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Vehicle Rebalancing for Mobility-on-Demand Systems with
Ride-Sharing

Alex Wallar∗, Menno van der Zee†, Javier Alonso-Mora† and Daniela Rus∗

Abstract— Recent developments in Mobility-on-Demand
(MoD) systems have demonstrated the potential of road vehicles
as an efficient mode of urban transportation Newly developed
algorithms can compute vehicle routes in real-time for batches
of requests and allow for multiple requests to share vehicles.
These algorithms have primarily focused on optimally produc-
ing vehicle schedules to pick up and drop off requests. The
redistribution of idle vehicles to areas of high demand, known
as rebalancing, on the contrary has received little attention
in the context of ride-sharing. In this paper, we present a
method to rebalance idle vehicles in a ride-sharing enabled
MoD fleet. This method consists of an algorithm to optimally
partition the fleet operating area into rebalancing regions, an
algorithm to determine a real-time demand estimate for every
region using incoming requests, and an algorithm to optimize
the assignment of idle vehicles to these rebalancing regions
using an integer linear program. Evaluation with historical
taxi data from Manhattan shows that we can service 99.8% of
taxi requests in Manhattan using 3000 vehicles with an average
waiting time of 57.4 seconds and an average in-car delay of 13.7
seconds. Moreover, we can achieve a higher service rate using
2000 vehicles than prior work achieved with 3000. Furthermore,
with a fleet of 3000 vehicles, we reduce the average travel delay
by 86%, the average waiting time by 37%, and the amount
of ignored requests by 95% compared to earlier work at the
expense of an increased distance travelled by the fleet.

I. INTRODUCTION

Autonomous vehicles are enabling a new era of personal
mobility with the promise of transportation available any-
where, anytime. Scalable algorithms for motion planning
and fleet management that can cope with large request loads
are needed for urban deployments. Efficiencies provided by
ride-sharing will help optimize those services. In this paper
we propose a scalable real-time algorithm for large scale
management of fleets of vehicles (autonomous or human-
driven), under the ride-sharing model. We build on our
previous work [1] and study the role of rebalancing in
optimizing a fleet management system.

Ride sharing services such as UberPool and Lyft Line have
demonstrated the potential for road vehicles to be used as a
sustainable and effective mode of passenger transportation in
urban environments. The introduction of e-hailing and global
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Fig. 1: A snapshot of the simulator. Green dots represent
vehicles that either have passengers on board or are on their
way to pick up passengers. Pink dots represent vehicles that
are rebalancing. Grey dots represent vehicles that are idle.
The snapshot furthermore shows the location and history of
one of the vehicles in the fleet (represented by the red car).

vehicle dispatching in these Mobility-on-Demand (MoD)
systems have opened up the opportunity to assign vehicles
to requests more efficiently. By allowing multiple passengers
to share a single vehicle and considering batches of requests
placed around the same time, vehicle routes can be opti-
mized so that less vehicles can serve more requests. This
makes the MoD fleet more affordable, sustainable and time-
effective, which will be further enhanced by the introduction
of autonomous vehicles.

Besides the computation of efficient vehicle schedules, the
proactive relocation of idle vehicles can have a significant
influence on the fleet performance. Since the demand for
vehicles is often not uniformly distributed, vehicles tend to
build up in regions of low demand while vehicles are de-
pleted in regions of high demand. For example in Manhattan,
there are many trips to Harlem at night, but fewer back to
Midtown in the morning. This mismatch in vehicle supply
and demand means that vehicles often have to travel further
than necessary to pick up customers, which leads to higher
waiting times and more customer walk aways. It also means
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that the number of passengers which a fleet can transport in a
given time is less than optimal. Vehicle rebalancing focuses
on positioning the idle vehicles so that future demand can
be served with increased efficiency.

