored and the agent carries out standard Q-learning as

64 Preliminary Results

Figure 5.14: Potential Field render

can be seen in the third set of results (Level 4). Setting κ = 15 aims to strike a balance
where the potential information is used if it is ‘strong enough’. Otherwise, the agent
continues with standard Q-learning.

These two levels will have to be included in every comparative study as a baseline. How-
ever, the decision to be made here is whether to investigate Level 2 or Level 3 in more
detail. Fig. 5.17 shows the simulation results for these levels. Level 2 involves finding a
way to shape the Q-value, as discussed previously. The problem here is one of compat-
ibility. The potential information cannot be simply added to the Q-value, as the latter
includes a different type of information, based on both state and action. Furthermore, as
it stands, the agent is penalised once over each episode based on whether it finds itself in
a potential-rich zone. This may not be very effective and would certainly require setup-
based tuning in order to ensure that these effects are still felt by the agent, regardless of
the maximum number of steps per episode. Coming up with a generalised algorithm for
this approach will require more research than is perhaps appropriate for this thesis.

Two Level 3 results have been included here; 3a refers to the first softmax modification
as shown in Fig. 5.9, while 3b refers to the second modification. In order to mitigate the
problems with this ‘Level’ as discussed in Section 5.2.1, it is assumed that the agent has
access to the Pnet construct. This is a valid assumption as the information to generate
Pnet would be available to the UAV anyway if it has the one-step-ahead sensors on board
and also the P-table in its memory. The suggested action due to this is then taken
into consideration in the following way, visualised in Fig. 5.15. The modified softmax
suggests an action, say ‘A’, while Pnet suggests action ‘B’. Each action is associated with
a probability according to softmax, with action ‘A’ having the highest. However, instead

5.2 Analysis 65

Table 5.2: Reward summary

Category Detail Reward

At goal 500
Position At obs-1 -50

Being at -10 ≤ P < -5 -20
Being at -5 ≤ P < -3 -10

Into obstacle -50
Actions Into wall -50

Single step -10

(3 steps) -10-10γ-10γ2

Within loop (2 steps) -10-10γ

Figure 5.15: Level 3 stochastic action selection

of simply choosing this action, the potential information is further utilised by increasing
the probability of, in this case, action ‘B’ by a factor6 of the magnitude of the action
vector suggested by Pnet, namely |P_act| (introduced previously in Section 5.1.3). After
normalising this new probability set for all the actions to ensure that they add up to 1,
it is then used to pick a corresponding action. All of this is, of course, carried out within
an epsilon greedy shell where a random action is taken with a probability ε.

Based on the above discussion, Level 3 seems like the most promising option to explore in
more detail. Level 3 includes tune-able factors such as the ‘temperature’, τ for softmax
and q, which can be interpreted as the ‘influence’ scaling for the potential information.
Furthermore, the modification of the softmax equation requires more analysis and research
but seems promising so far in terms of convergence and obstacle avoidance. This is as
opposed to Level 2 which has fundamental issues in terms of obtaining an insight into
how Q-values are actually affected. This makes it inappropriate for the final thesis work.
Another key advantage of using a Level 3 approach that has been demonstrated is in terms
of safety. This is shown in Fig. 5.18 as the number of obstacle collisions per episode, over
the whole run. It must be noted here that ‘collisions’ in this case refers to the ‘intent of
colliding’ on behalf of the agent. These are situations where the agent has determined

6This ‘factor’ is 1/100 and is chosen based on the probability magnitudes and the range of values
generated by P_act. This ensures that the probability increase is not excessive and stays between 0 and 1.

66 Preliminary Results

that the best action to take from its current state would be to go through an obstacle.
Now, due to the aforementioned ‘inner-loops’ in the problem setup and the lack of inertia
effects, the agent always stops itself before actually hitting an obstacle. However, the
selection of an action that takes it through one, is recorded and plotted. It can be seen
here that the Level 3 plots show a marked decrease in collisions, both in an absolute sense
(scale shows smaller numbers than for Level 1 plots) and also as the run progresses and
the agent’s behaviour matures.

Following on from the findings so far, Ch.6 concludes the preliminary thesis part and
details the research method applied in the main thesis section.

5.2 Analysis 67

Le
ve

l
1

κ
=

 0
'p

u
re

 p
ot

.'

Le
ve

l
1

κ
=

 1
5

'm
ix

ed
'

Le
ve

l
4

κ
>

 3
0

'p
u
re

 Q
'

R
ew

ar
d

V
is

it
s

G
oa

l
C
on

ve
rg

en
ce

F
ig

u
re

5
.1

6
:

R
es

u
lt

s
fo

r
L

ev
el

s
1

an
d

4

68 Preliminary Results

Level 3
a

Level 2

'Q
-sh
ap
in
g
'

'P-softm
ax'

R
ew

ard
V
isits

G
oal

C
on

verg
en

ce

Level 3
b

'P-softm
ax'

F
ig

u
re

5
.1

7
:

R
esu

lts
for

L
evels

2
an

d
3

5.2 Analysis 69

Le
ve

l
1
a

Le
ve

l
1
b

Le
ve

l
3
a

Le
ve

l
3
b

Le
ve

l
2

Le
ve

l
4

F
ig

u
re

5
.1

8
:

C
ol

lis
io

n
s

ov
er

th
e

w
h

ol
e

ru
n

70 Preliminary Results

Chapter 6

Research Method

The use of Artificial Potential Field driven Reinforcement Learning has the capacity to
make exploration safer. The methods and approaches discussed so far are promising and
must now be rigorously tested and adapted to a more realistic scenario, with a view to
bring the theory closer to application on an aircraft. Namely, the problem must be scaled
up.

After refining the implementation of the ‘agent dynamics’ based approach as detailed in
Ch. 5, the grid-world simulation will be subjected to some changes within the action-
selection process, namely by analysing the Level 3 approach in more detail. Although
most research in safe exploration starts off with defining and including a parameter to
represent ‘risk’ as seen in Ch. 3, here, risk is assessed through information obtained using
a separate source, namely the potential field. Approaches which directly affect the action-
selection policy of the agent will then be tested. This should result in a comprehensive
survey of how APFs can be applied within the RL framework.

