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SUMMARY

Weather forecasts, climate models, storm-surge predictions, turbulence models, aero-
dynamics, and the petrochemical industry are connected by the fact that they involve
complex behavior. Mathematical models of these phenomena use partial differential
equations (PDEs) to model this behavior. In this dissertation, the solution to these equa-
tions is approximated using the discontinuous Galerkin (DG) method. For smooth ap-
plications, the DG method works well, but problems may arise when shock waves or
discontinuities appear. In that case, it is challenging to numerically approximate the so-
lution accurately: spurious oscillations are formed close to the discontinuous regions in
the approximation. These oscillations can be prevented by applying a limiter or filter
near these regions, or by adding artificial viscosity to the PDEs. One of the difficulties
in using a limiter is identifying the difference between a true discontinuity (in either the
solution or its derivatives) and a local extremum of the approximation. Troubled-cell
indicators can help to detect the discontinuous regions where a limiter should be ap-
plied. In general, this leads to more accurate results in smooth regions and reduces the
computational cost significantly.

In this dissertation, a multiwavelet formulation is used to decompose the DG ap-
proximation into a sum of a global average and finer details on different levels. Using this
representation, an exact relation between the multiwavelet coefficients of the highest de-
composition level and jumps in (derivatives of) the DG approximation is proven. These
coefficients act as a troubled-cell indicator since they suddenly increase in the neighbor-
hood of a discontinuity. This leads to the definition of a new multiwavelet troubled-cell
indicator: an element is detected as troubled if the corresponding multiwavelet coeffi-
cient is large enough in absolute value. This is tested by comparing the coefficient to the
maximum coefficient (in absolute value) over the domain. Here, a parameter is required
to define the strictness of the indicator. The indicator is tested for several problems
based on the Euler equations in one and two dimensions. Results show that the indica-
tor works very well if a suitable value for the parameter is used. In the two-dimensional
tensor-product case, the detector can distinguish between nonsmooth regions in the x-,
y-, or diagonal directions.

In general, each troubled-cell indicator requires a problem-dependent parameter.
The choice of the parameter has an impact on the approximation: it determines the
strictness of the troubled-cell indicator. An inappropriate choice of the parameter will
result in the detection (and limiting) of too few or too many elements leading to a de-
grade in the approximation quality. The optimal parameter is chosen such that the
minimal number of troubled cells is detected, and the resulting approximation is free
of nonphysical spurious oscillations. This motivates the need for indication techniques
that do not depend on problem-dependent parameters. In this dissertation, it is shown
that the sudden increase or decrease in the indication value with respect to neighboring
values is important for detection. Based on this observation, a new outlier-detection
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algorithm is defined that uses boxplot theory. Detection occurs when the indication
value of a certain element differs significantly from the neighboring value. With this
technique, the problem-dependent parameter from the original indicator is no longer
necessary as the parameter is chosen automatically. This can be done regardless of the
indication technique. Hence, different indication techniques are tested, comparing the
original parameter-based method to the outlier-detection approach in one and two di-
mensions. The outlier-detection approach works well and is generally better than the
original parameter-based indicators. Both the weak and the strong shock regions are
detected, whereas smooth regions are not selected.

Most troubled-cell indicators work well only for uniform (tensor-product) meshes.
Therefore, the applicability to irregular meshes is an important consideration. Although
multiwavelets were originally intended for regular meshes, this dissertation contains a
construction of a multiwavelet-type basis that can be used to decompose a DG approx-
imation on an irregular mesh. With this basis, it is possible to describe the relation be-
tween the coefficients and the jumps in (derivatives of) the DG approximation. In addi-
tion to the original outlier-detection strategy, two different techniques are studied. The
first option is to weight the indication value by the mesh width; the second approach
is to use a sliding-window technique. Tests are performed for different problems based
on the Euler equations, using a smoothly-varying or a random mesh. Different troubled-
cell indicators are applied, both in the parameter-based form and combined with outlier
detection. The parameter-based methods work well as long as an appropriate value for
the parameter is used. The outlier-detection results are promising, but for some appli-
cations, many elements are detected in smooth regions.

Finally, an extension of the multiwavelet theory to structured triangular meshes is
given. Inspection of the multiwavelet coefficients reveals that they are very useful for
discontinuity detection. Both a parameter-based and an outlier-detection multiwavelet
troubled-cell indicator are constructed for this type of mesh. The indicators are tested on
different problems using the two-dimensional advection equation. Applied to the initial
conditions, both the parameter-based method and the outlier-detection technique work
well. After time integration, the parameter-based method detects the correct elements if
a suitable value for the parameter is chosen. As long as the troubled zone is not too wide,
the outlier-detection method works well.

To briefly summarize this dissertation, it contains information about the use of mul-
tiwavelets and outlier detection for troubled-cell indication for discontinuous Galerkin
methods. The theory and results that are presented in this work give more insight and
knowledge into the area of multiwavelets, and can be used to improve detection tech-
niques and construct parameter-free indicators.



SAMENVATTING

Weersvoorspellingen, klimaatmodellen, stormvloedvoorspellingen, turbulentiemodel-
len, aerodynamica, en de petrochemische industrie vertonen vaak complex gedrag. Wis-
kundige modellen van deze fenomenen gebruiken partiële differentiaalvergelijkingen
(PDVs) om dit gedrag te voorspellen. In deze dissertatie wordt de oplossing van deze
vergelijkingen benaderd met behulp van de discontinue Galerkinmethode (DG). Voor
gladde toepassingen werkt de DG methode goed, maar als er schokgolven of disconti-
nuïteiten voorkomen, kunnen problemen ontstaan. In dat geval is het een uitdaging om
de oplossing nauwkeurig met een numerieke methode te benaderen: in de buurt van de
discontinue regio’s verschijnen ongewenste oscillaties in de benadering. Deze oscillaties
kunnen voorkomen worden door een limiter of een filter rond deze regio’s toe te pas-
sen, of door artificiële viscositeit aan de PDVs toe te voegen. Eén van de moeilijkheden
bij het gebruik van een limiter is het verschil te identificeren tussen een echte disconti-
nuïteit (in de oplossing of haar afgeleiden) en een lokaal extremum van de benadering.
Troubled-cell indicatoren kunnen helpen om de discontinue regio’s te detecteren waar
een limiter moet worden toegepast. Over het algemeen leidt dit tot nauwkeuriger resul-
taten in gladde gebieden, en geeft dit een aanzienlijke afname van de rekentijd.

In deze dissertatie wordt een multiwaveletformulering gebruikt om de DG benade-
ring te ontbinden in een som van een globaal gemiddelde en fijnere details op verschil-
lende niveaus. Met behulp van deze representatie wordt een exacte relatie tussen de
multiwaveletcoëfficiënten van het hoogste ontbindingsniveau en sprongen in (afgelei-
den van) de DG benadering bewezen. Deze coëfficiënten fungeren als een troubled-cell
indicator, aangezien zij plotseling stijgen in de buurt van een discontinuïteit. Dit leidt tot
de definitie van een nieuwe multiwavelet troubled-cell indicator: een element wordt als
afwijkend gedetecteerd als de bijbehorende multiwaveletcoëfficiënt groot genoeg is in
absolute waarde. Dit wordt getest door de coëfficiënt te vergelijken met de maximale
coëfficiënt (in absolute waarde) in het domein. Hier is een parameter vereist die de
strengheid van de indicator definieert. De indicator wordt getest voor verschillende pro-
blemen gebaseerd op de Eulervergelijkingen in één en twee dimensies. Resultaten tonen
aan dat de indicator zeer goed werkt mits een geschikte waarde voor de parameter ge-
bruikt wordt. Bij tweedimensionale tensorproductruimten kan de detector onderscheid
maken tussen niet-gladde gebieden in de x-, y-, of diagonale richtingen.

Over het algemeen vereist iedere troubled-cell indicator een probleemafhankelijke
parameter. De keuze van de parameter heeft invloed op de benadering: het bepaalt de
strengheid van de troubled-cell indicator. Een ongeschikte keuze van de parameter zal
resulteren in de detectie (en limiting) van te weinig of teveel elementen, wat leidt tot
een afname van de benaderingskwaliteit. De optimale parameter wordt op zo’n manier
gekozen dat het minimum aantal troubled cells gedetecteerd wordt, en de resulterende
benadering vrij van niet-fysische oscillaties is. Dit motiveert de noodzaak voor indica-
tietechnieken die niet afhangen van probleemafhankelijke parameters. In deze disser-
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xii SAMENVATTING

tatie wordt aangetoond dat de plotselinge stijging of daling van de indicatiewaarde met
betrekking tot buurwaarden voor detectie van belang is. Gebaseerd op deze observatie
wordt een nieuw outlierdetectiealgoritme gedefinieerd dat boxplottheorie gebruikt. De-
tectie vindt plaats als de indicatiewaarde van een zeker element significant afwijkt van de
buurwaarde. Met deze techniek is de probleemafhankelijke parameter van de originele
indicator niet langer nodig, omdat de parameter automatisch gekozen wordt. Dit kan
onafhankelijk van de gekozen indicatietechniek gedaan worden. Daarom worden ver-
schillende indicatietechnieken getest, waarbij de originele parameter-based methode
vergeleken wordt met de outlierdetectieaanpak in één en twee dimensies. De outlier-
detectieaanpak werkt goed, en is over het algemeen beter dan de originele parameter-
based indicatoren. Zowel de zwakke als de sterke schokregio’s worden gedetecteerd, ter-
wijl gladde gebieden niet geselecteerd worden.

De meeste troubled-cell indicatoren werken alleen goed voor uniforme (tensorpro-
duct)roosters. Daarom is de geschiktheid voor onregelmatige roosters een belangrijke
overweging. Hoewel multiwavelets oorspronkelijk bedoeld waren voor regelmatige roos-
ters, bevat deze dissertatie een constructie van een type multiwaveletbasis die gebruikt
kan worden om een DG benadering op een onregelmatig rooster te ontbinden. Met deze
basis is het mogelijk om de relatie tussen de coëfficiënten en de sprongen in (afgelei-
den van) de DG benadering te beschrijven. Naast de originele outlierdetectiestrategie
worden twee andere technieken bestudeerd. De eerste optie is om de indicatiewaarde te
wegen met de roosterwijdte, de tweede aanpak is om een sliding-window techniek te ge-
bruiken. Tests worden uitgevoerd voor verschillende problemen gebaseerd op de Euler-
vergelijkingen, gebruikmakend van een gelijkmatig variërend of een willekeurig rooster.
Verschillende troubled-cell indicatoren worden toegepast, zowel in de parameter-based
vorm, als gecombineerd met outlierdetectie. De methoden die gebaseerd zijn op para-
meters werken goed, mits een geschikte waarde voor de parameter gekozen wordt. De
outlierdetectieresultaten zijn veelbelovend, maar voor sommige toepassingen worden
veel elementen in gladde regio’s gedetecteerd.

Tot slot wordt een uitbreiding van de multiwavelettheorie naar gestructureerde drie-
hoekige roosters gegeven. Inspectie van de multiwaveletcoëfficiënten wijst uit dat zij
zeer geschikt zijn voor discontinuïteitdetectie. Zowel een parameter-based als een out-
lierdetectie multiwavelet troubled-cell indicator worden voor dit type rooster geconstru-
eerd. De indicatoren worden getest op verschillende problemen, gebruikmakend van de
tweedimensionale advectievergelijking. Bij toepassing op de beginvoorwaarden werken
zowel de parameter-based methode als de outlierdetectietechniek goed. Na tijdsinte-
gratie detecteert de parameter-based methode de correcte elementen als een geschikte
waarde voor de parameter gekozen wordt. Zolang de troubled zone niet te breed is, werkt
de outlierdetectiemethode goed.

Kort samengevat bevat deze dissertatie informatie over het gebruik van multiwave-
lets en outlierdetectie voor troubled-cell indicatie bij discontinue Galerkinmethoden.
De theorie en resultaten die in dit werk gepresenteerd worden geven meer inzicht in
en kennis over het multiwaveletdomein, en kunnen gebruikt worden om detectietech-
nieken te verbeteren en parametervrije indicatoren te construeren.
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INTRODUCTION

1.1. MOTIVATION
Weather forecasts, climate models, storm-surge predictions, turbulence models, aero-
dynamics, and the petrochemical industry are connected by the fact that they involve
complex behavior. Physical experiments to approximate the behavior of these fluids are
usually very expensive and done on a small scale. It is difficult to translate these results
to the large scales that occur in nature. Therefore, scientists try to describe these phe-
nomena using mathematical and numerical models. Clearly, it is crucial for the com-
puted results to be accurate. For smooth applications, numerical methods generally
work well, but problems may arise when shock waves or discontinuities appear. In that
case, the density, velocity, pressure or energy of the fluid is changing very rapidly in a
particular region, and can be seen as discontinuous. Three examples appear in Figure
1.1 [117, 118, 128]: a high-velocity flow field around a space shuttle (Figure 1.1(a)); shock
waves when an aircraft approaches the speed of sound (Figure 1.1(b)); and a shock tube
with different gasses reacting to each other (Figure 1.1(c)). In these cases, it is difficult to
predict the fluid behavior accurately using numerical methods.

The mathematical description of a physical phenomenon involving fluids is usually
obtained using partial differential equations (PDEs). Several different numerical meth-
ods are known for approximating the solutions to these equations. Examples of such
methods are the finite-difference method, finite-volume method, and finite-element
method. In this dissertation, the discontinuous Galerkin (DG) method is used. This
method combines features of the finite-volume method with properties of the finite-
element method. This method is useful for higher-order approximations, complex ge-
ometries, parallel implementations, and is often used for conservation laws [68]. For all
these methods, spurious oscillations are formed close to discontinuous regions in the
fluid. These oscillations can be prevented by applying a limiter or filter near these re-
gions, or by adding artificial viscosity to the PDEs.

One of the difficulties is identifying the difference between a true discontinuity (in
either the solution or its derivatives) and a local extremum of the fluid quantity. As an

1
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(a) Space Shuttle flow [128] (b) Shock wave around aircraft [118] (c) Shock tube [117]

Figure 1.1: Phenomena in which shock waves appear.

illustration, the DG method is applied to the linear advection equation ut +ux = 0 using
periodic boundary conditions, and an initial profile consisting of a square wave, a trian-
gle, a combination of half-ellipses, and a combination of Gaussians [81, 88] (Figure 1.2).
This is an important example because it features functions that are either discontinuous,
or discontinuous in the derivative. Without the application of a limiter, spurious oscilla-
tions are found. A limiter can remove these oscillations, but it also does not give a good
approximation to the smooth extrema in the ellipses and the Gaussians. Therefore, the
limited approximation is too diffusive.
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Figure 1.2: Exact solution and two approximations, one with limiting and one without, to the linear advection
equation, ut +ux = 0, at time T = 1.5, using a nonsmooth initial condition and periodic boundary conditions.
From left to right: square wave, triangle, two half-ellipses, and a combination of Gaussians. Number of ele-
ments is 64; polynomial degree is 1.
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The performance of limiting techniques can be improved by using a troubled-cell
indicator. Such an indicator detects discontinuous regions where a limiter should be ap-
plied. In general, this leads to more accurate results in smooth regions and reduces the
computational cost significantly. Many troubled-cell indicators use the numerical ap-
proximation to detect discontinuities [30, 83]. Others apply multiresolution ideas based
on mesh refinement [38, 65, 66, 110]. In this dissertation, we investigate the use of mul-
tiwavelet decompositions for discontinuity detection. This idea occurred in earlier work
[136], in which we tried to construct a multiwavelet limiter. Wavelets are well-known for
edge detection in e.g., images [91, 111] and signal processing [78] and multiresolution-
based finite-volume and DG schemes (Section 1.2).

In general, each troubled-cell indicator requires a problem-dependent parameter.
The choice of the parameter has an impact on the approximation: it determines the
strictness of the troubled-cell indicator. An inappropriate choice of the parameter will
result in the detection (and limiting) of too few or too many elements. Detection of too
few elements leads to spurious oscillations since not enough elements are limited. If
too many elements are detected, then the limiter is applied too often, and therefore,
the method is more costly, and the approximation smooths out after a long time. The
optimal parameter is chosen such that the minimal number of troubled cells is detected,
and the resulting approximation is free of nonphysical spurious oscillations. In general,
many tests are required to obtain this optimal parameter for each problem [104, 148].

As an example, the KXRCF shock detector [83] is applied to the linear advection equa-
tion on [−1,1] using the smooth initial condition −1+0.5sin(10πx) and periodic bound-
ary conditions. In Figure 1.3, a time-history plot is given that shows the locations of
the detected troubled cells in space and time. Here, the threshold value of the indica-
tor is taken equal to 1, which is generally done in the literature [83]. Since the func-
tion is smooth, no elements should be detected, but the KXRCF detector selects many
cells. This motivates the need for indication techniques that do not depend on problem-
dependent parameters and do not detect elements when the function is smooth.
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Figure 1.3: Detected troubled cells using the KXRCF shock detector (threshold 1) applied to the linear advection
equation using initial condition −1+0.5sin(10πx) and periodic boundary conditions. Number of elements is
128; polynomial degree is 2.
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1.2. SUMMARY OF EXISTING RESULTS IN THE LITERATURE
In the previous section, a motivation was given for the investigation of troubled-cell indi-
cators. This section contains a summary of the existing literature on the RKDG method
and limiting (Section 1.2.1), troubled-cell indicators (Section 1.2.2), multiresolution a-
nalysis (Section 1.2.3), multiwavelets (Section 1.2.4), irregular meshes (Section 1.2.5) and
triangular meshes (Section 1.2.6).

1.2.1. RKDG METHOD AND LIMITING

Nonlinear hyperbolic partial differential equations (PDEs) are often solved using the
Runge-Kutta discontinuous Galerkin (RKDG) method [28–31], which is discussed in Sec-
tion 2.1. In the case of discontinuous solutions, limiting techniques are used to reduce
the spurious oscillations that develop in discontinuous regions. Examples of these lim-
iters are the minmod-based TVB limiter [30], TVD limiters [27], WENO [120, 121], the
moment limiter [81], and the vertex-based limiter [85], see Section 2.2. Unfortunately,
most of the limiters do not work well for higher-order approximations or multidimen-
sional cases. Limiters tend to detect smooth extrema as being discontinuous and can,
therefore, reduce the accuracy in these regions [16, 49]. Troubled-cell indicators help to
detect the discontinuous regions.

1.2.2. TROUBLED-CELL INDICATORS

There is a variety of troubled-cell indicators, some that are tied to the limiting proce-
dure and others that are separate from this process. A few of the relevant methods for
troubled-cell indication are the minmod-based TVB limiter [30], Harten’s subcell reso-
lution [63], moment limiters [81], monotonicity preserving limiters [129], and the shock
detector of Krivodonova et al. (KXRCF) [83], which are discussed in more detail in Section
2.3. These methods for indicating troubled cells were explored and compared by Qiu and
Shu in [104]. Their motivation was to improve the performance of a WENO-based lim-
iter for DG. They found that there was no universally better performing method for every
problem. However, they did conclude that the minmod-based limiter with a suitably-
chosen problem-dependent parameter, Harten’s method, and the KXRCF shock detector
performed better than other methods.

1.2.3. MULTIRESOLUTION ANALYSIS

In addition to the troubled-cell indicators mentioned above, it is possible to use mul-
tiresolution analysis for shock detection. This idea was first explored by Harten, who
used this approach to design a hybrid scheme where numerical fluxes are computed
using either a finite-difference approximation in smooth regions (computationally inex-
pensive) or an upwind discretization (e.g. ENO, TVB) near discontinuities (computation-
ally expensive). The flux decision was made using multiresolution analysis on discrete
data [1, 7, 64, 67, 113]. Here, we give an incomplete list of publications that use his work:
[12–15, 26, 34, 41].

Biorthogonal wavelets [22, 33] are a generalization of this framework, and coincide
with multiresolution analysis on discrete data for both the discrete [62] and continuous
levels. This is related to the convergence of subdivision schemes [24, 32–34, 42, 50].
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A second option is to use multiresolution analysis for local grid adaptation for finite-
volume schemes [35, 61, 94]. Here, details below a threshold are ignored, and the re-
maining significant details are used to determine a locally refined mesh. Applications
can be found in [18, 19, 35, 37, 45, 61, 77, 94, 96, 109, 110]. The articles [36, 95] present a
nice review of this subject.

In addition, it is possible to use Harten’s multiresolution method to determine the
smoothness of the approximation [38, 65, 66, 110]. In [99], this is done using a threshold
depending on the standard deviation of the multiresolution coefficients. Finally, in [123],
the B-spline wavelet and the modified multiresolution method of Harten were used to
estimate the Lipschitz exponent of the underlying function. Note that this approach is
not applicable to the multiwavelet bases that are used in this dissertation.

1.2.4. MULTIWAVELETS
In this dissertation, ideas from Alpert’s multiwavelet formulation [4, 5] are used to de-
compose the DG approximation into a sum of a global average and finer details on dif-
ferent levels. The corresponding multiwavelet coefficients provide useful information
about the structure of the approximation.

In the literature, the multiwavelet theory is combined with the DG method in various
ways. In [8], a so-called multiwavelet discontinuous Galerkin method is presented. In
that paper, the DG method is written in terms of its multiresolution decomposition, and
grid adaptivity is obtained by manipulating the multiwavelet coefficients [5]. The thresh-
olding technique for adaptive DG methods is formalized using the cancelation property
for the decay of multiwavelet coefficients [8, 21, 55, 56, 72, 112] (see Section 2.4.6). Mul-
tiwavelets are also important for the construction of sparse-grid discontinuous Galerkin
methods [142].

1.2.5. IRREGULAR MESHES IN ONE DIMENSION
Most troubled-cell indicators work well on uniform (tensor-product) meshes but are less
accurate for nonuniform irregular meshes. As an example, Figure 1.4 contains time-
history plots of the detected troubled cells for the blast-wave problem (Section 2.5.3)
using either a uniform or a random mesh. The results for the uniform mesh are much
sharper than for the random mesh.

Moreover, it is extremely challenging to design a multiwavelet troubled-cell indica-
tor, since multiwavelets were originally intended for regular meshes. Several different
extensions to the irregular case are given in the literature, for example, the review paper
[43]. This paper particularly focuses on the use of subdivision schemes, starting from the
finest irregular mesh. Subdivision is used to find an approximation on a coarser mesh
together with an extrapolation to the finer mesh. This leads to so-called interpolating
wavelets, which are related to B-spline dual scaling functions and form a biorthogonal
basis [43].

A second construction is the design of a multiresolution representation for nonuni-
form meshes using point-value and cell-average discretizations as scaling-function co-
efficients [2]. The corresponding prediction error is related to wavelet coefficients. This
method does not work for higher-order polynomials and is therefore not applicable to
general multiwavelet spaces.
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(a) Uniform mesh (b) Random mesh

Figure 1.4: Detected troubled cells using the KXRCF shock detector applied to the blast-wave problem. Num-
ber of elements is 512; polynomial degree is 2.

Another option is to project a general nonuniform mesh onto a uniform mesh of 2n

elements, such that the standard multiwavelet techniques can be used. However, this
can be costly, introduces artifacts and is not straightforward for multidimensions [43].

Finally, the lifting scheme is seen as very promising [131]. In this approach, an ex-
isting wavelet is modified by adding linear combinations of the scaling function at the
same level, which leads to so-called second-generation wavelets. Therefore, the multires-
olution analysis, the decomposition and reconstruction steps, and the scaling functions
are generalized to apply to irregular meshes. As a result, the filters for decomposition
and reconstruction depend on the size of the elements, and finite lifting filters lead to
biorthogonal wavelet bases, instead of the orthogonal bases that are used in this dis-
sertation. Lifting has many advantages: the wavelet transform can be computed faster,
since no extra memory is needed, and the wavelet transform is easy to invert and to
parallelize [9, 44, 57, 76, 78, 90, 91, 101, 107, 130]. Moreover, there is no need to use
the Fourier transform which makes it possible to use the lifting approach for irregular
meshes. The resulting wavelets are no longer translations and dilations of one function
on the coarsest level, but can be adapted to general meshes while maintaining orthog-
onality [11, 131, 134]. However, lifting wavelets are very different from Alpert’s multi-
wavelets that are used in this dissertation. Note that the lifting scheme is closely related
to the more general concept that was proposed and analytically investigated in [22].

It is also possible to combine the lifting scheme with the interpolating wavelet trans-
form [43, 134]. Interpolating wavelets do have shortcomings, of which the aliasing prop-
erty is the most dangerous one since it can lead to unstable or inaccurate results.

A very different idea is to construct multiwavelets which are adapted to the nonuni-
form mesh following the construction for nonuniform Haar wavelets [47, 94]. The ex-
tension of the work in [47] to higher orders is done for so-called supercompact multi-
wavelets [6]. These functions differ slightly from Alpert’s multiwavelets: the basis is not
directly constructed, and uniqueness is achieved in a different way [4, 10]. For a nonuni-
form mesh, the decomposition and reconstruction steps depend on the element size,
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which makes them more time consuming than for a uniform mesh. It seems as if the
multiwavelet basis in [6] is not able to represent a DG approximation exactly. It is also
possible to use Alpert’s algorithm directly to design multiwavelets on an irregular mesh
[56, 97, 103]. Here, the multiwavelets are location dependent, but it is possible to rep-
resent a DG approximation exactly. More information about these approaches can be
found in Chapter 5.

1.2.6. STRUCTURED TRIANGULAR MESHES

In two dimensions, wavelet theory is traditionally applied to tensor-product rectangular
meshes [91]. However, in practice, triangular meshes are often more useful. Although
it is possible to use modal DG based on a PKD-polynomial basis [93], it is more conve-
nient to use the nodal form of the DG method for this mesh type [27, 31, 68], see Section
6.3. These two forms are equivalent: the corresponding degrees of freedom can be trans-
formed with the help of a Vandermonde matrix [68].

Multiwavelets on triangular meshes are investigated in the course of supercompact
wavelets [10, 52]. In these papers, the scaling functions are constructed based on the
two-dimensional Legendre polynomials. Although the multiwavelets are not construc-
ted explicitly, the multiwavelet coefficients can be computed using the orthogonality
relations between scaling functions and multiwavelets. In [52], these coefficients are
used to detect troubled cells by taking the Euclidean norm of the coefficients on each
element and detecting the elements for which this norm is big enough. Knowledge of
the discontinuity line is required to detect the troubled cells [52].

A very different procedure is to construct the wavelet basis on a triangle using the
lifting approach [127].

Finally, it is possible to orthogonalize the two-dimensional monomials in barycentric
form to obtain scaling functions, and construct barycentric multiwavelets on a triangle
using a slight adaptation of Alpert’s algorithm [146], see Chapter 6. The correspond-
ing scaling functions and multiwavelets are given in [122], together with a threshold-
ing method for detection of discontinuities on a triangular mesh. Here, a parameter is
needed that depends on the exact solution to the problem.

1.3. DISSERTATION OBJECTIVES
This dissertation aims to develop new troubled-cell indication techniques based on mul-
tiwavelets and outlier detection. The objectives are defined as follows:

• Construct a troubled-cell indicator based on multiwavelets to detect discontinu-
ous regions in a DG approximation;

• Develop a method to remove problem-dependent parameters in troubled-cell in-
dicators;

• Investigate the applicability of the troubled-cell indicators to irregular meshes.

In the next section, the outline of the dissertation is given.
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1.4. DISSERTATION OUTLINE
• In Chapter 2, background theory is given on the Runge-Kutta DG method, limiters,

troubled-cell indicators, multiresolution analysis, and several test problems.

• In Chapter 3, the relation between the multiwavelet expansion and the DG for-
mulation is given. It is shown that the multiwavelet coefficients are related to the
jumps in (derivatives of) the DG approximation. Furthermore, the multiwavelet
troubled-cell indicator is introduced and compared with different troubled-cell
indicators for several one- and two-dimensional examples.

• In Chapter 4, the outlier-detection algorithm is constructed and applied to vari-
ous troubled-cell indication variables. The original troubled-cell indicators (with
optimal parameter) are compared with the new outlier-detection indicators.

• In Chapter 5, information about the construction of a multiwavelet-type expan-
sion for a one-dimensional irregular mesh is given. Different troubled-cell indica-
tion techniques are tested and compared.

• In Chapter 6, the multiwavelet theory is extended to a structured triangular mesh.
In particular, a multiwavelet troubled-cell indicator is constructed and tested both
in the parameter-based form, and combined with outlier detection.

• Finally, in Chapters 7 and 8, the conclusions of this dissertation and some recom-
mendations for future research are given.



2
BACKGROUND

This chapter contains the theoretical background for the Runge-Kutta DG method (Sec-
tion 2.1), limiters (Section 2.2), troubled-cell indicators (Section 2.3), multiresolution
analysis (Section 2.4), and several test problems (Section 2.5).

9
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2.1. RUNGE-KUTTA DISCONTINUOUS GALERKIN METHOD
In this section, the Runge-Kutta discontinuous Galerkin (DG) method is explained in its
modal form. The equivalence with nodal DG is explained in Section 2.1.2.

2.1.1. MODAL DISCONTINUOUS GALERKIN METHOD
The Runge-Kutta DG method [28–31] in modal form is illustrated using the following
boundary-value problem:

ut + f (u)x = 0, x ∈ [a,b], t > 0,
u(x,0) = u0(x), x ∈ [a,b],

(2.1)

where u = u(x, t ) is some quantity of interest, f (u) describes the flux function, and peri-
odic boundary conditions are used.

In order to perform a numerical simulation, we must first discretize [a,b]. This is
obtained by dividing the domain into a uniform mesh of 2n elements (used in the mul-
tiwavelet expansion, Section 2.4) via ∆x = (b − a)/2n . The element centers are given by
x j = a + ( j +1/2)∆x, and

I j = [x j− 1
2

, x j+ 1
2

), j = 0, . . . ,2n −1,

where the choice for half-open intervals follows from the paper of Archibald et al. [8].
Different choices are available in the literature, for example, closed intervals (Hovhan-
nisyan et al. [71]), or open intervals (Gerhard et al. [55]).

The approximation space that we use on each element is Vh(I j ) = {v ∈Pk (I j )}, where
Pk (I j ) is the space of polynomials of degree k on element I j . In order to take advan-
tage of the multiwavelet properties, the basis for Pk is constructed using the Legendre
polynomials, which are defined as

P (0)(x) = 1, P (1)(x) = x, (`+1)P (`+1)(x) = (2`+1)xP (`)(x)−`P (`−1)(x), `≥ 2.

