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Thesis Structure

1. Scientific Paper, containing the most important findings and relevant conclusions of this thesis in the
form of a scientific paper.

2. Thesis Appendices, additional results and relevant information supporting the results in the thesis.

3. Preliminary Report & Literature Study, already graded report containing background information,
literature study and preliminary results. The list of symbols, tables and figures correspond to this part
of the report. Added for completeness and reference.
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Wx Wind disturbance - horizontal direction

Wy Wind disturbance - vertical direction

W1,2,3 Cost function weight
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xfinal Destination coordinate

y Vertical aircraft position

yset Vertical position of setpoint

yfinal Destination coordinate

y Output vector

k Discrete sample instance

t time
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abstract - A hierarchical bi-level model predictive
controller is proposed in this thesis to reduce the
computational complexity of controlling a large
scale air traffic control problem, using a model
predictive control approach. The bi-level controller
developed and tested in this research project is
a combination of a global, long-term, slow-rate,
centralized model predictive controller and a local,
short-term, fast-rate decentralized model predic-
tive controller that aims to cooperatively guide
aircraft towards their destination while avoiding
forbidden areas. The bi-level controller is com-
pared to both single-level controllers it is contrived
to explore the benefits achieved by the cooperation
of the individual controllers, in the context of an
air traffic control application. An accurate baseline
model predictive controller is used to compare the
computational efficiency advantage gained when
using the bi-level control structure. The bi-level
controller proves to attain a superior control per-
formance over both its contributing parts. The bi-
level controller provides a more accurate control
performance than the single global centralized
controller and performs better in trajectory op-
timization than the local decentralized controller.
Furthermore, the controller performance of the ac-
curate baseline controller can be approached with
the bi-level controller at a reduced computation
time.

Keywords: model predictive control, MPC, air
traffic control, ATC, hierarchical control, bi-level,
centralized, decentralized, global, local

I. INTRODUCTION

A forecast by EUROCONTROL in 2018 predicts
flight movements to grow by 53% in 2040 compared
to 2017 [1]. An ever-increasing rise in the workload
for air traffic controllers as well as further saturation
of certain air spaces is imminent if innovations in air
traffic control are not implemented. Reducing flight
time, delays, and minimizing aircraft emissions are

TABLE I: Frequently used abbreviations

ATC Air Traffic Control
BLC Bi-level Controller
BL-DC Bi-level Detailed Controller
BL-RC Bi-level Rough Controller
LaT Look-ahead Time
LoD Level of Detail
RHC Receding Horizon Control
SL-DC Single-level Detailed Controller
SL-RC Single-level Rough Controller
SL-AC Single-level Accurate Controller
MPC Model Predictive Control

other reasons to strive for more efficient Air Traffic
Control (ATC).

In this thesis, a hierarchical bi-level controller using
Model Predictive Control (MPC) is developed for air
traffic trajectory optimization. The developed system
is compared to multiple single-level MPC controller
variants to investigate the benefits and drawbacks of
the bi-level model predictive controller. An attempt
will be made to uncover synergism between a global,
slow-rate, centralized model predictive controller and
a local, fast-rate, decentralized model predictive con-
troller and the benefits of combining each controller in
the overall performance of the control solution and the
computational efficiency will be probed in the context
of ATC. Table I provides an overview of the frequently
used abbreviations and Table II shows the frequently
used symbols in this thesis. When the subscript d
is added to any of the symbols the detailed local
controller is indicated and the subscript r is used to
indicate the rough global controller.

Thesis Outline
First, background information on MPC, hierarchical

structures and centralized vs. decentralized control is
provided in Section II. The problem definition, as well
as the main contributions of this thesis, are stated in
Section III. The concept and optimization formulation
of the bi-level model predictive controller is presented



TABLE II: Frequently used symbols

Symbol Description Unit

α Acceleration m/s2

β Heading change deg/s
δac Aircraft to aircraft separation km
δobs Aircraft to obstacle separation km
δs Forbidden area radius km
ϕ Heading angle deg
c Control sampling time s
cd Local control sampling time s
cr Global control sampling time s
cs Setpoint sampling time s
k Control step counter -
kd Local control step counter -
kr Global control step counter -
ks Setpoint step counter -
nset Setpoint index -
rs Setpoint radius km
u Controller input -
v Aircraft velocity m/s
w Wind velocity m/s
x Aircraft position km
xf Destination position km
xset Setpoint position km
Jr Global cost function -
Jd Local cost function -
Nset Number of setpoints used -
Nac Number of aircraft -
Np Prediction horizon -
W Cost function weight -

in Section IV, followed by an explanation of the case
study setup in Section V. The simulation results are
presented in Sections VI and VII. In these sections,
eight different scenarios are described in detail to elab-
orate on multiple aspect of the controller. Following
the simulation results, a discussion on the results and
conceptual exploration is provided in Section VIII.
Finally, the most important findings and prospects for
future research are concluded in Section IX.

II. BACKGROUND

Several key concepts for this study are explained
and supported by relevant literature in this section.

A. Model Predictive Control

In this research project, MPC is utilized for aircraft
trajectory optimization. MPC is a control strategy
capable of achieving an optimal sequence of control
inputs that minimizes a cost function. MPC uses a
model of the system dynamics to predict the future
states of the system, given a series of control inputs.
At the rate of the control sampling time, a sequence

of control inputs is determined, for a certain con-
trol horizon (Nc), within a given prediction horizon
(Np). The control horizon can be equal to, or smaller
than the prediction horizon. When the optimization
is completed, the first control input of the optimal
input sequence is applied to the controlled system and
the remainder of the input sequence is disregarded,
the time window shifts one time step further and the
optimization problem is repeated. A major advantage
and key feature of MPC is the possibility to include
constraints on the input, output, and states of the
system that is being controlled.

Model predictive control, also referred to as Re-
ceding Horizon Control (RHC), has seen an in-
creasing use in the past decades in many different
fields of engineering, from automotive [2][3][4] to
industrial processes [5][6], maritime [7] and aviation
[8][9][10][11][12]. Research in next-generation air
traffic control has also extended to drones and small
unmanned vehicles and how these aircraft can safely
operate without risking interference with air traffic
[13][14][15]. In the survey paper by Garcia et al. from
1989 [16], an extensive history of early applications
of MPC is described.

B. Centralized and Decentralized Control Structures

From a mathematical perspective, a centralized
controller with global and perfect knowledge of the
system could determine the global optimum. However,
for large scale complex problems such as air traffic
control, this can be computationally challenging.

Furthermore, the uncertain nature of air traffic pre-
diction is a downside of global optimization, rendering
the global optimization solution far from ideal. The
low predictability of the problem demands near real-
time updates of the optimization problem, which can
be challenging due to the computational complexity
of the optimization problem.

In order to reduce the computational complexity, a
centralized control system can be divided into multiple
smaller decentralized control systems. For air traffic
control this concept is often referred to as ’free-
flight’, where each aircraft is free to determine its own
optimal solution.

From the review by Al-Gherwi et al. [17], it is con-
cluded that a centralized model predictive control unit
with one overall cost function for the entire system
can guarantee optimal performance. However, when
the system is fully decentralized with independent
local models and with independent local objectives
functions for each subsystem, the performance could
potentially become sub-optimal.

For a control system that manages air traffic separa-
tion, some level of cooperation by the different aircraft
is desired. Within decentralized control systems, the
knowledge that different aircraft have of each other is
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not used to find the optimal solution cooperatively.
When no centralized controller is present, an opti-
mization sequence needs to be defined. A predefined
sequence is proposed in [9], where the order of the
optimization sequence is shown to have a substantial
effect on the outcome. A distributed air traffic man-
agement controller is proposed in [18], however, this
solution has a better result for low traffic densities.

In this thesis, centralized and decentralized control
is combined to utilize the strengths of each method
to reducing issues such as computation time of the
centralized system and avoiding implementation of
optimizations sequences on the decentralized control
level.

C. Hierarchical Control Structures

In the review paper by Tatjewski [19], hierarchical
systems and multilayered control problems using opti-
mization on at least one level are discussed. Temporal,
spatial, and functional decomposition of a system are
mentioned to be the main methods for dividing control
tasks into simpler sub-tasks in a hierarchical control
system approach.

When a functional decomposition is applied, each
level of the hierarchical control structure has different
control objectives. The higher level can, for example,
be a supervisory optimization-based controller and the
lower level could be the direct control layer, which
could be classical PID or a more advanced control
algorithm such as MPC [19].

Temporal decomposition is described by Tatjeswki
for a system where fast and slow state variables are
present that change at a significant time difference.
In a temporal decomposition, each sub-level can be
functionally similar, yet the control sampling times
and prediction horizons usually become longer and
process models and disturbance dynamics tend to
become slower when moving up in hierarchical levels
[19].

In a hierarchical control system, setpoints can be
used to dictate target states to lower level controllers.
The higher level of the hierarchical control structure
aims to find a global optimum, which is subsequently
converted to setpoints, that act as references for
the lower level controllers. Using setpoints in multi-
leveled (MPC) structures is not new and is used and
discussed extensively in [5][6][19][20], where a higher
level MPC controller or different optimizer determines
setpoints for a lower level tracking problem. The
concept of setpoint optimization is used in this thesis,
to integrate different control levels and introduce a
level of cooperation between the controllers.

The novelty of this controller in this thesis is that
the setpoints are also used as constraints for the
lower level controllers, instead of the objectives and
references.

In this thesis, all three methods for decomposition
are explored in an air traffic control application. The
main reason to apply a hierarchical control structure
is to reduce the computational complexity of the
controlled system. By utilizing different time frames
for each controller, the system is separated into fast
and slow dynamics, due to the introduction of different
control sampling times. The spatial decomposition is
used when controlling multiple aircraft on one level
and controlling a single aircraft on the other level
and manifests as centralized vs. decentralized control
in this thesis. Finally, the functional decomposition
is utilized by implementing different control objec-
tives on each control level and by the division of a
centralized controller and a decentralized controller.
Realizing the control system into a hierarchical struc-
ture could potentially create a more efficient controller.
Moreover, the introduction of two controllers can lead
to conceptual advantages related to air traffic control
which are discussed in Section VIII.

Another extensive overview of distributed and de-
centralized hierarchical architectures can be found in a
review paper by R. Scattolini [21]. Scattolini explains
that MPC can be used at any level of the controller
to take full advantage of the input, state, and output
constraints at each level. Despite this fact, not many
applications or research have thus far been conducted
where multiple hierarchical MPC controllers are com-
bined [21].

One example that uses a bi-level optimization based
controller is researched by D’Amato et al. [14]. In the
context of drone formation flying and obstacle avoid-
ance, a generic algorithm is combined with shortest
path algorithms for UAV formation flight, collision
avoidance, and forbidden area evasion in a bi-level
control structure.

Another example of functional decomposition for
air traffic control is researched by George J.Pappas
[22]. Where a higher level controller gives commands
to a lower level controller. The higher level controller
uses a coarser model than the lower level controller.
One of the main challenges is described to be, de-
signing hierarchical system architecture is to achieve
the comparability of the functionality and objectives
of each control level [22]. Moreover, according to
Scattolini, there is no systematic method to select the
best (distributed) control strategy and these systems
lack systematic design methods that guarantee well-
assessed properties [21].

This thesis aims to contribute to the systematic
design of a multi-level model predictive control by
an exploration of several control strategies, and ex-
ploiting the potential of having multiple control levels
in the context of air traffic control. Additionally, the
concepts of centralized and decentralized control are
combined in a hierarchical control structure in order to
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guide multiple-aircraft towards their destination while
maintaining adequate positional separation between
individual aircraft.

III. PROBLEM DEFINITION

The popularity of MPC for optimal control appli-
cations can be ascribed to its ability to handle both
physical and control constraints. Furthermore, MPC
can be applied to control linear and non-linear systems
with linear or non-linear models, constraints, or cost
functions.

A centralized controller with global knowledge of
the controlled system, using a large prediction horizon
and a fast control input sampling time, can theoreti-
cally provide the best solution. The disadvantage of
such a system is that the computation time can quickly
become a limiting factor for fast real-time applications
because the optimization algorithm is repeated at the
control sampling time. The computational burden of
MPC can increase drastically when the size of the
problem grows. The number of agents, the controller
sampling time, the prediction and control horizon,
and the model complexity can all harm the real-time
performance.

It is difficult to theoretically prove the stability and
performance of non-linear MPC [17]. The optimal
control problem requires a finite horizon to be able
to be repeatedly solved online. However, to ensure
stability, an infinite horizon is necessary [23]. The
numerical burden of centralized MPC is often the main
driving factor for the need for practical improvements.
Decentralized or distributed MPC solutions have been
proposed in order to reduce the computational burden
of centralized MPC solutions in the context of UAVs
by D’Amato et al. [13]. D’Amato et al. apply a
prediction unit on the higher level to predict and
resolve collisions based on the ICAO right of way
rules and a decentralized lower level MPC is used for
trajectory tracking of the controlled UAVs.

In [9] multiple different control levels are used for
a decentralized air traffic approach, where a decen-
tralized MPC is used at the higher controller level.
To the best of the author’s knowledge, a contribution
can be made by exploring the possibilities of com-
bining centralized and decentralized controller in a
hierarchical control structure to improve the real-time
performance.

Larger prediction horizons typically increase in the
computation time required to optimize the controller
input. One way to reduce the computational burden
is, therefore, to reduce the prediction horizon while
maintaining the controller sampling time, effectively
reducing the look-ahead time. Consequently, a reduc-
tion in the quality of the control solution is expected,
since only short-term knowledge of the system is used.

A different approach towards increasing computa-
tional efficiency is to increase the controller sampling
time, naturally reducing the number of optimization
variables within the look-ahead time. The accuracy
of the solution is now compromised, due to the rough
discretization and less frequent control sampling time.
However, the controller does include future informa-
tion that was lost in the previous method.

Since MPC uses a model of the system to predict
future outputs, predicted states further into the future
become increasingly unreliable due to the accumula-
tion of errors, disturbances, and model uncertainties.

If MPC is applied to a system such as air traffic,
the uncertain nature of global air traffic prediction
can become a problem. The low predictability over
the full length of a flight path is an issue rendering
the global optimization solution far from ideal. The
low predictability of the problem demands near real-
time updates of the optimization problem, which is
computationally practically impossible with the cur-
rent technology. However, if the significance of fu-
ture predictions is valued less and the lower far-time
predictability is accepted and only used for general
guidance, it can prove to be valuable information.

Main Contributions
The main contributions of this research are to

investigate the integration of two model predictive
controllers that cooperatively improve the collective
results of the individual controllers for an air traffic
control application. The novelty of the project lies
in the combination of a global long term, slow-rate,
model predictive controller with a local short term,
fast rate, model predictive controller, to obtain a single
coherent bi-level hierarchical controller. The short
term fast rate MPC level only has local knowledge
of the system, a smaller prediction horizon, with a
fast control sampling time. The long term slow-rate
MPC level operates with global knowledge of the
system, a larger prediction horizon, and a slower
control sampling time.

Among other goals, this research project aims to
reduce the computational burden while minimizing the
compromise to the control performance. Furthermore,
the goal is to contribute to developing an understand-
ing of how the potential of two control levels can be
exploited, to reduce the computational complexity of
an application such as air traffic. Finally, the short-
comings and important considerations that need to be
made when designing a hierarchical bi-level model
predictive controller will be explored and highlighted
in the context of air traffic control based on several
case studies and multiple scenarios.
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IV. BI-LEVEL CONTROLLER SETUP

The Bi-level Controller (BLC) developed for this
research project, is a combination of two model pre-
dictive controllers that are operating in a hierarchical
structure. The leading controller is a global MPC with
a large look-ahead time and a rough control input
sampling time. This controller is called the ’Bi-level
Rough Controller (BL-RC). The other MPC is a local
short term controller, with a shorter look-ahead time
operating with a shorter control period. This controller
is hereafter called the ’Bi-level Detailed Controller’
(BL-DC) and serves as the direct control layer. The
local BL-DC and global BL-RC combined form the
BLC.

Since each controller operates at a different pace
and at different time-frames, they each have their
strengths and weaknesses, see Section III. When the
two computation time reducing methods are applied
in a bi-level controller structure, the compromise be-
tween accuracy and computation time can be avoided.
In Table III the benefits and drawbacks of each method
are summarized.

TABLE III: Benefits (+) and drawbacks (-) of the
different controller variations in terms of Look-ahead
Time (LaT) and Level of Detail (LoD).

LaT LoD

Global rough controller + -
Local detailed controller - +
Bi-level controller + +

The BL-RC reduces the computation time by apply-
ing a larger control sampling time (cr), while keeping
the look-ahead time constant, sacrificing accuracy as
a result of a coarse discretization. The loss in detail
is regained by the introduction of the local model
predictive controller, with a smaller control sampling
time (cd) and thus a finer discretization. The BL-
DC gains its computational efficiency by reducing
the look-ahead time, for which the control input is
optimized. The long-term information that is lost in
this process, is in turn provided by the BL-RC. For
short term predictions of the solution, a certain level of
detail needs to achieved which is considered a design
requirement. The level of detail will be rougher for
future predictions outside the look-ahead time of the
detail controller.

In Figure 1, the level of detail of both controllers
is illustrated over a time horizon. It can be seen that
the local detailed controller updates its control input
more frequently than the global controller. However,
the local controller determines a sequence of control
inputs for a shorter look-ahead time with a prediction
horizon of Npd. The global rough controller has a

larger look-ahead time with a prediction horizon of
Npr. These two controllers together form the BLC and
provide the required level of detail until Npd. After
the local detailed controller’s look-ahead time the level
of detail of the control solution is reduced. Neverthe-
less, a reduction of detail for far ahead predictions
is acceptable if the additional information does not
contribute to a significant improvement of the solution.
Due to the low predictability of global air traffic
for far ahead predictions, a highly detailed control
solution might be unreliable. The BLC, therefore,
places more emphasis on optimizing the short terms
control solution. The receding horizon properties of
MPC makes sure that the time frame that contains
adequate detail shifts forward with every new iteration.
The detailed controller inputs with a longer look-ahead
time can also be seen in Figure 1, indicated by the
yellow dashed line. This part of the control solution
is lost when using the BLC.

u(k)

SL-AC

BL-DC
BL-RC

kd ( + 1)kd cd

( +N )kr pr cr

( + 3)kd cd

x(k)

( + 1)kr cr ( + 2)kr cr

( +N )kd pd cd

kr

Fig. 1: Different controller sampling periods and pre-
diction horizons resulting in different levels of detail
for different look-ahead times.

The number of aircraft that is controlled by each
control level, is another important distinction creating
an additional categorical division of the controller lev-
els based on centralized and decentralized control. The
global BL-RC gains a supplementary task of aircraft
separation and pursuing a global optimum. The local
BL-DC controllers are placed on the direct control
level, which is only tasked by creating an optimal
path for one single aircraft, without any knowledge of
the global situation and neighboring aircraft, by using
instructions from the BL-RC.

A. BLC Concept

The Bi-level Rough Controller (BL-RC) finds a
long term conflict-free trajectory for each aircraft in
the system, based on an optimal sequence of control
inputs. The predicted states of the BL-RC are con-
verted to setpoints. The coordinates of the setpoints are
determined using the aircraft model and the optimized
control inputs sequence, provided by the BL-RC. The
predicted setpoint coordinates are thereafter converted
to circular area constraint and subsequently applied as
dynamic constraints to the local detailed controllers.
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The setpoints are not specifically used as references
for a tracking task since the setpoints are determined
using a limited amount of detail. Therefore, the local
detailed controller (BL-DC) is granted the authority,
to improve the solution in the short term and deviate
from the setpoint within a safe margin. The setpoints
are updated at the rate of the BL-RC control interval.

Figure 2, shows a schematic representation of the
BLC architecture. The addition of multiple aircraft

Detailed Controller

Rough Controller

DestinationSetpoint 2Setpoint 1 Predicted States

Constraints Based on Setpoints 1 and 2

Fig. 2: Schematic representation of the BLC. The set-
points determined by the global BL-RC are converted
to circular area constraints for the local BL-DC.

increases the number of optimization variables for the
centralized controller level. However, this can remain
computationally feasible due to the rough sampling
time. By not including a link between aircraft on the
local decentralized controller level there is no increase
in optimization complexity of this controller level,
regardless of the number of aircraft in the system if
parallel computing is utilized.

B. Optimization Formulation

In this section, the method of combining the rough
and detailed controllers is explained by defining and
formulating the optimization problem for both con-
trollers and the link to integrate the controllers. Fur-
thermore, the underlying model and the BLC algo-
rithm are presented.

The aircraft model is a set of kinematic equations
used to compute the position (x, y), velocity (v) and
heading (ϕ) under a certain wind velocity (w) given
by,

ẋ = v · sin(ϕ) + wx (1)

ẏ = v · cos(ϕ) + wy (2)

v̇ = α (3)

ϕ̇ = β (4)

where the acceleration or deceleration input (α) and
the heading change (β) form the manipulated vari-
ables.

Global Bi-Level Rough Controller
The bi-level controller operates at two different time

frames with different discretized sampling periods.
The global BL-RC advances with discrete time steps,
where two consecutive time steps are a sampling time
period of cr seconds apart and kr gives the current time
step of the rough controller. At each control time step
k ∈ {kr, ..., kr+Npr−1}, a control input is determined
resulting in the following control input sequence for
the global BL-RC at kr,

[ur(kr),ur(kr + 1), ....,ur(kr +Npr − 1)]T (5)

where the discrete controller inputs, ur = [α, β],
are optimized for each aircraft such that the control
sequence (Eq. 5) minimizes the global cost function
(Jr), which is given by the expression below,

Jr(kr) =W rf ·
Nac∑
j=1

||xr,j(kr +Npr)− xf,j ||2

+W rα1 ·
Nac∑
j=1

kr+Npr−1∑
k=kr

|αr,j(k)− αr,j(k − 1)|

+W rβ1 ·
Nac∑
j=1

kr+Npr−1∑
k=kr

|βr,j(k)− βr,j(k − 1)|

+W rα2 ·
Nac∑
j=1

kr+Npr−1∑
k=kr

|αr,j(k)|

+W rβ2 ·
Nac∑
j=1

kr+Npr−1∑
k=kr

|βr,j(k)|

(6)

where αr,j and βr,j at k − 1 = 0 are assumed to
be 0. The optimzation is subjected to the following
constraints, at each control time step k ∈ {kr, ..., kr +
Npr − 1}:

xr(k + 1) = fr
(
xr(k),ur(k)

)
(7)

umin
r,j ≤ ur,j(k) ≤ umax

r,j (8)

vmin
r,j ≤ vr,j(k + 1) ≤ vmax

r,j (9)

||xr,j(k + 1)− xobs||2 > δobs (10)

The terminal part of the cost function associated
with the weight W rf is used to minimize the relative
distance of the aircraft position (xj) to the location of
the destination (xf,j) at the time instance (kr+Npr)cr.
While the stage part of the cost function associ-
ated with the weights, W rα and W rβ , penalizes the
maximum absolute accelerations and heading changes
in order to have a smooth trajectory and improve
passenger comfort, within the prediction time window.

In case more than one aircraft is included in the
simulation, the rough optimization is subjected to the
following aircraft separation (δac) constraint.

||xr,i(k + 1)− xr,j(k + 1)||2 > δac (11)
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for k ∈ {kr, ..., kr +Npr − 1}, where the subscripts i
and j are aircraft indices and i 6= j.

Setpoint Determination
The optimized control input sequence determined at
kr, (Eq. 5) can be used to computes a series of
predicted coordinates placed at the BL-RC controller
sampling rate (cr) within the time interval, [(kr +
1)cr, (kr + Npr)cr). These coordinates can serve as
setpoints for the local BL-DC controllers.

Since the two controller levels are interconnected
through the setpoints and the setpoint constraints, the
setpoints must fall within the look-ahead time of the
local detailed controller. The prediction horizon of the
local BL-DC is dependent on the ratio of controller
sampling times and number of setpoints used by,

Npd ≥ Nset ·
cr

cd
(12)

where Nset is given by the number of setpoint con-
straints used by the BLC. If the controller sampling
ratio (cr/cd) is relatively large, the prediction horizon
(Npd) will consequently increase. This effectively
increases the computation time for the optimization
algorithm on the detailed controller level, increasing
the total computation time of the BLC.

