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Abstract Railway systems occasionally get into a state of out-of-control,
meaning that there is barely any train is running, even though the required
resources (infrastructure, rolling stock and crew) are available. These situa-
tions can either be caused by large disruptions or unexpected propagation and
accumulation of delays. Because of the large number of affected resources and
the absence of detailed, timely and accurate information, currently existing
methods cannot be applied in out-of-control situations. Most of the contempo-
rary approaches assume that there is only one single disruption with a known
duration, that all information about the resources is available, and that all
stakeholders in the operations act as expected. Another limitation is the lack
of knowledge about why and how disruptions accumulate and whether this
process can be predicted. To tackle these problems, we develop a multidisci-
plinary framework aiming at reducing the impact of these situations and - if
possible - avoiding them. The key elements of this framework are (i) the gen-
eration of early warning signals for out-of-control situations using tools from
complexity science and (ii) a set of rescheduling measures robust against the
features of out-of-control situations, using tools from operations research.
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1 Introduction

The phrase ‘no news is good news’ is particularly true for train operating
companies; when the railways do make the headlines of the daily news, the
item is usually filled with images of stranded passengers, overcrowded trains
and blank information screens. These situations are typically caused by very
large disruptions, such as extreme weather conditions or power shutdowns.
Due to the complexity of railway operations, dispatchers have trouble reacting
to these events, allowing the disruption to spread through the system. For this
reason, research in disruption management, aiming at providing dispatchers
with computerized support for generating modified timetables, rolling stock
and crew schedules after disruptions, has recently received increased attention.

However, currently existing methods often require assumptions that severely
limit their applicability to very large disruptions, when effective rescheduling is
needed the most. In particular, the current state-of-the-art in railway disrup-
tion management is only able to deal with isolated, well-defined disruptions.
It is usually assumed that there is only one single disruption such as a partial
or complete track blockage, that the duration is known, that all information
about the resources is correct, and that all stakeholders in the operations act as
expected, Cacchiani et al (2014) presents a broad range of examples. In prac-
tice, these assumptions are not always met. Supposedly real-time management
information systems for the timetable, rolling stock and crew may lag behind,
especially when disruptions cause many deviations from the regular schedules.
Next to that, train drivers and conductors may not be aware or even ignore
rescheduling decisions made by dispatchers. Furthermore, the duration of a
disruption often depends on the time needed for repairing malfunctioning or
broken infrastructure, which can take longer or shorter than expected.

In this research, we aim to reduce the gap between theory and practice by
analyzing situations where the shortcomings of current techniques are most
prominent, so called out-of-control situations. With this term, we refer to sit-
uations where the disruption causes dispatchers to no longer have an overview
over the system, limiting their abilities to make viable rescheduling decisions.
As a result, such a situation can eventually lead to the termination of all rail-
way traffic in a large part of the railway network. Out-of-control situations can
arise after extreme incidents (e.g. power shutdowns in a major or crucial part
of the network) or combinations of large disruptions. In railway systems, these
disruptions easily accumulate and spread over the network due to the high
utilization of the infrastructure and strong links between resource schedules.
In such situations, decision making becomes slower and less effective due to
the uncertainty in the disruption duration and the availability of resources.
On top of that, the decision making process may lack updated information or
manpower to adapt adequately to the situation. The decisions can then turn
out unworkable, leading to barely any train being able to run, even though all
resources might be available.

In order to develop effective countermeasures that mitigate the impact
of out-of-control situations, it is necessary to better understand how multi-



ple (primary) disruptions cause large-scale problems. We focus here on delay
propagation and amplification. The complex interaction between various ele-
ments of the railway system (infrastructure, timetable, rolling stock and crew
schedule, dispatchers and information systems) ultimately lead to amplifica-
tion of delay on a large scale. Some attempts have been made to capture
these (Monechi et al, 2017), but disruption phenomena on the macro-scale
have been proven hard to capture. A data-driven approach is proposed to cap-
ture these interactions, exploiting similarities between the railway system and
other multi-layered systems, e.g. electricity networks (Buldyrev et al, 2010) or
climate and vegetation systems (Tirabassi et al, 2014; Yin et al, 2016). The
generated insights can be used to develop new disruption management tech-
niques aiming to reduce the impact of out-of-control situations and, if possible,
avoid them.