These functions satisfy 〈P (m),P (n)〉 = 2/(2n + 1)δmn . The corresponding set of scaled
Legendre polynomials is defined as

φ`(x) =
√
`+ 1

2
P (`)(x), (2.2)

which forms an orthonormal basis for Pk .
The discontinuous Galerkin method is based on the weak formulation of the equa-

tion, which is obtained by multiplying the equation by an arbitrary, smooth function
v ∈ C 1[x j− 1

2
, x j+ 1

2
], and integrating over I j , j ∈ {0, . . . ,2n −1} [27]. Using integration by

parts, this yields

0 =
∫

I j

(ut + f (u)x )vd x =
∫

I j

ut vd x + f (u)v |
x

j+ 1
2

x
j− 1

2

−
∫

I j

f (u)vx d x. (2.3)

Next, v is replaced by a test function vh ∈Vh(I j ), and the exact solution u by the approx-
imate solution uh ∈ Vh(I j ). Using local coordinates ξ = 2/∆x · (x − x j ), these functions
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can be expressed as

vh(x) =φm(ξ), m ∈ {0, . . . ,k}, (2.4a)

uh(x, t ) =
k∑
`=0

u(`)
j (t )φ`(ξ), on element I j , (2.4b)

where u(`)
j (t ),` = 0, . . . ,k, are the unknown DG coefficients. Using equation (2.4) in the

weak formulation as given in (2.3) yields∫
I j

uh,t (ξ)φm(ξ)d x =
∫

I j

f (uh(ξ))
d

d x
φm(ξ)d x − f (uh)vh |

x
j+ 1

2
x

j− 1
2

. (2.5)

If we transform to ξ= 2/∆x · (x −x j ), with

∆x

2
dξ= d x and

d

dξ

dξ

d x
= 2

∆x

d

dξ
,

and use the orthonormality property of the scaled Legendre polynomials, equation (2.5)
can be written as

∆x

2

du(m)
j

d t
=

∫ 1

−1
f (uh(ξ))φ′

m(ξ)dξ+ F̂ j− 1
2

v+
h, j− 1

2
− F̂ j+ 1

2
v−

h, j+ 1
2

, (2.6)

where F̂ j± 1
2

denote the flux values through the boundaries x j± 1
2

, and the test function

vh at the boundaries x j± 1
2

is taken from inside the cell, given by v+
h, j− 1

2

and v−
h, j+ 1

2
, see

Figure 2.1.

x j− 1
2

x j+ 1
2

↖
−

↖
−

↗
+

↗
+

I j

Figure 2.1: Boundaries of interval I j .

Equation (2.6) presents an ambiguity as the DG approximation is discontinuous at
the points x j± 1

2
(Figure 2.2).

I0 I2n−1I j+1I jI j−1−1 1

Figure 2.2: Example of a DG approximation, which is typically discontinuous at element boundaries.

In this dissertation, the local Lax-Friedrichs flux is used [88], which is defined as,

F̂ j− 1
2
= 1

2

(
f (u−

h, j− 1
2

)+ f (u+
h, j− 1

2
)−a j− 1

2
(u+

h, j− 1
2
−u−

h, j− 1
2

)

)
, (2.7a)
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where,
a j− 1

2
= max(| f ′(uh)|) over all uh between u−

h, j− 1
2

and u+
h, j− 1

2

. (2.7b)

If f is convex, this reduces to,

a j− 1
2
= max(| f ′(u−

h, j− 1
2

)|, | f ′(u+
h, j− 1

2
)|). (2.7c)

Using this flux, equation (2.6) can be written as a system of ordinary differential equa-
tions (ODEs) in time. Let u j = (u(0)

j , . . . ,u(k)
j )>, then for each j ∈ {0, . . . ,2n −1} we have to

find a solution to

d

d t
u j = 2

∆x

(∫ 1

−1
f (uh(ξ))φ′

m(ξ)dξ+ F̂ j−1/2v+
h, j−1/2 − F̂ j+1/2v−

h, j+1/2

)
= L(u j−1,u j ,u j+1).

For time evolution, the third-order strong stability-preserving Runge-Kutta scheme
is used [58, 120]. Let ws

j , j = 0, . . . ,2n −1 be the DG coefficients at time t s = s∆t , where

s = 0,1,2, . . . , then the DG coefficients ws+1
j at time t s+1 are computed using:

w∗
j = ws

j + ∆tL(ws
j−1,ws

j ,ws
j+1),

w∗∗
j = 3

4
ws

j +1

4
w∗

j +
1

4
∆tL(w∗

j−1,w∗
j ,w∗

j+1),

ws+1
j = 1

3
ws

j+
2

3
w∗∗

j +2

3
∆tL(w∗∗

j−1,w∗∗
j ,w∗∗

j+1).

Note that we could use other strong stability preserving time-stepping methods, [59,
79, 119]: this is only a choice that is made.

The extension to a two-dimensional tensor-product mesh is explained in [28, 31,
137]. In that case, the approximation space equals Qk = span{xm yn : 0 ≤ m,n ≤ k}. The
DG method for a triangular mesh is discussed in Chapter 6 [27, 31, 68, 140].

2.1.2. NODAL DISCONTINUOUS GALERKIN METHOD
The relation between the modal and the nodal form of the DG method is clearly ex-
plained in [68, 98]. The local DG approximation of degree k in element I j can be written
as

uh(x) =
k∑

i=0
u(i )

j φi (ξ) =
k∑

i=0
uh(x(i )

j )`i (ξ), ξ= 2

∆x
(x −x j ).

The first expression is the modal form in the Legendre-polynomial basis. The degrees
of freedom belong to the spectral (Legendre) space. The right-hand side is the corre-
sponding nodal representation, expressed using the function values at local gridpoints
x(0)

j , . . . , x(k)
j , based on the Legendre-Gauss-Lobatto nodes ξ0, . . . ,ξk , and the correspond-

ing Lagrange polynomials [68]. This form is computationally more efficient since there
is no need to transform from the spectral to the physical space. However, in this disser-
tation we need the modal form for limiting, troubled-cell indication and multiwavelet
decomposition.
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By construction, the Lagrange polynomials satisfy `i (ξm) = δi m . This means that

uh(x(m)
j ) =

k∑
i=0

u(i )
j φi (ξm) =

k∑
i=0

uh(x(i )
j )`i (ξm) = uh(x(m)

j ).

This allows for defining a so-called Vandermonde matrix to switch between the nodal
and the modal form. Let u j = (u(0)

j , . . . ,u(k)
j )> and uh

j = (uh(x(0)
j ), . . . ,uh(x(k)

j ))>, and de-

fine the (k +1)× (k +1) matrix V by Vmi =φi (ξm). Then Vu j = uh
j and V−1uh

j = u j .

In practical applications, the solution to a hyperbolic PDE often contains shocks and
discontinuities. In that case, the DG approximation may contain spurious oscillations.
One way to get rid of these oscillations is by the application of a limiter. The next section
contains a short discussion of the two different limiters that are used in this dissertation.

2.2. LIMITING
In this dissertation, the moment limiter is used for one-dimensional applications, and
for two-dimensional applications based on a tensor-product rectangular mesh [81]. The
extension of this limiter to triangular meshes is not known, and therefore, the vertex-
based limiter of Kuzmin is used [85]. Note that these are only choices - other limiters are
also possible.

2.2.1. MOMENT LIMITER
The moment limiter [81] reduces the DG approximation to a low-order approximation
in discontinuous regions and maintains a high order if the approximation is smooth
enough.

The DG approximation on element I j is given by uh(x) = ∑k
`=0 u(`)

j φ`(ξ), where u(`)
j

are the DG coefficients (Section 2.1). The moment limiter modifies these coefficients,
starting at the highest degree k. For each element I j , the limited value of coefficient u(k)

j
equals

ũ(k)
j = m

(
u(k)

j ,βk

(
u(k−1)

j+1 −u(k−1)
j

)
,βk

(
u(k−1)

j −u(k−1)
j−1

))
, (2.8)

with βk = (
p

k −1/2)/(
p

k +1/2) and using the minmod function (equation (2.13)). If
ũ(k)

j = u(k)
j , then the limiting procedure is cut off for this element I j . If not, then u(k−1)

j

is limited using the same procedure, continuing until u(1)
j is limited, or stopping the first

time ũ(`)
j = u(`)

j for some `= k −1, . . . ,1.

For systems of equations, the limiter should be applied to the characteristic variables
w(`)

j = R−1u(`)
j . Due to this approach, it is possible that negative values for density, pres-

sure, or energy are found. In that case, all higher-order coefficients are set equal to zero,
and u(1)

j is limited using equation (2.8). If negative values are still found, then the linear

coefficient is also set equal to zero.
In two dimensions, the moment limiter uses the neighboring elements both in the

x-direction and in the y-direction [81]. This resembles the two-dimensional minmod-
based TVB limiter [31]. The difference between these two approaches is that the mo-
ment limiter uses forward and backward differences of lower derivatives, whereas the
minmod-based TVB limiter uses a finite-difference approach on the element averages.
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2.2.2. VERTEX-BASED LIMITER

For a two-dimensional triangular mesh, the vertex-based hierarchical slope limiter of
Kuzmin is applied [85]. The DG approximation on a triangle is expressed as a local Tay-
lor expansion about the centroid. The differences between the values at the centroid
and the vertices are important for the limiter. Similar to the maximum-principle lim-
iter [147], the vertex-based limiter is constructed such that the approximation at certain
nodes in the triangle is bounded by the maximum and minimum values in the neighbor-
ing elements.

Although the moment limiter and the vertex-based limiter have their own mecha-
nisms to control which regions should be limited, we will apply troubled-cell indicators
as a switch to control where the limiter is applied. This is to prevent limiting smooth
extrema. The next section contains information about several indication techniques.

2.3. TROUBLED-CELL INDICATORS

In this section, several troubled-cell indicators are discussed. These troubled-cell indica-
tors are introduced for comparison to a multiwavelet troubled-cell indicator. In Section
2.3.1, the Harten troubled-cell indicator is discussed. Section 2.3.2 contains information
about the KXRCF shock detector, and the minmod-based TVB indicator is described in
Section 2.3.3.

2.3.1. HARTEN’S TROUBLED-CELL INDICATOR

The first method presented is Harten’s troubled-cell indicator. This indicator is based
on Harten’s subcell resolution idea [63] and developed by Qiu and Shu [104]. It exploits
the fact that averages of a discontinuous function which is piecewise smooth inside an
element provide information about the exact location of the discontinuity inside the el-
ement. In one dimension, define

F j (z) = 1

∆x


∫ z

x
j− 1

2

uh |I j−1 d x +
∫ x

j+ 1
2

z
uh |I j+1 d x

− ū j ,

where uh |I j−1 and uh |I j+1 are extensions of the DG approximation in I j−1 and I j+1 into
element I j . Note that F j (x j−1/2) corresponds to the difference between the average of
the continuously-extrapolated function in I j+1 to I j , and the average of I j , see Figure
2.3. Element I j is marked as a troubled cell if

F j (x j− 1
2

)F j (x j+ 1
2

) ≤ 0 and |u(k)
j | >α|u(k)

j−1|, |u(k)
j | >α|u(k)

j+1|.

The last two conditions exclude the case that the approximation has a smooth extremum
inside element I j . Here,α is a parameter, which is chosen to be equal to 1.5 in [104]. Note
that the choice of α also depends on the choice of limiter that is applied in the troubled
cells.
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I j I j+1

Figure 2.3: Solid lines: DG approximation on elements I j and I j+1, : uh |I j+1
extended to I j ,

: the average ū j , : the average of uh |I j+1
on I j .

2.3.2. KXRCF SHOCK DETECTOR

The shock-detection technique by Krivodonova et al. [83] makes use of the fact that
smooth DG approximations are superconvergent at outflow boundaries [3, 82]:

1

|∂I+j |
∫
∂I+j

(uh |I j −u)d s =O (h2k+1),

where ∂I+j is the outflow boundary of element I j with length |∂I+j | and u is the solution

to the PDE.

The detector considers the jump in uh across the inflow edges of I j and examines

Ij =
∣∣∣∣∣
∫
∂I−j

(uh |I j −uh |In j
)d s

∣∣∣∣∣ . (2.9)

Here, ∂I−j is the inflow boundary and uh |In j
is the DG approximation in the neighbor of

I j on the side of ∂I−j . This indicator can be split into

Ij =
∣∣∣∣∣
∫
∂I−j

(uh |I j −u)d s +
∫
∂I+n j

(u −uh |In j
)d s

∣∣∣∣∣ .

For a smooth solution, the first integral is of order k +2, whereas the second integral is
of order 2k+1, such that the indication value is O (hk+2). If the solution is discontinuous
close to the boundary, then the indication value is O (h).

The indicator is normalized relative to a convergence rate O (h(k+1)/2):

Îj =

∣∣∣∣∫∂I−j
(uh |I j −uh |In j

)d s

∣∣∣∣
h

k+1
2 |∂I−j |||uh |I j ||

, j = 0, . . . ,2n −1. (2.10)

Here, h is the radius of the circumscribed circle in I j , and the norm is based on the aver-
age in one dimension and the maximum norm in quadrature points in two dimensions.

Near a discontinuity, Îj →∞, whereas Îj → 0 if h → 0 or k →∞ in smooth-solution
regions. In [83], the threshold value is taken equal to 1, such that element I j is detected
as troubled if Îj > 1, and in that case the limiter is applied in I j . Note that this threshold
parameter is chosen arbitrarily: the value 1 does not necessarily follow from the theory.
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2.3.3. MINMOD-BASED TVB INDICATOR
In this section, the minmod-based TVB indicator is explained, which is normally part
of the minmod-based TVB limiter [29, 30]. Here, concentration is placed only on the
indication and not on the limiting aspect. Element-boundary approximations are split
into

u−
j+ 1

2
= ū j + ũ j and u+

j− 1
2
= ū j − ˜̃u j ,

where

ũ j =
k∑
`=1

u(`)
j φ`(1), ˜̃u j =−

k∑
`=1

u(`)
j φ`(−1), (2.11)

see Figure 2.4.

- ˜̃u j

ũ j

I j

Figure 2.4: Visualization of element-boundary approximations ũ j and ˜̃u j . Note that ū j = 0 for this particular
example.

Element I j is detected as troubled if either ũ j or ˜̃u j is modified by the functions

ũ(mod)
j = m̃(ũ j , ū j+1 − ū j , ū j − ū j−1), ˜̃u(mod)

j = m̃( ˜̃u j , ū j+1 − ū j , ū j − ū j−1), (2.12)

where the TVB-modified minmod function is defined as

m̃(a1, . . . , aq ) =
{

a1, if |a1| ≤ M∆x2,
m(a1, . . . , aq ), otherwise,

in contrast with the standard minmod function

m(a1, . . . , aq ) =
{

s ·min1≤ j≤q |a j |, if sign(a1) = ·· · = sign(aq ) = s,
0, otherwise.

(2.13)

Note that the parameter M is difficult to tune, and hardly any difference is found when
M ranges from 1 to 100 [148]. We use the minmod-based TVB indicator for detection
and then apply a chosen limiter in the detected troubled cells.

For systems of equations, characteristic field decompositions are required [29]. The
corresponding eigenvector matrix is computed using Roe averages [29, 108].

For two-dimensional systems, the procedure for Pk has been explained in [31], both
for rectangular and triangular meshes. The indicator uses solution derivatives (e.g., DG
coefficients) for detection. We use Qk , which means that more ’cross-product’ coef-
ficients exist (for example, for k = 1, u(1,1)

i j ). However, using the reasoning of Biswas,

Devine, and Flaherty [16], we do not use these coefficients for detection, since they have
a lesser effect on the numerical approximation than either u(1,0)

i j or u(0,1)
i j .
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It is also possible to use information from a multiwavelet expansion for troubled-cell
indication. The next section discusses the theory about multiresolution analysis, and a
thresholding technique that can be used to detect troubled cells.

2.4. MULTIRESOLUTION ANALYSIS
In this section, a brief description of the theory of multiwavelets [5, 8] and the relation to
the DG approximation is given. Although we are using the multiwavelet decomposition
in [5, 8], we must modify the definitions to accommodate [−1,1), which helps with the
use of the DG coefficients for the multiwavelet expansion. The multiresolution analysis
is visualized in Figure 2.5. The global domain [−1,1) is used as one element in level 0,
divided into two elements in level 1, into four elements in level 2, etcetera. Mathemati-
cally spoken, elements I m+1

2 j and I m+1
2 j+1 on level m+1 are found by splitting element I m

j on

level m into two equal parts (m = 0,1, . . ., j = 0, . . . ,2m −1). In level m, the global domain
[−1,1) is divided in 2m elements, defined as

I m
j = [−1+2−m+1 j ,−1+2−m+1( j +1)), j = 0, . . . ,2m −1. (2.14)

A visualization of the elements and the notation on different levels is given in Figure 2.6.

−1 1I 0
0

I 1
0 I 1

1

I 2
0 I 2

1 I 2
2 I 2

3
Level 2

Level 1

Level 0 V k+1
0 = { f : f ∈Pk [−1,1]}

V k+1
1 = { f : f ∈Pk [−1,0)∪Pk [0,1)}

V k+1
2 = { f : f ∈Pk (I 2

j ), j = 0, . . . ,3}

...

I n
0 I n

1 I n
2n−1

Level n V k+1
n = { f : f ∈Pk (I n

j ), j = 0, . . . ,2n −1}

Figure 2.5: Multiresolution analysis: intervals and scaling-function spaces on different levels.

I n−1
j

xn−1
jxn−1

j−1/2 xn−1
j+1/2

Level n −1

I n
2 j I n

2 j+1

xn
2 j−1/2 xn

2 j+1/2 xn
2 j+3/2

Level n

Figure 2.6: Element I n−1
j in level n −1 and its subdivision to elements I n

2 j and I n
2 j+1 in level n.
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2.4.1. SCALING-FUNCTION SPACE
To begin defining multiwavelets in one dimension, scaling functions are introduced. The
scaling-function space on level m is defined as

V k+1
m = { f : f ∈Pk (I m

j ), j = 0, . . . ,2m −1}, (2.15)

where Pk (I m
j ) is the space of polynomials of degree k on interval I m

j , see Figure 2.5. No-

tice that the following nested property holds: V k+1
0 ⊂ V k+1

1 ⊂ ·· · ⊂ V k+1
n ⊂ ·· · , and that

V k+1
n is similar to the DG approximation space {Vh(I j )}2n−1

j=0 .

The scaled Legendre polynomials, φ0, . . . ,φk , used in the DG method (Section 2.1),
are chosen to be the orthonormal basis for V k+1

0 . Next, the space V k+1
m ,m ∈ {0, . . . ,n}

is spanned by 2m(k + 1) functions which are obtained from φ0, . . . ,φk by dilation and
translation:

φm
` j (x) =

√
2

∆xm φ`

(
2

∆xm (x −xm
j )

)
, x ∈ I m

j , (2.16)

where∆xm is the mesh width on level m, which is given by 2−m+1 for the domain [−1,1),
and xm

j is the center of element I m
j . This yields [78, 137]

φm
` j (x) = 2m/2φ`(2m(x +1)−2 j −1), `= 0, . . . ,k, j = 0, . . . ,2m −1. (2.17)

The functions φ`,`= 0, . . . ,k, are called scaling functions.
As noted in [20], the scaling functions at level n+1 are narrower than the scaling func-

tions at level n. This occurs due to dilations and translations, and allows for representing
finer details.

The orthogonal projection of an arbitrary function f ∈ L2(−1,1) onto V k+1
n ,n ∈ N is

given by

P k+1
n f (x) =

2n−1∑
j=0

k∑
`=0

sn
` jφ

n
` j (x), (2.18)

which is called the single-scale decomposition of f on level n. The scaling-function co-
efficients are given by

sn
` j = 〈 f ,φn

` j 〉 =
∫ −1+2−n+1( j+1)

−1+2−n+1 j
f (x)φn

` j (x)d x, (2.19)

which is the standard orthogonal projection onto an orthonormal basis. Note that if
f ∈V k+1

n , then P k+1
n f = f .

2.4.2. MODAL DG APPROXIMATION AND SCALING-FUNCTION EXPANSION
Because DG approximations and scaling-function expansions are composed of the same
basis functions, there is a direct relation between a DG approximation and its scaling-
function approximation. The global DG approximation of the solution on [a,b] (see
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equation (2.4b)) can be written as

uh(x) =
2n−1∑
j=0

k∑
`=0

u(`)
j φ`

(
2

∆x
(x −xn

j )

)
=

2n−1∑
j=0

k∑
`=0

u(`)
j φ`

(
2n+1

b −a
(x −a)−2 j −1

)

=
2n−1∑
j=0

k∑
`=0

u(`)
j φ`(2n(y +1)−2 j −1)

= 2−
n
2

2n−1∑
j=0

k∑
`=0

u(`)
j φn

` j (y), (2.20)

where y = −1+ 2(x − a)/(b − a), and the dependence on time is omitted for simplicity.
On the other hand, exploiting the fact that uh is a piecewise polynomial of degree k and
transforming to a reference domain [−1,1], the DG approximation projected onto the
scaling-function basis can be written as

uh(x) = P k+1
n uh(x) =

2n−1∑
j=0

k∑
`=0

sn
` jφ

n
` j (y). (2.21)

From equations (2.20) and (2.21) it follows that for every `= 0, . . . ,k, j = 0, . . . ,2n −1,

2−
n
2 u(`)

j = sn
` j , (2.22)

thus giving a relation between the DG coefficients and the scaling-function coefficients.

2.4.3. MULTIWAVELETS
The combination of scaling functions and multiwavelets on level m can be used to span
the scaling-function space on level m +1. The multiwavelet subspace, W k+1

m , is defined
as the orthogonal complement of V k+1

m in V k+1
m+1:

V k+1
m ⊕W k+1

m =V k+1
m+1, (2.23)

such that W k+1
m ⊥ V k+1

m , W k+1
m ⊂ V k+1

m+1, see Figure 2.7. By recursively applying equation

(2.23), V k+1
n can be split into n +1 orthogonal subspaces:

V k+1
n =V k+1

0 ⊕W k+1
0 ⊕W k+1

1 ⊕·· ·⊕W k+1
n−1 . (2.24)

By definition, W k+1
0 should be a subset of V k+1

1 . Therefore, the orthonormal basis for

W k+1
0 is given by k+1 piecewise polynomials,ψ0, . . . ,ψk (polynomials on (−1,0] = I 1

0 and
(0,1] = I 1

1 ), which are the so-called multiwavelets. The term multiwavelet refers to the
fact that the bases for V k+1

0 and W k+1
0 contain multiple elements. The multiwavelet basis

that belongs to the scaled Legendre polynomials was developed by Alpert [4]. Following
Alpert [4] and Hovhannisyan [71], the basis should satisfy the following conditions:

1. The restriction of ψ` to the interval (0,1) is a polynomial of degree k;

2. The function ψ` is extended to (−1,0) as an even or odd function (depending on
whether `+k +1 is even or odd, respectively);



2

20 2. BACKGROUND

−1 1I 0
0

I 1
0 I 1

1

I 2
0 I 2

1 I 2
2 I 2

3
Level 2

Level 1

Level 0 V k+1
0

V k+1
1 =V k+1

0 ⊕W k+1
0

V k+1
2 =V k+1

1 ⊕W k+1
1

...

I n
0 I n

1 I n
2n−1

Level n V k+1
n =V k+1

n−1 ⊕W k+1
n−1

Figure 2.7: The direct sum of V k+1
m and W k+1

m forms V k+1
m+1.

3. The basis is orthonormal: 〈ψ`1 ,ψ`2〉 = δ`1,`2 ;

4. The function ψ` has k +1 vanishing moments∫ 1

−1
ψ`(x)xmd x = 0, m = 0,1, . . . ,k.

Using these conditions, we cannot uniquely define a set of multiwavelets. By requir-
ing ` additional vanishing moments for multiwavelet ψ`, this uniqueness (up to sign) is
achieved. Alpert’s multiwavelet algorithm is given below.

The multiwavelet bases for k ≤ 4 are presented in Table 2.1. The scaling-function and
multiwavelet bases for k = 2 on levels 0 and 1 are visualized in Figure 2.8. Note that the
scaling functions and multiwavelets on level 0 together can be used to span the scaling-
function basis on level 1.

Similar to the basis for V k+1
m , the space W k+1

m is spanned by the functions

ψm
` j (x) = 2m/2ψ`(2m(x +1)−2 j −1), `= 0, . . . ,k, j = 0, . . . ,2m −1, x ∈ I m

j . (2.25)

By construction, multiwavelets ψ` are piecewise polynomials on I 1
0 and I 1

1 . Extending
this relation to level n − 1, ψn−1

` j is a piecewise polynomial on I n
2 j and I n

2 j+1, as visual-

ized in Figure 2.6. Therefore, we expect the multiwavelet expansion on level n −1 to be
discontinuous at

xn
2 j+1/2 =−1+2−n+2( j +1/2). (2.26)

Note that this makes multiwavelet level n −1 having the same discontinuity properties
as the DG mesh.

The multiwavelet expansion of a function f ∈ L2(−1,1) in level m is given by

Qk+1
m f (x) = P k+1

m+1 f (x)−P k+1
m f (x) =

2m−1∑
j=0

k∑
`=0

d m
` jψ

m
` j (x). (2.27)
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Algorithm 2.1 Alpert’s multiwavelet algorithm for W k+1
0 [4].

Define for `= 0, . . . ,k:

f 0
` (x) =


x`, if x ∈ [0,1),

−x`, if x ∈ [−1,0),
0, else.

Use Gram-Schmidt to orthogonalize f 0
`

with respect to 1, x, . . . , xk . This leads to the

functions f 1
`

, `= 0, . . . ,k.
for m = 0, . . . ,k −1 do

If at least one of the f m+1
`

is not orthogonal to xk+m+1 (` = m, . . . ,k), then reorder

such that 〈 f m+1
m , xk+m+1〉 6= 0.

for `= m +1, . . . ,k do
Construct f m+2

`
such that the function is orthogonal to xk+m+1:

f m+2
` = f m+1

` − 〈 f m+1
`

, xk+m+1〉
〈 f m+1

m , xk+m+1〉 · f m+1
m .

end for
end for
Gram-Schmidt orthonormalize f k+1

k , f k
k−1, . . . , f 1

0 in that order to obtain the multi-
wavelets ψk ,ψk−1, . . . ,ψ0.

−1 0 1

−2

0

2

Level 0

x

−1 0 1

−2

0

2

x

Level 1

(a) V 3
0 and V 3

1

−1 0 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

−1 0 1
−1

−0.5

0

0.5

1

1.5

2

x

−1 0 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

(b) W 3
0

Figure 2.8: Visualization of the basis functions in V 3
0 , W 3

0 , and V 3
1 . Note that V 3

0 ⊕W 3
0 =V 3

1 .
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Table 2.1: Alpert’s multiwavelet basis for W k+1
0 ,k = 0, . . . ,4, x ∈ (0,1). The functionsψi , i = 0, . . . ,k, are extended

to the interval (−1,0) as an odd or even function, according to the formula ψi (x) = (−1)i+k+1ψi (−x).

k = 0

ψ0(x) =
√

1
2

k = 1

ψ0(x) =
√

3
2 (−1+2x)

ψ1(x) =
√

1
2 (−2+3x)

k = 2

ψ0(x) = 1
3

√
1
2 (1−24x +30x2)

ψ1(x) = 1
2

√
3
2 (3−16x +15x2)

ψ2(x) = 1
3

√
5
2 (4−15x +12x2)

k = 3

ψ0(x) =
√

15
34 (1+4x −30x2 +28x3)

ψ1(x) =
√

1
42 (−4+105x −300x2 +210x3)

ψ2(x) = 1
2

√
35
34 (−5+48x −105x2 +64x3)

ψ3(x) = 1
2

√
5

42 (−16+105x −192x2 +105x3)

k = 4

ψ0(x) =
√

1
186 (1+30x +210x2 −840x3 +630x4)

ψ1(x) = 1
2

√
1

38 (−5−144x +1155x2 −2240x3 +1260x4)

ψ2(x) =
√

35
14694 (22−735x +3504x2 −5460x3 +2700x4)

ψ3(x) = 1
8

√
21
38 (35−512x +1890x2 −2560x3 +1155x4)

ψ4(x) = 1
2

√
7

158 (32−315x +960x2 −1155x3 +480x4)

The multiwavelet coefficients are defined by the orthogonal projection of f on the
multiwavelet basis:

d m
` j = 〈 f ,ψm

` j 〉 =
∫ −1+2−m+1( j+1)

−1+2−m+1 j
f (x)ψm

` j (x)d x. (2.28)

From equation (2.24) it follows that for uh ∈V k+1
n , we can write

uh(x) = P k+1
n uh(x) = P k+1

0 uh(x)+
n−1∑
m=0

Qk+1
m uh(x) (2.29a)

=
k∑
`=0

s0
`0φ`(x)+

n−1∑
m=0

2m−1∑
j=0

k∑
`=0

d m
` jψ

m
` j (x). (2.29b)

The representation in equation (2.29) is called the multiscale decomposition. Here, the
scaling-function coefficients {s0

`0}k
`=0 represent the approximate solution on the coarsest
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level m = 0. The multiwavelet coefficients {d m
` j } carry the multiscale information. These

detail coefficients contain the finer details in the approximation [75]. Level n −1 is the
most important level for the multiwavelet decomposition, since the multiwavelet con-
tribution at this level is used in the multiwavelet troubled-cell indicator, see Chapter 3
and [137]. Therefore, a two-scale representation of the DG approximation would suffice,
and the number of elements in the domain can also be even (instead of the restriction to
a power of two). However, since this would change the definitions, a discretization of 2n

elements will be used in this dissertation.

2.4.4. MULTIWAVELET DECOMPOSITION AND RECONSTRUCTION
It is important to remark that we do not need to calculate the orthogonal projections to
compute the lower-level coefficients. In practice, these coefficients are efficiently com-
puted using multiwavelet decomposition (Figure 2.9) [5, 8]. The decomposition and re-
construction steps are described below.

