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1 Introduction  
 

 

 

 

 

1.1 Motivation  

Data processing is a central and key concept to modern remote sensing systems. Beginning 

with the introduction of the Kalman filter in the early 1960s, the possibilities to track moving 

targets using radar, sonar, infrared (IR) or optical sensors, became even more promising, and 

since then a growing amount of research has been devoted to the topic. This thesis focuses on 

how to design an algorithm, by augmenting a tracking system with a classifier capable of 

recognizing the dynamic behavior of moving targets using data from multiple sensors. Much 

work has been done in classifying targets by object type [1] [2] [3] [4] in remote sensing 

applications, but little research exists on the classification of dynamic behavior in the context 

of target tracking using multi-sensor data. The detection of unusual behavior plays a crucial 

role in the prevention of illegal and harmful activities such as smuggling, piracy, arms 

trading, human trafficking and illegal immigration [5]. Also for military applications, it is 

useful to detect anomalous behavior to provide an alert for potential threats, especially with 

the more recent widespread use of drones for terrorist activities [6]. In order to provide a 

solution for these emerging needs, in this work, we present a novel method for target behavior 

classification by analyzing trajectories using data gathered from multiple sensors.  

 

The primary goal of tracking is to make statistical inferences about the state of one or more 

unknown objects, such as their speed and position. The former is referred to as single-target 

tracking (STT) while the latter is referred to as multi-target tracking (MTT). The most basic 

function of any tracking algorithm is called measurement-to-track data association, and as the 

name implies, it involves assigning a measurement to an existing track or creating a new one 

when necessary. This track, in turn, is assigned to a single detected source (or group of 

sources) while differentiating it from other targets and reducing unwanted background noise 

(such as clutter) and false targets. Creating the proper statistical models and algorithms to 

make accurate predictions of future states and classification characteristics can then be carried 

out for the individual tracks [7]. These types of data processing problems are not only limited 

to remote sensing applications.  In finance and economics for example, “tracking” and 

predicting future prices and characteristics bonds, interest rates, commodities, currencies, or 

options are similar problems in nature. Here we may be interested in other quantities such as 

the derivative prices, volatility, asset risk, market regimes, or exchange rates. The asset log-

returns above the risk-free rate, or other econometric variables such as a nation's output 

(GDP) for example, can be seen as the data or "measurements" [8] [9] [10]. 

 

Once a track has been assigned to an object, there are multiple ways to classify the target's 

characteristics. Typically, objects are classified into sets that represent what type of object 

they are, such as an airliner, boat, fighter plane, UAV, or a bird [11]. Before measurement 

data can be processed, a sensor system usually follows a signal processing chain composed of 

a detection and discrimination phase where some information sequences are accepted or 

rejected in order to minimize the probability of false alarms. The standard hierarchy of a 
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signal and data processing chain is illustrated in Figure 1.1. Different authors use various 

definitions of classification, recognition, and identification depending on the application (e.g., 

see [1] for a discussion of NATO definitions). In this work, classification and recognition will 

be used interchangeably. Identification in the context of the work done here is used to 

describe the process of estimating system parameters. 

 

 
 

Fig. 1.1. Hierarchy of signal and data processing chain 

 

An important note is that there are systems such as track-before-detect (TBD), which are a 

class of algorithms designed to operate in low SNR (signal-to-noise ratio) environments. 

Under these conditions, the detector may discard valuable information and the system could 

be made more robust by tracking an object before declaring it as a target [12]. In this 

situation, the chain in figure 1.1 is not accurate.  

 

The acquisition of data can come from a single (just one sensor) or a mixture of sensors such 

as an array of radars. Due to the increased availability of computing power available today 

and advances in statistics and machine learning over the past half a century, processing data 

from multiple sensors, earning the name sensor or information fusion, has also become an 

area of growing interest. The need for multiple heterogeneous sensors comes from the fact 

that single sensors generally can only provide limited or partial information to make accurate 

inferences. In order to make full use of all these collected data, multi-sensor management 

techniques are becoming increasingly important, as the increased agility of sensors and 

increasing amounts of data are usually more than what a human operator is capable of 

processing. Essentially, multi-sensor management deals with the process of coordinating data 

from multiple sensors to improve performance and perception  [13]. 

 

A perfect example is the Lockheed f-35, which is arguably the most advanced fighter jet at 

the date of this writing, in terms of sensor fusion technology. It was designed to process all 

the information received from all the sensors on the aircraft and to display the information in 

an easy to read manner,  giving the pilot a clear picture of his threats and surrounding 

environment with minimal effort for interpretation. In light of this growing demand, it is of 

interest to develop solutions for distributed sensor fusion systems where individual sensors 

could have different characteristics, and where sensors could be added or replaced with ease. 

There is definite economic value in designing algorithms that are robust against these changes 

in system configuration without costly consequences. Modularity, in other words, is a critical 

requirement that will be addressed in this thesis. 

 

 

 

1.2 Problem Statement and Thesis Objective 

Maneuvering targets rarely undergo motions that can be accurately captured by a single 

model, and therefore to accurately model dynamic motion, it should be assumed that targets 
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can traverse several dynamic behavior modes. A multiple (dynamic) model-based approach is 

proposed here which requires little training data, and can easily adapt to the addition or 

replacement of sensors. Multiple model (MM) algorithms allow for targets to "switch" or 

"jump" between different modes to more accurately capture their more complicated dynamics.  

This sort of dynamic behavior usually cannot be described accurately by a single maneuver 

model—especially if the target is highly maneuverable. It will be assumed that each 

(multiple) model contains its own set of individual unknown parameters including transition 

probabilities that govern the mode switching, and the random process noise which represents 

the uncertainty in the dynamic motion model for the case of target tracking. Typically, these 

parameters are tuned manually, which is not easily done by a human with high accuracy. In 

this work, it is proposed that these parameters be estimated, using a Bayesian framework with 

a multi-sensor data configuration. 

 

Since the true state of the system described above is unknown, data is gathered through 

observations from multiple sensors, and thus, a measurement or observation model is also 

needed to make a probabilistic relation between the data and the true state. The dynamic and 

measurement models together form a state space model. A well-known class of these types of 

multiple model systems is referred to in the literature by many different titles such as jump 

Markov systems (JMS), hybrid systems or regime switching models. This class of models, in 

the context of Bayesian state estimation and tracking, is widely explored in many fields and 

applications such as target tracking, biological time series [14], ecology [15], finance and 

econometrics [16], and audio signal processing [17]. 

 

With this understanding, the problem addressed in this work can now be stated more 

formally. The question to be answered is: how to develop a context-free (i.e., sensor 

indifferent) method to robustly classify a selected set of anomalous trajectories and present 

those results to a human operator? In this context, robustness is aimed at correctly classifying 

trajectories with a low false alarm rate. For example, to reduce the error of a human radar 

operator, it is desirable to be able to distinguish between a fishing boat, an attack pattern such 

as a highly maneuverable and weaving aircraft, or to classify different behavior of drones 

which are being used for a vast number of purposes, including terrorism. Since MM 

algorithms are widely used in tracking, they are a natural and convenient choice. Now that a 

problem has been clearly defined, the following are the three primary objectives of this thesis:   

 

1. The first objective of this thesis is to estimate the parameters that govern the dynamics 

of object behavior described by multiple model (hybrid) systems. These parameters 

will be learned from multi-sensor data.  

 

2. The second objective will be used to jointly track and classify dynamic object 

behavior based on trajectory analysis using the these trained hybrid models. The idea 

behind this is that the estimation of the transition probabilities, which describe the 

tendency for the object to switch to a different mode, can capture the information 

needed for classification by distinguishing trajectories. This will be done by fitting 

future data to a number of trained models (in parallel) and then using a Bayes 

classifier. 

 

3. The third objective is to address the need for modularity. Another advantage of using a 

hybrid model is that they are very suitable for information fusion. As will be shown in 

later chapters, the addition or removal of sensors requires one to merely make small 
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adjustments in the sequential processing of measurements—thus reducing or 

eliminating the need for retraining.  

 

 

1.3 Related work  

Here we cover existing work in the realm of dynamic behavior classification. An overview of 

current methods in the literature at the time of this writing, and their shortcomings (for our 

purposes) is given here. The literature presented here is by no means exhaustive but is meant 

merely to give the reader an idea of the need and interest for the application of behavior 

classification and anomaly detection in various tracking scenarios and a vast range of other 

applications. 

 

To begin, there is a large body of research in the area of machine vision for behavior 

recognition (see [18][19][20]). Recognition of moving vehicle trajectories is one application 

that is receiving much attention [21]. These methods are not appropriate for our application 

since they use large amounts of image data and are not context-free solutions regarding sensor 

modularity. A distinction must be made that we are tracking objects using remote sensors 

such as radars, sonar, infrared search and track (IRST), and optical cameras which typically 

give only bearing information about the target. Data-driven techniques aimed at analyzing 

trajectories using artificial neural networks (ANN) [22] and deep neural networks (DNN) [23] 

also exist. So-called data-driven “black box” methods like neural network approaches were 

also considered as a potential candidate for modeling and classifying dynamic behavior. In 

order to train neural networks, which have a large number of parameters, deep learning could 

be applied, but this has four main drawbacks. The first foreseeable issue is that this approach 

typically requires enormous amounts of data which is not always available, and typically 

implies very long training times. second issue would be that if the data is gathered from 

multiple sensors, then the system would have to be retrained if sensors are added or replaced, 

thus not meeting the requirement of modularity mentioned earlier. The third drawback to 

mention is that prior knowledge which is typically available cannot be easily incorporated. 

Lastly, the solutions corresponding to the training data can be quite variable [24]. 

 

Given the discussion mentioned above about data-driven techniques, it would seem like a 

more natural choice for the application in this thesis to use a model-based approach since they 

are already widely used in tracking systems. To avoid confusion, the term “model-based 

approaches” implies that explicit models and expert knowledge are used to carefully design 

the models, as opposed to black box modeling. For airport surveillance radar (ASR), it is vital 

to classify tracks to distinguish aircraft from non-aircraft tracks, such as weather or biological 

tracks. Furthermore, for air traffic safety it is crucial to classify different targets such as 

unmanned aerial vehicles (UAV), helicopters, or aircraft that do not have Secondary 

Surveillance Radar (SSR) because it has been purposely disabled or a transmitter has failed. 

The authors in [25] recognize the limitations of neural network techniques due to the massive 

amounts of training data required, and aim to address this problem using a single source 

model and support vector machines (SVM) to discriminate between aircraft and non-aircraft 

targets by analyzing trajectories, radar cross section (RCS), and velocities. This method does 

not address the use of multiple sensors—nor does it say anything about the behavior of the 

classified object types— the latter of which can be beneficial in predicting potential safety 

hazards. 
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Hidden Markov models (HMM), initially introduced by Leonard E. Baum, Ted Petrie, and 

their colleagues in the late 1960's to early 1970's in a series of papers [26][27][28]  at the 

Institute for Defense Analyses, have become a popular choice to model stochastic systems. 

An HMM can be seen as a specific case of JMS where the unknown states are discrete. Baum 

was also the co-inventor the Baum-Welch algorithm, which is a method of computing ML 

estimates of the parameters that govern the HMM. The use of discrete hidden Markov models 

(DHMM) for trajectory classification is not new. Beginning in the 1980's DHMMs became 

widely used in speech [29] and handwriting [30] recognition and became a core modeling 

technique in genomic sequencing [31], the most famous appearance being in the Human 

Genome Project [32]. More recently DHMMs have been used in seismology in the early 

2000's and have also been shown to outperform many methods, especially in low SNR 

scenarios, for earthquake detection and classification due to their ability explicitly model time 

dependence [19]. In the context of radar tracking, DHMMs require a sufficiently dense 

discretization of the continuous state space, which can make these methods susceptible to the 

curse of dimensionality (i.e., computationally expensive in high dimensions). It also requires 

the state space to be predefined and therefore makes it difficult to achieve high resolution in 

areas of vital importance [33]. 

 

DHMMs have been used in ecology to estimate behavioral states based on movement paths of 

using telemetry and GPS data. It is of interest to deduce the influence of landscape features 

and conditions on animal behavior in different habitats, such as foraging and resting. One 

proposed method to model such behavior is to use a mixture of random walks (RW) and 

correlated random walks (CRW) where each mode differs in step length and turning angle, 

and with unknown transition probabilities between behavioral modes. The authors in [34], 

which initially proposed this method, use a Markov chain Monte Carlo (MCMC) approach, 

namely a Gibbs sampler, for inference on data of the movement of elk. A number of behavior 

modes, composed of a mix of CRW are first defined. They aimed to classify dynamic animal 

behavior by analyzing their trajectories and movement patterns. Each GPS measurement is 

composed of a step length and turning angle, which are assumed to be random variables from 

a Weibull distribution and wrapped Cauchy distribution, respectively, both with unknown 

parameters. This work was expanded upon in [35], and it was found that classification 

accuracy depends strongly on the degree of separation between the distributions in each 

behavior mode, as well as the amount of time spent in each mode for a given data set. One of 

the significant shortcomings in these papers is that the authors explicitly ignored 

measurement error and hence assumed the position of the animals to be known exactly. The 

measurement inaccuracy from the GPS systems claimed to be negligible. This eliminates the 

need for a measurement model and dramatically simplifies the problems and limits its 

findings to other applications where these assumptions cannot be made. A significant 

contribution of this thesis will be to expand upon DHMM methods mentioned, where the 

entire state space is discrete, to include a hybrid state space composed of a continuous part in 

conjunction with a discrete mode.   

 

In the context of surveillance, in [36] a method is proposed for using MTIR (moving target 

indicator radar) using UAVs for behavior recognition and anomaly detection for assisting 

human operators to recognize potential threats. The authors in this paper also recognized the 

burden of data-driven approaches, and point out that on top of the requirement for large 

amounts of data, they suffer from high computational loads which can pose issues for real-

time applications. The authors propose a classification method by applying string matching 

theory, which has had some success in text-processing applications. They then combine this 
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method with a fuzzy expert rule-based decision-making process to avoid excess false alarms. 

The dynamics of the system assume a single model for ground traffic vehicles, and therefore 

would not be feasible for tracking highly maneuverable targets whose behavior is challenging 

to capture accurately through a single model, and typically requires multiple models. 

  

Perhaps one of the closest works related to this topic would be in [37] where the author 

proposes the use of a semi-Markov model to classify targets based on their dynamic behavior. 

No trajectory analysis was done in this work. The approach presented was to classify targets 

based on their maneuverability, which in this case was defined by the sojourn time 

distributions that govern the switching between the current mode governing the system 

dynamics.  This is in contrast to a typical HMM where transition distributions all have the 

same exponentially distributed sojourn time. The joint tracking and classification of the 

targets and their dynamic behavior is carried out using a robust Rao-Blackwelized particle 

filter to track the maneuvers while a Kalman filter is used to track the target.   

 

 

1.4 Structure and Contributions  

Here we present a brief overview of the rest of this document and contributions with more 

detail. Recall, the goal of the work here is to present a novel method for classifying target 

behavior based on trajectory analysis. Recall, the primary research question in focus is to 

investigate if it is possible to learn the parameters in hybrid (multiple model) systems from 

multi-sensor data, and whether this class of models is suitable for jointly tracking and 

classifying target behavior. Since we are dealing with multiple sensors, this implies that we 

require using data fusion techniques to process the measurements. This, in turn, requires the 

use of multiple measurement models, and the configuration can be done so with ease in JMS.  

For estimation of the unknown state in linear Gaussian Jump systems, the well-known 

suboptimal Interacting Multiple Model (IMM)  algorithm [38] and generalized pseudo 

Bayesian (GPB) schemes which use a bank of optimal Kalman Filter running in parallel, are a 

widely adopted method that has shown to perform well [39] [40]. Unfortunately though, for 

many applications, it is desirable to handle a wide range of nonlinear/non-Gaussian models. 

Measurement models for example, which are typically nonlinear, must be handled in another 

way as the Kalman filter is only suitable for linear models. Approximate solutions such as the 

extended Kalman filters (EKF) or unscented Kalman filters (UKF) do not have these 

constraints but have been shown to have other limitations such as poor performance in highly 

nonlinear systems. Particle filters, or sequential Monte Carlo (SMC), methods are an 

alternative choice that does not suffer from these drawbacks. It was shown in [41] that the 

particle filter increased performance for nonlinear/non-Gaussian Bayesian tracking over both 

the EKF and UKF. Due to their ability to deal with these highly nonlinear/non-Gaussian 

systems, they will be the chosen method for accurate state estimation in this work.  

 

To estimate the system's parameters (system identification) which are needed to form a 

classifier, a maximum likelihood (ML) approach is a popular choice for many applications 

and is widely used and understood. More specifically, the expectation maximization (EM) 

algorithm will be employed for the numerical calculation ML estimates due to many desirable 

properties such as numerical robustness and a guaranteed convergence to a (local) maximum. 

It was shown in [42] that and [43] that the EM algorithm in combination with the SMC 

methods previously mentioned is capable of learning parameters in Jump Markov non-linear 

Systems (JMNLS), and will be the class of methods used here. Although there are other 
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methods for nonlinear system identification, we choose this one, due to the fact that is has 

shown promising results for estimating transition probabilities in systems with switching 

(jumps). 

 

This thesis is organized as follows, including a description of this introduction for 

completeness.  

 

 Chapter 1: An introduction and motivation behind the problem are provided. A brief 

literature review is also given.  

 Chapter 2: The reader will be given some context and preliminaries needed for the 

work to follow. A brief treatment of Bayesian methods for statistical inference, 

including ML estimation, which are the core principles of our approach, will be 

presented. Included in this discussion are sequential Monte Carlo (SMC) methods or 

particle methods for state space systems which are central to the techniques used later.  

 Chapter 3: This chapter will present the core novel algorithm design composed of 

two main parts. In the first part, the system identification techniques will be covered. 

First, the EM algorithm will be discussed in more detail. This will be done by first 

extending SMC methods for multiple model systems and explain how to use them to 

calculate expectations in the EM algorithm. Then the maximization step of the EM 

algorithm will be discussed. We finish this chapter by discussing the second part of 

the algorithm: the Joint tracking and classification (JTC) algorithm, for classifying 

targets behavior (as defined by their trajectory) in real time through trained models. 

This is essentially classification by model selection using a Bayesian classifier, where 

a unique set of learned parameters defines each model.   

 Chapter 4: Here the gap will be bridged between the generic algorithms of the 

previous chapter and specific kinematic and measurement models that are used in 

remote sensing applications. Also, one of the main novel contributions of this work 

will be explained here, namely to incorporate data fusion techniques for parameter 

learning. The measurement models will, therefore, be extended for multiple sensor 

scenarios. 

 Chapter 5: Covers simulations in MATLAB. Basic assumptions will be described, 

including parameters to be estimated and the configuration of the sensor system. An 

example of the learning portion of the proposed novel algorithm for system 

identification is first examined for estimating a set of parameters including the 

transition probabilities and noise parameters for the individual dynamic models 

(process noise). Finally, simulations of the JTC algorithm are carried out over multiple 

trajectories. A discussion of the results will take place within each example.  

