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Abstract

Modern geoscience challenges motivate the development of advanced simulation methods for large-
scale geothermal fields, where single- or multi-phase flow is coupled with heat transfer equation in
heterogeneous fractured formations. The state-of-the-art multiscale formulation for fractured media
(F-AMS [1]) develops an efficient approach for flow equation only.

Here, for the first time, the F-AMS formulation is extended to coupled flow-heat equations arising
from single-phase flow in fractured geothermal reservoirs. To this end, the multiscale operator is
obtained based on elliptic basis functions for both pressure and temperature, to preserve the simplicity
and efficiency of the method. ILU(0) 2nd stage smoother is then used to guarantee convergence
to any desired accuracy. Numerical results are presented to systematically analyse our multiscale
approximate solutions compared with the fine scale ones for many challenging cases, including the
outcrop-based geological fractured field. These results show that the developed multiscale formulation
casts a promising framework for the real-field enhanced geothermal formations.
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1
Introduction

Climate change nowadays has become one of the most discussed subjects of global concern. The
United Nations Framework Convention on Climate Change (UNFCCC) has initiated the Paris Agreement
in 2015 to hold the global average temperature increase well below 2∘C, setting 1.5∘C as the goal [5].
One way to reach this objective is to limit or reduce the global CO2 emissions.

A major part of the CO2 in the environment has come (and still is coming) from fossil fuel combustion
to generate energy [6]. This implores us – as geoscientists – to accelerate the shift to cleaner energy
resources (i.e. renewable energy).

Amongst the renewable energy sources, development of geothermal energy is relatively slow, even
though the first power generation from geothermal energy commenced at 1904 in Larderello, Italy [7].
Geothermal has a lot of potentials to be developed even further because of its advantage over other
renewable energy sources, thanks to its relatively steady energy supply.

According to the Geothermal Energy Association (GEA), because of the limited knowledge and
technology in the geology and reservoir engineering, only 6-7% of the global geothermal potential
is utilised [8]. The limited understanding of geothermal subsurface system also prevents optimised
energy production, and therefore many geothermal projects are uneconomic because they could not
pay out the high investment cost. A proper reservoir modelling and simulation could be used as the
tool to improve subsurface understanding of the geothermal reservoirs.

The most important factors in reservoir numerical modelling are the accuracy of the models (i.e. fluid
and rock properties as well as the physics) and efficiency of the simulation. Oftentimes, these factors
have an inverse relationship. Highly accurate model usually leads to high computational cost, and
vice versa. Multiscale simulation is proposed to be a state-of-the-art solution to this issue. Therefore,
this study focuses on formulating accurate physics for coupled pressure and temperature calculation
in single-phase geothermal reservoirs, as well as the implementation of multiscale method to improve
the overall computational efficiency while maintaining the accuracy.

1.1. Fractured Geothermal Reservoirs
A natural geothermal system exploitation needs three key factors: heat, fluid (water and/or steam),

and permeability. There are limited amount of places that are geologically viable to produce economic
geothermal energy [9]. The main reason is the limited permeability in many potential geothermal
fields leading to low production rates. One of the keys to increase production rate is by exploiting
the fractures in the reservoir, because fractures act as highly conductive media, with the permeability
usually orders of magnitude higher than the matrix permeability.

For geothermal reservoirs that are not naturally fractured, the concept of Enhanced Geothermal
Systems (EGS) is introduced. EGS is considered for geothermal systems that have a high potential
of heat generation, but with extremely low or no permeability due to their rock formation properties.
Therefore, to be able to economically extract the heat, fracture networks are necessary and, therefore,
are either generated or activated.

With the major role of fractures in flow and transport characteristics, the demand for accurate
understanding of the coupled mass-heat transfer inside fractured reservoirs is becoming more and

1



2 1. Introduction

more significant. This thesis work is the first step towards full multiscale simulation of geothermal
fields, where a multiscale system is governed for a single-phase fluid flow coupled with heat transfer
in fractured domains. Increasing geothermal power generation from fractured geothermal reservoirs
– including EGS – could lead to unlocking those 93-94% untouched geothermal potential.

1.2. State-of-the-Art Simulation Aspects
In reservoir modelling, accurate consideration of the physical process and efficient simulation strat-

egy are crucially important. In fractured reservoirs, the physics involve calculation of pressure and
temperature in a coupled matrix-fracture system, where explicit consideration of fractures lead to
more reliable simulations. With the increasing complexity and size of the physical model, multiscale
simulation methods are required to be developed to improve the efficiency of the reservoir simulation
with controllable required accuracy. In this section, the state-of-the-art simulation approaches related
to embedded discrete fracture modelling approach and multiscale simulation are revisited, serving as
foundations for this study.

1.2.1. Fracture Modelling
Modelling of fluid flow in fractured reservoirs brings additional complexity, mainly due to the differ-

ence in the scale of the flow conduits and possibility of extreme permeability contrasts between the
matrix and fracture. Many studies have incorporated the existence of fractures in the reservoir model.
One of the earliest works is a dual-porosity approach [10]. In this approach, the reservoir is modelled
as having two continua: matrix and fractures. The matrix is assumed to have high contribution to
the pore volume (primary porosity), but a low contribution to the flow capacity; and, vice versa, the
opposite is considered for the contribution of the fractures (secondary porosity). An illustration of the
dual-porosity approach is shown in figure 1.1.

Figure 1.1: Illustration of dual-porosity reservoir model.

The dual-porosity method is beneficial in terms of its simplified model geometry and hence, efficient
applications. However, the over-simplifications of the model, such as homogenisation of the matrix cells
and the simplified geometry of the fracture networks lead to less accurate results [11].

Figure 1.2: Illustration of unstructured grid model for DFM application.

An alternative approach is developed by explicitly accounting for lower-dimensional fractures using
unstructured grids, with fractures being confined at the matrix grid interfaces. This model is referred
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to as the Discrete Fracture Model (DFM) [11], and illustrated in figure 1.2. DFM has been proven to
provide more accurate simulation results compared to dual-porosity model because of its capability to
accurately capture the transfer of mass or heat between the matrix and fractures based on the fracture
geometry. However, the main disadvantage of this approach is the use of unstructured grid, which
makes the discretisation more complex and not very flexible. Specially, for reservoirs with dynamic
fractures in 3D complex geometrical networks, this method becomes inefficient because the grid needs
to be updated to adapt with the fracture geometry and possibly imposing very small-scale grids.

An alternative DFM method is developed to allow for independent matrix and fracture grids. This
method is called Embedded Discrete Fracture Model (EDFM) [2, 12–16], which allows the matrix and
fracture domain to be discretised on structured grids independent from each other, with a reasonably
accurate coupling formulation between both domains, non-zeros only in the cells that are highlighted
grey in figure 1.3. This approach assumes that the discrete fracture networks are embedded into
the matrix cells, with a connectivity index that is calculated based on the average distance between
matrix and fracture cell and the fracture surface area, to model the mass exchange between matrix
and fracture [12].

Figure 1.3: EDFM grid example, with the blue line representing the fractures, and the shaded grey areas are matrix cells that
have coupling with fractures.

EDFM approach provides relatively simple coupling term between matrix and fracture domain, as
well as flexibility in regards to fracture geometry and discretisation strategy. The simple coupling
between matrix and fracture also benefits the multiscale simulation. As such, EDFM is being used in
this thesis to model lower-dimensional fractures.

1.2.2. Multiscale Method
Simulation of geothermal reservoirs requires (at the very least) calculation of pressure and tem-

perature at large scales with heterogeneous parameters. Both pressure and temperature are global
parameters, meaning that changing the parameters at one cell can result in the change of the solution
everywhere in the domain. Calculations of global parameters are known to be more expensive and
time-consuming. For actual field-scale reservoir simulation, which can extend to many kilometers, the
accuracy of the simulations is limited mainly by computational time and capacity of the computers.
Upscaling is thus performed typically to have a reasonable computational time, at the expense of los-
ing accuracy in the simulation results. Especially for fractured reservoirs, the reliability of excessively
upscaled models is questionable.

To tackle this challenge, multiscale method is developed and extended through several studies
in the literature. This method is an elegant way of constructing accurate coarse-scale systems with
honoring fine-scale heterogeneity, the solutions of which are mapped back into fine scale to preserve
the accuracy [17–20].

Among many developments, multiscale methods have been also extended to include compressible
flows [18, 21]. These extensions differ from each other in the way the local basis functions are con-
structed (i.e., compressible or incompressible) and in the choice of second-stage smoother [20]. The
state-of-the-art multiscale formulation for compressible systems (C-AMS) provides a convenient and
flexible approach which is also being benchmarked against commercial simulators [22]. C-AMS sug-
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gests that for compressible systems, elliptic (incompressible) local basis functions are overall superior
to all many other choices, when computational efficiency for large-scale dynamic systems is consid-
ered. As such, C-AMS generates the full compressible system at the coarse scale, while interpolates its
solution using incompressible basis functions. The high-frequency errors are reduced by ILU(0) as the
2nd stage smoother [22].

For coupled matrix-fracture systems, the state-of-the-art multiscale approach, i.e., F-AMS, develops
a fully flexible coupling strategy from decoupled, partially-coupled, to fully coupled framework [1].
Together with C-AMS, F-AMS serves as the foundation of this study. Here, for the first time, the F-AMS
is being extended for coupled mass-heat transfer in single-fluid-phase fractured media. In this study,
Multiscale Finite Volume (MSFV) framework is used due to its local mass conservation.

1.3. Research Goals
EDFM and multiscale methods have been well developed for pressure calculation. In geothermal

reservoir simulations, formulation of EDFM and multiscale method (F-AMS) for temperature calculation
and their implementation in simulators are also needed. Therefore, the main goals of this research
are:

• Couple flow and heat equation for a single-phase water system in fractured geothermal reservoir.

• Formulate multiscale strategy for temperature calculation in fractured reservoir.

• Develop a simple fractured geothermal reservoir simulator from scratch to be used as proof-
of-concept and to serve as the working prototype for the DARSim1 multiscale simulator, to be
extended to include more complex physics (geomechanics, multi-phase, geochemistry, etc.) for
real-field applications.

Stepwise, the development of this research started with understanding of the mass and energy
balance equations for fractured reservoirs, discussed in chapter 2 and the numerical discretisation
strategy including pressure and temperature coupling strategy which will be discussed in chapter 3.
Then the multiscale strategy for both pressure and temperature calculation will be discussed in chapter
4, and the simulation results will be shown and discussed in chapter 5. The research will be concluded
in chapter 6.

For this research, most of the MATLAB codes were developed by the author from scratch, except the
codes for fracture generation and fracture properties calculation needed for the EDFM method which
were taken from [23]. With the establishment of this simple simulator, as future work, it is desirable to
continue the development by adding more complex physics and other improvements to make it more
physically accurate and efficient.



2
Governing Equations

The simulator developed for this research is based on the conservation of mass and energy for
single-phase flow in heterogeneous fractured porous media. Conservation of mass governs the pressure
(flow) equation, and conservation of energy leads to the temperature (heat) equation. In this study,
single-phase water is considered as the fluid, flowing through rocks with different geological properties
and fracture networks.

This chapter discusses both conservation laws on coupled matrix-fracture system. The fundamental
governing equations are explained in continuum form. The discretisation and coupling strategy for
implementation in the simulator will be discussed in chapter 3.

2.1. Single-Phase Mass Conservation Equation
The mass conservation equation for single-phase water flow is written as

𝜕
𝜕𝑡 (𝜙𝜌፰) − ∇ ⋅ (𝜌፰𝜆፭ ⋅ ∇𝑝) = 𝜌፰𝑞 , (2.1)

where 𝜙 denotes the porosity, 𝜌፰ the water density, 𝜆፭ the water mobility, 𝑝 the pressure, and 𝑞 the
volumetric flow rate or source term. In the equation, the gravity term is neglected for simplification.
Mathematically, 𝜆፭ is defined as

𝜆፭ = 𝜆፰ =
𝑘
𝜇፰

, (2.2)

where 𝑘 denotes the absolute permeability and is purely a rock property, and 𝜇፰ the water viscosity
calculated using equation A.16. In fractures, permeability is calculated with a simple parallel plate
model, and defined as [2]

𝑘፟ = 𝑎ኼ
12 , (2.3)

where 𝑎 denotes the fracture aperture, which is the space between the two fracture plates. In real
field, the aperture can change through out the fracture length, though in our test cases we have only
considered constant values.