In this work, we build on the vehicle schedule optimization
algorithm presented in [1] and expand it with a method to
continuously rebalance idle vehicles. We present a method to
determine an optimal discretization of the operating area into
well defined rebalancing regions and a method to estimate,
from incoming transportation requests, a real-time demand
per region. Using this estimation we subsequently optimize
the rebalancing of idle vehicles towards rebalancing regions.
Finally, we present a case study using real taxi data from
Manhattan to demonstrate the benefits of our rebalancer and
compare it to the previous state of the art.

A. Related works

The majority of the work on vehicle fleet management
for on-demand passenger transportation does not allow for
multiple passengers to share a vehicle, focuses on fluid
approximations [2], queuing based formulations [3], case
studies of specific regions and operational considerations for
fleet managers [4]. [5] presented a practical algorithm for
assigning vehicle schedules while allowing multiple passen-
gers to share a vehicle. This paper presented a study for
New York City which showed that up to 80% of taxi trips
in Manhattan could be shared by two riders with a limited
increase in travel time.

More recently, an improved algorithm inspired by the work
of [5] was presented by [1] for assigning schedules for large
numbers of vehicles and requests in real-time while allowing
the full capacities of vehicles to be utilised. The work
included a naive vehicle rebalancer based on the requests
that were rejected from the system due to a lack of available
empty seats.

Several works have looked into the redistribution of idle
vehicles in a fleet to meet future demand. Most have looked
into the redistribution of vehicles in one-way car sharing
schemes such as car2go and Zipcar, or bike-sharing schemes.
Such systems experience similar mismatches between vehicle
supply and demand. Many of these works however focus
on infrequent rebalancing (in the order of several times a
day) [6], the practical implications of use of human operators
to rebalance vehicles [7], or on theoretical formulation and
experimentation of the optimization problem [8]. Recent
work in [9] shows how vehicle routes can be computed using
a heuristic to redistribute bikes in at stations for bike-sharing
systems but does directly translate to the MoD paradigm.
Prior work has also studied how vehicles can be redistributed
to fixed stations by drivers employed by a fleet manager [10]–
[12]. However these approaches do not directly apply to the
continuous pick up and delivery paradigm of mobility-on-
demand.

More relevant to this paper are rebalancing techniques
for autonomous mobility-on-demand systems, a car sharing
scheme in which vehicles are able to redistribute themselves
without the intervention of a human operator. Much of this

research shows that a significantly reduced fleet size is
required to serve a fixed demand with a similar quality of
service [4], [13]. However, these works often use long re-
balancing intervals [13] or use simplified models to simulate
demand and vehicle movement [4]. The work in [14] presents
an model predictive controller to optimize vehicle scheduling
and routing, however the experiments were conducted with
a relatively small fleet (40 vehicles).

A similar approach to the current work is presented in [15].
However, this approach used predicted demands learned from
historical data, which requires elaborate historical data to be
available, and presented a naive strategy for rebalancing idle
vehicles which assigned idle vehicles to ignored requests.

B. Contribution

Working further on the earlier work presented in [1] that
computes an assignment of a fleet of vehicles to a set of
requests, we present a method that continuously rebalances
the remaining idle vehicles over the operating area according
to estimated real-time demands. Specifically, we present:
• A method to discretize the operating area into a set of

rebalancing regions.
• A method to estimate vehicle demand for every rebal-

ancing region using only the real-time request stream.
• An algorithm to assign idle vehicles to rebalancing

regions using the estimated demand.
• Experimental validation comparing the performance of

using no rebalancer, the rebalancer presented in prior
work, and the new proposed rebalancing strategy.

II. PRELIMINARIES

In this section, all relevant notations used in this paper is
presented. Furthermore, we define the problem and present
a general overview of the methods employed.

A. Definitions

We consider a fleet of vehicles V which can either be
autonomous or human-driven. Every vehicle v ∈ V has a
maximum capacity, κv and a set of passengers, Pv , where
|Pv| ≤ κv . A passenger is defined as a request that has been
picked up by a vehicle and is currently is transit.

