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Subspace Identification of Individual Systems
Operating in a Network (SI2ON)

Chengpu Yu, Michel Verhaegen

Abstract—This note studies the identification of individual
systems operating in a large-scale distributed network by con-
sidering the interconnection signals between neighboring systems
to be unmeasurable. The unmeasurable interconnections act as
unknown system inputs to the individual systems in a network,
which poses a challenge for the identification problem. A sub-
space identification framework is proposed in this note for the
consistent identification of individual systems using only local
input and output information. The key step of this identification
framework is the accurate estimation of the unknown system
inputs of individual systems using local observations. Sufficient
identifiability conditions are provided for the proposed identifica-
tion framework and a simulation example is given to demonstrate
its performance.

Index Terms—Large-scale distributed network, subspace iden-
tification, blind system identification.

I. INTRODUCTION

In this note, we consider the identification of a single system
operating in a heterogeneous network using local observations.
Examples of the concerned networks are discretized partial-
differential-equation (PDE) systems such as fluid mechanics
[1], flexible structures [2] and large telescope mirrors [3].
For these networks, the local system state as well as the
interconnection signals between neighbouring systems are
unmeasurable, resulting in a challenge for the single system
identification problem using local measurements only. It is not-
ed that the concerned identification problem is fundamentally
different from those parametric network identification methods
[4]–[7] for which the interconnections between neighboring
systems are assumed to be measurable.

To date, there have been several local identification methods
for state-space represented heterogeneous networks. A sub-
space identification algorithm was developed by approximat-
ing the unknown interconnections using a linear combination
of local input and output observations [8]. This approach
however requires an exhaustive search of all input and output
data combinations. In other words, it is still an open problem
on the selection of the local observations for the approximation
of unknown interconnection signals. In [9], a nuclear norm
algorithm was developed to identify a system by exploiting
the different rank and order properties between the considered
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Fig. 1. Demonstration of a 1D network consisting of distinct LTI systems.
The local cluster of systems {Σj}i+R

j=i−R centered by Σi is encircled by a
dashed rectangle.

local and global dynamics; however, this approach is not able
to identify the interconnections between neighboring systems.

In this note, the consistent identification of individual sys-
tems operating in a heterogenous network is to be investi-
gated. Key to the proposed identification framework is the
accurate estimation of the unknown inputs of the system
to be identified. To this end, a subspace-intersection based
estimation algorithm is developed and a sufficient condition
for the reconstruction of the unknown inputs (up to a sim-
ilarity transformation) is given. This approach addresses the
problem in [8] on the selection of local observations for the
approximation of the unknown interconnection signals.

The following notations will be used throughout the note.
For a sequence x(k), we denote Row [x(k)] as the row sub-
space of [x(k) x(k+1) · · · x(k+h−1)] with h being a pos-
itive integer. Row [x1(k) ∩ x2(k)] and Row [x1(k) ∪ x2(k)]
stand for the intersection and union of Row [x1(k)] and
Row [x2(k)], respectively.

The structured block matrices that will be used in the note
are abbreviated as follows:

xj1:j2(k) =
[
xT
j1(k), · · · , x

T
j2(k)

]T
for j2 ≥ j1.

xj(k1 : k2) =
[
xT
j (k1), · · · , xT

j (k2)
]T

for k2 ≥ k1.

Diag(D1, · · · , Dd) =

 D1

. . .

Dd

 .

Os(C,A) =


C
CA
...

CAs−1

 .