For coupled matrix-fracture systems, equation 2.1 is defined for both matrix and fracture domain,
with an additional coupling term as flux exchange term between them. The extended mass balance
equation reads

[ 𝜕𝜕𝑡 (𝜙𝜌፰) − ∇ ⋅ (𝜌፰𝜆፭∇𝑝)]
፦
= [𝜌፰𝑞]፦፰ + [𝜌፰𝑞]፦፟ on Ω፦ ⊂ 𝑅፧ , (2.4)

for matrix, and

[ 𝜕𝜕𝑡 (𝜙𝜌፰) − ∇ ⋅ (𝜌፰𝜆፭∇𝑝)]
፟
= [𝜌፰𝑞]፟፰ + [𝜌፰𝑞]፟፦ on Ω፟ ⊂ 𝑅፧ዅኻ , (2.5)

5
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for fracture, with superscript 𝑚 denoting the matrix domain, 𝑓 the fracture domain, and 𝑤 for well.
Note that the equation for fracture domain is defined in a lower dimensional space than the matrix [1].

The well volumetric flow rate, 𝑞፦፰ and 𝑞፟፰, are calculated using Peaceman well model [24], i.e.,

𝑞፦፰ = 𝑃𝐼 𝜆፭(𝑝፰ − 𝑝፦)
𝑉 = 𝛽፦(𝑝፰ − 𝑝፦) , (2.6)

for matrix, and

𝑞፟፰ = 𝑃𝐼 𝜆፭(𝑝፰ − 𝑝፟)
𝐴 = 𝛽፟(𝑝፰ − 𝑝፟) , (2.7)

for fractures, where 𝑃𝐼 denotes the well productivity index, 𝛽፦ = ፏፈ ᎘ᑥ
ፕ and 𝛽፟ = ፏፈ ᎘ᑥ

ፀ .
In equation 2.4 and 2.5, 𝑞፦፟ and 𝑞፟፦ are the volumetric flow rate between matrix and fracture,

serving as the coupling term for both domain, and defined with

𝑞፦፟ = 𝐶𝐼 𝜆፟ዅ፦(𝑝፟ − 𝑝፦)
𝑉 = 𝜂፦(𝑝፟ − 𝑝፦) , (2.8)

and

𝑞፟፦ = 𝐶𝐼 𝜆፟ዅ፦(𝑝፦ − 𝑝፟)
𝐴 = 𝜂፟(𝑝፦ − 𝑝፟) , (2.9)

where 𝐶𝐼 is the connectivity index between matrix and fracture, 𝜂፦ = ፂፈ ᎘ᑗᎽᑞ
ፕ and 𝜂፟ = ፂፈ ᎘ᑗᎽᑞ

ፀ , and
𝜆፟ዅ፦ is the effective mobility at matrix-fracture interface, calculated using harmonic average.

Note that the well flow rate, 𝑞፦፰ and the coupling term 𝑞፦፟ are normalised with the matrix volume.
On the other hand, 𝑞፟፰ and 𝑞፟፦ are normalised with the fracture area to account for the different
dimension at which matrix and fracture are defined. The normalisation will result in mass conservative
coupling term when integrated, i.e.,

∫
ፕ
𝑞፦፟𝑑𝑉 = −∫

ፀ
𝑞፟፦𝑑𝐴. (2.10)

2.2. Single-Phase Energy Conservation Equation
In this study, local thermal equilibrium between fluid and solid is assumed [25, 26], meaning that

the rock and the fluid have the same temperature at any given location. This assumption might not
be valid for systems with relatively high fluid velocities compared with the conduction time-scale which
is needed for the equilibrium to happen [27]. Consideration of local thermal non-equilibrium is out of
the scope of this research, but should be considered in future research.

The single-phase energy conservation equation assuming local thermal equilibrium is written as
[25]

𝜕
𝜕𝑡 (𝜙𝜌፰𝑢፰ + (1 − 𝜙)𝜌፫𝐶፩፫𝑇) + ∇ ⋅ (𝑢፭ℎ፰) − ∇ ⋅ (𝜆 ⋅ ∇𝑇) = 𝑞ፇ , (2.11)

where subscript 𝑟 denotes rock properties, 𝑢፰ and ℎ፰ the water specific internal energy and specific
enthalpy, respectively, 𝐶፩፫ the rock specific heat, 𝑇 the temperature, 𝑢፭ the Darcy mass flow rate, 𝜆
the average thermal conductivity, and 𝑞ፇ the energy flow rate or source term.

Because local thermal equilibrium is assumed, the average thermal conductivity is calculated using
volume weighted average between water and rock thermal conductivity, i.e.,

𝜆 = 𝜙𝜆፰ + (1 − 𝜙)𝜆፫ . (2.12)

In equation 2.11, the mass flow rate 𝑢፭ is calculated using pressure gradient obtained from the
mass balance equation,

𝑢፭ = −𝜌፰𝜆፭ ⋅ ∇𝑝 . (2.13)
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For coupled matrix-fracture systems, equation 2.11 is extended also with a coupling term between
both domains, written as

[ 𝜕𝜕𝑡 (𝜙𝜌፰𝑢፰ + (1 − 𝜙)𝜌፫𝐶፩፫𝑇) + ∇ ⋅ (𝑢፭ℎ፰) − ∇ ⋅ (𝜆 ⋅ ∇𝑇)]
፦
= [𝑞]፦፟+[𝑞ፇ]፦፟+[𝑞ፇ]፦፰ on Ω፦ ⊂ 𝑅፧ ,

(2.14)

for matrix domain, and

[ 𝜕𝜕𝑡 (𝜙𝜌፰𝑢፰ + (1 − 𝜙)𝜌፫𝐶፩፫𝑇) + ∇ ⋅ (𝑢፭ℎ፰) − ∇ ⋅ (𝜆 ⋅ ∇𝑇)]
፟
= [𝑞]፟፦+[𝑞ፇ]፟፦+[𝑞ፇ]፟፰ on Ω፟ ⊂ 𝑅፧ዅኻ ,

(2.15)

for fracture domain, with superscript 𝑚 denoting the matrix domain, 𝑓 the fracture domain, and 𝑤 for
well.

The well source term is defined as the product of mass flow rate and specific enthalpy of the fluid,

𝑞∗፰ፇ = [𝜌፰𝑞ℎ፰]∗፰ , (2.16)

with 𝑞∗፰ፇ ∈ {𝑞፦፰ፇ , 𝑞፟፰ፇ }, and 𝑞∗፰ is the volumetric well flow rate defined in equation 2.6 and 2.7.
In equation 2.14 and 2.15, the coupling between matrix and fracture is divided into two parts:

conduction and convection. The conduction coupling term 𝑞፦፟ and 𝑞፟፦ are defined analogous to the
matrix-fracture mass transfer, written as

𝑞፦፟ = 𝐶𝐼𝜆፟ዅ፦ (𝑇፟ − 𝑇፦)
𝑉 = 𝜂፦ (𝑇፟ − 𝑇፦) , (2.17)

and

𝑞፟፦ = 𝐶𝐼𝜆፟ዅ፦ (𝑇፦ − 𝑇፟)
𝐴 = 𝜂፟ (𝑇፦ − 𝑇፟) , (2.18)

where the connectivity index 𝐶𝐼 used is the same with the 𝐶𝐼 used in equation 2.8 and 2.9, 𝜂፦ = ፂፈ ᎘ᑗᎽᑞᑔ
ፕ ,

and 𝜂፟ = ፂፈ ᎘ᑗᎽᑞᑔ
ፀ . The convection coupling term, 𝑞፦፟ፇ and 𝑞፟፦ፇ , are defined with

𝑞፦፟ፇ = [𝜌፰𝑞ℎ፰]፦፟ , (2.19)

and

𝑞፟፦ፇ = [𝜌፰𝑞ℎ፰]፟፦ . (2.20)

Note that the convection coupling term is analogous to the well source term defined in equation 2.16.
These convection and conduction heat transfer between matrix and fracture will also result in energy
conservation when integrated.





3
Fine Scale Discretisation and

Coupling Strategy

The discrete form of equations 2.4, 2.5, 2.14, and 2.15 as well as the coupling strategy are presented
in this chapter.

3.1. Fine Scale Discrete System
In this research, the discretisation scheme that will be used for the fine scale model is finite volume

for the spatial discretisation and Euler backward (implicit) method for the time discretisation. This
section explains about the linearisation of the conservation equations, as well as the connectivities
used in the coupling of different domains (i.e. matrix, fractures, wells).

3.1.1. Mass Balance Discretisation
Linearisation

Using Euler backward method, all the unknown parameters are evaluated at time step 𝑛 + 1, and
therefore, equation 2.4 and 2.5 are re-written as

[𝜙
፧ዄኻ

Δ𝑡 − 𝜙፧𝜌፧፰
𝜌፧ዄኻ፰ Δ𝑡 −

1
𝜌፧ዄኻ፰

∇ ⋅ (𝜌፰𝜆፭∇𝑝)፧ዄኻ]
∗
= 𝑞∗፰ + 𝑞∗• , (3.1)

where 𝑞∗፰ ∈ {𝑞፦፰ , 𝑞፟፰} and 𝑞∗• ∈ {𝑞፦፟ , 𝑞፟፦}. Notice that equation 3.1 is the result of dividing equation
2.4 and 2.5 with 𝜌፧ዄኻ፰ .

Due to the non-linearity caused by the density and the porosity (in a compressible rock system),
a linearisation scheme is needed. With Newton linearisation lemma applied, variables at 𝑛 + 1 are
approximated with values at 𝜈 + 1, with 𝜈 denoting known values from previous iteration stage, and
𝜈 + 1 the unknown values that are calculated at the current iteration stage, i.e.,

𝜙፧ዄኻ ≈ 𝜙ዄኻ = 𝜙 + 𝜕𝜙𝜕𝑝 |


(𝑝ዄኻ − 𝑝) , (3.2)

( 1𝜌፰
)
፧ዄኻ

≈ ( 1𝜌፰
)
ዄኻ

= ( 1𝜌፰
)

+
𝜕( ኻ

ᑨ )
𝜕𝑝 |



(𝑝ዄኻ − 𝑝) , and (3.3)

𝑝፧ዄኻ ≈ 𝑝ዄኻ . (3.4)

When convergence is reached, values at 𝜈 are equal to values at 𝜈 + 1 and 𝑛 + 1, due to the fact
that (𝑝ዄኻ − 𝑝) = 0. Substituting equation 3.2, 3.3, and 3.4 into equation 3.1, as well as expanding

9
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𝑞∗• using equation 2.8 and 2.9, and 𝑞∗፰ using equation 2.6 and 2.7 results in

𝐶፩
Δ𝑡 𝑝

∗,ዄኻ − 1
𝜌፰
∇ ⋅ (𝜌፰𝜆፭∇𝑝∗,ዄኻ) +𝛽∗(𝑝∗,ዄኻ −𝑝፰,ዄኻ) + 𝜂∗(𝑝∗,ዄኻ −𝑝•,ዄኻ) = 𝑅𝐻𝑆፩ +

𝐶፩
Δ𝑡 𝑝

∗, , (3.5)

where 𝐶፩ is defined as

𝐶፩ =
𝜕𝜙
𝜕𝑝 |



− 𝜙፧𝜌፧፰
𝜕( ኻ

ᑨ )
𝜕𝑝 |



, (3.6)

and 𝑅𝐻𝑆፩ is defined as

𝑅𝐻𝑆፩ = −
𝜙
Δ𝑡 +

𝜙፧𝜌፧፰
Δ𝑡

1
𝜌፰
. (3.7)

Note that in the diffusive term, the density is still defined at 𝜈, in order to preserve the linearity of
the discretised equation. Using finite volume discretisation, equation 3.5 is integrated over the control
volume,

∫

(
𝐶፩
Δ𝑡 𝑝

∗,ዄኻ)𝑑Ω −∫

( 1𝜌፰

∇ ⋅ (𝜌፰𝜆፭∇𝑝∗,ዄኻ)) 𝑑Ω +∫

𝛽∗ (𝑝∗,ዄኻ − 𝑝፰,ዄኻ) 𝑑Ω

+∫

𝜂∗ (𝑝∗,ዄኻ − 𝑝•,ዄኻ) 𝑑Ω = ∫


(𝑅𝐻𝑆፩ +

𝐶፩
Δ𝑡 𝑝

∗,)𝑑Ω ,
(3.8)

with the diffusive term re-written using Gauss divergence theorem for a computational element Ω, i.e.,

−∫

( 1𝜌፰

∇ ⋅ (𝜌፰𝜆፭∇𝑝∗,ዄኻ)) 𝑑Ω = −
1
𝜌፰
∮
ጁ
(𝜌፰𝜆፭∇𝑝∗,ዄኻ) ⋅ �̄̄��̄�𝑛 𝑑Γ , (3.9)

which is the net influx across the surface of the element. Algebraically, equation 3.8 can be written as

𝐴𝐴𝐴፩ ⋅ 𝑝𝑝𝑝ዄኻ = 𝑓𝑓𝑓፩ , (3.10)

or in expanded form,

[
𝐴𝐴𝐴፦፦፩ 𝐴𝐴𝐴፦፟፩ 𝐴𝐴𝐴፦፰፩
𝐴𝐴𝐴፟፦፩ 𝐴𝐴𝐴፟፟፩ 𝐴𝐴𝐴፟፰፩
𝐴𝐴𝐴፰፦፩ 𝐴𝐴𝐴፰፟፩ 𝐴𝐴𝐴፰፰፩

]



[
𝑝𝑝𝑝፦
𝑝𝑝𝑝፟
𝑝𝑝𝑝፰

]
ዄኻ

= [
𝑓𝑓𝑓፦፩
𝑓𝑓𝑓፟፩
𝑓𝑓𝑓፰፩

]



. (3.11)

Connectivity Index
The coupling term between matrix and fracture domain is defined analogous to well source term.