In order to decrease the computation time on the
local controller level the setpoints can be placed at a
faster rate, by reducing the setpoint time interval. The
intermediate discrete coordinates resulting from the
model and the optimized controller inputs of BL-RC
can be subdivided further into a setpoint time sampling
time (cs), where cs is an integer factor of the rough
control sampling time (cr). The setpoint sampling
time must be equal or smaller than the rough control
sampling time. The setpoints coordinates (xset) are
determined using the aircraft model and the optimized
control input sequence (Eq. 5), implemented as a
zero order hold piece wise continues control input.
The prediction horizon Npd can then be found in
accordance to the following relation,

Npd ≥ Nset ·
cr

cd
· cs

cr
(13)

It should be noted that when intermediate setpoints
are utilized (cs < cr), the setpoints coordinates are
computed using the same control input until the next
discrete moment in time at (kr + 1)cr, when the next
control input becomes available, every time when,

mod

(
cs

cr
ks, 1

)
= 0 (14)

where ks indicates the setpoint counter. The position
of the center of the dynamic circular setpoints are
determined by the BL-RC as follows,

xset(nset|kr) = fr

(
xr(nset − 1|kr),ur(ns|kr)

)
(15)

where nset ∈ {1, 2, ..., Nset}, indicates the setpoint
number and Nset gives the number of setpoints used
in total. Throughout this thesis Nset = 2. Furthermore,
the setpoints are computed with respect to the already
realized state at |kr. The term, ns, in Equation 15, is
given by the following equation and rounded down to
the nearest integer,

ns = nset
cs

cr
− 1 (16)

which makes sure the same control input (from Eq. 5)
is used until the moment in time when the new control
input becomes available.

It must be noted that, the computation of inter-
mediate setpoints adds to the number of operations
by the BLC controller, increasing the computational
effort. Nevertheless, the added computations do not
increase the computational burden of the optimization
algorithms and are likely to yield a net reduction
in computational effort because the intermediate set-
points are not part of the global optimization. The
fact that the intermediate setpoints are a result of
interpolation using the model and the previously de-
termined optimal rough control inputs, they might
be sub-optimal. Additionally, due to non-linearly of
the system the intermediate setpoint might not be
valid and result in large deviations and unwanted
effects. Furthermore, because the intermediate setpoint
have not been computed by means of an optimization
algorithm they are not explicitly subjected to the opti-
mization constraints. Therefore, utilizing intermediate
setpoints like described in this section must be handled
with care.

In this thesis intermediate setpoints are utilized
only to reduce the prediction horizon of the local
BL-DC and subsequently decrease the computation
time of the BLC. When using a non-linear model.
Future research could focus on a systematic approach
to determine the ratio and values for cr, cd and cs,
which could be updated dynamically throughout the
simulation. Determining the optimal values for the
different controller sampling times is out of the scope
of this thesis. In this project the values for cr, cd and
cs have been iteratively chosen for each case-study.

Local Bi-Level Detailed Controller
The local BL-DC advances with discrete time steps
(kd), with a sampling period of cd seconds. At each
control time step (k), a control input is computed to
achieve a control input sequence for the BL-DC at kd
for k ∈ {kd, ..., kd +Npd − 1},

[ud(kd),ud(kd + 1), ....,ud(kd +Npd − 1)]T (17)

where the discrete controller input, ud = [α, β], is
optimized such that the control input sequence at
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discrete time steps minimizes the rough cost function
(Jd) with cost function weights (Wd),

Jd(kd) =Wdf · ||xd(kd +Npd)− xf||2

+Wdα1 ·
kd+Npd−1∑
k=kd

|αd(k)− αd(k − 1)|

+Wdβ1 ·
kd+Npd−1∑
k=kd

|βd(k)− βd(k − 1)|

+Wdα2 ·
kd+Npd−1∑
k=kd

|αd(k)|

+Wdβ2 ·
kd+Npd−1∑
k=kd

|βd(k)|

(18)

where αd,j and βd,j at k− 1 = 0 are assumed to be 0.
The optimization is subject to the following constraints
at each control step k ∈ {kd, ..., kd +Npd − 1}:

xd(k + 1) = fd
(
xd(k),ud(k)

)
(19)

umin
d,j ≤ ud,j(k) ≤ umax

d,j (20)

vmin
d,j ≤ vd,j(k + 1) ≤ vmax

d,j (21)

||xd,j(k + 1)− xobs||2 > δobs (22)

The local BL-DC is also subjected to one or multiple
setpoint constraints,

||xd(k)− xset(ks + nset)||2 ≤ δs (23)

for nset ∈ {1, 2, ..., Nset} and the setpoint number is
counted with respect to the setpoint counter ks. Equa-
tion 23 is not valid for each k ∈ {kd, ..., kd+Npd−1}
like the other constraints. The setpoints are computed
by the global BL-RC and placed at larger discrete time
steps than the time steps of the BL-DC. Therefore,
the constraint can only be implemented at the RC-DC
iteration when k · cd for k ∈ {kd + 1, ..., kd + Npd}
is coincident in time with the corresponding setpoint,
which happens only when,

k · cd = (ks + nset) · cs (24)

for nset ∈ {1, 2, ..., Nset}. To determine when the
counter (k) on the range k ∈ {kd + 1, ..., kd + Npd}
satisfies Equation 24, the following expression is used,

kd + h = (ks + nset) ·
cs

cd
(25)

Thus the setpoint constraint (Eq. 23) is applied for
k ∈ {(ks +nset) · cs

cd
−h, ..., (ks +Nset) · cs

cd
−h}. Since

kscs = kdcd, the previous range for which Equation
25 is valid can also be written as k ∈ {kd + nset ·
cs
cd
− h, ..., kd +Nset · cs

cd
− h}. For this approach it is

important that the ratio (cs/cd) is an integer value.

As a result of the receding horizon properties of
the BL-DC and the different sampling times for both
controllers, the setpoint constraint has to be applied at
a different discrete instance of the prediction horizon.
Therefore the counter (h) is increased by 1 every time
kd is increased by 1. Since h is a counter linking the
controllers by applying the setpoint constraint to the
appropriate instance in time, the iterator h is reset to
0 once the first setpoint is reached every time when,

mod

(
h,
cs

cd

)
= 0 (26)

Once the first setpoint has been reached a new se-
quence of setpoints is determined by a reiteration of
the global controller or by selecting the next setpoints
from the already determined sequence.

Finally, the first controller input from the optimal
sequence (Eq. 17) is applied to each respective aircraft
at kd, on the time frame [kdcd, (kd + 1)cd).

Algorithm 1 provides a high level overview of the
working principle of the controller.

Algorithm 1 Bi-level Controller Algorithm.

1: for kr is 1 to simulation time do
2: z = 0
3: xs(z) = xr(kr)
4: BL-RC minimize Jr
5: To find [ur(kr), ur(kr + 1), ....

..., ur(kr +Npr − 1)]T

6: for n is 1 to Npr do
7: for s is 1 to int(cr/cs) do
8: xs(z + 1) =

fr

(
xs(z),ur(kr + n− 1)

)
9: z = z + 1

10: end for
11: end for
12: xset[1 : z] = xs[1 : z]
13: for i is 1 to int(cr/cs) do
14: xset[1, z] = xset[i, z]
15: h = 0
16: for k is 1 to int(cs/cd) do
17: h = k − 1
18: for j is 1 to Nac do
19: BL-DC minimize Jd
20: To find [ud,j(kd),ud,j(kd + 1),

,.....,ud,j(kd +Npd − 1)]T

21: xd,j(kd + 1) =
fd(xd,j(kd),ud,j(kd))

22: end for
23: kd = kd + 1
24: end for
25: ks = ks + 1
26: end for
27: xr(kr + 1) = xd(kd − 1)
28: end for
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In Algorithm 1, z is an auxiliary iterator used when
intermediate setpoints are applied (if cr/cs 6= 1).
Line 17 of Algorithm 1 is explained by Equations
(24-26). Notice on line 18 of Algorithm 1, how the
detailed optimization is performed for each aircraft
sequentially. This creates an analogy with decentral-
ized control, where the detailed control loop could
be executed on different computers, or separately by
every aircraft in the system. Once a control input is
determined for every aircraft, the simulation advances
such that all aircraft receive their control inputs be-
fore the simulation continues. Since the aircraft on
the decentralized control level are not coupled, the
sequential optimization yields the same result as a par-
allel optimizing technique. Therefore, the sequential
optimization only affects multi aircraft systems, which
are presented in Section VII. Line 27 is included
when feedback is used to determine the starting states
for the new optimization instance of the BL-RC.
If no measurement update is implemented the first
setpoint at (z = 1) is used as the next state for the
global BL-RC. This is only valid when the prediction
model is equal to the system model and there are no
disturbances. The optimization is performed using the
MATLAB fmincon function with the sqp algorithm.

V. CASE STUDY SETUP

In this section, the case studies used to test the Bi-
level Controller (BLC) performance are introduced.
The case studies are divided into two main parts.
In the first part, a series of static forbidden area
avoidance tests, using one aircraft are presented. The
forbidden areas are a combination of circles with equal
radii. This first part is used to explore the working
principles of the controller, provide an insight into the
gain in computational efficiency, and to present the
intricacies that arise from different approaches to the
BLC structure.

In the second part, multi-aircraft simulations are
performed and discussed. These scenarios serve to
explore the possibilities for an extension into the
multi-agent domain using the BLC and provide an
introduction for future research.

A. Control Methods

Four controller versions are used during the case-
studies for comparison purposes. Both of the control
levels, that create the bi-level controller are individ-
ually capable of controlling the aircraft towards its
destination. When either of the isolated controllers is
used to control the aircraft they are referred to as
’Single-level Rough Controller’ (SL-RC) or ’Single-
level Detailed Controller’ (SL-DC). The only differ-
ence between the single and bi-level detailed con-
trollers is that the single-level detailed controller does
not have the setpoints constraint implemented.

One other controller setup is used during the follow-
ing case studies, which is the ’Single-level Accurate
Controller’ (SL-AC). The SL-AC operates at the look-
ahead time of the global rough controllers (BL-RC
and SL-RC) using the shorter sampling time of the
detailed controllers (BL-DC and SL-DC). Since the
look-ahead time of the SL-AC is equal to that of the
BL-RC, the prediction horizon of the SL-AC can be
computed using,

Npa =
cr

cd
·Npr (27)

The SL-AC is the controller of choice if real-time
performance and computation time are of no concern.
The solution found by the SL-AC serves as a baseline
and is considered to be the desired end result that
should be approached by the BLC. The computation
time of the BLC is compared to the computation time
required by the SL-AC.

B. Assumptions

1) All initial aircraft conditions are known.
2) The states of each aircraft are accurately mea-

sured, without noise or delay.
3) Disturbances are neglected.
4) The BL-DC only knows the initial conditions of

the aircraft it controls.
5) The local detailed controllers do not know the

states of other aircraft.
6) There is no communication delay between the

BL-RC and BL-DC.
7) Computation delay is neglected during the sim-

ulations.
8) The BL-RC and BL-DC have accurate knowl-

edge of the destinations and all forbidden areas.
9) All aircraft are limited to flight movements in

the horizontal two-dimensional plane.
10) Aircraft mass is constant during the simulations.

C. Performance Metrics

Three performance metrics are used to assess the
BLC’s performance. The first metric is a high level
assessment of the general trajectory that is determined
by the controller. For this assessment, it is evaluated
if the controller was capable of finding a solution in
the right direction. The second metric is the level of
detail that is achieved by the controllers, this metric
is determined based on the control sampling time and
the flight speed of the aircraft. The final performance
metric is computational efficiency. The simulations are
repeated four times, each time using one of the four
control methods.

Level of Detail
To assess the level of detail, the main focus is on

the BLC and both single-level controllers that it is
contrived of. As a result of the discretization and linear
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piece-wise trajectory approximation, the aircraft can
trespass the forbidden area in between two evaluation
samples. The level of detail or accuracy of the con-
troller is based on the maximum theoretical forbidden
area constraint violation. Since the forbidden areas are
circles, the maximum infraction is directly related to
the sampling time of the respective control method
used (c), forbidden area radius (δs), and flight velocity
(v). The analytic solution to the maximum violation
(x) can be computed using the following relation,

x = δs −
√
δ2s − (

1

2
v · c)2 (28)

This equation can be derived using the geometrical
relations presented in Figure 3.

x

δs δs
a

b

Fig. 3: Trigonometric relations to determine maximum
analytic violation of forbidden area constraint (x),
where δs = a+ x, b = 1

2v · c.

When flying at a constant velocity the maximum
theoretical infringement x is presented as a function
of the sampling time in Figure 4. It can be seen that
the maximum forbidden area violation rises for larger
controller sampling times until a maximum violation
is reached. This happens when x is equal to the
forbidden area radius (δs). At which point the circular
area can be placed in between two coordinate points
completely, allowing the aircraft to fly straight across
a forbidden area.
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Fig. 4: Maximum analytic forbidden area violation of
forbidden areas with radii of 30, 40 and 50 km for
varying controller sampling times.

The relationship between velocity and computation
time for a given forbidden area with a radius of 50

km can be seen in Figure 5. The controller sampling
time has a large effect on the maximum area violation.
This concept is what defines the level of detail of the
controllers.

The Single-level Accurate Controller (SL-AC) op-
erates at the same level of detail as the Bi-level and
Single-level Detailed Controllers (BL-DC and SL-
DC), because it uses the same controller sampling
time.

When tuning the control sampling time of the Bi-
level Rough Controller (BL-RC), the sampling time
must be small enough such that the potential infeasible
regions, such as the forbidden areas should be captured
by the controller dynamics.

Fig. 5: Maximum analytic forbidden area violation
(in km) of a forbidden area with a 50 km radius for
various velocities and controller sampling times.

Considering that the setpoints for the BL-DC are
determined by the BL-RC, the largest possible con-
straint infringement by the leading controller must
be accounted for. When cs < cr, the intermediate
setpoints can fall entirely within the forbidden area
if the setpoint radius (rs) is too small. Figure 6 shows
one setpoint where rs is large enough to provide a fea-
sible region for the BL-DC (green area). Consequently,
Equation 28 can also directly be used to determine
the minimum setpoint radius (rs). To determine the
setpoint radius the maximum possible flight velocity
should be used since it can be concluded from Figure
5 that a higher velocity results in a larger forbidden
area violation. When the setpoint falls exactly on the
midpoint of the line segment through a forbidden area
the maximum violation must be less than the setpoint
radius to allow for a feasible region within the circular
setpoint constraint.

Computational Performance
The final performance metric is the relative com-

putational efficiency. To determine the computational
efficiency, the BLC is compared to the SL-AC base-
line. The computational burden of the SL-RC and SL-
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rs

δs

Fig. 6: Required setpoint radius to provide an feasible
region for the BL-DC, when intermediate setpoints are
used.

DC are not considered explicitly since they together
contribute to the total computation time of the BLC.

For the first three scenarios and the multi aircraft
simulation presented in part 2, the relative total com-
putation time reduction that is reported is defined as,

Reduction =
TSL-AC − TBLC

TSL-AC
· 100% (29)

Scenario 4 is used to quantify the computational
efficiency. Here the mean computation time for each
iteration and the maximum computation times during
the simulation are assessed in detail, for the BLC
and the SL-AC. The influence of tuning the BLC,
compared to the desired baseline is presented. A
preliminary conclusion will be given to provide insight
into the real-time performance.

VI. SINGLE AIRCRAFT SIMULATION RESULTS

For the first series of case studies, four scenarios
with a single aircraft are presented in order to isolate
the effect of the cooperation of different time-frame
controllers. One aircraft starts at the position (0,0)
km and flies towards its destination at (2500,0) km
around or through a series of circular forbidden areas.
Since the destination is far out of reach during the
simulation time it is therefore not included in the
trajectory figures, except for scenario 1 for illustration
purposes. Furthermore, the simulation time steps are
the same for all controller methods for each simulation
in the same scenario. The simulation time steps are
either 1 second or 5 seconds and specified in Appendix
A.

A. Scenario 1: Static Obstacle Avoidance

The first scenario contains one aircraft that must
fly around two sets of forbidden areas, to reach its
destination. In the first scenario, the cost function
weights are equal for all controllers. Scenario 1 is
used to evaluate how the basic version of the Bi-level
Controller (BLC) compares to each of the single-level
controllers in terms of the achieved level of detail
regarding the solution accuracy and the computational
efficiency.

The constraint boundaries are similar for all the con-
troller variations for the maximum allowed heading
change. Furthermore, the controllers are not allowed
to change the aircraft velocity, only the heading angle
is controlled in order to change the position. The
controller parameters and cost function weights, as
well as the scenario setup, can be found in Appendix
A. Furthermore, it should be noted that the setpoints
for the Bi-level Detailed Controller (BL-DC) are de-
termined at a faster rate of 120 seconds than the 240
seconds of the Bi-level Rough Controller (BL-RC)
sampling time. Reducing the required Npd by a factor
2.

BLC, SL-RC, and SL-DC Trajectory Comparison
In Figure 7, the trajectories of the Single-level

Rough Controller (SL-RC), Single-level Detailed Con-
troller (SL-DC), and the BLC are portrayed. When
observing the full zoomed-out overview of the general
trajectories, the advantage of the SL-RC over the SL-
DC becomes apparent. It can be seen that the SL-
DC initiates the required heading change at a later
stage compared to the SL-RC. This can be expected
from the larger look-ahead time of the SL-RC of 16
minutes, compared to the 4 minute look-ahead time
of the SL-DC. The forbidden areas are consequently
captured within the look-ahead time earlier. The SL-
RC is, therefore, able to change the control input
sooner, reducing the required control effort.

This effect is also seen when evaluating the BLC,
which is a combination of the SL-DC and SL-RC.
Even though the direct control level of the BLC is
similar to the SL-DC, the required heading change is
initiated earlier. The aircraft is ’forced’ into the right
direction by the setpoint constraints. The combined
system finds a more efficient trajectory than the SL-
DC, in terms of path length. Therefore, it can already
be concluded that the information provided by the
global BL-RC to the local BL-DC yields a positive
effect in terms of trajectory optimization.
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Fig. 7: Trajectory comparison of the BLC and the
contributing SL-RC and SL-DC for scenario 1.

The strength of the SL-DC and how it in turn can
also complement the SL-RC becomes visible when
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taking a closer look at the trajectories, in Figure
8. Here the loss of detail as a result of the rough
discretization is visible. Although the SL-RC did
not violate any constraints during the optimization
process, a relatively large ’shortcut’ is taken through
the forbidden areas. The SL-RC and BL-RC can
violate the constraint with an analytical maximum of
10 km while the SL-DC, BL-DC, and SL-AC have
a maximum theoretical violation of only 0.56 km,
according to Equation 28. The level of detail of the
solution is therefore increased by almost 95% when
using the BLC, due to its shorter control sampling
time.
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Fig. 8: Close up of Figure 7, showing the trajectory
around a forbidden area.

The detailed part of the BLC, as its name implies,
is better capable of accurately flying around forbidden
areas. This part of the controller makes sure the
required level of detail is maintained, in the short-
term, which is lost when using the SL-RC.

Forbidden Area Violation Assessment
The theoretical maximum violation of the forbid-

den area has already been discussed in the previous
section, the actual simulated violation is quantified in
Figure 9. From this simulation, it is apparent that for
the BLC, SL-AC, and the SL-RC, all the coordinates
at which the constraints are evaluated fall outside the
forbidden area.
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Fig. 9: Relative positional distance to the forbidden
area boundary for scenario 1.

Nevertheless, it can be verified that the aircraft
trespasses the forbidden area by more than 5 km

when using the SL-RC. Since the evaluation of the
constraint is done at the sampling time of the BL-DC,
the simulated violation by the BL-DC is nearly zero.

BLC and SL-AC Trajectory Comparison
A comparison of the Bi-level Controller (BLC)

with the Single-level Accurate Controller (SL-AC)
trajectory is presented in Figure 10. This comparison
is made to assess the computational efficiency as well
as the two different trajectories.

As is explained in Section V, the SL-AC is a con-
troller version where no compromise is made between
the prediction horizon and controller sampling time.
From this comparison, it is found that the computation
time for the whole simulation was reduced by 85%
when using the BLC instead of the SL-AC.
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Fig. 10: Trajectory comparison of the BLC and the
SL-AC for scenario 1. The setpoints are determined
by the BL-RC and do not correspond to the SL-AC.

Even though the trajectories of the BLC and the
SL-AC are relatively similar, a curve is visible in the
BLC trajectory before the first row and second row of
forbidden areas. This effect can be seen in the close-up
in Figure 11.
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Fig. 11: Close up of Figure 10 between the two
forbidden area, showing a curvature in the BLC path.
The setpoints are determined by the BL-RC and do
not correspond to the SL-AC.

The cost function of the BL-DC is tuned to reduce
the distance between the aircraft and its destination.
Therefore, minimizing the local cost function results
in a heading change initiated by the BL-DC, for
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as far as the setpoint constraints allow. The optimal
solution found from a local perspective is to increase
the heading angle in between the two forbidden area
sets, which is not the optimal solution from a global
perspective. This is caused by the fact that the final
destination is at y = 0 km and the BL-DC is still
unaware of the second set of forbidden areas due to
its shorter look-ahead time. A larger setpoint size can
result in a larger deviation from the intended path, this
is an important result that should be addressed when
tuning the BLC.

B. Scenario 2: Different Local and Global Cost Func-
tion Weights

The second scenario is used to present a way to
mitigate the BLC curvature effect that occurred in
scenario 1. In order to achieve this result, the possi-
bility and effect of different cost function weights are
presented. The influence of minimizing the maximum
control inputs (acceleration and heading change) by
the local Bi-level Detailed Controller (BL-DC) instead
of reducing the distance of the aircraft to the final
destination is investigated. The controller parameters
and scenario setup are summarized in Appendix A.
The weights on the absolute maximum control inputs
(Wdα2 and Wdβ2) are 10 and the weight on difference
between consecutive control inputs (Wdα1 and Wdβ2)
are both zero in this experiment. Moreover, it should
be noted that the setpoints for the local Bi-level De-
tailed Controller (BL-DC) are determined at a higher
rate of 100 seconds than the BL-RC sampling time of
300 seconds reducing Npd by a factor 3. Additionally,
the maximum velocity boundaries for the BL-DC are
bound between 180 m/s and 220 m/s. Instead of 180
and 200 m/s for the Single-level Accurate Controller
(SL-AC) and the Bi-level Rough Controller (BL-RC).

Figure 12, portrays the trajectories of the SL-AC
and the BLC, using the different cost function weights
approach. It can be concluded that the unwanted
curvature is no longer visible in the BLC trajectory.
Instead, the path set out by the BLC follows that of the
SL-RC while minimizing the required control input.
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Fig. 12: Trajectory comparison of the BLC and the
SL-AC for scenario 2.

When a single-level controller only uses Wf in
its cost function it will opt to fly at the maximum
allowed velocity since this is the optimal solution
to decrease the distance between the aircraft and its
destination. Therefore, the initial velocity of 200 m/s
is also the maximum velocity constraint for the SL-AC
and SL-RC in this scenario. The BL-DC is granted a
wider velocity constraint and the maximum allowed
velocity is set at 220 m/s. Even though the maximum
velocity for the BLC is higher, the BLC does not opt
for a maximum velocity solution, because its control
objective is to minimize the control effort and not
the distance to the destination. Furthermore, the local
controller boundaries are wider than the SL-AC and
BL-RC and the maximum heading change is 0.5 deg/s
for the all controller versions, but 0.4 deg/s for the
BL-RC. When looking at the BLC control inputs, in
Figure 13, associated with the trajectory in Figure 12,
it can be seen that there are only minor control inputs
being applied by the BL-DC.
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Fig. 13: Velocity, heading and optimized control inputs
with Wdf = 0 and Wdα, Wdβ = 10 for scenario 2

The heading and heading change controller input
for the SL-AC can be found in Figure 14. Since the
SL-AC already starts at the maximum velocity (200
m/s), the acceleration input remains zero.

Implementing a higher priority to Wα and Wβ

while using a single-level controller introduces a
certain level of complexity and requires finding a
balance between W rα, W rβ , and Wf. Additionally,
because the distance to the destination decreases as
time progresses, the cost function weight must change
over time. If the cost function weights are static, the
influence of W rα and W rβ for minimizing the cost
function grows as the aircraft converges towards its
destination.

This scenario is especially interesting, since the

15



0 10 20 30 40 50 60 70
199

200

201

0 10 20 30 40 50 60 70
-2

0

2
10

-14

0 10 20 30 40 50 60 70
80

90

100

0 10 20 30 40 50 60 70
-0.5

0

0.5

Fig. 14: Heading and heading change input SL-AC for
scenario 2.

direct control layer of the BLC, does not take the
final destination into account when determining its
control inputs. However, it is capable of finding a
smooth trajectory through the obstacle field. While
reducing the total simulation time by 98%, compared
to the baseline solution. It can thus be concluded that
it can be beneficial to use different cost functions for
both controller levels, to have each level focus on
a different aspect of the solution. A figure showing
the achieved level of detail by each of the controller
methods as well as the corresponding SL-DC and SL-
RC trajectories can be found in Appendix B.