DECOMPOSITION

In the following, we denote the basis functions of V k+1
n−1 on I n−1

j by the vector of scaling

functionsφn−1
j = (φn−1

0 j , . . . ,φn−1
k j )>. Because V k+1

n−1 ⊂V k+1
n , we can expressφn−1

j in terms

ofφn
2 j andφn

2 j+1 (using that I n−1
j = I n

2 j ∪ I n
2 j+1, Figure 2.6):

φn−1
j = H (0)

j ,n−1φ
n
2 j +H (1)

j ,n−1φ
n
2 j+1. (2.30a)

Here, the (k +1)× (k +1) lowpass quadrature-mirror-filter (QMF) coefficient matrices are
given by

H (0)
j ,n−1(`,r ) = 〈φn−1

` j ,φn
r,2 j 〉, H (1)

j ,n−1(`,r ) = 〈φn−1
` j ,φn

r,2 j+1〉.

Similarly, W k+1
n−1 ⊂ V k+1

n , such that the vector of multiwavelets ψn−1
j = (ψn−1

0 j , . . . ,ψn−1
k j )>

can be written as
ψn−1

j =G (0)
j ,n−1φ

n
2 j +G (1)

j ,n−1φ
n
2 j+1, (2.30b)

where
G (0)

j ,n−1(`,r ) = 〈ψn−1
` j ,φn

r,2 j 〉, G (1)
j ,n−1(`,r ) = 〈ψn−1

` j ,φn
r,2 j+1〉.

The matrices G (0)
j ,n−1 and G (1)

j ,n−1 are called the highpass QMF coefficient matrices.

Due to the dilation and translation properties of the scaling functions and multi-
wavelets, we find that the QMF coefficients do not depend on j and n [136]:

H (0)
j ,n−1(`,r ) = 〈φ0

`0,φ1
r 0〉 ≡ H (0)(`,r ), H (1)

j ,n−1(`,r )= 〈φ0
`0,φ1

r 1〉 ≡ H (1)(`,r ), (2.31)

G (0)
j ,n−1(`,r ) = 〈ψ0

`0,φ1
r 0〉 ≡G (0)(`,r ), G (1)

j ,n−1(`,r ) = 〈ψ0
`0,φ1

r 1〉 ≡G (1)(`,r ). (2.32)

This means that we can simplify equation (2.30) to

φn−1
j = H (0)φn

2 j +H (1)φn
2 j+1, (2.33a)

ψn−1
j =G (0)φn

2 j +G (1)φn
2 j+1. (2.33b)
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For a function f ∈ L2(−1,1), the scaling-function and multiwavelet coefficients on level
n −1 are defined as sn−1

j = 〈 f ,φn−1
j 〉 and dn−1

j = 〈 f ,ψn−1
j 〉. Using decomposition, they

can efficiently be computed using equation (2.33) and the linearity of the inner product:

sn−1
j = H (0)sn

2 j +H (1)sn
2 j+1, (2.34a)

dn−1
j =G (0)sn

2 j +G (1)sn
2 j+1. (2.34b)

Thus, starting with 2n(k+1) values for sn
` j , the decomposition procedure can be applied

repeatedly to compute the coefficients on coarser levels, m = n −1,n −2, . . . ,0.

RECONSTRUCTION

For reconstruction, we make use of the fact that the matrix

U =
(

H (0) H (1)

G (0) G (1)

)
is orthogonal: UU> = I , such that U−1 = U> [5, 136]. This means that also U>U = I ,
from which we deduce that

H (i1)>H (i2) +G (i1)>G (i2) = δi1,i2 I , i1, i2 = 0,1.

This means that if we left-multiply equation (2.34a) by H (i )> and equation (2.34b) by
G (i )> and then sum these equations, we find

H (i )>sn−1
j +G (i )>dn−1

j = sn
2 j+i ,

for i = 0,1.
Multiwavelet coefficients can also be used for the detection of troubled cells. This

is because multiwavelet coefficients become small in regions where the underlying so-
lution is smooth, and remain large if the function is discontinuous. In the next section,
this property is formalized.

2.4.5. CANCELATION PROPERTY
In this section, the cancelation property is stated and proved for the one-dimensional
case [40]. Here, we assume that the multiwavelets have M + 1 vanishing moments. In
our case, we have M = `+ k (Section 2.4.3). If the solution satisfies u|I m

j
∈ C M+1(I m

j ),

then

d m
` j ≤

1

(M +1)!
· ||u(M+1)||L∞(I m

j ) ·2(−m+1)(M+3/2), (2.35)

m = 0, . . . ,n, j = 0, . . . ,2m −1, `= 0, . . . ,k.
The proof uses a Taylor expansion of u about element center xm

j : there exists a ξ

between x and xm
j such that

u(x) = u(xm
j )+u′(xm

j )(x −xm
j )+ . . .+

u(M)(xm
j )

M !
(x −xm

j )M + u(M+1)(ξ)

(M +1)!
(x −xm

j )M+1.
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s0
`0

k +1

d 0
`0

k +1

Level 0

↙ ↘

s1
` j

2(k +1)

d 1
` j

2(k +1)

Level 1

↙ ↘

s2
` j

22(k +1)

d 2
` j

22(k +1)

Level 2

...
...

sn−1
` j

2n−1(k +1)

d n−1
` j

2n−1(k +1)

Level n −1

↙ ↘

sn
` j

2n(k +1)

Level n

Coefficient

Number of coefficients

Figure 2.9: Multiwavelet decomposition. Marked coefficients together carry the same information as the coef-
ficients sn

` j , `= 0, . . . ,k, j = 0, . . . ,2n −1.

Using that the first M +1 moments of the multiwavelets vanish, we find

d m
` j = 〈u,ψm

` j 〉I m
j
=

〈
u(M+1)(ξ)

(M +1)!
(x −xm

j )M+1,ψm
` j

〉
I m

j

≤ 1

(M +1)!
||u(M+1)||L∞(I m

j )〈(x −xm
j )M+1,ψm

` j 〉I m
j

. (2.36)

Next, we use Cauchy-Schwarz’s inequality to find

〈(x −xm
j )M+1,ψm

` j 〉I m
j
≤ ||(x −xm

j )M+1||L2(I m
j ) · ||ψm

` j ||L2(I m
j ) = ||(x −xm

j )M+1||L2(I m
j ),

because the multiwavelets are orthonormal. Using the notation ∆xm for the element
size in level m, we have

||(x −xm
j )M+1||L2(I m

j ) ≤ (∆xm)M+1||1||L2(I m
j ) = (∆xm)M+1

p
∆xm = (∆xm)M+3/2.

For the domain [−1,1], we have ∆xm = 2−m+1. This means that

||(x −xm
j )M+1||L2(I m

j ) ≤ 2(−m+1)(M+3/2),

which proves the cancelation property. It should be noticed that this result can be gen-
eralized to general grid hierarchies and higher-dimensional problems [40, 72].

The next section contains a discussion of the thresholding technique for one-dimen-
sional multiwavelet expansions.
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2.4.6. THRESHOLDING OF THE MULTIWAVELET COEFFICIENTS
In this section, the thresholding technique for systems of conservation laws in one di-
mension is explained, which is based on the cancelation property [55]. This technique is
originally used for a multiwavelet-based adaptive strategy in combination with the DG
method. However, we are specifically interested in its application for troubled-cell indi-
cation. The research described in this dissertation was conducted independently from
the work in [55, 75].

Following [55], the element I n−1
j is detected as troubled if

max
`=0,...,k
r=1,2,3

 |d n−1
` j (r )|

max
{

max j=0,...,2n−1 2(n−1)/2|sn
0 j (r )|,1

}
> εn−1

p
2∆x.

Here, the value r is related to the conserved quantity in a system of three PDEs. The
factor

p
2∆x (with ∆x the DG mesh width) occurs because of a scaling difference: the

multiwavelets in [55] are scaled with respect to the L∞-norm, whereas an L2-norm scal-
ing is used in this dissertation. The level-dependent threshold value εn−1 is chosen as
εn−1 = ε/2. The parameter ε can be chosen using two different strategies [55]. The first
option is to use the a priori strategy, which is based on the balance between discretiza-
tion errors and perturbation errors of adaptive meshes [72]. If the solution contains dis-
continuities, then the a priori strategy leads to ε=C∆x2. The second option is the heuris-
tic approach, which is based on numerous computations for practical applications [55].
This method is more efficient since it is less pessimistic than the a priori strategy. For
discontinuous solutions, the heuristic approach uses ε=C∆x.

This yields detection of element I n−1
j if

max
`=0,...,k
r=1,2,3

 |d n−1
` j (r )|

max
{

max j=0,...,2n−1 2(n−1)/2|sn
0 j (r )|,1

}
> 1p

2
∆xβ+0.5C ,

where β = 2 for the a priori strategy and β = 1 for the heuristic strategy. Note that the
multiwavelet coefficients are scaled by the cell average if this value is greater than 1 in
absolute value (to prevent division by zero).

The optimal choice of the parameter C depends on the problem, in particular on the
strength of the shock compared to the normal amplitude of the solution. The smaller C
is, the more elements are detected. In general, the value C = 1/(b−a) should work for the
domain [a,b] [55]. If C is chosen too small, then too many cells are detected as troubled.
For the adaptive strategy this is not really problematic, since the approximation is usually
more accurate on a finer grid. However, for troubled-cell indication it is important to
detect the correct number of elements.

It should be noticed that this indicator is designed for very fine resolutions (since the
strategies use asymptotic arguments). For coarse meshes, smaller values of C should be
used, which are difficult to predict a priori.

2.4.7. TWO-DIMENSIONAL TENSOR-PRODUCT MULTIWAVELETS
In this section, the tensor-product multiwavelet decomposition is explained for the do-
main [−1,1]× [−1,1], being discretized using 2nx ×2ny elements. In that case, the scal-
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ing functions and multiwavelets can also be written as tensor products. The scaling-
function basis is spanned by φ`x (x)φ`y (y), for `x ,`y = 0, . . . ,k, and the multiwavelet
basis is spanned by the functions φ`x (x)ψ`y (y) (α mode), ψ`x (x)φ`y (y) (β mode), and
ψ`x (x)ψ`y (y) (γ mode). The one-step decomposition is given by

uh(x, y) =
2nx−1−1∑

i=0

2ny −1−1∑
j=0

k∑
`x ,`y=0

{
sn−1
`j φ

nx−1
`x ,i (x)φ

ny−1
`y , j (y)+dα,n−1

`j φ
nx−1
`x ,i (x)ψ

ny−1
`y , j (y)

+dβ,n−1
`j ψ

nx−1
`x ,i (x)φ

ny−1
`y , j (y)+dγ,n−1

`j ψ
nx−1
`x ,i (x)ψ

ny−1
`y , j (y)

}
,

and the full decomposition can be written as

uh(x, y) = S0(x, y)+
ny−1∑
my=0

Dα,my (x, y)+
nx−1∑
mx=0

Dβ,mx (x, y)+
nx−1∑
mx=0

ny−1∑
my=0

Dγ,m(x, y),

where,

S0(x, y) =
k∑

`x ,`y=0
s0
`0φ`x (x)φ`y (y),

Dα,my (x, y) =
2my −1∑

j=0

k∑
`x ,`y=0

d
α,(0,my )
`,(0, j ) φ`x (x)ψ

my

`y , j (y),

Dβ,mx (x, y) =
2mx −1∑

i=0

k∑
`x ,`y=0

dβ,(mx ,0)
`,(i ,0) ψ

mx
`x ,i (x)φ`y (y),

Dγ,m(x, y) =
2mx −1∑

i=0

2my −1∑
j=0

k∑
`x ,`y=0

dγ,m
`j ψ

mx
`x ,i (x)ψ

my

`y , j (y),

and ` = (`x ,`y )>, j = (i , j )>,m = (mx ,my )>. The modes α, β and γ in level n − 1 de-
tect troubled cells which are oriented in the y-, x-, and x y-directions, respectively [91].
Analogous to the one-dimensional case, the relation between the DG coefficients and
the scaling-function coefficients is given by,

2−
nx+ny

2 u
(`x ,`y )
i j = sn

`j. (2.37)

Furthermore, the coefficients on level n − 1 can be efficiently computed using multi-
wavelet decomposition [137].

2.4.8. MULTIWAVELETS ON A TRIANGULAR MESH
The extension of the multiresolution theory to a triangular mesh is not straightforward.
A thorough discussion is given in Chapter 6.

Different techniques can be compared with each other using several test cases. The
next section discusses several test problems using the Euler equations for compressible
gas dynamics.



2

28 2. BACKGROUND

2.5. TEST CASES USED IN THIS DISSERTATION
Standard examples in the rest of this dissertation follow from the Euler equations for
compressible gas dynamics. A nice introduction to gas dynamics is given in LeVeque,
[87]. The most important definitions are repeated in this section [136]. In one dimen-
sion, three equations play a role:

1. The continuity equation, which models conservation of mass:

ρt + (ρu)x = 0, (2.38a)

where ρ(x, t ) is the density, and u(x, t ) is the velocity of the gas.

2. Conservation of momentum, ρu, using a macroscopic, convective momentum
flux and a microscopic flux due to the pressure of the fluid, p(x, t ):

(ρu)t + (ρu2 +p)x = 0. (2.38b)

3. Conservation of energy, E(x, t ), using the macroscopic energy flux and a flux in
kinetic energy:

Et +
(
(E +p)u

)
x = 0. (2.38c)

Here, the equation of state for an ideal polytropic gas is used:

E = p

γ−1
+ 1

2
ρu2, (2.38d)

where the term p/(γ−1) belongs to the internal energy, and ρu2/2 is the kinetic
energy. Finally, γ = cp /cv is called the adiabatic exponent, where cp denotes the
specific heat at constant pressure and cv is the specific heat at constant volume.
For air, γ is approximately equal to 1.4.

Introducing u = (ρ,ρu,E)> = (u(1),u(2),u(3))>, equations (2.38) can be written as,

ut + f(u)x = 0, (2.39a)

where,
f(u) = (ρu,ρu2 +p,u(E +p))>. (2.39b)

In two dimensions, the Euler equations can be written as [88]

ut + f(u)x +g(u)y = 0,

using u = (ρ,ρu,ρv,E)>, with u the velocity in the x-direction, and v the velocity in the
y-direction, and

f(u) = (ρu,ρu2 +p,ρuv,u(E +p))>, g(u) = (ρv,ρuv,ρv2 +p, v(E +p))>.

The energy is computed as

E = p

γ−1
+ ρ

2
(u2 + v2).

Different sets of initial conditions can be used to construct the test cases. The next sec-
tions contain several examples in 1D (Section 2.5.1–2.5.4) and 2D (Section 2.5.5).
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2.5.1. SOD’S SHOCK TUBE
One application in which the Euler equations play a role is Sod’s shock tube [125]. This
example models a tube which is filled with two different gasses, separated by a mem-
brane. The following initial condition is used (see Figure 2.10(a)):

(ρ0,u0, p0) =
{

(1,0,1), if x < 0,
(0.125,0,0.1), if x ≥ 0.

At time t > 0, the membrane is removed, and the gasses start to interact. The physical
domain is assumed to be very long (essentially infinite). The computational domain,
however, must be finite, and is set equal to [−5,5]. The boundary conditions are chosen
such that the obtained results using this smaller domain resemble the results computed
on a larger domain. These so-called absorbing or nonreflecting boundary conditions
should allow outgoing waves to disappear without generating spurious incoming waves.

In Figure 2.10(b), the exact results for the shock tube are given for some t > 0. This
figure is given in the report of Sod, [125], and is analyzed with the help of Smoller, [124].

In Region 2, a rarefaction wave is situated, where both the density and the pressure
decrease. Note that the quantities are not smooth at the end points of the rarefaction
wave. The head x1 and tail x2 of the rarefaction wave move to the left with time.

Coordinate x3 belongs to a so-called contact discontinuity: the location where the
initial discontinuity has traveled in time. Note that density and energy are discontinuous
across the contact discontinuity, whereas pressure and velocity are continuous.

The point x4, which moves to the right, is the location of the shock wave: all quan-
tities are discontinuous across x4. The nonlinearity of the Euler equations causes this
discontinuity.

2.5.2. LAX’S SHOCK TUBE
The second test problem that we consider is the shock-tube problem of Lax [86]:

(ρ0,u0, p0) =
{

(0.445,0.698,3.528), if x < 0,
(0.5,0,0.571), if x ≥ 0,

and constant initial-state boundary conditions are used.

2.5.3. BLAST-WAVE PROBLEM
The next test problem models the interaction of two blast waves [144]:

(ρ0,u0, p0) =


(1,0,1000), if 0 ≤ x < 0.1,
(1,0,0.01), if 0.1 ≤ x < 0.9,
(1,0,100), if 0.9 ≤ x ≤ 1,

and the boundary conditions of Shu and Osher [121] are used.

2.5.4. SHU-OSHER PROBLEM
The final set of initial conditions in one dimension that we consider is

(ρ0,u0, p0) =
{

(3.857143,2.629369,10.33333), if x <−4,
(1+0.2sin(5x),0,1), if x ≥−4,

together with constant boundary conditions [121].
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u1 = 0

ρ1 = 1, p1 = 1

u5 = 0

p5 = 0.1

ρ5 = 0.125
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1

(a) t = 0.

x1 x0 x2 x3 x4

Region 5

u5 = 0

p5 = 0.1

ρ5 = 0.125

u1 = 0

ρ1 = 1, p1 = 1
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ρ4

p4

u4
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1

(b) t > 0.
Figure 2.10: Sod’s shock tube, divided into different regions:
Region 1: Gas in the original state of high pressure;
Region 2: Rarefaction wave, solution is a monotone continuous function of x/t ;
Region 3: Rarefied gas (gas at lower pressure than in Region 1);
Region 4: Compressed gas (gas at higher density than in Region 5);
Region 5: Gas in the original state of low pressure.

2.5.5. DOUBLE MACH REFLECTION PROBLEM
The two-dimensional equations of compressible gas dynamics are considered for the
double Mach reflection of a strong shock [144]. The computational domain of this prob-
lem is [0,4]× [0,1]. At t = 0, this domain is divided into two regions that are separated by
y(x) =p

3(x −1/6) [132]. The following initial conditions are used:

uL = (8,8.25cos(30◦),−8.25sin(30◦),563.5)>, (2.40a)

uR = (1.4,0,0,2.5)>. (2.40b)

At the left boundary, uL is used as a boundary condition, and at the right, uR . The
top boundary is divided into two regions: for x < 1/6+ (1+20t )/

p
3, uL is used, whereas

uR is used to the right. At the bottom boundary, uL is used for x < 1/6, and a reflecting
wall is used for x ≥ 1/6.



3
MULTIWAVELET TROUBLED-CELL

INDICATOR

In this chapter, we will first investigate the relation between multiwavelet coefficients
and jumps in (derivatives of) the DG approximation (Section 3.1). Next, a multiwavelet
troubled-cell indicator will be introduced, which uses the highest-level multiwavelet co-
efficients for detection (Section 3.2). Several illustrative examples will be given in which
the performance with respect to different indication techniques can be compared (Sec-
tion 3.3). Finally, concluding remarks are given in Section 3.4.

Parts of this chapter have been published in Journal of Computational Physics 270 (2014) and as a contribution
to the conference proceedings of ICOSAHOM 2014 (Springer).
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3.1. MULTIWAVELETS AND JUMPS IN DG APPROXIMATIONS
In this section, it will be shown that the multiwavelet coefficients on level n−1 are related
to jumps in (derivatives of) the DG approximation. In Walnut [141], the ideas have been
explained for the Haar wavelet system, and general functions.

3.1.1. VANISHING MOMENTS
Alpert’s multiwavelets are constructed in such a way that for degree k the first `+k +1
moments vanish (Section 2.4.3, and [4, 71]):∫ 1

−1
xmψ`(x)d x = 0, m = 0, . . . ,`+k, (3.1a)

such that ∫ 0

−1
xmψ`(x)d x =−

∫ 1

0
xmψ`(x)d x. (3.1b)

By construction, ψ` is an even or odd function (Table 2.1), and the same holds for the
function xm . Therefore, the value in equation (3.1b) is only nonzero if xmψ`(x) is odd.

In the following lemma, the vanishing-moment property is extended to multiresolu-
tion level n −1.

Lemma 3.1. Define I n−1
j and ψn−1

` j using equations (2.14) and (2.25), respectively. The

vanishing-moment property on multiresolution level n −1 yields:∫
I n−1

j

(x −xn
2 j+1/2)mψn−1

` j (x)d x = 0, m = 0, . . . ,k +`, j = 0, . . . ,2n−1 −1. (3.2)

Proof. Using equations (2.14) and (2.25), and the fact that

xn
2 j+1/2 =−1+ (2 j +1)∆x =−1+ (2 j +1) ·2−n+1 =−1+2−n+2( j +1/2),

the left-hand side of equation (3.2) equals

2
n−1

2

∫ −1+2−n+2( j+1)

−1+2−n+2 j

(
x +1−2−n+2 (

j +1/2
))m

ψ`(2n−1(x +1)−2 j −1)d x. (3.3)

Next, the transformation z = 2n−1(x +1)−2 j −1 is used, with x = 2−n+1(z +2 j +1)−1,
and d x = 2−n+1d z. Then, equations (3.2) and (3.3) transform into∫

I n−1
j

(x −xn
2 j+1/2)mψn−1

` j (x)d x = 2
n−1

2 ·2−n+1
∫ 1

−1
(2−n+1z)mψ`(z)d z

= 2(m+1/2)(−n+1) ·
∫ 1

−1
zmψ`(z)d z = 0, (3.4)

using the relation in equation (3.1a).

A direct consequence of Lemma 3.1 is the following result, in which we use the defi-
nition of I n−1

j (equation (2.14) and Figure 2.6):



3.1. MULTIWAVELETS AND JUMPS IN DG APPROXIMATIONS

3

33

Corollary 3.1. For m = 0, . . . ,k +`, j = 0, . . . ,2n−1 −1, it holds that∫ xn
2 j+1/2

xn
2 j−1/2

(x −xn
2 j+1/2)mψn−1

` j (x)d x =−
∫ xn

2 j+3/2

xn
2 j+1/2

(x −xn
2 j+1/2)mψn−1

` j (x)d x. (3.5)

This property will be used to derive the relation between multiwavelets and jumps in
(derivatives of) the DG approximation in the next section.

3.1.2. MULTIWAVELET COEFFICIENTS ON LEVEL n −1
By construction, multiwavelet coefficients d n−1

` j corresponding to the DG approximation

uh satisfy

d n−1
` j =

∫
I n−1

j

uh(x)ψn−1
` j (x)d x `= 0, . . . ,k, j = 0, . . . ,2n−1 −1. (3.6)

These coefficients are strongly related to the interelement jumps in (derivatives of) the
DG approximation, as we will see in the following theorem [138].

Theorem 3.1. Let uh be a DG approximation of degree k on [−1,1], using 2n elements.
For each `,m = 0, . . . ,k, define

cn
m` =

2(−n+1)m

m!
·
∫ 1

0
xmψ`(x)d x, (3.7a)

and let u(m)
h be the mth derivative of uh . It holds that

d n−1
` j = 2−

n−1
2

k∑
m=0

cn
m` ·

(
u(m)

h (xn,+
2 j+1/2)−u(m)

h (xn,−
2 j+1/2)

)
, j = 0, . . . ,2n−1 −1. (3.7b)

Proof. In general, the DG approximation is a piecewise polynomial of degree k on ele-
ment I n−1

j = I n
2 j ∪ I n

2 j+1, with a discontinuity at xn
2 j+1/2 (see Figure 2.6). This means that

we can express uh as a Taylor polynomial about xn,−
2 j+1/2 for x ∈ I n

2 j :

uh(x) = uh(xn,−
2 j+1/2)+u′

h(xn,−
2 j+1/2)(x −xn

2 j+1/2)+ . . .+ 1

k !
u(k)

h (xn,−
2 j+1/2)(x −xn

2 j+1/2)k , (3.8a)

and about xn,+
2 j+1/2 for x ∈ I n

2 j+1:

uh(x) = uh(xn,+
2 j+1/2)+u′

h(xn,+
2 j+1/2)(x −xn

2 j+1/2)+ . . .+ 1

k !
u(k)

h (xn,+
2 j+1/2)(x −xn

2 j+1/2)k . (3.8b)

The use of this relation in equation (3.6) leads to the following expression for the
multiwavelet coefficient d n−1

` j :

d n−1
` j =

k∑
m=0

1

m!
u(m)

h (xn,−
2 j+1/2)

∫ xn
2 j+1/2

xn
2 j−1/2

(x −xn
2 j+1/2)mψn−1

` j (x)d x

+
k∑

m=0

1

m!
u(m)

h (xn,+
2 j+1/2)

∫ xn
2 j+3/2

xn
2 j+1/2

(x −xn
2 j+1/2)mψn−1

` j (x)d x. (3.9)
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If we apply Corollary 3.1, we arrive at

d n−1
` j =

k∑
m=0

1

m!

(
u(m)

h (xn,+
2 j+1/2)−u(m)

h (xn,−
2 j+1/2)

)∫ xn
2 j+3/2

xn
2 j+1/2

(x −xn
2 j+1/2)mψn−1

` j (x)d x. (3.10)

With the use of z = 2n−1(x +1)−2 j −1, the theorem is proved.

Theorem 3.1 gives a direct relation between multiwavelet coefficients on level n −1
and jumps in (derivatives of) the DG approximation over element boundaries. Since
the DG method adopts a discontinuous nature at element boundaries, the multiwavelet
coefficients are in general never exactly equal to zero. However, when the solution is suf-
ficiently smooth, then the element-boundary jumps in the approximation and its deriva-
tives will be noticeably smaller than when a discontinuity in (one of the derivatives of)
the solution is present due to the cancelation property of multiwavelets (Section 2.4.5).
This information can be used to detect troubled cells. In theory, it is possible that large
jumps are canceled in the summation of equation (3.7b). In practice, however, this will
not occur at more than one successive time step, and therefore, the impact will be negli-
gible.

Equations (3.6) and (3.7b) provide information about the formal definition of the
multiwavelet coefficients and the relation to element-boundary jumps in the approxi-
mation and its derivatives. It should be noticed that in practice, the multiwavelet coeffi-
cients are computed using the efficient decomposition procedure of equation (2.34).

For a two-dimensional tensor-product space, the relations for the multiwavelet co-
efficients on level n − 1 follow naturally from the one-dimensional coefficients: using
`= (`x ,`y )>, with `x ,`y = 0, . . . ,k, n = (nx ,ny )>, and j = (i , j )>, with i = 0, . . . ,2nx−1 −1
and j = 0, . . . ,2ny−1 −1, and cn

m`
as defined in equation (3.7a), we have

dα,n−1
`j = 2−

ny −1
2

k∑
my=0

c
ny

my`y

∫ xnx
2i+ 3

2

xnx
2i− 1

2

(
∂my uh

∂ymy
(x, y

ny ,+
2 j+1/2)− ∂my uh

∂ymy
(x, y

ny ,−
2 j+1/2)

)
·φnx−1

`x ,i (x)d x,

dβ,n−1
`j = 2−

nx−1
2

k∑
mx=0

cnx
mx`x

∫ y
ny

2 j+ 3
2

y
ny

2 j− 1
2

(
∂mx uh

∂xmx
(xnx ,+

2i+1/2, y)− ∂mx uh

∂xmx
(xnx ,−

2i+1/2, y)

)
·φny−1

`y , j (y)d y,

dγ,n−1
`j = 2−

nx−1
2 2−

ny −1
2

k∑
mx=0

k∑
my=0

cnx
mx`x

c
ny

my`y

(
∂mx

∂xmx

∂my

∂ymy(
uh(xnx ,+

2i+ 1
2

, y
ny ,+
2 j+ 1

2

)−uh(xnx ,+
2i+ 1

2

, y
ny ,−
2 j+ 1

2

)−uh(xnx ,−
2i+ 1

2

, y
ny ,+
2 j+ 1

2

)+uh(xnx ,−
2i+ 1

2

, y
ny ,−
2 j+ 1

2

)

))
.

The proof of these relations follows the same lines as the proof of Theorem 3.1. The
definition of the multiwavelet coefficients in the α mode is

dα,n−1
`j =

Ï
I n−1

i j

uh(x, y)φnx−1
`x i (x)ψ

ny−1
`y j (y)d xd y.
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y
ny ,−
2 j+1/2

y
ny ,+
2 j+1/2

xnx ,−
2i+1/2 xnx ,+

2i+1/2

I
nx ,ny

2i ,2 j I
nx ,ny

2i+1,2 j

I
nx ,ny

2i ,2 j+1 I
nx ,ny

2i+1,2 j+1

Figure 3.1: Element I
nx−1,ny−1
i j . Inner horizontal line: ψ

ny−1
`y j

(y) is discontinuous. Inner vertical line: ψnx−1
`x i

(x)

is discontinuous.

A visualization of element I
nx−1,ny−1
i j can be seen in Figure 3.1. Using the tensor-product

properties of our multiwavelet space, we decompose the integral:

dα,n−1
`j =

∫
I nx−1

i

{∫
I

ny
2 j

uh(x, y)ψ
ny−1
`y j (y)d y +

∫
I

ny
2 j+1

uh(x, y)ψ
ny−1
`y j (y)d y

}
φ

nx−1
`x i (x)d x.

Similar to equation (3.8), we express the DG approximation as a Taylor polynomial about

y
ny ,−
2 j+1/2 in the first term, and about y

ny ,+
2 j+1/2 in the second term, and apply the vanishing-

moment relation of Corollary 3.1:

dα,n−1
`j =

k∑
my=0

1

my !

∫
I nx−1

i

{
∂my uh

∂ymy
(x, y

ny ,−
2 j+1/2)

∫
I

ny
2 j

(y − y
ny

2 j+1/2)myψ
ny−1
`y j (y)d y

+ ∂my uh

∂ymy
(x, y

ny ,+
2 j+1/2)

∫
I

ny
2 j+1

(y − y
ny

2 j+1/2)myψ
ny−1
`y j (y)d y

}
φ

nx−1
`x i (x)d x

=
k∑

my=0

1

my !
·
∫

I nx−1
i

(
∂my uh

∂ymy
(x, y

ny ,+
2 j+1/2)− ∂my uh

∂ymy
(x, y

ny ,−
2 j+1/2)

)

·
{∫

I
ny
2 j+1

(y − y
ny

2 j+1/2)myψ
ny−1
`y j (y)d y

}
φ

nx−1
`x i (x)d x.

