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Lightweight and Accurate DNN-Based Anomaly
Detection at Edge

Qinglong Zhang, Rui Han , Gaofeng Xin, Chi Harold Liu , Senior Member, IEEE,

Guoren Wang, Senior Member, IEEE, and Lydia Y. Chen , Senior Member, IEEE

Abstract—Deep neural networks (DNNs) have been showing significant success in various anomaly detection applications such as

smart surveillance and industrial quality control. It is increasingly important to detect anomalies directly on edge devices, because of

high responsiveness requirements and tight latency constraints. The accuracy of DNN-based solutions rely on large model capacity

and thus long training and inference time, making them inapplicable on resource strenuous edge devices. It is hence imperative to scale

DNN model sizes in correspondence to the run-time system requirements, i.e., meeting deadlines with minimal accuracy losses, which

are highly dependent on the platforms and real-time system status. Existing scaling techniques either take long training time to pre-

generate scaling options or disturb the unsteady training process of anomaly detection DNNs, lacking the adaptability to heterogeneous

edge systems and incurring low inference accuracies. In this article, we present LightDNN to scale DNN models for anomaly detection

applications at edge, featuring high detection accuracies with lightweight training and inference time. To this end, LightDNN quickly

extracts and compresses blocks in a DNN, and provides large scaling space (e.g., 1 million options) by dynamically combining these

compressed blocks online. At run-time, LightDNN predicts the DNN’s inference latency according to the monitored system status, and

optimizes the combination of blocks to maximize its accuracy under deadline constraints. We implement and extensively evaluate

LightDNN on both CPU and GPU edge platforms using 8 popular anomaly detection workloads. Comparative experiments with state-

of-the-art methods show that our approach provides 145.8 to 0.56 trillion times more scaling options without increasing training and

inference overheads, thus achieving as much as 15.05% increase in accuracy under the same deadlines.

Index Terms—Anomaly detection, edge inference, DNN, model scaling, predictable latency

Ç

1 INTRODUCTION

THE fast development of Internet of Things (IoT) and deep
learning technology leads to the emergence of anomaly

detection applications at the edge of network [1]. Deep neu-
ral networks (DNNs) have become ubiquitous in these
applications [2], [3], as accurate detection requires effec-
tively extracting features from images [4], [5], [6], [7], [8] or
videos [6], [9], [10], [11]. Existing DNN-based anomaly
detection techniques focus on improving detection accura-
cies [7], [8] or dealing with complex images or videos [6],
[7], [8]), both of which require DNNs of increasing complex-
ities. Performing anomaly detection at edge thus need to
meet time requirements, which are natural to many anom-
aly detection systems for identifying outliers in real-time,
while enjoying the high accuracy brought by complex
DNNs. This requires precisely scaling the model sizes in

correspondence to the dynamics of available resources, so
as to meet the inference deadline with small overheads and
minimal accuracy losses. However, applying existing scaling
techniques, that is, layer removing [12], [13], [14], [15], [16],
nested networks [17], [18], [19], [20], FLOP scaling [21], [22],
[23], [24], [25], and Neural architecture search (NAS) [26],
[27], [28], to anomaly detection systems, faces two key chal-
lenges in practice.

First of all, existing techniques employ the model-grained
scaling mechanism, which needs extremely long time to provide
sufficient scaling options. Specifically, layer removing, FLOP
scaling, and NAS techniques generate multiple models of
different sizes. When handling complex DNNs, these tech-
niques take hours to generate one model even using power-
ful GPU servers. Nested network techniques generate a
multi-capacity model (e.g., switchable model [19], [20]) to
provide large scaling space. However, these techniques
either consume large memories (e.g., 1k scaling options
takes GBs of memory in US-Net [29]) or use time-consum-
ing architecture search algorithm (e.g., searching 1k models
takes more than 10 days in FN3 [20]). Hence existing techni-
ques can only support a small number of descendant mod-
els, which cause two major problems in scaling:

Low Accuracies. Descendant models provide a coarse-
grained differentiation of resources, thus leaving consider-
ably proportions of resource unused. We tested two anom-
aly detection workloads: GANomaly [7] on the Coil100
image dataset and ResNet-18 [10] on the UCSD-peds1 video
dataset. Taking the filtering pruning technique as an exam-
ple, Fig. 1 shows that to meet the deadline constraint, the
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used DNN incurs considerably lower accuracies (AUC) com-
pared to that of the ideal scaling case. This is because in the
ideal case, the DNN can be scaled at a much finer granular-
ity, thus guaranteeing model size precisely fits the available
memory.

High Scaling Overheads. In an online scaling, most of exist-
ing techniques need to exchange an entire DNN and thus
result in high paged in and page out overheads. In particu-
lar, some nested network techniques (e.g., FN3 [20] and
OFA [19]) fail to support part-exchanged model scaling due
to their irregular weight sharing mechanism. Some other
nested network techniques (e.g., NestDNN [17] and US-
Net [18]) can exchange part of the DNN in scaling, but they
still cause high overheads because they need extra expen-
sive operations to incorporate the newly added part to the
current DNN.

Moreover, existing techniques depend on the unsteady
training process of anomaly detection and thus further worsen
accuracy in model scaling. Specifically, many DNN-driven
anomaly detection applications employ generative adversarial
network (GAN)-based model training [30] or self-training [10]
to enable unsupervised anomaly detection. Both methods
are difficult to train because their training process is unsta-
ble and easy to be unbalanced, e.g., one of models has
already converged but others haven’t. However, when gen-
erating descendant models, existing scaling techniques such
as nested network and FLOP scaling need to introduce extra
operations to such unstable training processes, which may
severely degrade model accuracy.

In this paper, we present LightDNN, a lightweight and
accurate scaling framework that is designed fundamentally
based on the block structure (e.g., ResBlock in ResNet [31])
widely exist in DNNs of today’s anomaly detection systems.
The key idea of LightDNN is to identify a finite number of
blocks in a DNN, generate each block’s descendant/com-
pressed blocks with short training time, and combine these
blocks to provide large scaling space. Moreover, the block
generation process is independent of the GAN-based train-
ing and self-training process, hence it works well for a wide
range of anomaly detection applications. The concrete con-
tributions of this work are as follows:

Block-Grained Scaling Mechanism for Large Scaling Space
and Small Overheads. The limitation of model-grained scaling
is rooted in the constraint that the number of scaling options
equals to the number of descendant models and hence they
are not scalable. LightDNN proposes a novel block training
approach that extracts blocks from a DNN and train their

descendant blocks independent of the whole network. This
allows the training to be completed fast and by just generat-
ing dozens of descendant blocks for a DNN, the combina-
tion of these blocks brings massive choices of descendant
models. At run-time, LightDNN employs an optimizer to
select the combination of (descendant) blocks that minimize
accuracy losses. The scaling decision is then conducted by
only changing a small proportion of descendent blocks with
small overheads.