The next steps are detailed in Fig. 6.1 where Level 1 proposes 3 complementary direc-
tions this research can go, namely adding more dynamism to the environment (perhaps
making it continuous or atleast more refined), carrying out a more thorough analysis on
the ’P-softmax’ action selection (started in Ch.5) and finally, analysing and suggesting
solutions to local minima problems which arise due to the use of APFs. The first branch
also considers adding inertia effects to the agent, essentially preventing it from taking un-
realistic actions within its state-space. Level 2 then takes the simulation closer to reality
by adding more states and validating the approach with data from a UAV model. It is
not expected that Level 2 will be reached in the duration of this thesis project, but should
be considered for future work.

Scaling the problem up is expected to present further challenges. The data sets are going
to be larger and since RL is not known for its ability to deal with higher order problems
on-line, other solutions will have to be proposed. One such idea is the storage of large
data sets in adaptive state graphs. Regions of the state-space are forgotten and re-learnt
as and when the agent needs it. This will still be computationally expensive for on-
line, in-flight usage, but will save on memory as compared to traditional methods (e.g.,

71

72 Research Method

Figure 6.1: Next steps for the thesis

storing the multi-dimensional Q-table for the whole state-space). Another issue will be
the interpretation of the generalised forces of the potential field to make them suitable for
the UAV. In a real-life scenario, it is not just a simulated ’agent’ that can immediately
react to a repulsive/attractive ’force’, but an actual aircraft that has to translate this
information to an appropriate command signal to its actuators.

Part III

Extended Results

73

Chapter 7

Detailed Results and Analysis

The gridworld simulation proposed in Part II is now extended to include four states,
namely velocities and positions in x and y directions Vx, Vy, x and y. The environment
is an 11x11 grid world, where some of the grid-squares are considered obstacles. The agent,
represented by a black cell in Fig. 7.1 has the task of learning about its environment, and
over time, maturing a policy that allows it to avoid the obstacles and reach its goal cell,
G, with no overshoot, beginning from the start cell, S.

Figure 7.1: Gridworld with obstacles,
start (S) and goal (G) po-
sitions

The goal state, G may be represented by Eq. 7.1. If
the agent passes over the goal position in its run, it
is said to have overshot the goal. This is elaborated
upon in Fig. 7.2. Here, a represents the change in
velocities taken as action by the agent. On the left,
the agent already has velocity values of 3 in both x
and y directions. The action taken is (0, 0), namely
no velocity change. This takes it through a path
that goes over the goal state. The agent carries out
this movement one step at a time, where, at the
second step, the agent will be at the goal position.
However, due to the fact that it still has residual
speed, it will end up overshooting. The situation on the right is of a valid goal state.
While there is no overshoot, it must be noted here that both scenarios have residual
inertia. It is not imposed that the agent must reach the goal position with zero velocities,
as discussed previously.

The goal state is made up of a user chosen position and velocity. For the latter, perhaps
the most realistic case would be to impose a zero-velocity condition on the agent, i.e.
it should arrive at the goal location with no residual speed. However, this is also the
most restrictive and therefore difficult, condition. In order to ensure that the simulation
results can be interpreted and compared, a less restrictive goal condition is set, namely
that the agent should learn and condition its algorithm such that it arrives at the goal
position with no overshoot instead of no velocity. In order to clarify this, it is imperative

75

76 Detailed Results and Analysis

Figure 7.2: Goal Overshoot scenario

to explain the actions that are available to the agent. Every step, the agent has the
option to increase or decrease its change in horizontal and vertical velocity, namely ∆Vx
and ∆Vy. Once this is set, the agent can move one block at a time, where the number
of blocks moved (and the direction) in that step is determined by the current position,
velocity and change in velocity at that state.

Gideal →< 0, 0, xgoal, ygoal >

Gsim →< Vx, Vy, xgoal, ygoal >
(7.1)

Figure 7.3: Model parameters

For completeness, the range of possible val-
ues for this simulation can be seen in Fig.
7.3. There are 49 combinations of veloci-
ties that are possible in this simulation (7
from Vx and Vy each, the values of which
both go from −3 to 3). As far as actions
go, each step, the agent can choose from
decreasing or increasing its velocity in x
and y direction by 1, or not changing it at
all. For clarity, the whole set is written out
in Fig. 7.3. These values are chosen based
on an informal tradeoff between model size
(and therefore computational complexity
and time), and return in terms of effect ob-
servability. What is meant by this is that
the chosen size still allows for the observa-
tion of potential based interaction effects.
A bigger state-space by magnitude would
not add much.

Regarding the potential field, the P-table, introduced in Section 5.1 of Part II, is an [nx1]
table, where n is the total number of states (in this case, 5929 [7x7x11x11]), where the
presence of potential in each state is recorded in the appropriate cell. The magnitude of

7.1 Elaboration of Analysis Methods 77

this number represents the strength. It must also be noted here that, since the potential
‘field’ is only distance based, if a potential is detected at a certain state, that same
potential is assigned to every state with the same position values. Each position will
therefore have 49 associated states due to the possible velocity value combinations.

7.1 Elaboration of Analysis Methods

In order to perform a thorough analysis, the model is explored in 2 aspects, one in terms
of framework and the other, in terms of setup. The former refers to the 4 levels of
analysis elaborated upon in Section 5.2.1 of Part II, out of which Level 1 and 4 are taken
as comparison baselines and Level 3, referring to the adaptation of softmax to include
potential field information, is explored in more detail. Level 2 will not be explored in
this paper due to the difficulty of obtaining an insight into how Q-values are actually
affected. ‘Setup’ refers to the obstacle environment itself. It is most interesting to put
the agent in a situation where action selection and policy convergence is not trivial. Any
algorithms using APFs are naturally susceptible to areas of local minima and 3 different
setups have been proposed in Fig. 7.4 in order to observe how the agent would deal with
these situations.

Figure 7.4: Proposed Simulation Setups to analyse agent adaptability to local minima

In order to present the reader with a visual representation of the results, these are pre-
sented in 2 distinct sections, one for Level 1 and 4 (essentially the same framework but
with different κ values) and one for 2 softmax variations (classified as Level 3). Each
section contains 2 sets of results. The first set contains a plot of rewards per episode,
obtained over the whole run of 2500 episodes and a graphic of whether the goal has
been reached per episode. The second presents results of observed collisions and
convergence in more detail.