 Chapter 6: A brief summary of the work and contributions provided by this work is 

given. Finally, recommendations, proposed improvements, and direction for future 

work is touched on. 



 

 

 

 

2 Preliminaries 
 

 

 

 

 

2.1 Overview   

The purpose of this chapter is to give the reader a brief overview of Bayesian methods for 

inference in time series models. The methods described here are found in a vast number of 

fields ranging from machine learning, statistics, financial econometrics to engineering. We 

begin by introducing the reader to state space models, which were initially proposed by 

Kalman and Bucy in 1960. Following this and the emersion of the Kalman filter shortly after, 

linear dynamical systems with Gaussian noise became a popular model for aerospace and 

control systems applications.  These models and state estimation techniques were quickly 

adopted in many other applications, but their limitations became abundantly clear. They are 

not suitable for more complicated dynamical systems that are nonlinear in nature. Suboptimal 

methods such as the extended Kalman filter were developed to tackle the challenge of 

nonlinearities in system dynamics. Sequential Monte Carlo methods were proposed as early 

as the 1950’s, although the lack of computational power of computers at the time rendered 

them infeasible. It wasn’t until 1993 that these methods resurfaced when Gordon et al. [44] 

proposed a practical implementation of what is referred to as the bootstrap particle filter to 

tackle to problem of nonlinear and non-Gaussian Bayesian state estimation. 

 

This chapter is organized as follows. We begin by introducing state space hidden Markov 

models in section 2.2. Then in section 2.3 maximum likelihood estimation will be treated. The 

Bayesian framework for statistical inference, which is a core idea of the work to follow, will 

be presented in section 2.4, along with MAP (maximum a posteriori) estimators. In this 

section, the reader will see the link between the Bayesian and maximum likelihood 

estimation. SMC filtering and smoothing methods for state estimation will be discussed in 

sections 2.5-2.6.  Although much effort was put into explaining these building blocks, it is 

assumed the reader has a basic foundation in probability theory, and many topics will be 

expected to be known a priori.   

 

2.2 Time Series Analysis  

The analysis of data, gathered from observations or measurements at discrete time steps and 

the statistical properties and relations of these sequences is known as time series analysis. 

Any discrete-time data or signal such as daily stock prices, blood pressure measurements, 

brain wave patterns in functional MRI imaging, data samples in digital communication 

systems, and the amount of rainfall or weather patterns are all examples of time series data 

[45].  
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2.2.1 State-Space Model  

A state-space model, which can be viewed as a generalization of a hidden Markov model 

(HMM), is one in which the data in question is not known directly. Instead, a transformed 

version of it in the form of an observation or measurement is known. To avoid confusion, 

from here on, we refer to a state-space hidden Markov model as a state-space model. 

Therefore, we require a model which describes the temporal evolution of the state, which is 

known as the evolution or system model.  Another equation is then needed to model the 

relationship between the state and the measurements, which we will refer to as the 

measurement model. Both the system and measurement equations are assumed to be in 

stochastic form. The most general structure of a state space system is defined by two 

stochastic processes {𝑥𝑡}𝑡≥0 and {𝑦𝑡}𝑡≥0, 𝑡 ∈ {0,1,2,3… } as 

 

𝑥𝑡+1 = 𝑓𝜃(𝑥𝑡, 𝑢𝑡, 𝑣𝑡) (2.1𝑎) 

    𝑦𝑡 = ℎ𝜃(𝑥𝑡, 𝑢𝑡 , 𝑒𝑡) (2.1𝑏) 

    
where 𝑓𝜃 and ℎ𝜃 are known possibly nonlinear and time-varying mapping functions that 

depend on a set of parameters 𝜃 ∈ Θ ⊆  ℝ𝑛𝜃. The central assumptions here are that the 

continuous state vector  𝑥𝑡 ∈  𝒳 ⊆  ℝ𝑛𝑥 is a latent Markov process and is only observed 

indirectly through noisy measurements 𝑦𝑡 ∈  𝒴 ⊆ ℝ𝑛𝑦 which are conditionally independent.  

It is important to note that although the state variable and measurements are continuous 

variables, the systems presented here are their discrete-time equivalents and therefore can be 

seen as sampled values. We will assume 𝑣𝑡  ~ 𝑝𝑣(⋅) and 𝑒𝑡~ 𝑝𝑒(⋅) are mutually independent 

white noise processes with known probability density functions, which may also be 

parameterized by the parameter 𝜃. The variable 𝑢𝑡 is the exogenous system input and is 

assumed to be known and can be ignored without loss of generality. Further, we assume that 

all random variables are defined on a common probability space (Ω,ℱ, ℙ). Here we assume, 

Ω is the sample space, and let 2Ω be the power set of Ω. Then, let  ℱ ⊆ 2Ω be the 𝜎-algebra 

containing the event space and ℙ is an appropriate probability measure. 

 

  

2.2.2 Jump Markov Systems  

 

In many applications where structural uncertainty occurs, such as navigation, 

telecommunications, control theory, target tracking, and financial risk management and 

economics [46]. it is necessary to form more adaptive models. The state can be expanded to 

be comprised of a continuous and discrete component, and these types of systems are referred 

to in the literature as jump Markov systems (JMS) or hybrid systems. JMS assume that the 

dynamic system can abruptly change between different modes according to a Markovian 

switching scheme. The underlying assumption is that a single model is not sufficient to 

describe the system dynamics and therefore multiple model (MM) descriptions are needed to 

account for the uncertainty. The discrete component of the state is referred to as the mode 𝑟𝑡 ∈
 𝒮 ⊆  ℕ𝑛𝑟, where 𝒮 = {1, 2, 3, … , 𝑠} is a finite set. The mode evolves according to an s-state 

(discrete-time) Markov chain, governed by transition probability matrix (TPM) Π𝜃 =

[𝜋𝑖𝑗], which is time-invariant and therefore can be considered a parameter of the system, 

defined as  
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𝜋𝑖𝑗  ≜   𝑃(𝑟𝑡+1 = 𝑗 |𝑟𝑡 = 𝑖 ),   ∀𝑖, 𝑗 ∈ 𝑆 , 𝑡 ≥ 0 (2.2) 
 
 The augmented state vector can now be defined as 𝑧𝑡 = [𝑥𝑡

𝑇 , 𝑟𝑡]
𝑇, and it is referred to as a 

hybrid process [39]. A linear jump Markov system (LJMS), is a state space model where both 

the mode dependent state and measurements evolve according to a mode dependent dynamic 

linear model (DLM): 

 

     𝑥𝑡+1 = 𝐴(𝑟𝑡+1)𝑥𝑡 + 𝐵(𝑟𝑡+1)𝑣𝑡 (2.3𝑎) 
𝑦𝑡 = 𝐶(𝑟𝑡)𝑥𝑡 + 𝐷(𝑟𝑡)𝑒𝑡 (2.3𝑏) 

 

where the system matrices 𝐴(⋅), 𝐵(⋅), 𝐶(⋅), 𝐷(⋅) evolve over time according to the finite state 

Markov chain 𝑟𝑡. These models are also referred to as dynamic linear models with switching 

[45]. A jump Markov nonlinear system (JMNLS) is similar to (2.1), except now it is mode 

dependent as well:   

 

𝑥𝑡+1 = 𝑓𝜃(𝑥𝑡, 𝑟𝑡+1, 𝑣𝑡) (2.4𝑎) 
 𝑦𝑡 = ℎ𝜃(𝑥𝑡, 𝑟𝑡, 𝑒𝑡) (2.4𝑏) 

      

With a slight abuse of notation, and due to the stochastic nature of the noise components in 

the above descriptions, we can also express the above random variables in terms of their 

transition densities 𝑝𝜃(∙ | ∙), where the parameter subscript indicates what is intended, as 

 

𝑟𝑡+1 ~ 𝑝𝜃(𝑟𝑡+1|𝑟𝑡) (2.5𝑎) 
      𝑥𝑡+1 ~ 𝑝𝜃(𝑥𝑡+1|𝑥𝑡 , 𝑟𝑡) (2.5𝑏) 

      𝑦𝑡 ~ 𝑝𝜃(𝑦𝑡|𝑥𝑡 , 𝑟𝑡) (2.5𝑐) 
 

One last remark the reader should keep in mind is that although the state variable is 

continuous by nature, here we will focus on the discrete-time formulation of these problems. 

The transition or difference equations will be used to make inferences on the state of the 

system by processing the measurements at discrete time steps. 

 

2.3 Maximum Likelihood Estimation  

The maximum likelihood (ML) approach is one of the central principles in modern statistics, 

and although it is different on the surface, it is ultimately linked to Bayesian estimation. 

Therefore we present it here, and the similarity between the two will become clear in the next 

section. Suppose we have 𝑁 conditionally independent measurements (observed data) 𝑦0:𝑁  =
[𝑦0, … , 𝑦𝑁], then the likelihood function ℒ(𝜃; 𝑦0:𝑁) = 𝑝𝜃(𝑦0:𝑁) is the joint density probability 

distribution function (PDF) of all the measurements as a function of the unknown parameters 

𝜃. The goal of ML estimation is then to maximize the likelihood function with respect to the 

unknown parameters. In many applications, especially those where the data comes from a 

family of exponential distributions, it is more convenient to work with the log-likelihood 

function 𝐿𝜃(𝑦1:𝑁) , which is defined by merely taking the natural logarithm of the likelihood 

function 

 

𝐿𝜃(𝑦0:𝑁) ≜ log ℒ(𝜃; 𝑦0:𝑁) = log  𝑝𝜃(𝑦0:𝑁)  =  ∏𝑝𝜃(𝑦𝑡|𝑦0:𝑡−1)

𝑁

𝑡=1

 . (2.6) 
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The maximum likelihood estimator (MLE) can then be written as 

 

𝜃 =  𝑎𝑟𝑔𝑚𝑎𝑥
θ

  𝐿𝜃(𝑦0:𝑁)  

= 𝑎𝑟𝑔𝑚𝑖𝑛
θ

 −𝐿𝜃(𝑦0:𝑁) (2.7) 

where the last part follows from the fact that that the likelihood function is monotonic.  

The MLE is a popular choice for practical applications due to a number of desirable 

large sample properties. Typically it is regarded as an approximately optimal estimator, or 

approximately the minimum variance unbiased (MVU) estimator [47]. The most important 

properties of the MLE will be presented here without proof: (see [48][49][50]): 

 

1. Consistency: An estimator 𝜃  is said to be (weakly) consistent if  𝜃 
𝑝
→  𝜃, where 

𝑝
→ 

denotes convergence in probability. 

2. Asymptotic efficiency: Even though we cannot guarantee that any estimator can attain the 

Cramér-Rao Lower Bound (CRLB), which gives a lower bound on the variance of the 

estimator, for a finite amount of data the MLE will reach it asymptotically as 𝑛 →  ∞. 

Furthermore, the MLE is unbiased and can be stated as  

     𝔼(𝜃𝑀𝐿) = 𝜃 (2.8) 

   lim
𝑛→∞

𝑣𝑎𝑟(𝜃𝑀𝐿) = 𝐶𝑅𝐿𝐵. (2.9) 

 

3. Asymptotic normality: Using the central limit theorem (CLT) it can be shown that this can 

be stated more formally as 

√𝑛(𝜃 − 𝜃)
𝑑
→ 𝒩(0, 𝐼−1(𝜃)) (2.10) 

Where 𝐼(𝜃) is the Fisher information matrix: 

𝔼𝜃 [∇𝜃𝐿𝜃(𝑦0:𝑁)∇𝜃𝐿(𝑦0:𝑁)𝑇] (2.11) 

and 
𝑑
→ denotes convergence in distribution as 𝑛 →  ∞. 

4. Invariance: The MLE is preserved by parametrization 𝜆 = 𝑞(𝜃) where 𝑞 is a known 

function. Under the condition that 𝑞 is non-invertible, then 𝜆 maximizes the 

modified likelihood: 

𝐿∗(𝜆|𝑥) ≜  sup
θ:q(θ)=𝜆

 𝐿(𝜃|𝑥). (2.12) 

5. The MLE for a set of data is equivalent to the MLE of the sufficient statistics.  

 

 

It is important to note that the asymptotic properties (1-3) require certain regularity conditions 

on the family conditions as smoothness, the existence of the derivatives of  𝐿𝜃 , and non-zero 

Fisher information (see [47] and [50] for more detail).  
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2.4 Bayesian Inference    

Here the Bayesian approach to statistical inference provided to give the reader the necessary 

background for understanding the state and parameter estimation in the following chapter. 

This can be achieved by using previous information about an unknown parameter (in this case 

the state can be viewed as the unknown) contained in the prior distribution and using the 

received measurement data to update it to the posterior distribution by using Bayes’ law. The 

two distributions are related by proportionality as  

 

 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ∝ 𝑝𝑟𝑖𝑜𝑟 ×  𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑. (2.13)   
 

 

It is through this combination of using the observed data and the prior knowledge that 

Bayesian analysis allows us to model the uncertainty in the outcomes of an underlying 

process. From (2.13) we can already see a hint that ML estimation is indeed connected to the 

Bayesian framework, and this will become clear shortly. The discussion herein will be in the 

context of state space models. Our focus will be on the posterior distribution of the state 

because all the necessary information to describe the system is contained within it [16]. Our 

focus will now turn to recursive Bayesian estimation. The goal is to sequentially estimate the 

posterior distribution of the unobserved data 𝑝𝜃(𝑥𝑡|𝑦0:𝑡) given all available measurements at 

time 𝑡. The Markov property of (2.1a) and the independence of the observations are key 

assumptions in the explanations to follow. Assuming we have a set of observations 𝑦0:𝑡 then 

by repeated use of Bayes’ theorem, the posterior densities can be computed in a two-stage 

iterative process:   

 

 

Prediction  stage:    

 

          𝑝𝜃(𝑥𝑡+1|𝑦0:𝑡) =  ∫𝑝𝜃(𝑥𝑡+1|𝑥𝑡)𝑝𝜃(𝑥𝑡|𝑦0:𝑡)𝑑𝑥𝑡 (2.14) 

 

 

Update/Correction stage:  

 

 

   𝑝𝜃(𝑥𝑡|𝑦0:𝑡) =  
𝑝𝜃(𝑦𝑡|𝑥𝑡)𝑝𝜃(𝑥𝑡|𝑦0:𝑡−1)

𝑝𝜃(𝑦𝑡|𝑦0:𝑡−1)
 (2.15) 

 

with 

 

  𝑝𝜃(𝑦𝑡|𝑦0:𝑡−1) = ∫𝑝𝜃(𝑦𝑡|𝑥𝑡)𝑝𝜃(𝑥𝑡|𝑦0:𝑡−1)𝑑𝑥𝑡  (2.16) 
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where the normalizing factor (2.15) is known as the evidence. An important thing to notice is 

that (2.15) is consistent with the relation in (2.13). The procedure for arriving at the 

prediction equation (2.14) involves the use of the Chapman-Kolmogorov equation and the 

Markov nature of the state evolution distribution. The calculation of the three densities on the 

right-hand side of (2.15) is the primary focus in Bayesian inference. All together (2.14-2.16), 

including the measurement likelihood function 𝑝𝜃(𝑦𝑡|𝑥𝑡), provide the basis to estimate the 

posterior state density recursively. The reader is referred to [48] for the details.    

 

Lastly, we discuss the concept of optimality. An estimator can only be optimal in a specific 

sense [51].  The natural question that arises is how to define or measure optimality? To 

answer this let’s first define the Bayes risk as  

 

ℛ(𝑥𝑡, 𝑥̂𝑡) = 𝔼[𝒞(𝜂)] (2.17) 
 

where 𝜂 = (𝑥𝑡 − 𝑥̂𝑡) is the prediction (estimation) error, and where 𝒞 is referred to as the 

cost or loss function. The value of 𝑥̂𝑡 which minimizes the Bayes risk is considered the 

optimal Bayes estimator [52]. Now that this has been established, we name three fundamental 

Bayesian optimality criterion [53]: 

 

1. Minimum mean square error (MMSE): Here we aim to compute the conditional mean  

 

𝑥̂ =  𝔼[𝑥𝑡|𝑦0:𝑡] =  ∫ 𝑥𝑡𝑝𝜃(𝑥𝑡|𝑦0:𝑡)𝑑𝑥𝑡
𝒳

(2.18) 

 

This is the equivalent of defining a quadratic cost function  𝒞 = 𝜂2 and attempt to 

minimize the Bayes risk: 
 

𝔼[‖𝑥𝑡 − 𝑥̂𝑡 ‖
2|𝑦0:𝑡] =  ∫ ‖𝑥𝑡 − 𝑥̂𝑡 ‖

2𝑝𝜃(𝑥𝑡|𝑦0:𝑡)𝑑𝑥𝑡
𝒳

(2.19) 

 

And hence 𝑥̂ is also called a conditional mean estimator or the expected a posteriori 

(EAP) estimator.  

 

2. Maximum a  posteriori (MAP): This estimator does exactly what the name says—it 

maximizes the posterior density 𝑝𝜃(𝑥𝑡|𝑦0:𝑡). Another way to say this is that it finds the 

largest mode of the posterior, and a major drawback of this approach is that for multi-

modal distributions, it can lead to poor estimations. In terms of the Bayes risk, the 

MAP estimator minimizes a "hit or miss" [54] loss function: 

 

𝒞 =  1 − 𝟙𝑥𝑡:(‖𝜂‖)≤𝜁
(𝑥𝑡) (2.20) 

 

      Where 𝜁 is a small scalar and 𝟙𝒜(⋅) is the indicator function over some set 𝒜.  

 

3. Maximum Likelihood: We revisit the MLE to show its connection to the Bayesian 

philosophy. If we define the prior density in the posterior distribution to be a uniform 

distribution, then the prior plays no role in maximizing the posterior, and therefore, the 

MLE can be seen as a particular case of the MAP estimator.   
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Any estimator that minimizes the Bayes risk is referred to as Bayes-optimal. It is important to 

note that the MLE is typically only Bayes-optimal in the case of a uniform prior, which is 

rarely the case [55]. 

 

2.5 Sequential Monte Carlo Methods    

Now that we have established the general Bayesian inference scheme, we can move on to 

methods for sequential Bayesian estimation appropriate for nonlinear non-Gaussian systems, 

based on Monte Carlo (MC) techniques. MC techniques are a class of methods for 

approximate inference based on numerical sampling method when exact inference is 

infeasible. We, therefore, turn our attention to so-called Sequential Monte Carlo (SMC) 

approaches; also known as particle methods. The aim is to recursively approximate the 

sequence of posterior probability distributions defined on a sequence of probability spaces. 

This can be achieved by a combination of the sequential importance sampling (SIS) and 

sampling importance resampling (SIR) algorithms, which will be discussed shortly. The 

result is a sequence of posterior distributions that are represented by a set of particles with 

associated nonnegative particle weights.  