II. PROBLEM FORMULATION

In order to focus on the essence of the new identification
method and for the sake of notational simplicity, the identifi-
cation of a spatially varying 1D networked system, as shown
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in Fig. 1, will be investigated in detail. For this 1D network
model, the local systems Σi for i = 1, · · · , N are represented
as

Σ1 : x1(k + 1) = A1x1(k) +A1,rx2(k) +B1u1(k)
y1(k) = C1x1(k) + e1(k),

Σi : xi(k + 1) = Aixi(k) +Ai,lxi−1(k) +Ai,rxi+1(k)
+Biui(k)

yi(k) = Cixi(k) + ei(k),
i = 2, · · · , N − 1
ΣN : xN (k + 1) = ANxN (k) +AN,lxN−1(k)

+BNuN (k)
yN (k) = CNxN (k) + eN (k),

(1)
where xi(k) ∈ Rn×1, ui(k) ∈ Rm×1, yi(k) ∈ Rp×1 and
ei(k) ∈ Rp×1 are respectively the state, input, output and
measurement noise of the system Σi. The system matrices
Ai, Ai,l, Ai,r, Bi and Ci have appropriate sizes. For the above
network model, we assume that N ≥ n and p,m < n.

By denoting u(k) = u1:N (k), x(k) = x1:N (k), y(k) =
y1:N (k) and e(k) = e1:N (k), the matrix form of (1) can be
written as

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) + e(k),
(2)

where A =


A1 A1,r

A2,l A2
. . .

. . .
. . . AN−1,r

AN,l AN

,

B = Diag (B1, B2, · · · , BN ) ,

C = Diag (C1, C2, · · · , CN ) .

The standard assumptions of the network model in (1) are
made as follows.

A1. The global system model in (2) and individual sys-
tems in (1) are minimal.

A2. The input vector u(k) is a quasi-stationary signal and
is persistently exciting of any finite order.

A3. The measurement noise e(k) is a white noise se-
quence satisfying e(k) ∼ N (0, σ2I) and is uncorre-
lated with u(k).

In this note, the problem of interest is to identify the
system matrices {Ci, Ai, Ai,l, Ai,r, Bi} of the system Σi up
to a similarity transformation, as defined in Definition 1,
using the input and output measurements from a local cluster
consisting of the systems, {Σj}i+R

j=i−R, centered by Σi with
R being the radius of the concerned local cluster. Due to the
unmeasurable interconnections between neighboring systems,
the local system model has two unknown inputs, causing the
identification problem to be quite challenging.

Definition 1. The system matrix tuple {Ci, Ai, Ai,l, Ai,r, Bi}
is similarly equivalent to {Ĉi, Âi, Âi,l, Âi,r, B̂i} if there exist
non-singular matrices Qi, Qi−1, Qi+1 ∈ Rn×n such that

Âi = Q−1
i AiQi, Âi,l = Q−1

i Ai,lQi−1, Âi,r = Q−1
i Ai,rQi+1,

Ĉi = CiQi, B̂i = Q−1
i Bi.

The rest of the note is organized as follows. In Section
III, given a noisy estimate of the unknown interconnection
signal, the identification of a single subsystem is formulated
as an errors-in-variables system identification problem, which
is then consistently identified using the instrumental-variable
method [10]. In order to estimate the unknown interconnection
signals, in Section IV, a subspace-based estimation method is
developed by taking into account the local network structure.

III. CONSISTENT IDENTIFICATION OF A SINGLE
SUBSYSTEM

We consider the identification of the system matrices,
{Ci, Ai, Ai,l, Ai,r, Bi}, of the system Σi:

xi(k + 1) = Aixi(k) + [Ai,l Ai,r]

[
xi−1(k)
xi+1(k)

]
+Biui(k)

yi(k) = Cixi(k) + ei(k).

(3)

To identify the above system, it is necessary to estimate
the subspace spanned by the sequence of unknown system
inputs xi−1(k) and xi+1(k) from the local input and output
observations.

Before proceeding to discover knowledge about the un-
known system inputs, we provide a subspace identification
framework for the local system Σi by assuming that the esti-
mates, x̂i±1(k), of the unknown inputs, xi±1(k), are available
and satisfy

x̂i−1(k) = Γlxi−1(k) + vi−1(k)

x̂i+1(k) = Γrxi+1(k) + vi+1(k),
(4)

where Γl,Γr ∈ Rn×n are unknown but nonsingular square
coefficient matrices, and vi±1(k) ∈ Rn are zero-mean ergodic
stochastic processes that are uncorrelated with the input uj(k)
and the state xj(k) for all j = 1, · · · , N .