Fig. 5.9 first introduced the proposed softmax variations. The first and second modifica-
tions can be considered similar, the only difference being a scaling with the temperature
parameter, τ . Therefore, for this analysis, the second and third modifications, shown in
Eq. 7.3 and called Level 3b and Level 3c respectively, are chosen. These are expected to
show different behaviour patterns since, in the second case, when the parameter q is set
to zero, the exponent contains a pure Q-term and the agent is expected to act greedily.
However, in the third modification, the qP (s) term is multiplied, and setting q to zero
would result in the whole exponent being zero. This is expected to result in random
behaviour on behalf of the agent.

In the first set of results, the second figure shows whether the agent arrives at the goal
state during any run in the episode. The second set of figures shows two aspects of the

78 Detailed Results and Analysis

simulation run, convergence and collisions. Convergence can be shown by applying the
first distance norm, as shown in Eq. 7.2, on consecutive Q-tables. Here, N and M refer
to the dimensions of the Q-table, where NM would then be the number of states. This
was also previously introduced in Part II. In order to make definitive statements about
policy convergence and to avoid interference effects from exploratory actions, this norm
is applied to the Q-tables obtained after every 100 episodes, where the last episode is
run with ε set to zero. This ensures a pure greedy policy and shows how the agent is
conditioned up to that point.

d1(Qk, Qk+1) =

N∑
i=1

M∑
j=1
|Qk(i, j)−Qk+1(i, j)|

NM
(7.2)

p(a|s) =
e

(
Qt(s,a)

τ
+qP(s)

)
n∑
b=1

e

(
Qt(s,b)

τ
+qP (s)

)

p(a|s) =
e

(
qP(s)

Qt(s,a)
τ

)
n∑
b=1

e

(
qP (s)

Qt(s,b)
τ

)
(7.3)

Since the velocity values in x and y directions are con-
tained within the state, the magnitude of the resultant
vector is taken as the speed value. For situations where
the agent takes an action that drives it into a wall or
into an obstacle, the average speed is taken as the col-
lision value for that episode. A distinction can be made
between the magnitude and number of hits per episode.
Furthermore, wall and obstacle hits are differentiated
and these are displayed in the last set of figures. For ease
of interpretation, instead of displaying the data points
for each episode, only one data point is plotted per 100
episodes. This is obtained by taking the mean of all the
data points for each 100 episode set.

An analysis of the effects of changing key parameters of the L3 framework is presented in
Section 7.3. Detailed results for all relevant levels are presented in Section 7.2, the general
explanations of which have been introduced in this section. It must be noted that up to
this point, these results are presented only for Setup 1 (refer to Fig. 7.4). A discussion
on the other setups is presented in Ch 8.

7.2 Detailed Results

This section presents detailed simulation results for Levels 1, 4 and 3 of the framework
introduced previously. The key tunable parameter for L1 and 4 is κ, which essentially
regulates the sensitivity of the agent to the potential field. The presented results are for κ
values of 0, 15 and > 30. This is because κ > 30 is equivalent to the agent taking purely
reward based actions without taking into account any potential based action suggestions.
On the other hand, κ = 0 only uses potential-based actions. The analysis in this section
will tackle the various aspects of the presented graphs individually. The effect of changing
κ on the reward profile will be discussed first, followed by a discussion on the collisions.
This is then concluded with an analysis of the convergence behaviour.

Reward behaviour over the whole training set of 2500 episodes displays significant
change as κ is increased. For κ = 0, referring to Fig. 7.5, the agent shows reluctant and

7.2 Detailed Results 79

Level 1
0κ =

Figure 7.5: Detailed simulation results for L1 (κ = 0)

Level 1
15κ =

Figure 7.6: Detailed simulation results for L1 (κ = 15)

slow learning. Visually, slight convergence to a final baseline value can be seen. This is
the value around which the reward per episode fluctuates for about the last 500 episodes.
This is by no means optimal. The decrease in the scale of reward fluctuations over the
whole run can be attributed to the decreasing ε profile that is used in the simulation.
This exploration factor is decreased over the whole run as it is expected that the agent,
after learning and conditioning its behaviour over the initial episodes, will not need to
explore so much and can instead exploit what it has learnt. Looking at the same plot for
increasing κ values in Figs. 7.6 and 7.7, it can be seen that the agent converges to an

80 Detailed Results and Analysis

Level 4
35κ =

Figure 7.7: Detailed simulation results for L4 (κ > 30)

optimal value more quickly and maintains this baseline value for the rest of the run. This
occurs earlier for higher values of κ. What this also means is that the reward over the
whole run is higher as κ is increased. To put these observations in context, κ = 0 fully
uses the potential information without any regulation. This is counter-productive since
the agent avoids any zones which could potentially lead to conflict. It is more content to
move around where it started, where it does not observe any potential fields. The goal
is therefore effectively never reached despite the actions taken being extremely safe. On
the other hand, Level 4 behaviour in Fig. 7.7 shows favourable performance while having
a larger magnitude of fluctuation in the beginning of the run where the agent did not
have the potential information as a guide. Another significant observation is that of the
goal-reaching behaviour. The lower the κ, the less favourable this is. With a κ value of
0, the agent reaches the goal in the beginning due to some lucky exploratory actions, but
fails to successfully learn and over time conditions itself to carry out safe but unfavourable
(in terms of performance) behaviour. In contrast, ignoring the potential field in Level 4
shows behaviour where, for about the final 1000 episodes, the agent consistently reaches
the goal. Learning here has therefore been successful. As expected, an intermediate κ
setting of 15 shows behaviour that is in between the two discussed cases.