The BLC trajectory (with Wdf = 0) is comparable
to the SL-AC trajectory while the control effort is
lower. The different constraint boundaries for the
velocity and the maximum heading change on both
controller levels open up a possibility for different
models and constraints on each controller level of the
BLC.

Alternatively, when the BL-DC cost function is
changed to place more emphasis on minimizing the
distance to the destination (Wdf 6= 0), a destabiliz-
ing effect starts to appear when the BL-DC velocity
boundaries are wider than that of its leading rough
controller. This effect can be seen in Figure 15, where
the BLC oscillates between the setpoints.
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Fig. 15: Aircraft trajectory with with Wdf = 0.0001
and Wdα, Wdβ = 0 for scenario 2

The control inputs shown in Figure 16 confirm the
destabilizing control behavior. The aircraft accelerates

and decelerates and makes many heading changes to
adhere to the setpoint constraints while also reducing
its distance to the destination. Due to the different
constraint setup, the BL-DC has the possibility of a
higher velocity, creating an oscillating controller input.
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Fig. 16: Control inputs BL-DC for scenario 2 with
Wdf = 0.0001 and Wdα, Wdβ = 0.

When using different models or constraints on either
level this effect must be addressed carefully, such
that different models and constraints on one controller
level do not interfere with the objectives of the other
controller level.

C. Scenario 3: Measurement Updates

In all the simulations presented before, there has
been no state measurement provided by the local
Bi-level Detailed Controller (BL-DC) to the global
Bi-level Rough Controller (BL-RC). The information
flow has only gone from the global to the local
controller. Scenario 3, presented in this section is used
to explore the possibility of a ’two-way’ information
stream by using feedback from the BL-DC to the BL-
RC. The starting points for each new global rough
optimization are the states of the local detailed con-
trollers, changing the hierarchical structure of the BLC
by granting more autonomy to the BL-DC.

Several advantages but also some severe potential
disadvantages should be considered. One advantage of
providing a two-way information stream is that due
to the faster control sampling rate of the BL-DC, it
has more accurate state measurements, enabling better
handling of fast disturbances. Furthermore, priority
can be given to the BL-DC which can use different
cost functions or more accurate models.

The main disadvantage is that a destabilizing ef-
fect can occur by providing feedback to the BL-RC.
The BL-DC has the autonomy to adjust its heading
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and velocity within the provided setpoint constraints.
However, when the BL-DC operates at the boundaries
of these setpoints, the global rough controller might
have to make large control adjustments, that could
even cause an infeasible solution.

The controller parameters and the scenario setup are
presented in Appendix A. The setpoints for the BL-DC
are determined at a higher rate of 150 seconds than
the BL-RC sampling time of 300 seconds, reducing
Npd by a factor 2.

In Figure 17, two BLC trajectories are shown. Both
versions incorporate a measurement update from the
BL-DC to the BL-RC. However, each controller uses
different cost function weights for the BL-DC. Where
one BL-DC version uses Wdf in its cost function,
while the other presented BL-DC version has a weight
on minimizing Wdα and Wdβ . The weights on the
absolute maximum control inputs (Wdα2 and Wdβ2)
and the weight on the difference between consecutive
control inputs (Wdα1 and Wdβ2) are all 10. The
setpoint radius is 6.2 km and the maximum velocity
is again equal for both controller levels.
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Fig. 17: Trajectory comparison of two BLC versions
with different cost function weights using measure-
ment updates, scenario 3.

As a result of the local perspective that the BL-DC
has of the future, its optimal solution could deviate
from the global controller’s solution. Since the BL-DC
can find a different controller input than the BL-RC, it
can strafe away from the BL-RC setpoints, by as much
as the setpoints constraints allow. This effect was
already seen by the curvature in scenario 1 and again a
slight curvature is visible in the Wdf trajectory. If the
local controller is given more authority by providing
the starting positions to the BL-RC, the result can be
unstable. Because the local controller can find control
inputs within the allowed constraints, large correction
by the BL-RC might be required to bring the aircraft
back on the global optimal path.

It can be seen if Figure 17, that when using the BL-
DC version with Wdf = 0 and only Wdα and Wdβ ,
the trajectory deviates from the optimal path. This can
be explained by the fact that the BL-DC minimizes
the control input, therefore its optimal solution is to
minimize the heading change and stay at a constant ve-

locity. The solution of the local controller can deviate
from what the global controller determines to be the
shortest trajectory. Since the local controller provides
the new initial conditions for the global controller, the
BL-RC ends up on a sub-optimal trajectory.

Intermediate Dynamic Destinations
The possibility of utilizing the Bi-level Rough Con-

troller (BL-RC) setpoints as intermediate destinations
for the Bi-level Detailed Controller (BL-DC) is ex-
plored in this section.

In the simulations presented in Figure 18 the first
two setpoints are again used to define the circular
setpoint constraints. The difference is that instead of
using the final destination in the cost function of
the local BL-DC, the distance of the aircraft to the
third setpoint is minimized. The BL-DC destination
is, therefore, dynamically updated throughout the sim-
ulation.
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Fig. 18: Trajectory of the BLC with measurement up-
dates and setpoint as destination with similar models
on both levels.

The aircraft controlled by BLC in Figure 18, stays
on the shortest path and the slight curvature that was
present in Figure 17 is no longer visible. As expected,
the BL-DC now follows the solution of the global BL-
RC controller more closely. This is due to the global
controller not only providing dynamic constraints, but
also determining the reference (setpoints) for the local
controller. The BL-DC effectively acts to minimize
the error between its predicted states and the provided
reference.

The BLC trajectory in Figure 18 is compared to the
Single-level Accurate and Detailed Controller (SL-AC
and SL-DC) trajectories with comparable controller
parameters in Figure 19. It is clear that the SL-AC and
BLC follow a similar path, while the SL-DC deviates
from the shortest path until the forbidden area appears
within its look-ahead window. Using this approach,
the BLC trajectory approaches the baseline trajectory
while improving the computational performance by
more than 93%.

The level of detail of the BLC, SL-AC, and SL-RC
can be seen in Figure 20. The shortcoming of the SL-
RC is evident, while the level of detail is maintained
using either of the other two control methods.
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Fig. 19: Trajectory comparison of the BLC, SL-DC
and SL-AC, all using similar models and controller
parameters for scenario 3.
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Fig. 20: Relative positional distance to the forbidden
area boundary for scenario 3.

It can be concluded that when BL-RC also dictates
the intermediate destinations to the BL-DC, the mea-
surement updates do not necessarily destabilize the
trajectory when the cost function weights are tuned
appropriately.

Wider Local Constraints
It must be noted that in the simulation presented
before, similar models and constraint boundaries have
been used. This was done in order to mitigate the
possibility that the initial velocity for the Bi-level
Rough Controller (BL-RC) is already outside the
feasible domain, when the BL-DC determines the
initial states. In this section, it is shown what happens
when the constraints on both levels start to contradict
each other. In the simulation shown in Figure 21 the
same scenario is presented, however a wider maximum
velocity constraint (220 m/s) is implemented on the
Bi-level Detailed Controller (BL-DC) level.
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Fig. 21: Trajectory comparison of the BLC, SL-AC
and SL-DC where the BLC is using wider constraints
at the local controller level.

It can be seen in Figure 21, that the BLC still
follows the baseline trajectory closely, even though
there is a slight deviation from the optimal trajectory.
However when taking a closer look at the control
inputs from both levels of the BLC in Figure 22, some
important conclusions can be drawn. The local BL-DC
tries to fly at its maximum velocity since to minimize
the distance between the aircraft and its destination.
However, since the maximum velocity of the global
controller is less than that of the local controller the
two controllers have contradicting control inputs. The
starting point of the optimization of the BL-RC is
now already outside of its feasible solution space
due to the feedback loop, and the global controller
will, therefore, provide a negative acceleration input
in order to stay within its velocity constraints.
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Fig. 22: States and controller input comparison for the
BL-RC and BL-DC for scenario 3.

Therefore, the possibility of an infeasible optimiza-
tion and contradicting solutions must be carefully
considered when using a feedback loop from one
controller to the other when the models and constraints
are not exactly equal. It is clear that both controllers
in this example have contradicting inputs.

Intermediate Destinations Without Measurement
Updates

In this section, a final controller alternative is pre-
sented, in an attempt to fully remove the destabiliz-
ing behavior and to discuss the advantages that the
Bi-level Controller (BLC) has over the Single-level
Accurate Controller (SL-AC). This method uses no
feedback from the local Bi-level Detailed Controller
(BL-DC) to the global Bil-level Rough Controller
(BL-RC), yet it does utilize the third setpoint as a
destination for the BL-DC. Figure 23 shows a trajec-
tory example generated using this approach with the
cost function weights as shown in Table IV.

From the BLC cost function weights in Table IV, it
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TABLE IV: BLC cost function weights for trajectory
presented in Figure 23.

Wα Wβ Wf

BL-RC 0 0 0.0001
BL-DC 10 10 0.001

can be seen that the control input sequence is based on
an optimization where minimizing the distance to the
third setpoint is balanced with minimizing the control
effort.
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Fig. 23: Trajectory comparison without measurement
updates and the third setpoint is used as a dynamic
intermediate destination for scenario 3.

The velocity, velocity change, heading, and heading
change are plotted in Figure 24. The BL-DC is allowed
to increase its velocity up to 220 m/s, while the
maximum velocity for the SL-AC is 200 m/s in this
simulation. Considering the cost function setup of the
SL-AC, which only uses W f, the controller will have
the aircraft fly at the maximum velocity for as long
as possible, to reach the destination earlier. Therefore
no fair comparison could be made if the controllers
would use the same constraint boundaries.
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Fig. 24: States and controller input comparison for the
SL-AC and BL-DC trajectories shown in Figure 23.

This setup results in three advantages. From Figure

24, the first important advantage of the current BLC
emerges. A larger margin on the constraint boundaries
of the detailed local control level can be allowed. This
is effectively a possibility for implementing different
models on both control levels. In this example, the
maximum velocity boundary is wider for the local
BL-DC than for the global BL-RC. It can be seen
than the BL-DC uses this extra margin in the first
10 minutes of the simulation to increase its speed
to fly around the forbidden area to reach its next
setpoint in time. Since the BL-DC cannot take the
same ’shortcut’ through the forbidden area, it is forced
onto a longer trajectory. However, it makes up for the
extended trajectory by increasing its velocity. As a side
effect, the BLC guides the aircraft faster through the
obstacle field than when using the SL-AC. Because of
the global BL-RC has a more efficient route than the
SL-AC, due to the shortcuts. The BL-DC is capable to
keep up with the BL-RC because it has the possibility
to increase the velocity past the nominal speed of 200
m/s.

The second benefit of using this method is that
there is no risk of the BL-DC deviating from the path
determined by the BL-RC since there is no feedback.
It was concluded from the results of scenario 3, that a
destabilizing effect occurred due to the measurement
updates provided by the BL-DC. For the version of the
controller in this section, the hierarchy of determining
the direction of the trajectory is granted to the global
controller again.

Another gain of the current setup is that tuning the
BL-DC is more convenient. The distance from the
aircraft to the third setpoint is always within the same
range, eliminating the need for dynamic cost function
weights. These would be necessary when using a
single-level controller that contains one or more cost
function terms besides minimizing the distance to the
destination.

When implementing different models or constraints
on either level of the BLC, the constraints or models
of the global controller have to be more conservative.
It can be concluded from this example that the local
controller can reach the global setpoint as a result
of its less conservative model. The other way around
might cause problems if the setpoint constraints cause
a mismatch with different constraints than the BL-DC
is subjected to. If the local controllers cannot reach
the setpoint constraint due to a mismatch in models
or model parameters, infeasible solutions might occur.

A downside of this setup is that there is no feedback
from the local controller to the global controller. When
disturbances and model imperfections start to play a
more dominant role, the solutions of the local and
global controller can accumulate over time. Future
research could focus on implementing a method for
some level of feedback from the local to the global
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controllers, to make sure that the global controller
and the detailed controller are able to provide fea-
sible solution optimization solutions throughout the
simulation. Feedback is increasingly important if dis-
turbances are added and the scenarios become more
complex. A possibility would be to decrease the feed-
back frequency or implement event-triggered feedback
solutions. To reduce the risk of the local controller
destabilizing the solution.

D. Scenario 4: Relative Computation Time

This section aims to quantify the relative com-
putation time reduction that can be achieved when
applying the Bi-level Controller (BLC) instead of
the Single-level Accurate Controller (SL-AC) base-
line. The method of using the third setpoint as a
destination for the Bi-level Detailed Controller (BL-
DC), without measurement updates, is used during the
following simulations. The sampling times of the Bi-
level Rough Controller (BL-RC) are the independent
variables during this scenario. The look-ahead time
of the BL-RC and SL-AC is fixed at 30 minutes,
thus the prediction horizon of the SL-AC (Npa) is
60, according to Equation 27.

In Table V, the maximum and mean computation
times for each iteration and the absolute computation
time that was required to attain the trajectory in Figure
25 are listed. Since the control sampling time was
set at 30 seconds, a maximum computation time of
42.4 seconds yields a problem in terms of real-time
performance.

TABLE V: Maximum, mean and total computation
times by the SL-AC for scenario 4.

Max (s) Mean (s) Total (s)

42.4 2.6 306.3

The detailed controller level of the BLC needs
to attain the same level of detail as the baseline
controller. Therefore the control sampling time of the
BL-DC is also specified to be 30 seconds. A range of
BL-RC sampling times between 60 seconds and 300
seconds are tested to evaluate the influences on the
computation times.

The prediction horizon op the BL-DC (Npd) is
related to the ratio of sampling times and the number
of setpoints used (Nset = 2) by Equation 12. Fur-
thermore, the look-ahead time of the BL-RC needs to
remain constant for all simulations. Therefore, when
varying the controller sampling rates, Npr can be
determined using,

Npr = Npa ·
cd

cr
(30)

Considering Npa is 60 and cd = 30s, Table VI can
be completed using Equation 30. Table VI shows the
different combinations of BL-RC controller sampling
times (cr) and the corresponding prediction horizon
for both controller levels that are tested.

TABLE VI: Rough controller sampling time (cr) and
corresponding prediction horizon (Npr and Npd) to
attain the required look-ahead time of 30 minutes.

cr 60s 90s 120s 150s 180s 300s

Npr 30 20 15 12 10 6
Npd 4 6 8 10 12 20

Figures 25 and 26, indicate two examples for dif-
ferent cr values. It can be seen than the trajectory
of the local Single-level Detailed Controller (SL-DC)
changes due to the different sampling times of the
global rough controllers. This is expected since the
controller parameters of the BL-DC are dependent on
the controller parameters of the BL-RC. When increas-
ing kr, kd naturally increases due to the coupling via
the setpoints constraints.

In Figure 25, for kr = 90 seconds, the look-ahead
time of the BL-DC is 3 minutes, which is to short for
the SL-DC to find a feasible trajectory.
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Fig. 25: BLC, SL-AC and SL-DC trajectories compar-
ison with cr = 90s, scenario 4.

In Figure 26, the simulation with kr = 300 seconds
is shown. It is apparent that when the sampling time
of the BL-RC decreases, the SL-DC starts to approach
the optimal trajectory. In this simulation, the look-
ahead time of the local controller is 10 minutes and
because of the larger prediction horizon, the SL-DC
starts to approach the baseline solution of the SL-
AC. The other trajectories, corresponding to the other
global sampling times, are presented in Appendix C.

The first conclusion that can be drawn from Figure
27, is that the computational efficiency initially grows
for an increasing cr. This effect can be contributed to
a decreasing prediction horizon on the rough control
level since the look-ahead time is fixed. Nevertheless,
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Fig. 26: BLC, SL-AC and SL-DC trajectories compar-
ison with cr = 300s, scenario 4.

a decrease in the computational efficiency is observed
when cr increases past 120 seconds, for this scenario
and controller setup. This can be explained by the
fact that a larger Npd is required when increasing the
BL-RC controller sampling time. Consequently, the
computation time for each optimization iteration of
the BL-DC required more computational effort.
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Fig. 27: Computation time reduction using the BLC
compared to the SL-AC with a constant cd, scenario
4.

The difference in computation times of both control
levels can be seen in Figure 28, where the mean com-
putation times for both controller levels are presented.
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Fig. 28: Mean optimization computation times during
entire simulation for each of the BLC control levels,
scenario 4.

Finally, it should be noted from Figure 29 that the
maximum computation times are also influenced by
the size of cr and that it follows a similar trend.
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Fig. 29: Maximum optimization computation times
during entire simulation for each of the BLC control
levels, scenario 4.

It is possible to reduce the computation times of
the BLC even further, by using intermediate setpoints.
When cs is smaller than cr the setpoints are placed
closer together. This will allow for a reduction of Npd,
while it has no effect on Npa. The resulting relative
computation times can be seen in Figure 30, where
the same SL-AC simulations are compared to a BLC
with cs = cr and with cs = 0.5 · cr. The corresponding
trajectories with intermediate setpoints can be found
in Appendix C.
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Fig. 30: Computation time reduction BLC compared
to SL-AC with intermediate setpoints.

The computational efficiency gained by the BLC
compared to the SL-AC depends on the relative control
sampling times and the prediction horizons of both
controller levels. When cd is fixed, based on the
required level of detail of the system and the ratio
of cs/cd grows (Where cs ≤ cr), the prediction horizon
of the BL-DC must increase due to coupling by the
setpoint constraints (see Eq. 12 and Eq. 13). The
mean and max computation times of the BL-DC also
increase for a larger Npd, compromising the real-time
performance.

The ratio of controller sampling times also have
a relative performance influence besides the already
mentioned computation time effects. The increased
look-ahead time of the BL-DC, which is required
when cr increases, would reduce the performance
benefits between the SL-AC and SL-DC. Due to the
larger look-ahead time of the detailed controller, it be-
comes increasingly capable of controlling the aircraft
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without the guidance of the BL-RC. Therefore, when
increasing cr, one must be aware that the local predic-
tion horizons will increase for this controller setup.
Increasing the computational effort and performance
of the single-level detailed controllers, mitigating the
added benefit of the bi-level controller structure. The
introducing of intermediate setpoints partly mitigates
this effect, but requires more research to find a sys-
tematic implementation approach.

In contrast to the previous effect, the opposite is
also true. In case cr is too small and approaches the
controller sampling rate of the local controller, the
level of detail that is achieved by the rough bi-level
controller approaches that of the local controller level.
Reducing the additional performance gain in terms of
accuracy from the addition of the local controller level.

Nevertheless, it is evident that the usefulness of
applying two control levels, in terms of the computa-
tional efficiency and accuracy, increases as the differ-
ence between the sampling times increases. However,
in order to get the highest potential out of the bi-level
controller structure, (online) tuning of the controller
sampling times is essential and would be a valuable
addition for further research.

VII. SIMULATION RESULTS: MULTI AIRCRAFT
SIMULATIONS

In this section, the second part of the research and
exploration of the bi-level MPC structure is presented.
In the previous sections, the difference in look-ahead
times and control sampling times of both controller
levels was utilized to control one aircraft. The effect
of different sampling times and look-ahead time of
both control levels was explored and the benefits and
drawbacks were presented. The second part, presented
in the following sections entails the spatial distribution
of both control levels, where the control task is also
separated based on the amount of aircraft controlled by
each controller. This creates a division of centralized
and decentralized control, where the global BL-RC
operates as a centralized controller and the local BL-
DC are multiple separate decentralized controllers.

A. Scenario 5 and 6: Multi Aircraft Scenarios

For the fifth scenario, another aircraft is added
to the simulation, justifying the terms, centralized
and decentralized control. The global rough controller
acts as a centralized controller and computes setpoint
constraints for both aircraft. The local detailed con-
trollers operate in a decentralized manner and have
no knowledge of each other, they are only following
the centralized setpoint instructions. The controller
parameters can be found in Appendix A.

In the simulation results presented in Figure 31, it
can be seen that the centralized controller has success-
fully guided one aircraft around the forbidden areas

while guiding the other aircraft through the forbid-
den areas. The problem posed is exactly symmetrical
numerically. Both aircraft fly at equal velocities and
start at equal but opposite heading angles. They are
positioned at equal lengths from the forbidden areas
and have a final destination at x = ±∞ and y = 0 km.
Furthermore, both aircraft use the same cost function
weights, constraint boundaries, prediction horizons,
and sampling times. Since the spacing between both
forbidden areas is only 2 km, there is no room for
the aircraft to pass each other (the aircraft separa-
tion requirement is 5 nautical miles). One aircraft,
therefore, has to deviate from the shortest path, or
a conflict is imminent. Only the global controller
could determine that solution, the local Single-level
Detailed Controllers (SL-DC) without knowledge of
the other aircraft would not have been able to prevent
this collision on its own.
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Fig. 31: Trajectories of two aircraft around forbidden
areas using the BLC, scenario 5.

The Single-level Accurate Controller (SL-AC) tra-
jectory presented in Figure 32. This trajectory is nearly
identical to that of the BLC, yet the BLC finds the
same trajectory more than 90% faster.
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Fig. 32: Trajectories of two aircraft around forbidden
areas using the SL-AC, scenario 5.

The real-time performance of the controllers can
be evaluated using the computation times for each
iteration in Figure 33. It can be seen that the max-
imum computation time of the SL-AC is more than 5
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times longer than the computation times for the Bi-
level Detailed Controller (BL-DC), to complete each
optimization. Furthermore, the local BL-DC is 5 to 10
times faster than the global Bi-level Rough Controller
(BL-RC) level.

The sampling time of the local detailed controllers
is 15 seconds in this scenario. The maximum computa-
tion times required by the SL-AC are over 50 seconds.
Whereas, the BL-DC found a control input within 1
second and the BL-RC took less than 10 seconds to
find the optimal solution every new iteration.
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Fig. 33: Computation times of the BLC and the SL-AC
for every iteration of two aircraft simulation shown in
Figures 31 and 32.

The two aircraft simulation can be extended to
multiple aircraft. Figure 34 illustrates an example with
four aircraft flying around a circular forbidden area.
The starting situation is symmetrical around the x and
y-axis. The rough centralized controller is capable of
determining conflict-free trajectories, by choosing a
side for each controller. Again only the BL-RC with
global knowledge of the system could determine such
a solution by determining conflict free trajectories
for each aircraft. The computational effort is reduced
by 98% when using the BLC instead of the SL-AC
methods for the same scenario.

The multi aircraft simulations presented in this
section show the potential benefits of having a spatial
separation on both control levels. The rough long-
term centralized controller with global knowledge of
the system can quickly guide the aircraft in a general
conflict free direction, while the detailed decentralized
controllers optimize that trajectory on a local scale.
When using multiple aircraft the computational ef-
ficiency becomes even more important. With every
aircraft added to the system the computation time
increases quadratic, due to the full coupling of all
aircraft by the separation constraint.

The BL-RC and the SL-AC are subjected to the
separation constraint for their optimization, increas-
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Fig. 34: Simulation with four aircraft that need to
avoid each other and the central forbidden area.

ing the computational burden for each aircraft added
to the system. Due to the longer sampling time of
the BL-RC, it has fewer decision variables and the
optimization can be executed more efficiently. Since
the BL-DC controllers only control one aircraft, the
number of aircraft does not influence the computation
time of the BL-DC level and it is negligible compared
to the BL-RC. It should be noted that since no parallel
computation is used for these scenarios the BL-DC op-
timization is performed sequentially. Therefore, when
implementing a parallel computation technique, which
the BL-DC is well suited for, the computational effort
reduction that can be achieved could be even higher.

B. Scenario 7: Conflict Resolution Without Forbidden
Areas

This section serves to indicate a potential risk
when the BLC is used for aircraft separation. Two
main problems need to be addressed when applying
the BLC for aircraft separation. The first problem
is the discretization. Since the minimum separation
requirement (δ) is evaluated at discrete moments in
time, a loss of separation can happen in between
two time evaluation moments. A scenario where a
potential conflict can occur is schematically presented
in Figure 35. It is evident that when setpoints are too
far apart, conflicts can occur in between two evaluation
moments.

When two aircraft fly towards each other in a
head-on conflict scenario, the maximum discretization
period is given by,

c ≤ δ

2 · v
(31)
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Fig. 35: Potential conflicts in between setpoints as a
result of discretization and large sampling times.

For example, if the minimum aircraft separation is
5NM (9.26 km) and two aircraft are flying towards
each other at a head-on heading with a velocity of 200
m/s, loss of separation can occur when the sampling
time (c) is larger than 23 seconds. Therefore a rela-
tively short control sampling time is required for the
controller that incorporates the separation constraints,
the global Bi-level Rough Controller (BL-RC) in this
case.