We consider set of transportation requests R =
{r1, . . . , rn} defined by the tuple {or, dr, trr, tplr , t∗r}. Here,
or is the origin, dr is the destination, trr is the time that the
request was placed, tplr is the latest acceptable pickup time
and t∗r is the earliest possible time that the destination could
be reached. Furthermore, the actual request pick-up time is
denoted by tpr , and the drop-off time is denoted by tdr .

Vehicles move according to schedules that they are as-
signed. A schedule S is defined as a sequence of request
pick-up and drop-off events, and describes in which order
requests are picked up and dropped off.

We define an operating area comprised of a road network
as the region the vehicles will consider requests. This oper-
ating area is partitioned into a set of rebalancing regions, G,
with region centres, C (described in Sec. III-A). All locations
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G Set of rebalancing regions
C Set of rebalancing region centers
Tij Travel time from vertex i to j in road-network
λ̃j Current estimate of rate of requests in region j
Vr Set of vehicles to rebalance
H Time horizon for rebalancing
ψ Interval time for batch assignment
Ω Maximum waiting time
∆ Maximum travel delay

TABLE I: Notation used throughout the paper

closer to a region centre c ∈ C than any other region centre
in C belong to the associated region.

Additionally, let us define for every request a waiting time
ωr = tpr − trr and a travel delay time δr = tdr − (trr + t∗r).
The waiting time and travel delay represent the total amount
of time a request waits to be picked up by a vehicle and
the time added to the request’s transit as opposed to directly
travelling to their destination respectively. We also define
maximum allowed wait time Ω and maximum allowed delay
time ∆ as in [1]. The values Ω and ∆ are used as service
metrics.

B. Problem Formulation

After every predetermined time interval ψ, schedules are
computed and assigned to vehicles so that the sum of delays
of all requests is minimized. This step will be referred to
as the schedule assignment. For a detailed explanation of
the algorithm used to assign vehicle schedules, we refer to
[1]. In some cases, not all vehicles in the fleet are assigned a
schedule. This is either because there are no requests within a
travel time smaller than Ω or because there are other vehicles
available that are able to serve the requests more efficiently.
Let us denote this set of unassigned vehicles by Vr ⊆ V .
These are the vehicles that are considered for rebalancing.
In both cases, there is an oversupply of vehicles in those
particular regions. At the same time, other regions might
have an under supply of vehicles. In that case, requests in
those regions might have to wait significantly longer before
they are picked up and eventually might not be able to be
serviced while respecting the constraints set by Ω and ∆.

The focus of this paper is to determine how to distribute
the unassigned vehicles over the operating area such that the
request delay and waiting time is reduced, the number of
ignored requests is minimized, and to do this dynamically
over time.

C. Method overview

The method to assign vehicle schedules and rebalance idle
vehicles is split up into multiple steps. First, using an integer
linear program (ILP), the operating area is discretized into
the set of regions G with region centres C. The regions are
computed once offline, and remain constant during the online
schedule assignment. This process is explained in Sec. III-
A. A schematic overview of the steps performed at every
assignment interval ψ is shown in Fig. 2. The following steps
are performed:

Algorithm 1 Overview of the rebalancing method

1: G ← DiscretizeOperatingArea(tmax)
2: for all g ∈ G do
3: InitializeRateEstimateg()
4: end for
5: for every time interval,ψ do
6: R ← IncomingRequests()
7: AssignVehicleSchedules(V,R)
8: Q← {0 : ∀g ∈ G}
9: for all r ∈ R do

10: g ← GetRebalancingRegion(r)
11: Qg ← Qg + 1
12: end for
13: for all g ∈ G do
14: UpdateRateEstimateg(Qg, ψ)
15: end for
16: Vr ← GetRebalancingVehicles()
17: RebalanceVehiclesToRegions(Vr,G)
18: end for

1) Vehicles are assigned schedules to pick up and drop
off requests using the algorithm presented in [1].