The contribution of this paper is a multi-disciplinary framework for dealing
with out-of-control situations, comprising of two main parts. The first part
involves the detection and prediction of large disruptions using tools from
physics and complexity science (CS), with the aim of providing dispatchers
sufficient time for responding to the situation. Ultimately, this allows us to
study the evolution towards out-of-control situations and ultimately, to predict
them. The second part involves a number of countermeasures that can be
applied in (near) out-of-control situations, based on techniques from operations
research (OR). The core idea is to completely decouple the operations in the
disrupted region from the rest of the railway network. Next to that, we propose
the use of self-organizing, local scheduling principles for rolling stock and crew,
which are robust for the features of out-of-control situations and also relieve
pressure of dispatchers.

The remainder of this paper is structured as follows. In Section 2, we give
a detailed description of out-of-control situations, how they arise and what
is currently done to prevent them. In Section 3, we discuss the current state
of the art of railway disruption management. In Section 4, we describe the
framework for dealing with out-of-control situations. We conclude the paper
in Section 5.

2 Out-of-control situations

Extreme events can heavily disrupt the schedule of a train operating company.
When this happens, dispatchers are confronted with a very complex problem,
as the affected number of resources is large and typically, together with the
duration of the disruption, uncertain. This can cause gaps in the information
flow, such that the decisions of dispatchers may be based on outdated infor-
mation, making the matter worse. In these situations, the railway system can
get into a state of out-of-control, which we qualitatively define as a situation
‘where dispatchers cease to have an overview of the system and consequently
decide to terminate all railway traffic in the affected region, even though the
required resources (infrastructure, rolling stock and crew) might be available.’



Out-of-control situations usually occur after the amplification of multiple
initial disruptions. However, this process cannot easily be predicted, because
the consequences of a disruption vary a lot. Often the problem is confined to
one particular train, track or train line. In other situations, the disruption may
propagate and be amplified through time and space. An example is the case
where the delayed train carries crew members that need to be transported
towards other trains, which then in turn will also delayed. These kind of am-
plification effects may lead to large-scale disruptions and eventually trigger an
out-of-control situation.

One of the most extended analyses of out-of-control situations can be found
in a report of the Dutch Ministry of Infrastructure after a harsh winter (Ned-
erlandse Spoorwegen, ProRail, Ministerie van Infrastructuur en Milieu, 2012),
with multiple out-of-control situations occurring in the Dutch railway system.
As we will provide insights into out-of-control situations using the findings of
this report, and will also give three examples of these situations in the Nether-
lands, we now shortly discuss the organization of the Dutch railway system.

The Dutch railway system consists of about 7,000 kilometers of tracks.
The maintenance and management of the infrastructure is the responsibility
of ProRail. Next to that, ProRail is responsible for the timetable during the
real time operations. Netherlands Railways (NS) is by far the largest operator
of passenger trains, handling over one million passenger trips each day. In
the real time operations, NS handles the rescheduling of rolling stock of crew
and is responsible for providing the correct information to the passengers.
Because of the temporal density of the Dutch railway schedule, disruptions can
easily spread. The decision making takes place on nineteen different locations:
five regional centers of NS, thirteen traffic control centers of ProRail and one
national control center.

Nederlandse Spoorwegen, ProRail, Ministerie van Infrastructuur en Milieu
(2012), find three main causes of out-of-control situations in the Dutch railway
system:

— The local nature of decision making. Because dispatchers have a locally
restricted area of authority, the global picture is not always available. For
example, to reduce workload, dispatchers might directly coordinate a route
for a train through their area without registering this train in the system;
this leads to so-called ‘ghost trains’.

— The fragmentary decision making process. In the Dutch railway system,
the decision making is not only fragmented in terms of (spatial) area, but
also spread across different organizations and coordination levels.