The second issue that needs careful consideration
is that the decentralized local detailed controllers do
not have a separation constraint implemented. The
controller algorithm is based on the global rough
controller to provide a solution space for the local
detailed controller based on setpoints. However, in-
side the solution space there can still be infeasible
solutions, as is indicated by the green area in Figure
6. For the area avoidance constraint, this did not
impose any problems, since the obstacle avoidance
constraint is also part of the detailed control loop also.
The separation constraint is not added to the local
controller level, thus the setpoint solution space must
be safe from an aircraft separation point of view.

However, for a multi aircraft scenario, the actual
separation can become less than the separation mini-
mum used by the separation constraint. Two separation
distances need to be evaluated when using the current
setup. Using Figure 36, the actual aircraft separation
can be derived.

The minimum separation constraints evaluates dif-
ferent aircraft positions at the same moment in time.
Taking the example presented in Figure 36, it can
be seen that in between setpoints 1 and 2, the two
aircraft will eventually be closer together, than the
minimum separation it was evaluated for. The actual
separation as a result of a single-level controller (δr)

a
Setpoint 1

AC1

rs

δs

δd

AC1

AC2

δr b

Setpoint 2
AC1

Setpoint 1
AC2

Setpoint 2
AC2

Fig. 36: Differences and causes of the mismatch
between actual and evaluated aircraft separation for
a head on conflict, where a = v · c and b = δr.

should therefore be evaluated using,

δr =
√
δ2s − (v · cr)2 (32)

The local Bi-level Detailed Controller (BL-DC) has
no separation constraint and is free to move anywhere
within the setpoint area constraint. The actual aircraft
separation, as a result of the detailed control level (δd),
can reach as low as,

δd = δr − 2 · rs (33)

In the worst case scenario, two aircraft are at the limits
of the setpoint constraint radius (rs). Therefore, in
order to achieve the desired separation distance on the
separation constraint an extra margin is required and
should be computed using,

δs =
√
(δr + 2rs)2 + (v · cr)2 (34)

Figure 37 shows a simulated version of the previously
explained concept. Two aircraft are flying towards
each other, creating a head-on conflict. Each aircraft
starting and final positions are on the y-axis, therefore
each aircraft opts to stay as close to the y-axis for the
most efficient route. It can be seen that both aircraft
trajectories fly at their respective setpoint boundaries.
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Fig. 37: Simulation of two aircraft flying at a head-on
trajectory without central forbidden area, scenario 7.
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Consequently, the required separation of 5NM is
violated if this effect is not designed for, as can be
seen in Figure 38.
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Fig. 38: Relative distance between two aircraft flying
at a head-on conflict. The aircraft separation require-
ment is violated by the BLC due to the allowed
setpoint region.

To obtain an adequate separation margin, Equation
34 can be applied, which has a consequence that the
airspace is used less efficiently by using larger mar-
gins. Alternatively, the control sampling times can be
decreased, reducing the roughness of the discretization
at the cost of a higher computational burden. Or a
separation constraint could be implemented on the
lower control level. The latter option is discussed in
the next section.

C. Scenario 8: BL-DC Separation Constraint

This section serves to indicate how adding a separa-
tion constraint to the local Bi-level Detailed Controller
(BL-DC) can be implemented to attain an adequate
level of separation between aircraft. In Figure 39, first
the baseline trajectory using the Single-level Accurate
Controller is shown (SL-AC).

50 55 60 65 70 75 80 85 90 95 100

-15

-10

-5

0

5

10

15

SL-AC

Fig. 39: Simulation of two aircraft flying at a head-
on trajectory without central forbidden area using the
SL-AC, scenario 7 and 8.

In the simulation using the BLC, a change has to
be made to the BLC concept as well as, the controller
setup. As was explained using the algorithm presented
in section IV, the global rough controller and the

local detailed controller operate in a different way.
To create a centralized and decentralized version of
the controllers, the global rough controller finds a
global optimum for all aircraft in the system simul-
taneously, mitigating the sequential aircraft separation
issues. Whereas the local detailed controller acts as
a decentralized controller and the aircraft trajectories
are computed sequentially, such that the local de-
tailed controller could potentially be separated over
different computers. Since the aircraft are not coupled
on the local detailed controller level the sequential
optimization does not affect the results. To make sure
adequate separation of 9.26 km is maintained by both
aircraft, the separation constraint for this scenario is
now implemented on both controller levels. Figure 40
shows the trajectory of two aircraft with this change
implemented.
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Fig. 40: Simulation of two aircraft flying at a head-
on trajectory without central forbidden area using the
BLC with the separation constraint on both controller
levels, scenario 8.

When a separation constraint is applied on the
detailed controller level also, the aircraft are no longer
decoupled on this level and the sequential optimization
would affect the result. The sequential optimization
is removed and the local detailed controller uses the
same simultaneous optimization technique that the
centralized controller uses. The aircraft separation is
presented in Figure 41 where it can be confirmed that
both the BLC and the SL-AC maintain the required
aircraft separation, using the new setup. Even though
it can be observed that the BLC trajectory (Fig. 40) is
sub-optimal compared to the SL-AC trajectory (Fig.
39).

Despite the fact that the local vs. global optimiza-
tion strategy is maintained and the setpoint can still be
used to guide aircraft in the most efficient direction,
the centralized vs. decentralized division is lost in this
setup. In order to maintain the decentralized control
characteristics on the detailed control level, while
maintaining the aircraft separation properties, more
research must be conducted.
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Fig. 41: Relative separation distance between two
aircraft flying at a head on trajectory using either the
BLC or the SL-AC, corresponding to Figures (39-40)

VIII. DISCUSSION

The difference between the global Bi-level Rough
Controller (BL-RC) and the local Bi-level Detailed
Controller (BL-DC) is not limited to the contrast
in the prediction horizons and the control sampling
times. The difference is also defined by the centralized
and decentralized characteristics of the control levels.
Besides the mentioned benefits resulting from the
computational advantages with a minimal compromise
in the level of detail and controller performance, other
advantages can be achieved by using the potential
of multiple control levels, as has been shown by the
multi-agent simulations in the previous sections.

If different models are applied on either level,
the centralized controller typically has less accurate
knowledge of the model parameters (weight, aero-
dynamic characteristics, etc.). This could be because
of the lack of information or when these parameters
contain sensitive information that can not be shared,
an example is given in [7]. The models used by
the decentralized controllers can be more accurate,
which enables the decentralized controller to perform
a more accurate optimization. This could be a reason
to apply a bi-level control structure as proposed in
this study. The setpoint constraints allow for the local
detailed controller to deviate from the rough control
solutions, within a safe margin. The case study in
Section VI-B shows that wider constraint margins can
be applied to the lower level controller, which enables
different models to be applied on both levels. Even
though careful considerations must go into aligning
the two controllers when different models are applied
and feedback is desired.

The second possibility that is opened up by the BLC
structure, is to handle disturbances more accurately.
The rough centralized controller typically has less
knowledge of the fast disturbance in comparison to
the decentralized controllers. The decentralized local
detailed controller could adequately respond to fast
disturbances due to its higher control sampling time
and possibly more accurate measurements. While the
slow centralized controller can adequately respond to
slow disturbances than span longer time periods, an

entire area of high turbulence for example. This would
create an analogy with the forbidden areas used in this
thesis.

Another opportunity that emerges due to the hi-
erarchical control structure is that each aircraft can
optimize a cost function with different weights, as was
shown in this thesis. This creates a parallel with a
realistic scenario where every airline can determine
their preferred cost index, based on their business
model. The cost index that a certain aircraft operates
at does not have to be known by, or communicated to,
the centralized controller. This allows for a different
balance between flight time and fuel flow for each
aircraft for example.

Decentralized multi-agent separation is an often
researched subject in literature [7][24][12][9]. An op-
timization sequence is not explicitly required when a
system is fully decentralized and agents do not rely
on each other’s decisions. However, for the highly
coupled air traffic control field where safety is the
priority, some level of cooperation is required. There-
fore, when using a bi-level control structure, the global
optimization and safety constraints can be moved to
another hierarchical control level. In such a system,
the individual aircraft do not have to interact with
each other, since the centralized controller handles the
interaction between the systems in terms of separation.
The decentralized controlled aircraft transmit their
state information to a centralized controller, which
combines the data to perform a global optimization.
This is much like the traditional way in which air
traffic is managed. Where a single human controller
manages multiple aircraft to guarantee the safety con-
straints are adhered to.

The Bi-level model predictive control structure
opens up several conceptual advantages besides the
improvements in computational efficiency. The poten-
tial of the BLC system could be explored, possibly
also within different fields of engineering, such as
drones or small robots.

IX. CONCLUSION AND RECOMMENDATIONS

This study aimed to investigate the integrating link
between a global centralized MPC and one or more
local decentralized MPC levels with different predic-
tion horizons and different control sampling times. A
clear synergy can be attained where the combined bi-
level controller performs better than the sum of its
parts for an air traffic control application. Even though
many important aspects need to be considered when
applying multiple model predictive control levels in a
bi-level controller structure.

On a global scale, the Bi-level Controller (BLC)
is capable of finding a more optimal path in terms
of minimal flight distance than a single-level local
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detailed controller. The long term guidance of the Bi-
Level Rough Controller (BL-RC) can aid the local
Bi-Level Detailed Controller (BL-DC) into the gen-
eral solution space, by providing setpoint constraints.
Nonetheless, on a local scale, the BLC operates at
the faster controller sampling rate of the local detailed
controller, resulting in a more accurate control solution
than that of the global rough controller. Therefore, ac-
curacy is gained at the short-term perspective enabling
a more detailed control solution in terms of forbidden
area avoidance. Due to the receding horizon properties
of MPC the short term horizon with the required level
of detailed advances as time progresses.

The bi-level controller has been proven to be ca-
pable of cooperatively guiding an aircraft past for-
bidden areas towards their destinations. Furthermore,
the developed control system has the potential to be
extended for multi-agent systems, where it can aid
in reducing the computational complexity. It can be
concluded that the baseline desired performance can
be approached with the BLC with increased computa-
tional efficiency. It can even be argued that the BLC
has preferable characteristics compared to the single-
level accurate baseline controller because it can be
easier to tune the cost function weights, especially
when applying different cost function weights to either
control level of the BLC.

Due to the lower long term predictability of global
air traffic and the accumulation of model uncertainties
and disturbances in long term prediction, the relevance
of far ahead prediction can be questionable. There-
fore, by only using far ahead prediction for general
guidance a compromise in the long term accuracy of
the control solution is acceptable. Due to the receding
horizon properties of MPC, providing only adequate
short term detail does not appear to have a negative
outcome when comparing the complete trajectories of
the BLC to the single-level baseline MPC.

Furthermore, it has been shown that it is possible
to implement different models, model parameters,
constraints, or constraint margins on either level of
the BLC. However, the higher level controller must
provide feasible setpoint regions for the lower level
controller. Therefore, the BL-RC must operate with
more conservative constraint boundaries or the set-
points constraints might yield an infeasible optimiza-
tion on the local controller level.

It must be noted that when applying measurement
feedback from the BL-DC to the BL-RC, a risk of
destabilization appears. The control inputs of the BL-
DC and BL-RC can vary largely. This can lead to
situations where the control input of the local con-
troller can drift the system away from the intentions
of the BL-RC for as far as the setpoints allow, resulting
in a sub-optimal solution. If both controller have
different models, constraints, or cost functions, the

control inputs might yield contradicting commands. If
the local controllers have less conservative constraints
and provide updates to the global rough controller, the
initial states might fall outside the feasible region of
the global controller.

Future research could focus on reducing the desta-
bilizing behavior and improving the possibility for the
implementation of feedback loops from the local to the
global controller. One option could be to reduce the
feedback frequency or apply event triggered feedback.

Furthermore, the addition of disturbances in the
form of a wind field could provide valuable insights
into the benefits of a faster control sampling rate on
the local controller levels. It would also further high-
light the need for a feedback loop and measurement
updates.

Moreover, running real-time simulations where the
computational delays have a significant effect on the
control performance might underline the performance
of the BLC over the baseline controller. The simula-
tions in this thesis have not been performed in real
time, and the simulation was paused every time a new
control input sequence needed to be optimized. Mea-
surement delays have, therefore, not had any effect on
the results even though they can be a significant factor.
Especially when the optimization computation time
exceeds or approaches the control sampling rate, as
was often the case when using the single-level accurate
controller.

The tuning parameters of the bi-level controller
are case specific. The sizes of the forbidden areas,
the complexity of the required path, the distance
between forbidden areas, the distance between the
aircraft, require different controller tuning parameters.
To achieve the desired result, more research into the
online tuning of the controller parameters can con-
tribute to the operational performance of the controller.

The different controller sampling times of the BLC
have been a point of focus during this thesis and is
one of the main aspects that differentiate the distinct
controller levels. It has been shown that when the
global rough control sampling time is relatively small
and approaches the detailed controllers’ control sam-
pling time, the added benefit of the local controller
is reduced and the total computation time increases.
Alternatively, when the controller sampling time of
the rough controller becomes too large, the prediction
horizon of the detailed controller needs to increase
(when the level of detail is maintained). The increased
look-ahead time on the local level usually results
in an increased controller performance in terms of
finding the optimal path. This makes the single level
detailed controller increasingly capable of operating
autonomously. Assuming that the local controller sam-
pling time is a fixed requirement, tuning the rough
controller sampling time is of vital importance. In
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order to achieve the optimal potential from the bi-
level control structure, future research in the (online)
tuning of the rough controller sampling rates is highly
recommended.

When intermediate setpoints are applied an extra
tuning parameter is added to the controller, the set-
point sampling time. The setpoint sampling times, in
this project, have been tuned for each specific scenario
separately and remained constant during each sce-
nario. Much potential for improving the performance
and computation time can be gained by extending re-
search towards using intermediate setpoints and tuning
the setpoint sampling time. This could be done online
such that it can be changed dynamically.

Optimizing the computational efficiency of the bi-
level controller to achieve real-time control is desirable
but was not a focal point of this research project.
However, it has been shown that the BLC control
structure can contribute to achieving real-time perfor-
mance. Furthermore, the parallel computation of the
centralized and decentralized control levels has not
been part of this thesis and could be valuable additions
to further increase computational efficiency.

Additionally, proving stability, robustness, and con-
vexity of the solution have not been addressed explic-
itly. These are important topics for future research.

Finally, the possibility to use different, models and
model parameters on either of the two controller
levels can be a valuable addition for future research.
Using more accurate complex models on the detailed
control level would further highlight the potential of
the combined centralized and decentralized bi-level
controller.
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A
Controller Parameters, Initial and Final

Conditions

Table A.1: Scenario 1 - controller parameters.

SL-AC SL-RC and BL-RC SL-DC BL-DC

vb m/s 250 250 250 250
α m/s2 0 0 0 0
β deg/s ± 0.5 ± 0.5 ± 0.5 ± 0.5

Np - 16 4 4 4
c s 60s 240s 60s 60s

Wf - 0.0001 0.0001 0.0001 0.0001

Table A.2: Scenario 1 - initial and final conditions.

x0 0 km
y0 0 km
v0 250 m/s
ϕ0 90 deg

xf 2500 km
yf 0 km

δs 50 km
rs 10 km

csim 1 s
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34 A. Controller Parameters, Initial and Final Conditions

Table A.3: Scenario 2 - controller parameters.

SL-AC SL-RC and BL-RC SL-DC BL-DC

vb m/s 180-200 200 180-200 180-220
α m/s2 ± 0.1 0 ± 0.1 ± 0.1
β deg/s ± 0.5 ± 0.4 ± 0.5 ± 0.5

N p - 24 4 4 4
c s 50 300 50 50

Wα - 0 0 0 10
Wβ - 0 0 0 10
Wf - 0.0001 0.0001 0.0001 0

Table A.4: Scenario 2 - initial and final conditions.

x0 0 km
y0 0 km
v0 200 m/s
ϕ0 90 deg

xf 1500 km
yf 0 km

δs 50 km
rs 10 km

csim 1 s

Table A.5: Scenario 3 with measurement updates and Scenario 3 with intermediate dynamic destination - controller parameters.

SL-AC SL-RC and BL-RC SL-DC BL-DC

vb m/s 180-200 180-200 180-200 180-200
α m/s2 ± 0.1 ± 0.1 ± 0.1 ± 0.1
β deg/s ± 0.25 ± 0.25 ± 0.25 ± 0.25

N p - 30 6 6 10
c s 60 300 60 60

Wα - 0 0 0 10 - 0
Wβ - 0 0 0 10 - 0
Wf - 0.0001 0.0001 0.0001 0 - 0.0001
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Table A.6: Scenario 3 - initial and final conditions.

x0 0 km
y0 0 km
v0 200 m/s
ϕ0 90 deg

xf 1500 km
yf 0 km

δs 75 km
rs 7.65 km

csim 5 s

Table A.7: scenario 3 with wider constraints, intermediate dynamic destination with and without measurement updates - controller
parameters.

SL-AC SL-RC and BL-RC SL-DC BL-DC

vb m/s 180-200 180-200 180-200 180-220
α m/s2 ± 0.1 ± 0.1 ± 0.1 ± 0.1
β deg/s ± 0.25 ± 0.25 ± 0.25 ± 0.25

N p - 30 6 6 10
c s 60 300 60 60

Wα - 0 0 0 10 - 0
Wβ - 0 0 0 10 - 0
Wf - 0.0001 0.0001 0.0001 0 - 0.0001

Table A.8: Scenario 4 - controller parameters.

BL-DC BL-RC SL-AC

vb m/s 180-200 180-200 180-200
α m/s2 ± 0.25 ± 0.25 ± 0.25
β deg/s ± 0.25 ± 0.25 ± 0.25

Wα - 1 0 0
Wβ - 1 0 0
Wf - 0.0001 0.0001 0.0001

Table A.9: Scenario 4 - initial and final conditions.

x0 0 km
y0 0 km
v0 200 m/s
ϕ0 90 deg

xf 1500 km
yf 0 km

δs 75 km
rs 6.26 km

csim 5 s
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Table A.10: Scenario 5 - controller parameters

SL-AC SL-RC BL-DC

vb m/s 200 200 200
α m/s2 ± 0 ± 0 ± 0
β deg/s ± 0.5 ± 0.5 ± 0.5

N p - 24 12 4
c s 15 30 15

Wα - 0 0 0
Wβ - 0 0 0
Wf - 0.0001 0.0001 0.0001

Table A.11: Scenario 5 - initial and final conditions.

AC-1 AC-2

x0 0 140 km
y0 0 0 km
v0 200 200 m/s
ϕ0 90 -90 deg

xf 300 -300 km
yf 0 0 km

csim 5 s

Table A.12: Scenario 6 - controller parameters.

SL-AC SL-RC and SL-BC BL-DC

vb m/s 200 200 200
α m/s2 ± 0 ± 0 ± 0
β deg/s ± 0.5 ± 0.5 ± 0.5

N p - 20 5 8
c s 30 120 30

Wα - 0 0 0
Wβ - 0 0 0
Wf - 0.0001 0.0001 0.0001

Table A.13: Scenario 6 - initial and final conditions.

AC-1 AC-2 AC-3 AC-4

x0 0 140 70.01 70.02 km
y0 0 0 -70 70 km
v0 200 200 200 200 m/s
ϕ0 90 -90 0 180 deg

xf 300 -300 70 70 km
yf 0 0 300 -300 km

csim 5 s
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Table A.14: Scenario 7 and 8 - controller parameters.

SL-AC SL-RC BL-DC

vb m/s 200 200 200
α m/s2 ± 0 ± 0 ± 0
β deg/s ± 0.5 ± 0.5 ± 0.5

N p - 24 8 6
c s 10 30 10

Wα - 0 0 0
Wβ - 0 0 0
Wf - 0.0001 0.0001 0.0001

Table A.15: Scenario 7 and 8 - initial and final conditions.

AC-1 AC-2

x0 0 140 km
y0 0 0 km
v0 200 200 m/s
ϕ0 90 -90 deg

xf 140 0 km
yf 0 0 km

csim 5 s





B
Scenario 2, Level of detail comparison
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Figure B.1: Trajectory comparison of the BLC with its contributing SL-RC and SL-DC for scenario 2.
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Figure B.2: Close up of Figure B.1, showing the trajectory around a forbidden area.
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Figure B.3: Positional relative distance to the forbidden area boundary for scenario 2.



C
Scenario 4 Trajectories
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Figure C.1: BLC, SL-AC and SL-DC trajectories comparison with cr = 60 s, scenario 4.
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Figure C.2: BLC, SL-AC and SL-DC trajectories comparison with cr = 120 s, scenario 4.
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42 C. Scenario 4 Trajectories
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Figure C.3: BLC, SL-AC and SL-DC trajectories comparison with cr = 150 s, scenario 4.
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Figure C.4: BLC, SL-AC and SL-DC trajectories comparison with cr = 180 s, scenario 4.
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Figure C.5: BLC, SL-AC and SL-DC trajectories comparison with cr = 60 s and cs = 30 s, scenario 4.
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Figure C.6: BLC, SL-AC and SL-DC trajectories comparison with cr = 120 s and cs = 60 s, scenario 4.
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Figure C.7: BLC, SL-AC and SL-DC trajectories comparison with cr = 180 s and cs = 90 s, scenario 4.
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Figure C.8: BLC, SL-AC and SL-DC trajectories comparison with cr = 300 s and cs = 150 s, scenario 4.
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1
Introduction

EUROCONTROL predicted in 2010 that there are likely to be between 13.1 and 20.9 million Instrument Flight
Rules (IFR) flight movements in 2030, which is 1.4% to 2.2% more than in 2009 [1]. The forecast by EURO-
CONTROL in 2018, is that a total growth of 53% in 2040 is expected compared to 2017 [2]. An ever-increasing
rise in the workload for air traffic controllers as well as further saturation of certain air spaces is imminent
if innovations in air traffic control are not implemented. Besides a reduction of workload for air traffic con-
trollers, reducing flight time and minimizing aircraft emissions are other reasons to strive for more efficient
air traffic control.

This research project aims to design and test a model predictive controller (MPC), with a bi-level hierarchical
architecture to optimize global air traffic in terms of the flight time and total fuel consumption. The bi-level
control architecture will be developed and evaluated using Python and BlueSky. The main contribution of
this thesis is to investigate the integration of a centralized model predictive control level with a decentralized
model predictive control level, to obtain a single coherent controller by the formulation of the integrating link
and the communication flow. The added benefits in terms of safety, fuel consumption and flight time will be
explored.

1.1. Project Scope
The research scope includes the development of two model predictive controllers and efficient integration of
the controllers. The second part of the research is focused on evaluating the performance of the developed
bi-level control system in terms of feasibility, control performance and computation time. Moreover, the task
allocation and cooperation between the two control levels for achieving the global goals are designed and
tested. The novelty of the project lies in the combination of decentralized controllers with limited global
knowledge, a smaller prediction horizon, with a fast control sample time, and a centralized controller with
global knowledge of the system and a larger prediction horizon, but a slower control sample time.

The bi-level controller will be applied to flight movements in the horizontal two-dimensional plane. The
system will be tested using Python and BlueSky simulations. Optimizing the computational efficiency of
the bi-level controller to achieve real-time control is desirable but not a focus point of this research project.
Furthermore, the parallel computation of the centralized and decentralized control levels will not be part of
this thesis. Proving stability, robustness and the assessment of global optima fall outside the research scope
of this project. Furthermore, the separation of aircraft will be conducted by the centralized controller. The
decentralized aircraft separation is a topic for future research.

1.2. Research Questions
The research question and sub-questions presented in this section must be answered to reach the goal of the
research project. The main research question of the thesis is:
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“How can a synergy be found between a fast-rate and slow-rate model predictive controller for
air traffic control applications, where the benefits of each controller are combined to improve the
safety, fuel consumption and flight time compared to a single level model predictive controller?”

Ultimately, the two controller levels will be integrated and the following questions must be answered.
What information will be shared between the control levels? At what rate will the information be shared?

And most importantly, how will the output of the centralized controller be formulated for the decentralized
controllers? To answer all aspects of the question, the sub-question can be formulated more specifically as
follows.

The limitation of the system on the physical system must be converted to optimization constraints. Giving
rise to the question, what are the system constraints and what effect do they have on the controller in terms
of computation time and feasibility? Do conflicts arise between the model constraints and the minimum
separation constraints in high-density traffic scenarios?

Additionally, a balance needs to be found between the sample time and the prediction horizon for the
centralized and decentralized controllers. These design choices might affect the optimization solution as
well as the computation time. Furthermore, the cost function weights are a design parameter that must be
tuned to balance fuel consumption with the flight time. Therefore, research must be done, answering the
question, how are the computation time and the performance affected by tuning the prediction horizon and
control sample time?