Up until this point, Level 4, where the potential field influence is not felt by the agent,
seems to be showing more favourable behaviour. However, the over-arching goal of this
paper is to explore safety promoting methods. In order to investigate this, collision
behaviour must be analysed. An initial observation on all three settings is that the
number and velocity of collisions goes down as the runs progress. This simply shows that
the learning is working as expected. However, this is also where the benefits of using
potential fields can be seen. Referring to the obstacle collision trend lines on all three
figures, both the number and velocity of collisions are consistently higher for Level 4 (no
potential) than for either of the Level 1 runs. These values can be seen on Figs. 7.5-
7.7, 7.9 and 7.10 and have also been compiled in Table 7.1 in the Appendix, for ease of

7.2 Detailed Results 81

r avg =

2500∑
i=1

ri

2500

safmet =

2500∑
i=1

(Vti)
2

2500

(7.4)

comparison. This shows much safer behaviour on behalf of the agent when exposed to
the effects of a potential field. It can also be observed over all three frameworks that the
number and velocity of wall collisions is much higher than that of the obstacle collisions.
This is because the walls are not treated in the simulation as critical and therefore are
not considered must-avoid regions. A potential field has also only been imposed on the
obstacles and not on the walls.

A thorough analysis has been carried out in order to generalise these observations and
the results are presented in Fig. 7.8. The data for this plot is generated by running the
simulation for varying κ values with a Level 1 setting. These values range from 1 to 35,
increasing in increments of 5 in order to keep the scale of the simulation manageable. In
order to analyse both the performance and the safety of the various settings, two metrics
are used, r avg and safmet. As can be seen in Eq. 7.4, the former is essentially the
mean return over all the episodes, where i refers to each episode out of 2500 and ri is the
total reward in episode i. This is an indication of performance, as the higher this value,
the more reward the agent has accumulated, likely by reaching the goal more times while
avoiding too many negative-reward inducing steps. The second metric, safmet, reflects
safety and is the sum of squares of all the resultant obstacle collision velocity values, over
all episodes. Here, Vti is the resultant velocity value for obstacle collisions in episode
i. This, in turn, is calculated by taking the square root of the addition of the squares
of the x and y components of the collision velocities. Here, only obstacle collisions are
taken into account. The reader is reminded here that the potential field has only been
imposed around the obstacles and not on the walls. Collisions into walls, while interesting
to observe model behaviour, do not directly reflect the influence of the potential field on
safety, and have therefore not been included in the calculation of this metric.

For each run, the values of r avg and safmet−1 are recorded as indicators of performance
and safety behaviour respectively. Fig. 7.8 shows that there is a tradeoff to be made and
an optimal setting where both performance and safety of exploration can benefit. For
the current case, this results in a κ value between 10 and 15 but, as discussed previously,
this is subject to change, based on the experiment setup. It is also interesting to observe
in this plot, as mentioned earlier, that a low κ value, while being extremely safe, suffers
from lack of performance. Conversely, a high κ run will potentially learn quickly and
reach the goal more times (high performance) at the cost of colliding more often and with
higher velocities in the beginning, thereby brining its safety rating down. Neither case is
acceptable for an autonomous drone and a trade-off is therefore essential.

The final plot in Figs. 7.5, 7.6 and 7.7 shows convergence behaviour. The norm used

82 Detailed Results and Analysis

Figure 7.8: Tradeoff between performance and safety with varying κ

to generate these values essentially calculates the distance between subsequent Q-tables,
as per Eq. 7.2. As this value goes down, the interpretation is that the variance in the
Q-values decreases. This reflects agent conditioning as it is not exploring and changing
the relative weights of its actions as much. Towards the end, as this norm approaches
zero, it can be said that, for the majority of states, the agent has picked the actions that it
has decided are most favourable. With the exception of κ = 0 (Fig. 7.5) where the trend
is consistently decreasing, these plots also show an initial spike after which the expected
decreasing behaviour resumes. This can be explained by high initial exploration. As this
takes place, the Q-table changes drastically every run. Only when the effects of learning
can be felt by the agent to some significance and it starts repeating certain actions per
state, does the norm start decreasing again. For κ = 0, the exploration is, from the
very beginning, heavily regulated by the restrictions imposed by the potential field. This
results in even the initial exploratory actions being conditioned, resulting in relatively less
positive change between subsequent Q-tables. Over time, the changes only get smaller as
the agent settles into what has been trained.

The discussion so far has focussed on the Level 1 and 4 settings, where κ is the main
potential field influencer. However, as discussed previously, the same results can be
presented for the softmax based Level 3b and Level 3c modifications, where q = 40 and
τ = 5. Fig. 7.10 shows the results for the softmax modification that is not explored
in more detail previously and shows precisely why. The fluctuations in the reward plot
only marginally improve over the whole run, suggesting minimal learning. Furthermore,
it almost never reaches the goal, and in this sense, displays the worst performance seen so
far. Furthermore, despite the number and velocity of collisions decreasing over the whole
run, the average value is still higher than the rest of the settings, which is undesirable.
With regards to the reward plot for Level 3b, shown in Fig. 7.9, the behaviour here is
more favourable and over time, the agent also learns to reach the goal more often as its

7.3 Parameter Analysis 83

Q and P-tables get more conditioned. Convergence shows similar behaviour to that of
Level 1 and 4, as discussed previously.

Table 7.1: Detailed collision data (Red: no potential information used)

Obstacle Collisions Wall Collisions

Level Max Velocity Max Number Max Velocity Max Number Mean Reward

1 (kappa = 0) 0.097 1 3.169 26 -1406
1 (kappa = 15) 0.124 1 1.915 23 -511.7
4 (kappa = 35) 0.217 2 2.416 28 -300

3b 0.248 2 2.332 28 -511.6
3c 0.483 5 2.02 23 -1367

Table 7.1 summarises the collision data for all the considered frameworks, with Level 4,
where no potential information is used, being shown in red. So far, Level 1 and Level
4 have shown the most favourable behaviour. Comparing the number and maximum
velocity of wall and obstacle collisions, keeping in mind that it is desired for these numbers
to be as low as possible, Level 1 with κ = 15 displays better performance than Level 3b.
However, in terms of the whole run, these two levels display very similar mean reward
values, indicating similar performance.

