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Abstract

Malware Packet-sequence Clustering and Analysis
(MalPaCA) is a unsupervised clustering application
for malicious network behavior, it currently uses
solely sequential features to characterize network
behavior. In this paper an extensive comparison
between those features and statistical features
is performed. During the comparison a better
clustering performance achievable with statistical
features for longer connection sequences is shown
and advice on which features can be added to
MalPaCA.

1 Introduction

Discovering malware behavior and labeling it
correctly is currently a hard task to perform
since it is mostly done manually which is a
highly intensive and time consuming task. In, [7],
statistical network flow analysis is used to detect
malware families with a high success rate. However
for this to succeed, the author had to use samples
and labels from VirusTotal and Anubis which, even
when using a tool such as AVClass only provides
an accuracy of 93.9% to 62.3%. [6]

The importance of ground truth labels is made
clear in [3], when accurate labels are available,
they can be used to train future Machine Learning
models to detect and stop malware on the network
layer instead of application layer.

The automated clustering of malware behavior
has already been done by the tool MalPaCA to
a degree of success, the tool is able to correctly
cluster malicious network behavior with an error
rate of 8.3% [5]. This is achieved by using only the

following properties: package size, interval, source
port, and destination port. The current solution
however is not complete and might benefit from
extra properties to capture more complex network
behavior.

The tool in its current state has some short
comings. The use of properties like ’source port’
adds a lot of noise to the clustering since there
will never be an sequential overlap due to the
random nature that the operating system uses for
this property. By using an statistical approach the
amount of unique source ports solves this problem.

Statistical features are also efficient to calculate,
while dynamic time warping and N-grams, used
sequential features, can be both be computationally
expensive and memory heavy operations limiting
the input size or sequence length.

By performing an comparative analysis between
sequential features, and statistical features. This
will show if certain statistical features can improve
the explainability of a cluster, its accuracy in
identifying/clustering a certain malware behavior,
or better performance for longer sequence lengths.

Figure 1: Data set pre-processing

2 Data Set

The IoT-23 [2] data set is used for this research. The
data set contains the unfiltered pre-labeled internet
traffic packets (PCAP) from 20 infected Internet
of Things (IoT) devices and 3 non-infected devices.
The captures were done over bigger periods of time
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Labels S-20 S-25 S-30 S-35 S-50 S-75
Benign 2329 2025 1818 1666 1399 1101
Attack 426 416 412 385 305 246
C&C 207 207 199 199 196 191
C&C-FileDownload 44 38 41 38 34 32
C&C-HeartBeat 58 58 58 59 56 53
C&C-HeartBeat-Attack 15 12 9 9 11 9
C&C-HeartBeat-FileDownload 4 7 8 6 5 9
C&C-Torii 40 40 40 40 40 40
DDoS 115 113 112 112 111 110
FileDownload 15 11 9 8 5 3
Okiru 17 5 3 3 1 -
PartOfAHorizontalPortScan 402 330 244 228 224 224
Total 3672 3262 2953 2754 2387 2018

Table 1: Average connections per label per sequence length

which gives a good insight in a real world scenario.

2.1 Filtering & Pre-processing

From the PCAP files the flows which are defined
as an stream of packets from an source IP to
and destination IP, uni-directional connections were
used meaning that incoming packets of a flow and
outgoing packets will be split into two separate
flows.

Since MalPaCA requires an minimum of 20
packets, any flow with less than 20 packets will be
ignored since it cannot be used for the sequential
features extraction, only the first 5000 packets will
be saved, since any more than that are usually
DDoS packets which do not contain any extra info.
Also only the source port, destination port, package
length, package timestamp and malicious label are
required, so all other information will be discarded
from the data set when converting a PCAP file to
a pickle file.

After performing this action, Figure 1, a mere
60MB of data is left instead of the original 100GB.

3 Methodology

3.1 Background

The base version of MalPaCA operates by
utilizing sequential features from a connection
and comparing them using dynamic time warping
(DTW), this operation is also done for the
ports by first constructing N-grams from the
port sequence. To make the compare as
fair as possible, all base features, "Sequential

feature generation", "Distance measurements" and
"HDBScan clustering" from Figure 2 are left
unchanged, these can be found in chapters 4.2, 4.3
and 4.4 of “Beyond Labeling” respectively.

3.2 Random subset selection

A connection is a fixed amount of packets from
a flow, since MalPaCA is only able to process a
limited number of connections, not all data from
the previous step can be used. From each file of the
data set 200 connections per label were extracted,
e.g. benign, DDoS.