Independence of the Unsteady Training Process in Anomaly
Detection. Rather than modifying the training process,
LightDNN starts from a trained DNN model and identifies
its blocks. By taking each block as the teacher model,
LightDNN employs model compression techniques (e.g., fil-
ter pruning [32]) to transform the block into descendant
blocks of different sizes and trains these blocks using super-
vised and steady SGD-basedmethod. This allows LightDNN
workwell for DNNs in anomaly detection applications.

Implementation and Evaluation. We implement a system
prototype of LightDNN and conduct extensive evaluation
against the state-of-the-art techniques, i.e., layer removing,
nested network, and FLOP scaling. Using 8 popular image
and video anomaly detection workloads, we summarize of
evaluation results as follows: (i) Extensible in terms of architec-
ture. The evaluation is performed on both CPU and GPU
edge platforms: one Raspberry Pi 4B with ARM architecture
designed for low overhead edge systems, and one Jetson
TX2 with 256-core NVIDIA PascalTM GPU architecture. (ii)
Low-overhead offline training and online scaling. LightDNN
provides 145.8 to 0.56 trillion times more scaling options
using shorter model generation time, while reducing online
scaling overheads by 76.06%. (iii) Precise latency prediction
and optimized online scaling. Under differentworkloads, avail-
able memories and performance interferences, LightDNN
achieves an average prediction error of 5.14%, much lower
than that (35.49%) of existing approaches. Our prediction-
based scaling optimizer is able to improve accuracy by
12.26% on average compared to layer removing and nested
network techniques under the same deadlines, by 17.84%
compared to FLOP scaling techniques under the same
computational costs, and by 15.05% overall.

2 BACKGROUND AND RELATED WORK

2.1 DNN-Based Anomaly Detection

Anomaly detection, or outlier detection, finds objects with
unexpected behaviors.With the prosperity of IoT technology,
anomaly detection systems are widely deployed on edge
devices. High-dimensional data such as image and video
widely exists in today’s anomaly detection applications. For
such an issue, deep learning based anomaly detection techni-
ques are increasingly used and this work focuses on two
prevalent DNN-driven anomaly detection applications.

Image Anomaly Detection. Two reconstruction-based
DNNs are used to handle image data: autoEncoder [4] and
GAN, which compute abnormal scores according to the
errors between reconstructed images and original images.
Specifically, reconstruction-based methods initially use autoEn-
coder to improve accuracy from two aspects: improving the
network structure [33] and using latent vector of autoEn-
coder [34]. GPND is then used to force the latent vectors to

Fig. 1. Comparison of accuracy losses between model-grained scaling
and ideal scaling.
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be close to normal distribution [5]. GANomaly [7] is a repre-
sentative technique that combines GAN and autoEncoder,
and uses autoEncoder as GAN’s discriminator in model
training.

Video Anomaly Detection. This application uses both
reconstruction-based and classification-based DNNs. Clas-
sification-based algorithms train anomaly detection classi-
fiers based on self-supervised learning [10], [11]. For
example, self-supervised algorithms (or non-supervised
learning algorithms) first use pre-trained Yolov3 to get
pseudo-labels/objects, and then apply convolutional neural
networks (e.g., ResNet-18 or ResNet-50 [10]) to extract fea-
tures, and finally train classifiers based on fully connected
networks or convolutional neural networks (CNNs). These
methods are widely used to detect anomaly video, because
they do not need to label every frame of videos manually.

Most image and video anomaly detection applications use
GAN-based training and self-training methods to construct
their DNNs. Specifically, the GAN-based method uses two
or more models to learn the data distribution of normal sam-
ples through the adversarial learning between them. GAN is
difficult to train because the process of adversarial learning
is sensitive and easy to be unbalanced, e.g., one of them has
already converged but others haven’t [30]. Similarly, in self-
training [10], the model learns from the pseudo-labels
updated by itself and updates the label through the predic-
tion result of itself. The network predictions are sometimes
incorrect, which imports incorrect pseudo-labels. Overfitting
these labels will cause ”confirmation bias” [35] and affect the
accuracy of themodel.

While aforementioned studies with promising results in
detection anomaly, their models need to be supported by
computation capacity, being CPU or GPU, with which the
changing available resources on edge devices may not be
equipped. It thus calls for a solution to efficiently scale up or
down existing anomaly detection models to achieve the full prom-
ise of accurate DNNs.

2.2 Related Work

When running complex DNNmodels in the cloud [36] or on
the edge [37], [38], three categories of scaling techniques can
be applied to trade off inference latency and accuracy.

Layer removing techniques apply structured pruning tech-
niques to trade off inference latency and model accuracy in
anomaly detection systems. Specifically, they first generate
a list of descendant models of different sizes and then
dynamically select one of them according to the available
resources and the deadline constraint at run-time. Com-
monly used structured pruning techniques include filter
pruning [32], and low rank decomposition [39], and knowl-
edge distillation [40]. However, these techniques suffer
from long re-training (fine-tuning) time in descendant
model generation. For example, when training ResNet-18
on ImageNet [41], both filter pruning and low rank decom-
position take an average of 7 and 8 hours to generate a
descendant model on a GPU server with 48-GB Quadro
RTX 8000 graphics card. This means scaling techniques can
only have a small number of scaling options (e.g., 5 descen-
dant blocks [17], [32]). The large gaps among these models
may incur large accuracy losses.

Nested network techniques [17], [18], [19], [20] aim to design
compact modules suitable for running on edge devices.
They train all descendant models jointly by inserting some
extra operations into each batch, e.g., sampling sub network
or clearing parts of gradient [17]. Although these techniques
can generate hundreds to trillions of descendant models for
standard SGD-based DNNs (e.g., DNNs in image classifica-
tion and object detection applications), they have poor
effects in anomaly detection systems. This is because the
extra operations in the training may result in the difficulty
of convergence in GAN-based training [30] and the confir-
mation bias in self-training [35], thus degrading model
accuracy. In particular, in US-Net [18], FN3 [20], and
OFA [19] proposes “progressive shrinking training” which
causes large accuracy losses.

FLOP Scaling Techniques. Progressive inference techni-
ques (MSDNet [21] and Hardware-Aware Progressive Infer-
ence (HAPI) [22]) use several points to support the early
exist of inference if a pre-defined classification accuracy is
met. Block-skipping techniques (BlockDrop [23] and Con-
vNet-AIG [24]) dynamically skip unimportant convolu-
tional layers or blocks to reduce computational costs.
However, both types of techniques employ unique and
complex training processes and loss functions, and they are
inapplicable to DNNs in anomaly detection applications
(the training cannot converge). Channel gating (CGNet [25])
is the only technique that can be used in anomaly detection
applications and it dynamically finds a DNN’s unimportant
parts and skips them in inference.

3 LIGHTDNN

To enable the predictable latency and high accuracy in DNN
scaling, two basic research questions need to be answered in
LightDNN: (1) how to efficiently train and profile the
descendant blocks for a DNN (Section 3.2); (2) how to per-
form fine-grained scaling of the DNN using these blocks
with both high accuracy and small overheads (Section 3.2).

3.1 Overview

Fig. 2 shows the LightDNN architecture, which is split into
an offline stage and an online stage.