— The loss of routine through the usage of all kind of additional measures
on such days. In the anticipation of extreme weather, timetables are often
adapted prior to these events. However, it is argued that this might have a
negative impact in these situations, because dispatchers normally strongly
rely on their routine and experience with the timetable.

It must be noted that these reported causes of out-of-control situations cannot
only be found in the Dutch railway system, but are actually features of many



railway systems around the world. For example, Schipper and Gerrits (2018),
who compared the practices of disruption management in find that the Belgian
and Austrian railways have a similar level, and the German railways a higher
level of decentralization compared to the Dutch railway system.

Acting on the report of the Dutch ministry, many changes have been made
in the Dutch railway operations to reduce the chance for these events to
emerge. The rescheduling procedures have been reshaped in order to accel-
erate the decision making process. NS also refined the reduced timetable that
is used on days where extreme weather is expected. While this certainly im-
proves the controllability of the system, the downside of the reduced timetable
is that about 20% of all trains are canceled (even 50% in the Randstad, the
densely populated area in the west of the Netherlands), strongly reducing the
transport capacity (Trap et al, 2017). Furthermore, as the decision to operate
the reduced timetable is based on weather forecasts, in some cases it turns
out that the measure was not necessary after all. Finally, as illustrated in the
next section, not all out-of-control situations are caused by extreme weather
conditions, again highlighting the inadequacy of the current approach.

2.1 Case studies

To illustrate how the railway network gets into a state of out-of-control, we
next present three case studies of such situations in the Dutch railway network.

3 February 2012 - Winter weather

Extreme weather is a major factor in the triggering of out-of-control situa-
tions, since it often causes multiple large disruptions around the same time.
It is estimated that out-of-control situations with causes related to extreme
weather happened about ten times during the period 2009-2012. The case of
3 February 2012 has been analyzed in a report to the Dutch Ministry of In-
frastructure and Environment (Nederlandse Spoorwegen, ProRail, Ministerie
van Infrastructuur en Milieu, 2012).

We start with some numbers from the mentioned report. On this day, there
were 305 infrastructure disruptions (about two to three times more than usual),
of which 20 where switch disruptions that lasted more than half an hour.
Furthermore, there were 250 problems with rolling stock, including six broken
trains (daily average between one and two trains). Also, an adapted timetable
was used. The amount of delayed trains because of missing personnel was
89, two times higher than usual. Throughout the day, there was an increasing
amount of schedule alterations performed by dispatchers. Another feature that
is typical for out-of-control situations is that the information flow contained
gaps, especially for passengers.

The evolution of the delay on the day is visualized in Fig. 1. Initially,
the disrupted area was confined around Amsterdam, but later spread towards
Rotterdam and Roosendaal. At the beginning of the evening, the delay even



reached the far east of the Netherlands (Enschede). Interestingly, the area
between Utrecht and Den Bosch remained rather unaffected.
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Fig. 1: Delay in seconds (tracks between service control points) on 3 February
2012, a day with harsh winter weather. Data is smoothened for visualization
purposes, by averaging over neighboring segments. Some important Dutch
cities are denoted: Amsterdam (Asd), Amersfoort (Amf), Utrecht (Ut), Rot-
terdam (Rtd), Vlissingen (Vs), Roosendaal (Rsd), Den Bosch (Ht), Nijmegen
(Nm), Arnhem (Ah), Zwolle (Z1), Groningen (Gn), Enschede (Es) and Maas-
tricht (Mt).

17 January 2017 - electric outage

Besides extreme weather conditions, there are also other causes of out-of-
control situations. An example of such a situation is 17 January 2017, when a



power outage happened in large parts of Amsterdam. The power was restored
at 7:15. As expected, this disruption had a significant impact on the railway
traffic around Amsterdam during the morning. Incorrect data in the informa-
tion systems of ProRail and NS hindered all traffic to and from Amsterdam
until after 10:00. Furthermore, when the systems were up and running again,
dispatchers were faced with a very large workload since the resource sched-
ules were heavily disrupted. As a result, trains were running irregularly for
the majority of the day. It eventually took until 21:00 the regular service was
restored (see Appendix for a visualization of the delay evolution).