Instead of 𝑃𝐼, a connectivity index 𝐶𝐼 is used to calculate equation 2.8 and 2.9, and in discrete form is
defined as [12]

𝐶𝐼።ዅ፣ =
𝐴።ዅ፣
⟨𝑑⟩ , (3.12)

where 𝑖 denotes the fracture element, 𝑗 the matrix element, and 𝐴።ዅ፣ the surface area of fracture
element 𝑖 that is connected with matrix 𝑗, and ⟨𝑑⟩ is the average normal distance between the matrix
and fracture. This variable has a dimension of length and due to its dependency on the fracture and
matrix geometry, it is a grid dependent property.

The average distance ⟨𝑑⟩ is calculated with [12]

⟨𝑑⟩ =
∫ፕ 𝑥፧(𝑥𝑥𝑥

ᖣ)𝑑𝑥𝑥𝑥ᖣ
𝑉 , (3.13)

where 𝑥፧ is the distance between the matrix element and the fracture. Most of the times, ⟨𝑑⟩ is
calculated numerically, but for some cases, analytical solutions are available (see figure 3.1).
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(a) ⟨፝⟩  ᑕᑩ
Ꮆ . (b) ⟨፝⟩  ᑕᑩᎴᎳᎼᑕᑩᎴᎴ

Ꮄᑕᑩ . (c) ⟨፝⟩  ᑕᑩ
Ꮅ√Ꮄ

.
(d) ⟨፝⟩  ᑕᑩᑕᑪ

Ꮅ√ᑕᑩᎴᎼᑕᑪᎴ
.

Figure 3.1: Examples of analytical solutions to calculate ⟨፝⟩ in 2D [2].

Figure 3.2: Illustration of fracture intersection.

Fracture Intersection
In fractured reservoirs, fracture networks can intersect each other. Therefore, a formulation is

needed to calculate the connectivity between those networks. A ”star-delta” transformation method
adapted from electrical engineering field is introduced to calculate the transmissibility at fracture inter-
sections [11].

Transmissibility between cell 𝑖 and 𝑗 in figure 3.2 is calculated by [11]

𝑇።፣ ≈
𝛼።𝛼፣

∑፧፤ኻ 𝛼፤
, (3.14)

where 𝑛 is the number of connections in the intersection, and 𝛼። is defined as

𝛼። =
𝐴።𝑘።
𝐷።𝜇።

, (3.15)

where 𝐴። denotes the interface area of control volume 𝑖 (in 2D problems, the fracture aperture of
fracture element 𝑖), 𝑘። the fracture permeability of cell 𝑖, 𝐷። the distance between cell center 𝑖 and the
intersection, and 𝜇። the water viscosity at cell 𝑖.

3.1.2. Energy Balance Discretisation
Linearisation

Using Euler backward method, equation 2.14 and 2.15 are re-written as

[
(𝜙𝜌፰𝑢፰ + (1 − 𝜙)𝜌፫𝐶፩፫𝑇)፧ዄኻ − (𝜙𝜌፰𝑢፰ + (1 − 𝜙)𝜌፫𝐶፩፫𝑇)፧

Δ𝑡 + ∇ ⋅ (𝑢፭ℎ፰)፧ዄኻ − ∇ ⋅ (𝜆 ⋅ ∇𝑇)፧ዄኻ]
∗
=

[𝑞]∗• + [(𝜌፰𝑞ℎ፰)፧ዄኻ]
∗• + [(𝜌፰𝑞ℎ፰)፧ዄኻ]

∗፰ .
(3.16)

Due to the non-linearity caused by the specific internal energy and specific enthalpy, a linearisation
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scheme is needed. With Newton linearisation lemma one obtains

𝑢፧ዄኻ፰ ≈ 𝑢ዄኻ፰ = 𝑢፰ +
𝜕𝑢፰
𝜕𝑇 |



(𝑇ዄኻ − 𝑇) , (3.17)

ℎ፧ዄኻ፰ ≈ ℎዄኻ፰ = ℎ፰ +
𝜕ℎ፰
𝜕𝑇 |



(𝑇ዄኻ − 𝑇) , and (3.18)

𝑇፧ዄኻ ≈ 𝑇ዄኻ . (3.19)

Substituting equation 3.17, 3.18, and 3.19 into equation 3.16 as well as expansion of the matrix-
fracture coupling term results in

𝐶ፓ𝑇∗,ዄኻ − ∇ ⋅ (𝜆∇𝑇∗,ዄኻ) + 𝜂∗ (𝑇∗,ዄኻ − 𝑇•,ዄኻ) = 𝑅𝐻𝑆ፓ + 𝐶ፓ𝑇∗, , (3.20)

where 𝐶ፓ is defined as

𝐶ፓ =
𝜙𝜌፰ Ꭷ፮ᑨᎧፓ |

 + (1 − 𝜙)𝜌፫𝐶፩፫
Δ𝑡 + ∇ ⋅ (𝑢፭

𝜕ℎ፰
𝜕𝑇 |



) − 𝜌፰𝑞∗፰
𝜕ℎ፰
𝜕𝑇 |



− 𝜌፰𝑞∗•
𝜕ℎ፰
𝜕𝑇 |



, (3.21)

and 𝑅𝐻𝑆ፓ is defined as

𝑅𝐻𝑆ፓ = −
𝜙(𝜌፰𝑢፰ − 𝜌፧፰𝑢፧፰) + (1 − 𝜙)𝜌፫𝐶፩፫(𝑇 − 𝑇፧)

Δ𝑡 −∇⋅(𝑢፭ℎ፰)+[𝜌፰𝑞ℎ፰]∗፰+[𝜌፰𝑞ℎ፰]∗• . (3.22)

Using finite volume discretisation, equation 3.20 is integrated over the control volume,

∫

(𝐶ፓ𝑇∗,ዄኻ) 𝑑Ω − ∫


(∇ ⋅ (𝜆∇𝑇∗,ዄኻ)) 𝑑Ω + ∫


𝜂∗ (𝑇∗,ዄኻ − 𝑇•,ዄኻ) 𝑑Ω

= ∫

(𝑅𝐻𝑆ፓ + 𝐶ፓ𝑇∗,) 𝑑Ω ,

(3.23)

with the diffusive term re-written using Gauss divergence theorem for a computational element Ω, i.e.,

−∫

(∇ ⋅ (𝜆∇𝑇∗,ዄኻ)) 𝑑Ω = −∮

ጁ
(𝜆∇𝑇∗,ዄኻ) ⋅ �̄̄��̄�𝑛 𝑑Γ , (3.24)

which is the net influx integrated across the surface area of the flow.
The advective term is also re-written using Gauss divergence theorem as

∫

(∇ ⋅ (𝑢፭ℎ፰)) 𝑑Ω = ∮

ጁ
(𝑢፭ℎ፰) ⋅ �̄̄��̄�𝑛 𝑑Γ . (3.25)

Algebraically, equation 3.23 can be written as

𝐴𝐴𝐴ፓ ⋅ 𝑇𝑇𝑇ዄኻ = 𝑓𝑓𝑓ፓ , (3.26)

or in expanded form,

[
𝐴𝐴𝐴፦፦ፓ 𝐴𝐴𝐴፦፟ፓ 𝐴𝐴𝐴፦፰ፓ
𝐴𝐴𝐴፟፦ፓ 𝐴𝐴𝐴፟፟ፓ 𝐴𝐴𝐴፟፰ፓ
𝐴𝐴𝐴፰፦ፓ 𝐴𝐴𝐴፰፟ፓ 𝐴𝐴𝐴፰፰ፓ

]



[
𝑇𝑇𝑇፦
𝑇𝑇𝑇፟
𝑇𝑇𝑇፰

]
ዄኻ

= [
𝑓𝑓𝑓፦ፓ
𝑓𝑓𝑓፟ፓ
𝑓𝑓𝑓፰ፓ

]



. (3.27)

Note that in the injection well temperature contributes in the linear system calculation, while pro-
duction well temperature is assumed to be equal to the grid block temperature at the well location.
Moreover, the advective term in the energy balance equation, ∇ ⋅ (𝑢፭ℎ፰), is calculated using an upwind
method [26, 28]. In the upwind method, the enthalpy information upstream of the flow is used to
define the value of the enthalpy at the interface (see figure 3.3).

Similarly, the well source term and the convection coupling term between matrix and fracture domain
are calculated using an upwind scheme.

Fracture intersection for energy equation is being treated in a similar manner as for the flow, with
the only addition that here – in energy equation – such a treatment is needed for both conduction and
convection.
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Figure 3.3: Schematic of energy balance advective term at the interface.

Boundary Conditioning
No-flow boundary condition is considered to be a reasonable assumption for pressure calculation. In

temperature calculation, however, there might be some energy flowing into and/or out of the reservoir
domain into the surrounding rocks. The average heat flux through the Earth’s crust of approximately
59 𝑚𝑊/𝑚ኼ is implemented as one of the source terms of the energy balance equation [7]. This value
can also be adjusted to model the reservoir in a more specific location that has a different heat flux
value. Another heat flux occurring due to the temperature gradient with surrounding rocks could also
be assigned at the reservoir boundaries as Neumann boundary condition to account for the heat supply
or heat loss to the surroundings. A detailed heat flux modeling and formulation is outside the scope of
this study, but carried out in a BSc thesis work [29] parallel to this MSc thesis work.

3.2. Coupling Strategy
Assuming that for the single-phase system of our concern, the coupling between the mass and

heat transfer equation is not significant, a sequential implicit approach is being followed. As such, an
outer loop iteration between pressure and temperature solver (see flowchart in figure 3.4) is needed to
account for the co-dependency between both conservation equations. At the end of each outer loop, the
convergence for both pressure and temperature are checked. If the system has reached convergence,
meaning that both pressure and temperature change from the previous sequential iteration are below
the pre-defined tolerance, then the simulation moves forward to the next time step. For multiphase
problems with strong dependency of parameters to geochemical and geomechanical effects, one may
need to consider a fully implicit coupling [30].

The sequential implicit algorithm is shown in figure 3.4. Note that in figure 3.4, 𝜀፬ is the toler-
ance used in the sequential outer loop. Also, figures 3.5 and 3.6 present the procedure for flow and
temperature solver, respectively.
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Start

Read input parameters

Initialise 𝑝𝑝𝑝ኺ and 𝑇𝑇𝑇ኺ and set 𝑝𝑝𝑝፧ ← 𝑝𝑝𝑝ኺ and 𝑇𝑇𝑇፧ ← 𝑇𝑇𝑇ኺ

Time step 𝑛

Assign 𝑝𝑝𝑝 ← 𝑝𝑝𝑝፧ and 𝑇𝑇𝑇 ← 𝑇𝑇𝑇፧

Iteration stage 𝜈

Pressure solver
calculate 𝑝𝑝𝑝ዄኻ

Temperature solver
calculate 𝑇𝑇𝑇ዄኻ

‖𝑝𝑝𝑝ዄኻ −𝑝𝑝𝑝‖ኼ < 𝜀፬
and

‖𝑇𝑇𝑇ዄኻ −𝑇𝑇𝑇‖ኼ < 𝜀፬ ?