The offline stage consists of two steps: block generation
and profiling. Given a trained DNN with n blocks, the block
generation step first transforms each block into a list of
descendant blocks. Traditional model compression techni-
ques re-train a compressedmodel from scratch andmay suf-
fer from long training time. In contrast, LightDNN re-trains
a descendant block based on the original block for two rea-
sons. First, the training only uses the block’s intermediate
data and avoids the unnecessary computations on other
parts of the network. Second, the block and all its descendant
blocks have the same input and output channels in the DNN.
This allows LightDNN to incorporate any of these descen-
dant blocks into the networkwithout extra operations.

Subsequently, the block profiling step generates profiles
for all blocks and descendant blocks, including their infer-
ence latencies, accuracies and memory footprints. Note that
in latency profiling, LightDNN only measures the percent-
age of reduced latency compared to that of the original/
uncompressed block. This is because the latency of
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processing the same block also depends on the system sta-
tus, e.g., this latency increases when the system resource is
saturated. The profile hence records the reduction percent-
age in order to be applicable to different performance inter-
ference scenarios.

At the online stage, three components work together to
provide fine-grained and lightweight scaling. Once any
change in available resources or performance interference is
detected for the DNN, the online scaling optimizer finds the
optimal scaling option that maximizes the inference accu-
racy under a given deadline and outputs it as the scaling
decision. In optimization, the inference latency predictor takes
a scaling option as input and outputs the DNN’s predicted
latency according the latest system status (that is, the moni-
tored latencies of all n blocks). The block exchanger conducts
this scaling decision that corresponds to a combination of
the (descendant) blocks in the DNN and only switches
replaced blocks to reduce page in/page out overheads.

3.2 System Model

This work considers a DNN that can be decomposed into a
sequence of n blocks: {b1; . . . ; bn }. Each block is one part of
the network and consists of multiple layers such as convo-
lutional layers, nonlinearity such as a ReLU, and pooling
layers (e.g., max pooling layer) [42]. In the DNN, these
blocks take most of computational costs and memory foot-
prints, and hence they determine the inference latency of
an anomaly detection system. For example, Fig. 2 illus-
trates two blocks (b1 and bn) in a DNN and both blocks
contain convolutional layers and other layers. We note
that most of the DNNs applied in anomaly detection sys-
tems (examples are GANomaly [7], OGNet [8], and
ResNet [31]) have similar architectures of convolutional
layers in their blocks.

Descendant Block. In LightDNN, each block bi corre-
sponds to a set of ni descendant blocks of smaller sizes
(1 � i � n and ni > 1). A descendant block bi;j (0 � j � ni

and bi;0 is the original block bi) is characterized by:

bi;j :¼ ðSi;j; T i;j;Ai;j;BðkÞ
i;j Þ: (1)

� Si;j: the decreased memory footprint of bi;j (Si;0 ¼ 0).
� T i;j: the percentage of processing latency reduction

in bi;j (T i;0 ¼ 0).

� Ai;j: the accuracy loss of bi;j (Ai;0 ¼ 0).
� BðkÞ

i;j : whether descent block bi;j is switched into the
model in kth block-grained scaling (k � 0 and
BðkÞ
i;j 2 f0; 1g). Bð0Þ

i;j represents the initial state before
scaling.

Layered Structure in DNN Scaling. In block-grained scal-
ing, LightDNN guarantees that the DNN’s layer structure
keeps unchanged. First, a descendant block’s decision vari-
able BðkÞ

i;j is either 0 (not selected) or 1 (selected). Second, for
each block bi, only one of its ni descendant blocks can be
selected

8 1 � i � n;
Xni
j¼0

BðkÞ
i;j ¼ 1: (2)

3.3 Training Process Independent Block Generation

Block Generation. The block generation step first extracts
blocks from the original trained DNN and applies pruning
filter techniques to transform each block into a list of
descendant blocks. These blocks are then re-trained to
recover their functionalities based on the their training envi-
ronment. As illustrated in Fig. 3, a block’s training environ-
ment corresponds to its input and output channels in the
DNN. Using this environment, the standard stochastic gra-
dient descent (SGD) method is applied to quickly train a
descendant block. At each training iteration, a mini-batch D
is sampled from the training dataset. For a descendant block

Fig. 3. Training environment in block generation.

Fig. 2. LightDNN architecture.
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bi;j, the loss L is defined as

F input ¼ ðbi�1 � � � � � b1 � b0ÞðDÞ
F output ¼ biðF inputÞ
F�

output ¼ bi;jðF inputÞ
L ¼ kF output �F�

outputk
2
2; (3)

where � represents the composite function, i.e., ðf � gÞðxÞ ¼
fðgðxÞÞ. The calculation of loss has three steps. Step 1 calcu-
lates the intermediate data (i.e., block bi’s input F input) in
the original model. In practice, we can collect this from a
forward process in inference. Given input F input, step 2 cal-
culates the outputs F output and F�

output of bi and bi;j, and com-
putes the difference of these two outputs as loss L. Finally,
step 3 back propagates the loss L to update bi;j’s parameters.

Memory Footprint and Accuracy Profiling. The block profiling
step can directly calculate a block bi or its descendant block
bi;j’s memory footprint according to its model size, and esti-
mate bi;j’s decreased memory footprint Si;j. In contrast,
obtaining bi;j’s accuracy loss is not trivial because the block
incurs different accuracy losses when combined with other
blocks of different sizes. The profiling step hence considers
v representative model sparsities/sizes in profiling a
descendant block bi;j and calculates its accuracy loss as the
average accuracy loss of the k profiles.

Latency Profiling. On edge devices, the processing latency
of a block is considerably influenced by its co-running
applications due to their resource contention and perfor-
mance interference. Random system background activities
such as system maintenance or garbage collection also influ-
ence the processing latency. This means the absolute value
of a descendant block’s latency dynamically changes under
different performance interferences. Typically, larger per-
formance interferences incurs longer latencies and hence
this descendant block brings larger reductions in latency in
profiling. However, at run-time, the performance interfer-
ence dynamically changes and it is infeasible to estimate a
descendant block’s latency reduction at the offline stage.
For such an issue, the profiling step predicts the percentage
of latency reduction for each descendant block. This predic-
tion approach is inspired by one key intuition: a block’s proc-
essing latency is proportional to its block size, namely its number
of parameters. In other words, the ratio of two blocks laten-
cies can be calculated offline according to their block sizes.
Let si and si;j be the block sizes of block bi and its descen-
dant block bi;j, the percentage of latency reduction bi;j is cal-
culated as T i;j ¼

si;j
si
. Note that the above calculation of

latency reduction works for both a block’s ideal latency (i.e.,
its minimum latency without performance interference) and
latencies under different interferences.

3.4 Block-Grained DNN Scaling

In this section, we first show how to pack all require-
ments and constraints of an online optimization into a
strict mathematical optimization problem and solve it
efficiently on resource-constrained devices (Section 3.4.1).
We then explain how to obtain the accurate online pro-
files required in this solving process (Section 3.4.2) and
how to perform the block exchange in online scaling
(Section 3.4.3).