18 January 2018 - storm

Different from (general) winter conditions, storms have a more direct impact
on the infrastructure, for example in the form of fallen trees. Early in the
morning, there was a collision with a person at Heerenveen, which resulted in
some problems in the morning, seen in a high-delay signature around Zwolle
(71) (see Appendix for a visualization of the delay evolution). Soon after this,
the storm kicked in and because of fallen trees and damaged overhead lines,
the fire department ordered the closing of several stations. Subsequently, the
decision was made to cancel all train activity up to 14:00. This got extended
to 16:00, and ultimately up to 17:00 no trains were running.

Around 17:00, the storm had settled and dispatchers tried to restart op-
erations. However, the limited overview of the whereabouts of rolling stock
and crew strongly limited the possibilities of dispatchers. For this reason, it
was decided to broadcast a negative travel advice for the rest of the day, even
though the storm had already past.

2.2 Comparison

The three cases reflect different evolutions of disrupted situations. During the
first (3 February 2018), many trains still were running and the delay had a lot
of time to spread across the country. The second (17 January 2017) and third
(18 January 2018) are cases where a standstill of a large part of the system
occurred. To put the three case studies in perspective, we compare the total
(summed) delay in shown in Fig. 2. It is visible that 17 January 2017 (red) on
average returns to a normal state in the evening, while 3 February 2018 (black)
kept its disrupted state up to the end of the day. Furthermore, the gradual
increase of February 18 2018 (orange) points to the standstill of some trains,
but the cancellation of many others (because the curve would be much more
irregular otherwise). Also the positions of the total delay maxima throughout
the day varies on the different dates.

Summarizing, we can say that in these out-of-control situations, the prob-
lems differ greatly in shape, magnitude and time of the day. The spread of the
delay depended on whether parts of the network were shutdown. Comparing
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Fig. 2: Total delay summed over the whole country (in seconds) for different
dates with (a) a regular, and (b) a logarithmic vertical axis. Colors indicate
different dates. Temporal resolution is 5-sec intervals. As a reference, ‘regular’
days are plotted in grey: 1 February 2018 through 14 February 2018 (winter
days, but without significant problems). The average with up to one standard
deviation offset is shaded in grey.

these events to regular days, one finds that the accumulated delay on disrupted
days may (on average) return to regular values, but not always.

3 Literature Review on Disruption Management

When a disruption occurs, the timetable, rolling stock circulation and crew
schedule need to be adjusted to obtain a new feasible schedule. Since solving
this problem in an integrated manner leads to unacceptably long computation
times, the problem is, both in theory and in practice, decomposed and solved
sequentially. First, the timetable is adjusted. The modified timetable then
serves as input for the rolling stock rescheduling problem. Finally, both the
adjusted timetable and rolling stock schedule are input for the crew reschedul-
ing problem. It must be noted that such a sequential approach can lead to the
situation where no feasible solution exists for one of the later stages due to a
decision made in an earlier stage. Hence, it is sometimes necessary to resolve
the timetabling or rolling stock rescheduling problem, until an overall feasible
solution is found (Dollevoet et al, 2017). Recent surveys of proposed methods
and algorithms for the different steps are presented in Cacchiani et al (2014)
and in Ghaemi et al (2017b).



3.1 Timetable rescheduling

Timetable rescheduling deals with finding a new feasible timetable by cancel-
ing, retiming, rerouting or reordering trains services. Of the three rescheduling
phases, timetable rescheduling has received the most attention in the litera-
ture. Approaches differ in the type of incident that has occurred (either a
small disturbance in the timetable or a more serious disruption such as a
track blockage), in the level of detail the railway infrastructure is considered
(either macroscopic or microscopic) and in the extent the inconvenience of
passengers is taken into account. Objectives are usually to stay close to the
regular timetable and minimize the total or maximum delay.