In order to explain the extremely unfavourable behaviour displayed by Level 3c, it is
worth looking at the formula in more detail. Referring to the second expression in eq.
7.3, Level 3c includes a scaled version of the potential value multiplied by the Q-value in
the exponential. However, due to the setup of the rewards in this simulation, the majority
of the relevant Q-values are negative by default. Furthermore, all potential field values
are negative, with a more negative value signifying severe potential (eg. closer to an
obstacle). Multiplying these two negatives results in a positive value in the exponential
when the agent is exposed to an unfavourable state-action pair. What this leads to is
the agent conditioning itself to pick the worst actions in this case (eg. speeding up and
heading towards an obstacle) instead of a safer option which would ideally eliminate
these cases completely. As a result, it hardly ever reaches the goal and doesn’t receive
significantly higher rewards over time. Perhaps multiplying by −P (s) instead of P (s)
in this modification would be one step towards a working solution. This has not been
explored in detail since the other options display more favourable performance already
and modification of Level 3c is considered to be outside the scope.

7.3 Parameter Analysis

For the softmax framework, based on the disucssion in Section 7.2, Level 3b is chosen for
detailed analysis. The experiment can be broken down into the following:

• Independent Variables: τ , q

• Control Variables: κ, setup, potential strengths (and interpretation method of
P-table), reward distribution, number of actions and number of states, maximum
number of steps, learning rate (α), discount factor (γ), exploration factor (ε) profile

84 Detailed Results and Analysis

Level 3b

Figure 7.9: Detailed simulation results for L3b

Level 3c

Figure 7.10: Detailed simulation results for L3c

• Dependent Variables: performance metric (r avg) and safety metric (safmet)

A standard set of values for τ and q are used to run the simulation, as shown in Table
7.2. The previously introduced metrics, r avg and safmet are then recorded in Table 7.2
for a combination of τ and q values. Each combination is run in the simulation four times
and the mean value is then taken for analysis. This is done to mitigate, to some extent,
the effects of the stochasticity in the simulation and to achieve result consistency.

For r avg, it is desirable for the number to be as large as possible as this indicates the

7.3 Parameter Analysis 85

Table 7.2: Parameter Analysis for Level 3 (Softmax based)

r avg

HHHHHHτ
q

0 1 20 40 60 100

1 -256.9556 -304.29 -399.79 -265.18 -338.39 -426.31

5 -373.2208 -230.61 -221.78 -433.12 -392.28 -360.07

15 -372.1809 -479.11 -476.43 -426.93 -473.36 -395.98

20 -474.6333 -540.75 -399.59 -406.15 -393.8 -485.45

30 -540.4954 -499.41 -467.61 -594.76 -570.47 -508.09

safmet

HHHHHHτ
q

0 1 20 40 60 100

1 0.0383 0.0472 0.04818 0.03933 0.05813 0.0517

5 0.056025 0.04513 0.04235 0.05843 0.0458 0.0565

15 0.05775 0.06535 0.05908 0.0678 0.06348 0.05668

20 0.067775 0.06 0.05945 0.05943 0.06233 0.06095

30 0.06895 0.07105 0.0638 0.07448 0.07188 0.06843

highest performance. Conversely, for safmet, a lower number indicates safer behaviour
for that parameter combination. It must be noted that the table also includes values for
simulation runs with q = 0. Referring to Fig. 5.9, this is essentially pure softmax with
no potential field influence and has been included for comparison. Furthermore, the red
cells highlight the best values for each set of τ settings, while the green cell shows the
best value over the whole experiment. For the safmet table, since the optimum value is
for q = 0, the next lowest value , which is for q = 40 is brought to the reader’s attention
and is presented in bold. These results are visualised in Figs. 7.11 and 7.12, the former
showing the performance analysis and the latter, the analysis for safety. The optimum
parameter combinations are also highlighted in these figures.

It must be noted here that these optimal settings are subject to change based on exper-
iment setup and no investigation has been made into the scalability of this algorithm.
However, that is outside the scope of this paper. It is interesting to observe that while
performance seems to benefit from the addition of the potential scaling factor, q, the trend
for safety is harder to generalise. Perhaps counter intuitively, the lowest safmet value
is for the no potential case (q = 0). Looking at Fig. 7.12, while the expectation is for
safmet to show a decreasing trend for increasing q, this is not the case. Some trendlines
increase while others show a slight decrease. This is not conclusive and at the moment
suggests no safety benefits to introducing the q factor to a Level 3b framework. One
reason for this may be the assumption that the potential value is not dependent on the
action taken and is simply state based. Both Fig. 7.12 and Table 7.2 highlight a value
of q = 40 as optimal from the ones that do include q. With regards to the temperature
parameter, τ , it is used to regulate the probability of action selection per action, over the
whole action set. As τ → inf, all actions have the same probability, whereas as τ → 0,

86 Detailed Results and Analysis

q

Figure 7.11: Performance parameter analysis for L3b

q

Figure 7.12: Safety parameter analysis for L3b

the probability of action selection approaches 1 for the action with the highest expected
reward. Since the potential field information does not directly influence τ in any of the
modifications, it is expected to behave and affect action selection in a similar manner. It
then follows that a relatively low τ value is seen as optimal. Too high and the effects of
learning from the potential field would not be evident (adversely affecting both perfor-
mance and safety, as can be seen in Figs. 7.11 and 7.12) whereas a τ of zero would not
be mathematically consistent. A relatively low τ ensures that quick learning takes place,
in order to promote safety.

Chapter 8

Different Simulation Setups

Keeping the previous discussion in mind, a few other simulation setups are explored in
more detail here. Specifically, keeping the results of the tradeoff between performance
and safety in Ch. 7 in mind, a Level 1 setting with κ values between 10 and 15 is used.
This analysis will look at collision behaviour and how the agent adapts to difficult setups.
Some examples have been proposed in Fig. 7.4 and are taken as a starting point.

Setup 2

For Setup 2, the trace of the path that the agent takes from start to goal state, after
conditioning its Q-table, is presented in Fig. 8.2. This is expected since the agent gets
equally repulsed from both sets of obstacles as it searches for a way out of the ‘corridor’.
Behaviour, of course, depends on the κ value that is set. In this case, a value of 12 displays
such movement. If this κ value is set very low, such as 2, the potential field strength is too
strong and the agent displays behaviour as in Fig. 8.3 where the potential field prohibits
it from reaching the goal. On the other hand, a higher κ of 20 results in Fig. 8.4. Here,
the agent is less repulsed by the obstacles and starts to display a sort of ‘bouncing’ action.
This is where it gets repelled by one set of obstacles, only to get repelled back by the
other, thereby resulting in an undesirable back and forth action. However, this is avoided
by carefully tuning the potential field values and in this case, the agent recovers very
quickly midway through the ‘corridor’.