Using z = 2ny−1(y +1)−2 j −1 (cf. equation (3.4)), we find

∫
I

ny
2 j+1

(y − y
ny

2 j+1/2)myψ
ny−1
`y j (y)d y = 2(my+1/2)(−ny+1)

∫ 1

0
zmyψ`y (z)d z.
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Defining c
ny

my`y
as in equation (3.7a), we end up with

dα,n−1
`j = 2−

ny −1
2

k∑
my=0

c
ny

my`y

∫
I nx−1

i

(
∂my uh

∂ymy
(x, y

ny ,+
2 j+1/2)− ∂my uh

∂ymy
(x, y

ny ,−
2 j+1/2)

)
·φnx−1

`x i (x)d x.

Note that coefficient dα,n−1
`j corresponds to jumps in (derivatives in) the y-direction.

It is straightforward to show that

dβ,n−1
`j = 2−

nx−1
2

k∑
mx=0

cnx
mx`x

∫
I

ny −1
j

(
∂mx uh

∂xmx
(xnx ,+

2i+1/2, y)− ∂mx uh

∂xmx
(xnx ,−

2i+1/2, y)

)
·φny−1

`y , j (y)d y :

these coefficients are related to jumps in (derivatives in) the x-direction.
For the γ mode, we have

dγ,n−1
`j =

∫
I nx−1

i

{∫
I

ny
2 j

uh(x, y)ψ
ny−1
`y j (y)d y +

∫
I

ny
2 j+1

uh(x, y)ψ
ny−1
`y j (y)d y

}
ψ

nx−1
`x i (x)d x

= 2−
ny −1

2

k∑
my=0

c
ny

my`y

∫
I nx−1

i

(
∂my uh

∂ymy
(x, y

ny ,+
2 j+1/2)− ∂my uh

∂ymy
(x, y

ny ,−
2 j+1/2)

)
·ψnx−1

`x i (x)d x.

Writing

f (x) = ∂my uh

∂ymy
(x, y

ny ,+
2 j+1/2)− ∂my uh

∂ymy
(x, y

ny ,−
2 j+1/2),

this means that

dγ,n−1
`j = 2−

ny −1
2

k∑
my=0

c
ny

my`y
·
{∫

I nx
2i

f (x) ·ψnx−1
`x i (x)d x +

∫
I nx

2i+1

f (x) ·ψnx−1
`x i (x)d x

}

= 2−
nx−1

2 2−
ny −1

2

k∑
mx=0

k∑
my=0

cnx
mx`x

c
ny

my`y

(
∂mx

∂xmx
f (xnx ,+

2i+1/2)− ∂mx

∂xmx
f (xnx ,−

2i+1/2)

)

= 2−
nx−1

2 2−
ny −1

2

k∑
mx=0

k∑
my=0

cnx
mx`x

c
ny

my`y
·
(
∂mx

∂xmx

∂my

∂ymy

(
uh(xnx ,+

2i+1/2, y
ny ,+
2 j+1/2)

−uh(xnx ,+
2i+1/2, y

ny ,−
2 j+1/2)−uh(xnx ,−

2i+1/2, y
ny ,+
2 j+1/2)+uh(xnx ,−

2i+1/2, y
ny ,−
2 j+1/2)

))
.

Note that in the γ mode, the DG approximation is investigated in the center of element

I
nx−1,ny−1
i j , see Figure 3.2. Indeed, the γ mode considers the jump in both the x- and the

y-direction.
Note that these relations indeed confirm the observations that the α mode detects

discontinuities in the y-direction, the β mode in the x-direction, and the γ mode in the
x y-direction, as was stated in [91] and seen in [137].

3.2. TROUBLED-CELL INDICATION
In this section, we first discuss the multiwavelet troubled-cell indicator introduced in
[137]. Then, a slight modification to the multiwavelet troubled-cell indicator is made.
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(xnx ,−
2i+1/2, y

ny ,−
2 j+1/2)

(xnx ,−
2i+1/2, y

ny ,+
2 j+1/2)

(xnx ,+
2i+1/2, y

ny ,−
2 j+1/2)

(xnx ,+
2i+1/2, y

ny ,+
2 j+1/2)

Figure 3.2: Element I
nx−1,ny−1
i j : locations where DG approximation is investigated in the γ mode.

First, the number of multiwavelet coefficients is increased by renumbering the internal
elements. Next, a careful choice is made for the multiwavelet coefficients that will be
used for detection. Finally, the modified multiwavelet troubled-cell indicator is defined.

3.2.1. ORIGINAL MULTIWAVELET TROUBLED-CELL INDICATOR
In this section, the original multiwavelet troubled-cell indicator is presented [137]. In
the neighborhood of a discontinuity in the DG approximation, the multiwavelet contri-
bution of the higher levels will suddenly become large with respect to this contribution
in continuous regions. In the original indicator, the contribution

Dn−1(x) =
2n−1−1∑

j=0
Dn−1

j (x) =
2n−1−1∑

j=0

k∑
`=0

d n−1
` j ψn−1

` j (x)

is used for troubled-cell indication [91, 137]. Troubled cells were indicated using the
absolute averages on each element of the DG discretization:

D̄n−1
i = 1

∆x

∫
Ii

∣∣Dn−1(x)
∣∣d x, i = 0, . . . ,2n −1, (3.11)

which is the weighted L1-norm on the element Ii , generally used for discontinuity detec-
tion [66]. The element where the average (3.11) is maximal, is assumed to be the element
where the strongest shock occurs.

Due to the computational cost of integral evaluation, the three-point trapezoidal rule
is implemented. This is done in place of exact integral evaluation, because finding the
roots of the absolute multiwavelet decomposition is not easy. This discrete average of
Dn−1 is easy and fast to compute and gives a good approximation of the continuous
average.

In [137], element Ii is detected as troubled if D̄n−1
i is large enough. This is the case if

the value is close enough to the maximum absolute average, where the strongest shock
occurs:

D̄n−1
i >C ·max{D̄n−1

i , i = 0, . . . ,2n −1}, C ∈ [0,1].

Here, C is a problem-depending parameter that defines the strictness of the indicator
(see Section 3.2.4 for more discussion about the value of C ).

The complexity of extending these ideas to two dimensions does not increase con-
siderably. The main difference is the use of three different contributions: Dα,n−1, Dβ,n−1,
and Dγ,n−1.
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To compute the averages of Dα,n−1, one bases the computation on its construction

through the functions φnx−1
`x i (polynomial on I nx−1

i ) andψ
ny−1
`y j (piecewise polynomial on

I
ny

2 j and I
ny

2 j+1) for i ∈ {0, . . . ,2nx−1 −1}, j ∈ {0, . . . ,2ny−1 −1}, and `x ,`y ∈ {0, . . . ,k}. Similar

to the one-dimensional approach, we compute

D̄α,n−1
i j ≡ D̄α,n−1(I nx−1

i × I
ny

j ), i = 0, . . . ,2nx−1 −1, j = 0, . . . ,2ny −1,

resulting in 2nx−1 ·2ny averages.
For the β mode, we need

D̄β,n−1
i j ≡ D̄β,n−1(I nx

i × I
ny−1
j ), i = 0, . . . ,2nx −1, j = 0, . . . ,2ny−1 −1,

because multiwavelet ψnx−1
`x i is used in the x-direction and scaling function φ

ny−1
`y j in the

y-direction (2nx ·2ny−1 averages).
In mode γ, multiwavelets are used both in the x-direction and in the y-direction,

such that
D̄γ,n−1

i j ≡ D̄γ,n−1(I nx
i × I

ny

j ), i = 0, . . . ,2nx −1, j = 0, . . . ,2ny −1

is found (2nx ·2ny averages).
Analogous to the one-dimensional case, the element I nx−1

i × I
ny

j is indicated to be a

troubled cell in the α mode if

D̄α,n−1
i j >Cα ·max{D̄α,n−1

i j , i = 0, . . . ,2nx−1 −1, j = 0, . . . ,2ny −1}, Cα ∈ [0,1].

Shock detection in the β and γ mode is done in the same manner, using the parameters
Cβ and Cγ to determine the strictness of the troubled-cell indicator. Note that this gives
us three parameters to choose.

In [137], the results for several test problems in one and two dimensions have been
given. The technique performs well and has a robust performance compared with other
methods. A simplification was performed after the relation between the multiwavelet
coefficients on level n−1 and the jumps over element boundaries was determined [138]
(Section 3.1). The indicator was adapted to use the multiwavelet coefficients directly. In
addition, the new indicator always selects two elements which share a common bound-
ary. In the rest of this dissertation, this modified multiwavelet troubled-cell indicator is
used.

3.2.2. INCREASING THE NUMBER OF MULTIWAVELET COEFFICIENTS

The multiwavelet coefficient d n−1
` j contains information about the jump in the DG ap-

proximation at boundaries xn
2 j+1/2, j = 0, . . . ,2n−1 − 1. This means that only half of the

element-boundary jumps can be investigated using these coefficients. To also include
the boundaries xn

2 j−1/2, the internal elements, I1, . . . , I2n−2, are virtually renumbered to

I0, . . . , I2n−3, and the multiwavelet decomposition procedure is again applied on these
elements (Section 2.4.4, [123]). This leads to 2n−1 − 1 extra coefficients for level n − 1.
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The combination of the coefficients corresponding to element boundaries xn
2 j−1/2 and

xn
2 j+1/2 is expressed as a vector d̃ n−1

` j , ` = 0, . . . ,k, j = 0, . . . ,2n − 2. In order to use the

outlier-detection technique in later chapters, it is important to work with vectors of
length 2n . This is achieved by defining the value d̃ n−1

`,2n−1 = d̃ n−1
`,2n−2, such that d̃ n−1

` j is

related to the jump at element boundary xn
j+1/2, j = 0, . . . ,2n −1.

Similarly, the two-dimensional multiwavelet coefficients d̃α,n−1
`j (i = 0, . . . ,2nx−1 −1,

j = 0, . . . ,2ny −1), d̃β,n−1
`j (i = 0, . . . ,2nx −1, j = 0, . . . ,2ny−1−1), and d̃γ,n−1

`j (i = 0, . . . ,2nx −1,

j = 0, . . . ,2ny −1) are used.

3.2.3. COEFFICIENTS USED FOR DETECTION
From equation (3.1b) it follows that cn

m`
is only nonzero when xmψ`(x) is an odd func-

tion. Because ψk is an odd function [4] and all even powers of x are even, coefficients
cn

0k ,cn
2k , . . . are always nonzero. According to Theorem 3.1, this means that coefficient

d n−1
k j contains information about the jump uh(xn,+

j+1/2)−uh(xn,−
j+1/2) itself (and all even

derivatives). In a similar manner we notice that ψk−1 is even, and therefore it holds that
cn

0,k−1 is zero, whereas cn
1,k−1 is nonzero, such that coefficient d n−1

k−1, j considers the jump

in the odd derivatives, but not in the approximation itself. Since we mostly focus on
the jumps in the approximation, the coefficients d n−1

k j are useful for detection. In this

dissertation, the extended coefficients d̃ n−1
k j (Section 3.2.2) are used in the troubled-cell

indicator.
In two dimensions, we use the coefficients with index `= (0,k)> for indication in the

α mode. In the β mode, the index `= (k,0)> is used, and for γ we take `= (k,k)>.

3.2.4. MODIFIED MULTIWAVELET TROUBLED-CELL INDICATOR

Coefficient d̃ n−1
k j is related to the jump in the approximation at xn

j+1/2. Therefore, ele-

ments I j and I j+1 are detected as troubled if d̃ n−1
k j is too large:

|d̃ n−1
k j | >C ·max{|d̃ n−1

k j | : j = 0, . . . ,2n −1}, with C ∈ [0,1]. (3.12)

The moment limiter is then applied only to the detected troubled cells.
If C = 1, then no element will be detected, and the smaller C is, the more elements

will be labeled as troubled. In this way, the value of C is a useful tool to prescribe the
strictness of the detector. In general, it is difficult to choose a sufficient value for C . For
each problem, several tests should be done to obtain an optimal parameter [137].

Analogous to the one-dimensional case, element I nx−1
i ×I

ny

j is indicated as a troubled

cell in the α mode if

|d̃α,n−1
(0,k),(i , j )| >Cα ·max{|d̃α,n−1

(0,k),(i , j )| : i = 0, . . . ,2nx−1 −1, j = 0, . . . ,2ny −1}, with Cα ∈ [0,1].

Shock detection in the β and γ mode is done in the same manner, using the parame-
ters Cβ and Cγ to determine the strictness of the troubled-cell indicator. Note that this
gives us three parameters to choose. Similar to the one-dimensional case, the number
of elements that is detected increases if the values of Cα,Cβ, and Cγ decrease. With this
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approach, the α mode detects discontinuities in the y-direction (because multiwavelets
are used in the y-direction), and the β mode detects discontinuities in the x-direction
(multiwavelets in x). The γ mode is used for diagonal shock detection [91].

3.3. NUMERICAL RESULTS
In this section, we investigate several examples to inspect the effectiveness of the mul-
tiwavelet troubled-cell indicator applied to the discontinuous Galerkin approximation.
We compare the results with the subcell-resolution method of Harten (α = 1.5) and the
shock-detection method of Krivodonova et al. (Section 2.3). It was previously found
that these two indicators perform better than other indication methods [104]. Once the
troubled cells are determined, the moment limiter (Section 2.2.1) is applied only to the
detected troubled cells. All figures in this section correspond to polynomial degree k = 1.
The computations, however, were also done for k = 2 and k = 3. To compare the accu-
racy of the different troubled-cell indicators, it is useful to look at time-history plots of
detected troubled cells as is commonly done [149]. The results demonstrate that the
multiwavelet troubled-cell indicator performs well. For the two-dimensional example,
the computational cost of the KXRCF indicator and the multiwavelet approach is similar.

3.3.1. ONE-DIMENSIONAL EXAMPLES
We begin by investigating the performance of the multiwavelet troubled-cell indicator
for the one-dimensional Euler equations and comparing this to existing troubled-cell in-
dicators. Below the results and comparisons are given using four different sets of initial
conditions: the shock tubes of Sod and Lax, the interaction of two blast waves, and the
Shu-Osher problem (Section 2.5). We compare the cells that are detected by our multi-
wavelet indicator with the KXRCF and Harten’s troubled-cell indicator. For the KXRCF
and Harten’s indicator, a combination of density and energy is used in the literature
[83, 104]. In the multiwavelet approach, however, only density is used in the indica-
tor. The multiwavelet approach using density detects exactly the same elements as the
combination of density and energy does. Table 3.1 contains the average and maximum
number of detected troubled cells over time.

SOD’S SHOCK TUBE

As we have seen in Section 2.5.1, the solution to Sod’s test problem develops a shock,
contact discontinuity and rarefaction wave in time. This gives rise to a time-history pro-
file of troubled cells as is shown in Figure 3.3 [124].

The detected troubled cells using the multiwavelet indicator (on density) for differ-
ent values of C are shown in Figure 3.4, together with the corresponding approximations
at T = 2. For k = 1, it is clearly visible that C = 0.9 and C = 0.5 only select the shock
wave, and the contact discontinuity is not found. To make the indicator more strict, we
need to decrease the value of C . For C = 0.1, the shock, contact discontinuity and the
left end point of the rarefaction wave (where the derivative of the approximation is dis-
continuous) are detected. This means that our indicator is very accurate if the value of
C is chosen appropriately. If not only density but also energy is used in our multiwavelet
troubled-cell indicator, exactly the same elements are detected as troubled. This behav-
ior can be seen in Figure 3.5 for Sod’s shock tube, and is true for each test problem that
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1

Figure 3.3: Time history of troubled cells, Sod’s shock tube.

we investigated. For k = 2 and k = 3 (not visualized here), the multiwavelet indicator de-
tects fewer elements than in the linear case if the same value of C is chosen. This means
that C should be chosen smaller than in the piecewise linear case in order to select the
same regions. However, the approximation is less oscillatory if fewer elements are lim-
ited (see Table 3.1), which has to do with the relation between the polynomial degree and
the number of elements in the mesh [68].

The KXRCF and Harten results are visualized in Figure 3.6. It is surprising to see that
the KXRCF indicator can detect the shock, but the contact discontinuity is not found,
which was also observed in [83]. Taking k = 2 or k = 3 improves the approximation,
but still the contact discontinuity is not detected. Using Harten’s troubled-cell indicator,
the detected elements are more scattered over the domain and the approximation at the
final time is still oscillatory. Taking a higher polynomial degree does not improve this
detector.
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(d) C = 0.9
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(e) C = 0.5
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(f) C = 0.1

Figure 3.4: Sod’s shock tube: time-history plot of detected troubled cells (first row), and approximation at final
time T = 2 (second row), using the multiwavelet troubled-cell indicator (density), 128 elements, k = 1.
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(a) Detected troubled cells
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(b) Approximation

Figure 3.5: Sod’s shock tube: time-history plot of detected troubled cells and approximation at final time T = 2
using the multiwavelet troubled-cell indicator with C = 0.1 (density and energy), 128 elements, k = 1. Compare
to Figure 3.4(c) and 3.4(f).
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(b) Harten
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(c) KXRCF
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(d) Harten

Figure 3.6: Sod’s shock tube: time-history plot of detected troubled cells (first row), and approximation at final
time T = 2 (second row), using the KXRCF indicator or Harten’s indicator (density and energy), 128 elements,
k = 1.
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LAX’S SHOCK TUBE

The second test problem that we consider is the shock-tube problem of Lax [86] (Sec-
tion 2.5.2). The results using the multiwavelet indicator can be seen in Figure 3.7, and
the KXRCF and Harten results are visualized in Figure 3.8. Note that the multiwavelet
indicator does not detect the rarefaction wave for the given values of C as this wave is
more smooth than in Sod’s shock tube. The values C = 0.9 and C = 0.5 are not restrictive
enough, since the contact discontinuity is not detected, and oscillations are present in
the approximation at the final time. The value C = 0.1 gives much better results. For
k = 2 and k = 3, we again find that the value of C should be chosen smaller than in the
linear case in order to detect the correct features using the multiwavelet technique.

Also for this example, the KXRCF indicator is not able to detect the contact discon-
tinuity. Therefore, the final-time approximation is oscillatory. For k = 2 or k = 3, the
KXRCF indicator does detect both the shock and the contact discontinuity.

The detected elements using Harten’s subcell resolution are scattered. Although this
method detects all regions with interesting features, it seems not to select enough neigh-
boring elements to remove the oscillations. This can, however, be influenced by the
choice of α as well as the choice of the limiter. For k = 2, Harten’s indicator selects fewer
cells than for k = 1, and they are very scattered over the domain. The approximation for
k = 3 looks even worse.
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(d) C = 0.9
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(e) C = 0.5
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(f) C = 0.1

Figure 3.7: Lax’s shock tube: time-history plot of detected troubled cells (first row), and approximation at final
time T = 1.3 (second row), using the multiwavelet troubled-cell indicator, 128 elements, k = 1.
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(c) KXRCF
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Figure 3.8: Lax’s shock tube: time-history plot of detected troubled cells (first row), and approximation at final
time T = 1.3 (second row), using the KXRCF indicator or Harten’s indicator, 128 elements, k = 1.

BLAST-WAVE PROBLEM

Next, we investigate the interaction of two blast waves [144] (Section 2.5.3). The de-
tected troubled cells in time are compared using different troubled-cell indicators. Time-
history plots of the detected troubled cells using the multiwavelet troubled-cell indicator
with 512 elements and k = 1 can be seen in Figure 3.9, together with the corresponding
approximation at T = 0.038. Note that although this is an extremely nonlinear problem,
only a few elements should be limited to obtain nonoscillatory results. Our parameter C
is a useful tool to prevent limiting too many elements. For k = 2 and k = 3, the value of C
should be chosen smaller in order to detect the same regions as for k = 1. However, also
here a larger value of C can be used to find a nonoscillatory approximation, see Table 3.1
[68].

The KXRCF indicator selects more elements, as can be seen in Figure 3.10. Both the
multiwavelet and the KXRCF indicator detect regions that are visible in the exact shock
solution, which was given by Woodward and Colella [144]. We speculate that the mul-
tiwavelet indicator will detect the same regions as KXRCF if a smaller C is chosen. For
k = 2 and k = 3, the number of detected elements increases considerably (see also Table
3.1).

Harten’s indicator detects too few elements and the pattern is again more scattered.
The approximation is still oscillatory, see Figure 3.10. The approximation does not im-
prove if the polynomial degree is increased.
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(f) C = 0.05

Figure 3.9: Blast-wave problem: time-history plot of detected troubled cells (first row), and approximation at
final time T = 0.038 (second row), using the multiwavelet troubled-cell indicator, 512 elements, k = 1.
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Figure 3.10: Blast-wave problem: time-history plot of detected troubled cells (first row), and approximation at
final time T = 0.038 (second row), using the KXRCF indicator or Harten’s indicator, 512 elements, k = 1.
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SHOCK DENSITY WAVE INTERACTION PROBLEM (SHU-OSHER PROBLEM)
In this section, the results are studied for the Shu-Osher problem [121] (Section 2.5.4).
The exact solution at T = 1.8 is approximated using a fine mesh, see Figure 3.11. Here,
we see that the initial contact discontinuity has traveled to the right. To the left of this
discontinuity, a highly-oscillatory region has formed. Newly-formed sine waves at the
most-left part of the domain are tilted in time to form a sawtooth structure. These new
shocks are caused by the nonlinearity of the Euler equations.
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Figure 3.11: Fine-mesh approximation of the solution to the Shu-Osher problem at T = 1.8.

For this example, results that correspond to the application of the moment limiter in
every element are given in Figure 3.12. It is clearly visible that almost every element is
limited, and the peaks in the oscillating region at the left side of the initial discontinuity
(0.5 ≤ x ≤ 2) have been lowered. The application of a troubled-cell indicator makes a
clear difference.

The multiwavelet troubled-cell indicator was applied using the values of C equal to
0.5, 0.1, and 0.05 (Figure 3.13). If C = 0.5 is used, then the left shocks are not captured:
only the contact discontinuity is detected. The value C = 0.1 is more useful since some
elements belonging to the newly-formed shocks are detected. The approximation looks
much better in this region. The value C = 0.05 is too small: the continuous oscillating
region is detected as well. For this example, the choice of C is very delicate. For k = 2, the
multiwavelet indicator shows a similar behavior, and also here, the value of C should be
chosen smaller in order to detect the same regions, whereas a larger C can be used to find
a nonoscillatory approximation. The indicator works nicely for k = 3 if the parameter is
chosen sufficiently.

The results using the KXRCF or Harten’s indicator can be inspected in Figure 3.14.
The KXRCF indicator performs very poorly: in the linear case, the contact discontinu-
ity is detected only. Therefore, the approximation is very oscillatory. For the quadratic
case, parts of the two left shocks are detected, which leads to better results. For k = 3,
the KXRCF detector perfectly detects the newly-formed shocks but also starts to detect
several elements in the smooth oscillatory region. For Harten’s indicator, the troubled
cells are very scattered over the domain, and the final approximation contains small os-
cillations.
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Figure 3.12: Shu-Osher problem: time-history plot of limited elements, and approximation at time T = 1.8,
using the full moment limiter, 512 elements, k = 1.
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(d) C = 0.5
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(e) C = 0.1
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(f) C = 0.05

Figure 3.13: Shu-Osher problem: time-history plot of detected troubled cells (first row), and approximation at
final time T = 1.8 (second row), using the multiwavelet troubled-cell indicator, 512 elements, k = 1.

DISCUSSION

For the one-dimensional test cases, we have seen that the multiwavelet troubled-cell
indicator works well if a suitable value for the parameter C is chosen. For higher polyno-
mial degrees, C should be chosen smaller in order to detect the correct troubled regions.
However, we see in Table 3.1 that although fewer elements are detected, the higher-order
approximations are often still nonoscillatory. This is related to the number of degrees of
freedom that should be used per wavelength. The higher the polynomial degree of the
approximation is, the fewer points are needed in the mesh to obtain the same accuracy
of the approximation [68]. Therefore, often a larger value of C than for the linear case
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Figure 3.14: Shu-Osher problem: time-history plot of detected troubled cells (first row), and approximation at
final time T = 1.8 (second row), using the KXRCF indicator or Harten’s indicator, 512 elements, k = 1.

is used in practice. The KXRCF indicator works well in some cases and for the higher
degrees, but in the linear case often selects too few elements to remove all oscillations.
Harten’s indicator gives rise to a very scattered pattern of troubled cells, and most ap-
proximations are still oscillatory.

In Table 3.1, the average and maximum percentages of troubled elements in time are
compared for each test problem, as in [104]. A troubled-cell indicator is said to be more
accurate if smaller percentages of troubled cells are found. However, the approxima-
tion allows for more oscillations when fewer elements or incorrect regions are detected.
This can, for example, be seen in the linear cases of Sod’s problem (C = 0.9), Lax’s prob-
lem (C = 0.9), the blast-wave problem (C = 0.25), and the Shu-Osher problem (C = 0.5),
where, although the smallest percentage is found, the resulting approximation oscillates.
Marked in bold are the smallest average percentages that give rise to a visually nonoscil-
latory approximation. It seems that the multiwavelet indicator leads to the best results,
thereby detecting the smallest possible percentages.

Note that for the blast-wave problem and the Shu-Osher problem, different values of
C are used for different polynomial degrees. This is because the interacting waves form
an extremely nonlinear problem, thereby requiring a very accurate choice of C . We use
the fact that a smaller C is needed to detect all nonsmooth regions.
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Table 3.1: Average and maximum percentages of cells that are indicated as troubled by our multiwavelet
troubled-cell indicator, for different C , the KXRCF indicator or Harten’s indicator. Marked in bold are the small-
est average percentages that belong to a visually nonoscillatory approximation.

Sod, 128 elements, k = 1 (first row), k = 2 (second row), and k = 3 (third row)
C = 0.9 C = 0.5 C = 0.1 KXRCF Harten, α= 1.5

Ave Max Ave Max Ave Max Ave Max Ave Max
0.8191 2.3438 1.2458 6.2500 6.0431 13.2812 1.6892 3.9062 4.6791 11.7188
0.8049 2.3438 1.1020 5.4688 3.5906 10.1562 2.6486 6.2500 1.2982 6.2500
0.8069 1.5625 1.2000 4.6875 3.3953 8.5938 3.5275 7.0312 6.0957 13.2812

Lax, 128 elements, k = 1 (first row), k = 2 (second row), and k = 3 (third row)
C = 0.9 C = 0.5 C = 0.1 KXRCF Harten, α= 1.5

Ave Max Ave Max Ave Max Ave Max Ave Max
0.8130 1.5625 0.9451 4.6875 3.8251 6.2500 1.8229 3.9062 5.7213 12.5000
0.8051 2.3438 1.0258 3.1250 2.5576 6.2500 3.2777 4.6875 1.7059 7.0312
0.8219 2.3438 1.1022 3.9062 2.1980 5.4688 5.9074 8.5938 5.8894 14.0625

Blast, 512 elements, k = 1 (first row), k = 2 (second row), and k = 3 (third row)
C = 0.25 C = 0.1 C = 0.05 KXRCF Harten, α= 1.5

Ave Max Ave Max Ave Max Ave Max Ave Max
0.5037 2.7344 1.1176 4.1016 1.8533 5.4688 6.5907 8.9844 1.3265 3.3203

C = 0.1 C = 0.05 C = 0.01 KXRCF Harten, α= 1.5
Ave Max Ave Max Ave Max Ave Max Ave Max

0.7158 2.3438 1.0805 4.1016 2.3799 7.6172 12.4968 20.3125 0.7616 3.1250
0.6810 2.7344 0.9928 3.3203 1.8240 6.2500 20.1565 29.6875 6.6963 16.2109

Shu-Osher, 512 elements, k = 1 (first row), k = 2 (second row), and k = 3 (third row)
C = 0.5 C = 0.1 C = 0.05 KXRCF Harten, α= 1.5

Ave Max Ave Max Ave Max Ave Max Ave Max
0.2338 0.7812 0.6346 1.9531 1.2813 11.9141 0.6646 0.7812 2.1844 5.2734
0.2673 0.7812 0.5308 1.9531 0.6780 4.1016 1.2213 2.3438 0.7085 3.1250

C = 0.1 C = 0.05 C = 0.01 KXRCF Harten, α= 1.5
Ave Max Ave Max Ave Max Ave Max Ave Max

0.5682 1.7578 0.7358 2.1484 1.2231 5.2734 2.4808 5.0781 2.2626 7.4219

A useful property of troubled-cell indicators is the decrease of percentages if the res-
olution is increased [104]. In all examples, C = 0.1 is a good choice for detecting troubled
cells. Therefore, we keep it fixed for each example, and double the number of elements in
the discretization. The percentages of detected troubled cells are approximately halved,
which can be seen in Table 3.2. The KXRCF and Harten’s troubled-cell indicator have the
same property, although the rate of decrease is smaller, [104].

Table 3.2: Average and maximum percentages of cells that are indicated as troubled by the multiwavelet
troubled-cell indicator (C = 0.1), using twice as many elements as in Table 3.1.

Sod Lax Blast Shu-Osher
256 elements 256 elements 1024 elements 1024 elements

k Ave Max Ave Max Ave Max Ave Max
1 2.6031 6.6406 1.7777 3.1250 0.4930 2.1484 0.3076 0.7812
2 1.6877 5.0781 1.2632 3.1250 0.3431 1.4648 0.2607 0.6836
3 1.4882 4.2969 1.0692 2.7344 0.3301 1.7578 0.2800 0.6836
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THRESHOLDING OF THE MULTIWAVELET COEFFICIENTS

It is also possible to use the thresholding technique for multiwavelet coefficients to de-
tect troubled cells ([55], Section 2.4.6). It turns out that this indicator works very well as
long as an appropriate value for C is chosen, and the mesh is taken fine enough. The re-
sults for the different test cases are visualized in Figure 3.15 using the heuristic strategy.
Here, we take the value C = 1/(b −a) where [a,b] is the domain on which the test prob-
lem is defined. Note that this thresholding technique is very accurate. However, many
elements should be used to meet the asymptotic properties of the indicator.

If the number of elements is taken smaller, then C should decrease to detect the cor-
rect features. In that case, it is difficult to guess the correct value of C . Another option is
to use the a priori strategy for coarser meshes, see Figure 3.16. If C = 1/(b − a) is used,
then this approach works well for Sod’s and Lax’s shock tube, but too many elements are
detected for the blast-wave and the Shu-Osher problem. Also here, the value of C should
be adapted to find the correct results.