2) Using the real-time request information, the current
demand at every rebalancing region is estimated using
a particle filter. See Sec. III.

3) The vehicles that remained unassigned in the vehicle-
schedule assignment (step 1) are assigned to rebalance
towards regions in G. This rebalancing assignment is
computed using an ILP. See Sec. IV.

All vehicle schedules and rebalancing assignments are re-
considered at every assignment interval. Previously assigned
vehicle schedules can change at each subsequent schedule
assignment, and vehicles on the way to a rebalancing region
can instead be assigned a schedule to pick up passengers. A
detailed description of the method overview can be found in
Algo. 1.

III. DEMAND ESTIMATION

During the execution of the algorithm, we estimate the rate
at which incoming requests are being introduced at different
locations in our operating area. We do so by first partitioning
our operating area into a number of regions and for each
region, utilizing a particle filter to estimate the demand.

A. Discretization into regions

Given a directed graph, G = (V,A), representing the road
network where V is the set of vertices, and a matrix T where
Tij represents the travel time between vertex i and j, our
problem is to select a subset of vertices C ⊆ V as region
centers that can be used to aggregate demand. A request is
in region g ∈ G if its origin is closer to the region center c
of region g than any other region center in C.

We discretize the operating area into regions using given
parameter tmax which represents the maximum travel time
between any vertex in the graph and the closest region center.
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(a) Initial state (b) Schedule assignment (c) Demand estimation (d) Rebalancer assignment

Fig. 2: Schematic overview of the method used for the assignment of vehicles to requests and the rebalancing of vehicles in
the order as they are performed. (a) Example for a part of a road network with three regions (white marker = region center),
5 vehicles, and three requests (yellow human = origin, red marker = destination). (b) Assignment of schedules to vehicles,
the schedule trajectories are shown by the green dotted lines. Three of the five vehicles are not assigned a schedule. (c) The
estimation of demands for every region according to the request information. In this figure, high demand is represented by
the red marker, intermediate demand by the yellow marker and low demand by the green marker. (d) Optimized assignment
of unassigned vehicles to rebalancing regions. The rebalancing vehicles move towards the region centers. The rebalancing
trajectories are shown in the purple dotted lines.

To determine the minimum number of regions for a given
tmax, we formulate the problem as an ILP.

First we define a reachability matrix, R, where Rij = 1 if
Tij ≤ tmax and Rij = 0 otherwise. This describes whether
vertex j is reachable from vertex i given the time limit. We
also define a set of binary variables x where xi = 1 if vertex
Vi is used as a region center and 0 otherwise. Using the
reachability matrix and the binary variables, we can define
an ILP to determine the minimum number of region centers
such that every vertex in the graph is reachable from at least
one region center as:

min
x

|V |∑
i=1

xi (1)

s.t.
|V |∑
i=1

xi ·Rij ≥ 1 ∀j ∈ [1, |V |] (2)

Eq. (2) ensures that every node in the road network graph
is reachable within tmax travel time by at least one region
center selected from the nodes in the graph. To extract the
region centers, we select from V all vertices Vi such that
xi = 1.

The region centers are computed a priori and are used to
aggregate requests together so the rate of requests for each
region can be computed. These region centers are also used
for rebalancing as they are the locations that vehicles are
proactively sent to.

B. Determining the rate of requests

We estimate the vehicle demand online in each rebalancing
region using only the real-time request stream. We define the
vehicle demand as the rate at which requests are originating
from a given region over time.