Set 𝑝𝑝𝑝፧ዄኻ ← 𝑝𝑝𝑝ዄኻ and 𝑇𝑇𝑇፧ዄኻ ← 𝑇𝑇𝑇ዄኻ

Finish

Assign 𝑝𝑝𝑝፧ ← 𝑝𝑝𝑝፧ዄኻ and 𝑇𝑇𝑇፧ ← 𝑇𝑇𝑇፧ዄኻ Assign 𝑝𝑝𝑝 ← 𝑝𝑝𝑝ዄኻ and 𝑇𝑇𝑇 ← 𝑇𝑇𝑇ዄኻ

Yes

If 𝑛 = 𝑛𝑡 (end of simulation)

No

Outer loop iteration

Figure 3.4: Flowchart of sequential implicit pressure and temperature solver.
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Start

Calculate properties at 𝜈

Construct linear system matrix 𝐴𝐴𝐴፩ and vector 𝑓𝑓𝑓፩

Solve 𝑝𝑝𝑝ዄኻ = (𝐴𝐴𝐴፩)ዅኻ𝑓𝑓𝑓፩

Update properties with 𝑝𝑝𝑝ዄኻ

Mass fluxes and mass exchange calculation
𝑢ዄኻ፭ , [𝑞ዄኻ]∗፰, and [𝑞ዄኻ]∗•

Finish

Figure 3.5: Flowchart of fine scale pressure solver.
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Start

Construct linear system matrix 𝐴𝐴𝐴ፓ and vector 𝑓𝑓𝑓ፓ

Solve 𝑇𝑇𝑇ዄኻ = (𝐴𝐴𝐴ፓ)ዅኻ𝑓𝑓𝑓ፓ

Update properties with 𝑇𝑇𝑇ዄኻ

Finish

Figure 3.6: Flowchart of fine scale temperature solver.



4
Multiscale Method

Existence of fractures brings more degrees of freedom in the linear system and therefore increases
the computational time (and costs). In field scale simulation, upscaling is usually conducted to reduce
the problem size. In a conventional upscaling process, the averaging of the fine scale grid properties
leads to loss of details, especially in heterogeneous reservoirs. Multiscale method, instead, provides a
solution for this issue because it honors the fine-scale heterogeneity in the coarse-scale systems. It is
also a unique method due to its feature that enables conversion of the coarse scale solution back to
the fine scale, in a consistent and conservative manner, therefore providing solutions in both scales,
hence the name ”multiscale”.

This chapter explains the multiscale method for both pressure and temperature calculation, starting
from the construction of the multiscale grids, superposition of pressure and temperature, basis function
formulation, the algebraic description, and the algorithm for its implementation in the simulator.

4.1. Multiscale Grids
The first step in multiscale method is the construction of the multiscale grids. Multiscale grids

consist of primal and dual coarse grids and are imposed on the fine scale grids (see figure 4.1). The
dual coarse grids (shaded orange, Ω፝, in figure 4.1) are overlapping with the other dual coarse grids,
while the primal coarse grids (shaded green, Ω, in figure 4.1) are not. The primal coarse grids contain
one coarse node each, while dual coarse grids are bounded by four coarse nodes (in 2D domain) in
their corners, and therefore their edges are overlapping. Dual coarse grids are used to calculate local
basis functions.

In figure 4.1, different colours are assigned to vertices, edges, and faces. These three elements
are important for the localisation assumption. An element within a certain rank has connections only
to other elements that are directly more superior or inferior. The ranks from highest to lowest are:
vertices, edges, and faces. With these defined ranks, the basis function is solved first for the vertices
defined by

Φ፝ (𝑥።) = 𝛿። = {
1, if 𝑐 = 𝑖
0, if 𝑐 ≠ 𝑖 , (4.1)

where 𝑐 denotes the primal coarse grid, 𝑑 the dual coarse grid, and 𝑥። is one of the coarse node on
the corner of the dual coarse grid. Then, the basis function is solved at the edges by assuming local
1D problem along them (no flux going in or out of the plane perpendicular to the edges), and finally
the faces by using all the edges solution as Dirichlet boundary condition.

Figure 4.2 shows an example of embedded fracture networks on the matrix grid. The dark blue cells
mark the vertices/coarse nodes of the matrix and fracture elements. For multiscale implementation, the
main benefit of using EDFM is that the coarsening strategy of the fracture elements could be entirely
independent of the matrix coarsening. Moreover, the fracture elements could be connected to every
matrix cell, whether it is a vertex, edge, or face.

17
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Figure 4.1: Multiscale grids in 2D with 15 x 15 fine cells and coarsening ratio of 5.

Figure 4.2: Multiscale grids in 2D matrix-fracture system.

4.2. Pressure Multiscale
In this section, the multiscale method for pressure calculation is explained, including the pressure

approximation and basis function formulation.

4.2.1. Pressure Approximation
In F-AMS method, the fine scale solution is approximated based on superposition principle, defined

with

𝑝፦ ≈ 𝑝ᖣ፦ =
ፍᑔᑞ
∑
።ኻ

Φ፦፦። �̆�፦። +
ፍᑗ

∑
።ኻ

ፍᑔᑗᑚ
∑
፣ኻ

Φ፦፟፣ �̆�፟ᑚ፣ +
ፍᑨ
∑
፤ኻ

Φ፦፰፤ �̆�፰፤ , (4.2)

for matrix pressure, and

𝑝፟ ≈ 𝑝ᖣ፟ =
ፍᑔᑞ
∑
።ኻ

Φ፟፦። �̆�፦። +
ፍᑗ

∑
።ኻ

ፍᑔᑗᑚ
∑
፣ኻ

Φ፟፟፣ �̆�
፟ᑚ
፣ +

ፍᑨ
∑
፤ኻ

Φ፟፰፤ �̆�፰፤ , (4.3)

for fracture pressure, where Φ፦∗ denotes basis functions in matrix domain, coupled with domain ∗ (i.e.
matrix (𝑚), fracture (𝑓), or well (𝑤)), Φ፟∗ the basis functions in fracture domain, coupled with domain
∗, 𝑁፦ the number of primal coarse cells in matrix domain, 𝑁፟ the number of fracture networks, 𝑁፟ᑚ
the number of primal coarse cell in fracture 𝑖, and 𝑁፰ the number of wells.

4.2.2. Sub-methods of F-AMS
One of the reasons F-AMS is chosen for this study is that of its flexibility. The division of the

prolongation operator into sub-matrices enables flexibility in choosing the coupling strategy. There are
four different possibilities to include fracture coupling in F-AMS [1], namely, Decoupled-AMS, Frac-AMS,
Rock-AMS, and Coupled-AMS.
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Based on their names, Decoupled-AMS and Coupled-AMS can be easily defined. Decoupled-AMS
formulates basis function without any coupling between matrix and fractures, resulting in 𝒫𝒫𝒫፦፟ = 0 and
𝒫𝒫𝒫፟፦ = 0. Coupled-AMS, on the other hand, is the opposite, resulting in fully coupled basis function
formulation and therefore, 𝒫𝒫𝒫፦፟ and 𝒫𝒫𝒫፟፦ are both non-zero.

Frac-AMS and Rock-AMS are formulated with partial coupling between matrix and fractures. In
Frac-AMS, basis function is formulated with the assumption that the matrix basis function is coupled
with the fractures, but fracture basis function is decoupled from the matrix. On the other hand, Rock-
AMS assumes that matrix basis function is fully decoupled with fractures, but fracture basis function is
coupled with the matrix domain.

In this study, two of these sub-methods are considered: Decoupled-AMS due to its efficient setup
and simple formulation, and Frac-AMS due to the assumption that the main heterogeneity contrast
resulting from the fractures is emphasised. Rock-AMS and Coupled-AMS place more emphasis on
matrix heterogeneity and therefore could be more suitable for highly heterogeneous matrix system.

The general formulation of the basis function is written as

−∇ ⋅ (𝜆∗፭ ⋅ ∇Φ∗•) + ∑
፣∈፨፧፧∗ᑞᑗ

𝜂∗፣𝜉(Φ∗•) + ∑
፣∈፩፞፫፟∗ᑨ

𝛽∗፣ (Φ∗• −Φ፰•) = 0 , (4.4)

where Φ∗• ∈ {Φ፦፦ , Φ፦፟ , Φ፦፰ , Φ፟፦ , Φ፟፟ , Φ፟፰}. The function 𝜉(Φ∗•) is different for each sub-method.
Equation 4.4 is formulated based on an equivalent incompressible system equation. This formulation

is proven to be the most efficient strategy (based on CPU measurements) because it eliminates the
need to frequently update the local basis function, while the fully compressible coarse-scale system
takes care of the global compressibility effects [22].

Decoupled-AMS
In Decoupled-AMS, all basis functions are calculated independent of interactions with other domains,

that is

𝜉(Φ∗•) = 0 ∀Φ∗• ∈ {Φ፦፦ , Φ፦፟ , Φ፦፰ , Φ፟፦ , Φ፟፟ , Φ፟፰} . (4.5)

An example of the pressure basis function calculated using Decoupled-AMS approach is shown in
figure 4.3. In figure 4.3a, it is shown that the matrix basis function is not affected by fracture existence,
as well as fracture basis function not affected by matrix basis function in figure 4.3b. The basis function
forms a partition of unity, meaning that the sum of all the basis function is equal to 1, as shown in
figure 4.3c.

Frac-AMS
In Frac-AMS method, fracture basis function Φ፟፟ is first calculated, decoupled with the matrix basis

function, using

𝜉(Φ፟፟) = 0 . (4.6)

These values are then used as Dirichlet boundary condition to calculate Φ፦፟ and setting

𝜉(Φ፦፟) = Φ፦፟ −Φ፟፟ (4.7)

to account for the connectivity of matrix basis function with the fracture domain. An example is shown
in figure 4.4a, where Φ፟፟ is plotted in the fractures and Φ፦፟ is plotted in the matrix with the coupling
effect clearly observed.

The matrix basis function Φ፦፦ is calculated by setting

𝜉(Φ፦፦) = Φ፦፦ , (4.8)

therefore also accounting for fracture existence. An example is shown in figure 4.4b where the fracture
basis function Φ፟፦ is set to 0, and the matrix basis function Φ፦፦ observing the effect of the fracture
existence, as though the fractures act as flow barriers. The beauty of F-AMS is that it always results in
partition of unity, as shown in figure 4.4c for Frac-AMS approach.
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(a) (b)

(c)

Figure 4.3: Matrix basis function ጓᑞᑞᑔ,ᑕ (a), fracture basis function ጓᑗᑗᑔ,ᑕ (b), and sum of basis functions (c) using
Decoupled-AMS approach.

4.2.3. Fine Scale Flux Reconstruction
In the pressure multiscale method, one of the most important step is the fine scale flux recon-

struction. In MSFV, the mass fluxes are conservative only in coarse scale because of the localisation
assumption. Therefore, the fine scale fluxes need to be reconstructed if the solution is not converged
to machine accuracy [1]. This is especially important in multiphase flows, to accurately predict the sat-
uration front since the fractional flow is sensitive to the flux. In geothermal simulations, conservative
mass flux is also needed in the energy balance calculation. Therefore, it is worth revisiting the fine
scale flux reconstruction in this subsection.

The mass flow rate formulation

𝑢𝑢𝑢ᖣ፭ = −𝜌፰𝜆 ⋅ ∇𝑝ᖣ (4.9)

is valid at the primal coarse cell boundaries 𝜕Ω. The fine scale flux reconstruction can be achieved by
calculating local pressure solution based on

[ 𝜕𝜕𝑡 (𝜙𝜌፰) − ∇ ⋅ (𝜌፰𝜆፭∇𝑝
ᖥ
 )]∗ = [𝜌፰𝑞]∗፰ + [𝜌፰𝑞]∗• on Ω , (4.10)

with the boundary condition

(𝜌፰𝜆፭∇𝑝ᖥ ) ⋅ �̄�𝑛𝑛 = (𝜌፰𝜆፭∇𝑝ᖣ) ⋅ �̄�𝑛𝑛 at 𝜕Ω , (4.11)

where �̄�𝑛𝑛 is the normal vector pointing out of the primal coarse cell boundaries, meaning that the fluxes
at the coarse cell interfaces are used as Neumann boundary condition to calculate the reconstructed
local pressure. The mass flow rate is then reconstructed with

𝑢𝑢𝑢ᖥ፭ = {
−𝜌፰𝜆፭ ⋅ ∇𝑝ᖥ , on Ω
−𝜌፰𝜆፭ ⋅ ∇𝑝ᖣ, at 𝜕Ω

. (4.12)
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(a) (b)

(c)

Figure 4.4: ጓᑞᑗᑔ,ᑕ and ጓᑗᑗᑔ,ᑕ (a), ጓᑞᑞᑔ,ᑕ and ጓᑗᑞᑔ,ᑕ (b), and sum of basis functions (c) using Frac-AMS approach.