Note that the multiwavelet troubled-cell indicator described in this chapter was de-
veloped independently from the thresholding technique.
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Figure 3.15: Thresholding technique with heuristic approach: time-history plot of detected troubled cells, 1024
elements, k = 1, C = 1/(b −a), with [a,b] the computational domain.
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Figure 3.16: Thresholding technique with a priori approach on coarser meshes: time-history plot of detected
troubled cells, k = 1, C = 1/(b −a), with [a,b] the computational domain.

3.3.2. TWO-DIMENSIONAL EXAMPLE

For the last example, the two-dimensional equations of compressible gas dynamics are
considered [88] for the double Mach reflection of a strong shock [144] (Section 2.5.5).
The combination of Harten’s troubled-cell indicator and the moment limiter is unstable
for this example. This possibility was also noticed in [149]. Therefore, the multiwavelet
approach will be tested against the fully moment-limited approach and the KXRCF indi-
cator.

The results at T = 0.2 using ∆x = ∆y = 1/128 are given in Figures 3.17 and 3.18. For
the multiwavelet troubled-cell indicator, the parameters Cα,Cβ,Cγ are chosen equal to
C = 0.05. The approximations of the multiwavelet and the KXRCF approach look similar.
In the turbulent region, more details of the DG simulation can be seen because we allow
the approximation to oscillate in continuous regions.

As in [91], we can see that the α, β and γ modes detect different troubled cells based
on direction. Although Qiu and Shu use both density and energy to compute troubled
cells [104], for our multiwavelet indicator using only density is enough. The use of energy
does not produce significant changes. The KXRCF indicator using density and energy as
indicator variables works very well, detecting exactly the discontinuous regions in the
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solution. For k = 2 the KXRCF indicator detects more elements in the turbulent region
than if the multiwavelet indicator (C = 0.05) is used. For k = 3, this effect is even more
emphasized, since the number of detected elements for C = 0.05 stays approximately
the same, whereas it increases much more for the KXRCF indicator.

The percentages of detected troubled cells are given in Table 3.3. Note that the full
limiter limits on average approximately 27% of the elements, with a maximum of more
than 50%. In that case, the only elements that are not limited are in regions where the
original state is still found (above the bow, or in the right part where x ∈ [3,4]). The
application of the moment limiter in combination with a troubled-cell indicator results
in limiting only a small portion of the elements. Therefore, we would expect the total
computation time to decrease by using a troubled-cell indicator. In Table 3.4, the total
computation times using one of the different indicators can be compared. Note that
for k = 1, it seems as if the overhead of computing the troubled-cell indication values
makes these methods more costly than expected. However, we remark that in the current
approach, we save the matrices with troubled or limited elements at each time step. This
means that at each time step, one matrix is saved if the full limiter is used, three matrices
are saved if the multiwavelet troubled-cell indicator is applied (α, β, and γ mode), and
two matrices if the KXRCF shock detector is used (density and energy). Therefore, the
computation times are larger than necessary. We expect that the use of an appropriate
profiler will improve these results. For k = 2 and especially k = 3, the multiwavelet and
KXRCF troubled-cell indicators are much faster than the full moment limiter.

3.4. CONCLUDING REMARKS
In this chapter, the relation between multiwavelet coefficients and jumps in (derivatives
of) the DG approximation has been explained and the use of these coefficients for the
detection of troubled cells has been investigated. The multiwavelet troubled-cell indi-
cator that has been constructed in this chapter compares the multiwavelet coefficients
in absolute value with the maximum coefficient (in absolute value) over the domain. A
parameter C is used to define the strictness of the indicator.

The indicator has been tested on different problems using the Euler equations of gas
dynamics in one and two dimensions. The technique performs well if a suitable value for
the problem-dependent parameter C is chosen. Compared to the KXRCF shock detec-
tor and Harten’s indicator, the multiwavelet indicator leads to the best results, since the
smallest possible percentages of troubled cells are detected resulting in nonoscillatory
approximations. For higher polynomial degrees in two dimensions, the computation of
a fully moment-limited approximation takes much more time than if the moment limiter
is only applied to the detected troubled cells.

Since the choice of the parameter C is related to the accuracy of the troubled-cell
indicator, the next chapter focuses on automating this process. The new technique pro-
posed in that chapter can also be used for the detection of local structures.
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Table 3.3: Average and maximum percentages of cells that are limited for the double Mach reflection problem,
∆x =∆y = 1/128.

Full limiter C = 0.05 KXRCF
k Ave Max Ave Max Ave Max
1 26.8356 50.6927 1.7939 2.9312 1.3889 1.9714
2 28.3570 53.9673 1.7590 2.7695 3.4451 5.3375
3 27.2912 52.1011 2.7832 2.7832 8.0253 12.4573

Table 3.4: Total computation time for double Mach, ∆x =∆y = 1/128.

k Full limiter C = 0.05 KXRCF
1 39 91 89
2 367 326 324
3 3286 2280 2274
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Figure 3.17: Detected troubled cells at T = 0.2, double Mach reflection problem, k = 1, ∆x =∆y = 1/128.
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Figure 3.18: Contour lines of approximation, double Mach reflection problem at T = 0.2, ∆x = ∆y = 1/128,
k = 1.



4
AUTOMATED PARAMETERS USING

OUTLIER DETECTION

As we have seen in Chapter 3, the multiwavelet troubled-cell indicator only works well
if a suitable problem-dependent parameter is chosen. In this chapter, we develop an
outlier-detection algorithm for troubled-cell indication and compare various techniques
using outlier detection in place of a problem-dependent parameter. Section 4.1 dis-
cusses the parameters that are used in the different indication techniques. Section 4.2
contains a motivation for the switch to outlier detection. In Section 4.3, the outlier-
detection algorithm is explained, with specific details for the application of troubled-cell
indication in Section 4.4. Section 4.5 considers the choice of the outlier-detection vec-
tors for the different indication methods. Numerical results are shown in Section 4.6, and
a discussion about the computational costs is given in Section 4.7. Concluding remarks
are given in Section 4.8.

Parts of this chapter have been published in SIAM Journal on Scientific Computing 38(1) (2016).
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4.1. PARAMETERS FOR TROUBLED-CELL INDICATION
In this section, the parameters that are used for troubled-cell indication are discussed. In
particular, we consider the multiwavelet troubled-cell indicator (Chapter 3), the KXRCF
shock detector (Section 2.3.2) and the minmod-based TVB indicator (Section 2.3.3).

4.1.1. MULTIWAVELET TROUBLED-CELL INDICATOR
The multiwavelet troubled-cell indicator [137, 138] detects elements I j and I j+1 on the
DG mesh if

|d̃ n−1
k j | >C ·max{|d̃ n−1

k j | : j = 0, . . . ,2n −1}, with C ∈ [0,1].

The accuracy of this indicator depends on the choice of the problem-dependent param-
eter C . If C decreases, then the number of detected troubled cells increases. Several tests
should be performed to find an appropriate value for each problem.

4.1.2. KXRCF SHOCK DETECTOR
The KXRCF shock detector detects element I j depending on the value of

Îj =

∣∣∣∣∫∂I−j
(uh |I j −uh |In j

)d s

∣∣∣∣
h

k+1
2 |∂I−j |||uh |I j ||

.

Motivated by the discussion in [83], the threshold value is taken equal to 1, such that
element I j is detected as troubled if Îj > 1 (Section 2.3.2). However, this threshold pa-
rameter is chosen arbitrarily: the value 1 does not necessarily follow from the theory.

4.1.3. MINMOD-BASED TVB INDICATOR
For the minmod-based TVB indicator, element I j is detected as troubled if either ũ j or
˜̃u j (equation (2.11)) is modified by the functions

ũ(mod)
j = m̃(ũ j , ū j+1 − ū j , ū j − ū j−1), ˜̃u(mod)

j = m̃( ˜̃u j , ū j+1 − ū j , ū j − ū j−1),

where the TVB-modified minmod function is defined as

m̃(a1, . . . , aq ) =
{

a1, if |a1| ≤ M∆x2,
m(a1, . . . , aq ), otherwise,

and m(a1, . . . , aq ) is the original minmod function as given in equation (2.13) [29, 30].
The parameter M is difficult to tune, and hardly any difference is found when M ranges
from 1 to 100 [148].

In [145], a parameter-free minmod marker was constructed. Although the results in
that paper are promising, the method cannot be used for different troubled-cell indi-
cation values. One option that may work for several indication values, is the use of a
statistical tool: outlier detection. In the next section, the motivation for this switch is
explained.
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4.2. MOTIVATION FOR SWITCH TO OUTLIER DETECTION
In this section, the switch to outlier detection is motivated using a particular test prob-
lem for the multiwavelet troubled-cell indicator. Similar observations hold for the other
troubled-cell indicators that are discussed in this dissertation.

Problems can arise when the troubled-cell indicator is applied to an approximation
that is varying substantially over the domain. As an example, the multiwavelet troubled-
cell indicator is used for the following functions:

f1(x) =


1, if x ∈ [−0.5,−0.25],
0.75, if x ∈ [0,0.25],
0, else,

f2(x) =


1, if x ∈ [−0.5,−0.25],
0.25, if x ∈ [0,0.25],
0, else,

see Figures 4.1(a) and 4.1(c). The corresponding values of the multiwavelet coefficients
are depicted in Figures 4.1(b) and 4.1(d). Horizontal lines mark the bounds for troubled-
cell indication for different values of C . Note that C = 0.5 suffices for f1, whereas for f2

the value C = 0.2 should be taken to detect all discontinuities. In short, C ideally depends
on the approximation.

Similar observations can be made for the KXRCF shock detector and the minmod-
based TVB indicator. The three indicators attach a value to each element of the domain
(multiwavelet coefficient, jump across inflow boundary, or boundary approximations,
respectively). Discontinuous regions usually correspond to the locations where the indi-
cator value suddenly increases or decreases with respect to the neighboring values. This
means that indication can be reduced to detecting the outliers of a vector with troubled-
cell indication values.

4.3. OUTLIER DETECTION
In this section, an outlier-detection algorithm is proposed to detect outliers in a vec-
tor. Therefore, we use a boxplot mechanism that is often applied in statistics [54, 135]
and described by Tukey [133]. Ogden mentions the boxplot technique for the detection
of outliers in wavelet coefficients in [100], and boxplots are also used in combination
with wavelet coefficients in [84]. Important properties of this method are that only a few
’false positives’ are found if the data are well behaved (i.e., Gaussian [70]) and that it is
not necessary to specify the number of possible outliers in advance. This is in contrast to
many standard outlier-detection techniques which require stating the exact or the max-
imum number of outliers that may be present [69]. The technique will be applied to the
troubled-cell indicators discussed in Section 4.1.

We use a vector d = (d0, . . . ,dN )>, of which outliers (suddenly changing coefficients
with respect to neighbors) should be detected. A general outline of the outlier-detection
algorithm that we use is provided in Algorithm 4.1 [139]. In the following, we discuss the
details.

4.3.1. QUARTILES
Quartiles separate the data into four equal groups [105]. The values of Q1, Q2 (the me-
dian), and Q3 provide useful information about the structure of d. As a preparation, it is
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Figure 4.1: Functions, corresponding multiwavelet coefficients, and bounds for detection, k = 1, n = 8.

convenient to sort d, such that we obtain the vector ds :

ds = (d s
0,d s

1, . . . ,d s
N )>, where, d s

0 ≤ d s
1 ≤ ·· · ≤ d s

N .

The median of d is defined as the ’middle value’ of the vector [92]. It equals

med(d) =
{

d s
N /2, if N is even,

1
2

(
d s

(N−1)/2 +d s
(N+1)/2

)
, if N is odd.

The median is also called the second quartile of the vector d.

The first quartile is defined as the value below which 25% of the data fall and is de-
noted by Q1. Similarly, the third quartile, Q3, equals the value that separates the lowest

Algorithm 4.1 Outlier-detection algorithm.

Send in a suitable troubled-cell indication vector d.
Sort d to obtain ds .
Compute the quartiles of ds .
Construct the outer fences.
Determine the outliers.
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75% of the data and the highest 25% [105]. Many different definitions of the first and
third quartiles are used. In this work we apply Tukey’s definition (definition 6 in [54]):

Q1 = (1− g )d s
j−1 + g d s

j , (4.1)

where [(N +4)/2]/2 = j +g , and [x] denotes the largest integer that does not exceed x. By
construction, g = 0 or g = 1/2. The third quartile, Q3, is then computed symmetrically
using the upper end of the vector ds .

In the numerical examples, we will always use a troubled-cell indication vector with
N +1 = 4r coefficients, where r ∈N. In that case, the quartiles equal Q1 = (d s

r−1 +d s
r )/2

and Q3 = (d s
3r−1 +d s

3r )/2.

4.3.2. FENCES AND OUTLIER DETECTION
The values of the quartiles provide useful information about the structure of the vector.
However, this is not enough to define outliers in the vector. Outliers are the coefficients
in the vector that occur apart from the others. To pick out certain coefficients as outliers,
inner and outer fences are constructed, which were originally defined by Tukey [133].
The inner fences are chosen equal to [Q1 −1.5(Q3 −Q1), Q3 +1.5(Q3 −Q1)] (coefficients
outside this interval are called soft outliers). When the data are normally distributed,
only 0.7% of the data set is seen as a soft outlier (asymptotically) [69]. The value 1.5 is
referred to as the whisker length of the boxplot.

The outer fences of a vector are [Q1−3(Q3−Q1), Q3+3(Q3−Q1)] (coefficients outside
are called extreme outliers). The coverage for this whisker length is 99.9998%, such that
only 0.0002% of the data in a normally distributed vector is detected as an extreme outlier
(asymptotically) [69]. The choices of the whisker lengths (1.5 and 3) were proposed by
Tukey [133] and are commonly used in the literature [54, 69, 73, 74, 114, 115]. We will use
the extreme outliers to detect troubled cells, since then very outstanding coefficients in
the vector are selected. Because the data were sorted, the outer fences and outliers can
easily be determined.

4.3.3. APPLICATION OF OUTLIER-DETECTION ALGORITHM
In this section, we apply the outlier-detection algorithm to the following fictive troubled-
cell indication vector:

d = (−1, −1, −1, 0, 1, 0, 20, 2, 3, 1, 0, −3, −2, 0)>,

see Figure 4.2(a). Visual inspection of the vector leads to detection of the value 20. It
turns out that the application of Algorithm 4.1 yields the same result.

The sorted vector ds equals

ds = (−3, −2, −1, −1, −1, 0, 0, 0, 0, 1, 1, 2, 3, 20)>.

In this case, N = 13, such that [(N +4)/2]/2 = 8/2 = 4 = j + g , with j = 4 and g = 0. From
equation (4.1), it follows that Q1 = d s

3 =−1, and similarly, Q3 = d s
10 = 1. This means that

the bounds for outlier detection are given by

Q1 −3(Q3 −Q1) =−7, Q3 +3(Q3 −Q1) = 7,
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such that every value in d that is smaller than −7 or greater than 7 is detected as troubled.
Indeed, this leads to detection of the value 20. A boxplot visualization of this vector is
depicted in Figure 4.2(b).
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Figure 4.2: Troubled-cell indication vector and corresponding boxplot using Algorithm 4.1.

4.4. OUTLIER DETECTION FOR TROUBLED-CELL INDICATION
In this section, the particular application of outlier detection for troubled-cell indica-
tion is discussed. As we have seen in Section 4.2, a troubled-cell indicator should de-
tect the elements where indication values suddenly increase or decrease with respect to
the neighboring values. This means that indication basically reduces to detecting the
outliers of a vector with troubled-cell indication values. By applying the new outlier-
detection technique, the threshold to be an extreme outlier is fixed, and the indicator no
longer depends on problem-dependent parameters.

When an approximation contains several discontinuous regions, outlier detection
applied to the global vector D will only select the strongest discontinuities. To also take
into account the weaker discontinuities and the local structure of the approximation, the
vector D will be split into local vectors of fixed length. For each subvector, the outlier-
detection mechanism is applied [133]. In the local approach, we ignore the detected
coefficients in the left half of the local region if they are not detected with respect to the
left-neighboring vector, and similarly, the detected coefficients in the right half of the
local region are tested. In this way, the spatial information can still be used.

The outlier-detection algorithm executes the steps as provided in Algorithm 4.2, and
explained below [139].

Since the global vector D consists of 2n coefficients, it is useful to split D into 2n−p

local vectors of length 2p , where p ∈ {2, . . . ,n}. Each local vector is then sorted. For con-
venience, we denote the sorted local vector of coefficients by ds = (d s

0,d s
1, . . . ,d s

N ), where
N = 2p − 1. By definition this vector has the following 25th and 75th percentiles (see
equation (4.1)):

Q1 =
d s

2p−2−1
+d s

2p−2

2
, Q3 =

d s
3·2p−2−1

+d s
3·2p−2

2
. (4.2)
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Algorithm 4.2 Outlier-detection algorithm using local vectors.

Send in a suitable troubled-cell indication vector D.
Split this vector into local vectors, d.
for all local vectors do

Sort d to obtain ds .
Compute Q1 and Q3 using equation (4.1).
Detect d s

j in the smallest 25% of ds if d s
j <Q1 −3(Q3 −Q1), and d s

j in the largest 25%

of ds if d s
j >Q3 +3(Q3 −Q1).

end for
Ignore the detected outliers in the left half of the local region when they are not de-
tected with respect to the left-neighboring vector, and similarly, test the detected co-
efficients in the right half of the local region.

Next, we compute outer fences. Outliers are determined by comparing the smallest vec-
tor values with Q1 −3(Q3 −Q1) and the largest components with Q3 +3(Q3 −Q1). For the
smallest values we start with testing whether d s

0 <Q1 −3(Q3 −Q1). If d s
0 is not an outlier,

then there are no other outliers, since d s
j ≥ d s

0 ≥ Q1 −3(Q3 −Q1), j = 0, . . . , N . If d s
0 is an

outlier, then we test d s
1, etcetera. By construction, Q1 − 3(Q3 −Q1) ≤ Q1, such that the

only possibilities for low outliers are d s
0, . . . ,d s

2p−2−2
(2p−2 − 1 coefficients). This means

that at most d s
0,d s

1, . . . ,d s
2p−2−2

should be tested.
Similarly, we test d s

N and (possibly) d s
N−1, . . . ,d s

3·2p−2+1
against Q3 + 3(Q3 −Q1) (de-

pending on the outcome). Also here, at most 2p−2 −1 coefficients should be tested.
Finally, the detected outliers in the left half of the local vector are compared with the

fences of the left-neighboring vector, and the outliers in the right half are compared with
the right-neighboring fences.

It is important to choose the number of elements in each local vector appropriately,
such that this parameter is not problem dependent. It should be noticed that p = 3 re-
sults in 8 coefficients per vector, which is too few to find a boxplot that is meaningful.
Using p = 4 (16 coefficients per vector) means that at maximum six outliers can be de-
tected per local vector. Therefore, the maximum number of possible outliers in D equals
2n−4 ·6 = 3 ·2n−3. If we take more coefficients per local vector, for example, p = 5 (32 co-
efficients per vector), then the ’stencil’ is too wide to extract all local information of the
approximation. Therefore, the use of 16 coefficients per local vector is proposed (p = 4),
which worked well in all test cases that were performed. It should be noticed that this
number of coefficients is also used by Tukey [133].

In two dimensions, outlier detection is applied to the x- and y-direction separately.

4.5. CHOICE OF INDICATION VECTORS
The outlier-detection algorithm requires passing in a vector of troubled-cell indication
variables. In this section, the indication vectors are given on which outlier detection
will be applied. In particular, the multiwavelet troubled-cell indicator (Chapter 3), the
KXRCF shock detector (Section 2.3.2) and the minmod-based TVB indicator (Section
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2.3.3) are considered [139]. In Chapter 3, Harten’s subcell resolution idea [63] was used
for indication [104, 137]. However, this method was not accurate for every test problem
[145, 149], and will therefore not be investigated here.

4.5.1. MULTIWAVELET TROUBLED-CELL INDICATOR

The multiwavelet troubled-cell indicator uses coefficients d̃ n−1
k j for detection. The indi-

cation vector is therefore chosen as D = (d̃ n−1
k,0 , . . . , d̃ n−1

k,2n−1)>.
In two dimensions, we use the fact that the α mode detects troubled cells in the y-

direction and the β mode in the x-direction. Therefore, the one-dimensional outlier-
detection algorithm is applied to the following α-mode vectors for each x:

Di =
(
d̃α,n−1

(0,k),(i ,0), . . . , d̃α,n−1
(0,k),(i ,2ny −1)

)>
, i = 0, . . . ,2nx−1 −1.

Similarly, the β-mode vectors are chosen as

D j =
(
d̃β,n−1

(k,0),(0, j ), . . . , d̃β,n−1
(k,0),(2nx −1, j )

)>
, j = 0, . . . ,2ny−1 −1.

Detection on the γmode selects too many elements, and therefore, this mode is not used
in the outlier-detection scheme.

4.5.2. KXRCF SHOCK DETECTOR
The KXRCF shock detector uses a normalization of the jump across inflow edges for
detection. When outlier detection is used for this variable, too few elements are de-
tected. The original discontinuity detector without normalization is more suitable, such
that the jump across the interfaces is used in the indicator (equation (2.9)): we choose
D = (I0, . . . ,I2n−1)>.

In two dimensions, a matrix D = {Ii j } is found. Here, the one-dimensional outlier-
detection approach is applied in the x- and y-direction separately (row and column
wise) [133].

4.5.3. MINMOD-BASED TVB INDICATOR

For the minmod-based TVB indicator we define two vectors: D1 = (ũ0, . . . , ũ2n−1)> and
D2 = ( ˜̃u0, . . . , ˜̃u2n−1)>. The element I j is detected as troubled if either ũ j or ˜̃u j is detected
as an outlier.

For the two-dimensional case, DG coefficients u(1,0)
i j and u(0,1)

i j are used for detection.

Outlier detection will be applied to the vectors

D j =
(
u(1,0)

0, j , . . . ,u(1,0)
2nx −1, j

)>
, j = 0, . . . ,2ny −1,

in the x-direction and

Di =
(
u(0,1)

i ,0 , . . . ,u(0,1)
i ,2ny −1

)>
, i = 0, . . . ,2nx −1,

in the y-direction [133]. In this way, it is possible to detect discontinuities in different
directions.
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4.6. NUMERICAL RESULTS
In this section, the original troubled-cell indicators are compared with the new outlier-
detection approaches [139]. This is done for the multiwavelet troubled-cell indicator of
Vuik and Ryan [137, 138], the KXRCF indicator [83], and the minmod-based TVB indica-
tor [30]. The results were computed using k = 1,2,3. In this dissertation only the case
k = 2 is presented.

The results for the one-dimensional test cases are presented using time-history plots
of detected troubled cells.

4.6.1. ONE-DIMENSIONAL EXAMPLES
The test cases in one dimension include one continuous example using the Euler equa-
tions on [−1,1] with initial conditions ρ0(x) = 1+0.5sin(10πx), u0(x) = 1, p0(x) = 1, and
periodic boundary conditions. The density at T = 2 is given by ρ(x,2) = ρ0(x). Using this
example, we can validate our algorithm: since no discontinuities are present, no element
should be detected. Indeed, the original troubled-cell indicators do detect certain ele-
ments, except the case KXRCF, k = 3 (chosen parameters are reasonable and commonly
used [30, 83, 137]). This is depicted in Figure 4.3, in which the detected troubled cells us-
ing the original indicators are visualized. These so-called time-history plots show which
elements are detected in space for each time step.

The application of the outlier-detection algorithm together with the troubled-cell in-
dication vectors does not select any element (except for KXRCF, k = 1, where 0.02% of the
elements is detected on average), which is the desirable result.
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(c) Minmod, M = 10

Figure 4.3: Detected troubled cells for continuous example, 128 elements, k = 2, using original troubled-cell
indicators. Corresponding outlier-detection approaches do not detect any element.

In the second example, we investigate what happens if many shocks are located very
close to each other. We use the Euler equations on [−1,1] with initial conditions

ρ0(x) =
{

0.1, if x ∈ [−1,−0.75)∪ [−0.5,0)∪ [0.1,0.2)∪ [0.5,0.75),
0.125, if x ∈ [−0.75,−0.5)∪ [0,0.1)∪ [0.2,0.5)∪ [0.75,1],

u0(x) = 1, p0(x) = 1, and periodic boundary conditions. The results using the different
troubled-cell indicators in their original or outlier-detection form can be seen in Fig-
ure 4.4. It is interesting to see that the KXRCF indication value is not able to detect the
shocks, neither in the original form nor in the outlier-detection approach. The origi-
nal multiwavelet troubled-cell indicator perfectly selects the eight discontinuities at all
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times. The original minmod-based TVB indicator selects the correct elements in the
first time steps but is not able to detect the shocks at later times. The outlier-detection
multiwavelet troubled-cell indicator has difficulties selecting the three shocks that are
closest to each other. The other discontinuities are selected at the majority of time steps
but ignored when the limiter smoothed enough cells in that region. The results for the
minmod-based TVB indicator are much improved when the outlier-detection approach
is applied. However, also in this case the three closest discontinuities are not detected.
Since these three shocks are very close to each other, the fences in this local region are
large enough to include the shocks in the non-outlier region.

It should be noticed that the indication problems are related to the fact that the mesh
was slightly underresolved. Using more elements in the mesh will improve the results.
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(f) Outlier, minmod-based TVB

Figure 4.4: Detected troubled cells for example with many weak shocks, 128 elements, k = 1.

The standard numerical examples for the Euler equations are also investigated. The
results and comparisons are shown using four different sets of initial conditions: the
shock tubes of Sod [125] and Lax [86], the blast-wave problem [144], and the Shu-Osher
problem [121] (Section 2.5, Figures 4.5-4.9). The outlier-detection technique is applied
to density for the multiwavelet indicator, density and energy for KXRCF, and the char-
acteristic variables for the minmod-based TVB indicator, as have been done by Qiu and
Shu [104]. The first row of each figure consists of time-history plots of detected troubled
cells using the original indicators. The second row belongs to the outlier-detected trou-
bled cells. The corresponding approximations at the final times are given in the third
and fourth rows. Note that these results are computed using the moment limiter in the
detected troubled cells. A different choice for the limiter will result in different approxi-
mations.
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Note that the original troubled-cell indicators are applied with the optimal problem-
dependent parameters as found in [104, 137]. We stress that the outlier-detected results
are computed without problem-dependent parameters, but with a fixed whisker length
equal to 3, and with local indication vectors of size 16.

The new outlier-detection approach detects the troubled regions very accurately and
generally better than the original parameter-based methods for the blast-wave and Shu-
Osher problem. For the shock tube problems of Sod and Lax, most discontinuous re-
gions are selected. Note that the outlier-detection indicators sometimes detect jumps in
derivatives, as can be seen at the end points of the rarefaction waves. The original indi-
cators, however, do mostly not detect these structures. This difference can be explained
by recalling that the original indicators focus on the actual value of the indication vari-
able, whereas the outlier-detection techniques investigate the relative value with respect
to the neighboring region. A discontinuity in the derivative usually causes sudden dif-
ferences, and therefore these regions are labeled as troubled. By applying a limiter at
these locations, the discontinuity in the derivative is smeared a bit, such that at some
time steps these elements are not detected. Note that all approximations are very accu-
rate and close to the exact solution. This can also be seen in plots of the errors of the Sod
shock tube problem (Figure 4.6) and the corresponding L1-norms (Table 4.1). Note that
the error of the non-limited approximation is very oscillatory (Figure 4.6(a)), although its
L1-norm is minimal. On the other hand, the fully moment-limited approximation has a
very smooth error profile (Figure 4.6(b)), but the L1-norm of the error is maximal. Here,
we recognize that the full moment limiter limits many elements and therefore smooths
out the approximation. The troubled-cell indication approaches are typically positioned
in between these extremes. They show oscillations in the error profiles since fewer el-
ements are detected than when the moment limiter is applied in all cells. This leads
to more details in the accompanying approximations. The corresponding norms are
smaller than that of the fully-moment limited approximation. Note that the troubled-
cell indication error plots are very similar to each other. However, the outlier-detection
approaches lead to a minor increase in the norms compared to the original norms. This
could be because the end points of the rarefaction waves are detected by the outlier-
detection scheme but not found by the original troubled-cell indicators (Figure 4.5). The
application of the limiter in these cells makes the approximation more diffusive than
needed. Notice that the choice of the troubled-cell indication variable does not have
much impact on the quality of the approximation.

The most important improvements are found for the blast-wave and the Shu-Osher
problem. For the interaction of two blast waves, the original KXRCF detector and min-
mod-based TVB indicator detect many elements. However, the new outlier-detection
approach combined with these detection variables only selects a few of them, thereby
still producing very accurate results.

For the Shu-Osher problem, we especially zoom into the results which are found for
k = 2, in Figure 4.9. In the Shu-Osher problem, an initial discontinuity is moving to
the right, thereby evolving (highly oscillatory) continuous regions and developing new
shocks in the left side of the domain.

The first row of the figure consists of time-history plots of detected troubled cells us-
ing the original indicators. Note that both the multiwavelet indicator with C = 0.01 and
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the minmod-based TVB indicator with M = 100 detect the highly-oscillatory region as
being discontinuous. In this case, the KXRCF indicator gives more accurate results. For
k = 1 however, the KXRCF indicator only detects the largest discontinuity and neglects
the other three shocks in the left side of the plot, which leads to some spurious oscilla-
tions in the approximation.

In the second row of the figure, the time-history plots are shown when the indication
vectors are used in the outlier-detection algorithm. All three indication techniques de-
tect the correct regions, and the approximations are as expected (rows 3–4 of Figure 4.9).
Note that the results are very close to the exact solution: the outlier-detection algorithm
is indeed able to replace the problem-dependent parameters in the original indicators.

For k = 1 and k = 3, the same behavior is found: the new outlier-detection approach
perfectly selects the discontinuous regions in the domain.

4.6.2. TWO-DIMENSIONAL EXAMPLE
In two dimensions, we investigate the double Mach reflection of a strong shock [144],
which satisfies the two-dimensional Euler equations. Again, the original troubled-cell
indicators (with optimal parameter) are compared to the outlier-detection approaches.
The results for k = 2 can be compared in Figures 4.10-4.11 for the multiwavelet troubled-
cell indicator, in Figure 4.12 for the KXRCF shock detector, and in Figure 4.13 for the
minmod-based TVB indicator (k = 1 only). The spatial domain is split into 29 ×27 rect-
angular elements: ∆x =∆y = 1/128. In each figure, the left plots are computed using the
original troubled-cell indicators, and the right plots correspond to the outlier-detection
approaches. Contour plots of the approximation at the final time are given as well.