Substituting equation (4) into equation (3) yields

xi(k + 1) = Aixi(k) +Biui(k) +Ai,lr (x̄i(k)− v̄i(k))

yi(k) = Cixi(k) + ei(k),
(5)

where Ai,lr =
[
Ai,lΓ

−1
l Ai,rΓ

−1
r

]
, x̄i(k) =

[
x̂i−1(k)
x̂i+1(k)

]
and

v̄i(k) =

[
vi−1(k)
vi+1(k)

]
. It is noted that the ambiguity matrices

Γl,Γr do not affect the similarity transformation that is defined
in Definition 1. Therefore, we will focus on the identification
of the system model (5) instead of (3).

The identification of the system Σi then boils down to
identifying the system matrices (Ci, Ai, Ai,lr, Bi) using the
values of ui(k), x̄i(k) and yi(k). Due to the noisy input and
output measurements, the system model in (5) is an errors-in-
variables (EIV) model. In order to achieve a consistent iden-
tification of (5), as defined in Definition 2, the instrumental-
variable method [10] is adopted in this note.

Definition 2. Suppose that the true system matrices of (5) are
{A∗

i , [B
∗
i A∗

i,lr], C
∗
i } and the transfer function is H∗(z) =

C∗
i (zI − A∗

i )
−1[B∗

i A∗
i,lr] with z ∈ C. The estimates of

the system matrices, denoted by (Âi, [B̂i Âi,lr] , Ĉi), are
consistent if they satisfy

Ĉi

(
zI − Âi

)−1

[B̂i Âi,lr] = H∗(z)
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as the length of input-output data tends to infinity.

As discussed above, in order to achieve a consistent iden-
tification of (3), it is crucial to obtain the estimates of the
unknown inputs xi±1(k) such that equation (4) is satisfied.
This will be investigated in the next section.

IV. SUBSPACE INFORMATION OF UNKNOWN INPUTS

In this section, the state xi+1(k) that is one of the unknown
inputs to the model in (3) will be estimated using the input-
output data of the local systems {Σj}i+R

j=i−R+2. More explicit-
ly, the sequence xi+1(k) will be estimated as the intersection
of xi−R+2:i+1(k) and xi+1:i+R(k). In the sequel, we will
subsequently form a data equation, estimate the augmented
state sequences xi−R+2:i+1(k) and xi+1:i+R(k), and compute
the subspace intersection.

A. Data-equation construction

For the sake of brevity, only the estimation of xi+1:i+R(k)
will be investigated in detail. The lifted state-space model of
the cluster consisting of the systems {Σj}i+R

j=i+1 can be written
as

xi(k + 1) = Aixi(k) +Biui(k) +Divi(k)

y
i
(k) = Cixi(k) + ei(k),

(6)

where y
i
(k) = yi+1:i+R(k), xi(k) = xi+1:i+R(k), ui(k) =

ui+1:i+R(k) and ei(k) = ei+1:i+R(k),

Ai =


Ai+1 Ai+1,r

Ai+2,l Ai+2 Ai+2,r

. . .
. . .

. . .

Ai+R−1,l Ai+R−1 Ai+R−1,r

Ai+R,l Ai+R


Bi = Diag(Bi+1, Bi+2, · · · , Bi+R);

Ci = Diag(Ci+1, Ci+2, · · · , Ci+R);

Di =


Ai+1,l 0

0 0
...

...
0 0
0 Ai+R,r

 vi(k) =

[
xi(k)

xi+R+1(k)

]
.