Many microscopic approaches formulate timetable rescheduling problems
as job scheduling problems, in which a number of operations (the passing
of trains) with certain operation times (running times) have to be scheduled
on machines (block sections), see e.g. D’Ariano et al (2007). In case of small
delays, such models can be solved within a reasonable amount of time by
formulating them as job scheduling problems. Macroscopic approaches use a
higher level representation of the railway network, which has the advantage
that additional aspects can be incorporated. For example, Schébel (2007) in-
troduces the problem of delay management, where one decides whether trains
depart on time or should wait for delayed feeder trains. The objective in delay
management is usually to minimize the total delay of all passengers combined.
More recently, this problem has been extended with the routing of passengers
(Dollevoet et al, 2012) and the capacities of stations (Dollevoet et al, 2014).

Only a few contributions consider timetable rescheduling after larger dis-
ruptions. Louwerse and Huisman (2014) introduce the problem of finding a
new timetable in case of partial or complete blockades. Additional constraints
are added to increase the probability that a feasible rolling stock schedule ex-
ists for the modified timetable. Veelenturf et al (2015) extend this model by
considering a larger part of the network, allowing rerouting of trains and incor-
porating the transition from the regular timetable to the modified timetable
and back. Ghaemi et al (2017a) propose a different mixed integer program-
ming formulation for the same problem, incorporating railway infrastructure
on a microscopic level. In a follow-up paper, Ghaemi et al (2018) study the im-
pact of uncertain disruption duration estimations on the rescheduling strategy
and passenger delays by combining the rescheduling model with a passenger
assignment model and a probabilistic disruption time prediction model.

3.2 Rolling stock rescheduling

The rescheduling of rolling stock calls for adapting the rolling stock circula-
tion to the modified timetable by changing the compositions of certain trains.
Sometimes, this implies that shunting movements are canceled or that new
shunting movements are introduced. In case no train units are available, train
services must be canceled. Hence, the goal is usually to minimize a combination



of the number of canceled trains, the number of changed shunting movements
and the difference with the planned end-of-day inventory at the stations.

Nielsen et al (2012) present a rolling horizon approach for rescheduling
rolling stock. In this approach, the rolling stock is rescheduled periodically,
as information about the disruption is updated. The model used is based
on a mixed integer programming formulation of the rolling stock scheduling
problem proposed in Fioole et al (2006). Kroon et al (2014) use the same model
but also take passenger flows into account when rescheduling the rolling stock.
Since disruptions can cause passengers to take different paths, their model tries
to facilitate this change in demand by adapting the rolling stock schedule. To
solve the problem, the authors iteratively compute a rolling stock schedule
and simulate the corresponding passenger flows, until a satisfactory overall
solution is found. In Veelenturf et al (2017) this model is extended by also
allowing small timetable adjustments, namely introducing stops of trains at
stations where they would normally not call. Haahr et al (2016) compare the
composition model used by Nielsen et al (2012) and Kroon et al (2014) with a
path based model and conclude that both models are fast enough to be used
in rescheduling contexts.

3.3 Crew rescheduling

When the timetable and rolling stock schedule are updated, it is known which
tasks need to be executed by the train drivers and conductors. Crew reschedul-
ing involves assigning these tasks to the crew members. Often, many changes
are necessary to the crew schedules as disruptions cause many duties to be-
come infeasible. For example, a train driver on a delayed train might arrive
too late for his next task, such that this task must be performed by a different
train driver. Many (labor) restrictions need to be respected when reassigning
tasks, the most important one being that a crew duty should always end at
the planned crew base. If a task cannot be assigned to any crew member, it
must be canceled. This is especially undesired for driving tasks, as this requires
the rolling stock schedule to be updated once more. Therefore, the objective
in crew rescheduling is usually minimizing the number of canceled tasks and
changes to duties.

Huisman (2007) addresses crew rescheduling in the context of scheduled
maintenance operations. As the number of possible duties is very large, the
problem is solved using a combination of column generation and Lagrangian
relaxation. Potthoff et al (2010) consider the crew rescheduling problem when a
disruption has occurred that causes a blockage of a route. To keep the problem
size tractable, first a core problem with a limited number of tasks is solved. In
case the solution contains canceled tasks, tasks that are in some sense close to
canceled tasks are added to the core problem. This process is repeated until all
tasks are covered or a time limit is exceeded. Veelenturf et al (2012) extend the
crew rescheduling problem by also allowing retiming of trips. This increases
scheduling flexibility, such that more tasks can be covered. In Veelenturf et al
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(2014), uncertainty with respect to the length of the disruption is taken into
account by requiring that duties have feasible completions in a number of
different scenarios. A completely different approach to crew rescheduling is
taken by Abbink et al (2010). In this paper, train drivers are represented by
driver-agents. In case the duties of some drivers have become infeasible, the
driver-agents try to solve this by swapping tasks between drivers.