As mentioned earlier, the multiwavelet technique can distinguish between x- and y-
directed discontinuous regions. This is also the case if outlier detection is used. We point
out that a sharp detection of the discontinuous region is found. Only a few elements out-
side the discontinuous region are added. This happens because a finite domain is used
in the numerical model. In that case, numerical artifacts related to the boundary condi-
tions give rise to a kind of numerical Riemann problem, and therefore more shocks and
contact discontinuities are found [51]. The approximations at the final time are compa-
rable to the results using the original multiwavelet troubled-cell indicator.

The original KXRCF shock detector is compared to the outlier-detection application
in Figure 4.12. The detected troubled cells at the final time are similar for k = 1. For k = 2
and especially for k = 3 the outlier-detection scheme detects fewer elements. However,
more elements are detected in the top region of the domain, where numerical artifacts
cause extra shocks [51].

For the minmod-based TVB indicator, the results improve considerably when using
outlier detection. In Figure 4.13(a), the detected troubled cells at the final time are shown
for the original minmod-based TVB indicator. Note that too many elements are detected:
continuous regions are also selected. However, the outlier-detection technique applied
to the DG coefficients only selects the correct discontinuity profile (Figure 4.13(b)). It
should be noted that this approach detects discontinuities in the x- and y-directions,
since DG coefficients u(1,0)

i j are related to the first derivative in the x-direction, and u(0,1)
i j

to the first derivative in the y-direction. Fewer elements are detected in this case, and
the approximation at time T = 0.2 is still accurate.
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(e) Outlier, KXRCF value
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(f) Outlier, minmod-based TVB
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(g) Original, C = 0.1
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(h) Original, KXRCF
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(i) Original, M = 10
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(j) Outlier, multiwavelets
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(k) Outlier, KXRCF value
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Figure 4.5: Sod’s shock tube: time-history plot of detected troubled cells (rows 1 and 2), and approximation at
final time T = 2 (rows 3 and 4), 128 elements, k = 2.
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(g) Outlier, KXRCF value
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(h) Outlier, minmod-based TVB

Figure 4.6: Sod’s shock tube: plots of the errors in the approximation without limiter, with the full moment
limiter, and when the moment limiter is applied in the detected troubled cells using the multiwavelet, KXRCF
or minmod-based TVB indicator, 128 elements, k = 2.

Table 4.1: L1-norm of errors in the approximation without limiter, with the full moment limiter, and when the
moment limiter is applied in the detected troubled cells using the multiwavelet, KXRCF or minmod-based TVB
indicator, Sod’s shock tube, 128 elements, k = 2.

No limiting 0.0157
Full moment limiter 0.0214

Multiwavelets KXRCF Minmod
Original 0.0208 0.0199 0.0188
Outlier 0.0213 0.0211 0.0214
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(g) Original, C = 0.1
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(h) Original, KXRCF
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(j) Outlier, multiwavelets
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(k) Outlier, KXRCF value
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Figure 4.7: Lax’s shock tube: time-history plot of detected troubled cells (rows 1 and 2), and approximation at
final time T = 1.3 (rows 3 and 4), 128 elements, k = 2.
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Figure 4.8: Blast-wave problem: time-history plot of detected troubled cells (rows 1 and 2), and approximation
at final time T = 0.038 (rows 3 and 4), 512 elements, k = 2.
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Figure 4.9: Shu-Osher problem: time-history plot of detected troubled cells (rows 1 and 2), and approximation
at final time T = 1.8 (rows 3 and 4), 512 elements, k = 2.
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Figure 4.10: Detected troubled cells at T = 0.2, double Mach reflection problem, multiwavelet troubled-cell
indicator, nx = 9, ny = 7, k = 2.
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Figure 4.11: Approximations at T = 0.2, double Mach reflection problem, multiwavelet troubled-cell indicator
nx = 9, ny = 7, k = 2.
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Figure 4.12: Detected troubled cells and approximations at T = 0.2, double Mach reflection problem, KXRCF
shock detector, nx = 9, ny = 7, k = 2.
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Figure 4.13: Detected troubled cells and approximations at T = 0.2, double Mach reflection problem, minmod-
based TVB indicator, nx = 9, ny = 7, k = 1.

4.7. COMPUTATIONAL COSTS

In this section, we discuss the computational costs of the outlier-detection algorithm
[139]. First, we sort 2n−4 vectors of length 16 each. Here, the ’selection sort’ sorting
algorithm is used, which selects the minimum of the vector, swaps it with the vector’s
first value, and repeats these steps for the remaining values. The method is of order
O (N 2) time complexity, but it is possible to use a more efficient sorting algorithm (for
example, of order O (N )) [126]. Once the vectors are sorted, we compute the quartiles
and outer fences. Outliers are determined by comparing the smallest vector values with
Q1−3(Q3−Q1) and the largest components with Q3+3(Q3−Q1). For the smallest values
we start with testing whether d s

0 <Q1 −3(Q3 −Q1). If d s
0 is not an outlier, then there are

no other outliers, since d s
1 ≥ d s

0 ≥Q1−3(Q3−Q1). If d s
0 is an outlier, then we test d s

1 in the
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same way. Note that (by construction) at maximum d s
0,d s

1, and d s
2 should be tested (as

they are the only possible low outliers). Similarly, we test d s
15 and (possibly) d s

14 and d s
13

against Q3+3(Q3−Q1) (depending on the outcome). Finally, the detected outliers in the
left half of the local region are compared with the bounds of the left-neighboring region,
and the outliers in the right half are compared with the right-neighboring region.

It should be noted that this novel method works well on a CPU. The local vectors
can also be considered using parallel architectures. However, in that case, the costs for
communication will be higher since local information should be distributed among the
devices. On the other hand, it also typically results in fewer places where a limiter must
be applied.

In Table 4.2, the computational times are shown for the test problems of Section 4.6,
using either the original or the outlier-detection indication technique. Notice that the
computational times using outlier detection are slightly longer than the original times,
except for the KXRCF indicator. In that case, the number of detected elements for the
original algorithm is much larger than when outlier detection is applied, such that the
moment limiter is applied more often. For the rest of the examples, the increase in
computational time is on average 2.9%, which is reasonable. It should be emphasized
that the new method also reduces the number of tests by not having to find a problem-
dependent parameter.

Table 4.2: Total computation time in seconds for the one-dimensional examples in Section 4.6.

Multiwavelets KXRCF Minmod
Original Outlier Original Outlier Original Outlier

Sod 0.187 0.208 0.208 0.212 0.231 0.256
Lax 0.263 0.280 0.299 0.290 0.329 0.366
blast wave 10.539 11.045 13.505 12.313 14.776 14.855
Shu-Osher 5.683 5.845 6.520 6.512 7.669 7.973

The total computation times for the double Mach reflection problem are presented
in Table 4.3. Note that the case k = 1 (minmod-based TVB indicator) is much faster than
k = 2. Also here, the computation time increases, on average by 2.6%. Since no tests for
parameter finding are needed, the new method will still provide the results much faster.

Table 4.3: Total computation time in minutes for the double Mach reflection problem (k = 2 for multiwavelet
and KXRCF indicator, k = 1 for minmod-based TVB indicator).

Multiwavelets KXRCF Minmod
Original Outlier Original Outlier Original Outlier

312 316 313 324 93 97

In addition to the total computation time, it is instructive to look at the computa-
tional overhead for applying the troubled-cell indicator and the limiter compared to the
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temporal update. In Table 4.4, the results can be seen for the Shu-Osher problem, using
either the parameter-dependent or the outlier-detection approaches.

Table 4.4: Computation time in seconds and percentages of total computation time for different parts of the
Shu-Osher problem, 512 elements, k = 2.

Full moment limiter
Total Temporal update Troubled-cell indication Limiting
44.24 28.45 (64.3%) - 15.71 (35.5%)

Multiwavelet troubled-cell indicator
Total Temporal update Troubled-cell indication Limiting

C = 0.01 35.16 29.50 (83.9%) 0.70 (2.0%) 0.32 (0.9%)
Outlier 34.40 27.52 (80.0%) 1.51 (4.4%) 0.24 (0.7%)

KXRCF shock detector
Total Temporal update Troubled-cell indication Limiting

Original 34.73 27.99 (80.6%) 1.42 (4.1%) 0.14 (0.4%)
Outlier 35.88 27.59 (76.9%) 2.37 (6.6%) 0.07 (0.2%)

Minmod-based TVB indicator
Total Temporal update Troubled-cell indication Limiting

M = 100 39.85 25.98 (65.2%) 7.01 (17.6%) 0.28 (0.7%)
Outlier 38.82 26.86 (69.2%) 5.01 (12.9%) 0.16 (0.4%)

It should be noted that

• The computation is analyzed using a profiler tool, which leads to much longer
computation times. In addition, the relations are different: the multiwavelet and
minmod-TVB outlier-detection approaches are faster than the original methods,
whereas the KXRCF outlier-detection approach takes more time than the original
KXRCF method. In Table 4.2, this was exactly the other way round. However, note
that the difference is very small (approximately 1 second). This behavior could
also be profiler dependent.

• The percentages do not add to 100%: the rest of the computation time is used for
pre- and post-processing.

• The full moment limiter needs much more time for limiting than the combinations
with a troubled-cell indicator.

• For each method, the temporal update is computationally much more expensive
than troubled-cell indication and limiting.

• For the multiwavelet troubled-cell indicator and the KXRCF shock detector, trou-
bled-cell indication needs considerably more time in the outlier setting than in
the original method (almost doubled). This is expected, since the original meth-
ods only compare with an upper bound, and the outlier-detection scheme is more
involved.
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• For all methods, the outlier-detection approach detects fewer cells than the orig-
inal approach (see also Figure 4.9). Therefore, the limiting part of the outlier-
detection methods is faster than that of the original schemes.

• The results for the minmod-based TVB limiter differ substantially. It should be no-
ticed that characteristic field decompositions are required to apply the troubled-
cell indicators, see Section 2.3.3. Therefore, the indication part requires more com-
putation time.

• In the original minmod-based TVB indicator, Roe averages are used to decompose
the differences with neighbors (Section 2.3.3). This is not needed for the outlier-
detection approach, which is therefore faster.

4.8. CONCLUDING REMARKS
In this chapter, a new outlier-detection technique based on a boxplot mechanism has
been introduced. This strategy is often used in statistics but has never been applied in
this context before. The outlier-detection strategy can be applied to existing troubled-
cell indication values to detect troubled cells. In this way, the problem-dependent pa-
rameters that standard indication techniques require are no longer needed. In two di-
mensions, the one-dimensional algorithm has been applied in the x- and y-direction
separately.

The performance of the outlier-detection technique has been shown for various test
problems in one and two dimensions, using the multiwavelet troubled-cell indicator, the
KXRCF shock detector, and the minmod-based TVB indicator. The results were gener-
ally better than the original troubled-cell indicators using an optimized parameter: both
the weak and the strong shock regions were detected, whereas smooth regions were not
selected.

In the current outlier-detection technique, all spatial information is lost as only the
indication values are used for detection. Therefore, it is important to consider the appli-
cation to unstructured meshes separately. In the next chapter, the one-dimensional case
is considered.



5
IRREGULAR MESHES

Multiresolution analysis for irregular meshes is more complicated than when uniform
meshes are used. This is because there is no clear structure between the grids on the
different levels (no equal division). In this chapter, we investigate the construction of a
multiwavelet troubled-cell indicator for irregular meshes in one dimension. Two differ-
ent irregular meshes are introduced in Section 5.1. The multiresolution analysis is dis-
cussed in Section 5.2. Multiwavelet-type functions are used to derive a relation between
’multiwavelet’ coefficients on level n −1 and jumps in (derivatives of) the DG approxi-
mation (Section 5.3).

In addition to the difficulties for the multiwavelet theory, the current outlier-detec-
tion strategy does not incorporate spatial information, and therefore the applicability
to irregular meshes should be verified. Section 5.4 contains a discussion of two other
outlier-detection strategies.

Preliminary numerical results are shown and discussed in Section 5.5, and some con-
cluding remarks are given in Section 5.6.
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5.1. IRREGULAR MESHES
Daubechies et al. distinguish three different types of meshes: regular, semiregular, and
irregular meshes (Figure 5.1) [43]. A regular mesh is uniform, consists of 2n elements,
and is formed by dividing every element into two subelements with the same width when
going from one level to the next level (Figure 5.1(a)). A semiregular mesh also consists of
2n elements, but begins with a nonuniform coarse mesh. Again, every element is divided
midway to find the mesh at the next level (Figure 5.1(b)). Finally, irregular meshes are
fully nonuniform: there is no regularity in going from one level to the next, but the total
number of elements is still equal to 2n (Figure 5.1(c)).

(a) Regular mesh (b) Semiregular mesh (c) Irregular mesh

Figure 5.1: Three different types of meshes.

According to Daubechies [43], almost all research for nonuniform meshes concerns
the semiregular case. Wavelets on stretched grids have been constructed in [41, 60]. Ir-
regular meshes, however, are often used in practice, and are investigated in this disserta-
tion. Irregular meshes are more complicated to describe and analyze as there is no clear
structure between the grids on the different levels (no equal division).

In this section, two different irregular meshes are defined. Although these meshes
are constructed on [−1,1], it is possible to extend this theory to a general domain [a,b].
In the rest of this chapter, the notation of Figure 5.2 is used. Note that the DG approxi-
mation is computed on level n.

I n−1
j

xn−1
jxn−1

j−1/2 xn−1
j+1/2

Level n −1

I n
2 j I n

2 j+1

xn
2 j−1/2 xn

2 j+1/2 xn
2 j+3/2

Level n

Figure 5.2: Element I n−1
j in level n −1 and its irregular subdivision to elements I n

2 j and I n
2 j+1 in level n.

5.1.1. SMOOTHLY-VARYING MESH
The first irregular mesh that we investigate is a so-called smoothly-varying mesh: its
element widths vary smoothly as they depend on a smooth function [39, 89]. In this
chapter, we specifically use the definition below.

Definition 5.1. Define ξ as a vector containing the element boundaries of a 2n-element
uniform mesh on [−1,1]: ξ j =−1+2−n+1 j , j = 0, . . . ,2n . The vector with element bound-
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aries of a smoothly-varying mesh on [−1,1] is defined as f (ξ) = ξ+a sin(2πξ), where a ∈R
is chosen such that the vector increases.

The grid variable should increase: this means that f ′(ξ) = 1+2πa cos(2πξ) > 0. Using
that −1 ≤ cos(2πξ) ≤ 1 results in −1/(2π) < a < 1/(2π). Note that the value of a is related
to the variation in the element size: the larger the value of a, the more these sizes differ
from each other. In this dissertation, the value a = 0.1 is used. The use of other values
for a is left for future research.

5.1.2. RANDOM MESH
The second irregular mesh does not have a relation with a smooth function but is ran-
domly generated. Although meshes usually adapt to a physical structure in the domain,
this mesh is useful for testing the general applicability of the troubled-cell indicators.

Definition 5.2. Let r j+1/2 ∈ (0,1) be a random variable, b ∈ (0,1] be a constant and h be
the uniform mesh size (when 2n elements are used on [−1,1], then h = 2−n+1). Then, a
random mesh consisting of 2n elements on [−1,1] is constructed by defining [89]

xn
−1/2 =−1, xn

2n−1/2 = 1, xn
j+1/2 =−1+ ( j +1)h +b(r j+1/2 −1/2)h, j = 0, . . . ,2n −2.

The size ∆xn
j of element I n

j satisfies ∆xn
j ∈ (h −hb,h +hb): the larger the value of

b, the more irregular the mesh is. The difference with a uniform mesh is very small if
b < 0.8. Only if b ≥ 0.8 is it possible to see the nonuniformity easily. In the rest of this
dissertation, the value b = 0.8 will be used [89].

5.2. MULTIRESOLUTION ANALYSIS
In this section, the scaling functions on level n are stated, and two different approaches
for the construction of multiwavelets on irregular meshes are given. We also discuss the
advantages and disadvantages of both methods.

5.2.1. LEVEL n
Define ∆xn

j = xn
j+1/2 − xn

j−1/2 and xn
j = (xn

j−1/2 + xn
j+1/2)/2 on level n (see Figure 5.2 for

the notation). The scaling functions on level n are defined such that the element size is
taken into account (cf. equation (2.16)):

φn
` j (x) =

√
2

∆xn
j

φ`

(
2

∆xn
j

(x −xn
j )

)
, `= 0, . . . ,k, j = 0, . . . ,2n −1. (5.1)

The relation between the DG coefficients and the scaling-function coefficients on
level n is easy to derive. The global DG approximation of degree k can be expressed as

uh(x) =
2n−1∑
j=0

k∑
`=0

u(`)
j φ`

(
2

∆xn
j

(x −xn
j )

)

=
√
∆xn

j

2

2n−1∑
j=0

k∑
`=0

u(`)
j φn

` j (x) =
2n−1∑
j=0

k∑
`=0

sn
` jφ

n
` j (x),
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such that the scaling-function coefficients equal sn
` j =

√
∆xn

j /2u(`)
j . It should be noticed

that this equation reduces to its original form if a uniform mesh of 2n elements is used
(see equation (2.22)).

5.2.2. SUPERCOMPACT MULTIWAVELETS
Supercompact multiwavelets are closely related to multiwavelets for uniform meshes. In
the literature, the scaling functions on level n −1 are defined similarly to the functions
on level n [6]:

φn−1
` j (x) =

√√√√ 2

∆xn−1
j

φ`

(
2

∆xn−1
j

(x −xn−1
j )

)
, `= 0, . . . ,k, j = 0, . . . ,2n−1 −1. (5.2)

These functions are then used to generate so-called supercompact multiwavelets. In the
uniform setting, these multiwavelets differ slightly from Alpert’s multiwavelets [4, 10].
For a nonuniform mesh, the decomposition and reconstruction steps depend on the
element size, which makes them more time consuming than for a uniform mesh. Fur-
thermore, multiwavelets that satisfy

ψn−1
` j (x) =

√√√√ 2

∆xn−1
j

ψ`

(
2

∆xn−1
j

(x −xn−1
j )

)

are discontinuous in xn−1
j instead of the boundary of the DG mesh inside I n−1

j , which is

xn
2 j+1/2 (Figure 5.2). Therefore, it is unclear how to determine the exact representation

of a DG approximation using supercompact multiwavelets. The use of supercompact
multiwavelets for irregular meshes is left for future research.

5.2.3. ALPERT ’S MULTIWAVELETS
A second option is to use Alpert’s algorithm (Algorithm 2.1 in Section 2.4.3) for the spe-
cific irregular mesh. The corresponding algorithm is given in [56]: the only difference
with Alpert’s algorithm [4] is that no additional vanishing moments are added. Multi-
wavelets for one-dimensional irregular meshes have been designed in [97, 103].

It should be noticed that this construction is local, which means that the resulting
bases are depending on the level and the position unless there is an affine mapping from
the element to a reference element. Therefore, the QMF coefficients are in general lo-
cation dependent, which slows down computations. On the other hand, the use of such
multiwavelet space makes it possible to decompose the DG approximation to a multi-
wavelet expansion exactly.

In the rest of this chapter, we focus on the use of a multiwavelet-type basis which is
location independent and able to represent the DG approximation exactly. However, a
consequence of this choice is that the functions do not satisfy the exact definitions of a
multiwavelet space.

5.3. MULTIWAVELET-TYPE BASIS CONSTRUCTION
In this section, multiwavelet-type functions for irregular meshes are defined. These
functions do not fit in the classical wavelet framework: the differences with the origi-
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nal multiwavelet theory are explained. Furthermore, the relation between ’multiwavelet’
coefficients on level n−1 and jumps in (derivatives of) the DG approximation is derived.

5.3.1. MULTIWAVELET-TYPE BASIS
To find a decomposition which exactly reproduces the DG approximation, the functions
on element I n−1

j should explicitly be centered around xn
2 j+1/2. Therefore, we define the

’scaling-function’ space Sk+1
n−1 on level n −1, spanned by the functions

φn−1
` j (x) =


√

1
∆xn

2 j
φ`

(
1

∆xn
2 j

(x −xn
2 j+1/2)

)
, if x ∈ I n

2 j ,√
1

∆xn
2 j+1

φ`

(
1

∆xn
2 j+1

(x −xn
2 j+1/2)

)
, if x ∈ I n

2 j+1,
(5.3a)

and similarly the ’multiwavelet’ space S′k+1
n−1 spanned by

ψn−1
` j (x) =


√

1
∆xn

2 j
ψ`

(
1

∆xn
2 j

(x −xn
2 j+1/2)

)
, if x ∈ I n

2 j ,√
1

∆xn
2 j+1

ψ`

(
1

∆xn
2 j+1

(x −xn
2 j+1/2)

)
, if x ∈ I n

2 j+1,
(5.3b)

`= 0, . . . ,k, j = 0, . . . ,2n−1−1. Note that the ’scaling functions’ are no longer polynomials
on element I n−1

j , which used to be the case for uniform meshes (equation (2.15)). In case

of a uniform mesh we have W k+1
n−1 ⊥V k+1

n−1 , W k+1
n−1 ⊂V k+1

n , but here the ’scaling functions’

and ’multiwavelets’ on level n−1 are both defined as functions in V k+1
n : Sk+1

n−1 ⊂V k+1
n and

S′k+1
n−1 ⊂V k+1

n . Due to this choice, we can only decompose to level n −1, and not to lower
levels. To distinguish the functions from scaling-functions and multiwavelets according
to the definitions in Section 2.4, quotes are being used.

The spaces defined above have many similarities with the classical framework. For
example, the spaces satisfy Sk+1

n−1⊕S′k+1
n−1 =V k+1

n . The spaces themselves are orthonormal,
which can be shown by computing

〈ψn−1
` j ,ψn−1

m j 〉 =
∫ xn−1

j+1/2

xn−1
j−1/2

ψn−1
` j (x)ψn−1

m j (x)d x

= 1

∆xn
2 j

∫ xn
2 j+1/2

xn
2 j−1/2

ψ`

(
1

∆xn
2 j

(x −xn
2 j+1/2)

)
ψm

(
1

∆xn
2 j

(x −xn
2 j+1/2)

)
d x

+ 1

∆xn
2 j+1

∫ xn
2 j+3/2

xn
2 j+1/2

ψ`

(
1

∆xn
2 j+1

(x −xn
2 j+1/2)

)
ψm

(
1

∆xn
2 j+1

(x −xn
2 j+1/2)

)
d x.

Using the transformations ξ1 = (x − xn
2 j+1/2)/∆xn

2 j and ξ2 = (x − xn
2 j+1/2)/∆xn

2 j+1 in the

first and second integral, respectively, we arrive at:

〈ψn−1
` j ,ψn−1

m j 〉 =
∫ 0

−1
ψ`(ξ1)ψm(ξ1)dξ1 +

∫ 1

0
ψ`(ξ2)ψm(ξ2)dξ2 = δ`m .

Similarly, it is possible to show that 〈ψn−1
` j ,φn−1

m j 〉 = 0 (which means that Sk+1
n−1 ⊥ S′k+1

n−1 )

and 〈φn−1
` j ,φn−1

m j 〉 = δ`m .
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Furthermore, any ’scaling function’ on level n can be expressed as a linear combina-
tion of ’scaling functions’ and ’multiwavelets’ on level n −1:

φn−1
r,2 j =

k∑
`=0

{
〈φn−1

` j ,φn
r,2 j 〉φn−1

` j +〈ψn−1
` j ,φn

r,2 j 〉ψn−1
` j

}
,

φn−1
r,2 j+1 =

k∑
`=0

{
〈φn−1

` j ,φn
r,2 j+1〉φn−1

` j +〈ψn−1
` j ,φn

r,2 j+1〉ψn−1
` j

}
,

for r = 0, . . . ,k, j = 0, . . . ,2n−1 −1.
Here,

〈φn−1
` j ,φn

r,2 j 〉 =
∫ xn

2 j+1/2

xn
2 j−1/2

φn−1
` j (x) ·φn

r,2 j (x)d x

=
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√
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(
1
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)
·
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2

∆xn
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φr

(
2

∆xn
2 j
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)
d x.

The use of y = 2(x −xn
2 j )/∆xn

2 j yields

〈φn−1
` j ,φn

r,2 j 〉 =
1p
2

∫ 1

−1
φ`

(
y −1

2

)
φr (y)d y, (5.4a)

which exactly equals the QMF coefficient h(0)
`r in the uniform case [136]. Similar results

can be found for the rest of the QMF coefficients:

〈φn−1
` j ,φn

r,2 j+1〉 =
1p
2

∫ 1

−1
φ`

(
y +1

2

)
φr (y)d y, (5.4b)

〈ψn−1
` j ,φn

r,2 j 〉 =
1p
2

∫ 1

−1
ψ`

(
y −1

2

)
φr (y)d y, (5.4c)

〈ψn−1
` j ,φn

r,2 j+1〉 =
1p
2

∫ 1

−1
ψ`

(
y +1

2

)
φr (y)d y. (5.4d)

Note that these QMF coefficients do not depend of the position in the irregular mesh.
This makes the computation of these coefficients more efficient than when location-
dependent QMF coefficients are used.

With the use of this framework, it is possible to give an exact representation of the
DG approximation. Similar to the uniform case, the ’scaling-function’ and ’multiwavelet’
coefficients on level n−1 are defined by an orthogonal projection: sn−1

` j = 〈uh ,φn−1
` j 〉 and

d n−1
` j = 〈uh ,ψn−1

` j 〉. These coefficients are efficiently computed using decomposition and

the QMF coefficients stated above [136].

5.3.2. JUMPS IN DG APPROXIMATIONS
One drawback of the ’multiwavelet’ space defined above is that the cancelation property
cannot be proven. This is because the standard vanishing-moment property does not
hold but is replaced by the weighted vanishing moment property, which is described in
this section. However, we are able to derive a relation between the ’multiwavelet’ coeffi-
cients and jumps in (derivatives of) the DG approximation (cf. Section 3.1).
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Lemma 5.1. Define I n−1
j = [xn−1

j−1/2, xn−1
j+1/2), and ψn−1

` j as in equation (5.3b). The weighted

vanishing-moment property on multiresolution level n −1 yields:

1

(∆xn
2 j )m+1/2

∫
I n

2 j

(x −xn
2 j+1/2)mψn−1

` j (x)d x

+ 1

(∆xn
2 j+1)m+1/2

∫
I n

2 j+1

(x −xn
2 j+1/2)mψn−1

` j (x)d x = 0, (5.5)

m = 0, . . . ,`+k, j = 0, . . . ,2n−1 −1.

Proof. The proof uses the definition of ψn−1
` j and the transformations

ξ1 =
x −xn

2 j+1/2

∆xn
2 j

, ξ2 =
x −xn

2 j+1/2

∆xn
2 j+1

, (5.6)

with d x = ∆xn
2 j dξ1 = ∆xn

2 j+1dξ2 and x − xn
2 j+1/2 = ∆xn

2 jξ1 = ∆xn
2 j+1ξ2. This means that

the first component on the left-hand side of equation (5.5) equals

1
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∫
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−1
ξm

1 ψ`(ξ1)dξ1.

Similarly, we find that

1

(∆xn
2 j+1)m+1/2

∫
I n

2 j+1

(x −xn
2 j+1/2)mψn−1

` j (x)d x =
∫ 1

0
ξm

2 ψ`(ξ2)dξ2. (5.7)

Using the standard vanishing-moment property of the multiwavelets (equation (3.1a)),
the lemma is proved.

Corollary 5.1. For m = 0, . . . ,k +`, j = 0, . . . ,2n−1 −1, it holds that∫
I n

2 j

(x −xn
2 j+1/2)mψn−1

` j (x)d x =−
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∆xn
2 j+1

)m+1/2 ∫
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(x −xn
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` j (x)d x. (5.8)

We are now ready to formulate the relation between the ’multiwavelet’ coefficients
and the jumps in (derivatives of) the DG approximation.

Theorem 5.1. Let uh be a DG approximation of degree k on [−1,1], using an irregular
mesh consisting of 2n elements. For each `,m = 0, . . . ,k, j = 0, . . . ,2n−1 −1 define

c̃n
m` =

1

m!
·
∫ 1

0
xmψ`(x)d x, (5.9a)

and let u(m)
h be the mth derivative of uh . Then, the ’multiwavelet’ coefficients on level n−1

equal

d n−1
` j =
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2 j+1/2)− (∆xn
2 j )m+1/2u(m)

h (xn,−
2 j+1/2)

)
. (5.9b)
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Proof. Using the Taylor expansions of uh about xn
2 j+1/2 on elements I n

2 j and I n
2 j+1 (equa-

tion (3.8)), we find

d n−1
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Application of Corollary 5.1 yields
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From equation (5.7) it follows that∫
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If a uniform mesh is used, then the above theorem easily reduces to its original form
(Theorem 3.1).

From this theorem, it follows that ’multiwavelet’ coefficients become small if the un-
derlying function is smooth, and the mesh width between two neighboring elements is
not varying too much. Smoothly-varying meshes satisfy this condition by construction:
their ’multiwavelet’ coefficients can be used for the detection of troubled cells. For ran-
dom meshes, the neighboring mesh widths can differ substantially. However, we will see
in Section 5.5 that the coefficients are still useful for troubled-cell indication.
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5.4. OUTLIER DETECTION FOR IRREGULAR MESHES
The standard troubled-cell indicators are designed such that they are also applicable
to nonuniform meshes. For the outlier-detection approach of Chapter 4, however, the
extension to nonuniform meshes is not straightforward. This is caused by the fact that
all spatial information is lost when outlier detection is applied. In Section 5.5 we will see
that the results for the original outlier-detection approach (Algorithm 4.2) are still useful.
In addition, two different strategies are tested, which are explained in this section.

One way to include spatial information of the mesh in the algorithm is to weight
the troubled-cell indication variable using the element size. Let D = (D0, . . . ,D2n−1) be
the original troubled-cell indication vector that is used in Algorithm 4.2. Since the vector
value D j usually contains information about the boundary xn

j+1/2, the vector with entries

D j /(∆xn
j +∆xn

j+1) provides more information about the element sizes, and can be used

in Algorithm 4.2.
A second option is the use of a window-based technique [25]. A window is a fixed-

length subsequence of the test sequence, which can be slid through the domain using a
sliding step.