The difficulty of estimating the state xi(k) (or xi+1:i+R(k))
of the system (6) lies at the unknown system input vi(k). The
transfer function of (6) can be written as

y
i
(k) = Ci (qI −Ai)

−1
qxi(0)

+ Ci (qI −Ai)
−1

(Biui(k) +Divi(k)) ,
(7)

where q represents a forward shift operator. As shown in Lem-
ma 2 of Appendix A, the unknown input vi(k) is unidentifiable
in the sense that the row space spanned by the sequence
vi(k) cannot be recovered from the measurements of ui(k)
and y

i
(k). Since the state xi(k) for k > 0 depends on the

input data ui(τ) and vi(τ) for all τ < k, the unidentifiability
of vi(k) may affect the accurate estimation of the state xi(k).

In order to estimate the state xi(k) in (6) without the
influence of the unknown input, the structural property of Di

will be used. Remark that the unidentifiable quantity vi(k)
only influences the first and last block row of the state equation
(6); therefore, we could remove the corresponding first and last
block row of (6), turning this state-space model into a time-
varying model with its state vector being of varying dimension.
This time-varying model is defined as

xi(k0 + t+ 1) = Ai,txi(k0 + t) + Bi,tui(k0 + t)

yi(k0 + t) = Ci,txi(k0 + t) + ei(k0 + t)
(8)

where k0 is a positive time-index which can be chosen arbi-
trarily by the user; t = 0, 1, · · · , ⌊R

2 ⌋; the vectors xi(k0 + t),
ui(k0 + t), yi(k0 + t) and ei(k0 + t) are defined as

ui(k0 + t) = ui+t+2:i+R−1−t(k0 + t)

xi(k0 + t) = xi+t+1:i+R−t(k0 + t)

yi(k0 + t) = yi+t+1:i+R−t(k0 + t)

ei(k0 + t) = ei+t+1:i+R−t(k0 + t);

the time-varying matrix Ai,t for 0 ≤ t ≤ ⌊R
2 ⌋ is defined as

Ai,t =

 Ai+t+2,l Ai+t+2 Ai+t+2,r

. . .
. . .

. . .

Ai+R−1−t,l Ai+R−1−t Ai+R−1−t,r


︸ ︷︷ ︸

it contains R−2t block columns

;

(9)

the matrices Bi,t and Ci,t are defined as

Bi,t = Diag (Bi+t+2, · · · , Bi+R−1−t)

Ci,t = Diag (Ci+t+1, · · · , Ci+R−t) .
(10)

It can be seen from the time-varying system (8) that the
dimensions of xi(k0+t) and yi(k0+t) decrease along with the
increase of t and the state xi(k0+t) will be void when t > R

2 .

Next, we shall derive a data equation for the time-varying
model in (8). Define the state transition matrix Ψi(t2, t1), for
t2 ≥ t1, as

Ψi(t2, t1) = Ai,t2Ai,t2−1 · · ·Ai,t1 ,

which is the consecutive product of matrices Ai,t for t =
t1, t1+1, · · · , t2. The stacked output of (8) can be compactly
represented as

y
i
(k0) = Oixi(k0) +Tiui(k0) + ei(k0), (11)

where the dimension parameter s satisfies s ≤ ⌊R
2 ⌋,

y
i
(k0) = yi(k0 : k0 + s− 1),

ui(k0) = ui(k0 : k0 + s− 2),

ei(k0) = ei(k0 : k0 + s− 1).

The matrices Oi ∈ Rps(R−s+1)×Rn and Ti ∈
Rps(R−s+1)×ms(R−s−1) are defined as

Oi =


Ci,0

Ci,1Ψi(0, 0)
...

Ci,s−1Ψi(s− 2, 0)

 , (12)
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Ti =


0

Ci,1Bi,0
. . .

...
. . . 0

Ci,s−1Ψi(s− 2, 1)Bi,0 · · · Ci,s−1Bi,s−2

 .

By concatenating the equations in (11) for k0 = k, k +
1, · · · , k+h− 1 with h ≫ s, we can form the following data
equation:[

y
i
(k) · · ·y

i
(k + h− 1)

]
︸ ︷︷ ︸

Yi
k

= Oi [xi(k) · · ·xi(k + h− 1)]︸ ︷︷ ︸
Xi

k

+Ti [ui(k) · · ·ui(k + h− 1)]︸ ︷︷ ︸
Ui

k

+ [ei(k) · · · ei(k + h− 1)]︸ ︷︷ ︸
Ei

k

.