Finally, to answer the performance-related part the following questions need to be answered, what are
acceptable computation times for the centralized and decentralized controllers for safe operation of each
controller? What effect do the cost function weights have on the solution? What is a proper trade-off be-
tween computation time and performance requirements and how can a trade-off between flight time and
fuel consumption be made?

1.3. Research Objectives
The research objectives of this project consist of two parts. The first part of the project entails the devel-
opment phase of a bi-level model predictive controller for air traffic management. The second part of the
project focuses on testing the performance of the controller by conducting case studies. The case study ex-
periments will provide quantitative answers to the research question and aim to motivate and support the
use of multiple model predictive control levels. The first main research objective of this thesis is:

“Optimize the efficient use of airspace, fuel consumption and fight time by the design, develop-
ment, and integration of a decentralized model predictive controller with limited global knowl-
edge, a smaller prediction horizon, a fast control sample time and a centralized model predictive
controller with global knowledge of the system and a larger prediction horizon, and a slower con-
trol sample time”

Once both levels of the controller are operational, the controllers will be integrated by achieving a method
cooperation between the two control levels to benefit from each controller’s strengths and compensate for
each others’ weaknesses by developing a strategy of collaboration. The second essential research objective of
this thesis is:

“Determining the benefits of a bi-level model predictive controller performance in terms of cost
function optimization, computational efficiency, and feasibility by comparing it to a single cen-
tralized or decentralized model predictive controller using case studies in Python and BlueSky.”

The two main research objectives give rise to several sub-objectives that contribute to fulfilling the main
objective.

“Developing a centralized controller, decentralized controller, and the integrating link by formu-
lating the optimization problem and using Python to develop the system.”

The second objective is focused on testing and tuning the bi-level controller which is divided into three sub-
objectives. The developed control system will be tested in a series of case studies, where an aircraft will start
at a certain position and will fly towards a final destination.
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“Testing the performance of the bi-level controller in comparison to a single level model pre-
dictive controller on a single aircraft by using case studies in which the aircraft flies a trajectory
towards a given destination while avoiding static obstacles.”

The performance of the controllers will be evaluated and compared based on the total flight time, distance
traveled and fuel consumption. The prediction horizon and the control sample times are used as indepen-
dent variables. The third sub-objective is concerned with aircraft separation:

“ Testing the capability of the controller to safely manage conflicting aircraft by creating conflict
scenario’s where two identical aircraft have to cross each other to reach their destination with
varying relative heading angles.”

This sub-objective provides an understanding of how the bi-level controller deals with conflicts and man-
ages aircraft separation during flight. Conflict free trajectories are of vital importance in air traffic control
applications and will be addressed extensively. Finally, the bi-level controller will be tested in a multi-agent
system.

“Evaluating the performance and feasibility of the bi-level model predictive controller in terms
of the number of conflicts by conducting case studies using multiple heterogeneous aircraft with
varying initial conditions and destinations.”

To test the performance in a more realistic scenario, the controller will finally be applied to several case stud-
ies with an increased traffic density. The number of aircraft that will be simulated and controlled simultane-
ously depends on the computational efficiency of the controller since it is expected that an increase of aircraft
to the system can exponentially increase the computation effort required.

1.4. Preliminary Report Structure
In this preliminary thesis report first, a literature survey is provided. Chapter 2, focuses on the working princi-
ples of model predictive control. In Chapter 3, an overview of decentralization and several conflict detection
and avoidance research projects related to air traffic management is provided. Followed by, a literature review
concerning decentralized and distributed control as well as a review on multi-level control architectures, in
Chapter 4. The conceptual description and conceptual design of the controller can be found in Chapter 5. In
Chapter 6, the project plan, as well as, the development plan of the bi-level model predictive controller, is pre-
sented. The experimentation and testing plan is provided in Chapter 7. Finally, in Chapter 8, the preliminary
results obtained during the first experiment phase are presented.





2
Model Predictive Control Working

Principles

Model predictive control, also referred to as receding horizon control (RHC), has increasingly been used in
the past decades in many different fields of engineering, from automotive [3][4] to industrial processes [5][6],
maritime [7] and also aviation [8][9][10][11]. In a survey paper from 1989 [12], an extensive history of early
applications of MPC is described.

The working principles of MPC are explained in Section 2.1. The characteristics that define the air traffic
optimization problem are described in Section 2.2. Finally, the aircraft model used during this project is
presented in Section 2.3.

2.1. Working Principles of Model Predictive Control
In this section, the general working principles of MPC are explained. In the recent paper by Orukpe [13], a
comprehensive approach to the basics of MPC is described. Much of this chapter is from the paper by Orukpe
and two textbooks on MPC [14][15].

Model predictive control is a control strategy capable of achieving an optimal control input, minimizing a
certain cost function. MPC uses a model of the system dynamics to predict the future states of a system, for
a certain control horizon Hc , within a given prediction horizon Hp . The control horizon can be equal to, or
smaller than the prediction horizon. When the optimization is complete, the first control input of the optimal
input sequence is applied to the controlled system, and the remainder of the input sequence is disregarded.
The time window shifts one time step further and the optimization problem is repeated, based on new state
measurements. The controller input sequence is given by Equation 2.1.

u(k) = [u(k|k),u(k +1|k), . . . ,u(k +Hc −1)] (2.1)

The working principle of MPC is schematically represented in Figure 2.1. The input sequence is given by
the purple dashed line. The orange line represents a new control input sequence, determined one time step
further in time, based on newly available measurements.
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Figure 2.1: Graphical representation of the moving horizon principle [16].

2.1.1. Prediction Model
Since a model predictive controller makes a forecast about the future states to determine the current control
inputs, a model is required to predict the state trajectories. It has to be noted that. small discrepancies in
the model can generate large accumulating errors over time. Therefore, future control inputs at a later stage
of the prediction horizon become increasingly unreliable. Consequently, increasing the prediction horizon
time does not necessarily yield better control performance, however, it does raise the computational effort
due to the additional decision variables.

In Section 2.3, the kinematic aircraft model that is used is explained. The same model is used on both levels
of the bi-level control scheme, in a generalized case, these models can vary. Because a deterministic model is
used during the simulations, a wind field can be enabled to generate noise in the system.

2.1.2. Cost Function
The cost function typically consists of multiple terms that are minimized for a prediction horizon. These
parameters can be the error between a reference state and the measured states, the intensity of the control
input, the variation between consecutive control inputs, overshoot, rise time or the minimization of resource
consumption like fuel or flight time.

Each factor in the cost function can be assigned a weight, to put more emphasis on specific parameters,
and tune the controller. A practical example regarding air traffic would be that a pilot can choose a certain
balance between fuel consumption and flight time. Tuning the cost function parameters proves to be one
of the main challenges of designing a model predictive controller [15]. The cost function for the controller
proposed in this research can be found in Chapter 5.

2.1.3. Constraints
A major advantage and key feature of MPC is the possibility to imply constraints on the input, output, and
states of the system that is being controlled. This is different from other optimal control methods such as
linear quadratic regulator (LQR) control. Input constraints can be the physical limitation of the gas pedal of
a car, or the actuators of an aircraft, for example. Whereas the output constraint usually represents desired
boundaries. Constraints on the inputs are often hard constraints as they are based on the physical limitations
of a system.

Constraints on the output or states can be designed to be soft, a soft constraint can physically be vio-
lated, due to disturbances, for example. A hard constraint is typically a physical system constraint such as
maximum acceleration, or stall speed. When designing for global air traffic, constraints also apply to safety
regulations, such as minimum required separation between any two aircraft. The input constraint bound-
aries are described by,

umin ≤ u(k) ≤ umax ∀t (2.2)

the output constraint on any state is formulated as,
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ymin ≤ y(k) ≤ ymax ∀t (2.3)

and the separation between two aircraft is constrained using,√
(∆xi j (k))2 + (∆yi j (k))2 ≥ δ (2.4)

The implementation of separation constraints has been a research topic for engineering fields outside avi-
ation as well, like in maritime engineering [7]. In the paper by Ferranti et al. [7], MPC is used to optimize
multi-robot trajectories while maintaining safe separation between agents. A centralized method for finding
the global optimum by a single coordinator is said to raise difficulties. All agents in the system are required
to share, possibly classified, information (dynamics, performance models, product constraints, etc), with the
centralized node. They propose to solve this problem by not relying on a centralized coordinator, instead, the
problem is distributed over local agents.

Ferranti et al. state that a solution can be that every agent transmits and receives the predicted posi-
tion to and from neighboring agents. These predicted positions can be used as constraints to solve the local
optimization problem to find a conflict-free trajectory. However, the authors avoid this method since the pre-
dicted and actual location between two-time instances can vary significantly. They propose the alternating
direction of the method of multipliers (ADMM) to handle the coupled constraint in a distributed manner.

2.1.4. Advantage and Disadvantages of Model Predictive Control
The popularity of MPC for optimal control applications is largely due to its ability to handle both physical and
control constraints. Furthermore, it is an optimal control strategy and MPC can be applied to control linear
and non-linear systems with linear or non-linear models, constraints, or cost functions.

Nevertheless, stability and robustness theorems are not as well developed for non-linear systems as they
are for linear systems [17]. Stability theories for linear MPC are relatively mature, yet the non-linear variant
still requires more research [18].

It is difficult to theoretically prove the stability and performance of non-linear models when used in the
context of MPC [19]. The optimal control problem requires a finite horizon to be able to be solved repeatedly
online. However, to ensure stability, an infinite horizon is necessary [20].

A disadvantage of MPC is that the computation time can quickly become a limiting factor for fast real-time
applications, especially when applied to large scale problems such as air traffic control. MPC requires a high
computational capacity because the optimization algorithm is iteratively repeated, which made it only feasi-
ble for slow processes in the early days.

2.2. Characteristics of Air Traffic Control Optimization
It is essential to identify what kind of optimization problem is faced, and how an air traffic control problem
can be characterized in terms of optimization and what the characteristics of the model are. Linear or non-
linear, smooth or non-smooth, convex or non-convex. If the MPC is based on convex quadratic optimizations
using linear constraints, the computation time can be improved tremendously [21].

The optimization problem is combinatorial, the size of the airspace and the number of aircraft give the
problem a large optimization space [22]. The two main challenges of optimizing flight paths are that the
problem is non-convex and non-linear, yielding a heavy computational burden [23]. Analytic solutions are
generally not available, except for specific hypothetical cases. Therefore, the numerical burden is often the
main driving factor for practical implications [21].

Compromises have to be made on the optimality of the solution, a non-perfect, conflict-free solution might
have to be accepted as sufficient [24]. Using a bi-level structure, the compromise between optimality and
computation time can be avoided and both, the optimality as well as an acceptable computation time can be
assured by reducing computation time and sacrificing optimality at the centralized control level and regain-
ing optimality at the decentralized control level. The computation time of the centralized optimization can
be reduced by applying a larger control sample time resulting in a loss of detail. The decrease of detail can
be compensated by the introduction of a decentralized model predictive control level, with a faster control
sample time.
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Considering that the model, the constraints and the cost function are non-convex, the solution that is found
by the controller can be a local minimum instead of the global optimal solution. Proving that an optimal
solution is the global optimum is difficult. For this particular air traffic control application, finding a local
optimum, is acceptable, given that all safety and physical constraints are satisfied. A multi-start solution
whereby the optimization is reiterated with different initial conditions several times could result in finding
the global optimum. A multi-start solution requires that multiple optimization cycles are computationally
possible within the control sample time, or it requires parallel computing. Applying a multi-start solution to
the controller is a topic for future research.

2.3. Aircraft Model
The aircraft model presented in this section is based on the equations used in the BlueSky ’Open Aircraft
Simulator’. Since the same model equations are used by the MPC as the simulation software, parameter
discrepancies and wind is introduced to make the simulation more realistic. The model is an integrated
model, consisting of two parts. The first part is used to determine the position and velocity of the aircraft. The
second part is used to compute the fuel flow. This model is based on the OpenAP Aircraft Model developed by
Sun et al. [25]. The position, heading, and velocity of each aircraft is determined by using Equations (2.5-2.8)
and are used for both levels of the controller.

V (k +1) =V (k)+a(k)∆k (2.5)

x(k +1) = x(k)+V (k)sin(ϕ(k))∆k +Wx∆k (2.6)

y(k +1) = y(k)+V (k)cos(ϕ(t ))∆k +Wy∆k (2.7)

ϕ(k +1) =ϕ(k)+ g0
tan(ψ(k))

V (k)
∆k (2.8)

The equations determining the fuel consumption (2.9-2.13) used in this model are excerpted from BlueSky.

CL = m · g 0
1
2ρV (k)2S

(2.9)

D = 1

2
ρV (k)2S · (CD,0 +k0 ·CL

2) (2.10)

T = D +m ·a(k) (2.11)

Tratio = T

Neng ·Tstatic
(2.12)

∑
F k+1

k = Neng ·
(

A f ·T 2
Ratio +B f ·Tratio +C f

)
∆k (2.13)

The control inputs acceleration and bank angle are piece-wise constant, and applied as a zero-order-hold
(ZOH) function, as shown in Figure 2.2.
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v(t)

t

Figure 2.2: Zero-order hold approach to piece-wise continuous control inputs [26].



3
Decentralization in Air Traffic

Management: Motivation and Concepts

The main reasons for an interest in next-generation air traffic control methods are the rapid growth in total
flights and the projected saturation of certain airspaces in the coming decades [1][2]. It was already predicted
in 2006, that air traffic would double by the year 2025 [27]. In [28], it is mentioned that a vision for the Euro-
pean airspace was to have approximately 16 million flights per year, by the year 2020, while also reducing fuel
use and flight time. One of the limiting factors to achieving this goal is the workload of air traffic controllers.
Two institutions working on next-generation air traffic control are; NextGen in the USA and it’s European
Counterpart SESAR, an overview of both organizations can be found in [29].

Many varieties of techniques have been proposed as potential next-generation air traffic control solutions.
The survey paper from 2000, by Kuchar et al. provides an overview of Conflict Detection & Resolution (CD&R)
and Conflict Detection & Avoidance (CD&A) from before the year 2000 [30]. Genetic algorithm techniques
have been developed in [23][31][32], these algorithms generally struggle with long computation times and
scalability issues. Potential field algorithms considering aircraft as charged particles that repel each other can
be found in [33][34], an effective method for free flight, however determining the level of safety is difficult due
to decentralization. Research in mixed-integer (non-)linear programming (MILP) is also being conducted for
airspace control applications [35][36][37]. For multi-vehicle coordination, the global optimal solution scales
poorly because the optimization quickly becomes complex for large fleets when using quadratic program-
ming and MILP. Game Theory has been applied for air traffic distributed control in [38], while this research
has found a promising result, the efficiency did decrease as more aircraft were added to the system.

Constraint programming approached such as model predictive control are researched in [24][8][9][10][11],
and will be elaborated in more detail in this chapter. In the past decade, research in next-generation air traffic
control has also extended to drones and small unmanned vehicles and how these aircraft can safely operate
without risking interference with air traffic [21][39][40]. Analytic solutions are generally not available, except
for specific hypothetical cases. Therefore, the numerical burden is often the main driving factor for practical
implications [21].

The introduction section of [22] provides a good summary of recently proposed applications. A selection
of these research fields involving 4D trajectories, optimization-based approaches, and decentralized or dis-
tributed multi-agent system approaches will be explained in this chapter. In Section 3.1, the difference be-
tween, centralized, decentralized and distributed air traffic control methods is discussed. Several Conflict
Detection & Avoidance concepts will be mentioned in Section 3.2, to give an overview of the lessons learned
in this research field. Methods utilizing 4D trajectory prediction are presented in Section 3.3. Finally, in Sec-
tion 3.4, optimization-based approaches will be highlighted.

3.1. Centralized, Decentralized and Distributed Air Traffic Management
Two main philosophies can be distinguished in this research field; centralized and decentralized control so-
lutions. This section aims to discuss the differences between the two groups and to reflect on the advantages,
disadvantages and the current status of developments.
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Today’s tactical air traffic control system relies on the abilities and skills of the air traffic controllers. There
is little automation in ensuring adequate separation between aircraft. The system which is currently in place
can be considered safe, but the use of airspace is not as efficient as it could potentially be [41].

Centralized control approaches operate with a centralized node that collects and processes all the infor-
mation in the network. These methods aim to separate air traffic for the entire duration of the flight by making
strategic flight plans. The current ATC situation, where an ATC center manages multiple aircraft above a par-
ticular sector can be considered a centralized approach. Since a centralized agent has knowledge of the entire
system, it can predict and find the best global solution and is mathematically speaking the best method.

Decentralized solutions are the alternative option, where each aircraft can determine its preferred route while
maintaining an adequate safe distance between its direct neighbors. In the past this was often referred to as
’Free-Flight’, currently, decentralized or distributed air traffic control is more commonly referred to as conflict
detection and avoidance.

Figure 3.1, shows the difference between a decentralized air traffic structure where each aircraft is con-
trolled locally and a centralized air traffic structure where a single node controls the full region.

Figure 3.1: Decentralized air traffic control structure (left) compared to a centralized air traffic control structure (right) [42].

The Automatic Dependent Surveillance-Broadcast (ADS-B) system is currently installed in nearly every air-
craft and is a system that potentially makes distributed air traffic feasible. The system enables airplanes
and ground stations to broadcast and receive information from other aircraft. The ADS-B unit automatically
transmits, the equipped aircraft’s, position, predicted route and velocity along with the aircraft identifier. All
neighboring aircraft can receive this information and are therefore aware of the presence and intents of other
aircraft.

From a mathematical perspective, decentralized concepts are usually less optimal compared to a perfect cen-
tralized optimized solution in terms of cost function optimization. Yet, the computation times are generally
not an issue in decentralized flight solutions. Due to the distribution of the global problem over multiple
agents, the computational effort is also divided over several agents. Centralized optimizations for systems as
complex and as broad as global air traffic control, become computationally extremely expensive and next-to-
impossible with current hardware to use in real-time.

From the review by Al-Gherwi et al. [19], it becomes clear that only a centralized model predictive control
unit with one overall objective function for the entire system results in guaranteed optimal performance.
When the system is fully decentralized with independent local models and with independent local objectives
functions for each subsystem, there is an expected loss in optimal performance.

The uncertain nature of global air traffic prediction is a downside of global optimization that local free-flight
solutions do not have a significant problem with, due to the shorter time horizons. Furthermore, the low
predictability over the full length of a flight path is another issue rendering the global optimization solution
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far from ideal. Currently, predictions are still too inaccurate and short term traffic resolutions require human
expertise [24]. The low predictability of the problem demands near real-time updates of the optimization
problem, computationally practically impossible with the current technology.

Besides the computational complexity of centralized optimization problems, another issue is that a sys-
tem with a single centralized controller is prone to catastrophic failure due to it being a single point of failure.
A risk that is associated with a fully centralized control architecture is that a failure at the centralized level re-
sults in a failure of the whole system whereas failure of one of the decentralized controllers can be covered by
the still operational controllers mitigating the risk of single points of failures and making the overall system
more redundant. Therefore, for a fully centralized system, another centralized, free-flight or decentralized
control system is necessary as a back-up [42].

3.2. Conflict Detection & Avoidance Concepts
Collision avoidance is the most important aspect of air traffic control due to safety being the top priority for
air traffic. Any concept that aims to improve the current system in terms of optimality or efficiency must
be at least as safe as the accepted safety in the current system, or preferably even safer. For aviation, the
minimum lateral safety constraint is at least 5 nautical miles. The vertical safety regulations state that the
vertical spacing should be a distance of at least 1000 ft, see Figure 3.2.

5 NM 1000 ft

Figure 3.2: Minimum safety margins around en-route aircraft.

In this section, several recent CD&A concepts that are closely related to the proposed concept for this thesis
are explored. Such a concept is the ERASMUS project. ERASMUS (En-Route Air Traffic Soft Management Ul-
timate System) is a system developed in 2004 that organizes air traffic in such a way that future conflicts are
avoided by slightly changing aircraft speed on a time horizon of approximately 15 minutes. ERASMUS aims
to reduce the workload of air traffic controllers and therefore increasing the capacity of the airspace. The
algorithm works alongside air traffic controllers and makes it easier for them to manage the total air traffic
[32]. The ERASMUS project provided global optimization methods to achieve subliminal speed control. The
ERASMUS project uses a genetic algorithm, which can still be extremely time consuming when not making
concessions in the required accuracy or shortening the time horizon.

Another interesting approach is proposed in [43], where the authors propose a multi-agent system in which
altitude is constant during the cruise phase. Airlines are free to choose a Cost Index (CI), to adjust the priority
from reducing fuel cost to reducing flight time. The CI setting is an important parameter that can be used to
adjust the weights of the cost function in an optimization algorithm. For the simulations in this paper, the
velocity is constrained to stay within a bound of -6% and +3% of the optimum cruise speed at a particular
altitude of a certain aircraft type. For this research, the Airbus A320 and A380 were used, which have an
optimal speed of 446 knots and 487 knots at 36000 ft, respectively. Aircraft acceleration and deceleration are
fixed at 0.572 m/s2 and a standard turn radius is set at 3°/s. These values are used as a guideline to determine
approximate input constraints for the bi-level controller in this thesis research.

The multi-agent algorithm proposed in [43], only minimizes the number and duration of conflicts but is
not capable of solving everything. An air traffic controller is still required to provide additional resolution
maneuvers to resolve all the conflicts. A greedy algorithm is used to perform a local optimization process,
where at each time step an aircraft can only accelerate, decelerate or cruise. It may occur that local optimiza-
tion cannot find a conflict-free solution. The problem can be reduced by adding intermediate decisions, at
the cost of adding additional computation time. However, the goal of their research is to show the benefit of
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using a multi-agent system in air traffic control. The multi-agent system is capable of solving about 86% of
the conflicts by only using subliminal speed control and is capable of dealing with non-cooperative agents
in the system. In reality, altitude and heading changes can be used as extra degrees of freedom to de-conflict
situations. This is a promising result for multi-agent systems but needs more research in terms of real-time
applications and full conflict-free solutions.

3.3. 4D-Trajectory Methods

In 4D trajectory oriented systems, conflict-free trajectories are generated for each aircraft. These trajectories
can be used for scheduling and sequencing as well as for early conflict detection and resolution, rerouting
and arrival time management [44]. A general complication for trajectory-based concepts is that trajectories
are determined at an early stage and have to make predictions far into the future. Due to inaccuracies in
aircraft performance models, discrepancies in model parameters such as the aircraft weight, drag polar and
engine performance data, uncertainties will inevitably occur over the vast time horizons. Furthermore, un-
predictability’s in changing weather conditions, pilot errors, measurement errors, and precision problems in
the aircraft equipment all contribute to the complexity of full trajectory optimization [41]. To account for un-
certainties, additional buffers need to be placed on the required separation between the predicted positions
of aircraft. This leads to inefficient use of airspace since these buffers required more airspace than necessary,
inefficient flight paths can be the result [44].

4D trajectory oriented system can be considered a centralized system because a single agent provides a full
trajectory for all aircraft. Some 4D trajectory concepts are: the Programme for Harmonized Air traffic Man-
agement in Europe (PHARE) [45] and Distributed Air/Ground Traffic Management (DAG-TM) [46]. A brief
description of PHARE and DAG-TM can be found in the introduction section of a paper aiming to combine
4D trajectory optimization with local airborne separation assistance [44]. The PHARE program ended in 2000
and failed due to the lack of the technology necessary to make the contractual ’4D Tubes’ reality and the lack
of conflict resolution implementation. The project did conclude that a trajectory-based approach could po-
tentially work [42]. Throughout the proposed Free-Flight and 4D-trajectory flight concepts in literature, it
is often mentioned that a combination of multiple control levels is a likely future scenario to resolve these
issues [42].

A combination of strategical 4D-trajectory planning with tactical air traffic systems, to increase the efficient
use of airspace while maintaining safety is proposed in [41][47][44][45]. The authors of [41], propose a system
of multiple levels where tactical aircraft resolution is done by air traffic controllers and strategic trajectory
planning is performed using trajectory-based concepts, combining the best of both worlds. A concept that
combines Airborne Separation Assistance Systems (ASAS) with trajectory-based operations to mitigate the
uncertainties of the flight trajectories by making sure the controlled aircraft stay separated by a different
system is described in [44]. The benefits mentioned in this paper are a reduction in controller workload,
limited deviations from the 4D path and minimization of the long term prediction uncertainty. Minimize
route or altitude changes for local separation assurance, While minimizing the impact on the flight crew.
Furthermore, the benefits of reducing buffers while still using full trajectory optimization are acknowledged.
Resulting in an ATC architecture in which aircraft are free to optimize their own globally conflict-free path by
taking advantage of traffic flow management. Inaccuracies and possible conflicts are detected and resolved
by ASAS.