3.4 Takeaways

As is clear, there is a vast amount of literature on disruption management
for railway systems. However, only a few contributions (Ghaemi et al, 2018;
Nielsen et al, 2012; Veelenturf et al, 2014) take the uncertainty that comes
with majordisruptions into account, at least to some extent. Furthermore, the
largest disruptions that are considered in the literature are complete blockages
of one route for a number of hours. For larger (combinations of) disruptions,
the performance of current models is unknown. On top of that, the effective-
ness of the proposed methods is completely dependent on the data accuracy
in information systems and the willingness of stakeholders to cooperate, two
assumptions that are often violated in case of larger disruptions. These obser-
vations lead us to the conclusion that the current state-of-the-art of railway
disruption management is unable to cope with out-of-control situations.

4 Framework for dealing with out-of-control situations

As we have seen in the previous section, existing disruption management tech-
niques are ineffective when it comes to preventing or reducing the impact of
out-of-control situations. Therefore, in this section we propose a new frame-
work for dealing with out-of-control situations. The framework is visualized
in Fig. 3. It contains six steps, which can be divided into two parts. In the
first part, tools from CS are used to generate early warning signals in case an
out-of-control situation is likely to occur, and to determine which part of the
network is most affected. In the second part, techniques from OR are used to
find appropriate rescheduling measures, with the aim to prevent the out-of-
control situation and maintain a high quality service. Of the six steps that the
framework contains, only Step 3 can be solved using existing methods. For all
other steps, new methods need to be developed.

The key concept of the framework is the disrupted region. In Step 2, this
region is identified and completely decoupled from the rest of the network,
i.e. no trains or crews are allowed to move from the disrupted region to the
non-disrupted region or vice versa. As a consequence, passengers who need
to travel from within the disrupted region to the rest of the network or the
other way around can do so by transferring at one of the boundary stations.
This drastic measure is taken in order to isolate the disruption and to prevent
it from propagating further through the network. Furthermore, by decoupling
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Fig. 3: The proposed framework for dealing with out-of-control situations.

the appropriate disrupted region, it can be assumed that outside the disrupted
region complete information is available, such that we can use tailored disrup-
tion management strategies for both parts.

It must be noted that a possible seventh step of the framework would be to
recouple the two parts and transition back to the regular timetable once the
disruption is over. However, such an operation is highly complex and could
easily lead to repeated loss of control. Hence, the safest option is to maintain
the two parts separate for the rest of the day. During the night, sufficient time
is available to set up the resources again in order to start the regular timetable
the next day.

In the remainder of this section, we will consider every step in more detail
and indicate how techniques from CS and OR can be used to support the
decisions that are required to be made in every step.

Step 1 Anticipate amplification using early warning metrics

In order to prevent out-of-control situations from happening, it is essential
to provide dispatchers with early warning signals for these situations, giving
them sufficient time to respond and take the necessary measures. In Complex-
ity Science literature, early warning signals are derived in different manners.
The most common approach is to look at statistical metrics like increased au-
tocorrelation and variance (Scheffer et al, 2009; Thompson and Sieber, 2011).
These are quite established in physical systems, but cannot directly be applied
on the railway system due to its high degree of heterogeneity and discontinuity
of processes. Therefore, we suggest the creation of a statistical model.
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The statistical model would contain all dynamic interactions of all delayed
trains across an area. Finding these dynamic interactions is difficult for a num-
ber of reasons. First and foremost, the railway system is highly heterogeneous,
meaning that the interaction between trains are situationally different - lines,
train type, train direction, infrastructure capacity consumption, number of
crew members and exogenous factors such as accidents or technical problems
all distinguish one situation from another. Second, the behavior of people in-
volved (drivers, dispatchers, passengers, emergency services) is not necessarily
systematic. And third, the system comprises of multiple network layers (in-
frastructure, rolling stock, train crew and an information/decision network)
instead of one. Large-scale disruptions may amplify stronger in these kind of
systems, as seen in the example of a major disruption in the Italian intertwined
electricity-internet network (Buldyrev et al, 2010).