3.4.1 Online Scaling Optimizer

At run-time, the optimizer finds the combination of (descen-
dant) blocks for a DNN to minimize its accuracy loss. Equa-
tion (4) defines the optimization objective ok in the kth
scaling (k � 1) as the accuracy loss caused by the descen-
dant blocks

ok ¼ min
B

Xn
i¼1

Xni
j¼0

Ai;j � BðkÞ
i;j

s:t:

t
ðkÞ
predict � tdeadline

sDNN �
Xn
i¼1

Xni
j¼0

Si;j � BðkÞ
i;j � smax

8 1 � i � n;
Xni
j¼0

BðkÞ
i;j ¼ 1; BðkÞ

i;j 2 f0; 1g: (4)

The optimization has three constraints: (1) deadline con-
straint. given a scaling option, the predicted latency of the
DNN (Equation (5)) should be lower than the deadline
tdeadline. (2) Memory constraint. Let sDNN be the memory foot-
print before scaling and

Pn
i¼1

Pni
j¼0 Si;j � BðkÞ

i;j be the
decreased memory footprint in scaling down or the minus
of increased memory footprint in scaling up. The second
constraint states that the memory footprint after scaling
should be smaller than the maximal available memory smax.
(3) Structure constraint. The DNN’s layer structure keeps
unchanged in scaling. That is, a descendant block bi;j can
only be replaced by one of the descendant blocks generated
from the same block bi.

The optimization in Equation (4) can be seen as an Inte-
ger Linear Programming (ILP) problem because its decision
variable BðkÞ

i;j can only be 0 or 1. LightDNN solves this ILP
problem with two phases. First, it relaxes the integer con-
straint of ILP and transforms it into a linear programming
(LP) problem p� that can be quickly solved. Second, it
employs the branch and bound method to recursively
search the optimal solution of ILP with polynomial time
complexity. The basic idea of the branch and bound method
is to construct a tree that uses p�’s optimal solution q� as the
root node, and recursively traverses its branch nodes until
the optimal solution of ILP is found. ILP problem is NP-
complete and can’t be solved in polynomial time.
LightDNN also adds an early stopping threshold s such
that the search process is completed if the found optimal
solution is close enough to the actual optimal solution. This
guarantees the availability and efficiency of this algorithm
on resource-constrained edge devices.

In the above optimization, a descendant block is either
used or not in the DNN. This descendant block represents a
portion of its original block and conceptually, massive
descendant blocks can be generated to provide a fine-
grained differentiation of the original block. However, our
approach only generates a finite number (e.g., 5) of descen-
dant blocks for each original block for two reasons. First,
the accuracy and latency gaps of descendant blocks are
small. For instance, when generating 5 descendant blocks
for ResNet-18, the accuracy gap of two consecutive blocks is
less than 0.006 and their latency gap is less than 0.06 sec-
onds (on Raspberry Pi). This means 5 descendant blocks
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provide a sufficiently fine granularity in accuracy-latency
trade-offs. Second, a DNN consists of a few to dozens of
blocks. Even if each block only has several descendant
blocks, the combination of these blocks provide thousands
to millions of scaling options.

As with existing techniques, we do not support online
block generation because re-training is required to recover
the functionality of the pruned block. Therefore, it’s imprac-
tical to switch just a part of a block into the model (i.e., gen-
erating a smaller block based on this existing block on the
fly and switching it into the model). We just switch it
completely or not.

Actually, this simple strategy is sufficient to provide an
accurate and seamless trade-off between inference accuracy
and latency because of the following two reasons:

1) There’re significant differences in performance
between a few (e.g., 5) descendant blocks of an origi-
nal block. For instance, in ResNet-18, b8;1 provides
3.99% of model size reduction and 0.60% of accuracy
loss, while b8;2 provides 7.97% of model size reduc-
tion and 1.43% of accuracy loss. The accuracy and
seamlessness of LightDNN will not increase linearly
as the number of descendant blocks increases, that
is, marginal effects will occur when generating
excessive descendant blocks. Unnecessary descen-
dant blocks just add more offline costs without ade-
quate contribution to model performance.

2) For a single block, we just choose it or not. However,
this block-level binary choice can generate model-
level seamless scaling by compositions of several
blocks, so LightDNN can provide accurate model
scaling according to the latency requirements and
memory constraints.

3.4.2 Inference Latency Predictor

In Equation (4), the inference latency prediction is based on
the generated descendant blocks and their profiles and it
faces two challenges at run-time. First, the co-running appli-
cations and background activities continuously change on
the edge node, and hence the performance interference they
cause dynamically changes. Second, the combination of dif-
ferent descendant blocks creates a large space of candidate
scaling options, and it is infeasible to test each option online.
LightDNN solves these challenges by dividing the predic-
tion into two steps. Step 1 predicts the latencies of the uncom-
pressed DNN and its original blocks by estimating the
performance interference according to the monitored laten-
cies in the current DNN. Step 2 takes a scaling option (that
is, a combination of descendant blocks) as input and out-
puts the predicted latency if this scaling is conducted.

Specifically, step 1 predicts the latencies of the uncom-
pressed DNN and blocks by taking five inputs: (1) tmi is the
monitored latency of block bi in the current DNN. The laten-
cies of all n blocks represent the latest performance interfer-
ence in the system; (2)Bðk�1Þ

i;j denotes whether block bi;j is
used (Bðk�1Þ

i;j =1) or not (Bðk�1Þ
i;j =0) by the current DNN; (3) t�

is the DNN’s ideal latency without performance interfer-
ence; (4) t�i is block bi’s ideal latency without performance
interference; (5) T i;j. The first two inputs are decided by
run-time system and DNN scaling status and the last three

inputs are from block profiles. Step 1 outputs the uncom-
pressed DNN’s predicted latency (tðkÞ) and each block bi’s
predicted latency (t

ðkÞ
i ) in the kth scaling.

Algorithm 1 details the process of this step. It employs an
interference factor ai to reflect the performance interference
to each block bi (line 1). This factor is calculated as the pre-
dicted latency t

ðkÞ
i of block bi (lines 2 to 7) divided by bi’s

ideal latency t�i without performance interference (line 8).
Subsequently, the algorithm identifies and removes the out-
liers of these interference factors (lines 10 to 18). Let m and s

be the mean and standard deviation of the n factors, an fac-
tor ai is an outlier if jai � mj � 3s. Finally, the algorithm
uses the remaining factors to calculate the interference fac-
tor â of the DNN (line 19) and predicted latency tðkÞ for the
whole network (line 20).

Algorithm 1. Block Latency Prediction for the kth Scaling

Require: tmi , B
ðk�1Þ
i;j , t�, t�i , T i;j (1 � i � n, 1 � j � ni)

1: Set ai ¼ 0 for 1 � i � n;
2: for (i = 1; i � n; i++) do
3: for (j = 0; j � ni; j++) do
4: if Bðk�1Þ

i;j then

5: t
ðkÞ
i = tmi / (1 - T i;j), break;

6: end if
7: end for

8: ai =
t
ðkÞ
i
t�
i
;

9: end for

10: m =

Pn

v¼1
av

n ;

11: s =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

v¼1
ðak�mÞ2

n

r

12: â ¼ 0, v ¼ 0;
13: for (i = 1; i � n; i++) do
14: if ai � mj j < 3s then
15: âþ ¼ ai;
16: vþþ;
17: end if
18: end for
19: â= ¼ v;
20: tðkÞ ¼ t� � â;
21: return tðkÞ, t

ðkÞ
1 to tðkÞn .