 

2.5.1  Sequential Importance Sampling     

We begin our discussion about SMC by introducing the concept of importance sampling. As 

mentioned earlier, for nonlinear non-Gaussian problems, not always feasible to sample from 

the posterior distribution. Since it is usually not possible to draw samples directly from the 

posterior distribution, except in special cases where there exists a random number generator 

for that distribution (e.g., Gaussian), a workaround is to draw samples from another (known) 

distribution 𝑞𝜃(𝑥) called a proposal distribution or importance density. Samples drawn from 

the importance density, for which a well-constructed random number generator exists, can 

then be used to compute an approximation of the target distribution 𝑝𝜃(𝑥). The choice of 

importance density is a crucial design parameter, and should be as close as possible to the 

target density, and should have the same support. As the name implies, the goal of the 

sequential importance sampling (SIS) algorithm is to estimate the filtered posterior 

distributions recursively, through a Bayesian filter, and represent them as a histogram of point 

masses or particles 𝑥𝑡
𝑖  with associated importance weights 𝑤𝑡

𝑖. Therefore, to facilitate the 

computation of integration in Bayesian estimation, the posterior distribution can be 

characterized as a weighted particle system {𝑥𝑡
𝑖 , 𝑤𝑡

𝑖}
𝑖=1

𝑁𝑝
, where the weights for each time step 

sum to one. With this being said, an approximation of the target posterior density can be 

expressed as an empirical point-mass distribution  

 

𝑝𝜃(𝑥𝑡|𝑦0:𝑡) ≈ 𝑝̂
𝜃

𝑁𝑝(𝑥𝑡|𝑦0:𝑡) ≜ ∑𝑤𝑡
𝑖

𝑁𝑝

𝑖=1

𝛿(𝑥𝑡 − 𝑥𝑡
𝑖) (2.21) 

 

where 𝛿(∙) is the Dirac delta function. Now suppose the importance density can be factorized 

using Bayes’ law as  

 

𝑞𝜃(𝑥0:𝑡|𝑦0:𝑡) = 𝑞(𝑥𝑡|𝑥0:𝑡−1 𝑦0:𝑡)𝑞(𝑥0:𝑡−1|𝑦0:𝑡−1) (2.22) 

= 𝑞(𝑥0)∏ 𝑞(𝑥𝑛|𝑥0:𝑛−1

𝑡

𝑛=1
, 𝑦0:𝑛) (2.23) 
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where we have used the chain rule of probability to arrive at (2.23). If we further assume that 

the posterior can be factorized as  

 

𝑝(𝑥0:𝑡|𝑦0:𝑡) =  𝑝(𝑥0:𝑡−1|𝑦0:𝑡−1)
𝑝𝜃(𝑦𝑡|𝑥𝑡)𝑝𝜃(𝑥𝑡|𝑥𝑡−1)

𝑝(𝑦𝑡|𝑦0:𝑡−1)
(2.24) 

 

we can now define the weights as (see [53]) 

 

𝑤𝑡
𝑖 = 

𝑝𝜃(𝑥0:𝑡
𝑖 |𝑦0:𝑡)

𝑞𝜃(𝑥0:𝑡
𝑖 |𝑦0:𝑡)

 

∝
𝑝𝜃(𝑦𝑡|𝑥𝑡

𝑖)𝑝𝜃(𝑥𝑡
𝑖|𝑥𝑡−1

𝑖 )𝑝𝜃(𝑥0:𝑡
𝑖 |𝑦0:𝑡−1)

𝑞𝜃(𝑥𝑡
𝑖|𝑥0:𝑡−1

𝑖 , 𝑦0:𝑡)𝑞𝜃(𝑥0:𝑡−1
𝑖 |𝑦0:𝑡−1)

  

= 𝑤𝑡−1 
𝑖

𝑝𝜃(𝑦𝑡|𝑥𝑡
𝑖)𝑝𝜃(𝑥𝑡

𝑖|𝑥𝑡−1
𝑖 )

𝑞𝜃(𝑥𝑡
𝑖|𝑥0:𝑡−1

𝑖 , 𝑦0:𝑡)
(2.25) 

  
If we now impose the Markov and measurement independence assumptions on the 

importance density such that 𝑞𝜃(𝑥𝑡
𝑖|𝑥0:𝑡−1

𝑖 , 𝑦0:𝑡) =𝑞𝜃(𝑥𝑡
𝑖|𝑥𝑡−1

𝑖 , 𝑦𝑡) then the update recursion 

(2.25) reduces to  

 

𝑤𝑡
𝑖 ∝ 𝑤𝑡−1

𝑖  
𝑝𝜃(𝑦𝑡|𝑥𝑡)𝑝𝜃(𝑥𝑡|𝑥𝑡−1)

𝑞𝜃(𝑥𝑡
𝑖|𝑥𝑡−1

𝑖 , 𝑦𝑡)
. (2.26) 

 

This will usually be the case in most applications where only the current filtered estimate of 

the posterior is required. To ensure that (2.21) is a properly defined probability measure the 

weights must be normalized  

𝑤𝑡
𝑖  =

𝑤𝑡
𝑖

∑ 𝑤𝑡
𝑗𝑁𝑝

𝑗=1

(2.27) 

 

As 𝑁𝑠 → ∞ the approximation (2.22) approaches the true posterior density. One time step of 

the SIS filter is presented in here in Algorithm 1.  

 

Algorithm 1: SIS Particle filter     

INPUTS: {𝑥𝑡−1
(𝑖) , 𝑤𝑡−1

(𝑖) }
𝑖=1

𝑁𝑝

, 𝑦𝑡 

1. For 𝑖 = 1,… ,𝑁𝑝  draw the samples from the proposal distribution as  𝑥𝑡
(𝑖)

 ~ 𝑞(𝑥𝑡|𝑥𝑡−1
(𝑖)

 , 𝑦𝑡)  

2. For 𝑖 = 1,… ,𝑁𝑝  calculate the importance weights 𝑤𝑡
(𝑖)

 according to (2.26) 

3. For 𝑖 = 1,… ,𝑁𝑝  normalize the importance weights according to (2.27) 

4. Set 𝑡 ⟼ 𝑡 + 1 go back to step 2. 
 

OUTPUTS: {𝑥𝑡
(𝑖)

, 𝑤𝑡
(𝑖)

}
𝑖=1

𝑁𝑝
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Importance sampling provides a framework for producing approximations of expectations 

with respect to a distribution 𝑝𝜃(𝑥). Suppose we seek to produce the expectation of a 

nonlinear measurable function 𝑓: ℝ𝑛𝑥 →  ℝ of a random variable 𝑥, which can be written as 

 

𝔼[𝑓(𝑥)] =  ∫𝑓(𝑥)𝑝𝜃(𝑥)𝑑𝑥 =  ∫𝑓(𝑥)
𝑝𝜃(𝑥)

𝑞𝜃(𝑥)
𝑞𝜃(𝑥)𝑑𝑥. (2.28) 

 

To form an approximation of (2.28), we begin drawing 𝑁𝑠 i.i.d samples 𝑥𝑖  ~ 𝑞𝜃(∙) and using a 

Monte Carlo estimator [56] while making the appropriate substitutions we arrive at the 

following expression:    

 

𝔼[𝑓(𝑥)]  ≈
1

𝑁𝑠 
∑𝑤(𝑥𝑖)𝑓(𝑥𝑖)

𝑁𝑠

𝑖=1

(2.29) 

 

where 𝑤(𝑥𝑖) are the normalized importance weights (2.27). This process is also referred to as 

Monte Carlo integration. These techniques will be used extensively in the next chapter, as 

they are a critical part of the computing the expectations in E-step of the EM algorithm.  

 

2.5.2 Sampling Importance Resampling 

In practice, the SIS filter suffers from some severe drawbacks, which leads us to discuss an 

improved version known as the sampling importance resampling (SIR) algorithm. The first 

issue faced when implementing an SIS filter is known as the degeneracy problem [33][48]. 

This phenomenon that occurs after a few iterations in which all the weight tends to a single 

particle, while the rest of them have negligible influence. Furthermore, the unconditional 

variance of the importance weights is guaranteed to increase with time, and therefore it is 

impossible to avoid this problem [57]. One way to measure degeneracy is  known as the 

effective sample size [58] defined as  

 

𝑁𝑒𝑓𝑓 = 
𝑁𝑝

1 + 𝑣𝑎𝑟(𝑤𝑡
∗𝑖)

 ≤ 𝑁𝑝 (2.30) 

 

where 𝑤𝑡
∗𝑖 = 𝑝𝜃(𝑥𝑡

𝑖|𝑦0:𝑡) 𝑞𝜃(𝑥𝑡
𝑖|𝑥𝑡−1

𝑖 , 𝑦𝑡)⁄  is called the “true weight” [33]. Since this cannot 

be evaluated, a common approach is to use an approximation using normalized weights: 

 

𝑁̂𝑒𝑓𝑓 = 
1

∑ (𝑤𝑡
𝑖)

2𝑁𝑝

𝑖=1

 . (2.31) 

 

A simple approach to combat the degeneracy problem is to increase the number of particles 

one uses, but this is inefficient as it leads to a significant increase in computation complexity. 

One of the most common ways to deal with the degeneracy problem is by resampling. The 

basic concept is to remove particles with negligible weight and concentrate more particles in 

areas of higher importance, to more accurately capture regions of high probability in the true 

posterior.  One of the most basic ways to achieve this is by replacing each particle 𝑥𝑡
𝑗
 with a 

new particle 𝑥̃𝑡
𝑖 according to 𝑃(𝑥𝑡

𝑗
= 𝑥̃𝑡

𝑖) = 𝑤𝑡
𝑖 if the effective sample size falls below some 

threshold 𝑁𝑡ℎ𝑟𝑒𝑠ℎ. The SIS filter which resamples each time the effective sample size falls 
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below 𝑁𝑡ℎ𝑟𝑒𝑠ℎ is known as the sampling importance resampling (SIR) particle filter. A 

conventional algorithm to perform resampling task is known as systematic resampling and is 

presented below in Algorithm 2. Although there are many other methods for resampling (see 

[48] [53] [58]) each with different properties, we choose the systemic approach due to its ease 

of implementation.  

 

Algorithm 2: Systemic Resampling    

 

INPUTS: {𝑥𝑡
(𝑖), 𝑤𝑡

(𝑖)}
𝑖=1

𝑁𝑝

 

  
1. Initialize CDF: 𝑐1 = 0. 
2. For 𝑖 = 2,… ,𝑁𝑝  construct the CDF as: 𝑐𝑖 = 𝑐𝑖−1 + 𝑤𝑡

𝑖 

3. Begin by drawing a starting point  𝑢1~  𝕌 [0 , 𝑁𝑝
−1] 

4. For 𝑗 = 1,… ,𝑁𝑝  let 𝑢𝑗 = 𝑢1 + 𝑁𝑝
−1(𝑗 − 1) and do:  

 WHILE 𝑢𝑗 > 𝑐𝑖  

o 𝑖 = 𝑖 + 1 
 END WHILE  

 Set 𝑥̃𝑡
(𝑖)

=  𝑥𝑡
(𝑖) 

 Set 𝑤̃𝑡
(𝑖)

 = 𝑁𝑠
−1 

 

OUTPUTS: {𝑥̃𝑡
(𝑖)

, 𝑤̃𝑡
(𝑖)

}
𝑖=1

𝑁𝑝

 

 

 

Resampling helps alleviate the degeneracy problem but also produces other undesirable by-

products. The most important one is known as path degeneracy [59] or sample 

impoverishment, which is especially an issue when there is little to no process noise and is a 

consequence of the strong law of large number (SLLN). The problem arises because after 

resampling the sequences of particles are no longer statistically independent [60]. Other issues 

can be the limited possibility of parallelization and a reduction in diversity, the latter of which 

can lead to inaccurate estimates of statistics [33]. There are a variety of methods to handle 

these issues (see [53]) but are beyond the scope of this document and do not concern us for 

the work to be done here.  

 

2.5.3 Bootstrap Particle Filters  

The bootstrap particle filter, first introduced by Gordon, Salmond, and Smith [44] in 1993, is 

widely recognized as being the first practical implementation of the particle methods 

previously mentioned. The algorithm is also referred to by different names in the literature 

such as the condensation algorithm or the survival of the fittest algorithm  [61][48]. As 

mentioned before one of the most crucial design parameters in the design of a particle filter is 

the choice of importance density 𝑞𝜃(𝑥𝑡
𝑖|𝑥𝑡−1

𝑖 , 𝑦𝑡). One standard approach is to choose a 

density that maximizes the effective sample size by minimizing the variance. The second 

approach is more complicated but is shown in [62] to be  
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𝑞𝜃(𝑥𝑡
𝑖|𝑥𝑡−1

𝑖 , 𝑦𝑡)𝑜𝑝𝑡
= 

𝑝𝜃(𝑦𝑡|𝑥𝑡)𝑝𝜃(𝑥𝑡|𝑥𝑡−1
𝑖 )

𝑝𝜃(𝑦𝑡|𝑥𝑡−1
𝑖 )

. (2.32) 

 

Unfortunately, this choice faces a lot of practical problems such as the need to generate 

samples which may not always be so straightforward, and the computation of an integral for 

the normalizing constant 𝑞𝜃(𝑦𝑡|𝑥𝑡−1
𝑖 ) =  ∫ 𝑝𝜃(𝑦𝑡|𝑥𝑡)𝑝𝜃(𝑥𝑡|𝑥𝑡−1

𝑖 )𝑑𝑥𝑡, which generally has no 

closed-form solution except in certain special cases. A good compromise is to choose the 

suboptimal state transition density 𝑝𝜃(𝑥𝑡|𝑥𝑡−1) as the importance density, which leads to the 

bootstrap filter. This is one of the most widely used particle filters due to its simplicity and 

ease of implementation. One iteration of the SIR and bootstrap filter is presented below in 

Algorithm 3.  

 

Algorithm 3: SIR/Bootstrap Particle Filter   

 

INPUTS: {𝑥t−1
(i) , 𝑤𝑡−1

(𝑖) }
𝑖=1

𝑁𝑝

, 𝑦𝑡 

 

1. Initialize particles according to prior density, {𝑥0
(i)

}
𝑖=1

𝑁𝑝
 ~ 𝑝𝜃(𝑥0) and set 𝑡 = 1. 

2. For 𝑖 = 1,… ,𝑁𝑝  predict particles forward by drawing 𝑀 i.i.d. particles sampled as 

𝑥𝑡
(𝑖)

 ~ 𝑞𝜃(𝑥𝑡|𝑥t
(i)

 , 𝑦𝑡) for optimal SIR filter or use 𝑞𝜃(𝑥𝑡|𝑥𝑡−1) for bootstrap filter  

3. Evaluate the importance weights {𝑤t
(i)

}
𝑖=1

𝑁𝑝
  as, 

 

𝑤𝑡
(𝑖)

= 𝑝𝜃(𝑦𝑡|𝑥𝑡
(i)

) 
 

 
4. For 𝑖 = 1,… ,𝑁𝑝 ,  normalize the importance weighs: 

 

𝑤𝑡
(𝑖)

 = 
𝑊𝑡

(𝑖)

∑ 𝑊𝑡
(𝑗)𝑁𝑝

𝑗=1

 

 
5. Compute 𝑁𝑒𝑓𝑓̂ according to (insert equation number) 

6. If 𝑁𝑒𝑓𝑓̂ ≤ 𝑁𝑇𝐻𝑅resample particles and reset weights according to Algorithm 2.  

7. Set 𝑡 ⟼ 𝑡 + 1 go back to step 2.  
 

OUTPUTS: {𝑥𝑡
(i)

, 𝑤𝑡
(𝑖)

}
𝑖=1

𝑁𝑝

 

 

 
 

2.6 Smoothing  

The process of using past, present, and future data to make an inference on the state at time 𝑡 

is referred to as smoothing. In the Bayesian context, the goal is to recursively estimate the 

sequence (smoothed) marginal posterior densities 𝑝𝜃(𝑥𝑡|𝑦0:𝑡+𝜏), ∀ 𝑥𝑡  ∈ [𝑥0, … , 𝑥𝑁], 𝜏 ≥ 1 

and 𝑡 < 𝑁. There are many different flavors of smoothing, and the former is referred to as 

(off-line) fixed interval smoothing, but there are other types as well. In fixed-point smoothing, 
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one is interested in estimating the posterior 𝑝𝜃(𝑥𝑡|𝑦0:𝑁) for fixed 𝑡 as 𝑁 increases. In fixed-

lag smoothing the goal is to estimate 𝑝𝜃(𝑥𝑡|𝑦0:𝑡+Δ𝑡) for fixed Δ𝑡 as 𝑡 increases, and is used for 

recursive (on-line) implementations. Smoothing can be thought of as two filters: a forward 

filter that makes a state estimate based on previous data and a backward filter that uses only 

future data. Under white noise assumptions for both the process and measurements, the errors 

from the two filters are uncorrelated [51]. In the work to follow we will focus on fixed-

interval smoothing.  More specifically, for a particle smoother, we aim to obtain an 

approximation of the smoothed marginal posterior distributions as  

 

𝑝𝜃(𝑥𝑡|𝑦0:𝑁) ≈  𝑝̂
𝜃

𝑁𝑝(𝑥𝑡|𝑦0:𝑁)  ≜  ∑𝑤𝑡|𝑁
𝑖

𝑁𝑝

𝑖=1

𝛿(𝑥𝑡 − 𝑥𝑡
𝑖) 

 

 

       (2.33)  

Where 𝑁 > 𝑡  and 𝑤𝑡|𝑁
𝑖  are the smoothed weights at time 𝑡 taking into account all the data up 

till time 𝑡 = 𝑁. To be explicit, we aim to arrive at a weighted particle system {𝑥𝑡
𝑖 , 𝑤𝑡|𝑁

𝑖 }
𝑖=1

𝑁𝑝
. 

As originally proposed in [62] and [63], the forward filter/backward smoother (FFBSm), 

where the “m” stands for marginal, is an approximate method to compute the marginal 

smoothing distributions 𝑝̂
𝜃

𝑁𝑝(𝑥𝑡|𝑦0:𝑁).  In this procedure, the particles from the forward 

filtering pass remain unchanged, weights of the filtered particle system are updated in a 

backward pass. The weights can be updated according to the following relation:  

 

𝑤𝑡|𝑁
𝑖 = ∑𝑤𝑡+1|𝑁

𝑗

𝑁𝑝

𝑗=1

𝑤𝑡
𝑖  𝑝𝜃(𝑥𝑡+1

𝑗
|𝑥𝑡

𝑖)

∑ 𝑤𝑡
𝑙 𝑝𝜃(𝑥𝑡+1

𝑗
|𝑥𝑡

𝑖)
𝑁𝑝

𝑙=1

. (2.34) 

 

The algorithm is presented below in Algorithm 4, and the reader is referred to [53] for more 

details. 