There are attempts in literature to capture these systematic dynamics.
Monechi et al (2017) analyzed railway logistics from Germany and Italy, and
found a number of dynamic interactions, one of which is backward propa-
gating delay. Kecman and Goverde (2015) used Dutch railway data and fo-
cus on quantifying parameters of running and dwell times, which are impor-
tant (fluctuation-driven) uncertainties in microscopic models. Goverde (2010)
made an analytical approach of describing the system, using the timetable
and parametrization of quantities like dwell times to make a forward integra-
tion model. Furthermore, Ball et al (2016) showed the equilibrium diagram
of a simple model when connecting the rolling stock layer with a crew layer,
illustrating the effect of interdependent networks. These papers illustrate dif-
ferent approaches to define structural railway dynamics, but there is no overall
consensus on a macroscopic approach (Monechi et al, 2017), making it hard
to make accurate predictions for large disruptions. Looking to applications in
other fields, CS provides many examples of systems in which the specific dy-
namics are not fully known or where the interactions are highly heterogeneous.
For example, Sebille et al (2012) used a transfer matrix method to predict the
movement of plastics in the ocean. Another example is the interaction between
forest and savanna systems, where Hirota et al (2011) showed various types of
macroscopic pattern formation.

Trying to apply these existing methods onto the railway system, distin-
guishes two levels of statistical models. First it should be emphasized that
we will treat delay as the state variable: the propagation and amplification
of delay can be seen as a proxy of the magnitude of problems in the railway
system. A first-order model would contain mainly advection and diffusion of
delay, which can be derived from (lag-corrected) correlations or using more
advanced methods like singular spectrum analysis. These processes give a first
hint on how the effects of one specific disruption spreads through the network.
A second-order model would also contain dynamic interactions: in the case of
multiple disruptions, interactions may lead to amplification effects. It is nec-
essary to take these effects into account, because these are important in the
growth of out-of-control situations. This second-order model can be derived
by analyzing the macro-evolution of delay, which is for example captured in
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a so-called transfer matrix (as in Sebille et al (2012)), which is calculated di-
rectly from data. Using methods as described above, allows for the prediction
of the evolution of delay in time, which (depending on the robustness) allows
the application of early warning metrics.

Step 2 Identifying and isolating the disrupted region

The region that is decoupled from the rest of the network is referred to as
the disrupted region. The boundary of this region is not trivially given by
one single metric (e.g. accumulated delay), because multiple logistic factors
are important to consider when decoupling any region from the rest of the
system.

First and foremost, one needs to consider if it is necessary to decouple
a region at all. If early warning indicators anticipate a large disrupted sys-
tem, there are many alternative countermeasures to consider and the system
might also remain controllable (although disrupted). Second, in some situa-
tions (e.g. when a station is completely disrupted), several stations or tracks
may be forced to be at the boundary of the disrupted region. Third, one needs
to identify tracks that have a large impact on the propagation of the delay
throughout the country. By removing all dependencies along these diffusion
regions, the spread of delay will strongly be reduced. These tracks can be
identified using the statistical models used to create the early warning signals.
Fourth, the amount of rolling stock within the disrupted region, and outside
of the disrupted region needs to be considered. Locking a large disrupted re-
gion when there are very few trains in the area reduces the efficiency of the
logistics. Fifth and finally, the size of the control area should not be too large
as the service level within the region is likely to be lower compared to the
rest of the network, since self-organizing strategies will be used to schedule
the resources within the disrupted region. But it also should not be too small,
because the robustness of the self-organization may drop if there is not room
for adaptation.