The rate of requests at each region g ∈ G is modelled as
an inhomogeneous Poisson point process with a stochastic
time-varying rate, λg(t). These rates are assumed to drift
over a short time horizon according to a Wiener process.
This means that for each region g, the change in rate
of requests over time follows a Gaussian distribution, i.e.
λg(t

′)−λg(t) ∼ N (0, ν · (t′− t)) for t′ > t and some given
volatility parameter, ν. The rate, λg(t), for each region is
estimated using a sequential importance resampling particle
filter as described in [16]. particle filter is updated with the
number of requests observed, n, within a time interval, t−εt
to t. The N particles, {λ̂(i)0 : 1 ≤ i ≤ N}, are initialized
uniformly at random within an given upper and lower bound
at time 0. Their weights, {w(i)

0 : 1 ≤ i ≤ N}, are all set to
1/N . The particles are updated in four steps.

1) N samples, {λ̂(i)t−εt} with weights, {w(i)
t−εt}, are drawn

with replacement from the particles with probabilities
proportional to their weights.

2) Random noise is applied to each particle according to
the Wiener process: λ̂(i)t = λ̂

(i)
t−εt + ελ, where ελ ∼

N (0, ν · εt)
3) The weights are updated with the observation of n

requests in εt time: w̃(i)
t = w

(i)
t−εt · Pr[k = n; εt · λ̂(i)t ],

where Pr[k = n; εt · λ̂(i)t ] is the Poisson probability of
n events with a rate εt · λ̂(i)t

4) The weights are normalized: w(i)
t =

w̃
(i)
t∑

k w̃
(k)
t

The estimate of the stochastic rate, λg(t), for a region g at
time t is then defined as the weighted average of the particles,
λg(t) =

∑
i w

(i)
t ·λ̂

(i)
t . The particle filter produces an estimate

of the rate of requests for a given region by estimating the
likelihood of a fixed number of candidate rates and returning
the likelihood weighted average over the candidate rates.
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IV. REBALANCING

Due to the fact that demand is not equally distributed over
the operating area, vehicles will tend to build up according
to a spatial distribution that does not match the distribution
of demand. Due to this undesirable distribution of vehicles,
it is possible that some vehicles remain idle while there are
requests that are not served. This takes places when there
are no vehicles that can reach these requests within the
maximum waiting time Ω, or when the demand in a specific
region is very high and there are not enough vehicles to serve
all the requests in that specific region. In order to mitigate
this problem, idle vehicles should be proactively rebalanced
over the operation area so that their distribution matches the
distribution of demand. This furthermore decreases waiting
time since for incoming requests, the probability of having
a nearby vehicle available is higher. We propose a novel
vehicle rebalancer that models the problem as an ILP to
match the supply of vehicles to each area with the demand.

A. Implementation

Our rebalancer seeks to match the supply of idle vehicles
in each region to the expected demand for a given time
horizon H. Let us define, Vr ⊆ V as the set of idle vehicles
that are available for rebalancing. These are the vehicles that
are not assigned to pick up or drop off requests in the vehicle
schedule assignment. Let us also define C as the set of region
centres as described in Sec. III-A. Our goal is to find an
assignment from vehicles in Vr to region centres in C such
that we maximise the amount of requests the vehicles are
able to serve, while not over saturating or under saturating
regions with vehicles.

To solve this assignment, we can formulate the problem
as an ILP. Let us first define a set of binary variables, X =
{xij : ∀i ∈ [1, |Vr|],∀j ∈ [1, |C|]}, where xij = 1 if vehicle i
is assigned to rebalance to region centre j and zero otherwise.
Let us also define a travel time matrix, T , where Tij is the
travel time from vehicle i to the region centre j and a rate
vector λ̃ where λ̃i is the current rate of requests at region
i computed using the particle filter described in Sec. III-B.
With these variables, we can define the objective function
for our ILP which we seek to maximize as:

J (X ) =

|Vr|∑
i=1

|C|∑
j=1

xij · λ̃j · (H− Tij) (3)

This objective represents the sum of the expected number
of requests each vehicle would observe in its assigned rebal-
ancing region for the given time horizon, H. The expected
number of requests observed by vehicle i is expressed as the
rate of requests at the assigned region, λ̃j , multiplied by the
time remaining in the time horizon after the vehicle reaches
the region, H− Tij