The original outlier-detection algorithm (Algorithm 4.2) is visualized in Figure 5.3(a).
The domain is split into 16-element regions which are lying next to each other: the win-
dow has length 16, and the sliding step equals 16 as well. The spatial information is taken
into account by ignoring outliers close to split boundaries if they are not detected with
respect to the neighboring vector.

Window 1 Window 2

(a) Original approach: window length 16, sliding step 16.

Window 1 Window 4

(b) Sliding-window approach: window length 16, sliding step 4.

Figure 5.3: Window-based outlier detection using different sliding steps.

If we use outlier detection on local vectors of length 16 with a sliding step equal to 4,
then this results in the windows of Figure 5.3(b). In each window, Algorithm 4.1 is used to
detect troubled cells. Note that the inner elements of the domain are tested four times,
with a smaller number of tests for elements close to the boundary of the domain.

In the original outlier-detection algorithm with sliding step 16 (Algorithm 4.2), out-
liers that are detected close to window boundaries should be ignored when they are not
detected using the bounds of the neighboring window. If the sliding step is taken smaller
than 16, then the detection of an outlier close to the window boundary is no longer prob-
lematic: in the next window, this element is positioned differently and will not be de-
tected if the neighboring indication values are of the same order.

In the next section, the numerical results using different parameter-based or outlier-
detection troubled-cell indicators can be compared.
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5.5. NUMERICAL RESULTS
In this section, some preliminary numerical results are shown for the one-dimensional
test cases based on the Euler equations. Here, the multiwavelet troubled-cell indicator
[137–139], the KXRCF shock detector [83] and the minmod-based TVB indicator [29, 30]
are applied either in their original form (with parameter) or using outlier detection. The
moment limiter is applied in the detected troubled cells [81]. The results are computed
for both a smoothly-varying mesh (definition 5.1, a = 0.1) and a random mesh (defini-
tion 5.2, b = 0.8). Again, time-history plots are shown, together with approximations at
the final time. The original outlier-detection algorithm is tested on all three indication
values (Figures 5.4–5.11). The techniques of Section 5.4 are only tested on the ’multi-
wavelet’ coefficients (Figures 5.12 and 5.13). We will see that the approaches of Section
5.4 do not work well enough to be used in real-life applications.

5.5.1. ORIGINAL INDICATORS AND STANDARD OUTLIER DETECTION
In this section, the results are given for the original troubled-cell indicators, as well as the
outlier-detection approach of Algorithm 4.2. For each test case, we first discuss the orig-
inal and outlier-detection results for the smoothly-varying mesh, and then investigate
the results for the random mesh.

The results for Sod’s shock tube on a smoothly-varying mesh are given in Figure 5.4.
The original KXRCF indicator only detects the shock and does not find the contact dis-
continuity. The original multiwavelet indicator does detect the shock and parts of the
contact discontinuity, but not at every time step. This could be because the applica-
tion of the limiter in this region slightly smears the approximation at the discontinuity,
such that it is not detected at a later time. The same holds for the minmod-based TVB
indicator, which also selects very few elements in the shock region of the tube. The ap-
proximations at the final time are slightly oscillatory. If outlier detection is applied to the
different indication values, then more elements are detected in the shock region, part of
the contact discontinuity is detected, and even the end points of the rarefaction wave
are found using the ’multiwavelet’ coefficients. Although the correct elements are de-
tected, the final-time approximations still contain some oscillations since the limiter is
not applied to as many elements.

The results for the random mesh (Figure 5.5) are satisfying and generally better than
the smoothly-varying mesh. The original troubled-cell indicators for the random mesh
perform similarly to the smoothly-varying case. Outlier detection on the indication val-
ues is very accurate: the correct regions are detected, and the approximations are free of
spurious oscillations.

For Lax’s shock tube on a smoothly-varying mesh (Figure 5.6), the original indica-
tors nicely detect the shock and the contact discontinuity. However, oscillations in the
final-time approximation are still found, which means that the limiter is not applied of-
ten enough. This most notably occurs because too few elements are detected near the
contact discontinuity. The results improve if a smaller parameter is chosen. If outlier de-
tection is applied, then more elements are detected. If the ’multiwavelet’ coefficients are
used for indication (Figure 5.6(d)), many left-travelling waves are detected in the rarefac-
tion zone, where the approximation is smooth. The same holds for the KXRCF indication
value (Figure 5.6(e)). The behavior for the minmod-based TVB indicator stands out (Fig-
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ure 5.6(f)) since two left-travelling waves are detected which do not correspond to the
rarefaction wave. Oscillations are still apparent in the final approximations.

For a random mesh, the original indicators work very well (Figure 5.7). If outlier
detection is applied, then the contact discontinuity is resolved better using the ’multi-
wavelet’ or minmod-based TVB indication values. For the KXRCF indicator, the amount
of detected troubled cells is still too small to prevent oscillations. Also here, more el-
ements are detected in the smooth region of the rarefaction wave (although fewer ele-
ments than in the smoothly-varying case). This is a complicated artifact of our outlier-
detection method. It can be resolved by including the spatial information in the scheme.

For the blast-wave problem on a smoothly-varying mesh (Figure 5.8), the behavior
is very similar to the uniform-mesh example (Chapter 4). The original KXRCF shock
detector and minmod-based TVB indicator detect too many elements and the multi-
wavelet troubled-cell indicator works very well. The outlier-detection approach is much
more accurate, and detects the correct regions for the ’multiwavelet’ and the minmod-
based TVB indication values (Figures 5.8(d) and 5.8(f)). For the KXRCF indicator, slightly
more elements are detected in the upper-left corner of Figure 5.8(e). However, the num-
ber of detected troubled cells is much smaller than when the original indicator is used.
Small oscillations are still found in the approximations. Note that the maximum peak
in the KXRCF indicator is much improved by changing from the original to the outlier-
detection approach.

For the random mesh (Figure 5.9), the number of detected cells using the original
KXRCF shock detector and the minmod-based TVB indicator is too large. Many elements
are detected and limited, which makes the simulations run for a long time. The disconti-
nuities are much better captured if outlier detection is applied, but detection in smooth
regions occurs very often (although the indication values are very small, and limiting
is not needed). The inclusion of spatial information in the outlier-detection algorithm
could solve this problem.

The results for the Shu-Osher problem on a smoothly-varying mesh (Figure 5.10) are
also close to the uniform case (Chapter 4). The original multiwavelet and minmod-based
TVB troubled-cell indicators select elements in the highly-oscillatory region. The outlier-
detection approach selects exactly the correct number of elements, and the results are
very good.

Similar conclusions can be drawn for the random mesh (Figure 5.11): the original
multiwavelet and minmod-based TVB indicators detect too many elements in the high-
ly-oscillatory region. The outlier-detection approach works well, although some ele-
ments are detected in smooth regions if the ’multiwavelet’ or the KXRCF indication value
is used. The result for the minmod-based TVB indication value is very accurate (Figure
5.11(f)). When outlier detection is applied to the ’multiwavelet’ coefficients, one location
is detected without a clear reason.

5.5.2. WEIGHTING THE INDICATION VARIABLE

The application of outlier detection to the weighted troubled-cell indication values does
not work well. The computation for Sod’s and Lax’s shock tubes can be completed, but is
very inaccurate as it detects the wrong elements: every element with a very small width
is detected. The computation for the blast-wave and the Shu-Osher problem blows up.
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5.5.3. OUTLIER DETECTION USING SLIDING-WINDOW TECHNIQUE
In this section, we test the sliding-window technique (Section 5.4). Note that all internal
elements are tested four times when a sliding step of size 4 is used for windows of length
16. We label an element as troubled if it is detected at least twice by the outlier-detection
algorithm. The results using the sliding-window technique on the ’multiwavelet’ coef-
ficients can be seen in Figures 5.12 (smoothly-varying mesh) and 5.13 (random mesh).
The correct features can be recognized, but many elements that are close to the non-
smooth regions are also detected, except for the blast-wave problem on a smoothly-
varying mesh (Figure 5.12(e)). This is still the case if we label an element as troubled
if it is marked at least three or four times by the sliding-window technique. These results
are not satisfying enough to proceed in this direction.

5.6. CONCLUDING REMARKS
In this chapter, irregular meshes in one dimension have been studied. Alpert’s multi-
wavelet algorithm can be applied for irregular meshes but leads to location-dependent
QMF coefficients. Therefore, special multiwavelet-type functions have been defined,
which use the same QMF coefficients as for a uniform mesh. It has been shown that, al-
though the cancelation property no longer holds, the corresponding ’multiwavelet’ co-
efficients still have a relation with the jumps in (derivatives of) the DG approximation
across the element boundaries. In addition to a parameter-based multiwavelet troubled-
cell indicator, two other outlier-detection techniques have been defined: one in which
the indication values are weighted with the mesh width and another where a sliding-
window technique is used.

We have tested several troubled-cell indicators on two different irregular meshes: a
smoothly-varying mesh and a random mesh. In general, the original troubled-cell indi-
cators work well, as long as a suitable problem-dependent parameter is chosen. When
outlier detection is applied to the indication values, this parameter is no longer needed.
The results using outlier detection are promising but in some examples (for example, the
blast-wave problem with a random mesh), too many elements are detected in smooth
regions. More research should be done to include spatial information in the algorithm.
The inclusion of the mesh width and the use of sliding-window techniques does not work
well since too many elements are detected.

In two dimensions, irregularity in both directions leads to a rectangular mesh that
is not related to tensor products. In that case, it is very difficult to use multiresolution
analysis and apply multiwavelet decomposition because the QMF coefficients need to
take into account the varying mesh sizes. This part is left for future research, and the
next chapter first focuses on a structured triangular mesh.



5.6. CONCLUDING REMARKS

5

91

(a) Original, C = 0.1 (b) Original, KXRCF (c) Original, M = 10
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Figure 5.4: Sod’s shock tube: time-history plot of detected troubled cells (rows 1 and 2), and approximation
at final time T = 2 (rows 3 and 4), 256 elements, smoothly-varying mesh, k = 2. Algorithm 4.2 is applied to
compute the outlier-detection results.
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(a) Original, C = 0.1 (b) Original, KXRCF (c) Original, M = 10

(d) Outlier, multiwavelets (e) Outlier, KXRCF value (f) Outlier, minmod-based TVB
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(g) Original, C = 0.1
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Figure 5.5: Sod’s shock tube: time-history plot of detected troubled cells (rows 1 and 2), and approximation at
final time T = 2 (rows 3 and 4), 256 elements, random mesh, k = 2. Algorithm 4.2 is applied to compute the
outlier-detection results.
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(a) Original, C = 0.1 (b) Original, KXRCF (c) Original, M = 10

(d) Outlier, multiwavelets (e) Outlier, KXRCF value (f) Outlier, minmod-based TVB
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(k) Outlier, KXRCF value
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Figure 5.6: Lax’s shock tube: time-history plot of detected troubled cells (rows 1 and 2), and approximation
at final time T = 1.3 (rows 3 and 4), 256 elements, smoothly-varying mesh, k = 2. Algorithm 4.2 is applied to
compute the outlier-detection results.
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(a) Original, C = 0.1 (b) Original, KXRCF (c) Original, M = 10

(d) Outlier, multiwavelets (e) Outlier, KXRCF value (f) Outlier, minmod-based TVB
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(k) Outlier, KXRCF value
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Figure 5.7: Lax’s shock tube: time-history plot of detected troubled cells (rows 1 and 2), and approximation at
final time T = 1.3 (rows 3 and 4), 256 elements, random mesh, k = 2. Algorithm 4.2 is applied to compute the
outlier-detection results.
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(a) Original, C = 0.1 (b) Original, KXRCF (c) Original, M = 100

(d) Outlier, multiwavelets (e) Outlier, KXRCF value (f) Outlier, minmod-based TVB
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Figure 5.8: Blast-wave problem: time-history plot of detected troubled cells (rows 1 and 2), and approximation
at final time T = 0.038 (rows 3 and 4), 512 elements, smoothly-varying mesh, k = 2. Algorithm 4.2 is applied to
compute the outlier-detection results.
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(a) Original, C = 0.1 (b) Original, KXRCF (c) Original, M = 100

(d) Outlier, multiwavelets (e) Outlier, KXRCF value (f) Outlier, minmod-based TVB
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Figure 5.9: Blast-wave problem: time-history plot of detected troubled cells (rows 1 and 2), and approximation
at final time T = 0.038 (rows 3 and 4), 512 elements, random mesh, k = 2. Algorithm 4.2 is applied to compute
the outlier-detection results.
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(a) Original, C = 0.1 (b) Original, KXRCF (c) Original, M = 100
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Figure 5.10: Shu-Osher problem: time-history plot of detected troubled cells (rows 1 and 2), and approximation
at final time T = 1.8 (rows 3 and 4), 512 elements, smoothly-varying mesh, k = 2. Algorithm 4.2 is applied to
compute the outlier-detection results.
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(a) Original, C = 0.1 (b) Original, KXRCF (c) Original, M = 100

(d) Outlier, multiwavelets (e) Outlier, KXRCF value (f) Outlier, minmod-based TVB
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Figure 5.11: Shu-Osher problem: time-history plot of detected troubled cells (rows 1 and 2), and approximation
at final time T = 1.8 (rows 3 and 4), 512 elements, random mesh, k = 2. Algorithm 4.2 is applied to compute
the outlier-detection results.
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(a) Sod’s shock tube, 256 elements

−5 −4 −3 −2 −1 0 1 2 3 4 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

x

ρ

 

 

Exact

Multiwavelets

(b) Sod’s shock tube, T = 2

(c) Lax’s shock tube, 256 elements

−5 −4 −3 −2 −1 0 1 2 3 4 5
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x

ρ

 

 

Exact

Multiwavelets

(d) Lax’s shock tube, T = 1.3

(e) Blast-wave problem, 512 elements
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(f) Blast-wave problem, T = 0.038

(g) Shu-Osher problem, 512 elements
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(h) Shu-Osher problem, T = 1.8

Figure 5.12: Time-history plots of detected troubled cells (left), and approximation at final times (right),
smoothly-varying mesh with sliding-window technique on multiwavelet coefficients, k = 2.
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(a) Sod’s shock tube, 256 elements
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(b) Sod’s shock tube, T = 2

(c) Lax’s shock tube, 256 elements
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(d) Lax’s shock tube, T = 1.3
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(f) Blast-wave problem, T = 0.038

(g) Shu-Osher problem, 512 elements
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(h) Shu-Osher problem, T = 1.8

Figure 5.13: Time-history plots of detected troubled cells (left), and approximation at final times (right), ran-
dom mesh with sliding-window technique on multiwavelet coefficients, k = 2.



6
STRUCTURED TRIANGULAR

MESHES

In this chapter, an attempt is made to construct a multiwavelet troubled-cell indicator
for structured triangular meshes. In Section 6.1, the triangular mesh is defined. Section
6.2 contains information about barycentric coordinates. In Section 6.3, the nodal DG
method for triangular meshes is shortly discussed. The multiresolution analysis is de-
scribed in Section 6.4. Both the parameter-based and the outlier-detection multiwavelet
troubled-cell indicator are constructed for triangular meshes in Section 6.5. Preliminary
results are shown in Section 6.6, and some concluding remarks are given in Section 6.7.

Parts of this chapter are submitted as a contribution to the conference proceedings of ICOSAHOM 2016
(Springer).
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6.1. STRUCTURED TRIANGULAR MESH
In this section, the definition of a structured triangular mesh on a rectangular domain
Ω ∈R2 is given, following the notation in [52, 140]. In order to compute the multiwavelet
decomposition at a later time, the relation between the mesh on the finest level n and
level n −1 is explained.

Definition 6.1. Let i and j be space indices in the x- and y-direction, respectively, and let
M account for the orientation of the triangle: M = 1 corresponds to triangles with the right
angle located in the bottom-left corner, M = 2 belongs to the triangles with right angles in
the upper-right corner. The uniform triangulation of a rectangular domainΩ ∈R2 on level
n consists of 22n+1 elements, and is expressed as T n = {T n

(i , j ,M)}
M=1,2
i , j=0,...,2n−1 = {T n

λ
}λ, with

λ= (i , j , M), i , j = 0, . . . ,2n −1, M = 1,2.

The triangulation on level n−1 is obtained by uniting four triangles on level n (Figure
6.1):

T n−1
(i , j ,1) = T n

(2i ,2 j ,2) ∪T n
(2i ,2 j ,1) ∪T n

(2i+1,2 j ,1),∪T n
(2i ,2 j+1,1),

T n−1
(i , j ,2) = T n

(2i+1,2 j+1,1) ∪T n
(2i+1,2 j+1,2) ∪T n

(2i ,2 j+1,2) ∪T n
(2i+1,2 j ,2),

with i , j = 0, . . . ,2n−1 −1.

T n
(2i ,2 j ,1)

T n
(2i ,2 j ,2)

T n
(2i ,2 j+1,1)

T n
(2i ,2 j+1,2)

T n
(2i+1,2 j+1,1)

T n
(2i+1,2 j+1,2)

T n
(2i+1,2 j ,1)

T n
(2i+1,2 j ,2)

Figure 6.1: Triangulation T n of a rectangular domain Ω ∈ R2. Solid lines correspond to the elements T n−1
(i , j ,1)

and T n−1
(i , j ,2) on level n −1.

6.2. BARYCENTRIC COORDINATES
Points inside a triangle are efficiently expressed using barycentric coordinates. In this
section, several properties of the barycentric coordinate system are given.

Definition 6.2. Let triangle T be defined by its vertices Pi = (xi , yi )>, i = 1,2,3. Every
point P = (x, y)> can be expressed in terms of the barycentric coordinates τ= (τ1,τ2,τ3)>
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with respect to triangle T as follows:

x = τ1x1 +τ2x2 +τ3x3,

y = τ1 y1 +τ2 y2 +τ3 y3. (6.1)

The barycentric coordinates are uniquely given by requiring |τ| = τ1 +τ2 +τ3 = 1. If
P is located inside T , then τi ≥ 0, i = 1,2,3.

The matrix-vector form of the transformation is useful for the computation of inte-
grals on a triangle. Equation (6.1) is equivalent to the system(

x
y

)
= A

(
τ1

τ2

)
+

(
x3

y3

)
, with A =

(
x1 −x3 x2 −x3

y1 − y3 y2 − y3

)
.

The Jacobian of this transformation is given by

|det(A)| = |x1 y2 −x1 y3 −x3 y2 −x2 y1 +x2 y3 +x3 y1| = 2|T |,

where we use that the area of T equals

|T | =
∣∣∣∣ x1(y2 − y3)+x2(y3 − y1)+x3(y1 − y2)

2

∣∣∣∣ .

Integrals of functions on a triangle can therefore be transformed to barycentric coordi-
nates as follows [146]:Ï

T
f (x, y)d xd y = 2|T |

∫ 1

0

∫ 1−τ1

0
f (x(τ1,τ2), y(τ1,τ2))dτ2dτ1. (6.2)

The transformation from original coordinates to barycentric coordinates equals

 τ1

τ2

τ3

=
 x1 x2 x3

y1 y2 y3

1 1 1

−1  x
y
1

 .

Using this expression, it is possible to relate the barycentric coordinates on different
triangles which will be necessary when discussing multiwavelets. If P has barycentric
coordinates τ relative to triangle T (which is defined by {(xi , yi ), i = 1,2,3}), then the
barycentric coordinates τ′ with respect to T ′ (defined by {(x ′

i , y ′
i ), i = 1,2,3}) can be cal-

culated using τ′ = MT→T ′τ, where

MT→T ′ =
 x ′

1 x ′
2 x ′

3
y ′

1 y ′
2 y ′

3
1 1 1

−1  x1 x2 x3

y1 y2 y3

1 1 1

 . (6.3)

The right matrix transforms τ to P, and the left matrix computes τ′ from P [146].
Finally, the midpoint subdivision of a triangle T n−1

λ
= T n

λ0
∪T n

λ1
∪T n

λ2
∪T n

λ3
can easily

be described in barycentric coordinates, see Figure 6.2 [146].
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P1 : (1,0,0) P2 : (0,1,0)

P3 : (0,0,1)

( 1
2 ,0, 1

2 ) (0, 1
2 , 1

2 )

( 1
2 , 1

2 ,0)

T n
λ1

: τ1 ≥ 1
2 T n

λ2
: τ2 ≥ 1

2

T n
λ3

: τ3 ≥ 1
2

T n
λ0

:τ≤ 1
2

Figure 6.2: Midpoint subdivision of the triangle T n−1
λ

. All coordinates are given in barycentric form (τ1,τ2,τ3).

6.3. DISCONTINUOUS GALERKIN METHOD
As discussed in Section 2.1, the discontinuous Galerkin method can be expressed either
in the modal, or in the nodal form. Although the modal form is used for multiwavelet
decomposition, the nodal form is computationally more attractive on a triangular mesh
[27, 31, 68]. In this section, the nodal discontinuous Galerkin method on a triangular
mesh is briefly described for the conservation law

∂u(x,t )
∂t +∇· f(u(x, t ),x, t ) = 0, x ∈Ω ∈R2,

u(x, t ) = g (x, t ), x ∈ ∂Ωi ,
u(x,0) = f (x),

where ∂Ωi is the inflow boundary ofΩ.
The approximation space is defined as

Vh = { f : f ∈Pk (T n
λ ), ∀T n

λ ∈T n}, (6.4)

where Pk (T n
λ

) is the space of polynomials of degree at most k on triangle T n
λ

. Note that
this space has dimension Nk = (k+1)(k+2)/2. As a basis, the two-dimensional Lagrange-

polynomials, {`i }Nk
i=1, are used, using Nk grid points xi on triangle T n

λ
. These functions

are not known explicitly [68]. The choice of the optimal nodal points is described in [68].
This leads to the following nodal DG approximation on triangle T n

λ
:

uh(x) =
Nk∑
i=1

uh(xi )`i (x).

The weak form of the PDE is obtained by multiplying the equation by a test function,
integrating over triangle T n

λ
, and applying the divergence theorem, which yields∫

T n
λ

(
∂uh

∂t
`i (x)− fh ·∇`i (x)

)
dx =−

∫
∂T n

λ

n̂ · f∗`i (x)dx.
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The numerical flux, f∗, is approximated by the local Lax-Friedrichs flux [68]. Let a and
b be the DG approximations in the interior and the exterior of the triangle, respectively,
and let f = ( f1, f2). Using

C = max
u∈[a,b]

∣∣∣∣n̂x
∂ f1

∂u
+ n̂y

∂ f2

∂u

∣∣∣∣ ,

the flux is chosen as

f∗(a,b) = f(a)+ f(b)

2
+ C

2
n̂(a −b).

The explicit five-stage fourth-order low-storage Runge-Kutta method is used for time
integration [23]. More details about the implementation of the nodal DG method for
different problems can be found in [68].

6.4. MULTIRESOLUTION ANALYSIS

In this section, the multiresolution analysis for a triangular mesh is presented, together
with the formulae for multiwavelet decomposition and reconstruction [140]. The scaling
functions and multiwavelets are constructed for the so-called base triangle, TB , which
has vertices P1 = (0,0), P2 = (1,0), and P3 = (0,1), and subdivision TB = T0 ∪T1 ∪T2 ∪T3

(with numbering similar to Figure 6.2). The extension to general triangles is given as
well.

6.4.1. SCALING-FUNCTION SPACE

In this section, the orthonormal scaling-function basis is constructed for the base trian-
gle, using barycentric coordinates [146]. The scaling-function space on TB is defined as
V k+1(TB ) = Pk (TB ), which means that the space is spanned by polynomials of total de-
gree less than or equal to k on TB . The standard monomial basis for V k+1(TB ) consists of
Nk functions {1, x, y, x2, x y, y2, . . .}. For the base triangle, the coordinates (x, y) transform
to

x = τ1x1 +τ2x2 +τ3x3 = τ2,

y = τ1 y1 +τ2 y2 +τ3 y3 = τ3 = 1−τ1 −τ2

in barycentric coordinates. This means that the monomial basis is equivalent to the set

{1,τ2,1−τ1 −τ2,τ2
2, (1−τ1 −τ2)τ2, (1−τ1 −τ2)2, . . .}

in the barycentric coordinate system. Orthonormality of this basis is achieved by the
application of the Gram-Schmidt procedure with respect to the inner product

〈 f , g 〉 =
∫ 1

0

∫ 1−τ1

0
f (τ1,τ2)g (τ1,τ2)dτ2dτ1,
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together with normalization. This results in the orthonormal scaling functions φ`,TB ,
`= 1, . . . , Nk . The first six functions (corresponding to k ≤ 2) are given in [146]:

φ1,TB (τ1,τ2) =p
2, (6.5a)

φ2,TB (τ1,τ2) = (−2+6τ2), (6.5b)

φ3,TB (τ1,τ2) = 2
p

3(1−2τ1 −τ2), (6.5c)

φ4,TB (τ1,τ2) =p
6(1−8τ2 +10τ2

2), (6.5d)

φ5,TB (τ1,τ2) = 3
p

2(−1+2τ1 +6τ2 −10τ1τ2 −5τ2
2), (6.5e)

φ6,TB (τ1,τ2) =p
30(1−6τ1 +6τ2

1 −2τ2 +6τ1τ2 +τ2
2), (6.5f)

τ1 ∈ [0,1], τ2 ∈ [0,1−τ1].
The scaling-function space for a triangular mesh on level n is defined as the space of

piecewise polynomials of total degree less than or equal to k on every triangle T n
λ
∈T n :

V k+1
n = { f : f ∈Pk (T n

λ ), ∀T n
λ ∈T n}. (6.6)

The orthonormal basis for V k+1
n can be found by substituting the correct barycentric

coordinates (translation) and scaling the functions φ`,TB [146]. Let τ be the barycentric
coordinates with respect to TB , and let τ′ be the corresponding barycentric coordinates
with respect to T n

λ
∈ T n . The space V k+1

n is spanned by 22n+1 · Nk functions that are
obtained from φ`,TB using

φn
`λ(τ′1,τ′2,τ′3) =

√
1

2|T n
λ
|φ`,TB (τ1,τ2,τ3). (6.7)

The orthogonal projection of an arbitrary function f ∈ L2(Ω) onto V k+1
n is given by

P k+1
n f (x) = ∑

T n
λ
∈T n

Nk∑
`=1

sn
`λφ

n
`λ(τ),

which is the single-scale decomposition of f on level n. The scaling-function coefficients
are given by sn

`λ
= 〈 f ,φn

`λ
〉. Note that if f ∈V k+1

n , then P k+1
n f = f .

6.4.2. NODAL DG APPROXIMATION AND SCALING-FUNCTION EXPANSION
From equations (6.4) and (6.6) we see that the DG approximation space is equal to the
scaling-function space on level n. This means that it is possible to express the nodal
DG approximation as a scaling-function approximation in level n. In this section, the
transformation from one basis to the other is given.

Since uh ∈ Vh = V k+1
n , we know that uh = P k+1

n uh . Therefore, the global nodal DG
approximation of degree k can be written as

uh(x) = ∑
T n
λ
∈T n

Nk∑
i=1

uh(xi )`i (x) = ∑
T n
λ
∈T n

Nk∑
`=1

sn
`λφ

n
`λ(τ).
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Knowing the values uh(xi ), we can efficiently compute the scaling-function coefficients
by a matrix-vector multiplication. Let sn

λ
= (sn

1λ, . . . , sn
Nkλ

)>, uh = (uh(x1), . . . ,uh(xNk ))>,

and define a Vandermonde matrix by Vmi =φn
iλ(τ(xm)), then Vsn

λ
= uh and V−1uh = sn

λ
.

This procedure is very similar to the transformation from nodal to modal DG, see
Section 2.1.2. This is because the scaling-function basis for V k+1

n is closely related to the
modal DG basis, which is given by the so-called PKD polynomials [48, 80]. The differ-
ence between both bases is the reference triangle that is used. This leads to a different
Vandermonde matrix [68].

6.4.3. MULTIWAVELETS
In addition to the scaling-function space, the multiwavelet space should be defined.
Similar to Section 2.4.3, this is done by computing the orthogonal complement of V k+1

n−1
in V k+1

n :

V k+1
n−1 ⊕W k+1

n−1 =V k+1
n ,

such that W k+1
n−1 ⊥ V k+1

n−1 , W k+1
n−1 ⊂ V k+1

n . In Algorithm 6.1, the procedure to compute the
multiwavelets for the base triangle is given, in a manner very similar to Alpert’s con-
struction in one dimension (Algorithm 2.1). Note that the number of multiwavelet basis
functions for each element equals 3Nk . The execution of this algorithm leads to the mul-
tiwavelets as provided in [122].

Similar to equation (6.7), the multiwavelets on triangle T n
λ
∈T n are equal to

ψm,n
`λ

(τ′1,τ′2,τ′3) =
√

1

2|T n
λ
|ψ

m
` (τ1,τ2,τ3), m = 1,2,3, `= 1, . . . , Nk .

The multiwavelet coefficients of a function f in level n are defined as d m,n
`λ

= 〈 f ,ψm,n
`λ

〉.
In [56], a similar multiwavelet basis is constructed, but normalization is done in the

L∞-norm instead of the L2-norm.

6.4.4. MULTIWAVELET DECOMPOSITION AND RECONSTRUCTION
In Section 6.4.2, the relation between the DG approximation and the scaling-function
coefficients on level n was given. In this section, the scaling-function expansion on level
n is decomposed to a multiwavelet expansion on level n −1 [146]. This theory is similar
to the one-dimensional case (Section 2.4.4). The full decomposition is derived in [56,
116, 122].

DECOMPOSITION

By definition, the multiresolution analysis yields V k+1
n = V k+1

n−1 ⊕W k+1
n−1 . In the following,

the basis of Pk (T n−1
λ

) is written as a vector of scaling functionsφn−1
λ

= (φn−1
1λ , . . . ,φn−1

Nkλ
)>.

Because V k+1
n−1 ⊂ V k+1

n , we can express φn−1
λ

in terms of φn
λi

, i = 0,1,2,3, using the local

numbering T n−1
λ

= T n
λ0

∪T n
λ1

∪T n
λ2

∪T n
λ3

(Figure 6.2). This means that

φn−1
λ = H0φ

n
λ0

+H1φ
n
λ1

+H2φ
n
λ2

+H3φ
n
λ3

. (6.9a)
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Algorithm 6.1 Yu’s multiwavelet algorithm [146].