The potential field, as perceived by the agent at the end of the run, can be seen in Fig. 8.1
with the white cell signifying the goal position. This is essentially a P-table visualisation
and shows that regardless of strategy chosen by the agent to solve this problem, it will
have to interact with a potential field in the corridor in order to reach its goal.

Furthermore, following the norm as detailed previously, favourable convergence behaviour
can be seen in Fig. 8.5 while the goal profile can be seen in Fig. 8.6 and indicates that,
over time, the agent does indeed adapt and reach the goal consistently, despite the setup.

87

88 Different Simulation Setups

Figure 8.1: Setup 2: Potential field, as seen by the agent at the end of the run

Setup 2

S

G

Figure 8.2: Setup 2: Trace of conditioned path and collision velocities

Figure 8.3: Setup 2: Trace of condi-
tioned path with κ = 2

Figure 8.4: Setup 2: Trace of condi-
tioned path with κ = 20

89

Figure 8.5: Setup 2: Convergence be-
haviour with κ = 12

Figure 8.6: Setup 2: Goal profile with
κ = 12

Setup 3

Fig. 8.7 shows the trace and collision values of the agent interacting with Setup 3. This
setup is devised in order to observe how the agent can get out of a highly undesirable
potential region and get to the goal which is placed on the other side. As can be seen from
the trace, the agent has not totally optimised its behaviour and does not take the shortest
path to the goal. However, it has identified that it is more beneficial to go through the
gap, despite it having a relatively high negative potential due to interference from both
obstacle clusters. Furthermore, the meandering behaviour in the beginning is perhaps
necessary to get rid of any excess velocity it may have built up before entering the gap
since there is not much room (between the obstacle and the wall) to slow down after the
gap.

Setup 3

S

G

Figure 8.7: Setup 3: Trace of conditioned path and collision velocities

Fig. 8.8 shows a similar potential map, as in the previous section,that the agent can
observe. Designing an environment in a way that the agent will have to learn to go through
high potential zones in order to reach its goal, was the intention here. This demonstrates
the robustness of the algorithm and the nuanced autonomous decision making that can
be achieved here. Fig. 8.7 shows the agent deliberately choosing to go through a high

90 Different Simulation Setups

potential zone. Fig. 8.9 shows the path taken by an agent in the same environment, but
with a higher κ value. Here, it can be seen that the decision taken is different but equally
effective.

Figure 8.8: Setup 3: Potential field, as seen by the agent at the end of the run

Figure 8.9: Setup 3: A different optimum path, influenced by a higher κ

Convergence and goal reaching behaviour can also be seen in Figs. 8.10 and 8.11 and are
similarly favourable.

Both setups, despite being more challenging, show favourable behaviour in terms of col-
lision avoidance. Along with the fact that the collision velocities start at a relatively low
value for both, they also drastically decrease as the runs go by, and for both runs, almost
approach zero by the final few episodes. This shows the adaptability of using potential
fields in order to increase safety of exploration. Despite not having a model of the envi-
ronment in the beginning of the run, the agent quickly learns which states to avoid. This
learning process is made safer by adding another layer of information that the agent can
extract from its environment, namely the potential field. A detailed parameter analysis
for each setup, using the safmet safety metric and r avg performance measure, would be
the next step in understanding agent behaviour for these setups.

91

Figure 8.10: Setup 3: Convergence be-
haviour with κ = 14

Figure 8.11: Setup 3: Goal profile with
κ = 14

92 Different Simulation Setups

Chapter 9

Conclusions and Recommendations

One of the key issues within RL is the balance between exploration and exploitation.
However, before a policy can be considered mature enough to exploit, sufficient exploration
needs to take place in order to enable the agent to learn. This process is inherently
dangerous. For a software agent, approaching or traversing through a critical state is
acceptable and perhaps even desired in the beginning of the episode, since it promotes
quicker learning. However, a drone using an RL algorithm to dictate its control laws
and overall movement behaviour will need significantly more safeguards to ensure safety.
Obstacle collisions, in this case, are considered unacceptable and identified critical states
are to be avoided.

Keeping the above context in mind, a Q-learning based test environment is developed
in MATLAB where, using nested functions, an RL algorithm is implemented. Various
approaches are then proposed where the standard Bellman update equation is modified
to include potential values as felt by the agent as it explores its environment. This has
an effect on the learning behaviour of the agent and ranges from the potential directly
influencing the agent’s actions, to it only influencing the reward function. An intermediate
approach, Level 2, introduces the concept of a potential based deterministic Q-penalty.
This is not explored in detail and can be taken as a recommendation for future work.
Level 3, a softmax P-based action selection, is considered in more detail in this thesis.
Two modifications to softmax action selection, designed in order to include potential field
information, are proposed and tested. Here, no marked safety benefit of using a potential
field is seen. The proposal for future work is to increase the size of the experiment in
order to make significant statements about effectiveness and also to redesign the Level 3
modification equations, keeping in mind the effect of the P-values on the Q-table.

This research is carried out with a view to demonstrate the applicability of APFs to
increasing the safety of autonomous exploration in RL. Despite the need for more research
on physical implementation specifics, this thesis has shown that safety can, in fact, be
improved by interfacing an APF model with a standard RL algorithm. This is done using
metrics based on performance and safety, which are defined using reward and collision data
respectively. APFs have been shown to be robust and accommodating of the trial-and-
error nature of RL and can be applied in partially known environments. The adaptability

93

94 Conclusions and Recommendations

of these methods to multiple setups has been shown, including the fact that convergence
and goal seeking behaviour are maintained by the agent, despite drastic changes in its
environment. One of the goals of this research that has not been met is the demonstration
of a decrease in computational time and complexity while ensuring an increase in safe
action selection. This, while being a prompt for future research, can be justified by the
exploratory nature of this work. Novel concepts introduced include the P-table, which
stores the agent’s perception of the environment as it explores. Furthermore, parameters
such as κ, τ and q (the latter two introduced for the softmax based Level 3 approaches)
only serve to increase the computational complexity of these methods. However, proof of
concept, rather than optimisation, is taken to be the leading motivation of this research,
and, in that domain, this thesis has met its objectives. The introduction of the velocity
states (x and y) have been an attempt in approaching ‘realism’. The effects of inertia that
inherently lead on from including velocity states complicate this problem and make the
results more applicable to a real life situation. That being said, it must be kept in mind
that the decision was made early on to use a discrete RL setting in a discrete environment.