A valid rebalancing assignment must guarantee that each
vehicle is assigned to at most one station. This is described

in the constraint:
|C|∑
j=1

xij ≤ 1 ∀i ∈ [1, |Vr|] (4)

Also, due to our formulation, we constrain the solution
to assign vehicles to rebalancing regions that are reachable
within the time horizon, H, i.e. H ≥ Tij . This constraint is
formulated as:

xij · (H− Tij) ≥ 0 (5)
∀i ∈[1, |Vr|] and j ∈ [1, |C|]

In order to obtain an adequate dispersion of vehicles and
limit the oversaturation of vehicles in rebalancing regions,
we need to constrain the assignment such that the supply of
vehicles in a rebalancing region is less than some factor of
their demand. The supply of vehicles in region j ∈ [1, |C|]
for a given time horizon can be written as:

|Vr|∑
i=1

xij ·
H − Tij
H

(6)

The supply of vehicles is weighted by the percent of time
in the next time horizon a vehicle would be able to sit idle
at the assigned station. The time weighting is used to give a
more accurate estimation of the vehicle supply. For example,
if a vehicle takes 8 minutes to reach a region and the time
horizon is set to 10 minutes, that vehicle’s supply is only
available for 20% of the time.

The demand for vehicles for some region j ∈ [1, |C|] and
a given time horizon is defined as:

λ̃j · H (7)

Putting Eq. (6) and (7) together we formulate a constraint
to limit the oversaturation of vehicles in rebalancing regions
as:

|Vr|∑
i=1

xij · (H− Tij) ≤ λ̃j · H2 · ρ ∀j ∈ [1, |C|] (8)

Note that for a more concise description, the time horizon,
H, was multiplied on both sides of the inequality. Also
note that we have introduced a tuning parameter, ρ, that
allows us to specify an acceptable level of oversaturation
at a rebalancing region.

Combining the objective function from Eq. (3), J (X ),
with the constraints described in this section, we formulate
an ILP that finds an assignment of vehicles to rebalancing
regions that maximizes the expected number of requests
observed by all vehicles while obtaining an adequate dis-
persion of vehicles to limit the oversaturation of vehicles in
rebalancing regions. This ILP is then:

max
X

J (X ) (9)

s.t. constraints (4), (5), (8)

This optimization will be executed repeatedly after every
time interval ψ, after vehicles have been assigned schedules
to pick up and drop off requests.
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Fig. 3: The computed location of region centers in Manhattan
using the algorithm presented in Sec. III for a maximum
reachability time tmax = 150 seconds.

V. EVALUATION

We evaluate the proposed informed rebalancer using his-
torical taxi request data from Manhattan [17] and compare
the performance to the state of the art. Since the rebalancing
and scheduling algorithms use timeouts to prematurely exit
from the optimization, a more powerful computer can lead to
much better results. To ensure a fair comparison to previous
work, we reimplemented the rebalancer described in [1] and
ran experiments on the same machine using the proposed
informed rebalancer, the naive rebalancer from [1], without
rebalancing and compared the performance of the MoD fleet.

A. Experimental Setup

For the experiments we use one day of historical taxi data
from 00:00 to 23:59 on May 1st, 2013. This data is publicly
available and contains all taxi trips in Manhattan [17]. The
data contains the origin, destination, and associated pick up
and drop off time for each taxi trip. From this raw data,
we use the reported pick up time as the request time since
the request time was not provided. The experiments are
executed using a simulator that simulates the movement of
the vehicles, and to which requests are added according to
the historical taxi data. The vehicle routes and travel times
are determined using a stored road network of Manhattan.
Like [1], we estimate the travel time for each road segment
using daily mean travel time computed by the method
in [5] and pre-compute the shortest path for every pair of
nodes in the road network. A snapshot of the visualizer for
this simulator is shown in Fig 1. A computer with a 2.6
GHz (overclocked to 4.0GHz), 18 core (36 threads) Intel
i9 processor and 128GB of memory was used to run the
experiments.