4.3. Temperature Multiscale
4.3.1. Temperature Approximation

In this section, the multiscale method for temperature calculation is developed, based on an exten-
sion of the fine-scale temperature approximation as

𝑇፦ ≈ 𝑇ᖣ፦ =
ፍᑔᑞ
∑
።ኻ

Φ፦፦። �̆�፦። +
ፍᑗ

∑
።ኻ

ፍᑔᑗᑚ
∑
፣ኻ

Φ፦፟፣ �̆�፟ᑚ፣ +
ፍᑨ,ᑚᑟᑛ

∑
፤ኻ

Φ፦፰፤ �̆�፰፤ , (4.13)

for matrix, and

𝑇፟ ≈ 𝑇ᖣ፟ =
ፍᑔᑞ
∑
።ኻ

Φ፟፦። �̆�፦። +
ፍᑗ

∑
።ኻ

ፍᑔᑗᑚ
∑
፣ኻ

Φ፟፟፣ �̆�
፟ᑚ
፣ +

ፍᑨ,ᑚᑟᑛ

∑
፤ኻ

Φ፟፰፤ �̆�፰፤ , (4.14)

for fracture, where Φ፦∗ denotes basis functions in matrix domain, coupled with domain ∗ (e.g. matrix
(𝑚), fracture (𝑓), or well (𝑤), Φ፟∗ the basis functions in fracture domain, coupled with domain ∗, 𝑁፦
the number of primal coarse cells in matrix domain, 𝑁፟ the number of fracture networks, 𝑁፟ᑚ the
number of primal coarse cell in fracture 𝑖, and 𝑁፰,።፧፣ the number of injection wells.

4.3.2. Basis Function Formulation
In development of an efficient multiscale method, the proper choice of basis function formulation

is important. The important factors to consider for basis functions are their accuracy in representation
of the underlying heterogeneity (accuracy), and their independency on the primary unknowns for
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adaptivity (efficiency). In this work, these aspects are being considered to formulate temperature
basis functions. As such, In this work, the heat basis functions are formulated based on the conduction
term within the whole energy balance equation. This allows for convenient implementation, as well as
efficient algorithm (since basis functions are not required to be frequently updated).

To account for the fractures in the temperature basis functions, two types of matrix-fracture coupling
formulations are considered: Decoupled-AMS and Frac-AMS. The general formulation of the tempera-
ture basis function can be defined as

−∇ ⋅ (𝜆∗ ⋅ ∇Φ∗•) + ∑
፣∈፨፧፧∗ᑞᑗ

𝜂∗,፣𝜉(Φ∗•) = 0 , (4.15)

where Φ∗• ∈ {Φ፦፦ , Φ፦፟ , Φ፦፰ , Φ፟፦ , Φ፟፟ , Φ፟፰}. The function 𝜉(Φ∗•) is different for each coupling
approach, and is defined the same way as in pressure F-AMS method (see equation 4.5, 4.6, 4.7, and
4.8). Because the basis functions are only dependent on thermal conductivity 𝜆, they do not need to
be updated frequently. As will be seen in the result section, this formulation is shown to be working well
to interpolate the coarse-scale temperature values to the fine scale. Note that these basis functions in
combination of flow basis functions form the full prolongation (interpolation) operator to map between
coarse and fine scale values for flow and heat.

Note that in equation 4.15, there is no coupling between reservoir and well. In pressure basis
function, the coupling between matrix or fracture and well basis function can be easily calculated
using Peaceman well model. In the energy balance equation, however, the coupling between well and
reservoir temperature is done via enthalpy flow rate, and not directly with temperature.

Since the temperature basis function is formulated using similar formulation with pressure basis
function, an example of the basis function would be the same as shown in figure 4.3 and 4.4.

4.4. Algebraic Description
In the multiscale method, there are two important operators, namely the prolongation 𝒫𝒫𝒫 and the

restriction ℛℛℛ operator. The prolongation operator is a matrix constructed by the basis function values
(interpolators) to map the coarse scale to fine scale solution. The restriction operator, on the other
hand, is useful to map from fine scale to coarse scale. In finite-volume formulation, it acts as an
integrator of all the fine scale fluxes, source/sink terms, as well as accumulation inside a primal coarse
cell. In this section, the algebraic description is explained in a generic way for both pressure and
temperature calculation. More specifically, the prolongation operator reads

𝒫𝒫𝒫 = [
𝒫𝒫𝒫፦
𝒫𝒫𝒫፟
𝒫𝒫𝒫፰

] = [
𝒫𝒫𝒫፦፦ 𝒫𝒫𝒫፦፟ 𝒫𝒫𝒫፦፰
𝒫𝒫𝒫፟፦ 𝒫𝒫𝒫፟፟ 𝒫𝒫𝒫፟፰
𝒫𝒫𝒫፰፦ 𝒫𝒫𝒫፰፟ 𝒫𝒫𝒫፰፰

] , (4.16)

where 𝒫𝒫𝒫፦ stores the matrix basis functions Φ፦∗,፝ , i.e.,

𝒫𝒫𝒫፦ =
⎡
⎢
⎢
⎣

⋮ ⋯ ⋮ ⋮ ⋯ ⋮ ⋯ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮
Φ፦፦ኻ ⋯ Φ፦፦ፍᑔᑞ Φ፦፟Ꮃኻ ⋯ Φ፦፟ᎳፍᑔᑗᎳ

⋯ Φ
፦፟ᑅᑗ
ኻ ⋯ Φ

፦፟ᑅᑗ
ፍᑔᑗᑅᑗ

Φ፦፰ኻ ⋯ Φ፦፰ፍᑨ
⋮ ⋯ ⋮ ⋮ ⋯ ⋮ ⋯ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮

⎤
⎥
⎥
⎦
, (4.17)

and 𝒫𝒫𝒫፟ stores the fracture basis functions Φ፟∗,፝, i.e.,

𝒫𝒫𝒫፟ =
⎡
⎢
⎢
⎣

⋮ ⋯ ⋮ ⋮ ⋯ ⋮ ⋯ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮
Φ፟፦ኻ ⋯ Φ፟፦ፍᑔᑞ Φ፟፟Ꮃኻ ⋯ Φ፟፟ᎳፍᑔᑗᎳ

⋯ Φ
፟፟ᑅᑗ
ኻ ⋯ Φ

፟፟ᑅᑗ
ፍᑔᑗᑅᑗ

Φ፟፰ኻ ⋯ Φ፟፰ፍᑨ
⋮ ⋯ ⋮ ⋮ ⋯ ⋮ ⋯ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮

⎤
⎥
⎥
⎦
. (4.18)

In non-fractured reservoirs, the sub-matrices𝒫𝒫𝒫፟∗ and𝒫𝒫𝒫∗፟ are zero matrices, therefore reducing the
prolongation operator to only matrix and well domains. Note also that 𝒫𝒫𝒫∗፰ for temperature calculation
has the column size of 𝑁፰,።፧፣, and 𝒫𝒫𝒫፰∗ has the row size of 𝑁፰,።፧፣ instead of 𝑁፰.
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The MSFV restriction operator on structured grid is defined as

ℛℛℛፅፕ።,፣ = {
1, if fine cell 𝑗 is contained in primal coarse cell 𝑖
0, otherwise

, (4.19)

and in MSFE method, the restriction is defined as the transpose of the prolongation operator,ℛℛℛፅፄ = 𝒫𝒫𝒫ፓ.
Now that both operators are defined, the coarse scale system in equation is written algebraically as

ℛℛℛ𝐴𝐴𝐴𝒫𝒫𝒫�̆�𝑥𝑥ዄኻ/ኼ = ℛℛℛ𝑓𝑓𝑓 , (4.20)

where �̆�𝑥𝑥ዄኻ/ኼ is the coarse scale solution (i.e. pressure or temperature), and the superscript 𝜈 + 1/2,
indicating that this stage will be complemented by a second stage smoother to be explained later.

Note that in equation 4.20, (ℛℛℛ𝐴𝐴𝐴𝒫𝒫𝒫) constructs the coarse system matrix 𝐴𝐴𝐴 . The approximate fine
scale solution is found as

𝑥𝑥𝑥ᖣዄኻ/ኼ = 𝒫𝒫𝒫�̆�𝑥𝑥ዄኻ/ኼ = 𝒫𝒫𝒫(ℛℛℛ𝐴𝐴𝐴𝒫𝒫𝒫)ዅኻℛℛℛ𝑓𝑓𝑓 , (4.21)

or in residual form,

𝛿𝑥𝛿𝑥𝛿𝑥ᖣዄኻ/ኼ = 𝒫𝒫𝒫𝛿𝛿𝛿�̆�𝑥𝑥ዄኻ/ኼ = 𝒫𝒫𝒫(ℛℛℛ𝐴𝐴𝐴𝒫𝒫𝒫)ዅኻℛℛℛ𝑟𝑟𝑟 , (4.22)

where 𝑟𝑟𝑟 is the fine-scale residual and is calculated as 𝑟𝑟𝑟 = 𝑓𝑓𝑓 −𝐴𝐴𝐴𝑥𝑥𝑥ᖣ.

4.5. Algorithm
In each solver, both 𝛿𝑝𝛿𝑝𝛿𝑝ᖣዄኻ/ኼ and 𝛿𝑇𝛿𝑇𝛿𝑇ᖣዄኻ/ኼ are calculated first using multiscale operators (see equa-

tion 4.22), and then a 2፧፝ stage smoother (in this study, ILU(0)) is employed. Here, we employ 5
ILU(0) iterations per stage. This 2-stage multiscale procedure is repeated iteratively until the norm of
residual goes below the prescribed tolerance.

ILU(0) is an incomplete factorisation of a sparse matrix (in this case 𝐴𝐴𝐴) into a lower triangular
matrix 𝐿𝐿𝐿 and upper triangular matrix 𝑈𝑈𝑈 so that 𝐴𝐴𝐴 ≈ 𝐿𝐿𝐿𝑈𝑈𝑈 [31]. Therefore, the second stage can be
expressed as

𝛿𝑥𝛿𝑥𝛿𝑥ᖣዄኼ/ኼ = 𝑈𝑈𝑈ዅኻ(𝐿𝐿𝐿ዅኻ𝑟𝑟𝑟) , (4.23)

with the superscript 𝜈 + 2/2 indicating the second stage index. The approximate fine scale solution
is finally calculated as 𝑥𝑥𝑥ᖣዄኻ = 𝑥𝑥𝑥ᖣ + 𝛿𝑥𝛿𝑥𝛿𝑥ᖣዄኻ/ኼ + 𝛿𝑥𝛿𝑥𝛿𝑥ᖣዄኼ/ኼ, where 𝑥𝑥𝑥ᖣ ∈ {𝑝𝑝𝑝ᖣ, 𝑇𝑇𝑇ᖣ}. The MS algorithms for
pressure and temperature are presented in figure 4.5 and 4.6, respectively.
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Start

Calculate properties at 𝜈

Construct linear system matrix 𝐴𝐴𝐴፩ and vector 𝑓𝑓𝑓፩

Calculate residual
𝑟𝑟𝑟፩ = 𝑓𝑓𝑓፩ −𝐴𝐴𝐴፩𝑝𝑝𝑝ᖣ

Adaptively compute basis function Φ,፝

Solve
𝛿𝑝𝛿𝑝𝛿𝑝ᖣዄኻ/ኼ = 𝒫𝒫𝒫፩(ℛℛℛ፩𝐴𝐴𝐴፩𝒫𝒫𝒫፩)ዅኻℛℛℛ፩𝑟𝑟𝑟፩

Solve 𝛿𝑝𝛿𝑝𝛿𝑝ᖣዄኼ/ኼ by applying smoother

Obtain solution
𝑝𝑝𝑝ᖣዄኻ = 𝑝𝑝𝑝ᖣ +𝛿𝑝𝛿𝑝𝛿𝑝ᖣዄኻ/ኼ +𝛿𝑝𝛿𝑝𝛿𝑝ᖣዄኼ/ኼ

Calculate residual
𝑟𝑟𝑟ዄኻ፩ = 𝑓𝑓𝑓፩ −𝐴𝐴𝐴፩𝑝𝑝𝑝ᖣዄኻ

‖𝑟𝑟𝑟ዄኻ፩ ‖ኼ < 𝜀፩ ?