3.4. Optimization Based Decentralized Control in Air Traffic Management
In recent research regarding next-generation air traffic control applications, model predictive control has
been used more often. The ability to optimize non-linear systems as well as the ability to seamlessly add
constraints to the optimization problem it a suitable technique for air traffic control, which is a constrained,
highly non-linear problem. A method to mitigate a full-scale optimization problem is to use distributed or
decentralized model predictive control. Decentralized control makes use of the fact that there are many
agents or in this case, aircraft in the system, that can all contribute to finding a global (sub-)optimal feasible
solution in real-time.

In this section, multiple air traffic management concepts applying model predictive control or receding hori-
zon control for trajectory optimization or conflict resolution are highlighted. One research project where
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(distributed) MPC is used is described in [48][49]. A system with multiple agents with decoupled dynam-
ics can be coupled with the cost function or through the constraints. Within the air traffic control field, the
dynamics of the aircraft are decoupled, but the constraints are usually shared among the different agents
[49]. When no centralized agent is present, like a fully decentralized or distributed system, an optimization
sequence needs to be defined. A predefined sequence is proposed in some research papers, however, these
solutions are not scalable to larger systems [49]. In [49] and [48] an ad-hoc method of handling distributed air
traffic management systems with coupled constraints is proposed, making use of model predictive control.
They conclude that their approach works better for low traffic densities and that some aircraft fly long periods
without updates.

Another approach utilizing decentralized optimization is presented in a paper by Inalhan et al. [50]. They
make use of kinematic aircraft models and adhere to separation requirements between all aircraft. Inalhan
et al. do not have a centralized agent regulating the coordination scheme. Instead, they use a sequential
optimization scheme regulating the separation criteria. The cost function used to drive the vehicles towards
their destination penalized the error between the destination and the current position. Pareto optimality can
only be guaranteed when local problems have dominating local convexity or when connections are weak.

One example of 4D trajectories using MPC can be found in [9], where Interval Management (IM) is conducted
satisfying spacing objectives. In this paper model, predictive control is utilized for trajectory optimization
while maintaining adequate spacing. MPC for ATC has been used for conflict resolution as well as 4D tra-
jectory optimization. Using constraints to adhere to the minimum required separation distance at all times.
Computation times are a limiting factor due to the vast time horizon necessary over large distances.

The trajectory optimization in this paper is performed only in the vertical plane. The method proposed
by Weitz and Bai uses MPC to optimize the nominal trajectory in small increments. The optimization did not
always yield a feasible solution, during their case studies, for a small planning horizon of less than 5NM, fail-
ure rates reach up to 30%. Also, they concluded that for more substantial initial errors, where fast trajectories
are required, the NLP convergence is not guaranteed. Furthermore, the computation time required even for
the shorter planning horizons is not near real-time and too time consuming for implementation.

In the paper by Bousson [11], a model predictive controller for air traffic separation is given, using a kinematic
model closely resembling the model presented in Section 2.3. Bounds are placed on maximum and minimum
velocities and the maximum and minimum bank angle and acceleration inputs. The prediction horizon is 120
seconds and the control time steps used in this paper is 10 seconds. The interesting part of this paper is that
the set-up of the optimization problem presented by Bousson is, in essence, similar to the centralized MPC
proposed in this work. The method in [11], proves that a relatively simple MPC can be used to find a small
scale (Bousson used four aircraft in the simulation) feasible solutions.

Due to the computational complexity, real-time applications utilizing a centralized optimization scheme
are rarely possible [21]. D’Amato et al. [21] propose to reduce the computational complexity of the positional
constraints by using the right of way rules. By using this rule-based approach, the position constraints can be
formulated as linear and convex. The problem of immense computation times when adding multiple agents
to the system is also expected for the proposed controller. Therefore, the right of way rules might be utilized
to reduce the numerical complexity of the optimization problem.





4
Decentralized and Multi-Level MPC

Architectures

In this chapter, decentralized, distributed and multi-level control are introduced. Firstly, multi-level con-
troller schemes are introduced in Section 4.1. Secondly, the concept of setpoints and how setpoints can be
used in multi-level structures are described in Section 4.2. Followed by a discussion about the differences
between decentralized and distributed control schemes in Section 4.3. This chapter is concluded with multi-
level distributed or decentralized control implementation examples, in Section 4.4.

4.1. Multi-level Control and Control System Architecture
In the review paper by R. Scattolini [51], an extensive overview of distributed and decentralized hierarchical
architectures can be found. A few key concepts and important elements described by Scattolini shall be
discussed throughout this Chapter.

When a large scale system is subdivided into multiple levels, the reason is typically to reduce the complexity
of the overall system. In a top-down control architecture, the system can have different functionalities and
operate on different levels of detail or different levels of abstraction [52].

Hierarchical control with at least two control levels is used most often in two different cases. The first case
is when two subsystems or levels of the system have different dynamic behavior, such as fast dynamics and
slow dynamics that are hard or inefficient to control with a single controller.

The second case is when a system requires optimization at different update rates for different levels of the
subsystems (singularly perturbed systems), this notion can be observed in Figure 4.2 and Figure 4.3.

In the context of MPC, these systems do still lack systematic design methods that guarantee well-assessed
properties [51]. According to Scattolini, it is not difficult for an MPC regulator to transmit future control ac-
tions and future state trajectories to other neighboring local control units. Nonetheless, there is no systematic
method to select the best-distributed control strategy [51].

For ATC applications, a global solution is required where adequate separation for all aircraft is guaranteed at
all times. For managing the separation constraints and the global flow rate, a reiteration of the optimization
problem at the scale of minutes is sufficient. Whereas for individual aircraft, having a faster update rate of,
based on an airlines’ preferred cost index, on a scale of seconds might be preferable. The fact that with MPC
future control actions and the corresponding state trajectories can be predicted makes it a suitable control
method for distributed systems to achieve comparable performances to centralized control systems.

4.2. Setpoint Optimization
The predicted long-term future states can be used by the lower levels as setpoints. In [53], a review is provided
of hierarchical control structures utilizing MPC control on the top level of the control structure. In this paper,
the temporal decomposition of a control problem through dynamic setpoint optimization is explored. The
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MPC or constraint level determines a trajectory of setpoints and constraints, which are used as a reference
by the direct control level. Due to the inaccurate nature of future predictions, only the first few setpoints are
transmitted to the lower-level controllers. At each level of the controller, the same optimization problem is
pursued. Yet, for different time horizons, with different control time steps [53].

The concept of utilizing controllers at different hierarchical levels and using setpoint trajectory optimiza-
tion will be used and tested in the case studies applied to air traffic control during this research project. A
case study where dynamic setpoint optimization for temporal decomposition is also applied is in the paper
[5], which will be discussed in Section 4.4.

The centralized controller must be aware of the operational constraints of all the lower levels and must also
consider the possibility of disturbances to guarantee the feasibility of the whole system. The lower subsys-
tems must feedback information about their solution to the upper levels such that there is not a significant
deviation from what the higher levels demands and the lower levels were capable of achieving [51].

For industrial or process control problems, multi-level control problems have often been applied to achieve
global stability. These solutions have been of the first type, where slow and fast dynamics are regulated at
different control levels. Often the fast dynamics are regulated by PID controllers while the slower optimization
setpoints are determined by MPC controllers.

In Figure 4.1 the optimization structure of a multi-level system is portrayed. On the top level, a plant-wide
optimization is performed. This plant wide-optimization result is the input for the local optimizing agents.
Only the local optimization is connected to the actual process control and capable of influencing the control
inputs (manipulated variables) while steering the controlled variables.

Figure 4.1: A hierarchical control structure [53].

Scattolini describes in his 2009 review paper [51], that MPC can be used at any level of the controller to take
full advantage of the input, state and output constraints at each level. Despite this fact, not many applications
or research had thus far been conducted where multiple hierarchical MPC controllers have been combined.
One paper in which multi-level control is applied for air traffic control is by Pappas et al. in 2000 [52]. They use
a less complicated model of the same system at the higher level and a more accurate model on the lower level,
with a shorter prediction horizon. Different from this paper will be that both levels apply similar model com-
plexities at different sampling rates, gaining computational efficiency necessary due to large sample times at
a higher level.

4.3. Decentralized and Distributed Control
There are many reasons for dividing a control problem into multiple decentralized or distributed control
problems. The foremost reasons are that dividing a large scale problem into a smaller scale problem decreases
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the mathematical complexity, in terms of computation time and increases overall resilience to failures of
the system. When a system is made up of many different subsystems, a centralized optimization problem
becomes more complex, with every agent added to the set.

The main difference between decentralized and distributed control originates in the way information of other
agents in the system is applied to achieve the control goals. Within decentralized control systems, the knowl-
edge that different agents have of each other is not used to find the optimal solution cooperatively. Whereas
in distributed control systems, agents do share information about their actions and intentions, to reach a
global solution cooperatively. They take the information from their neighbors into account when determin-
ing their control actions. Some level of cooperation or interaction between different agents is, in most cases,
beneficial in terms of the pursuit of the global optimal solution. There is, however, an extra level of difficulty
that needs to be handled in the case of distributed systems. When separation constraints are introduced in a
decentralized system and the decentralized agents are coupled through the constraints, collision avoidance
cannot be guaranteed for decentralized RHC structures [54].

The interconnection structure cannot be chosen to be full because that would scale up the optimization
problem, and the computation speed advantage of a decentralized optimization approach is reduced. Also,
due to the discrepancy between predicted and actual neighbor trajectories, the local problems are not guar-
anteed to be feasible [54]. In the paper by Keviczky et al. [54], an emergency controller is proposed that
brings the velocity of the controlled system to zero in case an infeasible local problem is detected. For the ap-
plication of passenger planes, this is not feasible, since there is a minimum speed required to sustain flight.

The extra challenge that comes with distributed controllers is how the different controllers are synchronized
and how the order of information flow is managed. Since each agent in the system cooperates to find the best
solution and they rely on each other’s decisions. One agent control actions might change based on the intents
of another agent. A communication flow problem, much resembling the ’chicken and egg’ problem emerges.

Luckily, there have been multiple studies into distributed optimization where this problem is investi-
gated. Such as the study conducted by Negenborn et al. [55] where serial and parallel optimization schemes
are compared. In this paper, it is concluded that parallel optimization is not necessarily better in terms of
computation speed and finding the optimal solution. Serial optimization even has preferable features in
their experiments.

In the paper by Chaloulos et al. [8], a distributed model predictive control approach is used to optimize
the path for three crossing aircraft. They discovered that the order of the optimization sequence can have a
substantial effect on the outcome. Different results were obtained when the optimization was performed in
a sequential ’round-robin’ fashion, or in random order. They propose to solve this problem by reducing the
optimization space for the remaining aircraft, once one aircraft has determined its control action. A cooper-
ative terminal cost function was introduced to couple the decentralized agents. Each aircraft still optimizes
its optimal path, however, a fairness factor is introduced in the cost function to take into account the effect of
the solution that an aircraft has on the other aircraft in the system. The solution proposed in the paper does
have the risk of becoming computationally challenging once more aircraft enter the system and even though
the optimization keeps other agents into account, the optimization is still performed in a sequential matter.
Chaloulos et al. use a time step of 5 minutes and a prediction horizon of N = 4 for their higher-level MPC to
perform far ahead conflict-resolution.

The information flow problem described above is only apparent when individual agents cooperatively aim
to achieve a global optimum. When a system is fully decentralized and agents do not rely on each other’s
decisions, the issue of intent-based information streams is non-existent. However, for the highly coupled air
traffic control field where safety is the priority, some level of cooperation is required. The global optimization
and safety constraints can be moved to another hierarchical control level to move the issue of sequential
optimization from the individual agent level to a higher control level. This idea is much like the traditional
way in which air traffic is currently managed. Where a single human controller manages multiple aircraft at
once and tries to achieve an optimal solution for the whole system while adhering to all safety constraints. In
classical air traffic control, there is also no need for individual aircraft to communicate and cooperate, except
for emergencies when ASAS is applied.

A bi-level control architecture could take on this task and safely optimize air traffic in a way that feels
familiar to current practice. In such a system, the individual aircraft do not have to interact with each other,
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since the centralized controller handles the interaction between the systems in terms of tactical and strategic
separation assistance. The decentralized controlled aircraft transmit their state information to a centralized
controller, which combines the data to perform a global optimization.

A system whereby the decentralized agents also communicate with their neighbors can be part of future
research. The ADMM (alternating direction method of multipliers) could prove to be a valuable method to
handle coupled constraints [4][7]. The problem statement would then shift the lower-level controller from
decentralized control to distributed control. This method could be implemented during future research.

4.4. Applications of Multi-Level Controllers

The main challenge of designing hierarchical system architecture is to determine the functionality and ob-
jective for each level of the system [52]. The careful conceptual design of the different control levels of the
system is a fundamental step when designing a multi-level system. Therefore, the concept and tasks of each
level have to be determined, when this notion is related to the development of the multi-level controller of
this thesis.

In a 1998 paper from Ying et al. [56], a two-stage control scheme was investigated and compared to a
single-stage controller in terms of stability and optimization result. The controller investigated in this re-
search was a single QDMC (Quadratic Dynamic Matrix Controller) and a QDMC with an additional MPC
stage. The single-stage QDMC had a steady-state offset and did not take into account the economic objec-
tives. The second stage resolved the steady-state issues and addressed the economic cost function of the
whole plant.

In this research, the stability of such a multi-stage system, as well as its ability to achieve convergence to-
wards a reference, is investigated. In this chemical process optimization, a steady-state condition is achieved
by performing an economic optimization on the higher optimization level, determining setpoints necessary
which the sub-levels have to achieve. For their applications, the two-level system outperforms the single level
system in terms of stability as well as cost function optimization.

Another application where hierarchical model predictive control was applied is described in the study by M.
Brdys et al. [5]. In this paper, a wastewater treatment system is controlled using three separate hierarchical
levels. The Supervisory level, the Optimizing level, and the Follow-Up control level. The top level is the super-
visory control level and information from all the control levels is available to the supervisory controller. The
supervisory level determines the control strategy and the coordination of the plant. The optimizing control
level defines the setpoints of the plant and the follow-up control levels achieve these setpoints by means of
classical PID control.

The optimizing control level is further separated into three control sub-levels which operate at different
time scales. One level for the slow dynamics, the medium dynamics and one for the fast dynamics of the
plant. The reason that the researchers choose to split the optimization level into three separate levels was that
using a single controller to handle all the dynamics would lead to a complex inefficient controller. The short
control time steps required for the fast dynamics combined with the large prediction horizon for the slow
dynamics would yield a high dimensional, uncertain optimization problem that would lead to computational
complications for real-time applications [5].

The SCL (slow control sublevel) operates on one day control steps over a horizon of weeks or months.
The MCL (medium control sublevel) operates on one hour control intervals over a horizon of a day. The fast
control sublevel (FCL) uses one minute control steps and predicts one hour forward in time. A representa-
tion of what this looks like can be seen in Figure 4.3 and Figure 4.2. An analogy can be drawn to air traffic
control here, where, vast prediction horizons are needed to control the air traffic flow and manage separation
distances over broad time horizons for thousands of nautical miles. However, fast inputs are required to steer
and control the aircraft optimally on a short time horizon.
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Figure 4.2: Decomposition of different dynamic rates within
the system [53].

Figure 4.3: Different update rates at different levels of the
controller [5].

For the wastewater-treatment plant study, no comparison is made between a single level or multi-level con-
troller to study the controller performance relative to a single centralized controller. This paper only describes
the working principle of the controller and the motivation for its development. The results are promising, and
the controller successfully controls the plant. Studying the effects of a multi-level controller for air traffic ap-
plications might yield exciting results.





5
Bi-Level Model Predictive Controller

Conceptual Design

In this chapter, multiple potential bi-level model predictive controllers concepts for air traffic control applica-
tions are presented. First, the bi-level MPC controller and the intended objectives are introduced in Section
5.1, the benefits of multiple control levels are described here, as well as, the motivation for the chosen ap-
proach. In Section 5.2, a recap of several important notions from relevant literature is discussed, that will be
used in particular during the development of the controller. This is followed by Section 5.3, where practical
considerations are mentioned to form the bridge between the theoretical controller concept and the real-
life implementation. In Section 5.4, four controllers are discussed on a conceptual level. Finally, in Section
5.5, the integration of the decentralized and centralized controller is discussed and the formulation of the
optimization problem is presented.

5.1. Bi-level Controller Working Principles
The controller proposed in this research project is a combination of a centralized MPC and a decentralized
MPC that cooperate by operating on two different hierarchical levels with different control sample times and
prediction horizons. The centralized controller predicts further into the future than the decentralized con-
trollers, that have shorter time horizons.

To reduce the computation complexity of the centralized controller, the control sample time is adjusted
such that the centralized controller uses coarser intermediate steps, providing a rougher solution. To regain
the lost accuracy, a decentralized control level is introduced, using a faster control sample time. Figure 5.1
gives an indication of the optimization control sample time over time for both control hierarchies and the
resulting level of detail of the solution.

Time

Central
Controller

Decentral
Controller

Figure 5.1: Difference in optimization control sample time and the resulting state trajectories.

Both controllers execute a similar control task, whereby each aircraft is guided towards their destination. For
each aircraft, two control inputs are determined, an acceleration input and a bank angle setting (implying a
certain turn radius).
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The centralized controller has an additional task, to separates global air traffic by maintaining an ade-
quate distance between each aircraft. The decentralized controllers are not aware of the presence of other
aircraft and must follow the conflict-free trajectories determined by the centralized controller, despite those
trajectories having a reduced level of detail. Consequently, a margin can be provided to the centralized so-
lutions, such that the decentralized controllers are granted autonomy to find a more optimal solution within
the given space.

Since the outputs of the centralized controller are acceleration and bank angle, it is possible to analyti-
cally determine the corresponding future positions, using the aircraft model and the optimized centralized
controller input sequence. The discretized points at each control sample time in the prediction horizon, form
the centralized controllers’ trajectory. These points are hereafter called setpoints (SP) and will be converted
to dynamic constraints that are provided to the decentralized controllers.

The illustration in Figure 5.2, provides a schematic representation of this concept. The centralized con-
troller avoids a forbidden area and determines a rough conflict free trajectory for two different aircraft to-
wards their destination. The red lines in Figure 5.2, represent the separation constraints that the centralized
controller must obey.
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Figure 5.2: Centralized conflict-free trajectories determination using setpoint while avoiding forbidden area.

5.2. Concept Motivation From Literature
Similarly to most next-generation air traffic control concepts, the control system proposed in this chapter
operates on a 2D horizontal plane. Vertical conflict resolution is initially not considered for three different
reasons, horizontal 2D trajectories are easier to visualize than 3D trajectories, heading changes result in more
passenger comfort than flight level changes [37], and heading changes are also more fuel-efficient than alti-
tude changes [37].

Apart from heading changes, flight speed adjustments are also controlled by the bi-level controller. Speed
adjustments require to be applied over vast distances to have a noteworthy effect. For this reason, speed ad-
justments are not commonly used by air traffic controllers. However, when using an automated system with a
large look-ahead time, conflicts can be predicted and solved at an early stage with minor speed adjustments.

Subliminal speed control has become more promising with the introduction of accurate trajectory control
methods [37]. In [57], Rey et al. evaluate a method that is limited to subliminal speed control for conflict
deconfliction, they prove that speed control can be an important attribute in solving conflicting situations
and reducing air traffic controller workload. They use a linear approximation and provide a MILP solution
that provides a global optimum in a few seconds.

Speed control will, therefore, be implemented in conjunction with heading control to improve the perfor-
mance of the bi-level MPC controller.
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5.3. Practical Consideration and Link to Reality
In classical air traffic control, the management system is divided into separate levels, operating on different
time scales. These levels include the tactical flow management, separation management, and ASAS systems.
Tactical conflict resolution is currently performed at a prediction horizon or looks ahead time of approxi-
mately 20 minutes and separation management is handled at the time scale of 5-7 minutes [45], see Figure
5.3. A resemblance of such a leveled structure is a foundation for the proposed controller, due to the temporal
decomposition of the two controller levels.

Figure 5.3: Layered structure in air traffic control [45].

In a realistic scenario, the centralized controller (air traffic control center) has a less accurate knowledge of
the aircraft parameters (weight, aerodynamic characteristics, etc.) and wind velocities than the pilot. To cre-
ate an analogy with this realistic scenario, while running the experiments, the centralized and decentralized
controllers use different values for the drag polar and the aircraft mass.

The model parameters used by the decentralized controller are assumed to be more accurate, which en-
ables the decentralized controller to determine a more accurate optimization. Mass is assumed to be constant
during the simulations, even though it could be included based on the fuel flow, which can be part of future
research.

To simulate a more realistic scenario and to test the response to inaccuracies, disturbances can be added to
the system by means of introducing a wind field. The introduction of wind to the system is likely to highlight
the beneficial effect of having two levels of the control system. The centralized controller has less knowledge
of the wind field in comparison to the decentralized controllers.

Another possibility that emerges due to the hierarchical control structure is that each aircraft can optimize
a cost function with different weights for fuel consumption and flight time. This creates another analogy
with the true situation where every airliner can determine their preferred cost index, based on their business
model. This allows for a different balance between flight time and fuel flow for each aircraft. The cost index
that a certain aircraft operates at is unknown to the centralized controller. The centralized controller uses the
same, global, cost index for all aircraft, which is likely to be different from that of the decentralized aircraft.

5.4. Controller Integration and Conceptual Development
In this section, four controller integration concepts are given, as well as, an introduction of the practicalities
concerning the real-time operation of the bi-level controller.

5.4.1. Concept 1: Heading and Velocity Constraints
Figures (5.4-5.7), show four different conceptual solutions for converting the setpoint to constraints for the
decentralized controllers to use for their short term problems. The first concept can be found in Figure 5.4.
In this concept, constraints on the heading are applied such that the setpoint falls within these bounds. Fur-
thermore, a minimum velocity constraint is applied, making sure the aircraft arrives in the green area within
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a certain time. The maximum and minimum velocity constraints are meant to limit the longitudinal position
where the aircraft is allowed to be. In this way, the horizontal position of the aircraft is fully constrained. The
decentralized controllers are free to optimize their path as long as the positional constraints are adhered to.
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Figure 5.4: Concept 1, heading and velocity constraints.

5.4.2. Concept 2: Longitudinal and Velocity Constraints
The second concept achieves the same results as the first concept, however, instead of applying a constraint
on the heading, the longitudinal constraint is placed in terms of maximum and minimum x coordinates. It
can be seen in Figure 5.5, what this would look like when flying at a heading of 0 degrees on the left side.
However, it must be noted that an axis rotation is required when the angle is not 0 degrees. Instead of using
the Earth-Fixed Reference Frame, the Body-Fixed Reference Frame must be used. Before the x bounds are
applied, the axis are rotated with the initial heading of the aircraft, to be able to set the x bounds with respect
to the aircraft. The velocity constraints are applied in the same manner as in concept 1.
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Figure 5.5: Concept 2, velocity and longitudinal constraint with axis transformation

5.4.3. Concept 3: Combination of Concept 1 and Concept 2
The third concept is shown in Figure 5.6 along with a time propagation. The third concept is a combination
of the former two concepts. Where the triangular constraint shape of Figure 5.4 coincides with the squared
shape of concept 2 (Figure 5.5). The first section of the feasible area is partially constrained by the physical
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limitations of the maximum turn radius of the aircraft. The longitudinal constraint keeps the aircraft relatively
close to the shortest path. The rotation of the axis is again required to place the longitudinal constraints
conveniently. It is important to note that the centralized controller can give updated constraints before the
aircraft reaches the green area.
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Figure 5.6: Concept 3, combined longitudinal and heading constraints with velocity constraints.

5.4.4. Concept 4: Maximum Position Constraint Relative to Setpoints
The final concept only uses positional constraint to ensure that the decentralized controllers stay close to the
central setpoints, and is illustrated in Figure 5.7.
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Figure 5.7: Concept 4, setpoints to area constraints conversion.

The setpoints are converted to circular area’s and the decentralized controller must be within a certain radius
at the corresponding moment in time.

The heading and velocity constraints are implicitly applied by use of the positions constraint but can be
applied explicitly as well, to define a different area shape.

5.4.5. Real-Time Simulation Consideration
The systematic representation in Figure 5.8, describes the time wise implementation of the two controllers.
The decentralized controller starts after the centralized controller optimizes the trajectories for all aircraft in
the set. The measured states are fed back to the centralized controller for the next optimization cycle.
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Figure 5.8: Schematic representation of the update rate of the decentralized and centralized controllers.