 

Algorithm 4: Fixed-interval smoother (FFBSm)   

 

INPUTS: {𝑥𝑡
𝑖 , 𝑤𝑡

𝑖}
𝑖=1

𝑁𝑝
 (Forward filter particle systems for  𝑡 = 1,… ,𝑁)  

 
1. Initialize at time 𝑡 = 𝑁,  

 For 𝑖 = 1,… ,𝑁𝑝  set  𝑤𝑁|𝑁
𝑖 = 𝑤𝑡

𝑖   

 
2. For 𝑡 = 𝑁 − 1,… ,1  

 For 𝑖 = 1,… ,𝑁𝑝  evaluate importance weights according to (2.34) 

 

OUTPUTS: {𝑤𝑡|𝑁
𝑖 }

𝑖=1

𝑁𝑝
 for 𝑡 = 1,… , 𝑁 

 
 

Smoothing is critical for the system identification techniques that will be discussed in the next 

chapter. It is important to note that there exist various algorithms for implementation, all with 

different computational complexity and ease of implementation (see [58] [59] [60] ). 
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Some of the more sophisticated algorithms include the and forward filtering backward 

simulation (FFBSi) and the particle-based, rapid incremental smoother (PaRIS) to name a 

few. 

 

 

 

 

 

 

 

 



 

 

 

 

3 Algorithm Design  
 

 

 

 

 

This chapter contains the general mathematical formulation of the behavior classification 

algorithm, while the next two chapters will contain the explicit system modeling and 

simulations with remote sensing applications. We take an unsupervised learning approach 

using the state-space representation to model the dynamics of the system. Recall, the state 

space approach is a way of modeling the relationship between the unknown state and mode, 

to the measurements. The parameters that govern the dynamics, including the TPM, must be 

estimated. The estimation of the parameters can be seen as a "training" step. We investigate 

the system identification problem for JMNLS using the EM algorithm for ML estimation of 

the unknown parameters. To compute the expectations, we must expand on the particle 

filtering methods of the previous chapter to handle hybrid (multiple model) systems. We then 

extend existing methods for particle smoothing and tailor them to form a multiple model 

particle smoother, which is crucial for the E-step of the EM algorithm. We follow by 

discussing the subsequent the M-step. The last section culminates with the final proposed 

algorithm with the aim of being able to both track targets and classify their behavior using a 

Bayes' classifier that will be implemented via a multiple model particle filter.  

 

3.1 System Identification overview 

Nonlinear system identification with Markovian switching is known to be a challenging 

problem (see [60] and references therein). To be explicit, by system identification, we mean 

the learning of the unknown parameters that define the system. Since the method of 

estimating these system parameters, in the context of state-space models, is one of the core 

novel contributions of this work, the topic deserves a separate discussion of prior work. Here 

a concise yet thorough overview of system identification techniques for general state space 

models is presented. 

 

State estimation in state-space models received much attention after the invention of the 

Kalman filter. Although this was a great stride forward, a new issue arrived due to the fact 

that in order to use a Kalman filter the system must be linear and driven by a Gaussian white 

noise process. Another issue is that the system parameters are assumed to be known, which is 

rare in practice [42]. An algorithm for smoothing and forecasting in DLM with unknown 

parameters using a Kalman smoother in combination with the EM algorithm was first 

proposed by Shumway and Stoffer in 1982 [67], where they apply their proposed method to 

economic data. In the early 2000's, a great deal of effort began towards system identification 

in more general settings such as nonlinear systems with Markovian switching (jumps). For the 

linear case, in [68] a method was proposed to recursively MMSE estimates of transition 

probabilities in an IMM setting. Shortly after, an alternative Bayesian approach for estimating 

these transition probabilities for linear systems was proposed in [69], and later a ML 

approaching using the EM algorithm was presented in [70].   
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The rise of stochastic sampling methods in systems with jumps such as particle methods (see, 

e.g. [71][72]), led to more general system identification methods that could estimate all 

system parameters, as well an handle nonlinear systems. In the first decade or so of the 

2000's, there was a large body of work devoted to using SMC methods in conjunction with 

the EM algorithm to estimate parameters of nonlinear systems without jumps in both an 

online and offline fashion [73] [74] [75] [76] [60]. There was also some work proposing the 

use of particle filters to compute Jacobians needed for a direct ML approach via gradient 

ascent methods [77]. 

 

A framework for the estimation of all parameters of a JMNLS using SMC methods first 

appeared in 2012 in [43], where an online EM-based fashion using fixed-lag particle 

smoothers to compute approximate expectations in the E-step. This formulation was explicitly 

for systems where both the measurement and process noise are mixtures of members from the 

exponential family.  Two years later in 2014, the authors in [42] expanded upon the work in 

[60] for systems without jumps in order to generalize the work done in [43] to more generic 

JMNLS, which could be done in an offline fashion as well. Shortly after, the authors in [78] 

expanded on their previous work in [43], to present a recursive approach using Rao-

Blackwellized particle filters (RBPF) for joint-state and parameter estimation, resulting in a 

more efficient parameter inference scheme. Recently this work was further expanded upon in 

[79] where a general method for system identification of JMNLS was proposed using the 

PaRIS smoothing algorithm which reduced the computational complexity of and variance of 

the parameter estimates. Lastly, in 2017, a recursive gradient-based approach for ML 

estimation was proposed as an alternative to the EM approaches in [80].   

 

Another noteworthy mention is that much work was also done in other fields such as 

mathematical finance. In 2006 for example, the authors in [80] estimated the model 

parameters, including the transition probabilities, for a Markov switching stochastic volatility 

model. The reader is referred to [16],[81] and the references therein for an overview for 

existing work done in parallel in the areas of finance and economics. 

 

Lastly, we have only covered model-approaches here. There are also black box deep learning 

methods for nonlinear system identification, but as mentioned previously, these approaches 

typically involve estimating a huge amount of parameters, and hence require a lot of data (see, 

e.g., [82]). For these reasons, we will not consider these methods further.  

 

3.1.1 Mathematical Formulation  

Let’s assume that the target dynamics evolve according to a JMNLS (2.4a-2.4b) which is  

shown again here for convenience: 

 
𝑥𝑡+1 = 𝑓(𝑥𝑡, 𝑟𝑡+1, 𝑣𝑡, 𝜃) (3.1𝑎) 
 𝑦𝑡 =   ℎ(𝑥𝑡, 𝑟𝑡, 𝑒𝑡, 𝜃) (3.1𝑏) 

 

We again assume 𝑡 ∈ ℕ = {0,1,2, … }, 𝑣𝑡 ~ 𝑝𝑣(⋅) and 𝑒𝑡 ~ 𝑝𝑒(⋅). The initial state 𝑥0 has a 

known prior  𝑝𝜃(𝑥0|𝑟0) and the initial mode probabilities 𝜋𝑖 ~ 𝑝𝜃(𝑟0) are available.  
 

The TPM Π𝜃 = [𝜋𝑖𝑗] is defined as in (2.2) and the transition densities using (2.5a-2.5c). Our 

first challenge is to estimate a set of deterministic and time-independent parameters contained 

in a set 𝜃 ∈  Θ ⊆ ℝ𝑛𝜃, which includes the transition probabilities 𝜋𝑖𝑗. The goal is to do this 
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based on all available independent measurements 𝑦0:𝑁. If we denote 𝜃𝑛 as the parameters 

corresponding to the 𝑛𝑡ℎ mode  can express the unknown parameters as  

 

𝜃 =  ({𝜃𝑛}𝑛=1
𝑠 , {Π𝜃}). (3.2) 

 

To learn these parameters, we will incorporate the ML approach for reasons such as the fact 

that it does not require a prior and the other favorable statistical properties already mentioned 

in section 2.3. With a clear direction in place, we now explicitly state our system 

identification problem mathematically as: 

 

𝜃𝑀𝐿 = 𝑎𝑟𝑔𝑚𝑎𝑥
θ

  𝐿𝜃(𝑦0:𝑁) (3.3) 

 

A typical direct approach to maximizing (3.3) would be to employ a gradient-ascent 

algorithm. Potential challenges with this approach that one could encounter are that direct 

knowledge of  𝑝𝜃(𝑦0:𝑁) is scarce, and when it is available, analytical closed-form solutions 

typically do not exist, and direct maximization requires the numerical computation of high-

dimensional integrals [43]. In [80], the authors propose a gradient-based recursive maximum 

likelihood (RML) approach and acknowledge other potential drawbacks such as the need for 

explicitly dealing with parameters constraints such as those of the Markov transition matrix 

by re-parameterization or using constrained optimization methods. The re-parameterization 

will cause a change in the gradient which can cause a change in convergence results, and 

therefore the algorithm must be carefully designed. The EM algorithm is on the other hand, is 

well known for its numerical stability, ease of implementation, and the ability to often handle 

parameter constraints explicitly [84]. It also guarantees an increase in likelihood every 

iteration, although to be fair, its rate of convergence is known to be very slow at best. Two 

main drawbacks are the lack of a built-in method for computing covariance parameter 

estimates and potentially slow convergence [85]. For JMNLS, if the noise sequences are 

members of the exponential family, then very efficient implementations for online estimation 

make the EM algorithm an attractive choice as well [78]. There is merit in both the EM and 

gradient-based RML approaches. The former converges linearly, but the latter can reach 

quadratic convergence rates. The EM algorithm has another significant advantage in that it 

does not require the calculation of the gradient of the likelihood function. This is one of the 

main reasons it is the chosen candidate since it simplifies computations.    

 

3.2 Expectation Maximization  

The EM algorithm [56][86], is a two-stage iterative optimization process for computing 

maximum likelihood estimates in stochastic models that have latent (hidden) variables. In our 

case, the unobserved or hidden data is the augmented state variable comprised of the state and 

the mode 𝑧𝑡 = [𝑥𝑡
𝑇 , 𝑟𝑡]

𝑇 . The algorithm will produce a sequence of estimates for the unknown 

parameters {𝜃𝑘}𝑘≥0, 𝑘 ∈ ℕ. One of the properties that makes it a popular choice is its ability to 

guarantee an increase in (log) likelihood 𝐿𝜃𝑘
(𝑦0:𝑁) >  𝐿𝜃𝑘−1

(𝑦0:𝑁) at every iteration. The key 

is to instead approach the maximization problem (3.3) from a different angle, and consider the 

joint log-likelihood of the observations and the hidden data (also referred to as the complete 

data log-likelihood) 𝐿𝜃(𝑦0:𝑁 , 𝑧0:𝑁). The critical assumption is that it is (usually) easier to 

optimize than the (incomplete) log-likelihood 𝐿𝜃(𝑦0:𝑁). In the case of the hybrid system 

(3.11), the complete data likelihood can be expressed as 
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𝑝𝜃(𝑦0:𝑁, 𝑧0:𝑁) =  ∏𝑝𝜃(𝑧𝑡, 𝑦𝑡|𝑧𝑡−1)

𝑁

𝑡=0

(3.4) 

= 𝑝𝜃(𝑟0)𝑝𝜃(𝑥0|𝑟0)∏𝑝𝜃(𝑧𝑡, 𝑦𝑡|𝑧𝑡−1)

𝑁

𝑡=1

(3.5) 

 
where we assume we have a known priors 𝑝𝜃(𝑟0) and 𝑝𝜃(𝑥0|𝑟0). We define the augmented 

state transition density 𝑝𝜃(𝑧𝑡|𝑧𝑡−1) =  𝑝𝜃(𝑥𝑡+1|𝑥𝑡, 𝑟𝑡+1)𝑝𝜃(𝑟𝑡+1|𝑟𝑡)  and subsequently let 

𝑝𝜃(𝑧𝑡, 𝑦𝑡|𝑧𝑡−1) =  𝑝𝜃(𝑦𝑡|𝑧𝑡)𝑝𝜃(𝑧𝑡|𝑧𝑡−1).  After substituting the appropriate densities and 

taking the logarithm of both sides of (3.5) we arrive at the complete data log-likelihood as: 

 

𝐿𝜃(𝑦0:𝑁, 𝑧0:𝑁) =  log 𝑝𝜃(𝑟0) + log 𝑝𝜃(𝑥0|𝑟0) + ∑ log 𝑝𝜃(𝑟𝑡+1|𝑟𝑡)

𝑁−1

𝑡=0

 

+∑log 𝑝𝜃(𝑦𝑡|𝑥𝑡, 𝑟𝑡)

𝑁

𝑡=0

+ ∑ log 𝑝𝜃(𝑥𝑡+1|𝑥𝑡, 𝑟𝑡+1) .

𝑁−1

𝑡=1

(3.6) 

 

Since 𝑧0:𝑁 are unknown or "hidden," we must form an approximation 𝒬(𝜃, 𝜃𝑘) where we 

assume a true parameter value 𝜃𝑘. The approximation is then formed by averaging over the 

unobserved variables by evaluating the conditional mean estimate (MMSE estimator)  

 

𝒬(𝜃, 𝜃𝑘)  ≜  𝔼𝜃𝑘
[ 𝐿𝜃(𝑦0:𝑁, 𝑧0:𝑁)|𝑦0:𝑁) 

=   ∫ 𝐿𝜃(𝑦0:𝑁, 𝑧0:𝑁)𝑝𝜃𝑘
(𝑧0:𝑁|𝑦0:𝑁)𝑑𝑧0:𝑁 (3.7) 

 

Therefore, in the case of the system (3.1a-3.1b), we can form 𝒬(𝜃, 𝜃𝑘) by applying the 

conditional mean operator 𝔼𝜃𝑘
[ ⋅ |𝑦1:𝑁 ] to both sides of (3.6) we arrive at: 

 

𝒬(𝜃, 𝜃𝑘) =  Υ1 + Υ2 + Υ3 + Υ4 + Υ5 (3.8) 

 

where we have broken down the function into:  

 

 

Υ1 = ∑ log 𝑝𝜃(𝑟0)

𝑟0∈ Ω 

𝑝𝜃𝑘
(𝑟0)  

 

(3.9a) 
 

Υ2 = ∑ ∫ log 𝑝𝜃(𝑥0|𝑟0)𝑝𝜃𝑘
(𝑥0|𝑟0, 𝑦0:𝑁)𝑑𝑥0

𝒳𝑟0∈ Ω 

 
 

(3.9b) 

Υ3 = ∑ ∑  ∑ ∫ log 𝑝𝜃(𝑟𝑡+1|𝑟𝑡)𝑝𝜃𝑘
(𝑥𝑡+1, 𝑟𝑡+1 , 𝑟𝑡|𝑦0:𝑁)𝑑𝑥𝑡+1

𝒳𝑟𝑡 ∈ Ω𝑟𝑡+1 ∈ Ω

𝑁−1

𝑡=0

 

 

(3.9c) 
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Υ5 = ∑ ∑ ∬ log𝑝𝜃(𝑥𝑡+1|𝑟𝑡+1, 𝑥𝑡)𝑝𝜃𝑘
(𝑥𝑡+1, 𝑥𝑡 , 𝑟𝑡+1|𝑦0:𝑁)𝑑𝑥𝑡+1𝑑𝑥𝑡

𝒳𝑟𝑡+1 ∈ Ω

𝑁−1 

𝑡=0

 

 

 

(3.9d) 

Υ5 = ∑ ∑ ∫ log 𝑝𝜃(𝑦𝑡|𝑥𝑡 , 𝑟𝑡)𝑝𝜃𝑘
(𝑥𝑡, 𝑟𝑡 |𝑦0:𝑁)𝑑𝑥𝑡

𝒳𝑟𝑡 ∈ Ω

𝑁

𝑡=0

 

 

(3.9e) 

 

Looking at (3.9a-3.9e) we can see that the computation of the approximate complete data log-

likelihood 𝒬(𝜃, 𝜃𝑘) requires the computation of multi-dimensional integrals. As will be 

shown in section 3.2.3, this typically requires numerical approximations, where MC 

integration will prove to be a crucial tool.   

 

3.2.1 Computing State Filtered Densities  

To accommodate the extension to a JMNLS, we must extend the particle filtering methods of 

the previous chapter to accommodate for the system dynamics being able to switch between 

modes. Initially proposed by McGinnity and Irwin [87], the multiple model bootstrap filter is 

an alternative to the IMM algorithm, and it can also deal with nonlinear and non-Gaussian 

systems. The process aims to  represent the mode dependent state posterior densities as 

 

𝑝𝜃(𝑥𝑡, 𝑟𝑡|𝑦0:𝑡) ≈ 𝑝̂
𝜃

𝑁𝑝(𝑥𝑡 , 𝑟𝑡|𝑦0:𝑡) ≜ ∑𝑤𝑡
𝑖

𝑁𝑝

𝑖=1

𝛿(𝑥𝑡 − 𝑥𝑡
𝑖)𝟙(𝑟𝑡 = 𝑟𝑡

𝑖) (3.10) 

 

The algorithm is presented below, and the reader is referred to [88] for more details.  

 

Algorithm 5: Multiple model bootstrap particle filter   

 

INPUTS: {𝑦0:𝑡} 
 

1. Initialize particles according to prior density {𝑥0
𝑖 , 𝑟0

𝑖}
𝑖=1

𝑁𝑝  ~ 𝑝𝜃(𝑥0) and set 𝑡 = 1. 

2. Predict mode particles {𝑟𝑡+1
𝑖 }

𝑖=1

𝑁𝑝  forward based on {𝑟𝑡
𝑖}

𝑖=1

𝑁𝑝  and Π𝜃 

3. Draw process noise samples {𝑣𝑡
𝑖}

𝑖=1

𝑁𝑝 ~ 𝑝𝑟𝑡
(𝑣)   and predict particles 𝑥𝑡+1

𝑖 forward using 

the Markov transition density:  

 

𝑥𝑡+1 = 𝑓𝜃(𝑥𝑡, 𝑟𝑡+1, 𝑣𝑡)  

 

4. Evaluate importance weights for the augmented state particles {𝑧𝑡+1
𝑖 }

𝑖=1

𝑁𝑝 =

 {𝑥𝑡+1
𝑖 , 𝑟𝑡+1

𝑖 }
𝑖=1

𝑁𝑝  as 

 

𝑤𝑡+1
𝑖 = 𝑝𝜃(𝑦𝑡+1| 𝑥𝑡+1

𝑖 , 𝑟𝑡+1
𝑖 ) 

 

5. For 𝑖 = 1,… , 𝑁𝑝,  normalize the importance weighs: 
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𝑤𝑡
𝑖 = 

𝑊𝑡
𝑖

∑ 𝑊𝑡
𝑗𝑁𝑝

𝑗=1

 

 

6. Compute 𝑁𝑒𝑓𝑓̂ according to (2.31) 

7. If 𝑁𝑒𝑓𝑓̂ ≤ 𝑁𝑇𝐻𝑅resample particles and reset weights according to Algorithm 2.  

8. Set 𝑡 ⟼ 𝑡 + 1 go back to step 2.  

 

OUTPUTS: {𝑧0:𝑡
𝑖 , 𝑤0:𝑡

𝑖 }
𝑖=1

𝑁𝑝
 

 

 

 

The use of multiple model particle filtering for target tracking is not new, and a large volume 

of literature is devoted to the topic (see, e.g. [89] [91][92] ). 