Update properties with 𝑝𝑝𝑝ᖣዄኻ

Mass fluxes and mass exchange calculation
𝑢ዄኻ፭ , [𝑞ዄኻ]∗፰, and [𝑞ዄኻ]∗•

Finish

Assign 𝑝𝑝𝑝ᖣ ← 𝑝𝑝𝑝ᖣዄኻ

Yes

No

Pressure solver iteration

Figure 4.5: Flowchart of MS pressure solver.
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Start

Construct linear system matrix 𝐴𝐴𝐴ፓ and vector 𝑓𝑓𝑓ፓ

Calculate residual
𝑟𝑟𝑟ፓ = 𝑓𝑓𝑓ፓ −𝐴𝐴𝐴ፓ𝑇𝑇𝑇ᖣ

Adaptively compute basis function Φ,፝
if 𝜆 is not constant

Solve
𝛿𝑇𝛿𝑇𝛿𝑇ᖣዄኻ/ኼ = 𝒫𝒫𝒫ፓ(ℛℛℛፓ𝐴𝐴𝐴ፓ𝒫𝒫𝒫ፓ)ዅኻℛℛℛፓ𝑟𝑟𝑟ፓ

Solve 𝛿𝑇𝛿𝑇𝛿𝑇ᖣዄኼ/ኼ by applying smoother

Obtain solution
𝑇𝑇𝑇ᖣዄኻ = 𝑇𝑇𝑇ᖣ +𝛿𝑇𝛿𝑇𝛿𝑇ᖣዄኻ/ኼ +𝛿𝑇𝛿𝑇𝛿𝑇ᖣዄኼ/ኼ

Update properties with 𝑇𝑇𝑇ᖣዄኻ

Calculate residual
𝑟𝑟𝑟ዄኻፓ = 𝑓𝑓𝑓ፓ −𝐴𝐴𝐴ፓ𝑇𝑇𝑇ᖣዄኻ

‖𝑟𝑟𝑟ዄኻፓ ‖ኼ < 𝜀ፓ ?

Finish

Assign 𝑇𝑇𝑇ᖣ ← 𝑇𝑇𝑇ᖣዄኻ

Yes

No

Temperature solver iteration

Figure 4.6: Flowchart of MS temperature solver.





5
Results and Discussions

In this chapter, numerical results are presented first to validate the EDFM model for coupled flow-
heat equations, and then to investigate the performance of the multiscale simulation strategy for frac-
tured reservoirs.

5.1. Test Case 1: Validation of EDFM Formulation

In this test case, the fine scale EDFM model is validated by comparing it to the result of the fully-
resolved Direct Numerical Simulation (DNS). The DNS result is obtained by using a very fine grid
such that the fractures are captured as equi-dimensional (heterogeneous) objects [2]. The EDFM, on
the other hand, imposes much coarser grids and models the impact of the explicit lower-dimensional
fractures by introducing fracture-matrix connectivities.

As shown in figure 5.1, a ’+’-shaped fracture network is embedded in the middle of a homogeneous
reservoir. The fracture aperture is 0.0101 𝑚, which can be fully resolved by imposing 99 × 99 DNS
grid cells. This aperture leads to the fracture permeability of 𝑘፟ = 8.50 × 10ዅዀ 𝑚ኼ. The simulation
parameters are shown in table 5.1.

Figure 5.1: Geometry of the ’+’-shaped fracture networks crossing the reservoir for test case 1.

27
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Table 5.1: Simulation parameters for test case 1.

Parameters Values Parameters Values
𝐿፱ [𝑚] 1 𝑝ፋ [𝑃𝑎] 2 × 10
𝐿፲ [𝑚] 1 𝑝ፑ [𝑃𝑎] 1 × 10
Δ𝑥 [𝑚] 0.0101 𝐶፩፫ [𝐽/𝑘𝑔 − 𝐾] 920
Δ𝑦 [𝑚] 0.0101 𝜌፫ [𝑘𝑔/𝑚ኽ] 2650
𝑡 [𝑠] 20000 𝜆፫ [𝑊/𝑚 − 𝐾] 1.5
Δ𝑡 [𝑠] 200 𝑇። [𝐾] 500
𝜙 [−] 0.1 𝑇ፋ [𝐾] 300
𝑘 [𝑚ኼ] 10ዅኻ 𝜀፬ [−] 10ዅኼ
𝑝። [𝑃𝑎] 1 × 10

Figures 5.2 and 5.3 present the pressure and temperature solutions obtained from EDFM and DNS
simulators. Note that the EDFM solutions are obtained by imposing only 11 × 11 matrix cells and 14
fracture elements. It is clear that the EDFM solutions are in good agreement with the DNS reference
ones.

(a) EDFM pressure solution (surface plot). (b) EDFM pressure solution (top view).

(c) DNS pressure solution (surface plot). (d) DNS pressure solution (top view).

Figure 5.2: EDFM pressure surface plot (a) and top view (b), and DNS pressure surface plot (c) and top view (d) at ፭  ኼኺኺኺኺ፬
for a reservoir model with the dimension of ኻ ፦ × ኻ ፦. The EDFM model is resolved with the resolution of ኻኻ × ኻኻ matrix cells

and ኻኾ fracture elements, while the DNS model is resolved with the resolution of ዃዃ × ዃዃ matrix cells.

The error norms for pressure and temperature values are calculated based on

‖𝑒፱‖ኼ =
‖𝑥ፄፃፅፌ𝑥ፄፃፅፌ𝑥ፄፃፅፌ −𝑥ፃፍፒ𝑥ፃፍፒ𝑥ፃፍፒ‖ኼ

‖𝑥ፃፍፒ𝑥ፃፍፒ𝑥ፃፍፒ‖ኼ
, (5.1)

assuming ‖𝑥ፃፍፒ𝑥ፃፍፒ𝑥ፃፍፒ‖ኼ ≠ 0, where 𝑥𝑥𝑥 is flow rate 𝑞𝑞𝑞 for pressure and enthalpy flux 𝑞𝑞𝑞ፇ for temperature at both
left and right boundary faces. The error norms for both pressure and temperature at different time
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steps are plotted, normalised with the Pore Volume Injected (PVI), and shown in figure 5.4. This figure
also presents the EDFM error study at different times for the case when 33×33 EDFM grids are imposed,
with 40 fracture elements. More specifically, the error is due to: (1) significant difference between the
grid resolutions imposed by each method and (2) the error of EDFM fracture model. Nevertheless, the
two approach are in good agreement. Note that a more consistent extension of EDFM is being recently
introduced as Projection-based EDFM (pEDFM), where the grid convergence study for both EDFM and
pEDFM is also studied [32].

(a) EDFM temperature solution (surface plot). (b) EDFM temperature solution (top view).

(c) DNS temperature solution (surface plot). (d) DNS temperature solution (top view).

Figure 5.3: EDFM temperature surface plot (a) and top view (b), and DNS temperature surface plot (c) and top view (d) at
፭  ኼኺኺኺኺ፬ for reservoir model with the dimension of ኻ ፦ × ኻ ፦. The EDFM model is resolved with the resolution of ኻኻ × ኻኻ

matrix cells and ኻኾ fracture elements, while the DNS model is resolved with the resolution of ዃዃ × ዃዃ matrix cells.

Figure 5.4: Error norm of EDFM pressure and temperature solution at different times with different grid resolutions: ኻኻ × ኻኻ
(left) and ኽኽ × ኽኽ (right).
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5.2. Test Case 2: Homogeneous Reservoir with a Diagonal Frac-
ture

A quarter of a five spot test case is considered in a homogeneous reservoir with a diagonal fracture.
The simulation parameters are shown in table 5.2. EDFM imposes 85 fracture and 99 × 99 matrix
elements. The geometry of the fracture within the reservoir is shown in figure 5.5. The multiscale
simulator imposes 9×9 coarse grids for matrix and 8 for fractures with two different coupling strategies
for basis function calculation.

Table 5.2: Simulation parameters for test case 2.

Parameters Values Parameters Values
𝐿፱ [𝑚] 99 𝑝።፧፣ [𝑃𝑎] 2 × 10
𝐿፲ [𝑚] 99 𝑝፩፫፨፝ [𝑃𝑎] 1 × 10
Δ𝑥 [𝑚] 1 𝐶፩፫ [𝐽/𝑘𝑔 − 𝐾] 840
Δ𝑦 [𝑚] 1 𝜌፫ [𝑘𝑔/𝑚ኽ] 2700
𝐶𝑜𝑎𝑟𝑠𝑒𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜 [−] 11 𝜆፫ [𝑊/𝑚 − 𝐾] 2.9
𝑡 [𝑦𝑒𝑎𝑟𝑠] 1 𝑇። [𝐾] 500
𝜙 [−] 0.15 𝑇።፧፣ [𝐾] 300
𝑘 [𝑚ኼ] 10ዅኻኾ 𝜀፬ [−] 10ዅኼ
𝑃𝐼 [𝑚] 10 𝜀፩ [−] 10ዅዀ
𝑝። [𝑃𝑎] 1 × 10 𝜀ፓ [−] 10ዅኻ

Figure 5.5: Geometry of a single diagonal fracture crossing the reservoir for test case 2.

Figures 5.6 and 5.7 show the converged solution of both fine scale reference as well as multiscale
pressure and temperature. The white lines shown in the plots are the primal coarse cell boundaries. The
relative error norms of the multiscale solution obtained are ‖𝑒፩‖ኼ = 2.65×10ዅ and ‖𝑒ፓ‖ኼ = 1.62×10ዅ
(Decoupled-AMS), and ‖𝑒፩‖ኼ = 2.18×10ዅ and ‖𝑒ፓ‖ኼ = 1.58×10ዅ (Frac-AMS). It is shown that both
Decoupled-AMS and Frac-AMS result in very good approximations and therefore, very low errors.

The multiscale pressure and temperature solutions at the first iteration (before smoothing) are
also presented in figure 5.8 and 5.9, respectively, to show that the multiscale provides very good
approximations even with no 2nd stage smoother nor any other (inner and outer) iteration employed.
These results are also compared to the reference fine scale solutions, demonstrating the accuracy of
the developed multiscale formulation.

Decoupled-AMS for pressure calculation results in slightly higher error at the fracture tips, where –
as expected – the interaction of matrix and fracture domain is relatively high. Note that the temperature
field experiences a rapid change in the location of the fracture, due to rapid transport of cold water
through the fractures. As such, the significant temperature contrast is created fairly quickly throughout
the reservoir, leading to strong nonlinear time-dependent solution field. This is clear from results
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presented in figure 5.7. Nevertheless, as shown, the multiscale method can represent the complex
solution field accurately, even with no smoothing stage.

(a)

(b) (c)

(d) (e)

Figure 5.6: Fine-scale reference pressure with ዃዃ × ዃዃ matrix and ዂ fracture elements (a) and multiscale approximate
pressure solutions obtained using Decoupled-AMS (b) and Frac-AMS (d) methods with ዃ × ዃ coarse matrix and ዂ fracture grid

cells at convergence. The corresponding relative error norms (c and e) are ‖፞ᑡ‖Ꮄ  ኼ.ዀ × ኻኺᎽᎷ (Decoupled-AMS) and
‖፞ᑡ‖Ꮄ  ኼ.ኻዂ × ኻኺᎽᎷ (Frac-AMS).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.7: Fine-scale (a and b) reference temperature obtained with ዃዃ × ዃዃ grid cells and ዂ fracture elements, and
multiscale approximate temperature solutions obtained using Decoupled-AMS (c and d) and Frac-AMS (e and f) methods in
surface plot (left column) and top view (right column) with ዃ × ዃ coarse matrix and ዂ fracture grid cells at convergence. The

corresponding relative error norms (g and h) are ‖፞ᑋ‖Ꮄ  ኻ.ዀኼ × ኻኺᎽᎷ (Decoupled-AMS) and ‖፞ᑋ‖Ꮄ  ኻ.ዂ × ኻኺᎽᎷ (Frac-AMS).
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At the first iteration stage, the relative error norms of the multiscale solution obtained before
smoothing are ‖𝑒፩‖ኼ = 0.0081 and ‖𝑒ፓ‖ኼ = 0.0343 (Decoupled-AMS), and ‖𝑒፩‖ኼ = 0.0016 and
‖𝑒ፓ‖ኼ = 0.0198 (Frac-AMS). After 1 stage of smoothing, the errors are reduced to ‖𝑒፩‖ኼ = 0.0076
and ‖𝑒ፓ‖ኼ = 0.0146 (Decoupled-AMS) and ‖𝑒፩‖ኼ = 0.0008 and ‖𝑒ፓ‖ኼ = 0.0035 (Frac-AMS).