(13)

B. Estimation of augmented state Xi
k (or xi+1:i+R(k))

To obtain the row space of Xi
k from the data equation (13),

it requires the extended observability matrix Oi to have full
column rank. For that purpose, the following assumption is
made.

A4. There exist positive integers R and s such that the
extended observability matrix Oi defined in (12) has
full column rank for all R+ 1 ≤ i ≤ N −R.

Based on Assumption A4, the local state information can
be obtained from the future local observations that are not
influenced by the unknown inputs.

Remark 1. The observability matrix Oi is a subpart of the ob-
servability matrix Os (Ci, Ai). It is remarked that Assumption
A4 means that the rows of the observability matrix Os (Ci, Ai)
has a basis of RRn that is selected from the rows of Oi.
More information on how to select such a basis from an
observability matrix can be found in [11]. In this regard, we
can see that observability of (Ci, Ai) is a necessary condition
for Assumption A4.

According to the structure of Oi, a valid dimension param-
eter s should satisfy s ≤ ⌊R+1

2 ⌋. In order to ensure Oi to be a
tall matrix, the spatial-dimension parameter R has to satisfy
that

R ≥ 4n

p
− 1. (14)

Random numerical simulations, such as reported in Section V,
suggest that Assumption A4 always holds when the parameter
values are set to m = 1, p = 1, n = 2, s = 6 and R = 13.

By Assumption A4, the matrix Xi
k in equation (13) can be

expressed as

Xi
k =

(
Oi

)† (
Yi

k −Ei
k − T iUi

k

)
. (15)

From the above equation, we can obtain the row space property
of Xi

k (or xi+1:i+R(k)) as follows

Row
[
Xi

k

]
⊆ Row

[
Yi

k −Ei
k

Ui
k

]
. (16)

Using the same strategy as described above, the row space
property of Xi−R+1

k (or xi−R+2:i+1(k)) can be derived as
follows

Row
[
Xi−R+1

k

]
⊆ Row

[
Yi−R+1

k −Ei−R+1
k

Ui−R+1
k

]
.

where Xi−R+1
k ,Yi−R+1

k ,Ei−R+1
k ,Ui−R+1

k are defined in
(13) but with different spatial indices.

C. Estimation of xi+1(k) by subspace intersection

Denote

Xi+1
k = [xi+1(k) · · · xi+1(k + h− 1)].

The row space of Xi+1
k (or xi+1(k)) will be estimated as the

intersection of the row subspaces of Xi
k (or xi+1:i+R(k)) and

Xi−R+1
k (or xi−R+2:i+1(k)). More explicitly, we have that

Row
[
Xi+1

k

]
⊆ Row

[
Ui

k
Yi

k −Ei
k

]
∩ Row

[
Ui−R+1

k

Yi−R+1
k −Ei−R+1

k

]
.

(17)

In next lemma, it will be shown that the row subspaces on
both hand sides of equation (17) are equal.

Lemma 1. Under the Assumptions A1-A2 and A4, we have
that

Row
[
Xi+1

k

]
= Row

[
Ui

k
Yi

k −Ei
k

]
∩ Row

[
Ui−R+1

k

Yi−R+1
k −Ei−R+1

k

]
.

(18)

Proof: By Assumption A4 and equation (13), it is easy
to see that

Row
[

Ui
k

Yi
k −Ei

k

]
= Row

[
Ui

k

Xi
k

]
, (19)

and

Row
[

Ui−R+1
k

Yi−R+1
k −Ei−R+1

k

]
= Row

[
Ui−R+1

k

Xi−R+1
k

]
. (20)

Under Assumptions A1-A2 and by Lemma 10.4 in [12], it
can be established that the following matrix has full row rank

Ui−R+1
k

Ui
k

Xi−R+2
k
...