The proportion of benign/malicious behavior is
not represented by a real world scenario, but
since the focus mostly lies on identifying different
network behavior and being able to detect malicious
clusters, this was an compromise that had to be
made, to get an as big of set of different (malicious)
behaviors.

3.3 Statistical features generation

The statistical features were selected from
“BotMark” [8], a summary of each feature and its
origin can be found there.
Since MalPaCA uses uni-directional connection,
and has a fixed amount of packets per connection
some features presented in “BotMark” are not
relevant. To account for the ports information and
account for better distances three properties were
added, the total amount of unique source ports
(USP), the total amount of unique destination
ports (UDP), and the amount of common ports
(for IoT devices: 25, 53, 80, 119, 123, 143, 161,
443, and 5353). These ports were selected to better
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Figure 2: Data flow for comparing statistical features with sequential features

identify a connection. Benign behavior has a highly
likely hood to contain exclusively common ports.

All features used can be seen in Table 2. Each
of these features was calculated for a connection,
the 2.5th percentile was used as lower bound and
the 97.5th percentile as upper bound per feature
and then normalized to ensure that each feature
accounts equal for the Euclidean distance.

4 Experimental Setup

4.1 Data selection

For the experiment the following selection of
connection per labels were made: Table 1. This
selection was done using a sliding window
with the correct sequence length over all
connections available using the method described
in subsection 3.2 and as can be seen in the code [1].

The only variable which was changed, with
the increasing growth sequence length. was
the ’min_cluster_size’ and ’min_samples’ for the
HDBScan algorithm, which both were set to equal
1

100 th of the total connections.

4.2 Compare clustering results

The clusters C0...n generated by the statistical
features and sequential features will be compared
based on the following measurements, where set c
is the set containing all connections:

• Noise score

• Average cluster size & count

• Silhouette coefficient

• Cluster purity

• Cluster malicious purity

4.2.1 Noise score

The clustering algorithm allocates points which
have no clear cluster to a noise cluster Cn, meaning

those points did not get clustered and will be
disregarded in the calculations. To accommodate
for this the amount of points that did not get placed
in the noise cluster is tracked. This is calculated as
follows:

Noise score =
|c| − |Cn|
|c|

4.2.2 Average cluster size & count

MalPaCA clusters network behaviors, since there is
a limited amount of different behaviors, especially
in this data set, the cluster size should be
maximized and the cluster count minimized to the
amount of behaviors that there are expected to be
in the data set. The noise cluster is excluded from
this count. For this the following metric will be
used:

Average cluster size =
∑i=m

i=0 |Ci|
|C| − 1

∗ 100

Cluster count = |C| − 1

4.2.3 Silhouette coefficient

Silhouette coefficient or index is a metric to
validate the consistency of clusters. It measures
an connections cohesion to its own cluster and
separation to other clusters. The index ranges from
-1 to 1 with a high score meaning an cluster is dense
and has a good separation to other clusters.
To calculate the Silhouette index for connection
i ∈ Ci the following equation was used:

a(i) =
1

|Ci| − 1

∑
j∈Ci,i6=j

d(i, j)

b(i) = min
k 6=i

1

|Ck|
∑
j∈Ck

d(i, j)

s(i) =
b(i)− a(i)

max a(i), b(i)
⇔ |Ci| > 1

A score between -1 and 0 should never be possible
with HDBScan because any points that could lead
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Feature Description Source
NSP Number of small packets (len of 63 - 400 bytes) [8]
AIT Average arrival time of packets [8]
TBT Total number of transmitted bytes [8]
APL Average payload packet length for time interval [8]
PV Standard deviation of payload packet length [8]
DPL The total of number of different packet sizes [8]
MX Size of largest package [8]
MP The number of maximum packets [8]
PPS Number of packets per second [8]
BPS Average bits-per-second [8]
USP Total number of unique Source ports -
UDP Total number of unique Destination ports -
CP Common ports in Source and Destination ports -

Table 2: Statistical Feature List

to such a score are discarded to the noise cluster,
therefor only the range of 0 to 1 will be used and
the average over all clusters will be taken.