Given a candidate scaling option represented by BðkÞ
i;j

(k � 1, 1 � i � n, and 0 � j � ni), step 2 predicts the latency
of the DNN as the latency tðkÞ of the uncompressed DNN
(namely the longest latency) minus the reduced latencies
because of the compressed/descendant blocks selected in
the scaling

t
ðkÞ
predict ¼ tðkÞ �

Xn
i¼1

Xni
j¼0

t
ðkÞ
i � T i;j � BðkÞ

i;j : (5)

3.4.3 Block Exchanger

For a DNNmodel of n blocks, let Bðk�1Þ
i;j and Bðk�1Þ

i;j (1 � i � n
and 1 � j � ni) be its choice of blocks before and after the
kth scaling. The block exchanger is designed to conduct the
optimal scaling decision with two steps. First, the exchanger
scans Bðk�1Þ

i;j and BðkÞ
i;j simultaneously. If Bðk�1Þ

i;j ¼ 0 and
BðkÞ
i;j ¼ 1, the block bi;j will be loaded from the disk into the

memory immediately. Second, once the new block is
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loaded, it will be switched into the model to replace the cor-
responding old block. The memory space occupied by old
replaced blocks will be paged out naturally by the garbage
collection (GC).

Our block exchanger is lightweight for two reasons. First,
traditional layer removing and FLOP scaling techniques
need to exchange the entire DNN in a scaling. In contrast,
our exchanger only switches a small number of blocks that

donot exist in the scaling decision (i.e., where Bðk�1Þ
i;j 6¼ BðkÞ

i;j ),

thus considerably reducing the page-in and page-out

overheads.
Second, nested techniques such as NestDNN construct a

multi-capacity model to incorporate all descendant models
and thus also exchange a part of the DNN in a scaling. How-
ever, these techniques need extra operations: when some
pages are loaded into memory, new layers needs to be con-
structed using both model weights (whose can be more
than dozens of MBs in large networks) and APIs of deep
learning libraries. These operations consume extra resour-
ces and time in scaling. In contrast, our exchanger needs no
extra operations, because LightDNN maintains the same
training environment for a block and all its descendant

blocks, and hence allows the direct switching of them via
simple assignment API provided by the programming lan-
guage (e.g., setattrðÞ in Python).

4 EVALUATION

In this section, we test the full implementation of LightDNN
on top of PyTorch [43] with an extensive set of evaluations.

4.1 Experimental Setup

Testbeds. We choose both CPU and GPU edge platforms
imposing different architectural features to showcase the
cross-platform nature of LightDNN when it comes to hard-
ware. We use Raspberry Pi 4B with 4 1.5GHz Cortex-A72
cores (ARM v8) and 4 GB memory; and NVIDIA Jetson TX2
with 256-core NVIDIA PascalTM GPU architecture and 8 GB
memory. We also discuss the scalability of our approach
using two Jetson platforms: Jetson Nano has 4 ARM Cortex-
A57 cores and 4GB memory, and Jetson Xavier NX has 6
NVIDIA Carmel ARM v8.2 cores and 8GB memory. Fig. 4
illustrates the four edge platforms. All platforms run Linux
Ubuntu 18.04 LTS.

DNN Models and Datasets, and Applications. To evaluate
LightDNN’s generalization capability on different anomaly
detection tasks, we selected 8 workloads in two most impor-
tant applications. Table 1 summarizes the dataset character-
istics and the division of nomal/abnomal classes in these
workloads.

� Image anomaly detection. This type of tasks usually
employs reconstruction-based DNNs. Without loss
of generality, we select three popular DNN models
(GANomaly [7], GPND [5], and OGNet [8]) and four
image datasets: Coil100 [44], EMNIST [45], Caltech-
256 [46], and ImageNet [41].

� Video anomaly detection. We test classification-based
DNNs for this type of tasks. We select four classifica-
tion-based DNNs (ResNet-18, ResNet-50 [10], Alex-
Net and VGG16 [10], [11]) and one most commonly
used video dataset (UCSD-ped1 [47]). UCSD-peds1
contains 34 training and 36 testing video samples.

Evaluation Metrics. Similar to most anomaly detection
applications, the inference accuracy is measured by
Receiver Operating Characteristic (ROC) Curve (AUC).
This metric represents the probability that a randomly

Fig. 4. Illustration of four edge platforms in evaluation.

TABLE 1
A Summary of Eight Anomaly Detection Workloads

Model Dataset #Data points Abnormal classes

Ganomaly Coil100 train: 5400 test normal: 1080 test
abnormal: 720

Normal classes: 10th class abnormal
classes: 50th-59th class

Ganomaly EMNIST train:345426 test normal:57527 test
abnormal:411302

Normal classes: all letter abnormal
classes: all digits

GPND Caltech256 train:1798 test normal:455 test
abnormal:455

Normal classes: 250th, 144th, 252th, 22th,
67th class abnormal classes: 256th class

OGNet ImageNet2012 train:78055 test normal:25499 test
abnormal:25499

Normal classes: 0th-79th class abnormal
classes: 500th-519th class

ResNet-18 UCSD-Peds1 train:14000 test normal:2800 test
abnormal:1400

Abnormal classes: non pedestrian
entitiesand anomalous pedestrian
motion patterns

ResNet-50
AlexNet
VGG16
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chosen positive test point (whose actual class is positive)
will have a greater chance of being predicted as positive
than a randomly chosen negative test point.

Compared Baselines. We implement and compare three
categories of state-of-the art DNN scaling techniques from
the literature. (1) Layer removing techniques including Filter
pruning [32], low rank decomposition [39], and knowledge
distillation [40]. (2) Nested network techniques including
NestDNN [17], US-Net [18], FN3 [20]. OFA [19]. (3) FLOP
scaling techniques. Among five techniques (MSDNet [21],
HAPI [22], BlockDrop [23], ConvNet-AIG [24], and
CGNet [25]), only CGNet is applicable to GAN-based train-
ing and self-training in anomaly detection applications.

4.2 Evaluation of Offline and Online Overheads

4.2.1 Evaluation of Model and Block Generation

In the baseline approaches, the re-training of descendant
models takes most of the generation part. Such re-training
(or fine-tuning) is necessary to boost accuracy of descendant
models. In LightDNN, the generation time is the summation
of pre-training and profiling time of descendant blocks.