 

3.2.2 Computing Smoothed Marginal Densities  

 

By taking a closer look at (3.7) and (3.9a-3.9e), one can see that the calculate the expectations 

of the complete data log-likelihood with respect to the conditional distribution  𝑝𝜃(𝑧0:𝑁|𝑦0:𝑁), 

requires knowledge of  the smoothed densities 

𝑝𝜃(𝑥0|𝑟0, 𝑦0:𝑁), 𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1 , 𝑟𝑡|𝑦0:𝑁), 𝑝𝜃(𝑥𝑡+1, 𝑥𝑡 , 𝑟𝑡+1|𝑦0:𝑁), and 𝑝𝜃(𝑥𝑡, 𝑟𝑡 |𝑦0:𝑁).  

Furthermore, to combat the particle degeneracy problem that arises when 𝑡 ≪ 𝑁 in 

approximating (3.10), where a single particle represents the posterior density, we require 

similar empirical approximations of the form 

 

𝑝𝜃(𝑥𝑡, 𝑟𝑡|𝑦0:𝑁) ≈ 𝑝̂
𝜃

𝑁𝑝(𝑥𝑡, 𝑟𝑡|𝑦0:𝑁) ≜ ∑𝑤𝑡|𝑁
𝑖

𝑁𝑝

𝑖=1

𝛿(𝑥𝑡 − 𝑥𝑡
𝑖)𝟙(𝑟𝑡 = 𝑟𝑡

𝑖) (3.11) 

 

This approximation does not suffer from the degeneracy problem needed for accurate 

parameter estimation [92]. Doucet, Godsill and Andriu [57] first proposed a fixed interval 

particle smoother; recall from section 2.7, this algorithm, referred to as, the FFSBm 

algorithm, where again “m” stands for marginal, and can be extended to the multiple model 

case. In practice, due to its high computational complexity 𝒪(𝑁𝑁𝑃
2), the FFSBm algorithm is 

only suitable for situations where the data sets are relatively small. Given that for this thesis, 

we aim to develop methods for situations where data is limited this is not seen as an obstacle. 

To be clear, the method for computing the sequence of smoothed marginals 

{𝑝̂
𝜃

𝑁𝑝(𝑥𝑡 , 𝑟𝑡|𝑦0:𝑁)}
𝑡=0

𝑁

 is a design choice, and the general procedure for computing 

expectations does not change. For applications where the computational load is a limitation, 

the smoothing technique presented here can be replaced by other alternatives such as a fixed-

lag smoother [93]; other alternatives will also be suggested in Chapter 6.    

 

With this in mind, an expression for the smoothed weights 𝑤𝑡|𝑁
𝑖  in (3.11) can be calculated 

recursively by extending the work done in [57], and again, the particles will remain the 

unchanged. A proof of this extension is provided in Appendix C. The smoother will, 
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therefore, be fed the augmented state particles {𝑧𝑡
𝑖}

𝑖=1

𝑁𝑝
≜ {𝑥𝑡

𝑖 , 𝑟𝑡
𝑖}

𝑖=1

𝑁𝑝
  and will update their 

corresponding weights to form the approximated smoothed state density (3.11) as:  

 

𝑤𝑡|𝑁
𝑖 = ∑𝑤𝑡+1|𝑁

𝑗

𝑁𝑝

𝑗=1

𝑤𝑡
𝑖 𝑝𝜃(𝑥𝑡+1

𝑗
|𝑥𝑡

𝑖 , 𝑟𝑡+1
𝑗

)𝑝𝜃(𝑟𝑡+1
𝑗

|𝑟𝑡
𝑖)

∑ 𝑤𝑡
𝑙  𝑝𝜃(𝑥𝑡+1

𝑗
|𝑥𝑡

𝑙 , 𝑟𝑡+1
𝑗

)𝑝𝜃(𝑟𝑡+1
𝑗

|𝑟𝑡
𝑙)

𝑁𝑝

𝑙=1

(3.12) 

 

We will name this algorithm the multiple model forward filter backward smoother (MM-

FFBSm), where once again “m” stands for marginal.  

 

Algorithm 6: Fixed-interval multiple model particle smoother (MM-FFBSm)   

 

INPUTS: {z𝑡
i , 𝑤𝑡

𝑖}
𝑖=1

𝑁𝑝
 (Forward filter particle systems for  𝑡 = 1,… ,𝑁).  

 
1. Initialize at time 𝑡 = 𝑁,  

 For 𝑖 = 1,… ,𝑁𝑝  set  𝑤𝑁|𝑁
𝑖 = 𝑤𝑡

𝑖  

 
2. For 𝑡 = 𝑁 − 1,… ,1  

 For 𝑖 = 1,… ,𝑁𝑝  update the importance weights according to (3.12) 

 

OUTPUTS: {𝑤𝑡|𝑁
𝑖 }

𝑖=1

𝑁𝑝
 for 𝑡 = 1,… , 𝑁 

 

 

3.2.3  Computing Expectations (E-Step) 

We now turn to the computations of the expectations (3.15a-3.15e) which require the 

computation of integrals with respect to smoothed densities. The reader may now understand 

the importance of MC estimators introduced in the previous chapter since these integrals 

generally have no closed-form solutions except when dealing with linear systems [60]. We 

can express an approximation to (3.8) as 

 

𝒬(𝜃, 𝜃𝑘) ≈  𝒬̂(𝜃, 𝜃𝑘) =  Υ1̂ + Υ2̂ + Υ3̂ + Υ4̂ + Υ5̂ (3.13) 

 

with 

 

 

Υ1  ≈  Υ1̂ = ∑ 𝑤0|𝑁
𝑖

𝑁𝑝

𝑖=1 

log 𝑝𝜃(𝑟0
𝑖) 

 

(3.14a) 
 

Υ2  ≈  Υ2̂ = ∑ 𝑤0|𝑁
𝑖

𝑁𝑝

𝑖=1 

log 𝑝𝜃(𝑥0
𝑖 |𝑟0

𝑖) 

 

(3.14b) 

Υ3  ≈  Υ3̂ = ∑ ∑ ∑ 𝑤𝑡|𝑁
𝑖𝑗

𝑁𝑝

𝑗=1 

log 𝑝𝜃(𝑟𝑡+1
𝑖 |𝑟𝑡

𝑖)

𝑁𝑝

𝑖=1

𝑁−1

𝑡=0

 

 

(3.14c) 
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Υ4  ≈  Υ4̂ = ∑ ∑ ∑ 𝑤𝑡|𝑁
𝑖𝑗

𝑁𝑝

𝑗=1 

log 𝑝𝜃(𝑥𝑡+1
𝑗

|𝑥𝑡
𝑖, 𝑟𝑡+1

𝑗
)

𝑁𝑝

𝑖=1

𝑁−1

𝑡=0

 

 

(3.14d) 

Υ5  ≈  Υ5̂ = ∑∑𝑤𝑡|𝑁
𝑖  log 𝑝𝜃(𝑦𝑡|𝑥𝑡

𝑖, 𝑟𝑡
𝑖)

𝑁𝑝

𝑖=1

𝑁

𝑡=0

 

 

(3.14e) 

 

 

where the weights 𝑤𝑡|𝑁
𝑖𝑗

 are defined as 

 

𝑤𝑡|𝑁
𝑖 = 

𝑤𝑡
𝑖𝑤𝑡|𝑁

𝑗
𝑝𝜃𝑘

(𝑥𝑡+1
𝑗

|𝑟𝑡+1
𝑗

, 𝑥𝑡
𝑖)𝑝𝜃𝑘

(𝑟𝑡+1
𝑗

|𝑟𝑡
𝑖)

∑ 𝑤𝑡
𝑙𝑝𝜃𝑘

(𝑥𝑡+1
𝑗

|𝑟𝑡+1
𝑗

, 𝑥𝑡
𝑙)𝑝𝜃𝑘

(𝑟𝑡+1
𝑗

|𝑟𝑡
𝑙𝑁𝑝

𝑙 )
. (3.15) 

 

The derivation of this is a straightforward use of importance sampling and Bayes law (see 

[42]). 

 

3.2.4  Maximization (M-Step)  

To maximize 𝒬̂(𝜃, 𝜃𝑘), we can do this via numerical methods, or in some cases via a closed-

form maximizer Λ(⋅). Both approaches typically require the calculation of the gradient, which 

must vanish to find an inflection point that yields a maximizer 𝜃. By taking the gradient of 

(3.13), we can compute the gradient of the particle representations of  𝒬(𝜃, 𝜃𝑘) by 

 

 

∇𝜃𝒬̂(𝜃, 𝜃𝑘) =  ∇𝜃Υ1̂ + ∇𝜃Υ2̂ + ∇𝜃Υ3̂ + ∇𝜃Υ4̂ + ∇𝜃Υ5̂ (3.16) 

 

with  

 

 

∇𝜃Υ1̂ = ∑ 𝑤0|𝑁
𝑖

𝑁𝑝

𝑖=1 

∇𝜃log 𝑝𝜃(𝑟0
𝑖)   

 

(3.17a) 
 

∇𝜃Υ2̂ = ∑ 𝑤0|𝑁
𝑖

𝑁𝑝

𝑖=1 

∇𝜃log 𝑝𝜃(𝑥0
𝑖 |𝑟0

𝑖) 

 

 

(3.17b) 

∇𝜃Υ3̂ = ∑ ∑ ∑ 𝑤𝑡|𝑁
𝑖𝑗

𝑁𝑝

𝑗=1 

∇𝜃log 𝑝𝜃(𝑟𝑡+1
𝑖 |𝑟𝑡

𝑖)

𝑁𝑝

𝑖=1

𝑁−1

𝑡=0

 

 

(3.17c) 

∇𝜃Υ4̂ = ∑ ∑ ∑ 𝑤𝑡|𝑁
𝑖𝑗

𝑁𝑝

𝑗=1 

∇𝜃log 𝑝𝜃(𝑥𝑡+1
𝑗

|𝑥𝑡
𝑖 , 𝑟𝑡+1

𝑗
)

𝑁𝑝

𝑖=1

𝑁−1

𝑡=0

 

 

(3.17d) 
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∇𝜃Υ5̂ = ∑∑𝑤𝑡|𝑁
𝑖 ∇𝜃log 𝑝𝜃(𝑦𝑡|𝑥𝑡

𝑖, 𝑟𝑡
𝑖)

𝑁𝑝

𝑖=1

𝑁

𝑡=0

 

 

(3.17e) 

 

For many problems, no closed-form maximizer exists. Therefore, as mentioned before, a 

numerical approximation can be employed for more general models. Following the 

suggestion in [84], a gradient-based search technique could be employed. See [94] for a 

treatment of such numerical schemes.   

 

3.3 Learning Phase 

In this section, we put together the different components of the system identification approach 

to be used in this work for JMNLS, or to put it another way, the unsupervised learning phase 

of the hybrid state HMMs defined by (3.1a-3.1b). A common stopping criterion for the 

algorithm is 𝜁 =  𝒬̂(𝜃𝑘+1, 𝜃𝑘) − 𝒬̂(𝜃𝑘 , 𝜃𝑘) ≤  𝜖  and the algorithm is terminated once this 

value is below some user-defined tolerance 𝜖 > 0. Since the focus of this work is 

classification, the process here is a batch algorithm due to its simplicity. The algorithm can be 

modified to an online implementation by using fixed-lag smoothers if needed in practice. In 

Chapter 5, we will use training data (measurements) generated from kinematic motion models 

to train the system for recognizing trajectories based on their dynamic behavior using multiple 

sensors. 

 

Algorithm 7: Multiple Model Particle EM Algorithm for Jump Markov Nonlinear System 

Identification 

 

INPUTS: {𝑧0:𝑁
𝑖 , 𝑤0:𝑁

𝑖 }
𝑖=1

𝑁𝑝
, 𝑦0:𝑁  

 
1. Initialize {𝜃𝑘| 𝐿𝜃𝑘

(𝑦0:𝑁) < ∞} and set 𝑘 = 1. 

2. E-Step: 

  Run Algorithms 5 and 6 to obtain the filtered and smoothed particle 

representations (3.10) and (3.11)  

 Use these approximate densities to compute (3.7) via (3.9a-3.9e)  

3. M-Step: 

 Compute 𝜃𝑘+1 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜃 ∈ 𝛩

 𝒬̂(𝜃, 𝜃𝑘)   

4. Evaluate the stopping criterion 𝜁 =  𝒬̂(𝜃𝑘+1, 𝜃𝑘) − 𝒬̂(𝜃𝑘, 𝜃𝑘)   for some chosen tolerance 

𝜖 > 0 and do : 

 If 𝜁 > 𝜖 

 Set 𝑘 ⟼ 𝑘 + 1 go back to step 2.  

 Else  

 Terminate loop and continue to step 5.   

5. Set 𝜃𝑀𝐿 =   𝜃𝑘+1 

 
OUTPUTS:{𝜃𝑀𝐿} 
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3.4 Joint Tracking and Classification  

We finalize this chapter by formalizing one of the main contributions in this work, namely to 

build a classification algorithm for targets based on their behavior. This can be inferred from 

the information of their temporal behavior contained in the estimated transition matrix and 

process noise parameters based on their trajectories. 

 

This process is referred to in the literature as joint tracking and classification (JTC) [95]. The 

task of classification (or model selection) will be carried out by using a bank of multiple 

model particle filters in parallel to both track and classify targets, as illustrated in figure 3.1. 

The outputs of these filters will be used at each time step to calculate the posterior class 

probabilities. Typically, JTC problems include a class measurement such as RCS, in addition 

to kinematic measurements, used in classifying object type (e.g., military aircraft or 

commercial airliner) [96]. This will be ignored as we have no measurement for behavior in 

our problem formulation since we instead distinguish between trajectories with the use of 

different estimated transition probabilities.  Now instead suppose each target belongs to one 

of 𝑚 (behavior) classes 𝜑𝑘  ∈  Φ = {𝜑1, … , 𝜑𝑚}. Our goal in this section is to estimate the 

state 𝑥𝑡 ∈ 𝒳 and posterior class probabilities 𝑃(𝜑𝑘|𝑦0:𝑡) for each 𝑘 ∈ {1, … ,𝑚} = 𝒦. We 

assume, that for each class, an initial prior 𝑃0(𝜑𝑘), such that ∑ 𝑃0(𝜑𝑘)𝜑𝑘 ∈ Φ = 1, is available. 

The parameters for all the classes are denoted by   

 

𝜃 =  ({𝜃𝜑𝑘
}
𝑘=1

𝑚
, {Π𝜑𝑘

}
𝑘=1

𝑚
) ⊆ Θ (3.18) 

 

where 𝜃𝜑𝑘
 are the system parameters and Π𝜑𝑘

= [𝜋𝑖𝑗,𝑘] are the transition probabilities for the 

𝑘𝑡ℎ class. A diagram of the algorithm to be derived is shown in Figure 3.1.  

 

 
 

Fig. 3.1. Diagram of proposed JTC system 
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The number of modes in each class is not restricted to be the same, and we define 𝑠(𝜑𝑘) as 

the number of modes per class. The likelihood for each class will be expressed more 

compactly for convenience as 

 
𝜆𝜑𝑘

(𝑦𝑡|𝑥𝑡) = 𝑝𝜃(𝑦𝑡|{𝑥𝑡, 𝜑𝑘}, 𝑦0:𝑡−1) (3.19) 

 

Prediction and measurement updates for each class can be calculated in the usual manner 

using the Bayesian recursions (2.10-2.11):   

 

𝑝𝜃({𝑥𝑡+1, 𝜑𝑘}|𝑦1:𝑡−1) =  ∫ 𝑝𝜃(𝑥𝑡+1, {𝑥𝑡, 𝜑𝑘}|𝑦0:𝑡)𝑑𝑥𝑡
𝑥𝑡∈𝒳

 

= ∫ 𝑝𝜃(𝑥𝑡+1|{𝑥𝑡, 𝜑𝑘}, 𝑦0:𝑡)𝑝𝜃({𝑥𝑡, 𝜑𝑘}|𝑦0:𝑡)𝑑𝑥𝑡
𝑥𝑡∈𝒳

 

= ∫ 𝑝𝜃(𝑥𝑡+1|{𝑥𝑡, 𝜑𝑘})𝑝𝜃({𝑥𝑡, 𝜑𝑘}|𝑦0:𝑡)𝑑𝑥𝑡
𝑥𝑡∈𝒳

(3.20) 

with  

  

𝑝𝜃(𝑥𝑡+1|{𝑥𝑡, 𝜑𝑘}, 𝑦0:𝑡) = ∑ 𝑝𝜃(𝑥𝑡+1|𝑥𝑡 , 𝑟𝑡+1 = 𝑗, 𝑦0:𝑡)

𝑠(𝜑𝑘)

𝑗=1

⋅ 𝑃(𝑟𝑡+1 = 𝑗 |𝑥𝑡 , 𝜑𝑘, 𝑦0:𝑡) 

= ∑ 𝑝𝜃(𝑥𝑡+1|𝑥𝑡, 𝑟𝑡+1 = 𝑗, 𝑦0:𝑡)

𝑠(𝜑𝑘)

𝑗=1

⋅  ∑ 𝜋𝑖𝑗,𝑘

𝑠(𝜑𝑘)

𝑖=1

𝑃(𝑟𝑡 = 𝑖 | 𝜑𝑘 , 𝑦0:𝑡) (3.21) 

We can evaluate the posterior mode probabilities for a given class 𝜑𝑘 by 

𝑃(𝑟𝑡 = 𝑗 |𝜑𝑘, 𝑦0:𝑡) =  
1

𝑎𝑡
𝑝𝜃(𝑦𝑡|𝑟𝑡 = 𝑗, 𝜑𝑘 , 𝑦0:𝑡−1) ⋅ ∑ 𝜋𝑖𝑗

𝑠(𝜑𝑘)

𝑖=1

𝑃(𝑟𝑡−1 = 𝑖 | 𝜑𝑘 , 𝑦0:𝑡−1) (3.22) 

where 𝑎𝑡 is a normalizing constant. Similarly, the measurement updates for each class can be 

carried out by the following recursion:  

   

𝑝𝜃({𝑥𝑡, 𝜑𝑘}|𝑦0:𝑡) =  
𝑝𝜃(𝑦𝑡|{𝑥𝑡, 𝜑𝑘}, 𝑦0:𝑡−1)𝑝𝜃({𝑥𝑡 , 𝜑𝑘}|𝑦0:𝑡−1)

𝑝𝜃(𝑦𝑡|𝑦0:𝑡−1)
(3.23) 

               =  
1

𝑐𝑘
𝜆𝜑𝑘

(𝑦𝑡|𝑥𝑡)𝑝𝜃({𝑥𝑡, 𝜑𝑘}|𝑦0:𝑡−1) (3.24) 

with, 

𝑐𝑘 =  ∑ ∫ 𝜆𝜑𝑘
(𝑦𝑡|𝑥𝑡)𝑝𝜃({𝑥𝑡, 𝜑𝑘}|𝑦0:𝑡−1)

𝑥𝑡∈𝒳

𝑠(𝜑𝑘)

𝑖=1

𝑑𝑥𝑡 (3.25) 

 

Finally, we arrive at an expression for the target class posterior probabilities as:  
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𝑃(𝜑𝑘|𝑦0:𝑡) =  
𝑝𝜃(𝑦𝑡|𝜑𝑘, 𝑦0:𝑡−1)𝑃(𝜑𝑘|𝑦0:𝑡−1)

∑ 𝑝𝜃(𝑦𝑡|𝜑𝑘, 𝑦0:𝑡−1𝜑𝑘 ∈ Φ )𝑃(𝜑𝑘|𝑦0:𝑡−1)
. (3.26) 

 

The state estimates for each class 𝜑𝑘 ∈ Φ can be estimated via the MMSE estimator or MAP 

estimator. If we denote 𝑥𝑡
(𝑖,𝑘)

 and 𝑤𝑡
(𝑖,𝑘)

 as the particles and their corresponding weights for 

the 𝑘𝑡ℎ class respectively, we can form the MMSE approximation as  

 

𝑥̂𝜑𝑘|𝑡
𝑀𝑀𝑆𝐸 = ∑ ∫ 𝑥𝑡𝑝𝜃(𝑥𝑡 , 𝑟𝑡, 𝜑𝑘|𝑦0:𝑁)

𝑥𝑡∈𝒳𝑟𝑡∈𝒮

𝑑𝑥𝑡 ≈ ∑𝑤𝑡
(𝑖,𝑘)

𝑁𝑝

𝑖=1

𝑥𝑡
(𝑖,𝑘)

 (3.27) 

 

and the corresponding estimates for the modes 𝑟̂𝜑𝑘|𝑡 are given by 

 

𝑟̂𝜑𝑘|𝑡
MMSE  =  ∑𝑤𝑡

(𝑖,𝑘)

𝑁𝑝

𝑖=1

𝑟𝑡
(𝑖,𝑘) (3.28) 

 

For non-linear non-Gaussian systems, sometimes the MMSE estimator can perform poorly. In 

target tracking, multi-modal posteriors are common, and an MMSE estimator might be a poor 

choice since it can give a point estimate in areas of low probability. In these situations, a 

MAP estimate might perform better. A detailed discussion of this is outside the scope of this 

text; see [97][98] for more details on the implementation of the MAP estimator using particle 

filters, and a comparison of its performance with the MMSE estimator. The final JTC 

algorithm is now presented in Algorithm 8 below.  