The parameter, κ is introduced with the Level 1 framework, and regulates the sensitivity
of the agent to the potential information. This essentially puts the approach under the
general classification of the ‘Risk-Sensitive Criterion’, though not quite entirely. In terms
of the Safe RL approaches introduced previously, namely the ‘Optimisation Criterion’
and the ‘Exploration Process’, the proposed method falls in between the two. The fact
that the APF is available to the agent means that, through exploring and filling in infor-
mation about the potential distribution across the states, it is considering ‘risk’ already
in its action selection. Through multiple trials, it is found that there is a tradeoff to be
made between safety and performance. Furthermore, using the APF concept itself does
not come without drawbacks. Susceptibility to local minima, oscillations due to similar
attractive and repulsive forces and Goal Non-Reachable with Obstacle Nearby (GNRON)
are a few of the issues faced. Most of these can be resolved by tuning the actual forces felt
by the agent. However, that is not the intention of the research carried out in this thesis.
For the sake of the simulation, simple values that allow the agent to not encounter these
issues have been selected. No attempt has yet been made to generalise at this stage. The
fact that minimal prior research has been carried out on the application of APFs to RL
further motivates its exploration in this thesis.

The next step would be to adapt these methods to a continuous world. Furthermore,
the agent in this simulation moves in two dimensions, x and y. The addition of a third
position state would directly make this more applicable to a real life aircraft scenario. The
results are expected to be the same, albeit at the cost of computational complexity due
to the increase in size of the Q and P tables. Taking these ideas forward with an end goal
of implementation on a real drone platform would be the next step towards validation.

References

[1] Pieter Abbeel, Adam Coates, Morgan Quigley, and Andrew Y Ng. An application
of reinforcement learning to aerobatic helicopter flight. Education, 19:1, 2007.

[2] J.R. Andrews and N. Hogan. Impedance Control as a Framework for Implement-
ing Obstacle Avoidance in a Manipulator. Control of Manufacturing Processes and
Robotic Systems, ASME, pages 243–251, 1983.

[3] Kavosh Asadi and Michael L. Littman. A New Softmax Operator for Reinforcement
Learning. Cornell University Library, (Property 3), 2016.

[4] Robert Babuska. Knowledge Based Control Systems. Delft Center for Systems and
Control, Delft, The Netherlands, 1 edition, 2010.

[5] Javier de Lope and José H Antonio Mart́ın. Learning Autonomous Helicopter Flight
with Evolutionary Reinforcement Learning. In Roberto Moreno-Dı́az, Franz Pichler,
and Alexis Quesada-Arencibia, editors, Computer Aided Systems Theory - EURO-
CAST 2009, number December, pages 75–82, Las Palmas de Gran Canaria, Spain,
2009. Springer.

[6] Javier Garcia and Fernando Fernandez. Safe exploration of state and action spaces in
reinforcement learning. Journal of Artificial Intelligence Research, 45:515–564, 2012.

[7] Javier Garćıa and Fernando Fernández. A Comprehensive Survey on Safe Reinforce-
ment Learning. Journal of Machine Learning Research, 16:1437–1480, 2015.

[8] Chris Gaskett. Reinforcement learning under circumstances beyond its control. In-
ternational Conference on Computational Intelligence for Modelling Control and Au-
tomation, 2003.

[9] P Geibel. Reinforcement learning with bounded risk. Icml, 9(D):162–169, 2001.

[10] Alborz Geramifard. Practical reinforcement learning using representation learning
and safe exploration for large scale Markov decision processes. PhD thesis, Mas-
sachusetts Institute of Technology, 2012.

95

96 References

[11] Fredrik Gustafsson. Control of Inverted Double Pendulum using Reinforcement
Learning. Technical report, Stanford University, Stanford, California, USA, 2016.

[12] Alexander Hans, Daniel Schneegaß, Anton Maximilian Schäfer, and Steffen Udluft.
Safe Exploration for Reinforcement Learning. In ESANN2008, Proceedings of the
16th European Symposium on Artificial Neural Networks, number April, pages 143–
148, Bruges, Belgium, 2008.

[13] Matthias Heger. Consideration of Risk in Reinforcement Learning. Proceedings of the
11th International Conference on Machine Learning (ICML), pages 105–111, 1994.

[14] Ronald A Howard and James E Matheson. Risk-Sensitive Markov Decision Processes.
Management Science, 18(2):356–369, 1972.

[15] Oussama Khatib. Real Time obstacle avoidance for manipulators and mobile robots.
The International Journal of Robotics Research, 5(1):90–98, 1986.

[16] Shie Mannor and John N Tsitsiklis. Mean-Variance Optimization in Markov Decision
Processes. In Proceedings of the 28th International Conference on Machine Learning,
pages 177–184, Bellevue, Washington, USA, 2011.

[17] Tommaso Mannucci, Erik-Jan van Kampen, Coen C. de Visser, and Qiping Chu.
SHERPA: A safe exploration algorithm for RL controllers. In AIAA Guidance, Nav-
igation, and Control Conference, page 15, Kissimmee, Florida, 2015. AIAA SciTech.

[18] Harry Markowitz. Portfolio Selection. The Journal of Finance, 7(1):77–91, 1952.

[19] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, and Martin Wierstra, DaanRiedmiller. Playing Atari with Deep Re-
inforcement Learning. In NIPS Deep Learning Workshop 2013, Lake Tahoe, USA,
2013. DeepMind Technologies.

[20] Teodor Mihai Moldovan and Pieter Abbeel. Safe Exploration in Markov Decision
Processes. Proceedings of the 29th International Conference on Machine Learning,
2012.