The centralized optimization at the next time step induces a time delay and causes new constraints for the
decentralized controllers, to be available several iterations later. This causes 2 problems, the decentralized
controller performs a number of iterations without receiving new constraints and when the centralized opti-
mization provides the new constraints they are based on old measurement.

Figure 5.9, shows what the schematic block diagram from Figure 5.8 entails in practice. In this example,
the centralized controller can determine new setpoints every two iterations. The aircraft at T = 2 obtains the
constraints calculated at T = 1 fand the aircraft at T = 4 receives the constraints based on measurement at
T = 3.
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Figure 5.9: Propagation of an aircraft over time with intermediate constraint updates by the centralized controller.

The practical implications of running the systems in a real-time application do not fall within the scope of
this project. For this project, the assumption is made that the centralized controller operates in sequence
and always uses the most recent state estimations. Adapting the bi-level controller to have the centralized
controller work in parallel, is a recommendation for future research.

5.4.6. Extension of the Decentralized Prediction Horizon
The decentralized controllers’ prediction horizons can be extended to include setpoints further ahead into
the future, such that the constraints span multiple setpoints, possibly improving the performance of the sys-
tem. Figure 5.10 shows a visual interpretation of what this entails. Two examples are shown, for the first
example (left side) the setpoints both lie on the shortest path to the final waypoint. The second example
(right side) shows what might happen when two setpoints form an angle.
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Figure 5.10: Increase in decentralized prediction horizon to include multiple setpoints.

When a large angle is formed between two setpoints, the importance of having at least 2 setpoints within the
prediction horizon of the decentralized controllers, becomes apparent. If the second setpoint is not included,
the aircraft might arrive too far to the left side of the first setpoint (Figure 5.10), forcing it to make large control
efforts to re-adjust its path to steer towards the next setpoint.

5.4.7. Determination of the Constraint Boundaries
The constraint boundary sizes can be kept constant throughout the entire simulation or the boundary size
can be adjusted during the simulation. Also, the second and third setpoints can work with different bound-
aries than the first setpoint. The effect of changing setpoint sizes needs to be explored in the future.
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Figure 5.11: Decrease in constraint sizes when distance to destination decreases.

To make sure that the aircraft arrives close enough to the destination waypoint, the boundaries must become
tighter near the end of the flight path, see Figure 5.11. The boundaries can be reduced in such that the air-
craft arrives close to the final destination. This can be implemented by making the size of the boundaries
proportional to the remaining distance to the final waypoint.
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5.5. Bi-Level Model Predictive Control Formulation
The decentralized controllers determine the optimal control input sequence for every aircraft. In reality, the
acceleration and bank angle are calculated for every aircraft on separate computers. In this practical ap-
proach, the independent aircraft are optimized sequentially, on the same computer. Once a control input
is determined for every aircraft, the simulation advances such that aircraft receive control inputs before the
simulation continues. Since the aircraft on the decentralized level are not coupled the sequential optimiza-
tion yields the same result as a parallel optimizing technique. When the aircraft is coupled by the separation
constraint on the lower level for conflict resolution as well, the solution changes by taking the order of opti-
mization into account.

In [55], it is concluded that the parallel computation scheme is not necessarily better and sequential op-
timization schemes are even preferable in terms of computation time and solution quality. However, in [8] it
is observed that the order of optimization significantly affects the solution outcome. This is a topic for future
research.

The controller block diagram showing the systematic design of the bi-level controller and the interconnec-
tions between the centralized and (one) decentralized controller is presented in Figure 5.12. The formulation
of the constraints and cost functions is presented in the remainder of this Section.

                      
                    Decentralized Controller

                    
                       Centralized Controller
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Figure 5.12: Bi-level controller control diagram.
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5.5.1. Centralized and Decentralized Cost Functions
The cost function is given by Equation 5.1, and includes a term for total flight time, fuel consumption, the
distance between the destination and the current coordinates and the change in control input.

J (k) =W1 ·
Hp∑
i=1

√(
y(k + i |k)− yfinal

)2 + (x(k + i |k)−xfinal)
2

+W2 ·
Hp∑
i=1

Fuel Flow(k + i |k)

+W3 ·
Hu−1∑

i=1

√
(u(k + i |k)−u(k + i −1|k))2

(5.1)

where, W1 represents the weight assigned to distance between the origin and the final destination and W2
is the weight associated with the total fuel consumption. The weight given to the difference between two
consecutive control inputs is given by the value W3.

5.5.2. Centralized and Decentralized Constraints
In this section, the centralized and decentralized velocity constraints and forbidden area constraints are for-
mulated. These constraints apply to both levels of the controller. The velocity of each aircraft is constrained
according to:

Vmin −0.94 ·V0 > 0 (5.2)

and,

Vmax −1.03 ·V0 > 0 (5.3)

the acceleration input is constrained between,

−0.5
m

s2 < a < 0.5
m

s2 (5.4)

the minimum and maximum bank angle input,

−25° <ψ< 25° (5.5)

Finally, another constraint that applies to both control levels is the forbidden area constraint. This constraint
describes a forbidden circular area such that an aircraft stays clear of a coordinate set with a certain radius,

√
∆x2

o j +∆y2
o j −δMinSep > 0 (5.6)

5.5.3. Centralized Separation Constraint
Figure 5.13 shows possible conflicts when the setpoints lie too far apart. Even though the respective setpoints
have adequate distance between them, aircraft 1 and aircraft 2 are in conflict between setpoints 1 and 2. One
solution to solve this issue is not to allow lines in between 2 setpoints to cross.

Another method to avoid this issue is to make the separation constraints larger or make setpoints lie closer
together. If the next setpoint and the initial position of the aircraft fall within the separation boundaries, the
unwanted situation, shown in Figure 5.13, can not occur. Figure 5.14 shows an infeasible situation because
the setpoints lie within each other’s separation margins. Increasing the size of the separation margin is un-
wanted since that would reduce the effective airspace that could be used. The first solution of not allowing
paths to cross in between setpoints is preferable because that allows for setpoints to lie further apart.
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AC 1

AC 2

Setpoint 1
AC 2

Setpoint 1
AC 1

Setpoint 2
AC 1

Setpoint 2
AC 2

Figure 5.13: Possible conflicts even though separation con-
straints on setpoints are obeyed when the setpoints are to far
apart or the separation distance is to small.

Figure 5.14: Bringing setpoints closer together solves this
problem, by making this solution infeasible.

A general convention is that the lateral separation distance between aircraft should be at least 5 nautical
miles (or 9260 meters). If the average cruise speed of a passenger jet is 250 m/s, loss of separation can occur
in approximately 35 seconds. So the control sample time of the centralized controller must be much higher
than 35 seconds. When two aircraft are in a potential head-on conflict, this margin is halved.

Since the centralized sample time is likely to be longer, an aircraft separation constraint must be im-
plemented. The separation constraint is based on the relative position, heading and velocity between two
aircraft, and is based on the Modified Voltage Potential [33] equations used to determine the closest time of
approach and closest point of approach. The separation constraint is given by Equation 5.14, and is obtained
by using Equation (5.5.3-5.13)

Vrel =Vi −V j (5.7)

Drel,x = xi −x j (5.8)

Drel,y = yi − y j (5.9)

Vrel,x =V cos(ϕ) (5.10)

Vrel,y =V sin(ϕ) (5.11)

tcpa =
Vrel,x ·Drel,x +Vrel,y ·Drel,y

V 2
rel,x +V 2

rel,y

(5.12)

Dcpa = Drel − tcpaVrel (5.13)

The separation constraint is formulated as,

|Dcpa|−δMaxSep > 0 (5.14)

5.5.4. Decentralized Maximum Position From Setpoints Constraints
The method of setpoint to constraint conversion is formulated in a way that is analogous and opposite to
the forbidden area constraint as described in Section 5.5.2. The decentralized controller is forced to steer the
aircraft within the circular proximity of the centralized setpoints.

δMaxSep −
√
∆x2

s j +∆y2
s j > 0 (5.15)

Since the setpoints are determined at larger discrete time steps. This constraint cannot be applied to each
iteration in the decentralized prediction horizon. Instead, the constraint is implemented only at the decen-
tralized iteration at the same instance in time (k).

δMaxSep −
√(

xset [nset]−x

[
nset

∆tc

∆td
−k

])2

+
(

yset [nset]− y

[
nset

∆tc

∆td
−k

])2

> 0 (5.16)

where nset is an integer value indicating if the constraint applies to setpoint 1,2, ...n



6
Thesis Project Timeline and Controller

Development Plan

In this chapter, the development phases of the bi-level controller are presented, as well as the projected
project timeline. The development of the controller is set up in 3 different phases. In Section 6.1, a global
project planning can be found. The preliminary development phase is the initial development of both con-
trol levels and explained in detail in Section 6.2. The main development phase is presented in Section 6.3.
Finally, during the third phase, the controllers shall be expanded such that multiple agent testing can be
performed in BlueSky, this process is explained in Section 6.4.

6.1. Project Planning and Gantt Chart
The experimentation phases of the controller are conducted concurrently with the development phases, in
Figure 6.1 the timeline can be seen. The initial development and experiment phases will be included in the
preliminary phase of the thesis, the main development and testing phases will be part of the final results of
this research project. An extensive Gantt chart can be found in Appendix B.

ThesisPrelim

10 weeks

Orientation Phase
Literature Study
BlueSky Orientation

10 weeks

Concept Development
Experiment set-up
Proof of Concept
Project Plan
Preliminary Report

6 weeks

Controller Development
Testing Controller
Develop Metrics
Developing Experiments
Parameter Tuning

6 weeks

BlueSky Implementation
Experimentation
Debugging
Processing results

6 weeks 

Finishing Thesis Report
Green-Light
Presentation

Experiment 
Phase 1

Experiment 
Phase 2

Experiment
Phase 3

Development 
Phase 1

Development 
Phase 2

Development
Phase 3

Figure 6.1: Global thesis timeline and project tasks.

Figure 6.2, shows the most important development milestones for the bi-level model predictive controller.
Milestones 1.0, 2.0 and 3.0 are part of development Phase I. The centralized and decentralized integration
is the most important milestone of the main development phase, Phase II. Finally, the multi-agent and full
BlueSky implementation will be part of the third development phase. In Sections (6.2-6.4), these milestones
are broken down into the contributing development steps.
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Figure 6.2: Main development milestones.

6.2. Development Phase I - Preliminary Development Stage
During the first phase, an initial version of the centralized and decentralized controllers are developed and
tested. The development steps that are taken during the preliminary development phase are presented in
chronological order, in Figure 6.3.

         

                PHASE I - Elementary Development and Verification
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Figure 6.3: Development flowchart for Phase I.

The decentralized controller is developed in Python using the Scipy minimization package for the optimiza-
tion part of the MPC. The optimization method used is Sequential Least-Squares Programming (SLSQP). This
method is chosen because it is one of the few that allows for constraints to be added to the optimization func-
tion.

Velocity reference tracking is initially used to verify the performance of the controller. However, a refer-
ence on any of the other states, as well as a combination of multiple references, can be used. Several tests are
conducted to see if the controller performs as required. The bank angle setting is added as a second control
input, allowing the aircraft to change the heading and fly towards their destination.

The development of the centralized controller is started after the decentralized controller is completed
and works for the control of multiple aircraft. Instead of performing the optimization sequentially, the entire
optimization is vectorized and performed once at every control time step. Engine fuel flow is added as an
additional term to the cost function. This is an essential feature for the final controller, where flight time
and fuel flow are the optimization parameters. Additionally, it serves as another method to test the cost
function. When a relatively high weight is applied to the fuel flow terms, the velocity of the aircraft is expected
to decrease to the minimum velocity, resulting in the minimum amount of fuel usage.
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Both controllers have to be converted to operational plugins in BlueSky. This is done to evaluate how
BlueSky simulations with the bi-level controller are to be implemented.

6.3. Development Phase II - Controller Development and Bi-level Integra-
tion

The second development phase focuses on the detailed design of the bi-level controller concept and the
combination of the centralized and decentralized controller into a single controller. The flow chart for Phase
II can be found in Figure 6.4.
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Figure 6.4: Development flowchart for Phase II.

The optimized control inputs computed by the centralized controller have to be converted to setpoints. This
is done by using the aircraft model to determine the corresponding predicted coordinates given the opti-
mized control. The predicted aircraft positions, provided by the centralized setpoints can be used to generate
positional constraints for the decentralized controllers. The maximum allowed Euclidean distance from each
setpoint serves as a constraint for the decentralized controllers.

When the coordinates of the setpoints are available, the shortest path heading can be determined. The
heading corresponding to the shortest path is required for all three controller concepts because the heading
and longitudinal constraint boundaries are determined with respect to this heading value. The shortest path
heading can be calculated using,

ϕshortest = arctan

(
yset − y

xset −x

)
(6.1)

The average velocity between two setpoints is necessary to determine the velocity constraints for the decen-
tralized controller. The average speed is computed using,

Vavg =V0 + 1

2
a ·∆t (6.2)

Furthermore the separation constraint is further developed as well as the forbidden area constraint so that
dynamic and static obstacles can be avoided. The development of a performance evaluation metric is de-
veloped. Finally, terminal constraints must be implemented, to have the aircraft decrease it’s velocity to zero
when reaching the destination.
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6.4. Development Phase III - Bi-level Controller Implementation in BlueSky
The development of the controller is concluded in Phase III, where the developed system is converted and
implemented in BlueSky. The final development steps are presented in Figure 6.5.

          PHASE III - BlueSky

BlueSky
implementation for

multiple aircraft
Add wind to introduce

noise and disturbances
Data extraction and

visualisation
Setup and run phase III

experiments

Figure 6.5: Development flowchart for Phase III.

The aircraft model uses measurements of the aircraft position x and y in meters. Whereas, BlueSky gives
the aircraft position in longitude and latitude. Therefore, a conversion method must be implemented to
be able to use BlueSky longitude and latitude measurements. The wind field can be enabled in BlueSky to
generate disturbances. When the controller works for multiple aircraft in BlueSky, the final experiment phase
is initiated and will be described in Chapter 7.



7
Experiment Design

In this chapter, the experiment phase of the research project is discussed. All the experimentation during
this project will be performed using Python-based computer models. During the first phase, the conceptual
idea is tested, see Section 7.1. The second experiment phase is described in Section 7.2, and focuses on
aircraft separation. During Experiment Phase 3, the full-scale testing setup with multiple aircraft in BlueSky
is conducted, this is explained in Section 7.3.

7.1. Experiment Phase I: Small Scale Controller Testing
During the first experiment phase, the bi-level model predictive controller shall be tested and compared to a
single level controller using multiple case studies. These experiments will be conducted on a single aircraft,
conflict detection and avoidance falls outside the scope of this experiment. The goal of these case studies is
to obtain a clear understanding of the possible benefits bi-level controller could have on a single aircraft.

The set-up of the experiment is an aircraft, that navigates through an area filled with random obstacles, to-
wards a certain destination, see Figure 7.1. The aircraft has to stay clear at least 5 nautical miles from all the
obstacles. The same simulation iteration, using similar initial conditions and obstacle locations, is run three
times. Once for a single level MPC, once for the bi-level controller using one setpoint, and finally for the bi-
level controller using two setpoints. The obstacles are added to force the controllers to initiate heading and
velocity changes.

Aircraft

Destination

Obstacle

Y

X

Simulation 1 Simulation 2 Simulation 3

Figure 7.1: Experiment phase I, Aircraft with random initial conditions navigate through an area of random obstacles towards a randomly
placed waypoint.

The independent variables are the centralized and decentralized prediction horizons, and the control sample
time of each controller. The single level MPC uses the same parameters as the decentralized controller in the
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bi-level control architecture, to gain an insight into the influence of the centralized controller. The dependent
variables during this experiment are the total fuel consumption, flight time and computation time.

7.2. Experiment Phase II: Conflict Avoidance
The second set of experiments entails the conflict avoidance capabilities of the bi-level MPC. During this
experiment, case studies will be conducted with carefully designed initial conditions, meaning that the two
aircraft have symmetrical but opposite headings, initial positions, and destinations. The two aircraft will be
of the same type and the initial velocity is equal. This will cause a conflict if no resolving action is taken, as
can be seen in Figure 7.2.

Aircraft

Destination

Y

X

Theta
Theta

Figure 7.2: Experiment phase II, bi-level separation constraint testing using two aircraft.

For the experiments during the second experiment phase, the same set of independent variables that were
used for the first experiment phase will be tested. Additionally, several predefined heading angles are used to
evaluate if the collision angle has any effect on the outcome. This angle is increased from 30° until 90°, in 15°
steps. Where 90° would result in a head-on collision if no heading adjustments are initiated.

7.3. Experiment Phase III: Multiple Aircraft Simulation
During the last set of experiments, the controller is tested in a more realistic scenario, in an extension of
the first experiment. Instead of running simulations with 1 random aircraft, multiple random aircraft have to
navigate towards their destination simultaneously. The static obstacles are removed and replaced by dynamic
obstacles in the form of other aircraft.

This experiment will be extended by having aircraft start at varying vertical locations, as well as changing
horizontal coordinates, as can be seen in Figure 7.3. The starting and finishing positions have to be at least
the minimum separation distance apart, such that the initial and final conditions are feasible.

Aircraft

Destination

Y

X

Figure 7.3: Experiment phase III, multi-aircraft testing in BlueSky.

This experiment is conducted to evaluate how the bi-level model predictive controller behaves when control-
ling higher traffic densities, to provide a conclusion and provide recommendations for future research. The
computation time, loss of separation and the ratio between distance flown and the shortest possible distance
will be evaluated. Three different traffic densities are to be tested; small (2-4 aircraft), medium (5-10 aircraft)
and large (>10 aircraft).
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Preliminary Experiment Results

In this chapter, two sets of experiments are presented. In Section 8.1, results can be found of a series of static
obstacle avoidance tests, when using only a single level decentralized model predictive controller. These tests
are conducted to evaluate how the prediction horizon and control sample time affect the obstacle avoidance
capabilities of the MPC. The second set of experiments is an extension of the static obstacle avoidance tests,
where a single level MPC controller is compared to a bi-level MPC using one or two setpoints constraints for
the decentralized controller. The results of the second experiment set can be found in Sections 8.2. In Section
8.3, the handling of a larger constraint area is presented. The effect of the setpoint sizes is discussed in Section
8.2.3. Finally, 3 different methods of implementing the setpoint principle are explained in Section 8.4. In the
simulations of both experiments, the model parameters of a Boeing 747, are used in the simulation, these
parameters can be found in Table C.1, in Appendix C.

8.1. Experiment 1: Decentralized Static Obstacle Avoidance
During the first experiment set, an aircraft is placed at a starting position [0,0] and is tasked to navigate to-
wards a destination at [100, 100]km. A static obstacle is placed at [50, 50]km. The minimum separation the
aircraft needs to maintain with the obstacle is 5NM, creating a circular forbidden area. The cost function in
this experiment only includes the absolute distance between the aircraft and the final destination.

8.1.1. Experiment 1: Experiment Setup and Performance Metrics
The decentralized control sample time and the decentralized prediction horizon are varied in each exper-
iment to develop a range of suitable prediction horizons and sample times combinations. The dependent
variables are the flight time, fuel consumption, computation time, and feasibility of the solution.

When the aircraft is within a proximity of 5km of its destination the time of flight, the fuel flow and the com-
putation time is determined. Anything after the aircraft reached its destination is not taken into account.

Another metric is introduced to compare the deviation from the shortest path each aircraft has to take.
Since the final waypoint is located at [100, 100]km and the starting position is [0, 0]km, the initial heading
angle is 45 degrees. The shortest path, in this case, is given by the function:

fline(x) = y (8.1)

At every discrete sample time, the Euclidean distance between the aircraft’s location and the shortest path
line is determined, using:

∆path = ∣∣(y − fline(x))
∣∣sin

(
90− tan−1

(
xfinal

yfinal

))
(8.2)

for the derivation of this formula, see Figure 8.1.
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Nominal Path
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Figure 8.1: Derivation of Equation 8.2.

The initial conditions and constraint boundaries for experiment 1 are given in Table 8.1.

Table 8.1: Initial conditions for experiment 1, decentralized static obstacle avoidance

V0 250 m/s
x0, y0 0, 0 km
ϕ0 45 deg

a constraints -0.5, +0.5 m/s2

ψ constraints -25, +25 deg
V constraints 200, 300 m/s

8.1.2. Experiment 1: Simulation Results
The numerical results for each experiment are presented in Table 8.2. The flight time, fuel used, simulation
computation time and average path deviation are given for 16 different combinations of control sample times
and prediction horizons.

Table 8.2: Results experiment 1, decentralized static obstacle avoidance.

∆t Hp Flight Time (s) Fuel (kg) Comp. Time (min) Avg. Deviation (m)
5 5 475 1339 3.61 2930

10 485 1358 3.76 4692
15 475 1309 5.17 3542
20 475 1284 7.33 3472

10 5 490 1354 1.59 4235
10 480 1299 1.76 3904
15 480 1245 2.69 3583
20 480 1184 3.96 3793

15 5 480 1332 0.98 3699
15 480 1243 1.25 3610
15 495 1169 1.97 4285
20 0 0 0 0

20 5 480 1292 0.74 3603
10 480 1202 1.01 3994
15 500 1116 1.45 4681
20 0 0 0 0

The aircraft trajectories corresponding to the first 4 simulations presented in Table 8.2, can be seen in Figures
(8.2-8.5).
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Figure 8.2: Aircraft trajectory with static obstacle, with Hp = 5
and control sample time = 5 seconds.
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Figure 8.3: Aircraft trajectory with static obstacle, with Hp =
10 and control sample time = 5 seconds.

From Figure 8.2, it becomes clear that a look-ahead time of 25 seconds, which is the result of 5 control samples
spaced 5 seconds apart, is insufficient for the aircraft to avoid the forbidden area. Every other combination of
sample time and prediction horizon resulted in a feasible solution where the minimum separation require-
ment is achieved.
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Figure 8.4: Aircraft trajectory with static obstacle, with Hp =
15 and control sample time = 5 seconds.

)����� � ����� ����� 
���� ������ ������ ������
��� �

�

�����

�����

	����

�����

������

������

��
� 
�

�$����&�"!��"$�("!���������� #����� �����

��!�����'#"�!&
��%&����
�$�$��&��$����&"$'

Figure 8.5: Aircraft trajectory with static obstacle, with Hp =
20 and control sample time = 5 seconds.

A close-up version of Figure 8.2 and B.4 can be found in Figure 8.6 and Figure 8.7, respectively.
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Figure 8.6: Close up of the aircraft trajectory around static ob-
stacle, with Hp = 5 and control sample time = 5 seconds.
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Figure 8.7: Close up of the aircraft trajectory around static ob-
stacle, with Hp = 20 and control sample time = 10 seconds.
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In Figures (8.8-8.11), four velocity profiles can be seen, corresponding to the first 4 experiments. The first two
experiments show a deceleration between 100-300 seconds. This might be explained that a minor constraint
violation has occurred that forced the controller to search for a solution.

The velocity profiles verify the working principles of the cost function. The controller initially maximized the
velocity to reduce the distance between the aircraft and its destination. However, once the aircraft gets closer
to its destination, the controller reduces the aircraft velocity to stay near the destination as long as possible.

When using a larger prediction horizon the deceleration is initiated earlier than for a shorter prediction hori-
zon. This effect can clearly be observed when comparing Figures (8.8- 8.11). The remaining 12 velocity pro-
files corresponding to the other experiments can be found in Appendix C.
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Figure 8.8: Aircraft velocity with static obstacle, with Hp = 15
and control sample time = 5 seconds.
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Figure 8.9: Aircraft trajectory with static obstacle, with Hp =
20 and control sample time = 5 seconds.
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Figure 8.10: Aircraft velocity with static obstacle, with Hp = 5
and control sample time = 5 seconds.
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Figure 8.11: Aircraft trajectory with static obstacle, with Hp =
20 and control sample time = 5 seconds.

The absolute distance from the initial shortest path, is visualized in Figures (8.12-8.15). The path deviation
for all 16 experiments show similar behavior, the deviation from the path should converge towards 9.26km
(5NM) around the 5-minute mark of the simulation. All simulations show that the aircraft does not return to
the same heading path after the obstacle has been avoided.
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Figure 8.12: Aircraft distance from nominal trajectory with
static obstacle, with Hp = 5 and control sample time = 5 sec-
onds.
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Figure 8.13: Aircraft distance from nominal trajectory with
static obstacle, with Hp = 10 and control sample time = 5 sec-
onds.
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Figure 8.14: Aircraft distance from nominal trajectory with
static obstacle, with Hp = 15 and control sample time = 5 sec-
onds.
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Figure 8.15: Aircraft distance from nominal trajectory with
static obstacle, with Hp = 20 and control sample time = 5 sec-
onds.