 

 

 

Algorithm 8: Multiple Model Particle Filter Bayesian Classifier  

 

INPUTS: {𝑦0:𝑁} 
 

1. Initialization at time 𝑡 = 0,  
 For 𝜑𝑘 = 1, 2,… 𝑠(𝜑)  

o set 𝑃(𝜑𝑘) = 𝑃0(𝜑𝑘)  
 For 𝑖 = 1,… ,𝑁𝑝   

o draw particles 𝑥0
𝑖  ~ 𝑝𝜃(𝑥0, 𝜑𝑘)  

o draw particles 𝑟0
𝑖  ~ 𝑝𝜃(𝑟0, 𝜑𝑘)  

2. For 𝜑𝑘  , 𝑘 = 1, 2, …𝑚 (in parallel)  
Prediction:  

 Predict mode particles {𝑟𝑡+1
𝑖 }

𝑖=1

𝑁𝑝  forward based on {𝑟𝑡
𝑖}

𝑖=1

𝑁𝑝  and Π{𝜑𝑘} 

 Draw process noise samples {𝑣𝑡
𝑖}

𝑖=1

𝑁𝑝 ~ 𝑝𝜃 
(𝑣 |𝜃𝑘 , 𝜑𝑘)   and predict particles 

𝑥𝑡+1
𝑖 forward using the Markov transition density:  

 

𝑥𝑡+1 = 𝑓𝜃(𝑥𝑡, 𝑟𝑡+1, 𝑣𝑡 , 𝜑𝑘)  

 

Measurement Update:  
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 For 𝑖 = 1,… ,𝑁𝑝 evaluate importance weights for the augmented state particles 

𝑧𝑡 = {𝑥𝑡+1
𝑖 , 𝑟𝑡+1

𝑖 }
𝑖=1

𝑁𝑝
 as 

 

𝑤𝑡+1
𝑖 = 𝑝𝜃(𝑦𝑡+1|𝑥𝑡+1

𝑖 , 𝑟𝑡+1
𝑖 , 𝜑

𝑘
) 

 

 Evaluate 𝑝𝜃(𝑦𝑡+1|𝜑𝑘 , 𝑦0:𝑡) =  ∑ 𝑤𝑡+1
𝑖𝑁𝑝

𝑖=1
 

o Set Γ(𝜑𝑘) =  ∑ 𝑤𝑡+1
𝑖𝑁𝑝

𝑖=1
  

 
Selection Step:  

 Normalize importance weights as  
 

𝑤𝑡
𝑖 = 

𝑊𝑡
𝑖

∑ 𝑊𝑡
𝑗𝑁𝑝

𝑗=1

 

 
 Evaluate 𝑁̂𝑒𝑓𝑓 

 If  𝑁̂𝑒𝑓𝑓  ≤ 𝑁𝑇𝐻𝑅  resample particles {𝑧𝑡+1
𝑖 }

𝑖=1

𝑁𝑝 = {𝑥𝑡+1
𝑖 , 𝑟𝑡+1

𝑖 }
𝑖=1

𝑁𝑝  and reset weights 

according to Algorithm 2 
Compute state MMSE (or substitute with MAP if desired) estimate and posterior mode 

probabilities:  

 𝑥̂𝜑𝑘|𝑡
𝑀𝑀𝑆𝐸 = ∑ 𝑤𝑡

(𝑖,𝑘)𝑁𝑝

𝑖=1
𝑥𝑡

(𝑖,𝑘)
    

 𝑟̂𝜑𝑘|𝑡
𝑀𝑀𝑆𝐸 = ∑ 𝑤𝑡

(𝑖,𝑘)𝑁𝑝

𝑖=1
𝑟𝑡
(𝑖,𝑘)

 

3. Compute posterior class probabilities and combined state estimate:  

 For𝜑𝑘, 𝑘 = 1, 2, …𝑚 evaluate class posteriors according to (3.26) as  
 

𝑃(𝜑𝑘|𝑡|𝑦0:𝑡) =  
Γ(𝜑𝑘)𝑃(𝜑𝑘|𝑡−1|𝑦0:𝑡−1)

∑ Γ(𝜑𝑘)𝑃(𝜑𝑘|𝑡−1|𝑦0:𝑡−1)𝜑𝑘 ∈ Φ
 

 
 Evaluate combined state estimate:  

 

𝑥̂𝑡 = ∑ 𝑃(𝜑
𝑘
|𝑦

0:𝑡
) ⋅ 𝑥̂𝜑𝑘|𝑡

𝜑𝑘 ∈ Φ

 

 
4. Set  𝑡 ⟼ 𝑡 + 1 go back to step 2.  

 

OUTPUTS: {𝑃(𝜑𝑘|𝑡|𝑦0:𝑡), 𝑥̂𝑡}𝑘=1

𝑚
 for 𝑡 = 1, … , 𝑁 

 

 

 



 

 

 

 

4 System Modeling and Data 

Fusion 
 

 

 

 

We now turn our attention to explicit system modeling for target tracking and the 

incorporation of data fusion techniques. Sections 4.1 and 4.2 introduce some kinematic 

motion models to describe target motion, and measurement models, respectively for remote 

sensing applications. We build upon this in section 4.3 by tackling the multi-sensor problem 

showing how to process measurements from multiple sensors sequentially.   

 

4.1 Dynamic and Measurement models  

In dynamic target tracking, the choice of models can drastically alter the performance of 

tracking systems, and their importance cannot be stressed enough. The goal of target tracking 

is to extract information about the state of an object from available measurements or 

observations. 

 

Here we will introduce two-dimensional kinematic motion models. These class of models 

generally fall into two categories: maneuver and nonmaneuver models. There are a vast 

number of motion models developed over the years such as constant velocity (CV), and 

coordinated turn (CT), and variable turn models to name a few. The models presented here 

are the discrete-time equivalents of their continuous time versions. For a more thorough and 

complete treatment of these kinematic motions, the reader is referred to [7] and [99].   

 

It will be assumed that the state of an object will be described by the state vector at time 𝑡 as 

𝑥𝑡 = [𝑥𝑡
𝑐 , 𝑣𝑥𝑘, 𝑦𝑡

𝑐, 𝑣𝑦𝑘]′ , where (𝑥𝑡
𝑐 , 𝑦𝑡

𝑐)′ ∈  ℝ2 are the horizontal and vertical Cartesian 

position coordinates in Euclidian space, and 𝑣𝑥𝑡 = 𝑥𝑡
𝑐̇ and 𝑣𝑦𝑡 = 𝑦𝑡

𝑐̇ are the corresponding 

velocities in each direction. We assume each state variable is a member of state space of the 

system 𝑥𝑡  ∈  𝒳 ⊆  ℝ4 and evolves according to the mode dependent Markov transition 

density 𝑝𝜃(𝑥𝑡+1|𝑥𝑡, 𝑟𝑡+1). 

 

The exact description of target motion is never truly known, and therefore some uncertainty is 

always present due to model inaccuracy and external factors such as turbulence. Furthermore, 

in most target tracking applications, the dynamic state of real targets to be estimated is poorly 

described by a single kinematic model [89]; multiple model descriptions of target dynamics 

are desirable in these situations. 

 

4.1.1 Constant Velocity Models  
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Constant velocity models are a class of nonmaneuver models. This means that the target 

travels at a constant velocity as well as straight and level. The constant velocity model can be 

expressed as  

 

𝑥𝑡+1 = 𝐹𝑐𝑣𝑥𝑡 + 𝑣𝑡 (4.1) 
 

Where 

  

𝐹𝑐𝑣 = 𝑑𝑖𝑎𝑔[𝐹2, 𝐹2], (4.2) 

𝐹𝑐𝑣 = [
1 𝑇
0 1

] (4.3) 

𝑇 is the sampling time and 𝑣𝑡 ∈ ℝ4 is an additive white Gaussian noise (AWGN) process to 

account for uncertainties in the model with covariance matrix  

 

𝑐𝑜𝑣(𝑒𝑡) = 𝑑𝑖𝑎𝑔 [
𝜎𝑥

2

𝑇
⋅ 𝑄2,

𝜎𝑦
2

𝑇
⋅ 𝑄2 ] , (4.4) 

𝑄2 =

[
 
 
 
𝑇4

3

𝑇3

2
𝑇3

2
𝑇2

]
 
 
 

. (4.5) 

where 𝜎𝑥
2 and 𝜎𝑦

2 are the power spectral density (PSD) of the acceleration for each directional 

component.  

      

4.1.2 Coordinated Turn Models  

 

A model that describes an object that performs a constant acceleration is known as a 

coordinated turn model. Let's assume the turn-rate ω is known. Then the CT model with 

known turn-rate can be described as follows  

 

𝑥𝑡+1 = 𝐹𝑐𝑡𝑥𝑡 + 𝑣𝑡 (4.6) 
 

 

where 𝐹𝑐𝑡 is defined as  

 

𝐹𝑐𝑡 = 

[
 
 
 
 
 
 
 1

sin𝜔𝑇

𝜔
0 −

1 − cos𝜔𝑇

𝜔

0 cos𝜔𝑇 0 − sin𝜔𝑇

0
1 − cos𝜔𝑇

𝜔
1

sin𝜔𝑇

𝜔

0 sin(𝜔𝑇) 0 cos𝜔𝑇 ]
 
 
 
 
 
 
 

(4.7) 
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and  𝑣𝑡~ 𝑝𝑣(⋅) is also an additive white Gaussian noise process with covariance (see [99]): 

 

𝑐𝑜𝑣(𝑣𝑡) = 𝜎𝜔
2 ⋅

[
 
 
 
 
 
 
 
 
2(𝜔𝑇 − sin𝜔𝑇)

𝜔3

1 − cos𝜔𝑇

𝜔2
0

𝜔𝑇 − sin𝜔𝑇

𝜔2

1 − cos𝜔𝑇

𝜔2
𝑇 −

𝜔𝑇 − sin𝜔𝑇

𝜔2
0

0 −
𝜔𝑇 − sin(𝜔𝑇)

𝜔2

2(𝜔𝑇 − sin𝜔𝑇

𝜔3

1 − cos𝜔𝑇

𝜔2

𝜔𝑇 − sin𝜔𝑇

𝜔2
0

1 − cos(𝜔𝑇)

𝜔2
𝑇 ]

 
 
 
 
 
 
 
 

(4.8) 

 

 

 

It is important to note that in practice the turn-rate is typically not known. An alternative 

approach would be to assume 𝜔 is unknown and include it as a component of the state vector 

𝑥𝑡. If a multiple model configuration is implemented with a fixed number of turn-rates 

{𝜔1, … , 𝜔𝑛}, then this is referred to as a multiple turn-rate model. 

 

4.2 Radar and Optical Sensor Measurement Models  

 

Since we do not know the actual state of a system but instead a transformed version of them 

we must now define these measurement equations. In the case of remote sensing, specifically 

in radar systems, measurements are usually in polar or spherical coordinates and must be 

transformed to Cartesian coordinates. All of the following models can be extended to three 

dimensions to include elevation, see [100] for more details. The measurement equation is 

defined by a nonlinear mapping function ℎ𝜃: 𝒳 →  ℳ ⊆ ℝ𝑛𝑦  , where ℳ is the measurement 

space, and 𝑛𝑦 is the dimension of the measurements 𝑦𝑡.  

 

 

𝑦𝑡 = [

𝑟𝑡
𝑏𝑡

𝑟̇𝑡

] =  ℎθ(𝑥𝑡) + 𝑒𝑡 = [

ℎ𝑟(𝑥𝑡)

ℎ𝑏(𝑥𝑡)

ℎ𝑑(𝑥𝑡)
]  +   [

𝑒𝑟𝑡

𝑒𝑏𝑡

𝑒𝑑𝑡

] (4.9) 

   
 

where 𝑟𝑡, 𝑏𝑡, 𝑟̇𝑡, are the measured range, bearing, and Doppler-derived range rate respectively 

at time 𝑡, and 𝑒𝑡 ~ 𝑝𝑒(⋅) is a white noise multivariate Gaussian process that characterized the 

measurement noise or error with statistics:  

 

𝑐𝑜𝑣(𝑒𝑡) ≜  𝑅𝑠  = 𝑑𝑖𝑎𝑔(𝜎𝑟
2, 𝜎𝑏

2, 𝜎𝑑
2). (4.10) 

 

Also,      
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ℎθ(𝑥𝑡) = [

ℎ𝑟(𝑥𝑡)

ℎ𝑏(𝑥𝑡)

ℎ𝑑(𝑥𝑡)
]  =  

[
 
 
 
 √(𝑥𝑡

𝑐)2 + (𝑦𝑡
𝑐)2

arctan((𝑦𝑡
𝑐 𝑥𝑡

𝑐⁄ )

(
𝑥𝑡

𝑐⋅𝑣𝑥𝑘+𝑦𝑡
𝑐⋅𝑣𝑦𝑘

√(𝑥𝑡
𝑐)2+(𝑦𝑡

𝑐)2
)
]
 
 
 
 

. (4.11) 

 

Care must be taken to ensure that a four-quadrant arctangent function must be used to avoid 

ambiguities and acquire a proper estimate of the target position. It is also important to note 

that not all sensors use all three kinematic measurements described above. For example, 

optical sensors only provide bearing information, but with much higher accuracy. Long-range 

surveillance radars only measure rage and bearing, and sometimes range rate, but cannot be 

extended to include elevation in 3D models as mentioned earlier [100]. The measurement 

equation at time 𝑡 for an optical sensor therefore takes only the bearing component in 𝑏𝑜𝑝𝑡,𝑡 

and can be expressed as [101]:    

 
𝑦𝑜𝑝𝑡,𝑡 = 𝑏𝑜𝑝𝑡,𝑡 = ℎ𝑜𝑝𝑡,𝜃(𝑥𝑡) + 𝑒𝑜𝑝𝑡,𝑡 (4.12) 

 
ℎ𝑜𝑝𝑡,𝜃(𝑥𝑡) =  arctan((𝑦𝑡

𝑐 𝑥𝑡
𝑐⁄ ) (4.13) 

  

where 𝑒𝑜𝑝𝑡,𝑡~ 𝒩(0, 𝜎𝑜𝑝𝑡
2 ) is also AWGN with the distinction that 𝜎𝑜𝑝𝑡

2 ≪ 𝜎𝑏
2. 

 

4.3  Sensor Data Fusion  

When gathering data from multiple sensors, we must describe what are known as a multi-

source measurement models. First, we will discuss basic assumptions and then specify the 

multi-sensor likelihood functions that will be used to describe the uncertainty in the fused 

data measurements. Suppose we have a total of 𝑠 sensors each with its own sensor tag 𝑗 =
{1,… , 𝑠}, then the multi-sensor measurement space is the disjoint union  

 

𝒴0 = 𝒴
1

0 ⨄…⨄𝒴
𝑠

0 (4.14) 

where 𝒴
𝑗

0 corresponds to measurement space for 𝑗th sensor. In practice for tracking 

applications, the sensors themselves are described by a state vector. If for example, a 

sensor is on an airborne surveillance aircraft or UAV then we could describe the sensor state 

as 𝑥∗ = (𝑥𝑠 , 𝑦𝑠, 𝑣𝑥
𝑠 , 𝑣𝑦

𝑠, 𝜔𝑠, ℓ𝑠, 𝜇, 𝜒). Here (𝑥𝑠, 𝑦𝑠) are the position parameters, (𝑣𝑥
𝑠 , 𝑣𝑦

𝑠) are 

the corresponding velocities, 𝜔𝑠 is the turn radius, ℓ𝑠 is the fuel level, 𝜇 represents the 

sensor’s current mode, and 𝜒 represents the currently selected datalink channel used for 

transmission for the particular sensor.  Now that this has been established, we can define the 

joint state space for all sensors as 

 

𝜉0 = 𝜉
1

0 ⨄…⨄𝜉
𝑠

0  (4.15) 
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where 𝜉
𝑗

0  ∋  𝑥
𝑗
∗ is the state space for the 𝑗𝑡ℎ sensor. In a multi-sensor multi-target system, it is 

common in control theory to regard the evolution of the targets and sensors as a joint 

stochastic process described in an augmented state variable 𝜍 = (𝑥, 𝑥∗) [55]. 