Step 3 Rescheduling the non-disrupted region

Outside the disrupted region complete information is available, so conventional
disruption management techniques can be applied to reschedule the railway
traffic in this part of the network. The rescheduling of the crew is the most
complicated, as crew duties must end at their fixed base and it is likely that
crew members outside the disrupted region have their base inside the dis-
rupted region (and vice-versa). This problem can be addressed by for example
imposing that the duties of such crew members should end near the boundary
between the two regions and taking into account the expected time it takes
for them to travel back to their base. An additional challenge is that, from the
perspective of the non-disrupted region, the separation of the two regions can
be considered as a combination of track blockages, a disruption that has not
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yet been considered in existing literature. Since computation times are likely
to increase with the size of the disruption, dedicated (possibly heuristic) al-
gorithms need to be developed in order to find good solutions in a reasonable
amount of time.

Step 4 Determining a modified line system for the disrupted region

When the disrupted region is decoupled from the rest of the network, it is
unlikely that the original line system, specifying which lines are operated at
which frequencies, can be maintained. This has two main reasons. Firstly, as
the platforms at the boundary stations are divided among the disrupted and
the non-disrupted region, and turning a train takes more time than simply
continuing in the same direction, the railway infrastructure is unlikely to allow
for the same number of trains as in the regular line system. Secondly, as there
is only a limited amount of rolling stock available within the disrupted region
at the time of decoupling, and trains are not allowed to transfer between the
regions, it is possible that there is insufficient rolling stock available to operate
the regular line plan. As such, it is certainly necessary to modify the line system
for the disrupted region.

Evidently, a model for modifying the line plan should take both the infras-
tructure and the available rolling stock into account, effectively moving line
planning from the strategic to the operational setting. As few existing line
planning models take the available infrastructure and rolling stock into ac-
count (see Schobel (2012)), this problem asks for novel mathematical models,
(partially) integrating timetabling and rolling stock scheduling into the line
planning problem.

Step 5 Scheduling rolling stock and crew in the disrupted region

Since out-of-control situations are characterized with great uncertainty regard-
ing the exact whereabouts of the rolling stock and crew, it is not possible to
communicate detailed instructions to the crew. Instead, the idea is to provide a
strategy on what task to do next. This way, we reduce the dependence on cen-
tral traffic controllers and avoid having to wait for clearance from dispatchers
that are faced with incomplete information.

Given that in the previous step a workable line plan is generated, it should
be possible to find appropriate strategies that restore a stable service in the
disrupted region as soon as possible. Simple principles could be used to deter-
mine when trains should depart after arriving at a station, and which rolling
stock units are used to operate the different lines. For the scheduling of the
crew, more intricate strategies are required, as some crew members eventu-
ally need to exit the disrupted region in order to end at their base, and the
other way around. By employing agent-based modeling, the best performing
strategies can be identified.
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Step 6 Managing the passenger flows

In the sixth and final step of the framework, the passenger flows are managed.
Since the line plan in the disrupted region is adjusted, passengers also have to
be routed differently through the network. Furthermore, since the disrupted
region is not operated using a fixed timetable it will be a challenge to provide
the passengers with proper information on how to travel to their destination.

5 Conclusion

Many methods have been proposed over the years for rescheduling railway sys-
tems after disruptions. However, in out-of-control situations, which are char-
acterized by a very large number of affected resources and a high degree of
uncertainty, these methods are less effective. In this paper, we proposed a new
multidisciplinary framework for dealing with such situations to close this gap
between theory and practice. In coming years, we plan to further develop the
steps in this framework, and test its performance using simulation and serious
gaming.
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Appendix - Delay evolution of other case studies

2 2 2 z

v < o %
£ iy € £ €
it A e ue Amf e Amf
LS Rid Y b i 2 Rid an
Ht  { Ht Ht Ht
I Y R R .
(a) 8:00 (b) 12:00 (c) 16:00 (d) 20:00

Fig. 4: Same as Fig. 1, but on January 17, 2017, a day with electric outage
in Amsterdam.
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Fig. 5: Same as Fig. 1, but on January 18, 2018, a day with a severe storm
that caused the deliberate shutdown of a large part of the network.
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