Xi+R
k

 . (21)

Then, by combining the equations (19)-(20) with the facts that

Xi
k =

 Xi+1
k
...

Xi+R
k

 and Xi−R+1
k =

 Xi−R+2
k
...

Xi+1
k

 ,

the result of the lemma is straightforward.

Remark 2. Equation (18) provides a criterion on how to select
the local observations for an accurate approximation of the
unknown system input xi+1(k) in (3), which was an unsolved
problem in [8].
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Next, we shall develop a numerical method to compute the
subspace intersection in (18). More importantly, we need to
find an estimate of xi+1(k) satisfying equation (4).

As illustrated by Corollary 8 in [13], in order to compute
the row-subspace intersection in (18), we need to estimate the
orthogonal complement of the column subspace of

Ui
k

Yi
k −Ei

k

Ui−R+1
k

Yi−R+1
k −Ei−R+1

k

 . (22)

Denote

∆ = lim
h→∞

1

h


0
Ei

k

0

Ei−R+1
k




0
Ei

k

0

Ei−R+1
k


T

.

In order to obtain a consistent estimate of the orthogonal
complement of the column subspace of (22) where the noise
terms Ei

k and Ei−R+1
k are unknown, the noise variance σ2 in

Assumption A3 needs to be estimated. This can be done by

exploiting the rank deficiency of
[

Ui
k

Yi
k −Ei

k

]
as shown in

equation (19).
Given the estimate of the noise variance σ2, the matrix ∆

is known. Then an estimate of xi+1(k) satisfying equation
(4) can be obtained, which will be shown in the following
theorem.

Theorem 1. Denote

R = lim
h→∞

1

h


Ui

k

Yi
k

Ui−R+1
k

Yi−R+1
k




Ui
k

Yi
k

Ui−R+1
k

Yi−R+1
k


T

−∆. (23)

Let the SVD of R be given as

R = [U1 U2]

[
S1

S2

] [
V T
1

V T
2

]
, (24)

where U2 contains the left singular vectors corresponding to
the smallest n singular values. Partition U2 as

U2 =
[
UT
21 UT

22 UT
23 UT

24

]T
,

where the dimensions of U2j for j = 1, · · · , 4 accord with the
block rows of the matrix in (22).

Under Assumption A3, the following estimate of xi+1(k)
satisfies equation (4):

x̂i+1(k) = UT
21ui(k) + UT

22yi
(k), (25)

where ui(k) and y
i
(k) are defined in (11).

Proof: Since U2 spans the orthogonal complement of
the column subspace of the matrix in (22), by the result of
Corollary 8 in [13], we can obtain that

Row[xi+1(k)] = Row
[
UT
21ui(k) + UT

22

(
y
i
(k)− ei(k)

)]
.

From the above equation, we can derive that the estimate
x̂i+1(k) in (25) satisfies equation (4).

To ease the reference, the estimation scheme for the unmea-
surable inputs is summarized in Algorithm 1.

Algorithm 1: Subspace estimation of unmeasurable inputs
Step 1 Construct the data equation (13);
Step 2 Form the matrix R in (23) and compute its SVD in (24);
Step 3 Compute the estimate of xi+1(k) as shown in (25).

V. NUMERICAL SIMULATIONS

In this section, one simulation example is provided to val-
idate the proposed identification method. The network model
in the simulation example includes 40 systems in a line and
the 20-th subsystem is to be identified. The system matrices
of individual systems are generated by the superposition of
fixed matrices and random matrices with small entries, where
the fixed matrices are given by

Ai =

[
0.2728 −0.2068
0.1068 0.2728

]
, Ai,l =

[
−0.1195 −0.3565
0.0874 −0.1048

]
Ai,r =

[
0.0699 −0.4278
0.3842 0.1135

]
, Bi =

[
0.3870
−1.2705

]
Ci =

[
−0.9075 −1.3651

]
for i = 1, · · · , 40.