 

Now that basic assumptions have been established, we can explore techniques for processing 

measurement from multiple sensors.  For simplicity, let’s assume we have two sensors that 

generate statistically independent observations 𝑦
1

𝑡  ∈  𝒴
1

0  and 𝑦
2

𝑡  ∈  𝒴
2

0 that have the same 

sampling time. Under the assumptions from the previous section (4.8-4.10) and expanding on 

the notation from 2.5c we can express the corresponding sensor likelihood functions for the 

𝑗𝑡ℎsensor as  𝑝𝜃 (𝑦
𝑗

𝑡|𝑥𝑡)~ 𝒩(ℎ
𝑗

𝜃(𝑥𝑡), 𝑅𝑠,𝑗). Then the process of measurement fusion can be 

done recursively through the Bayesian update equation by processing one measurement and 

then the next:  

 

 𝑝𝜃 (𝑥𝑡+1|𝑌0:𝑡, 𝑦
1

𝑡+1) ∝   𝑝𝜃 (𝑦
1

𝑡+1|𝑥𝑡+1) ⋅  𝑝𝜃(𝑥𝑡+1|𝑌0:𝑡) (4.16𝑎) 

 𝑝𝜃 (𝑥𝑡+1|𝑌0:𝑡, 𝑦
1

𝑡+1, 𝑦
2

𝑡+1) ∝  𝑝𝜃 (𝑦
2

𝑡+1|𝑥𝑡+1) ⋅  𝑝𝜃 (𝑥𝑡+1|𝑌0:𝑡, 𝑦
1

𝑡+1) (4.16𝑏) 

 

Where we have defined 𝑌0:𝑡 = {𝑦
1

0:𝑡, 𝑦
2

0:𝑡} ∈ 𝒴0 to be all the measurements available at time 𝑡 

from both sensors. This process can be repeated for additional sensors.  

 

If the samples are gathered at the exact same time then another way this can be done is by 

updating the state using the joint measurement likelihood: 

 

𝑝𝜃 (𝑦
1

𝑡+1, 𝑦
2

𝑡+1|𝑥𝑡+1) ≜   𝑝𝜃 (𝑦
1

𝑡+1|𝑥𝑡+1) ⋅  𝑝𝜃 (𝑦
2

𝑡+1|𝑥𝑡+1) (4.17) 

 

To see how we can formulate this joint measurement model for our problem, let’s first 

assume that samples from both sensors are gathered at the same time and consider the joint 

measurement model:  

 

(
𝑦
1

𝑡

𝑦
2

𝑡

) =  (
ℎ
1

𝜃(𝑥𝑡)

ℎ
2

𝜃(𝑥𝑡)
) +  (

𝑒
1

𝑡

𝑒
2

𝑡

) (4.18) 

 

  

where we assume that the joint correlation matrix 𝑅𝑠𝑠 of 𝑒
1

𝑡 and 𝑒
2

𝑡 is known. In our case since 

the sensors generate statistically independent variables (this must not always be the case) we 

have 

 

 

𝑅𝑠𝑠 = [
𝑅𝑠,1 0

0 𝑅𝑠,2
] (4.19) 

 

which can be justified by using the mathematics of Gaussians. We can, therefore, express the 

joint measurement update equation as a single multivariate Gaussian as: 
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𝑝𝜃 (𝑦
1

𝑡+1, 𝑦
2

𝑡+1|𝑥𝑡+1) ∽ 𝒩(ℎ𝜃, 𝑅𝑠𝑠) (4.20) 

 

 

where  

 

ℎ𝜃 = (
ℎ
1

𝜃(𝑥𝑡)

ℎ
2

𝜃(𝑥𝑡)
) (4.21) 

 

 

These results can be generalized for situations where more sensors are added (or removed), 

even when they differ in their dimensions or measurement spaces. By repeating the process 

just explained we can express the fused measurement equation for a (finite) number of 

𝑠 sensors as 

 

(

 
 
 

𝑦
1

𝑡

⋮

𝑦
𝑗

𝑡

⋮

𝑦
𝑠

𝑡)

 
 
 

= 

(

 
 
 
 

ℎ
1

𝜃(𝑥𝑡)
⋮

ℎ
𝑗

𝜃(𝑥𝑡)
⋮

ℎ
𝑠

𝜃(𝑥𝑡))

 
 
 
 

+  

(

 
 
 

𝑒
1

𝑡

⋮

𝑒
𝑗

𝑡

⋮

𝑒
𝑠

𝑡)

 
 
 

(4.22) 

 

 

The covariance matrix (4.14) can also be expanded in a similar fashion:   

 

𝑅𝑠𝑠 =

[
 
 
 
 
𝑅𝑠,1𝑠 ⋯ 0 ⋯ 0

⋮ ⋱ 0 0 ⋮
0 0 𝑅𝑠,𝑗 0 0

⋮ 0 0 ⋱ ⋮
0 ⋯ 0 ⋯ 𝑅𝑠,𝑠]

 
 
 
 

(4.23) 

 

 

where we again assume that all sensors have the same sampling time. 

In the simulations to follow we will neglect all elements of the sensor states 𝑥
𝑗
∗except the 

position elements  (𝑥𝑠, 𝑦𝑠) which will be held constant. It is straightforward to generalize the 

algorithms to incorporate all the information contained in each 𝑥
𝑗
∗ as needed. If for example, 

using an airborne radar or on a ship moving across the ocean.  An example of a system where 

these techniques would be required is shown in Figure 4.1 which shows a naval vessel with an 

integrated mast containing multiple heterogeneous sensors.   
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Fig. 4.1. A photo of a Thales integrated mast, seen on top of the naval vessel, containing all major 

radars, sensors, and antennas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

5 Simulations and Results 
 

 

 

 

 

This chapter provides the presentation and discussion of simulations done in MATLAB and 

their results. The purpose of these simulations is to illustrate the capabilities of the work in 

Chapters 3 and 4 to address the three primary objectives of this thesis described in the 

introduction. The first is the effectiveness of the system identification techniques, presented in 

the previous chapter for training JMNLS. The second thing is to show the suitability of these 

JMNLS for the classification of dynamic object behavior while providing modularity. Section  

5.1 will give an example of the learning phase, while section 5.2 gives three examples of joint 

tracking and behavior classification with different sensor configurations. 

 

5.1 Parameter Learning 

In this section, an example will be given to examine and illustrate the capabilities of 

Algorithm 7 for system identification in target tracking. 

 

5.1.1 Computing Closed-Form Maximizers   

In the case of the dynamic motion models defined in the previous chapter, it is possible to 

find closed-form maximizers, and this will aid in speeding up simulations in the next section. 

We will assume that we are only estimating the transition probabilities and the process noise 

parameters since the noise characteristics of a sensor system are typically known in practice. 

Those parameters do not need to be estimated, but an extension to evaluate them is trivial. 

 

Let us now take a special case of (3.1), and find a closed-form maximizer Λ(⋅). Assume that 

the system is of the separable form 

 
              𝑥𝑡+1 = 𝑓𝜃(𝑥𝑡, 𝑟𝑡+1) + 𝑣𝜃,𝑡(𝑟𝑡) (5.1𝑎) 

𝑦𝑡 = ℎ𝜃(𝑥𝑡) + 𝑒𝑡 (5.1𝑏) 
 

where 𝑣𝜃,𝑡(𝑟𝑡)~𝒩(0, 𝑅𝑣(𝑟𝑡)), 𝑓𝜃: ℝ𝑛𝑥 ⟶ ℝ𝑛𝑥,  ℎ𝜃: ℝ𝑛𝑥 ⟶ ℝ𝑛𝑦, and let 𝑟𝑡 ∈  𝒮 =
{1, 2, 3, … , 𝑠}. More specifically, we will assume that the unknown process noise covariance 

matrix 𝑅𝑣(𝑟𝑡) can be expressed in the following form: 

 

𝑅𝑣(𝑟𝑡) =  𝜎(𝑟𝑡)
2 𝑅𝑄 (5.2) 

 

where 𝑅𝑄 ∈ 𝕊+
𝑛𝑥 (symmetric positive semi-definite, 𝑛𝑥 × 𝑛𝑥) and 𝜎(𝑟𝑡)

2  are the individual 

unknown noise variances. The measurement noise distribution 𝑝𝑒(∙) and its parameters are 

assumed to be known, but this need not be the case and the derivations to come can easily be 

generalized to include them as unknowns in a straightforward manner. The set of unknown 

parameters, therefore, contains only the process noise parameters and the TPM, so we have 
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𝜃 = ({𝜃(𝑟𝑡)}𝑟𝑡=1
𝑠 , Π) ⊆ Θ, where in this case 𝜃(𝑟𝑡) = 𝜎(𝑟𝑡)

2 . In the case of this example, it is 

possible to find a closed form maximizer Λ(⋅) since the process noise 𝑣𝜃,𝑡(𝑟𝑡) is Gaussian and 

because only (3.18) is dependent on the transition probabilities 𝜋𝑖𝑗. Lastly, we assume that we 

have prior densities 𝑝𝜃(𝑟1
𝑖)~𝒰(0,1) and the initial state 𝑥0 is fully known.  

 

We proceed by first recognizing that the gradient for Υ1̂ vanishes and does not contribute to 

finding a maximizer since 𝑝𝜃(𝑟1
𝑖)~𝒰(0,1). The argument is similar for why the MLE is equal 

to the MAP estimator with a uniform prior.  The second component Υ2̂ also vanishes since the 

state is fully known (i.e., let 𝑝(𝑥𝑡
𝑖|𝑟𝑡)~𝒩(𝑥0, 0(𝑛𝑥×𝑛𝑥)). 

 

Moving on to the third component, recall that 𝒮 is the set of all modes. We can then find the 

maximizer for the transition probabilities 𝜋̂𝑖𝑗  by solving an equivalent constrained 

optimization problem: 

 

 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑝𝑖𝑗

   ∑∑Ψ𝑖𝑗

𝑗∈𝒮𝑖∈𝒮

log 𝜋𝑖𝑗   

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  ∑𝜋𝑖𝑗 = 1,

𝑗∈

  ∀𝑖 ∈ 𝒮 (5.3) 

                       𝜋𝑖𝑗 ≥ 0, ∀(𝑖, 𝑗) ∈ 𝒮 × 𝒮 

with  

Ψ𝑖𝑗 = ∑ ∑ ∑ 𝑤𝑡|𝑁
𝑘𝑙

𝑁𝑝

𝑙=1 

𝑁𝑝

𝑘=1

𝑁−1

𝑡=1

𝟙(𝑟𝑡
𝑘 = 𝑗)𝟙(𝑟𝑡

𝑙 = 𝑖) (5.4) 

 

It can be shown that if Ψ𝑖𝑗 ∈ ℝ+ ∀(𝑖, 𝑗) ∈ (𝒮 × 𝒮) then  

 

𝜋̂𝑖𝑗 = 
Ψ𝑖𝑗

∑ Ψ𝑖𝑘𝑘∈𝒮
, ∀(𝑖, 𝑗) ∈ (𝒮 × 𝒮) (5.5) 

 

is a maximizer for (5.3). This is the usual maximizer for HMMs [78]. The proof is included in 

Appendix C for completeness.   

 

For calculating Υ4̂  will make use of the following two identities in the following derivations 

(see [47]). Suppose 𝜙 ∈  ℝ𝑝 and A(𝜙) ∈  ℝ𝑛×𝑛, then   

 

𝜕

𝜕𝜙𝑘
log det [ Α(𝜙)] = 𝑡𝑟𝑎𝑐𝑒 (Α−1(𝜙)

𝜕

𝜕𝜙𝑘
Α(𝜙)) (5.6) 
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and  

𝜕

𝜕𝜙𝑘
Α−1(𝜙) =  −Α−1(𝜙) 

𝜕

𝜕𝜙𝑘
Α(𝜙)Α−1(𝜙). (5.7) 

 

Where we define 𝜕Α−1(𝜙)/𝜕𝜙𝑘 ∈  ℝ𝑛×𝑛  as the matrix with element [𝑖, 𝑗] as 𝜕[Α−1(𝜙)]𝑖𝑗/

𝜕𝜙𝑘. Also to simplify the notation, we will let 𝟙𝑟𝑡(𝑟𝑡+1
𝑗

) =  𝟙(𝑟𝑡+1
𝑗

= 𝑟𝑡) for some  𝑟𝑡 ∈  𝒮.  

 

The fourth component Υ4̂ deals with finding the process noise parameters, since we have a 

Gaussian Markov transition density 𝑝𝜃 where we have assumed the process noise parameters 

𝜃(𝑟𝑡) = 𝜎𝑟𝑡
2  are unknown. By construction, we have  

𝑝𝜃(𝑥𝑡+1
𝑗

|𝑥𝑡
𝑖, 𝑟𝑡+1

𝑗
) ~ 𝒩(𝑓𝜃(𝑥𝑡

𝑖 , 𝑟𝑡+1
𝑗

), 𝑅𝑣(𝑟𝑡+1
𝑗

)), so we can evaluate (3.17d) explicitly: 

 

    

∇𝜃Υ4̂ = ∑ ∑ ∑ 𝑤𝑡|𝑁
𝑖𝑗

𝑁𝑝

𝑗=1 

𝑁𝑝

𝑖=1

𝑁−1

𝑡=1

 

∙  
𝜕

𝜕𝜃

[
 
 
 
 

log

exp (−
1
2 (𝑥𝑡+1

𝑗
− 𝑓𝜃(𝑥𝑡

𝑖 , 𝑟𝑡+1
𝑗

))
𝑇

𝑅𝑣
−1(𝑟𝑡+1

𝑗
) (𝑥𝑡+1

𝑗
− 𝑓𝜃(𝑥𝑡

𝑖 , 𝑟𝑡+1
𝑗

)))

√(2𝜋)𝑛𝑥 det 𝑅𝑣(𝑟𝑡+1
𝑗

)
]
 
 
 
 

 (5.8) 

 

Each component of the gradient can be computed individually. To make the calculations 

easier, we exploit the structure of the covariance matrix (5.2) and factor out the noise 

parameter and maximize (3.17d) directly for each mode 𝑟𝑡 ∈  𝒮: 

 

 

 

∇𝜃Υ4̂  = ∑ ∑ ∑ 𝑤𝑡|𝑁
𝑖𝑗

𝑁𝑝

𝑗=1 

𝟙𝑟𝑡(𝑟𝑡+1
𝑗

)

𝑁𝑝

𝑖=1

𝜕

𝜕𝜎𝑟𝑡
2

𝑁−1

𝑡=1

[(−
1

2
𝜎(𝑥𝑡+1

𝑗
− 𝑓𝜃(𝑥𝑡

𝑖 , 𝑟𝑡+1
𝑗

))
𝑇
𝑅𝑣

−1(𝑟𝑡+1
𝑗

) 

                                     ∙ 𝑅𝑣
−1(𝑟𝑡+1

𝑗
)(𝑥𝑡+1

𝑗
− 𝑓𝜃(𝑥𝑡

𝑖 , 𝑟𝑡+1
𝑗

)) 

                                  − log√(2𝜋)𝑛𝑥  det(𝑅𝑣(𝑟𝑡+1
𝑗

))] 

= ∑ ∑ ∑ 𝑤𝑡|𝑁
𝑖𝑗

𝑁𝑝

𝑗=1 

𝟙𝑟𝑡(𝑟𝑡+1
𝑗

)

𝑁𝑝

𝑖=1

𝜕

𝜕𝜎𝑟𝑡
2

𝑁−1

𝑡=1

[−
1

2
(𝑥𝑡+1

𝑗
− 𝑓𝜃(𝑥𝑡

𝑖 , 𝑟𝑡+1
𝑗

))
𝑇
 

                          ∙ 𝑅𝑣
−1(𝑟𝑡+1

𝑗
)(𝑥𝑡+1

𝑗
− 𝑓𝜃(𝑥𝑡

𝑖 , 𝑟𝑡+1
𝑗

)) 
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                       − 
1

2
 (log(det 𝑅𝑣(𝑟𝑡+1

𝑗
)) − log(2𝜋)

𝑛𝑥
2 )] 

= ∑ ∑ ∑ 𝑤𝑡|𝑁
𝑖𝑗

𝑁𝑝

𝑗=1 

𝟙𝑟𝑡(𝑟𝑡+1
𝑗

)

𝑁𝑝

𝑖=1

𝑁−1

𝑡=1

[−
1

2
(𝑥𝑡+1

𝑗
− 𝑓𝜃(𝑥𝑡

𝑖 , 𝑟𝑡+1
𝑗

))
𝑇

 

                       ∙
𝜕

𝜕𝜎𝑟𝑡

𝑅𝑣
−1(𝑟𝑡+1

𝑗
)(𝑥𝑡+1

𝑗
− 𝑓𝜃(𝑥𝑡

𝑖, 𝑟𝑡+1
𝑗

)) 

                       − 
1

2
 

𝜕

𝜕𝜎𝑟𝑡
2

(log(det 𝑅𝑣(𝑟𝑡+1
𝑗

)))] 

= ∑ ∑ ∑ 𝑤𝑡|𝑁
𝑖𝑗

𝑁𝑝

𝑗=1 

𝟙𝑟𝑡(𝑟𝑡+1
𝑗

)

𝑁𝑝

𝑖=1

𝑁−1

𝑡=1

[
1

2
(𝑥𝑡+1

𝑗
− 𝑓𝜃(𝑥𝑡

𝑖, 𝑟𝑡+1
𝑗

))
𝑇
𝑅𝑣

−1(𝑟𝑡+1) 

                       ∙
𝜕

𝜕𝜎𝑟𝑡
2
𝑅𝑣(𝑟𝑡+1

𝑗
)𝑅𝑣

−1(𝑟𝑡+1
𝑗

)(𝑥𝑡+1
𝑗

− 𝑓𝜃(𝑥𝑡
𝑖 , 𝑟𝑡+1

𝑗
)) 

                       − 
1

2
𝑡𝑟𝑎𝑐𝑒 (𝑅𝑣

−1(𝑟𝑡+1
𝑗

)
𝜕

𝜕𝜎𝑟𝑡
2
𝑅𝑣(𝑟𝑡+1

𝑗
))] 

= ∑ ∑ ∑ 𝑤𝑡|𝑁
𝑖𝑗

𝑁𝑝

𝑗=1 

𝟙𝑟𝑡(𝑟𝑡+1
𝑗

)

𝑁𝑝

𝑖=1

𝑁−1

𝑡=1

 

                             ∙ [
1

2
(𝑥𝑡+1

𝑗
− 𝑓𝜃(𝑥𝑡

𝑖 , 𝑟𝑡+1
𝑗

))
𝑇

𝑅𝑣
−1(𝑟𝑡+1

𝑗
)𝑅𝑄𝑅𝑣

−1(𝑟𝑡+1
𝑗

) 

                            ∙ (𝑥𝑡+1
𝑗

− 𝑓𝜃(𝑥𝑡
𝑖 , 𝑟𝑡+1

𝑗
)) − 

1

2
𝑡𝑟𝑎𝑐𝑒(𝑅𝑣

−1(𝑟𝑡+1
𝑗

)𝑅𝑄)] 

= ∑ ∑ ∑ 𝑤𝑡|𝑁
𝑖𝑗

𝑁𝑝

𝑗=1 

𝟙𝑟𝑡(𝑟𝑡+1
𝑗

)

𝑁𝑝

𝑖=1

𝑁−1

𝑡=1

 

                          ∙ [
1

2
(𝑥𝑡+1

𝑗
− 𝑓𝜃(𝑥𝑡

𝑖 , 𝑟𝑡+1
𝑗

))
𝑇 1

𝜎𝑟𝑡
4
𝑅𝑄

−1𝑅𝑄𝑅𝑄
−1 
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Where 𝐼(𝑛) is the 𝑛 × 𝑛 identity matrix and have used identities (5.1) and (5.2) in the last two 

steps. Now by setting (5.10) equal to 0 and rearranging terms we arrive at a maximizer for 

𝜎𝑟𝑡
2 :  

 

𝜎𝑟𝑡
2  =

∑ ∑ ∑ 𝑤𝑡|𝑁
𝑖𝑗𝑁𝑝

𝑗=1 
𝟙𝑟𝑡(𝑟𝑡+1

𝑗
)

𝑁𝑝

𝑖=1
𝑁−1
𝑡=1 [(𝑥𝑡+1

𝑗
− 𝑓𝜃(𝑥𝑡

𝑖 , 𝑟𝑡+1
𝑗

))
𝑇
𝑅𝑄

−1(𝑥𝑡+1
𝑗

− 𝑓𝜃(𝑥𝑡
𝑖 , 𝑟𝑡+1

𝑗
))]

𝑛𝑥 ⋅ ∑ ∑ ∑ 𝑤𝑡|𝑁
𝑖𝑗𝑁𝑝

𝑗=1 
𝟙𝑟𝑡(𝑟𝑡+1

𝑗
)

𝑁𝑝

𝑖=1
𝑁−1
𝑡=1

.     (5.10) 

 

These closed-form maximizer Λ(⋅), composed of (5.5) and (5.10) will be used in the 

simulation to follow.  