[21] Ralph Neuneier and Oliver Mihatsch. Risk Sensitive Reinforcement Learning. Ma-
chine Learning, pages 1–7, 2002.

[22] Martin Pecka and Tomas Svoboda. Safe Exploration Techniques for Reinforcement
Learning An Overview. Lecture Notes in Computer Science, pages 1–19, 2014.

[23] R S Sutton and A G Barto. Reinforcement learning : an introduction. Neural
Networks IEEE Transactions on, 9(5):1054, 2013.

[24] Charles W Warren. Global Path Planning Using Artificial Potential Fields. IEEE,
pages 316–321, 1989.

[25] Christopher J C H Watkins and Peter Dayan. Technical Note: Q-Learning. Machine
Learning, 8(3):279–292, 1992.

[26] Li-juan Xie, Guang-rong Xie, Huan-wen Chen, and Xiao-Li Li. Solution to rein-

References 97

forcement learning problems with artificial potential field. Journal of Central South
University of Technology, 15:552–557, 2008.

[27] Naoto Yoshida, Eiji Uchibe, and Kenji Doya. Reinforcement learning with state-
dependent discount factor. 2013 IEEE 3rd Joint International Conference on Devel-
opment and Learning and Epigenetic Robotics, ICDL 2013 - Electronic Conference
Proceedings, pages 1–6, 2013.

98 References

Appendix A

Code Layout

The baseline code structure is briefly introduced in this appendix and is used throughout
the thesis for comparison purposes. Fig. A.1 shows a schematic of how the Matlab code
is organised in layers. The main file runs MazeDemo.m and also generates some post-
processing plots (Q-table, Q-table visualised, P-table etc).1 MazeDemo.m takes as the only
input, the maximum number of episodes that the user would like the simulation to run
for. The function itself is divided into two blocks, namely Setup and Run.

Figure A.1: First Layer of code

A.1 Setup

The purpose of this block is not to run any simulation specific functions, but to initialise
some of the required elements. After setting the start (S) and goal (G) positions, the
grid itself is created by running CreateMaze.m. This is the function where the size of
the gridworld and the position of the obstacles are defined. Next, three similar functions
are run which return state, action and potential lists. BuildStateList.m takes the row
and column size of the gridworld as inputs and returns a table containing their cartesian

1These terms are elaborated upon in Ch. 5

99

100 Code Layout

product. This is the first step to ensuring that there is a way to index every potential
cell (‘state’) in this world. BuildActionList.m returns an array of all possible actions
that the agent can carry out. BuildPotentialList.m at the moment simply returns the
number 1, which is then used later to build the P-table. This is one possible approach
and a short discussion of alternates is presented in Sec. 5.1. The number of states and
actions follow from the previous definitions and are used to build a Q-table, initialised
with uniformly distributed random numbers between 0.0001 and 0.001. These values have
been chosen as they are small enough so as not to significantly influence learning, while
still enabling the simulation to start off with a sensible policy. Standard RL parameters
such as the learning rate α, the discount factor γ, the probability of random action
selection ε and maximum allowed steps per episode are then set.

A.2 Run

In this block, the function Episode.m is run and iterated over the desired number of
episodes as previously set by the user. Without going into too much detail about code
specifics, Fig. A.2 schematises the general functioning of this block.

Figure A.2: ‘Episode’ block

Given a current position of the agent (state s) and action (a, selected using ε-greedy [23]),
the code carries out the action, gets a reward, cumulates it to the total reward, and then
selects the next state (s’) and action (a’). The Q-table is then updated, after which the
whole process is repeated again.

Appendix B

RL Simulation Levels

Fig. B.1 shows the hierarchy of a typical RL simulation of the type considered in this
thesis. Over the whole run, which is what is carried out every time the user initiates a
simulation, there may be multiple episodes. All the simulations carried out in the main
thesis section consist of 2500 episodes. Each episode then consists of multiple steps. The
agent in each episode is allowed to take up to 50 steps, barring any incidences during those
50 steps where it may reach a termination condition. These termination conditions may
be designed by the user to be obstacle collisions, wall collisions, overspeed, getting stuck
in local minima etc. However, in the case of the simulation carried out in this thesis, the
only imposed termination condition is if the agent reaches the goal. Obstacle and wall
collisions are penalised but not taken to be situations where the agent must start afresh.
This is done to aid learning. Upon termination of an episode, consisting of up to 50 steps,
the agent starts the next episode, until the 2500th one is complete.

RUN

EPISODE

STEP 50 2500

Figure B.1: RL Simulation Hierarchy

101

102 RL Simulation Levels

	Acknowledgements
	List of Symbols and Abbreviations
	List of Figures
	List of Tables
	1 Introduction
	1.1 Safety in RL
	1.2 Artificial Potential Fields
	1.3 Problem Statement and Research Goals

	I Article
	II Background and Preliminary Analysis
	2 Reinforcement Learning Basics
	2.1 The RL Model
	2.2 Model Breakdown
	2.2.1 The Environment
	2.2.2 The Agent
	2.2.3 Markov Decision Process

	2.3 Choice of RL computation method

	3 Safe Reinforcement Learning
	3.1 Types of safety
	3.1.1 Labelling
	3.1.2 Ergodicity
	3.1.3 Costs
	3.1.4 Variance of expected return

	3.2 Safe RL approaches
	3.2.1 Optimisation Criterion
	3.2.2 Exploration Process

	4 Potential Field Methods
	4.1 Potential Functions
	4.2 Within Safe RL

	5 Preliminary Results
	5.1 Developing the idea of `potential'
	5.1.1 Changing V,Q,r
	5.1.2 Changing Policy
	5.1.3 Changing Agent Dynamics

	5.2 Analysis
	5.2.1 Framework
	5.2.2 Results and Conclusions

	6 Research Method

	III Extended Results
	7 Detailed Results and Analysis
	7.1 Elaboration of Analysis Methods
	7.2 Detailed Results
	7.3 Parameter Analysis

	8 Different Simulation Setups
	9 Conclusions and Recommendations
	References
	A Code Layout
	A.1 Setup
	A.2 Run

	B RL Simulation Levels