The system input and measurement noise are randomly gen-
erated as white Gaussian noise. The dimension parameters
s and R involved in the proposed identification method are
respectively set to s = 10 and R = 8.

To measure the identification performance, the impulse-
response-fitting (IRF) criterion for the i-th system is defined
as

IRF =
1

N

N∑
k=1

∑10
j=1 ∥Ĉk

i (Â
k
i )

jB̂k
i − C∗

i (A
∗
i )

jB∗
j ∥2F∑10

j=1 ∥C∗
i (A

∗
i )

jB∗
i ∥2F

, (26)

where N is the number of Monte-Carlo trials which is set to
200; A∗

i , B
∗
i , C

∗
i are true system matrices; Ak

i , B̂
k
i , Ĉ

k
i are the

estimated system matrices at the k-th Monte-Carlo trial. In
order to show the influence of the measurement noise to the
identification performance, the signal-to-noise ration (SNR) is
defined as

SNR (dB) = 10 log
var(yi(k)− ei(k))

var(ei(k))
.

First, in order to demonstrate the effectiveness of the pro-
posed method, the IRF curve with respect to SNR is shown
in Fig. 2. The data length in this simulation is set to 2000.
It can be seen that the IRF values decay to zero along with
the increase of SNR, indicating that the proposed algorithm
can perfectly address the local identification problem in the
absence of measurement noise.

Second, we will provide the experimental evidence for
the consistent identification result. In this simulation, we set
SNR=70 dB. The IRF curve against the length of input-output
data is shown in Fig. 3, where we can see that IRF values
decrease along with the increase of data length. In addition, the
system poles of the 20-th system are estimated by performing
200 independent simulation trials. The distributions of the
estimated poles at data lengths 2000, 4000 and 8000 are given
in Fig. 4. It can be observed that, as the data length increases,
the estimated poles are more concentrated at their true values.
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Fig. 2. IRF of the identified system with respect to the SNR.
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Fig. 3. IRF of the identified system with respect to the data length.

VI. CONCLUSION

In this note, we have presented subspace identification meth-
ods for individual systems operating in a large-scale network.
Compared with the existing local system identification meth-
ods, the proposed algorithm can yield consistent identification
results. The novelty of our work lies at the accurate estimation
of the unknown system inputs of individual systems operating
in a network. A simulation example has been given to show
the effectiveness of the proposed identification algorithm.

APPENDIX A
LEMMA 2

Lemma 2. Consider the dynamical system in (7), where only
y
i
(k) and ui(k) are available. The unknown input vi(k) is

unidentifiable in the sense that the row space spanned by the
sequence vi(k) cannot be uniquely determined.

Proof: Denote

∆i = Diag (Ai+1,l∆l, 0, · · · , 0, Ai+R,r∆r) ,

∆̄i =

[
∆l 0
0 ∆r

]
,

where ∆l,∆r ∈ Rn×m are arbitrary real matrices. We have

0.2 0.22 0.24 0.26 0.28 0.3 0.32
Real

-0.2

0

0.2

Im
ag

2000 data-pairs

0.2 0.22 0.24 0.26 0.28 0.3 0.32
Real

-0.2

0

0.2

Im
ag

4000 data-pairs

0.2 0.22 0.24 0.26 0.28 0.3 0.32

Real

-0.2

0

0.2

Im
ag

 8000 data-pairs

Fig. 4. Estimated poles of 20-th system by 200 Monte-Carlo trials. The red
stars represent true poles, while the blue crosses denote estimated poles.

the following equation:

Biui(k) +Divi(k) = (Bi +∆i)ui(k)

+Di

(
vi(k)− ∆̄i

[
ui+1(k)
ui+R(k)

])
.

From the equation above, we can see that (Bi+∆i) can be re-

garded as an estimate of Bi, and
(
vi(k)− ∆̄i

[
ui+1(k)
ui+R(k)

])
can be an estimate of vi(k). Since ∆l,∆r can be any real
matrices, it can be concluded that vi(k) is unidentifiable.
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