We assess the performance of the rebalancing algorithm
with a fleet size of 1000, 2000, and 3000 vehicles and
a capacity of four passengers. We used a fixed maximum
waiting time of Ω = 3 minutes and maximum delay of
∆ = 6 minutes. All requests that cannot be served within
these defined constraints on waiting time and delay time are
ignored, and dropped from the request pool. We used 100
particles to estimate the rate of requests in each region. The
vehicle locations are initialized uniformly on vertices in the
road network. The assignment interval was chosen as ψ = 30
seconds as in [1]. This means that vehicle schedules and the
assignment of rebalancing stations are optimized every 30
seconds. At assignment time, all requests are considered that
have not yet been picked up. To discretize the operating area

into rebalancing regions, we used a maximum reachability
time of tmax = 150 seconds which produced 61 regions.
The centers of these regions are shown in Fig. 3.

We evaluate two rebalancing techniques: our proposed
informed rebalancing algorithm and the naive rebalancing
algorithm presented in [1]. The rebalancing algorithm in [1]
assigns an idle vehicle to move to the locations of unassigned
requests. The assignment minimizes the sum of the distances
travelled by the vehicles. We compare the results of these
rebalancing techniques to a case were no rebalancing is
performed.

B. Results

We collect several metrics to assess the performance of
the rebalancers including the service rate, in-car travel delay,
waiting time, number of ignored requests, distance travelled
per vehicle, fleet utilization, and computation time. The
service rate is defined as the percentage of the total number
of requests that were successfully served within the waiting
time and delay time constraints. The in-car travel delay for a
request is defined as δr −ωr. The fleet utilization is defined
as the average percent of the fleet with assigned schedules
throughout the day. The computational time includes the time
required to compute schedules, estimate demands, and com-
pute the rebalancing assignment. These metrics are plotted
in Fig. 4. The associated raw data is shown in Tab. II.

We observe that the service rate improves for all fleet sizes
when using the proposed informed rebalancer rather than the
naive rebalancer (See Fig. 4a). Most notably, for a fleet size
of 3000 vehicles, the service rate increases by 4%. Also the
proposed rebalancer achieves a higher service rate with a
fleet size of 2000 vehicles (98.1%) than the naive rebalancer
with a fleet size of 3000 vehicles (95.8%). This means that
by switching to our rebalancing algorithm, you can reduce
the size of your fleet by over 33% while maintaining the
same service rate. We also see a drastic reduction in the
number of requests the algorithm is not able to satisfy for
all fleet sizes (See Fig. 4d). In particular, for a fleet size of
3000 vehicles, the proposed algorithm reduces the number
of ignored requests by 95% compared to the naive approach.

The in-car travel delay and waiting time also benefit from
informed rebalancing (See Fig. 4b and 4c). For all fleet sizes,
the average in-car travel delay and waiting time decreases
when using the proposed rebalancer. For 3000 vehicles,
the average delay drops from 97.1 to 13.7 seconds (86%
improvement) and the average waiting time drops from 91.4
to 57.9 seconds (38% improvement).

We also observe higher vehicle utilization for the informed
and naive rebalancers compared to not rebalancing for all
fleet sizes (See Fig. 5). The informed rebalancer achieves
the highest vehicle utilization for all fleet sizes. The naive
and informed rebalancers achieve similar utilization for a
1000 vehicle fleet, but for 2000 and 3000 vehicle fleets,
the informed rebalancer performs much better. This can
be explained by the fact that both the naive and informed
rebalancer for a 1000 vehicle fleet utilize almost all vehicles
continuously over the duration of the experiment.
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(a) Service Rate (b) Avg. in-car travel delay (c) Avg. waiting time

(d) Number of ignored requests (e) Avg. distance travelled per vehicle (f) Computation time

Fig. 4: A comparison of several performance metrics for experiments with a fleet of 1000, 2000 and 3000 vehicles and no
rebalancing, naive and informed rebalancing.