Comparison to Layer Removing and FLOP Scaling Techni-
ques. For each DNN, we generate 5 descendant models in
the layer removing techniques and 5 descendant blocks for
each block in LightDNN. When applying to anomaly detec-
tion applications, the training is difficult to converge in the
FLOP scaling technique (CGNet), so less numbers of
descendant models can be generated. To make our compari-
sons fair, the re-training of each descendant model or block
using the same training data, hyperparameter settings (the
maximal epoch is 20), and platform (a GPU server with 48-
GB Quadro RTX 8000 Graphics Card). Table 2 lists compari-
son results. We can see that LightDNN uses the shortest
generation time in most of the cases because it only needs to

train small blocks rather than the entire network. The only
exception is the GPND model, because the inference in this
model needs extra operations on latent representation such
as SVD decomposition, thus causing much longer infer-
ence/profiling time. Moreover, the baseline approaches
provide 1 to 5 optional models in scaling (low rank decom-
position cannot compress AlexNet and VGG16 on the
UCSD-Peds1 dataset). In contrast, LightDNN provides 729
to 2.82 trillion scaling options depending on the number of
blocks in these DNNs.

Comparison to Nested Network Techniques. Following the
above experimental settings, Table 2 shows that NestDNN
takes long time to generate 5 nested descendant models.
The other three techniques generate a large number of
options using similar training time as LightDNN, but they
have three restrictions in practical online scaling. First, US-
Net and FN3 are only applicable to half of anomaly detec-
tion applications. Second, switchable BN [29] is used in US-
Net to support multiple nested descendant networks, and
its memory footprint becomes extremely large when the
number of descendant models is large. For example, the
model size of US-Net on Ganomaly will double when the
number of online descendant networks is 1k (e.g., 1k scaling
options), and will reach GBs when it provides 50k scaling
options. This means on resource-constrained edge devices,
only small scaling options can be provided by US-Net.
Finally, the number of scaling options in FN3 is limited due
to its time-consuming architecture search algorithm. For
example, an accuracy test of GPND takes 3 minutes, which
means it will take hundreds of days if we need search 10k
GPND models in online scaling. For OFA, the search is
based on an accuracy estimation model, whose training
data needs long time to correct. For example, preparing 16k
training data for GPND takes more than one month.

TABLE 2
Comparison of Offline Preparation Time Between LightDNN and Baseline Techniques

Ganomaly Ganomaly GPND OGNet ResNet-18 ResNet-50 AlexNet VGG16

Dataset Coil-100 EMNIST Caltech256 ImageNet2012 UCSD-Peds1

#Blocks in a DNN 6 6 4 6 8 16 3 6

Filter Pruning #scaling options 5 5 5 5 5 5 5 5
time(h) 0.35 2.5 1.2 42 0.9 1.9 0.5 3.3

Low Rank Decomposition #scaling options 5 5 5 5 5 5 1 1
time(h) 0.3 2.1 0.96 40 0.66 1.5 0.1 0.6

Knowledge Distillation #scaling options 5 5 5 5 5 5 5 5
time(h) 0.25 1.4 0.9 33.6 0.7 1.8 0.45 2.7

CGNet #scaling options 4 4 3 2 3 3 4 2
time(h) 0.56 4.0 2.16 50.4 1.38 2.85 0.98 3.33

NestDNN #scaling options 5 5 5 5 5 5 5 5
time(h) 0.83 6.2 1.27 53 0.92 2.2 0.62 4

US-Net #scaling options 256 256 512 512
time(h) 0.21 1.5 1.08 33.6

FN3 #scaling options 6.05e23 2.77e23 5.40e16 7.25e24
time(h) 0.35 2.5 1.8 63

OFA #scaling options 1953125 1953125 15625 9765625 10000 6.56e7 3125 1.2e9
time(h) 18.25 123.1 802.5 199.4 51.5 89.7 58.55 200.7

LightDNN #scaling options 46656 46656 1296 46656 1679616 2.82e12 729 531441
time(h) 0.08 4.2 3.24 4.5 0.42 2.4 0.33 2.665
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Evaluation of Estimation Model. Let aest be a DNN’s esti-
mated accuracy, which is calculated using the accuracy of
the original DNN and the profiled accuracy losses of
descendant blocks. Let atrue be the DNN’s actual accu-
racy, which is calculated using the test dataset. The pre-
cision of accuracy loss estimation is measured as the
percentage of difference between these two accuracies:
jatrue�aest j

atrue
.

For each DNN, we test multiple available memories
within the range of its minimal and maximal model
sizes, and the interval of two consecutive memories is
0.5 MB. We test an average of 100 memories for one
DNN and report the average value: a smaller percentage
means a higher precision of accuracy loss estimation.
The evaluation results in Table 3 shows that for all
DNNs, the percentage is smaller than 1% (the average
percentage is 0.5%). That is, when LightDNN constructs
DNNs of different sizes under different available memo-
ries, the accuracy loss estimation is precise to support
scaling decisions.

4.2.2 Evaluation of Energy Consumption in Scaling

Another key overhead of scaling is the energy consumption
cased by model switching when the available resource
changes. Fig. 5 shows the comparison results of different
approaches by testing 8 workloads on Raspberry Pi 4B and
Jetson TX2. We used UNI-T UT658 power monitor to mea-
sure the energy consumptions. As expected, the energy con-
sumed by layer removing and FLOP scaling techniques is the
largest. This is because filter pruning/knowledge distilla-
tion, low rank decomposition, and CGNet directly replace
the entire DNN to a smaller or larger one in a scaling, thus
incurring the highest switching overheads. Take VGG16 an
an example, the average page in and page out size is 261
MBs in filter pruning, 151 MBs and 117 MBs in OFA and
NestDNN, and only 12 MBs in LightDNN.

Nested network techniques construct multi-capacity mod-
els to incorporate multiple descendant models and thus
considerably reduces the page-in and page-out sizes in
model switching. However, the multi-capacity models also
incur extra operations in scaling: when some pages are
loaded into memory, new layers needs to be constructed
using extra operations. In contrast, LightDNN provides a
lightweight scaling mechanism with twofold meanings.
First, LightDNN only needs to exchange some blocks rather
than the entire network, thus saving page-in and page-out
overheads like nested network techniques. Second, the
newly added blocks can be directly combined into the
model without extra operations. This is because in scaling,
LightDNN only exchanges a descendant block to another
descendant block belonging to the same original block. In
other words, LightDNN maintains the same input and out-
put channels (i.e., training environment) for both descen-
dant blocks in the network, thereby allowing the switching
of them without extra operations. The results in Fig. 5 verify

TABLE 3
The Average Accuracy Estimation Loss of LightDNN

in Eight Workloads

Model Dataset Average accuracy estimation loss

Ganomaly Coil100 0.46%
Ganomaly EMNIST 0.18%
GPND Caltech256 0.66%
OGNet ImageNet2012 0.15%

ResNet18 UCSD-Peds1 0.51%
ResNet50 0.84%
AlexNet 0.24%

Fig. 5. Comparison of energy consumptions in model scaling.

ZHANG ETAL.: LIGHTWEIGHTANDACCURATE DNN-BASEDANOMALY DETECTION AT EDGE 2935

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 10:47:56 UTC from IEEE Xplore.  Restrictions apply. 



the above claims: LightDNN reduces energy consumptions
by 68.16% and 83.03% on Raspberry Pi 4B and Jetson tx2,
and by 71.94% overall.