4.2.4 Cluster purity

Since the primary objective of MalPaCA is
to distinguish malicious from benign network
behavior, the purity of a cluster must be calculated.
A cluster is pure if either all connections within are
benign or malicious.
Let pmi be the percentage of connections with a
malicious label in cluster Ci, then the cluster purity
is defined as followed:

Cluster purity =
|pmi − 0.5|

0.5

The result of this metric is not a perfect
measurement for behavior discovery, since
benign data is not fully labeled, e.g. benign
file-download behavior will be labeled with
malicious file-download behavior which in practice
would be a good behavioral cluster and it also relies
on labels only containing one behavior, which is not
true for labels like ’C&C-HeartBeat-FileDownload’
and thus is a multi-class problem.

4.2.5 Cluster malicious purity

To improve on the shortcomings of the Cluster
purity metric, the purity of malicious cluster are
also taken into account, which are clusters with
more than 60% malicious connections. This is done
to check if all those malicious connections have the
same label, since its highly likely that a connection
with the same label executes the same network

behavior.
Let cmk

i be the amount of connections with a
malicious label k in cluster Ci and K a set
containing all malicious labels:

Cluster malicious purity =
max cmk

i ∀k ∈ K

|cki |

4.3 Running experiments

The experiments were run with different sequence
lengths (S) and executed 100 times to ensure the
result was significant and not dependant on the
random subset selection of connections.

5 Results

The arrows indicates wherever the value should be
maximize or minimize.

• S-20 results: Table 3

• S-20 Sequential Clusters: Figure 3

• S-20 Statistical Clusters: Figure 3

• S-25 results: Table 4

• S-30 results: Table 5

• S-35 results: Table 6

• S-35 Sequential Clusters: Figure 5

• S-35 Statistical Clusters: Figure 5

• S-50 results: Table 7

• S-75 results: Table 8
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Figure 3: Sequential result (S-20)

Metric Sequential Statistical
↓Number of clusters 37.95 32.58
↑Average cluster size 2.0513 2.1145
↑Noise score 0.77776 0.68753
↑Silhouette Index 0.63957 0.76883
↑Purity 0.85634 0.86133
↑Malicious purity 0.89316 0.86141

Table 3: Results S-20

6 Responsible Research

This research has minor ethical impact, it can be
solely used to improve the performance of (not
limited to) MalPaCA. Which in terms will be used
to identify malicious behavior to identify bad actors
in a network.

The reproducibility of this research was an very
important aspect during the research, therefor a
lot of steps were taken to make it as reproducible
as possible. The data set used, is open-source [2],
which should be accessible for a long time to come
and all source code has been published on Github
[1].

All (performance) benchmarks were performed
on the authors local computer and with the help
of the Numba python library [4] executed within an
hour with the IoT-23 data set, meaning that anyone
should be able to reproduce the result without
needing access to a powerful server.

Figure 4: Statistical result (S-20)

Metric Sequential Statistical
↓Number of clusters 39.22 36.4
↑Average cluster size 1.9415 1.8912
↑Noise score 0.76033 0.68648
↑Silhouette Index 0.6282 0.76968
↑Purity 0.8653 0.86872
↑Malicious purity 0.9063 0.91626

Table 4: Results S-25

7 Discussion

The statistical features give quite a good
representation if a cluster is good or bad, in
case a cluster is good, it is more likely to see
all points within a small range and very little
outliers, as can be seen in Figure 10. However
bad clusters can also be detected. There will be
a lot of outliers and variance in many features,
as can be seen in Figure 11. While when using
sequential features this cluster probably wouldn’t
have been formed since in the sequential feature a
clear difference can be seen Figure 12 demonstrates
this clearly, there, outlined in red, benign behavior
was clustered together with C&C-Torii, outlined
in green. However the ability to see this quickly
and clearly does give extra insight into a cluster,
and its also clear to understand why these certain
connections were clustered together, that’s because
it nearly a perfect match on features like TBT,
APL, DPL, BPS UDP, and CP.

The next thing which shows a big difference
is the Silhouette coefficient. Figure 8 shows a
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Figure 5: Sequential result (S-35)

Metric Sequential Statistical
↓Number of clusters 38.79 37.57
↑Average cluster size 1.9373 1.7135
↑Noise score 0.7508 0.64237
↑Silhouette Index 0.61049 0.74372
↑Purity 0.86427 0.86844
↑Malicious purity 0.91732 0.93366

Table 5: Results S-30

clear distinction between Sequential and Statistical
clusters, my belief is that this discrepancy is caused
by the ’source port’ feature of the sequential feature
set. This causes each nearly identical connection
to have a huge distance due to the cohesion part
of the silhouette coefficient, statistical features do
not suffer of this and have a big gain (on average
about 0.2) over all sequence lengths.