(a)

(b) (c)

(d) (e)

Figure 5.8: Fine-scale reference pressure with ዃዃ × ዃዃ matrix and ዂ fracture elements (a) and multiscale approximate
pressure solutions obtained using Decoupled-AMS (b) and Frac-AMS (d) methods with ዃ × ዃ coarse matrix and ዂ fracture grid

cells at the first iteration stage before smoothing. The corresponding relative error norms (c and e) are ‖፞ᑡ‖Ꮄ  ኺ.ኺኺዂኻ
(Decoupled-AMS) and ‖፞ᑡ‖Ꮄ  ኺ.ኺኺኻዀ (Frac-AMS). After 1 stage of smoothing these errors reduce to ‖፞ᑡ‖Ꮄ  ኺ.ኺኺዀ

(Decoupled-AMS) and ‖፞ᑡ‖Ꮄ  ኺ.ኺኺኺዂ (Frac-AMS).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.9: Fine-scale (a and b) reference temperature obtained with ዃዃ × ዃዃ grid cells and ዂ fracture elements, and
multiscale approximate temperature solutions obtained using Decoupled-AMS (c and d) and Frac-AMS (e and f) methods in
surface plot (left column) and top view (right column) with ዃ × ዃ coarse matrix and ዂ fracture grid cells at the first iteration

stage before smoothing. The corresponding relative error norms (g and h) are ‖፞ᑋ‖Ꮄ  ኺ.ኺኽኾኽ (Decoupled-AMS) and
‖፞ᑋ‖Ꮄ  ኺ.ኺኻዃዂ (Frac-AMS). After 1 stage of smoothing these errors reduce to ‖፞ᑋ‖Ꮄ  ኺ.ኺኻኾዀ (Decoupled-AMS) and

‖፞ᑋ‖Ꮄ  ኺ.ኺኺኽ (Frac-AMS).
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The partially coupled approach (Frac-AMS) leads to lower errors compared to Decoupled-AMS, es-
pecially in the area surrounding the fracture. However, it does not bring much improvements. The
errors obtained using Decoupled-AMS are not significant and could be resolved with several smoothing
and iterations. A more detailed performance comparison for both method is needed to conclusively
determine the most efficient strategy.

5.3. Test Case 3: Heterogeneous Reservoir with Random Frac-
ture Networks

A line drive test case is considered in a heterogeneous reservoir with random fracture networks. The
𝑙𝑜𝑔ኻኺ of permeability and average thermal conductivity are plotted in figure 5.10, and the simulation
parameters are shown in table 5.3. EDFM imposes 391 fracture and 150 × 150 matrix elements.
The geometry of the fractures within the reservoir is shown in figure 5.11. The multiscale simulator
imposes 10 × 10 coarse grids for matrix and 26 for fractures with two different coupling strategies for
basis function calculation.

Figure 5.10: ፋ፨፠ᎳᎲ of permeability (left) and average thermal conductivity (b) for a reservoir model with the dimension of
ኻኺ ፦ × ኻኺ ፦, with the fine scale resolution of ኻኺ × ኻኺ cells for test case 3.

Table 5.3: Simulation parameters for test case 3.

Parameters Values Parameters Values
𝐿፱ [𝑚] 150 𝑝።፧፣ [𝑃𝑎] 2 × 10
𝐿፲ [𝑚] 150 𝑝፩፫፨፝ [𝑃𝑎] 1 × 10
Δ𝑥 [𝑚] 1 𝐶፩፫ [𝐽/𝑘𝑔 − 𝐾] 760
Δ𝑦 [𝑚] 1 𝜌፫ [𝑘𝑔/𝑚ኽ] 2160
𝐶𝑜𝑎𝑟𝑠𝑒𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜 [−] 15 𝑇። [𝐾] 500
𝑡 [𝑦𝑒𝑎𝑟𝑠] 0.75 𝑇።፧፣ [𝐾] 300
𝜙 [−] 0.1 𝜀፬ [−] 10ዅኼ
𝑃𝐼 [𝑚] 10 𝜀፩ [−] 10ዅዀ
𝑝። [𝑃𝑎] 1 × 10 𝜀ፓ [−] 10ዅኻ

Figure 5.11: Geometry of random fracture networks for test case 3.
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Figures 5.12 and 5.13 show the converged solution of both fine scale reference as well as multiscale
pressure and temperature. The relative error norms of the multiscale solution obtained are ‖𝑒፩‖ኼ =
9.27×10ዅዀ and ‖𝑒ፓ‖ኼ = 2.10×10ዅ (Decoupled-AMS), and ‖𝑒፩‖ኼ = 8.08×10ዅዀ and ‖𝑒ፓ‖ኼ = 1.59×10ዅ
(Frac-AMS).

(a)

(b) (c)

(d) (e)

Figure 5.12: Fine-scale reference pressure with ኻኺ × ኻኺ matrix and ኽዃኻ fracture elements (a) and multiscale approximate
pressure solutions obtained using Decoupled-AMS (b) and Frac-AMS (d) methods with ኻኺ × ኻኺ coarse matrix and ኼዀ fracture
grid cells at convergence. The corresponding relative error norms (c and e) are ‖፞ᑡ‖Ꮄ  ዃ.ኼ × ኻኺᎽᎸ (Decoupled-AMS) and

‖፞ᑡ‖Ꮄ  ዂ.ኺዂ × ኻኺᎽᎸ (Frac-AMS).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.13: Fine-scale (a and b) reference temperature obtained with ኻኺ × ኻኺ grid cells and ኽዃኻ fracture elements, and
multiscale approximate temperature solutions obtained using Decoupled-AMS (c and d) and Frac-AMS (e and f) methods in

surface plot (left column) and top view (right column) with ኻኺ×ኻኺ coarse matrix and ኼዀ fracture grid cells at convergence. The
corresponding relative error norms (g and h) are ‖፞ᑋ‖Ꮄ  ኼ.ኻኺ × ኻኺᎽᎷ (Decoupled-AMS) and ‖፞ᑋ‖Ꮄ  ኻ.ዃ × ኻኺᎽᎷ (Frac-AMS).
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Again, the multiscale pressure and temperature solutions at the first iteration (before smooth-
ing) are also presented in figure 5.14 and 5.15, respectively. The multiscale solutions obtained using
Decoupled-AMS and Frac-AMS do not differ significantly. The first solution before smoothing is shown
to approximate the shape of the fine scale solution really well, even though there are still some errors.
For Decoupled-AMS, these errors are slightly higher especially near the fractures.

(a)

(b) (c)

(d) (e)

Figure 5.14: Fine-scale reference pressure with ኻኺ × ኻኺ matrix and ኽዃኻ fracture elements (a) and multiscale approximate
pressure solutions obtained using Decoupled-AMS (b) and Frac-AMS (d) methods with ኻኺ × ኻኺ coarse matrix and ኼዀ fracture
grid cells at the first iteration stage before smoothing. The corresponding relative error norms (c and e) are ‖፞ᑡ‖Ꮄ  ኺ.ኺኻዂኻ

(Decoupled-AMS) and ‖፞ᑡ‖Ꮄ  ኺ.ኺኼኺዀ (Frac-AMS). After 1 stage of smoothing these errors reduce to ‖፞ᑡ‖Ꮄ  ኺ.ኺኻኼ
(Decoupled-AMS) and ‖፞ᑡ‖Ꮄ  ኺ.ኺኼኺኾ (Frac-AMS)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.15: Fine-scale (a and b) reference temperature obtained with ኻኺ × ኻኺ grid cells and ኽዃኻ fracture elements, and
multiscale approximate temperature solutions obtained using Decoupled-AMS (c and d) and Frac-AMS (e and f) methods in

surface plot (left column) and top view (right column) with ኻኺ × ኻኺ coarse matrix and ኼዀ fracture grid cells at the first iteration
stage before smoothing. The corresponding relative error norms (g and h) are ‖፞ᑋ‖Ꮄ  ኺ.ኺኼዂ (Decoupled-AMS) and
‖፞ᑋ‖Ꮄ  ኺ.ኺኽኺዂ (Frac-AMS). After 1 stage of smoothing these errors reduce to ‖፞ᑋ‖Ꮄ  ኺ.ኺኺዂኻ (Decoupled-AMS) and

‖፞ᑋ‖Ꮄ  ኺ.ኺኺዃኻ (Frac-AMS).
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The relative error norms of the multiscale solutions before smoothing are ‖𝑒፩‖ኼ = 0.0181 and
‖𝑒ፓ‖ኼ = 0.0285 (Decoupled-AMS), and ‖𝑒፩‖ኼ = 0.0206 and ‖𝑒ፓ‖ኼ = 0.0308 (Frac-AMS). After smooth-
ing, the errors reduce to ‖𝑒፩‖ኼ = 0.0172 and ‖𝑒ፓ‖ኼ = 0.0081 (Decoupled-AMS) and ‖𝑒፩‖ኼ = 0.0204
and ‖𝑒ፓ‖ኼ = 0.0091 (Frac-AMS). Note that, as well as the fracture-matrix coupling and nonlinearity of
the solution space, the heterogeneity of the reservoir is also one of the factors affecting the errors.
Nevertheless, this test case also shows that the multiscale method is highly capable to provide accurate
solutions even in presence of highly heterogeneous permeability fields.

5.4. Test Case 4: Heterogeneous Reservoir with Dense Fracture
Networks from Outcrop Data

A quarter of a five spot test case is considered in a heterogeneous reservoir with dense and complex
fracture networks taken (by applied geologists of TU Delft) from outcrop data in Brazil [3]. The 𝑙𝑜𝑔ኻኺ of
permeability and average thermal conductivity are plotted in figure 5.16, and the simulation parameters
are shown in table 5.4. EDFM generates 3860 fracture and 100 × 100 matrix elements. The geometry
of the fractures within the reservoir is shown in figure 5.17. The multiscale simulator imposes 10 × 10
coarse grids for matrix and 386 for fractures. For this test case, all the results presented are using
Decoupled-AMS method.

Figure 5.16: ፋ፨፠ᎳᎲ of permeability (left) and average thermal conductivity (right) for reservoir model with the dimension of
ኻኺኺ ፦ × ኻኺኺ ፦, with the fine scale resolution of ኻኺኺ × ኻኺኺ cells for test case 4.

Table 5.4: Simulation parameters for test case 4.

Parameters Values Parameters Values
𝐿፱ [𝑚] 100 𝑝።፧፣ [𝑃𝑎] 2 × 10
𝐿፲ [𝑚] 100 𝑝፩፫፨፝ [𝑃𝑎] 1 × 10
Δ𝑥 [𝑚] 1 𝐶፩፫ [𝐽/𝑘𝑔 − 𝐾] 827
Δ𝑦 [𝑚] 1 𝜌፫ [𝑘𝑔/𝑚ኽ] 2600
𝐶𝑜𝑎𝑟𝑠𝑒𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜 [−] 10 𝑇። [𝐾] 500
𝑡 [𝑦𝑒𝑎𝑟𝑠] 0.25 𝑇።፧፣ [𝐾] 300
𝜙 [−] 0.1 𝜀፬ [−] 10ዅኼ
𝑃𝐼 [𝑚] 10 𝜀፩ [−] 10ዅዀ
𝑝። [𝑃𝑎] 1 × 10 𝜀ፓ [−] 10ዅኻ
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Figure 5.17: Fracture geometry taken from outcrop data [3].

Figures 5.18 and 5.19 show the converged solution of both fine scale reference as well as multiscale
pressure and temperature. The relative error norms of the multiscale solution obtained are ‖𝑒፩‖ኼ =
8.22 × 10ዅዀ and ‖𝑒ፓ‖ኼ = 7.07 × 10ዅዀ.

(a) (b)

(c)

Figure 5.18: Fine-scale reference pressure with ኻኺኺ × ኻኺኺ matrix and 3860 fracture elements (a) and multiscale approximate
pressure solution obtained using Decoupled-AMS (b) method with ኻኺ × ኻኺ coarse matrix and ኽዂዀ fracture grid cells at

convergence. The corresponding relative error norm (c) is ‖፞ᑡ‖Ꮄ  ዂ.ኼኼ × ኻኺᎽᎸ.
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(a) (b)

(c) (d)

(e)

Figure 5.19: Fine-scale (a and b) obtained with ኻኺኺ × ኻኺኺ grid cells and ኽዂዀኺ fracture elements, and multiscale approximate
temperature solution obtained using Decoupled-AMS (c and d) method in surface plot (left column) and top view (right

column) with ኻኺ × ኻኺ coarse matrix and ኽዂዀ fracture grid cells at convergence. The corresponding relative error norm (e) is
‖፞ᑋ‖Ꮄ  .ኺ × ኻኺᎽᎸ.

The multiscale solutions for both pressure and temperature at the first iteration stage before
smoothing, along with the fine scale reference solutions for comparison, are shown in figure 5.20
and 5.21. The corresponding relative error norms before smoothing are ‖𝑒፩‖ኼ = 0.0111 and ‖𝑒ፓ‖ኼ =
0.0467, which are relatively low for a complex model. After smoothing, the errors are further reduced
to ‖𝑒፩‖ኼ = 0.0110 and ‖𝑒ፓ‖ኼ = 0.0180.