Percentage of Switched Blocks. To support the above claim,
we demonstrate the percentage of switched blocks in Fig. 6.
The result shows that all models need to switch less than
50% of blocks to construct the new DNNs when the avail-
able memory changes. When considering all cases,
LightDNN switches an average of 22.15% of blocks. Note
that no block is switched in AlexNet, because the scaling
optimizer finds that the smallest AlexNet model has the
highest accuracy and tends to maintain this model under
different available memories.

4.3 Evaluation of Inference Accuracy in
Online Scaling

4.3.1 Evaluation of Inference Latency Prediction

The effectiveness of DNN scaling is considerably impacted
by the accuracy of its latency predictor. To evaluate this
accuracy, we ran each DNN model under variations of

both memory resources and performance interferences.
Specifically, 10 memories are tested for each workload.
The lower and upper bounds of these memories are set as
the minimum and maximum required resources to run the
smallest and largest models in the baseline approaches.
The DNN’s co-running applications also continuously
change to provide varying performance interferences. For
each workload, the test was repeated 100 times for consis-
tency and the distribution of prediction errors is reported
using box plots.

Fig. 7 compares the prediction errors between LightDNN
and seven baseline approaches (CGNet is not reported
because this technique only scales FLOPs but does not
change inference). This error is defined as the percentage of
decreased or increased value in the predicted latency when
comparing to the actual latency on the edge node. From
Fig. 7, we can see that in most of the cases, the average pre-
diction errors of our approach are smaller than 6%, indicat-
ing the latency predictor keeps a good track of the system
status and reduced latency due to model scaling. In con-
trast, model-grained scaling approach can only selected one
of the pre-generated models according the available mem-
ory and unaware the impact of performance interference,
hence incurring large prediction errors between 20% to
50%. In all cases, LightDNN reduces prediction errors are
much lower (6.90x lower) than those of all model-grained
scaling approaches.

Discussion of Deadline Violation. In this evaluation, we test
ResNet-50 (the DNN with the largest number of LightDNN
blocks) on the GPU platform (Jetson TX2) and GPND on the
CPU platform (Raspberry Pi). For each model and platform,
we perform online scaling 100 times under various perfor-
mance interferences and report the distribution of the 100
actual latencies in Fig. 8. The results show that the actual
latencies of both models are approximately normally

Fig. 6. The percentage of switched blocks in LightDNN when model
scaling.

Fig. 7. Comparison of prediction errors of inference latency between LightDNN and baseline approaches.
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distributed around the given deadline, and most of the
latencies are close to the deadline. This means the latency
estimation in LightDNN is precise: the actual latencies are
only slightly smaller or larger than the deadline. Specifi-
cally, 97.5% of the cases in GPND are distributed within 5%
of the deadline, and 95% of the cases in ResNet-50 are dis-
tributed within 10% of the deadline. The estimation error on
the GPU platform is higher because this platform has higher
parallelism and thus higher uncertainties in inference. We
note that anomaly detection systems usually apply a soft
deadline constraint. That is, on a resource-sharing edge
device, occasionally exceeding the deadline is allowed in
anomaly detection. Our approach can also strictly meet the
deadline constraint by setting a slightly shorter deadline in
estimation.

4.3.2 Evaluation of DNN Scaling

Fig. 9 illustrates the comparison between LightDNN and
layer removing and nested network techniques across 8 DNN
workloads under deadline constraints, which are set to 25
ms for ResNet and AlexNet, 180 ms for VGG 16, 150 ms for
Ganomaly and OGNet, and 300 ms for GPND (this model
needs extra computations in addition to the model itself). In

LightDNN, the stopping threshold of scaling optimization
is set to 0.005 and all the scaling optimization decisions are
made within 1 seconds. We have two key observations from
the result.

First, LightDNN consistently achieves higher accuracies
than baseline approaches under different available RAM or
VRAM resources across all 8 workloads. This result indi-
cates that our block-grained scaling is able to deliver state-
of-the-art inference accuracy under a given memory budget
and deadline constraint. This is because based on the pre-
cise prediction of inference latencies, LightDNN is able to
use the largest possible model to improve inference accu-
racy. Overall, LightDNN increases the inference accuracy
by 12.26% compared to those of baselines.

Second, we observe that when the available memory
becomes smaller, LightDNN achieves more improvements

in inference accuracy. On average, it achieves 14.96% higher

accuracy when the available memory is smaller than 30MB.

This is because the scaling optimizer in LightDNN can find

the blocks having the largest influence on accuracy while

first scaling down less important blocks. Small descendant

models in LightDNN hence benefits from these important

blocks while other baseline models do not.
Moreover, we compare LightDNN with FLOP scaling

techniques under the same computational costs. Fig. 10
shows that LightDNN consistently archives higher accura-
cies for all workloads. This because FLOP scaling techni-
ques reduce computational costs by skipping parts of a
DNN. In contrast, our approach trades off accuracy and
FLOPs by selecting descendant blocks of different sizes, and
each descendant block can be viewed as an approximation
of the original block and its accuracy loss is small. We can
also observe that our approach provide much large scaling
space than CGNet. Overall, our approach increases accura-
cies by an average of 17.84%.

Fig. 8. The relationship between the deadline and the actual latencies in
the CPU and GPU platform.

Fig. 9. Comparison of inference accuracies between LightDNN and layer removing and nested network techniques.
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Discussion of Stopping Threshold s. In scaling, the value
of s determines both optimization time and inference
accuracy. In this evaluation, we take ResNet-50 as an
example and test its scaling optimization on Raspberry Pi
(the less powerful edge platform). Six values of s ranging
from 0 to 1e-3 are tested. For each value, we sample 100
different memory constraints and deadlines to construct
100 different optimization problems. Table 4 reports each
threshold’s accuracy gap to the actual optimal solution
(without early stopping) and the average optimization
time. We can see that a larger value of s brings faster
optimization time by sacrificing negligible accuracy. For

example, when s ¼ 1e� 3, the optimization time is nearly
30% shorter than the time when s ¼ 0, while only causing
0.1% accuracy drop. Hence in experiments, the stopping
threshold is set to 0.005 in order to provide fast optimiza-
tion time and high accuracy.

4.4 Comparison to EfficientNet and NAS
Techniques

In this section, we compare LightDNNwith EfficientNet [48]
and two latest NAS techniques (DenseNAS [27] and Hard-
CoRe-NAS [28]): (1) EfficientNet: the network’s width,
depth, and input resolution are defined by three equations:
a’, b’, and g’, in which a, b, and g are determined by the
grid search. Subsequently, to provide multiple optional
models in scaling, this technique generates optimal model
architectures by setting different values of ’. (2) HardCoRe-
NAS and DenseNAS build a super network as the entire
search space, and search and generate multiple optimal
sub-networks from it. Specifically, DenseNAS needs train-
ing in the searching process, and the searched sub-network
requires re-training from scratch. HardCoRe-NAS fully
trains the super network before searching, and the searched
sub-network needs fine-tuning.