 

 

5.1.2 Example 1: Training a Zig-Zag 

Now an example will be presented to examine training step provided by Algorithm 7.  

Due to constraints in computational power and memory, a linear measurement model 𝑦𝑡 =

𝑥𝑡 + 𝜉𝑡  where 𝜉𝑡 ~ 𝒩(0, Ξ), where Ξ = 𝑑𝑖𝑎𝑔(𝜎𝑥𝑥
2 , 𝜎𝑣𝑥

2 , 𝜎𝑦𝑦
2 , 𝜎𝑣𝑦

2 ) will be used to for the 

training step. This relaxes the number of particles needed by reducing the variance for 

accurate parameter estimation, as opposed to using the measurement models of the previous 

chapter which are highly nonlinear. 

 

For simplicity, assume the target is performing a “zig-zag” trajectory—the target will begin in 

a straight pattern and alternate between the three modes creating the pattern in figure 5.1.  The 

first mode will correspond to a constant velocity model. The CT models to describe left and 

right turns with known turn rates will be represented by the second and third modes 

respectively. We assume that the system is coupled in the x and y directions for the CV model 

so 𝜎𝑥
2 = 𝜎𝑦

2. These assumptions are summarized in Table 5.1.  

 

 

 

 

 

                            ∙ (𝑥𝑡+1
𝑗

− 𝑓𝜃(𝑥𝑡
𝑖 , 𝑟𝑡+1

𝑗
)) 

1

2
𝑡𝑟𝑎𝑐𝑒 (

1

𝜎𝑟𝑡
2
𝐼(𝑛𝑥))] 

= ∑ ∑ ∑ 𝑤𝑡|𝑁
𝑖𝑗

𝑁𝑝

𝑗=1 

𝟙𝑟𝑡(𝑟𝑡+1
𝑗

)

𝑁𝑝

𝑖=1

𝑁−1

𝑡=1

 

 

                  ∙ [
1

2
(𝑥𝑡+1

𝑗
− 𝑓𝜃(𝑥𝑡

𝑖 , 𝑟𝑡+1
𝑗

))
𝑇 1

𝜎𝑟𝑡
4
𝑅𝑄

−1(𝑥𝑡+1
𝑗

− 𝑓𝜃(𝑥𝑡
𝑖 , 𝑟𝑡+1

𝑗
)) − 

𝑛𝑥

2
𝜎𝑟𝑡

−2]. (5.9) 
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Table 5.1. Mode assignments 

Mode 

𝑟𝑡 ∈ 𝒮 = {1,2,3} 
Model  Turn rate (rad/s)  Process noise (𝑚 𝑠2⁄ ) 

 

𝑟𝑡 = 1  CV 0 𝜎1
2 

𝑟𝑡 = 2 CT 𝜔𝐿 𝜎2
2 

𝑟𝑡 = 3 CT 𝜔𝑅 𝜎3
2 

 

 

 

 

 (a)  zig-zag trajectory with particle clouds                                 (b)  smoothed mode estimates   

Fig. 5.1. Trajectory and modes for parameter learning example 

In the simulations to follow the closed form maximizers derived in the previous section will 

be used for the M-step of the EM algorithm. For this simulation, a total of  𝑁𝑝 =

350 particles were used. The measurement noise was set to Ξ =
𝑑𝑖𝑎𝑔(3𝑚 𝑠⁄ , 2 𝑚 𝑠2⁄ , 5 𝑚 𝑠⁄ , 2𝑚 𝑠2⁄ ). The initial guesses for the true estimates were 

chosen to be farther than 50% away from the true value, and are listed in table 5.2 and table 

5.3 at the end of this section along with the estimated results. For illustration purposes, the 

stopping criterion is not used in this example to show the convergence behavior of the EM 

algorithm. 

 

Below in Figure 5.2 the results for the process noise estimates can be seen. It can be seen that 

estimates get quite close to the true value parameter values for both CT after 20 EM 

iterations. For the CV model, it takes longer, getting closer to the true value around 80 

iterations. Once the estimated value of 𝒬̂(𝜃, 𝜃𝑘) gets close enough to the true value, the 

estimates start to hover around while fluctuating. The reason for this fluctuation is due to the 

sampling nature of SMC methods (particle filters). Since we are approximating 𝒬(𝜃, 𝜃𝑘), 

convergence to the true maximum is not feasible unless we let 𝑁𝑝 → ∞. Since an 

approximation of is being calculated using SMC methods, this means the estimates 𝜃𝑘 can 

also be seen as a stochastic process, and there is no guarantee that the new estimate will lead 

to a local increase in approximate complete data log-likelihood 𝒬(𝜃, 𝜃𝑘)  for every iteration. 

Only if the exact value of 𝒬(𝜃, 𝜃𝑘) can be calculated will the EM algorithm be guaranteed to 

converge to a local maximum [42]. Since every EM iteration new samples are generated, so is 
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a new estimate with the variance dependent on the type of SMC method employed. The error 

of these estimates is limited by the variance of the approximated expectations (3.14a-3.14e), 

which in turn are dependent on the empirical approximations of the marginal smoothed 

densities in (3.9a-3.9e). As explained in [74] there are a number of factors that control the 

variance of the Monte Carlo estimates. One of them being the choice of importance density. 

Since we did not use the optimal importance density, this already caused a reduction in 

estimation accuracy. 

 

 

Fig. 5.2. Process noise estimates for 100 EM iterations 
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Table 5.2. Process noise estimates and true values (𝑚 𝑠2⁄ ) 

Parameter 𝜎1
2 𝜎2

2 𝜎3
2 

Estimated 3.6443 9.8366 10.6993 

True Value  4 10 10 

 

 

 

The estimated transition probabilities 𝜋𝑖𝑗 can be seen in Figure 5.3. As can be seen, the EM 

algorithm arrived at an accurate estimate quite quickly after just a few iterations. These values 

are quite close to the ground truth, and by careful observation, one can see that they make 

sense intuitively for zig-zag trajectory which can go either straight or turn left or right. 

 

 

 
Fig. 5.3. Estimates of transition probabilities  𝜋𝑖𝑗 for 100 EM iterations. Red line indicates the true 

value and the black curves indicate the numerical approximations 
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Table 5.3: Estimates of transition Probabilities and the true values (ground truth) 

Transition Probabilities 

 𝜋11 
 

𝜋12 
 

𝜋13 
 

𝜋21 
 

𝜋22 
 

𝜋23 
 

𝜋31 
 

𝜋32 
 

𝜋33 
 

True value .95 .0250 .0250 .0323 .9677 0 .0323 0 .9677 

Estimated  .9521 .239 .240 .0355 .9645 0 .0242 0 .9758 

 

 

As a final note in this section, it should be reiterated that although a linear measurement 

model was used, this does not mean the training step cannot be done using a nonlinear 

measurement model. This was in fact tested, but the results were quite inaccurate, using 

anything less than  500 particles. As the number of particles was increased, simulations 

showed estimates closer to their true value, but with limited memory, a cap was reached in 

how many particles could be used. This issue here was the smoother, which requires storing 

all the particles, their weights, and the transition probabilities 𝑝𝜃(𝑥𝑡+1
𝑗

|𝑥𝑡
𝑖 , 𝑟𝑡+1

𝑖 ) that are 

necessary to compute the smoothed weights in both the numerator or denominator of (3.12).  

These values had to be either stored or recomputed, both having negative consequences on 

available memory storage or runtime. An example using a nonlinear measurement model can 

be found in Appendix B for illustration purposes.  

 

5.2 Trajectory Classification   

This section will cover the testing and evaluation of the joint tracking and classification 

algorithm (8) proposed in section 3.4 with three examples. In each example, the tracking of 

the object in motion will be illustrated to give a picture of the trajectory in question. Tracking 

performance is outside the scope of this thesis, and therefore will not be considered further. 

Afterward, the posterior class probabilities, the primary quantity of interest, will be carefully 

considered. In the first two examples, only one sensor will be assumed to be gathering 

measurements, and in the final example, two extra sensors will be added to the system to 

illustrate the ease of modularity without the need for retraining. The added sensors will have 

different noise characteristics, and one of them will be placed at a separate location. 

 

In the work to follow, three classes 𝜑𝑘 of trajectories will be considered. These classes are 

shown in Figure 5.4. Trajectories (a) and (b) are relatively straightforward. Trajectory (c) 

must be studied with caution since this pattern consists of an alternating sequence of turn, 

straight and turn in the opposite direction. It is evident that this same sequence of modes, can 

also create a "figure eight," by increasing the turn rate or the amount of time spent in each 

turning mode. Using similar reasoning, by alternating the turn rate, a "weave" pattern can be 

formed such as those typical of fishing boats continuously sweeping a small area. For the 

work in this thesis, the trajectories have been chosen to be distinct enough that no overlap 

occurs as this would unnecessarily complicate the problem at hand–how to distinguish more 

closely related trajectories will be discussed in Chapter 6. The concept is that there is some 

ambiguity in specific trajectories, and Algorithm 7 will reflect this by estimating similar 

transition probabilities. In the simulations to follow, each model was trained using 350 

particles and running 10 Monte Carlo averages. For the JTC portion, each one of the parallel 

filters will run with 15,000 particles each. The reason for the drastic increase in the number of 
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particles is that filtering performed without smoothing reduces the amount of memory 

required since it is an online process and storing the data is not necessary. The computational 

complexity is also significantly reduced allowing for shorter simulation times. This allowed 

for a more considerable amount of particles to be used in the JTC phase. 

 

 
Fig. 5.4. Graphical representation of the classes of trajectories 

5.2.1 Example 2: Straight Line  

Let us first consider an example where we aim to classify the behavior of an object moving 

with a constant heading such as an airliner (class 1). The trajectory and filter output 

corresponding to class for the correct class and the filtered mode sequences are shown in 

Figure 5.6. Here we assume the target is being tracked by two sensors: one radar and one 

optical sensor (bearing only) placed at the origin. Their noise characteristics are 𝜎𝑟,1
2 =

15 𝑚,  𝜎1,𝑏
2 = 10 𝑚𝑟𝑎𝑑 , 𝜎1,𝑑

2 = 5 𝑚/𝑠 for the radar, and 𝜎𝑜𝑝𝑡
2 = 1 𝑚𝑟𝑎𝑑  for the optical 

sensor. The object is first detected at a distance of approximately 56.5 km away heading 

northeast (away from the radar) at a speed of approximately 885 km/h (550 mph), the typical 

speed of a subsonic airliner at cruising altitude. In this example, the trajectory carried out by 

the airliner is assumed to belong to one of three classes defined in table 5.4. Assume a 

sampling interval of  𝑇 =  .5 𝑠. For simplicity, the initial state is assumed to be fully known, 

and the plane is first detected at 𝑥0 = [40 × 103𝑚, 175 𝑚 𝑠⁄ , 40 × 103𝑚, 175 𝑚 𝑠⁄ ]𝑇 . As a 

reminder, each particle filter will run with 𝑁𝑝 = 15,000 particles (per class). The initial mode 

and class probabilities will both be uniformly distributed so that: 𝑃0(𝜑𝑘)~𝒰(0,1) and  

𝑝𝜃(𝑟0, 𝜑𝑘) ~𝒰(0,1). Lastly, the plane will be constrained to turn rates 𝜔𝐿 = 𝜔𝑅 = .25 𝑟𝑎𝑑/
𝑠.    

 

 
   Table 5.4. Class assignments 𝜑𝑘   

 

 

 
 

 

 

Class (𝑘) 1 2 3 

trajectory straight holding pattern weave or zig-zag 
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Fig. 5.5. Straight constant velocity trajectory 

 

Looking at Figure 5.5, one will notice slight adjustments in heading. This is typical behavior 

of an airliner, as the inaccuracy of avionics, turbulence, crosswinds and other factors such as 

the curvature of the earth do not allow for a constant heading to reach a target destination.  

While in flight, corrections have to be made every so often to ensure a more direct path. 

Therefore, for the straight class 𝜑1, the model was trained using data of trajectories that made 

slight adjustments in heading while maintaining an overall straight path. Another advantage 

of this is that if a model is trained with no turns, then naturally all probabilities of mode 

transitions to left and right turns will be estimated to be zero, or close to it. This could cause 

potential issues depending on the type of particle filter being used especially during mode 

transitions. The lack of sufficient particles could cause all the particles to go into the straight 

mode when a turn is occurring due to the sampling nature of SMC methods.  If few or no 

particles are in the turning modes, then the filter will diverge and fail to track the target. An 

alternative is to use a more efficient particle filter where the particles are fixed in each mode. 

This will be discussed further In Chapter 6. For now, we train the models allowing for 

infrequent small turns to overcome depletion issues typically encountered by the multiple 

model bootstrap filter [102].   
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(a) 

 
(b) 

Fig. 5.6. System outputs for a (nearly) straight trajectory. (a) filtered mode estimates (b) posterior 

class probabilities 

 

By analyzing Figure 5.6 closely, we can see that the classifier initially goes through a period 

of confusion since the object initially begins in a straight line, which could potentially be any 

one of the three classes. As class 1 begins to rise in probability, there is a slight dip with a 

corresponding rise in class 2. This is expected since the first turn is slightly left and looking at 

the filtered modes around the first turn we can see that class two has a precise point estimate 

of nearly 2 (turn left), therefore making it the most accurate class. As more samples are 

processed, the posterior class probability rises steadily to its true class, namely a straight 

trajectory. Another important thing to note is that although both class 3 and class 1 accurately 

estimate the switch to mode three, we see that class 1 reacts more quickly to return to a 

straight trajectory as expected. This occurs because the transition probabilities for staying in a 

turn mode are much higher for zig-zag since it has longer turns. 
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5.2.2 Example 3: Zig-Zag  

 

For further illustration, now consider the behavior of an airliner with the same assumptions, 

but this time let us analyze a zig-zag trajectory, pictured below in Figure 5.7.   

 

 
Fig. 5.7. Zig-zag pattern trajectory 

In this situation, we can now face a similar problem as before where one of the filters can 

diverge. In this situation since we have both left and right turns, the filter for the model 

corresponding to class 2 can be problematic. Since a holding pattern (as we have defined it in 

this work) only turns in one direction (left), the estimated probabilities for turning in the 

opposite direction (right), are either zero or extremely low. If the probability of switching into 

a turn mode is .005 for example, then with 15,000 particles that leaves on average only 75 

particles to cover the mode switching. Again, we increase these probabilities slightly to avoid 

the filter from diverging. This is not an optimal solution, but for these simple “toy” examples, 

it does not have a drastic impact on performance. A better solution will be suggested in 

Chapter 6.  

 

 

The posterior class probabilities and mode estimates are shown in Figure 5.8 below. This time 

we see more a decisive action from the classifier since the zig-zag trajectory is the only class 

that contains sustained right turns (mode 3). Initially starting in a straight heading, all three 

classes have a high probability of being the true class as we can see they all struggle against 

each other. As in the last example when going straight, class one has a higher probability 

since it has the highest weight of staying in mode 1 (𝜋11). As the target approaches the first 

turn, the holding pattern takes the lead as can be seen from the filtered mode estimates, class 1 

and three overshoot the true mode (2), also causing a poor estimate of the true state (see 

trajectory above). One can easily see that on the second turn, class 2 fails to detect the turn, 

and likely had no particles in mode 3 (turn right), choosing instead mode two causing the 

posterior class probability to decline drastically and allowing the true class to take the lead. 

After two turns, we see that the zig-zag is correctly classified permanently with a high degree 
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of accuracy. From this, we could infer that classification performance is directly affected by 

how distinct the classes are from each other.  

 

 
(a) 

 
(b) 

Fig. 5.8. System outputs for a zig-zag pattern trajectory. (a) filtered mode estimates (b) posterior class 

probabilities 

 

5.2.3 Example 4: Holding Pattern With Two Added Sensors 

In this example, a third sensor (radar) is incorporated at a position about one kilometer away 

from the original two sensors for a total of three sensors gathering measurements. The new 

location is contained in the sensor state  𝑥
3

∗ = (200𝑚, 1000𝑚). The noise characteristics for 

this new sensor are 𝜎2,𝑟
2 = 10 𝑚, 𝜎2,𝑏

2 = 5 𝑚𝑟𝑎𝑑 , 𝜎2,𝑑
2 = 3 𝑚/𝑠, for range, bearing and 

Doppler respectively. Notice these parameters are different from those of the first radar 
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sensor. Suppose now that a target is being observed at a distance in a holding pattern as 

shown in Figure 5.9. The same initial conditions from the previous two examples hold here.  

 
Fig. 5.9. Holding Pattern 

As can be seen from Figure 5.9, the object in motion initially undergoes straight motion then 

performs a left turn, and this process repeats a few times so that it stays circling the same 

general area. Therefore we expect the system to classify the trajectory as a holding pattern 

which is indeed the case as shown in Figure 5.10b. The filtered mode estimates are also 

shown for convenience. If we look at the filtered mode sequences, it is easy to see that the 

output sequence from the filter for class two (shown in red) most closely follows the true 

trajectory, which never enters mode three (turn right). A closer look reveals that the mode 

estimates for class two are most accurate when the system is in mode two. This is be 

explained by the fact that during training, the holding patterns received a slightly lower 

probability of staying in straight motion of about .92, while class three had a higher estimated 

probability of about .98. Therefore, when in straight motion the two class probabilities moved 

towards each other, while when turning, they moved away from each other as 

𝑃(𝜑2|𝑡|𝑦0:𝑡) tended to one. Since the target started in straight motion, initially as expected  

𝑃(𝜑1|𝑡|𝑦0:