Fleet Size Rebalancer Avg. Delay [s] Avg. Wait Time [s] Avg. Dist. [km] Avg. Comp. Time [s] N. Ignored % Serviced Reqs.
1000 No Rebalancing 185.94 113.70 300.14 0.61 239154 42.83
1000 Naive 180.03 109.76 590.02 0.84 107462 74.31
1000 Informed 169.20 106.81 683.75 2.08 103022 75.37
2000 No Rebalancing 180.53 109.00 261.39 0.84 127796 69.45
2000 Naive 110.68 95.09 441.57 1.29 22196 94.69
2000 Informed 58.36 76.74 675.55 3.31 8108 98.06
3000 No Rebalancing 117.32 97.93 237.72 1.16 72048 82.78
3000 Naive 97.11 91.40 303.24 1.44 17669 95.78
3000 Informed 13.72 57.85 612.56 3.85 964 99.77

TABLE II: A detailed overview of the performance metrics for 1000, 2000 and 3000 vehicles for experiments with no
rebalancer, and for the informed and naive rebalancer

Our vehicle-trip assignment and rebalancing is efficient
enough for online computation. Fig. 4f shows the computa-
tional time for different fleet sizes. This time includes com-
puting vehicle schedules, solving the vehicle-trip assignment,
and solving the rebalancing assignment for each batch of
requests. With a fleet size of 3000 vehicles, our algorithm
takes on average less than 4 seconds for a pool-time of 30
seconds which is acceptable for online use.

As in [1] and [15], we observe that the advantages by
using a rebalancer come at the cost of an increased distance
travelled by the vehicles. This is apparent from figure Fig. 4e.
This might lead to higher fuel consumption, but the initial

vehicle costs and costs of potential human drivers are much
lower when using a smaller fleet with comparable perfor-
mance. The reason for the larger travel distances is partly
because more vehicles are being rebalanced and are moving
when they are not assigned. This is also enforced however
by the fact that the cost function used for assignment prefers
using as many vehicles as possible with an as low as possible
occupancy rate when feasible to serve requests to minimize
the delay. This cost does not take into account the collective
distance travelled by the vehicles.
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Fig. 5: Vehicle utilization for 1000, 2000, and 3000 vehicle
fleet sizes. The vehicle utilization is defined as the average
percent of vehicles assigned to trips over the entire experi-
ment. For each fleet size, the vehicle utilization is measured
without rebalancing, using the naive rebalancer, and using
the proposed informed rebalancer

VI. CONCLUSION

In this paper, we presented a method to rebalance idle ve-
hicles in a mobility-on-demand fleet. We presented a method
to partition the operating area into a set of rebalancing
regions, a method to compute filtered demand estimates
for each region based on real-time request information,
and a method to optimize the assignment of idle vehicles
to rebalancing regions using these demand estimates. Our
rebalancing algorithm can be applied to human-driven or
autonomous vehicle fleets. We used this rebalancer to signif-
icantly improve the efficiency of the ride-sharing algorithm
presented in [1] at the expense of longer distance travelled
by the vehicles.

We demonstrated a significant improvement in fleet per-
formance using the proposed informed rebalancing strategy
over previous work. For a fleet of 3000 vehicles, we reduce
the average waiting time by 37%, the travel delay by 86%,
and the number of ignored requests by 95% and increase the
total distance travelled by 102%.

Future work will focus on developing a method to solve
for the assignment of trips to vehicles and idle vehicles to
rebalancing regions in a single optimization procedure and to
reduce the distance travelled by the vehicles. We also plan
to expand the ride-sharing algorithm to utilize fleets with
varying vehicle capacities and incorporate the existing public
transportation infrastructure.
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