Figures (8.16-8.19), correspond to experiments with a look-ahead time of 300 and 400 seconds. When observ-
ing the trajectories of these experiments it can be observed that the aircraft circles around the destination.
Due to the relatively large look-ahead time of 300 and 400 seconds, respectively. The controller can predict
that when the aircraft flies straight through the waypoint, it will eventually be further away from the destina-
tion than when the aircraft starts circling around the final waypoint, with a minimum turn radius.

It can be seen that the final position of the aircraft in these two simulation runs is closer to the destination
than the other simulation runs where the aircraft flies in a straight line. The trajectories of the remaining 10
simulation runs can be found in Appendix B.
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Figure 8.16: Aircraft trajectory with static obstacle, with Hp =
20 and control sample time = 15 seconds.
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Figure 8.17: Aircraft trajectory with static obstacle, with Hp =
20 and control sample time = 20 seconds.
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Figure 8.18: Aircraft velocity with static obstacle, with Hp = 20
and control sample time = 15 seconds.
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Figure 8.19: Aircraft trajectory with static obstacle, with Hp =
20 and control sample time = 20 seconds.

8.2. Experiment 2: Number of Setpoint Determination

In this section, the setpoint integration tests are presented. The difference between using one and two set-
points is explored and simultaneously compared to a decentralized controller using no setpoints, which is
effectively a single level decentralized controller. These experiments are performed to determine if a differ-
ence in computation time and performance can be detected.

8.2.1. Experiment 2: Setpoint Testing Experiment Setup

In this experiment, an aircraft with known but randomly selected initial condition is placed at a horizontal
position at y =0km, which must fly a trajectory to a given position at y = 200km. At the horizontal line y =
50km, 3 coordinates are selected that have to be avoided with a clearance of at least 5NM, creating circular
obstacles with a radius of 5NM.

The simulation time is 4 minutes per run such that the final position is far out of reach. This is done to
mitigate unwanted behavior where an aircraft circles around its destination, as was observed in Figure 8.16
and Figure 8.19. The initial conditions for the aircraft during these simulations are given in Table 8.3.
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Table 8.3: Initial condition for Experiment 2, bi-level obstacle avoidance.

x0 10 - 90 km
y0 0 km
V0 240 - 280 m/s
p0 -45, +45 deg
xfinal 10 - 90 km
yfinal 200 km

a constraints -0.5, +0.5 m/s2

ψ constraints -25, +25 deg
V constraints V0 −6%, +V0 +25% m/s

Nobstacles 3 -
xobstacles 15 - 85 km
yobstacles 50 km

Ten scenarios are tested for eight different sets of experiments, the experiment sets can be found in Table 8.4.
These eight combinations of prediction horizons and control sample times are carefully chosen, to compare
the effect of each parameter. The product of ∆td and Hpd is equal to two times Hpd , to make sure the second
setpoint falls within the prediction horizon of the decentralized controllers. For the simulation using only
one setpoint, this results in more freedom at later iterations in the prediction horizon, because there is no
setpoint constraint to adhere to.

Table 8.4: Experiment 2, prediction horizon and and control sample time settings.

Experiment Number ∆tc (s) Hpc ∆td (s) Hpd

Experiment 1 30 5 10 6
Experiment 2 30 5 15 4
Experiment 3 30 10 10 6
Experiment 4 60 5 10 12
Experiment 5 60 5 20 6
Experiment 6 60 5 30 4
Experiment 7 60 10 10 12
Experiment 8 60 10 20 6

In each experiment set, different initial conditions with the different obstacle locations are tested. However,
the same set of initial conditions and obstacle locations are repeated for each new experiment set. Similar
case studies can, therefore, be compared for different prediction horizon and sample time combinations.
Every combination is tested 10 times and the resulting fuel consumption, remaining distance, computation
time and the number of constraint violations are recorded.

8.2.2. Experiment 2: Simulation Results

The reason for using obstacles in these tests becomes clear when considering Figures (8.20-8.21). If a straight,
obstacle-free, path is available between the initial position and final position, all three controller methods
yield a similar path, as can be seen in Figure 8.20. However, when heading changes need to be applied to
avoid the forbidden area, the difference between each control method becomes evident, examples can be
found in Figures (8.21-8.23).
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Figure 8.20: Three aircraft trajectories for 0, 1 or 2 setpoints, experi-
ment set 1, initial condition iteration 2.
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Figure 8.21: Three aircraft trajectories for 0, 1 or 2 setpoints, experi-
ment set 8, initial condition iteration 1.
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Figure 8.22: Three aircraft trajectories for 0, 1 or 2 setpoints, experi-
ment set 1, initial condition iteration 6.

−20000 0 20000 40000 60000 80000
x Coordinate (m)

0

20000

40000

60000

80000

y
C

oo
rd

in
at

e
(m

)

Central Controller: Sample Time = 60 (s), Prediction Horizon = 10
Decentralized Controller: Sample Time = 20 (s), Prediction Horizon = 6

Experiment = 8

Setpoints (1 setpoint)

Setpoints (2 setpoint)

Trajectory AC-1, 1 Setpoint

Trajectory AC-1, 2 Setpoints

Trajectory Single Controller

Figure 8.23: Three aircraft trajectories for 0, 1 or 2 setpoints, experi-
ment set 8, initial condition iteration 10.

Different experiment sets for the same initial conditions can show different chosen trajectories. This be-
comes apparent when comparing Figure 8.24 with Figure 8.25. Figure 8.24, shows the simulation result for
experiment set 1 and Figure 8.25 shows the exact same initial conditions and obstacle placement using the
parameters from experiment 7.
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Figure 8.24: Three aircraft trajectories for 0, 1 or 2 setpoints, experi-
ment set 1, initial condition iteration 5.
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Figure 8.25: Three aircraft trajectories for 0, 1 or 2 setpoints, experi-
ment set 7, initial condition iteration 5.

Assessing if the forbidden area constraints have been violated is one of the key performance metrics during
these tests. Two examples of flights where at least one of the control methods violate the forbidden area
constraint are shown in Figures (8.26-8.27). In Figure 8.26, only the method using 2 setpoints was able to
avoid the obstacles, while in the iteration shown in Figure 8.27, the single level controller, as well as the two-
setpoints controller, did not violate the constraint.
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Figure 8.26: Three aircraft trajectories for 0, 1 or 2 setpoints, experi-
ment set 1, initial condition iteration 1.
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Figure 8.27: Three aircraft trajectories for 0, 1 or 2 setpoints, experi-
ment set 1, initial condition iteration 10.

In Figure 8.28, the number of runs in which the forbidden area was not successfully avoided is reported.
From the violation count, it can be concluded that the first 3 experiment sets all violate the forbidden area
constraints. Experiment number 3 has the same look-ahead time window as experiments 4, 5, and 6 of five
minutes. The experiment runs that use a control sample time of 60 seconds at the centralized level (4, 5, 6, 7,
and 8) outperform the 30 seconds control sample time runs (1, 2 and 3) in terms of constraint adherence.
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Figure 8.28: Forbidden area violation count with a setpoint boundary of 1500m.

Two metrics that were evaluated during this experiment are the fuel consumption and the remaining distance
to the final waypoint, shown in Figure 8.29 and Figure 8.30, respectively. In terms of fuel consumption, each
experiment set yields comparable values. This result can be explained because the simulation is ended after
four minutes, far before the final destination has been reached. Every aircraft will, therefore, be cruising at
the maximum velocity, yielding a similar fuel usage.
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Figure 8.29: Fuel consumption per simulation iteration for 8 experiment sets.

The remaining distance spread in Figure 8.30, seems to be higher for the experiment that uses two setpoints
for the decentralized level.
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Figure 8.30: Remaining distance to final destination per simulation iteration for 8 experiment sets.

The difference originates from the different trajectories the controllers pick for zero, one or two setpoints, a
few examples are presented in Figures (8.31-8.34).
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Figure 8.31: Three aircraft trajectories for 0, 1 or 2 setpoints, experi-
ment set 1, initial condition iteration 5.
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Figure 8.32: Three aircraft trajectories for 0, 1 or 2 setpoints, experi-
ment set 2, initial condition iteration 4.
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Figure 8.33: Three aircraft trajectories for 0, 1 or 2 setpoints, experi-
ment set 4, initial condition iteration 8.
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Figure 8.34: Three aircraft trajectories for 0, 1 or 2 setpoints, experi-
ment set 4, initial condition iteration 5.

Figure 8.35, shows the computation times for each experiment set. It can be concluded, that the computation
times for experiments 3, 4, 7, and 8 are more than twice as long as for the other experiment sets. Especially,
during experiment 7, the computational effort is relatively high. This can largely be contributed to the longer
prediction horizons that were used during these simulation runs. However, there is no clear evidence that
this experiment sets also outperforms the faster sets in terms of controller performance when considering
Figure 8.29 and Figure 8.30.
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Figure 8.35: Computation times per simulation iteration for 8 experiment sets.

8.2.3. Experiment 2: Setpoints Boundary Size Influence
In this section, the effect of changing the boundary sizes of the maximum deviation from the setpoint is
tested. The same ten iterations for the 8 experiment sets, presented in Section 8.2 are run for a setpoint
deviation of 1000 meters and 2000 meters (instead of the already tested 1500m, in the previous section. To
compare the relative performance of these three setpoint deviation values, the computation time and the
forbidden area setpoint violation are compared.

When comparing the computation time results presented in Figure 8.35, with Figures (8.36-8.37) no clear dif-
ference is found, the mean for all three boundary sizes test are almost similar. Only during the 7th experiment
set for boundary size 1500m a large outlier of ten minutes is detected.
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Figure 8.36: Computation times for a maximum setpoint boundary size of 1000 meters.
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Figure 8.37: Computation times for a maximum setpoint boundary size of 2000 meters.

The feasibly results for both tests are affected by changing the setpoint size. The experiment using the bound-
ary size of 1000 meters fails to find a feasible solution 4 out of 10 runs for the first experiment, see Figure 8.38.
While the 2000 meters boundary test only fails 2 out of 10 runs for the first experiment set. Furthermore, it
can be seen in Figure 8.39, that every experiment violates the forbidden area constraint at least once, whereas
this was not the case for the 1000 meters tests.
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Figure 8.38: Forbidden area violation count with a setpoint boundary of 1000m.
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Figure 8.39: Forbidden area violation count with a setpoint boundary of 2000m.

8.2.4. Experiment 2: Increase in Experiment Iterations
In this Section, the results from a similar experiment with a larger iteration count are presented. The experi-
ment sets 2, 5 and 6 are repeated 100 times to present a conclusion based on more data. Experiments 5 and
6 were selected because of the promising results in forbidden area avoidance. Experiment 2 was selected
because it showed a large difference between the different controller methods. These experiments yielded
the lowest computation times and were, therefore, best suited for an increase in simulation iterations. The
experiment parameters are repeated in Table 8.5.

Table 8.5: Experiment sets for 100 iterations.

Experiment Number ∆tc (s) Hpc ∆td (s) Hpd

Experiment 1 30 5 15 4
Experiment 2 60 5 20 6
Experiment 3 60 5 30 4

A violin plot showing the computation times for the three different control methods can be found in Fig-
ure 8.40. From this plot can be concluded that the spread in computation times for one and two setpoint
simulations is relatively similar. The computation time for a single level controller is shorter, a logical result
considering that there is no centralized optimization taking place.
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Figure 8.40: Computation time for three different control methods using 100 simulation iterations.

Several conclusions can be drawn from the area violation performance, for the higher number of simulation
runs, presented in Figure 8.41. During experiment set 1, only one centralized setpoint was placed within the
forbidden location and two instances of the decentralized controller violated the constrained. In contrast,
more than 10% of the single setpoint runs yielded infeasible solutions.
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Figure 8.41: Area constraint violation count using 100 simulation iterations.

For experiment set 2 and 3, the opposite result is visible, and the one-setpoint runs seem to outperform the
two setpoint-methods in terms of feasibility. This is partly a result of the longer sample time of the centralized
controller.

This longer sample time places the setpoints far enough apart such that a forbidden area can fall in be-
tween two setpoints, this forces the decentralized controller to steer through the forbidden area, as can be
seen in Figure 8.42. Since the decentralized controller must adhere to conflicting setpoint constraints and
the forbidden area constraint, the infeasible unwanted situation can occur as can be seen in Figure 8.43.
More research must be conducted regarding these results to draw a conclusion.
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Figure 8.42: Three aircraft trajectories for 0, 1 or 2 setpoints, experi-
ment set 2, initial condition iteration 16.
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Figure 8.43: Three aircraft trajectories for 0, 1 or 2 setpoints, experi-
ment set 3, initial condition iteration 16.

8.3. Experiment 3: Larger Forbidden Area

To test if the size of the centralized control sample time is indeed an issue, several tests were conducted to
see the capability of handling larger forbidden areas by the controllers. Figure 8.44 and Figure 8.45, show 2
example trajectories of this experiment.
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Figure 8.44: Larger forbidden area, experiment set 1, initial condition
iteration 3.
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Figure 8.45: Larger forbidden area, experiment set 4, initial condition
iteration 8.

From the constraint violation count, presented in Figure 8.46, can be concluded that the larger forbidden area
causes fewer feasibility issues as a result of a centralized sample time being too large.
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Figure 8.46: Separation violation count for large forbidden area experiment.

8.4. Experiment 4: Single Setpoint Prediction Window Influence
The larger forbidden area experiment presented in Section 8.3 is expanded upon during the tests presented
in this section. In the previous experiments (Sections 8.2.1-8.2.3), the decentralized controller used the same
controller sample time and prediction horizon, for both the one- and two-setpoint methods. Using the same
parameters did entail that the controller using only one setpoint constraint had no setpoint restriction for the
second part of the optimization sequence.

To clarify with an example, when using ∆tc = 60 s the second setpoint corresponds to 120s. When ∆td =
30, Hpd has to be 4, such that the setpoint falls within the time window of the decentralized controller. If only
one setpoint is used, Hpd = 2 would suffice. Now that Hpd = 4 is used, the third and fourth instance of the
optimization corresponding to 90 en 120 seconds do not have this extra setpoint constraint and have more
freedom, which usually results in a heading change towards the final destination, which might be a different
direction than the second setpoint.

It is expected that this extra freedom might have resulted in a worse solution when using only one set-
point. Since the decentralized controller has less information about the general direction of the future cen-
tralized setpoints.

8.4.1. Experiment 4: Final Experiment Setup

This final experiment setup was conducted. During these tests, one circular obstacle is used with a radius of
40km. The simulation length is increased to 6 minutes and three sets of controller parameters are simulated
25 times.

Table 8.6: Experiment sets for testing the influence of setpoint method options 1, 2 and 3.

Experiment Number ∆tc (s) Hpc ∆td (s) Hpd - Option 1 & 2 Hpd - Option 3

Experiment 1 30 5 15 4 2
Experiment 2 60 5 15 8 4
Experiment 3 60 5 20 6 3

The experiments sets presented in Table 8.6 are repeated three times to compare every possible combination
of applying the setpoint constraints. The three different decentralized controller options are visualized using
Figure 8.47.
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Figure 8.47: Representation of comparison tests of three decentralized controller setpoint methods.

Option 1 and option 2 are a representation of the one-setpoint and two-setpoints methods used, in Sections
(8.2.1-8.2.3). This means that the look-ahead window of option 1 was twice as long as the time necessary to
reach the first setpoint.

Option 3, uses a one-setpoint decentralized controller with half of the prediction horizon used in the pre-
vious two methods. Option 3 is compared to both previously used methods, options 1 and 2. The centralized
controller is the same for each of the experiments.

8.4.2. Experiment 4: Final Experiment Setup
The constraint violation results are presented in Figure 8.48. For comparison purposes, the same simulation
instance is also performed with a single level controller using either the longer prediction horizon of option
1 or the shorter prediction horizon of option 3.
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Figure 8.48: Constraint violations for the bi-level controller option 1, 2 and 3 and two versions of a single level controller.

From Figure 8.48, can be concluded that option 1 and option 3, both performed worse than the two-setpoint
method (option 2). Furthermore, it can be seen that the single level controllers have a comparable obstacle
avoidance capability to options 1 and 2. From this result can be seen that the decentralized prediction horizon
is too small to avoid the obstacle and that using just one setpoint is not adequate to improve the performance.
Experiment one indicates the benefit of using two setpoints when comparing the results to the single-level
controllers.

When considering experiments 2 and 3 it can be observed that option 2 and option 3 did not cause a single
violation of the forbidden area constraint, in any of the 25 runs. Whereas option 1 had violated the constraint
twice for each experiment.

It is also interesting to see that option 3 performed slightly better than option 1, during experiment 2 and
3, even though the prediction horizon is smaller.
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It should be noted that the single decentralized controller, using the same prediction horizon as controller op-
tion 3, performed worse by trespassing the forbidden area 19 times. Whereas option 3, succeeded in avoiding
the obstacle for each simulation. This is remarkable since the single decentralized controller and the one-
setpoint bi-level controller use the prediction horizon and control sample time on the decentralized level,
here the influence of the centralized controller becomes evident.

From these three experiments can be concluded that having a prediction horizon that extends further than
the setpoint first setpoint constraint is only beneficial when the second setpoint is implemented as an ad-
ditional constraint. The larger prediction horizon using one setpoint (option 1) even performs worse than
the shorter prediction horizon used by option 3, in some cases. Furthermore, the evidence is clear that the
additional information provided by the centralized controller reduces the violation of the forbidden area con-
straint tremendously, compared to a single level decentralized model predictive controller.

Finally, it can be observed that the single decentralized controller violated the constraint 25 out of 25 times
during experiment 3. In contrast to only 19 out of 25 times during experiment 2. This is remarkable since
they both have a look-ahead time of 60 seconds, yet it appears that the courser time step of experiment set
3, yielded worse results. This proves the concept methodology that adding more detail on the decentral level
might increase the performance of the combined system.





9
Conclusion

In this preliminary report, a bi-level controller was introduced with an integrated centralized model pre-
dictive controller and a decentralized model predictive controller. The bi-level controller was applied for air
traffic control applications and aims to reduce fuel use and flight time while adhering to all safety constraints.

This research aimed to investigate the integrating link between two model predictive control levels that
operate with different prediction horizons using different control sample times, yielding varying levels of
detail. The benefit of combining a centralized and decentralized control level to a single decentralized or
centralized controller was explored. The research question presented in this report read,

“Can a synergy be found between a fast-rate and slow-rate model predictive controller for air
traffic control applications, where the benefits of each controller are combined to improve the
safety, fuel consumption and flight time compared to a single level model predictive controller?”

This question is partly answered by the results found during the development and the preliminary testing
phase. Synergy is achieved between two operational MPC control levels. Both controllers have been inte-
grated and are capable of cooperatively guiding an aircraft past forbidden areas towards their destinations.
The developed control system has been tested and was compared to a single decentralized model predictive
controller. The results were promising and the bi-level controller performs better than the single-level con-
troller in terms of constraint adherence. In future research, the relative performance based on flight time and
fuel usage will be investigated further.

The safety constraint that has already extensively been tested during the preliminary testing phase focuses on
flying around forbidden areas. Several controller prediction horizon and control sample time combinations
were tested, regarding this constraint. Besides, three separate options of combining the prediction horizon
length with either on or two setpoints were investigated.

From these test became clear that using two setpoints is beneficial over the use of one setpoint and that
the prediction horizon should not exceed the first setpoint when only using one setpoint. Furthermore, more
research must be conducted to determine how the flight time and fuel usage is effected before a trade-off can
be made.

The projected result of this Thesis will include a clear answer to all aspects of both research questions. This
means that the metric for comparing fuel flow and flight time will become increasingly important. Before
these parameters become truly meaningful, terminal constraints need to be developed.

Furthermore, experiment phases II and III will be executed to test the performance when multiple air-
craft need to be controlled and separated. During these testing phases, disturbance (wind) handling will be
explored.
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Figure B.1: Aircraft trajectory with static obstacle, with Hp =
5 and control sample time = 10 seconds.
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Figure B.2: Aircraft trajectory with static obstacle, with Hp =
10 and control sample time = 10 seconds.
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Figure B.3: Aircraft trajectory with static obstacle, with Hp =
15 and control sample time = 10 seconds.
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Figure B.4: Aircraft trajectory with static obstacle, with Hp =
20 and control sample time = 10 seconds.
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Figure B.5: Aircraft trajectory with static obstacle, with Hp =
15 and control sample time = 15 seconds.
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Figure B.6: Aircraft trajectory with static obstacle, with Hp =
15 and control sample time = 20 seconds.
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Figure B.7: Aircraft trajectory with static obstacle, with Hp =
5 and control sample time = 15 seconds.
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Figure B.8: Aircraft trajectory with static obstacle, with Hp =
10 and control sample time = 15 seconds.
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Figure B.9: Aircraft trajectory with static obstacle, with Hp =
5 and control sample time = 20 seconds.
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Figure B.10: Aircraft trajectory with static obstacle, with Hp =
10 and control sample time = 20 seconds.
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Figure B.11: Aircraft velocity with static obstacle, with Hp =
15 and control sample time = 10 seconds.
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Figure B.12: Aircraft velocity with static obstacle, with Hp =
20 and control sample time = 10 seconds.
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Figure B.13: Aircraft velocity with static obstacle, with Hp =
15 and control sample time = 10 seconds.
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Figure B.14: Aircraft velocity with static obstacle, with Hp =
20 and control sample time = 10 seconds.
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Figure B.15: Aircraft velocity with static obstacle, with Hp =
15 and control sample time = 15 seconds.
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Figure B.16: Aircraft velocity with static obstacle, with Hp =
20 and control sample time = 15 seconds.
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Figure B.17: Aircraft velocity with static obstacle, with Hp =
15 and control sample time = 15 seconds.
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Figure B.18: Aircraft velocity with static obstacle, with Hp =
15 and control sample time = 20 seconds.
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Figure B.19: Aircraft velocity with static obstacle, with Hp = 5
and control sample time = 20 seconds.
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Figure B.20: Aircraft velocity with static obstacle, with Hp =
10 and control sample time = 20 seconds.

� ��� ��� ��� ��� 	�� 
��
��������

�

����

����


���

����


��

 �
��

��
���

�
��

��
� �

� 
��

� 
��

��
�

������ ��������!������	���������������������

Figure B.21: Aircraft distance from nominal trajectory with
static obstacle, with Hp = 15 and control sample time = 10
seconds.
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Figure B.22: Aircraft distance from nominal trajectory with
static obstacle, with Hp = 20 and control sample time = 10
seconds.
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Figure B.23: Aircraft distance from nominal trajectory with
static obstacle, with Hp = 5 and control sample time = 15 sec-
onds.
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Figure B.24: Aircraft distance from nominal trajectory with
static obstacle, with Hp = 10 and control sample time = 15
seconds.
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Figure B.25: Aircraft distance from nominal trajectory with
static obstacle, with Hp = 5 and control sample time = 10 sec-
onds.
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Figure B.26: Aircraft distance from nominal trajectory with
static obstacle, with Hp = 10 and control sample time = 10
seconds.
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Figure B.27: Aircraft distance from nominal trajectory with
static obstacle, with Hp = 5 and control sample time = 20 sec-
onds.
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Figure B.28: Aircraft distance from nominal trajectory with
static obstacle, with Hp = 10 and control sample time = 20
seconds.
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Figure B.29: Aircraft distance from nominal trajectory with
static obstacle, with Hp = 15 and control sample time = 15
seconds.
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Figure B.30: Aircraft distance from nominal trajectory with
static obstacle, with Hp = 15 and control sample time = 20
seconds.

� ��� ��� ��� ��� 	�� 
��
��������

�

����

����


���

����

�����

�����


��

 �
��

��
���

�
��

��
� �

� 
��

� 
��

��
�

������ ��������!�������������������������	��

Figure B.31: Aircraft distance from nominal trajectory with
static obstacle, with Hp = 20 and control sample time = 15
seconds.
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Figure B.32: Aircraft distance from nominal trajectory with
static obstacle, with Hp = 20 and control sample time = 20
seconds.



C
Appendix C: Boeing 747 Model Parameters

Table C.1: Decentralized and centralized Boeing 747 simulation parameters

B747 Parameters Decentralized Values Centralized Values Unit

S 525.6 525 m2

ρ 0.4582095 0.5 kg/m3

M 289600 0.98 · 289600 kg
k 0.052 0.052 -
CD,0 0.028 0.028 -
Neng 4 4 -
Tstatic 249100 250000 N
A f 0.2929572527069425 0. 3 -
B f 2.0063275516141754 2.0 -
C f 0.0303064648693873 0.03 -
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