From the results obtained, it can be concluded that Decoupled-AMS method gives reasonably good
approximations, even before the smoothing stage for a heterogeneous system and very dense fracture
networks.
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(a) (b)

(c)

Figure 5.20: Fine-scale reference pressure with ኻኺኺ × ኻኺኺ matrix and 3860 fracture elements (a) and multiscale approximate
pressure solution obtained using Decoupled-AMS (b) method with ኻኺ × ኻኺ coarse matrix and ኽዂዀ fracture grid cells at the first
iteration stage before smoothing. The corresponding relative error norm (c) is ‖፞ᑡ‖Ꮄ  ኺ.ኺኻኻኻ. After 1 stage of smoothing this

error reduces to ‖፞ᑡ‖Ꮄ  ኺ.ኺኻኻኺ.
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(a) (b)

(c) (d)

(e)

Figure 5.21: Fine-scale (a and b) obtained with ኻኺኺ × ኻኺኺ grid cells and ኽዂዀኺ fracture elements, and multiscale approximate
temperature solution obtained using Decoupled-AMS (c and d) in surface plot (left column) and top view (right column) with
ኻኺ × ኻኺ coarse matrix and ኽዂዀ fracture grid cells at the first iteration stage before smoothing. The corresponding relative error

norm (e) is ‖፞ᑋ‖Ꮄ  ኺ.ኺኾዀ. After 1 stage of smoothing this error reduces to ‖፞ᑋ‖Ꮄ  ኺ.ኺኻዂኺ.

5.5. Remarks
Although we employed the MSFV iterations to reach convergence in our sequential implicit frame-

work, one can stop iterations before convergence is reached. The tolerance to stop iterations of a
conservative MS solver needs to be defined based on the influence of the solution in the overall ac-
curacy of the coupled solutions, the stability of the time-dependent solutions, and the uncertainty
within the parameters. Similar to previous studies for coupled flow and transport [33], such a study is
needed for coupled P-T as a future work. Specially, in presence of strong coupling one may consider
formulating a multiscale methodology for fully-implicit systems [30, 34].



6
Conclusions

In this research project, a multiscale method for coupled single-phase flow-heat equation in frac-
tured reservoirs was developed. The coupling between the equations was treated by a sequential
implicit framework, where both pressure and temperature systems were solved by a multiscale finite
volume method. The multiscale formulation was enriched due to the presence of the fractures, with two
coupling approaches for local basis functions of each solver. An embedded discrete fracture modeling
(EDFM) approach was adapted to the framework, which allows for independent grids for matrix and
fractures. This further facilitated the convenient multiscale formulation and implementation, as totally
independent coarse grids were also imposed on matrix and fractures. Test cases were performed first
to validate the implementation of the simulator (via comparing its results with a DNS approach), and
then to systematically assess the performance of the multiscale method for heterogeneous and highly
fractured media. A fracture formation from a real-field outcrop was also considered to illustrate the
capacity of the algorithm in addressing complex fracture networks.

As for the multiscale basis functions, to exploit the maximum efficiency, the temperature basis func-
tion was formulated based on the elliptic part of the energy conservation equation (i.e. the conduction
term). Numerical results showed that such an approach is well suited for the considered single-phase
fluid-dynamic system, i.e., it leads to accurate results even without smoothing stage.

This work has developed a robust approach to solve for the coupled pressure and temperature
equations in fractured heterogeneous reservoirs. The results presented in chapter 5 show promising
framework for further developments for field scale enhanced geothermal systems. In view of the
author, future developments need to consider the following:

• More relevant complex fluid and rock physics should be included in our framework. To name
one for each, the multiphase (including steam) effects for fluid and the geo-mechanical effects
(including fracture activations or closures and propagation) for solid rock would be needed to be
addressed in future work.

• It is more advantageous to first construct a P-T fully implicit system, and then reduce it to
sequential implicit in the case the coupling was weak (like in our case) [34]. Such a general
approach would allow for future studies where the coupling could be strong, when more complex
fluid and rock physics is considered.

• One should also address a benchmark study based on the CPU time for large-scale systems on a
compilable programming language (e.g. C++). Similar to the successful benchmarking of F-AMS
[1], such a study for our coupled P-T system is expected to result in more reliable predictions for
field-scale applications.
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A
Fluid Model

Accurate calculation of fluid properties is needed for accurate pressure and temperature calculation.
In this research, the reservoir is assumed to be fully saturated with single phase water (liquid).

All the water properties are calculated using International Association for the Properties of Water
and Steam Industrial Formulation 1997 (IAPWS-IF97) [4]. The results are used as the basis for curve
fitting to obtain simpler equations with reasonable accuracy. This method is used to maintain the
efficiency of fluid properties calculation in the simulator, due to the fact that some of the formulations
provided have to be solved iteratively and many of them involve many correlation parameters which
might hamper the computational efficiency. These models are simpler and provide continuous data
over the whole pressure and temperature interval, therefore eliminating the need of table lookup.

This appendix describes the simplified formulations for calculation of properties needed in the simu-
lation: water saturation properties, density, specific internal energy, and viscosity. Properties obtained
from these formulations are compared with data provided by IAPWS-IF97 to validate their accuracy.

A.1. IAPWS-IF97
IAPWS-IF97 is the industry-accepted formulation for calculations of water and steam thermody-

namic properties. The formulation is divided into five different regions on which it is valid (see figure
A.1).

Figure A.1: Regions of IAPWS-IF97 taken from [4].
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Region 1 and 2 covers single-phase system, namely liquid and vapour, respectively. Region 3 is
near critical as well as supercritical condition, and region 4 is the two-phase region and is used to
calculate saturation condition (saturation pressure, temperature, density, internal energy). Region 5 is
high-temperature region and is not considered in this thesis work.

A.2. Simplified Fluid Model
Fluid properties such as density and specific internal energy can be defined by a simple correlation

between their values at saturation condition and their partial derivative with regards to pressure (com-
pressibility for density calculation) and temperature (specific heat for internal energy calculation) [25],
i.e.,

𝜌፰ ≅ 𝜌፰፬(𝑇)[1 + 𝑐፰(𝑇)(𝑝 − 𝑝፬(𝑇))] (A.1)

𝑢፰ ≅ 𝑢፰፬(𝑝) + 𝐶፩፰(𝑝)(𝑇 − 𝑇፬(𝑝)) (A.2)

ℎ፰ = 𝑢፰ +
𝑝
𝜌፰

(A.3)

Based on these definitions, simplified formulations are needed to calculate saturation properties
and isothermal compressibility, 𝑐፰, while specific heat, 𝐶፩፰, is assumed to be constant since it does
not change significantly for different pressures and temperatures.

A.2.1. Saturation Pressure and Temperature
Based on IAPWS-IF97 [4], parameters used to calculate the saturation pressure is defined as follows:

𝜗 = 𝑇 + 𝑛ዃ
𝑇 − 𝑛ኻኺ

, (A.4)

𝐴 = 𝜗ኼ + 𝑛ኻ𝜗 + 𝑛ኼ , (A.5)

𝐵 = 𝑛ኽ𝜗ኼ + 𝑛ኾ𝜗 + 𝑛 , and (A.6)

𝐶 = 𝑛ዀ𝜗ኼ + 𝑛𝜗 + 𝑛ዂ , (A.7)

with the empirical parameters, 𝑛።, are shown in table A.1. The saturation pressure, 𝑝፬ (in Pa), is
calculated based on these correlation parameters, i.e.,

𝑝፬ = [
2𝐶

−𝐵 + (𝐵ኼ − 4𝐴𝐶)ኺ. ]
ኾ × 10ዀ , (A.8)

with the validity ranging from 273.15 𝐾 ≤ 𝑇 ≤ 647.096 𝐾 (critical point).
Parameters used in saturation temperature calculation are calculated as follows:

𝛽 = ( 𝑝10ዀ )
ኺ.ኼ , (A.9)

𝐸 = 𝛽ኼ + 𝑛ኽ𝛽 + 𝑛ዀ , (A.10)
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Table A.1: Coefficients of correlation for saturation pressure and temperature calculation from [4].

𝑖 𝑛። 𝑖 𝑛።
1 0.116 705 214 527 67 × 10ኾ 6 0.149 151 086 135 30 × 10ኼ
2 −0.724 213 167 032 06 × 10ዀ 7 −0.482 326 573 615 91 × 10ኾ
3 −0.170 738 469 400 92 × 10ኼ 8 0.405 113 405 420 57 × 10ዀ
4 0.120 208 247 024 70 × 10 9 −0.238 555 575 678 49
5 −0.323 255 503 223 33 × 10 10 0.650 175 348 447 98 × 10ኽ

𝐹 = 𝑛ኻ𝛽ኼ + 𝑛ኾ𝛽 + 𝑛 , and (A.11)

𝐺 = 𝑛ኼ𝛽ኼ + 𝑛𝛽 + 𝑛ዂ , (A.12)

with the empirical parameters, 𝑛።, are also shown in table A.1. The saturation temperature, 𝑇፬ (in K),
is calculated based on these correlation parameters, i.e.,

𝑇፬ =
2𝐺

−𝐹 + (𝐹ኼ − 4𝐸𝐺)ኺ. , (A.13)

with the validity ranging from 611.2 𝑃𝑎 ≤ 𝑝 ≤ 22.064 𝑀𝑃𝑎 (critical point).
For these properties, no simplified models are developed due to the fact that the equations provided

in IAPWS-IF97 are not complex. Both saturation pressure and temperature are plotted in figure A.2.

(a) (b)

Figure A.2: Saturation pressure (a) and saturation temperature (b).

A.2.2. Density
Saturation density and compressibility data are needed to calculate water density, as well as satu-

ration pressure which is used as the reference pressure. A curve fitted equation is used to match the
density at saturation condition with data from steam table. The simplified equation used in the curve
fitting is

𝜌፰፬ = {
−0.0032 𝑇ኼ + 1.7508 𝑇 + 757.5, for 𝑇 ≤ 623.15 𝐾
−0.5214 𝑇ኼ + 652.73 𝑇 − 203714, for 𝑇 > 623.15 𝐾 . (A.14)

The isothermal compressibility values are back-calculated from the water density at different pres-
sures and temperatures, saturation density, and saturation pressure using equation A.1, i.e.,

𝑐፰ = (0.0839𝑇ኼ − 64.593𝑇 + 12437) × 10ዅኻኼ, for 273 𝐾 < 𝑇 < 647 𝐾 . (A.15)
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Water densities at various pressures and temperatures are calculated using simplified model and
are compared with empirical data from IAPWS-IF97, shown in figure A.3. Notice that the difference
between both results are small enough and therefore, this simplified model is proven to be a good
approximation for the water density. The relative error norm obtained from the simplified model is
below 1%, with slightly higher error norm of 2.2 % near critical point. It also proves that the simplified
model is valid to be used at 273.15 𝐾 ≤ 𝑇 ≤ 647.096 𝐾 and 𝑝፬(𝑇) ≤ 𝑝 ≤ 22.064 𝑀𝑃𝑎, which is the
single phase liquid region. The fact that water is slightly compressible also makes the approximation
reasonable.

(a) (b)

(c) (d)

Figure A.3: Comparison of water density calculated with simplified model and IAPWS-IF97 at: 273 K (a), 400 K (b), 500 K (c),
and 625 K (d).

A.2.3. Specific Internal Energy
Saturation specific internal energy and specific heat data are needed to calculate water specific

internal energy, as well as saturation temperature which is used as the reference temperature. It
is found that using constant saturation properties: specific internal energy at saturation condition,
specific heat, and saturation temperature leads to better approximation. The combination of 𝑢፰፬ =
420, 000 𝐽/𝑘𝑔, 𝐶፩፰ = 4, 200 𝐽/𝑘𝑔, and 𝑇፬ = 373 𝐾 give best fit to the empirical data. Figure A.4
shows the comparison between the data obtained from the calculation with the simplified model using
constant saturation properties and empirical data obtained using IAPWS-IF97. The match between both
data is extremely good, with the relative error norm less than 6%. The error is also more pronounced
near the critical point, but the relative error norm is still reasonably low. Together with pressure and
density, these specific internal energy values are used to calculate the specific enthalpy as described
in equation A.3.
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(a) (b)

(c) (d)

Figure A.4: Water specific internal energy calculated with simplified model (constant saturation properties) and IAPWS-IF97 at:
0.1 MPa (a), 5 MPa (b), 10 MPa (c), and 20 MPa (d).

A.2.4. Viscosity
In simulations with isothermal assumption, viscosity is always assumed to be constant. In geother-

mal simulations, however, temperature plays an important role to viscosity. The viscosity-temperature
relationship is given by [35]

𝜇፰ = 2.414 × 10ዅ × 10
ᎴᎶᎹ.Ꮊ
ᑋᎽᎳᎶᎲ . (A.16)
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