Another interesting pattern was the stable noise
score which was achieved with the statistical
features, however the noise is high at lower
sequence lengths, there seems to be an big increase
in noise when using longer sequence lengths for
sequential features as can be seen in Figure 7.
From this can be said that with the nearly same
scores in Purity and Malicious purity seen in
Table 3 sequential features seem superior with
short sequence lengths but are around equal at
the point when the sequence length reaches 35.
There was no substantial difference in purity and
malicious purity discovered from those experiments,
indicating that the clusters are the same quality.

Figure 6: Statistical result (S-35)

Metric Sequential Statistical
↓Number of clusters 37.55 41.78
↑Average cluster size 1.9225 1.6013
↑Noise score 0.7211 0.66805
↑Silhouette Index 0.60309 0.76829
↑Purity 0.85654 0.89404
↑Malicious purity 0.91903 0.91425

Table 6: Results S-35

An attempt at comparing the clusters generated
by the sequential features and statistical features
was made, but this yielded to good results.
On average only 25% of the noise clusters was
overlapping meaning that both methods used quite
different subsets of connections from the available
ones, leading to quite distinct clusters except an
occasionally overlapping cluster (Containing mostly
benign data).

The generation and clustering of statistical
features were also around 10 to 50 times faster than
the sequential features, however part of this might
be to partially to blame to code optimizations.
On average the statistical features took between
0.5-3 seconds to generate and sequential between
20-35 seconds dependant on sequence length.
However both algorithms are O(n) and the biggest
bottleneck will always be the distance matrix
calculation which is O(n2).
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Metric Sequential Statistical
↓Number of clusters 32.23 43.88
↑Average cluster size 1.9678 1.5581
↑Noise score 0.63206 0.68279
↑Silhouette Index 0.50182 0.74882
↑Purity 0.83776 0.88695
↑Malicious purity 0.9266 0.9266

Table 7: Results S-50

Metric Sequential Statistical
↓Number of clusters 30.43 40.69
↑Average cluster size 1.9944 1.6469
↑Noise score 0.60462 0.6687
↑Silhouette Index 0.46494 0.71629
↑Purity 0.83475 0.86692
↑Malicious purity 0.9332 0.91982

Table 8: Results S-75

8 Conclusions & Future Work
From the discussion the following points can be
concluded, a quick overview can be found in
Figure 9:

• Both sequential and statistical features
generate clusters which are distinguishable
network behaviors, however the labels provided
are not precious enough to identify the actual
network behavior.

• For larger sequential lengths (S ≥ 45)
statistical features perform better than
sequential features. There was an significant
change in the noise score while Silhouette
index, purity and malicious purity stayed on
par.

• There is an considerable reduction of memory
usage when using statistical features compared
to sequential, since each connection can be
reduced to one float/int for each feature.

• MalPaCA might benefit from removing the
source/destination port to increase the cluster
cohesion and replacing it with and statistical
feature like USP or UDP. CP is currently
handcrafted for the current data set and might
not be useful in general data sets, future
research required.

Possible points for future research:

• There was a nearly 10% variance in cluster
performance from run to run, as can be seen

Figure 7: Noise score over sequence lengths

Figure 8: Silhouette index over sequence lengths

in Figure 13. This was seen in all scores since
they are very intertwined with each other. This
might mean that the performance of the two
feature sets in question might depend on the
data set used.

• There is a big difference in the number
of clusters & cluster size between the two
methods, leading to the question if different
clustering parameters might improve the
performance of either statistical or sequential
features.

• The validation/error score is currently not
a good indication on the clustering validity,
there is still a lot of manual labor involved in

Figure 9: Summary of each method
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Figure 10: Box plot of good clustering result
(Little variant in few features, little to non outliers)

Figure 11: Box plot of bad clustering result
(More variance in multiple features, many outliers)

Figure 12: Sequence of bad statistical cluster
Two distinct behaviours

verifying whenever or not a cluster is good.

• Optimizations need to be made since
calculating the distance metric is an O(n2)
problem which doesn’t scale well with a big
amount of connections for both methods.

• The labels are not precise enough, since to
discover network behavior the labels need
to be way simpler and not a collection of
multiple behaviors. The benign data set should
also preciously labeled so malicious network
behaviors can be differentiated and validated
with the same non-malicious behavior.

• Future research can also be conducted into
whenever Deep Package Inspection labels can
be used in combination with current labels to
create a better validation set.
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Figure 13: Variance over 100 runs in Noise Score
for S-20 Sequential features
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