Let (τ1,τ2,τ3) be the barycentric coordinates relative to TB = T0 ∪T1 ∪T2 ∪T3 (with
numbering as in Figure 6.2), and let (τm

1 ,τm
2 ,τm

3 ) correspond to Tm , m = 1,2,3. Define
for m = 1,2,3, `= 1, . . . , Nk :

f m,0
`

(τ1,τ2,τ3) =


φ`,Tm (τm
1 ,τm

2 ,τm
3 ), on Tm ,

−φ`,Tm (τm
1 ,τm

2 ,τm
3 ), on TB \Tm ,

0, on R2\TB .
(6.8)

Use Gram-Schmidt to orthogonalize f m,0
`

with respect toφ`,TB ,`= 1, . . . , Nk . This leads

to the functions f m,1
`

, m = 1,2,3, `= 1, . . . , Nk .

Order the functions f m,1
`

as
{

f 1,1
1 , f 2,1

1 , f 3,1
1 , . . . , f 1,1

Nk
, f 2,1

Nk
, f 3,1

Nk

}
and denote this set as{

f 1
1 , f 1

2 , . . . , f 1
3Nk

}
.

for M = 1, . . . ,3Nk do
If at least one of the f M

`
is not orthogonal toφNk+M ,TB (`= M , . . . ,3Nk ), then reorder

such that 〈 f M
M ,φNk+M ,TB 〉 6= 0.

for `= M +1, . . . ,3Nk do
Construct f M+1

`
such that the function is orthogonal to φNk+M ,TB :

f M+1
` = f M

` −
〈

f M
`

,φNk+M ,TB

〉〈
f M

M ,φNk+M ,TB

〉 · f M
M .

end for
end for
Gram-Schmidt orthonormalize f 3Nk

3Nk
, f 3Nk−1

3Nk−1 , . . . , f 1
1 in that order.

Rename the multiwavelets, depending on the triangle they were mutilated to (based
on equation (6.8)) to obtain ψm

`
, m = 1,2,3, `= 1, . . . , Nk .
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The Nk ×Nk matrices Hi are similar to the QMF coefficients in the one-dimensional case
[136], and are defined as

(Hi )p,q = 〈φn−1
pλ ,φn

qλi
〉 =

Ï
T n
λi

φn−1
pλ (x, y)φn

qλi
(x, y)d xd y, i = 0,1,2,3, p, q = 1, . . . , Nk ,

using that φn
qλi

is only nonzero in T n
λi

. We transform to barycentric coordinates τ based

on the vertices of T n
λi

. Using equations (6.2), (6.3) and (6.7), this yields

(Hi )p,q = 2|T n
λi
|
√

1

2|T n−1
λ

|

√
1

2|T n
λi
|
∫ 1

0

∫ 1−τ1

0
φp (MT n

λi
→T n−1

λ
τ)φq (τ)dτ2dτ1

=
√√√√ |T n

λi
|

|T n−1
λ

|
∫ 1

0

∫ 1−τ1

0
φp (MT n

λi
→T n−1

λ
τ)φq (τ)dτ2dτ1

= 1

2

∫ 1

0

∫ 1−τ1

0
φp (MT n

λi
→T n−1

λ
τ)φq (τ)dτ2dτ1,

since |T n
λi
| = |T n−1

λ
|/4. For a structured triangular mesh, the matrices Hi do not depend

on the mesh size [122].
Similarly, the multiwavelet basis can be written as ψm,n−1

λ
= (ψm,n−1

1λ , . . . ,ψm,n−1
Nkλ

)>,

m = 1,2,3. Because W k+1
n−1 ⊂V k+1

n , the vectors of multiwavelets can be written as

ψm,n−1
λ

=Gm,0φ
n
λ0

+Gm,1φ
n
λ1

+Gm,2φ
n
λ2

+Gm,3φ
n
λ3

, for m = 1,2,3, (6.9b)

with
(Gm,i )p,q = 〈ψm,n−1

pλ ,φn
qλi

〉, m = 1,2,3, i = 0,1,2,3, p, q = 1, . . . , Nk .

The matrices Gm,i are computed similarly to the matrices Hi .
From equation (6.9) and the fact that sn−1

λ
= 〈 f ,φn−1

λ
〉, dm,n−1

λ
= 〈 f ,ψm,n−1

λ
〉, it fol-

lows that we can decompose the scaling-function coefficients on level n to scaling-func-
tion and multiwavelet coefficients on level n −1 as follows:

sn−1
λ = H0sn

λ0
+H1sn

λ1
+H2sn

λ2
+H3sn

λ3
, (6.10a)

d1,n−1
λ

=G1,0sn
λ0

+G1,1sn
λ1

+G1,2sn
λ2

+G1,3sn
λ3

, (6.10b)

d2,n−1
λ

=G2,0sn
λ0

+G2,1sn
λ1

+G2,2sn
λ2

+G2,3sn
λ3

, (6.10c)

d3,n−1
λ

=G3,0sn
λ0

+G3,1sn
λ1

+G3,2sn
λ2

+G3,3sn
λ3

, (6.10d)

which is called the multiwavelet decomposition from level n to level n −1.

RECONSTRUCTION

For reconstruction, we use that the 4Nk ×4Nk matrix

U =


H0 H1 H2 H3

G1,0 G1,1 G1,2 G1,3

G2,0 G2,1 G2,2 G2,3

G3,0 G3,1 G3,2 G3,3
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is orthogonal: UU> = I = U>U . The first equality is due to decomposition, and the
second equality leads to reconstruction. If we write out this equality, we find

H>
i1

Hi2 +G>
1,i1

G1,i2 +G>
2,i1

G2,i2 +G>
3,i1

G3,i2 = δi1,i2 I , i1, i2 = 0,1,2,3.

This means that left-multiplying equation (6.10a) by H>
i , equation (6.10b) by G>

1,i , equa-

tion (6.10c) by G>
2,i , and equation (6.10d) by G>

3,i and summing yields

H>
i sn−1

λ +G>
1,i d1,n−1

λ
+G>

2,i d2,n−1
λ

+G>
3,i d3,n−1

λ
= sn

λi
, i = 0,1,2,3, (6.11)

which is exactly the reconstruction procedure.

6.5. MULTIWAVELET TROUBLED-CELL INDICATOR
In this section, a troubled-cell indicator based on multiwavelets is defined for triangular
meshes [140]. The KXRCF shock detector and the minmod-based TVB indicator are both
applicable to triangular meshes [31, 83], and are recommended to be used as reference
schemes in future research. In [52], the norm of a vector with multiwavelet coefficients
is used for the detection of troubled cells. However, that method requires knowledge of
the discontinuity line and is therefore not useful for our applications.

Again, the number of multiwavelet coefficients is increased by a renumbering tech-
nique (similar to Section 3.2.2). This leads to the multiwavelet coefficients d̃ m,n−1

`λ
, where

`= 1, . . . , Nk , m = 1,2,3, and λ belongs to the triangles in level n (instead of level n −1).

6.5.1. PARAMETER-BASED INDICATOR
The parameter-based multiwavelet troubled-cell indicator is defined similarly to the in-
dicator for the one-dimensional and tensor-product two-dimensional case as was pro-
posed in Section 3.2.4. The major difference lies in the number of coefficients that is
needed for accurate detection. In the one-dimensional or tensor-product two-dimen-
sional case, knowledge of the jump relation at element boundaries made it possible to
use one coefficient per element for detection. In the triangular case, however, such a
relation has not yet been proven, neither theoretically, nor numerically. However, since
the cancelation property also holds in the triangular case, the coefficients are still useful
for detection [40, 56]. We will use all multiwavelet coefficients for detection: triangle T n

λ
is detected as troubled if for any m = 1,2,3, `= 1, . . . , Nk :∣∣∣d̃ m,n−1

`λ

∣∣∣>C · max
T n
λ
∈T n

{∣∣∣d̃ m,n−1
`λ

∣∣∣} ,

where C ∈ [0,1] is a parameter that defines the strictness of the indicator. The param-
eter C is problem-dependent: it depends on the strength of different shocks in the do-
main. This limits the applicability of this troubled-cell indicator. Therefore, an outlier-
detection approach is also considered.

6.5.2. OUTLIER-DETECTION APPROACH
In this section, a troubled-cell indication technique for the multiwavelet coefficients on
a structured triangular mesh is proposed that is based on outlier detection. In this way,
a problem-dependent parameter is not needed.
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A triangle is detected as troubled if it is detected in either the x- or the y-direction,
using the one-dimensional approach (Algorithm 4.2). Regions with triangles in the x-
direction are split into local regions of size 16, as is visualized in Figure 6.3, and a similar
approach is followed for regions in the y-direction. The resulting outlier-detection ap-
proach is given in Algorithm 6.2. Note that this approach is closely related to the outlier-
detection algorithm for a rectangular tensor-product mesh.

Figure 6.3: Split of a 32-triangle region in the x-direction into two local regions of size 16.

Algorithm 6.2 Outlier-detection algorithm for multiwavelet coefficients on triangular
meshes, using local vectors.

for all `= 1, . . . , Nk do
for all m = 1,2,3 do

for all i = 0, . . . ,2n −1 do
Form troubled-cell indication vector Dm,n−1

`i consisting of multiwavelet coeffi-

cients d̃ m,n−1
`λ

, where λ= (i , j , M), with j = 0, . . . ,2n −1, M = 1,2 (definition 6.1).

Apply Algorithm 4.2 on page 61.
end for
for all j = 0, . . . ,2n −1 do

Form troubled-cell indication vector Dm,n−1
` j consisting of multiwavelet coeffi-

cients d̃ m,n−1
`λ

, where λ= (i , j , M), with i = 0, . . . ,2n −1, M = 1,2 (definition 6.1).

Apply Algorithm 4.2 on page 61.
end for

end for
end for
Label an element as troubled if it is detected in any application of Algorithm 4.2.

6.6. NUMERICAL RESULTS
In this section, some preliminary numerical results are shown for which the multiwavelet
troubled-cell indicator has been tested [140]. The tests are done for examples based on
the advection equation on [0,1]× [0,1], given by

ut +∇· (vu) = 0.

Here, v = (v1, v2)> is the velocity vector, and u = u(x, y, t ) is the unknown quantity to be
resolved.

The first set of test cases uses the linear advection equation, with a diagonally-direct-



6

112 6. STRUCTURED TRIANGULAR MESHES

ed velocity: v =p
2/2 · (1,1)>. The following smooth initial conditions are used:

u1
0(x, y) = sin(2πx), u2

0(x, y) = sin(2πy), u3
0(x, y) = sin(2π(x + y)),

as well as the discontinuous initial conditions,

u4
0 =

{
1, if x ≥ 0.5,
0, else,

u5
0 =

{
1, if y ≥ 0.5,
0, else,

u6
0 =

{
1, if x + y ≥ 1,
0, else,

u7
0 =

{
1, if x − y ≤ 0,
0, else,

u8
0 =

{
1, if (x −0.5)2 + (y −0.5)2 ≤ 0.1,
0, else,

together with periodic boundary conditions. The exact solution of this boundary-value
problem is equal to ui (x, y, t ) = ui

0(x−v1t , y−v2t ), i = 1, . . . ,8. This means that the initial

function should be recovered at the final time T = p
2 [88]. Note that the relation be-

tween multiwavelet coefficients and jumps over element boundaries (as found in earlier
chapters) is not known yet. These tests in many different directions (horizontal, verti-
cal, diagonal in two directions, and circular) are performed to obtain more information
about possible relations.

The final test case is the so-called solid-body rotation problem, where the velocity
equals v = (y −0.5,−x +0.5)>, the initial condition is taken equal to

u9
0(x, y) =

{
1, if (x −0.4)2 + (y −0.6)2 ≤ 0.05,
0, else,

and homogeneous Dirichlet boundary conditions are applied. In this test case, the initial
condition is rotating through the domain. At final time T = 2π, the initial function should
be recovered.

In the examples, the multiwavelet troubled-cell indicator is applied both using the
parameter C , and with the outlier-detection approach. The vertex-based limiter (Sec-
tion 2.2.2, [85]) is applied only to the detected elements. For the tests, the Matlab code
of Hesthaven and Warburton is used [68], which is extended to the advection equation
together with the vertex-based limiter by Raees et al. [106].

6.6.1. DETECTION ON INITIAL CONDITIONS
In order to investigate the information gleaned from multiwavelets on structured trian-
gular meshes, in this section we first study the indicators applied to initial conditions
in a DG basis. We then test the multiwavelet indication method at the final time of the
approximation for the advection equation.

Figure 6.4 contains the results for the smooth functions ui
0, i = 1,2,3. Here, the

parameter-based multiwavelet troubled-cell indicator clearly detects the steepest gra-
dients of the sine waves, whereas the outlier-detection approach applied to the mul-
tiwavelet coefficients detects few elements. Only for the diagonal sine wave (Figure
6.4(i)), several elements close to the boundary of the domain are detected. This can
be explained by inspecting the corresponding multiwavelet coefficients (Figure 6.9). It is
remarkable that more than half of the multiwavelet coefficients d̃ 3,n−1

1λ and d̃ 3,n−1
3λ equals

zero (Figures 6.9(g) and 6.9(i), respectively). If a local vector of size 16 contains at least
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ten zeros, then the bounds for detection are equal to zero (see equation (4.2)), such that
all elements with nonzero coefficients are detected. This leads to Figure 6.4(i). Appli-
cation of the outlier-detection algorithm to the rest of the multiwavelet coefficients in
Figure 6.9 does not cause any detection.

Since the functions in Figure 6.4 are smooth, the outlier-detection results are pre-
ferred to the parameter-based results.

Figures 6.5 and 6.6 depict the results for the discontinuous initial conditions. Both
indication techniques clearly detect the discontinuities. Note that the discontinuities
of the circular waves in Figure 6.6 are more pronounced using the outlier-detection ap-
proach than using the parameter-based troubled-cell indicator.

In Figures 6.7–6.15, the multiwavelet coefficients corresponding to the different ini-
tial conditions are visualized. Clearly, the multiwavelet coefficients can be used to distin-
guish between smooth and nonsmooth regions. However, a clear meaning of the coeffi-
cients (as is the case in one and (tensor-product) two dimensions) is difficult to establish.
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Figure 6.4: Initial conditions (first column) and corresponding detected troubled cells, using the parameter-
based multiwavelet troubled-cell indicator (second column) or outlier detection on the multiwavelet coeffi-
cients (third column), structured triangular mesh based on 32×32 rectangles, k = 1.
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Figure 6.5: Initial conditions (first column) and corresponding detected troubled cells, using the parameter-
based multiwavelet troubled-cell indicator (second column) or outlier detection on the multiwavelet coeffi-
cients (third column), structured triangular mesh based on 32×32 rectangles, k = 1.
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Figure 6.6: Initial conditions (first column) and corresponding detected troubled cells, using the parameter-
based multiwavelet troubled-cell indicator (second column) or outlier detection on the multiwavelet coeffi-
cients (third column), structured triangular mesh based on 32×32 rectangles, k = 1.
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Figure 6.7: Multiwavelet coefficients corresponding to u1
0 , structured triangular mesh based on 32×32 rectan-

gles, k = 1.
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Figure 6.8: Multiwavelet coefficients corresponding to u2
0 , structured triangular mesh based on 32×32 rectan-

gles, k = 1.
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Figure 6.9: Multiwavelet coefficients corresponding to u3
0 , structured triangular mesh based on 32×32 rect-

angles, k = 1. The detected troubled-cells by the outlier-detection algorithm in Figure 6.4(i) are caused by the

coefficients d̃3,n−1
1λ

and d̃3,n−1
3λ

.
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Figure 6.10: Multiwavelet coefficients corresponding to u4
0 , structured triangular mesh based on 32×32 rect-

angles, k = 1.
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Figure 6.11: Multiwavelet coefficients corresponding to u5
0 , structured triangular mesh based on 32×32 rect-

angles, k = 1.
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Figure 6.12: Multiwavelet coefficients corresponding to u6
0 , structured triangular mesh based on 32×32 rect-

angles, k = 1.
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Figure 6.13: Multiwavelet coefficients corresponding to u7
0 , structured triangular mesh based on 32×32 rect-

angles, k = 1.
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Figure 6.14: Multiwavelet coefficients corresponding to u8
0 , structured triangular mesh based on 32×32 rect-

angles, k = 1.
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Figure 6.15: Multiwavelet coefficients corresponding to u9
0 , structured triangular mesh based on 32×32 rect-

angles, k = 1.
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6.6.2. DETECTION AT FINAL TIME

In this section, the approximations and detected troubled-cells are shown at the final
time T =p

2 for initial conditions ui
0, i = 1, . . . ,8, and T = 2π for u9

0. Note that the exact
solution equals the initial condition at these times.

The multiwavelet troubled-cell indicator is applied using either the parameter-based
method or the outlier-detection approach (for which a problem-dependent parameter
is not necessary). For the parameter-based method, the vertex-based limiter is applied
only in the detected elements [85]. The outlier-detection scheme, however, turned out
to only be stable if the limiter is also applied to all boundary elements. These elements
are not always detected by the outlier scheme and are therefore not marked as such in
the figures. Similar boundary problems were also observed in [53], where it was pro-
posed to either use an adaptive mesh with more triangles near the boundary or ignore
the boundary triangles for certain resolution levels.

The results for the smooth initial conditions are shown in Figure 6.16. For the sine
wave in the x-direction and the diagonal direction (based on u1

0 and u3
0), the parame-

ter-based multiwavelet troubled-cell indicator detects the steepest gradients. However,
the results for the sine wave in the y-direction (corresponding to u2

0) are quite different:
almost no elements are detected, except for the bottom-left corner and the center of
the domain (Figure 6.16(g)). It is expected that this is due to the alignment of the wave
compared to the mesh, as well as the diagonal velocity that is used. Note that the one-
dimensional pattern of the sine wave in the x-direction is also broken in the vicinity of
the domain center (Figure 6.16(c)). It seems as if there is a small error in the numerical
implementation of the boundary conditions (which are in a pre-existing code used by
the author). However, the troubled-cell indicator performs well: the numerical artifacts
are detected as troubled.

The outlier-detection algorithm detects few elements for the smooth functions. Only
close to the boundary some elements are detected (see discussion in Section 6.6.1).

The results for the discontinuous functions can be inspected in Figures 6.17 and 6.18.
Both the parameter-based indicator and the outlier-detection indicator select the hori-
zontal and vertical discontinuities corresponding to u4

0 and u5
0 (Figures 6.17(c), 6.17(d),

6.17(g) and 6.17(h)). Furthermore, the parameter-based indicator does select the di-
agonal discontinuity belonging to u6

0 in Figure 6.17(k), but detects few elements near
the boundary discontinuities of that approximation. However, the outlier-detection ap-
proach detects the discontinuities near the boundaries as well (Figure 6.17(l)).

It should be noticed that in the current setup, both indicators are not able to detect
the diagonal discontinuity of u7

0 (Figure 6.18(c) and 6.18(d)). Both approaches (partly)
detect elements near the boundary of the domain, where the approximation is also dis-
continuous. For the parameter-based indicator, the value of C should be chosen smaller
to include all discontinuous regions. The use of C = 0.5, for example, leads to the detec-
tion of the correct elements (Figure 6.19(a)).

Considering the outlier-detection algorithm: inspection of the multiwavelet coeffi-
cients at the final time reveals that the discontinuous region is spread out wide, and
therefore the local region of size 16 is too small to contain both continuous and discon-
tinuous regions. At certain locations, all coefficients in a local vector belong to a dis-
continuous region, and therefore the fences are wide enough such that no elements are
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detected. In Figure 6.19(b) local regions of size 32 are used instead of size 16. This partly
solves the problem. Further research is needed to understand which outlier-detection
strategy should be used.

The parameter-based results for the circular wave in combination with the linear ad-
vection equation (Figure 6.18(g)) are much better than for the solid-body rotation prob-
lem (Figure 6.18(k)). Apparently, a smaller value of C should be taken to detect the dis-
continuities of the rotating body sharply. The outlier-detection method detects more
elements near the circular waves (Figures 6.18(h) and 6.18(l)) but is not as sharp as we
expect compared to results for the quadrilateral mesh case [139]. Also here, the troubled
zone is spread too much, such that the fences for detection are wide enough for the trou-
bled cells not to be detected. The use of a wider stencil for local vectors will improve the
method.

6.7. CONCLUDING REMARKS
In this chapter, the multiwavelet decomposition for structured triangular meshes has
been given. Inspection of the multiwavelet coefficients reveals that they are very useful
to detect nonsmooth regions in the underlying function. However, it is not yet known
which coefficients are most useful for indication. Therefore, the troubled-cell indica-
tors introduced in this chapter use all coefficients for detection. One indicator uses
a problem-depending parameter, and the other indicator applies outlier detection to
the multiwavelet coefficients, such that a problem-dependent parameter is no longer
needed.

Preliminary results have been shown for different tests based on the two-dimension-
al advection equation. Applied to the initial conditions, both methods work well and
detect the discontinuous regions accurately. The parameter-based method also selects
smooth regions with steep gradients, which are not detected by the outlier-detection
algorithm.

After time integration, the parameter-based troubled-cell indicator detects the cor-
rect features if a suitable choice for the parameter is made. The outlier-detection method
gives good results, but for a diagonal square wave and a circular wave, it seems as if the
optimal size of the local vectors is no longer equal to 16.

Although the formal relation between the DG approximation and multiwavelet co-
efficients is known, more research should be done to recognize which multiwavelet co-
efficient measures which feature of the underlying function. Also, an improvement of
the outlier-detection strategy is needed to detect the correct regions in the diagonal
square wave and the circular waves after time integration. Furthermore, tests for non-
linear PDEs such as the two-dimensional Euler equations, and comparisons with the
KXRCF shock detector and the minmod-based TVB indicator should be performed to
thoroughly test the applicability of multiwavelets and outlier detection for troubled-cell
indication on triangular meshes.
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Figure 6.16: Final-time approximations and corresponding detected troubled cells using initial conditions u1
0

(first row), u2
0 (second row), and u3

0 (third row), using the parameter-based multiwavelet troubled-cell indica-

tor or outlier detection on the multiwavelet coefficients, T =p
2, structured triangular mesh based on 32×32

rectangles, k = 1.
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Figure 6.17: Final-time approximations and corresponding detected troubled cells using initial conditions u4
0

(first row), u5
0 (second row), and u6

0 (third row), using the parameter-based multiwavelet troubled-cell indica-

tor or outlier detection on the multiwavelet coefficients, T =p
2, structured triangular mesh based on 32×32

rectangles, k = 1.
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Figure 6.18: Final-time approximations and corresponding detected troubled cells using initial conditions u7
0

(first row), u8
0 (second row), and u9

0 (third row), using the parameter-based multiwavelet troubled-cell indica-

tor or outlier detection on the multiwavelet coefficients, T =p
2 for u7

0 and u8
0 and T = 2π for u9

0 , structured
triangular mesh based on 32×32 rectangles, k = 1.
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Figure 6.19: Final-time detected troubled cells using initial condition u7
0 , using the parameter-based multi-

wavelet troubled-cell indicator or outlier detection on the multiwavelet coefficients, T =p
2, structured trian-

gular mesh based on 32×32 rectangles, k = 1.





7
CONCLUSIONS

In this dissertation, three research objectives have been addressed: the construction of a
troubled-cell indicator based on multiwavelets to detect discontinuous regions in a DG
approximation; the development of a method to remove problem-dependent parame-
ters in troubled-cell indicators; and the investigation of the applicability of the troubled-
cell indicators to irregular meshes. In this chapter, the conclusions for each objective are
given.

7.1. MULTIWAVELET TROUBLED-CELL INDICATOR
In the first part of this dissertation, the use of multiwavelets for troubled-cell indication
in one dimension and (tensor-product) two dimensions has been investigated. Chapter
3 contains a proof of the exact relation between multiwavelet coefficients on the highest
decomposition level and the jumps in (derivatives of) the DG approximation. This rela-
tion makes it possible to use multiwavelet coefficients as a troubled-cell indicator: they
suddenly increase in the neighborhood of a discontinuity in the approximation. The
multiwavelet troubled-cell indicator detects an element as troubled if the corresponding
multiwavelet coefficient is large enough in absolute value. This is tested by comparing
the coefficient to the maximum coefficient (in absolute value) over the domain. Here, a
parameter is required to define the strictness of the indicator.

The indicator has been tested for several problems based on the Euler equations in
one and two dimensions. In the detected troubled cells, a limiter has been applied. The
numerical results clearly show that a smaller parameter value leads to the detection of
more elements. If a suitable value for the parameter is used, then the indicator works
generally better than the KXRCF and Harten’s shock detector. The smallest percentage
of detected troubled cells is found together with a nonoscillatory approximation.

In the two-dimensional tensor-product case, the detector is able to distinguish be-
tween nonsmooth regions in the x-, y-, or diagonal directions. Therefore, the indicator
can be used to select specific features in the approximation.
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7.2. OUTLIER-DETECTION STRATEGY

Another area of investigation was the choice of parameters for troubled-cell indication.
Each troubled-cell indicator requires a threshold parameter that should be chosen ac-
cording to the test problem that is used. We found out that for each troubled-cell indica-
tor, the sudden increase or decrease in the indication value with respect to neighboring
values is important for detection. This led to the construction of a new outlier-detection
technique based on a boxplot mechanism. Detection occurs when the indication value
of a certain element differs significantly from the neighboring values (Chapter 4). With
this technique, the problem-dependent parameter from the original indicators is no
longer necessary as the parameter is chosen automatically. This outlier-detection tech-
nique not only applies to the multiwavelet troubled-cell indicator but can be applied to
every troubled-cell indication value. Hence, different indication techniques are tested,
comparing the parameter-based method to the outlier-detection approach in one and
two dimensions. We found that the outlier-detection approach works well and generally
better than the original parameter-based indicators. Both the weak and the strong shock
regions have been detected, whereas smooth regions have not been selected. Since there
is no need to tune a parameter depending on the problem, the method is very easy to ap-
ply.

7.3. IRREGULAR MESHES

Additionally, we investigated the extension of the multiwavelet troubled-cell indicator to
irregular meshes in one dimension (Chapter 5), using techniques that are based on mul-
tiwavelet ideas. This was not straightforward since the multiwavelet theory is based on
uniform meshes. A new multiwavelet-type basis has been constructed that can represent
the DG approximation exactly. Also here, the ’multiwavelet’ coefficients on the highest
level are related to the jumps in (derivatives of) the DG approximation. In addition to
the original outlier-detection strategy, two different techniques have been studied. The
first option was to weight the indication value by the mesh width; the second approach
was to use a sliding-window technique.

Tests have been performed for different problems based on the Euler equations, us-
ing a smoothly-varying or a random mesh. Here, different troubled-cell indicators have
been applied, both in the parameter-based form and combined with outlier detection.
The parameter-based methods work well as long as a suitable value for the parameter is
chosen. The outlier-detection results are promising: accurate results are found without
the need to choose a problem-dependent parameter. However, for some applications,
many elements are detected in smooth regions. More research should be done to im-
prove the method. Weighting the indication values or sliding-window techniques do not
work well enough to proceed in that direction.

In two dimensions, irregularity in both directions leads to a rectangular mesh that is
not related to tensor products. In that case, it is very difficult to design a multiresolution
structure. This part is left for future research, and structured triangular meshes were first
investigated.
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7.4. STRUCTURED TRIANGULAR MESHES
Finally, an extension of the multiwavelet theory to structured triangular meshes has been
investigated (Chapter 6). Inspection of the multiwavelet coefficients reveals that they are
very useful for discontinuity detection, but the information that each multiwavelet co-
efficient provides is not yet fully understood. Both a parameter-based and an outlier-
detection multiwavelet troubled-cell indicator have been constructed for this type of
meshes.

The indicators have been tested on different problems using the two-dimensional
advection equation. Applied to the initial conditions, both the parameter-based method
and the outlier-detection technique work very well. The parameter-based method also
detects steep gradients in smooth regions of the functions. The outlier-detection tech-
nique does not label these regions as troubled.

After time integration, the parameter-based method detects the correct elements if a
suitable value for the parameter is chosen. The outlier-detection method works well for
most examples, but if the troubled zone is spread out too wide, then local vectors of a
larger size than 16 should be used.





8
RECOMMENDATIONS

Many interesting features of troubled-cell indicators remain to be investigated in the fu-
ture. In this chapter, general recommendations for future research are presented. More
specific recommendations have already been given in the earlier chapters.

8.1. MULTIWAVELETS
First of all, the properties of a multiwavelet expansion should be fully understood for
different types of meshes. For irregular meshes, the correct multiwavelet space should
be constructed, probably with the help of supercompact multiwavelets [6], or Alpert’s
multiwavelet algorithm [4]. It could also be that the projection of the DG approximation
to a uniform mesh and the usual procedure for multiwavelet decomposition should be
used.

For a two-dimensional tensor-product mesh, it could be valuable to investigate the
use of genuinely two-dimensional multiwavelets for detection [56].

For structured triangular meshes, the meaning of each multiwavelet coefficient is not
yet fully understood. More research is needed to link the coefficients to specific features
of the underlying function.

8.2. PARAMETER FOR MULTIWAVELET TROUBLED-CELL INDI-
CATION

Another research topic is concerned with the need to improve the parameter choice in
the original multiwavelet troubled-cell indicator. This could, for example, be achieved
using the decay of the DG coefficients for smooth functions [102], which might be related
to the number of DG coefficients at which the moment limiter acts.

Another option is to use the cancelation property for multiwavelet coefficients [40].
This idea has already been used in a threshold for the construction of adaptive meshes
[55, 56], and might also relate to the severity of the shocks.
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Finally, the mean of the coefficients over the domain could be used as a threshold for
detection [46].

8.3. OUTLIER DETECTION
The current outlier-detection algorithm is constructed for a mesh consisting of 2n ele-
ments. This number is important since nonoverlapping local vectors of length 16 are
used. Spatial information is included by the comparison of detected outliers with the
fences of the neighboring regions. Future work will be to improve upon the performance
in identifying local structures of the approximation, for example, by including the local
spatial information in the statistical approach. This could be achieved using contour
boxplots [143]. This technique could also be useful for meshes with a different number
of elements, and for irregular meshes.

In two dimensions, the one-dimensional outlier-detection algorithm is currently ap-
plied in the x- and y-direction separately. The construction of a two-dimensional algo-
rithm is of great importance. This could also help to improve the performance of the
outlier-detection technique for structured triangular meshes.

8.4. EXTRA
Other research interests include the extension to irregular triangular meshes [17], spher-
ical and cylindrical coordinate systems, the relation between the Fourier transform and
multiwavelet coefficients, and speeding up the computations.
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