Evaluation Settings. We compare all techniques using the
video anomaly detection application (the UCSD-Peds1 data-
set). The three NAS techniques search and generate 5
descendant models based on MobileNetV2 [49]. For Effi-
cientNet, the parameters a, b, g are set to 1.2, 1.1, and 1.15.
This is reasonable because EfficientNet obtains these values
from ImageNet and proves their generality to other DNNs.
For LightDNN, the descendant blocks are learned from
blocks in ResNet-18.

Overheads in OfflineModel Searching and Generation. Table 5
lists the number of scaling options and their generation time,

including searching time and training time. We can see that

among four techniques, LightDNN provides much larger

scaling options while using less generation time. This is

because for each descendant model, the three NAS techni-

ques needs expensive searching and retraining time. Effi-

cientNet needs negligible searching time because it only
searches one parameter (’). LightDNN also needs no search

time and its re-training of blocks is much quicker than the re-

training of entire DNNs inNAS techniques. The combination

of these blocks provides large scaling space. In contrast, to

provide the same number of scaling options, EfficientNet,

DenseNAS, and HardCoRe-NAS take 2:11	 108, 1:05	 106,

and 3:53	 105 GPUhours, respectively.

Fig. 10. Comparison of inference accuracies between LightDNN and
FLOP scaling techniques.

TABLE 4
The Impact of s on Optimization Accuracy and Time

s The accuracy gap to the
optimal solution

Average optimization time (s)

0 0% 0.2151
1e-7 0% 0.2123
1e-6 0% 0.1955
1e-5 0% 0.1942
1e-4 0.023% 0.1777
1e-3 0.070% 0.1521

TABLE 5
Comparsion of the Number of Scaling Options, Searching Time,
and Training Time Between LightDNN and NAS Techniques

#scaling
options

searching time
(h)

training time
(h)

EfficientNet 5 0 402.5
DenseNAS 5 0.64 2.33
HardCoRe-
NAS

5 0.05 1

LightDNN 1679616 0 0.42
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Accuracy and Energy Consumption in Online Scaling. Fig. 11
compares the inference accuracies and energy consump-

tions of LigthDNN and the three NAS techniques on Jetson

TX2 (the deadline is 150ms). Fig. 11a shows that LightDNN

achieves the highest under different available memories.

EfficientNet results in the lowest accuracy because it only
uses one parameter in network search and hence its optional

networks have the largest differences. Fig. 11b shows that

LightDNN significantly reduces energy consumption in

scaling (reducing by 95.9% in average). This is because the

NAS techniques perform model scaling via switching the

entire networks. The average page in and page out size is

26MBs in EfficientNet, 25.5MBs in DenseNAS and Hard-

CoReNAS, while this size is only 10MBs in LightDNN.
Another reason of high scaling overhead in the NAS techni-

ques is that a MobileNet-based network has much more net-

work layers than a standard CNN (e.g., ResNet-18) when

both networks have the same model size, thus incurring

larger model initialization overheads.

4.5 Discussions of Applicability of LightDNN

Generality of LightDNN. LightDNN represents the first frame-
work that supports block-grained scaling of DNNs for anom-
aly detection systems. In this work, we selected GAN-based
models (GANomaly, OGNet, and GPND) and self-training
models (AlexNet, VGG and ResNet) as representative DNNs
to implement and evaluate our approach. Nested network
and FLOP scaling techniques result in poor accuracies
because they introduce extra operations into the training
process, thus amplifying the instability in GAN-based train-
ing and the number of wrong pseudo-labels in self-training.
LightDNN works well for all these models because it gener-
ates descendant blocks based on trained DNNs and fine-
tunes them in another training environment, hence it is inde-
pendent of the unstable training process of the original DNN.

LightDNN can be generalized to support a wide range of
prevalent DNNs with convolutional layers. In such a DNN,
its blocks can be identified and transformed into descendant
blocks to support block-grained scaling. Examples include
WideResNet [50], feature map exploitation (SENet18 [51]),
attention (Residual Attention Network (RAN) [52]), and
lightweight DNN (MobileNet [49]). Our approach is inap-
plicable when any filter in the DNN cannot be removed,
e.g., this DNN only has one filter in the extreme case.

Discussion of Other Powerful NVIDIA Jetson Platforms. We
added two NVIDIA Jetson platforms to show the scalability
of LightDNN: NVIDIA Jetson Nano and Xavier NX.
According to the performance difference of these two plat-
forms, we set the deadlines on Jetson Nano and Jetson Xav-
ier NX as twice and two-thirds of the deadline on Jetson
TX2, respectively. The evaluation follows the settings of Sec-
tion 4.3.1 and VGG16 is not tested because its size exceeds
the memory capacity of Jetson Nano.

Fig. 12 demonstrates the inference accuracies of the eight
techniques under different available memories. We can see

Fig. 11. Comparison of inference accuracies and energy consumption
between LightDNN and NAS techniques.

Fig. 12. Comparison of inference accuracies between LightDNN and layer removing and nested network techniques in NVIDIA Jetson Nano and NVI-
DIA Jetson Xavier NX.
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LightDNN achieves the highest accuracies in all cases. The
result indicates that LightDNN has a good scalability across
various constraints and devices of different computation
resources. In contrast, the seven compared techniques show
unstable and inconsistent performances across different
models and datasets, because they rely on the unstable
GAN and self-learning training processes. For example, low
rank decomposition achieves high accuracy on Jetson Nano
(Fig. 12b) but fails to provide any available model that satis-
fies the deadline on Jetson Xavier NX (Fig. 12f).

Applicability to Model Compression Techniques. LightDNN
currently uses filter pruning [32] to compress blocks and our
approach can be implemented using other model compres-
sion techniques. First, Filter Pruning via Geometric Median
(FPGM) [53] directly calculates filters’ importances and
removes unimportant ones to compress a network. Second,
data-dependent techniques such as TaylorFOWeight [54],
High-Rank Feature Map (HRank) [55], and Provable Filter
Pruning (PFP) [56] use training samples to estimate a filter’s
importance. We implemented all the above five compression
techniques and tested Ganomaly and ResNet-18 as exam-
ples. The results in Fig. 13 show that these techniques pro-
duce models of similar accuracies, because the descendant
blocks generated by different compression techniques learn
from the same original block in our approach.

Applicability to Deep Learning Platforms. LightDNN is
currently implemented in PyTorch Mobile [43] to support
deep learning models at edge. It is convenient to extend
LightDNN to support other mainstream DL platforms such
as TensorFLow [57] and Caffe [58]. In LightDNN, the block
extraction and switching can be implemented using dozens
of lines of code in these platforms; the block training uses
the standard filter pruning technique; and both the profiling
and the online scaling of blocks are independent of the
underlying platforms.

5 CONCLUSION

This paper presents the design, implementation and evalua-
tion of LightDNN, a framework that enables lightweight
and accurate scaling of DNNs for anomaly detection sys-
tems. Our approach can provide large scaling space for a
DNN by generating descendant blocks for its blocks offline.
Based on the precise perdition of the DNN’s inference
latency at run-time, LightDNN can search the optimal com-
bination of these blocks to maximize accuracy under

deadline constraints. Extensive evaluation results prove the
efficacy and practicality of LightDNN.
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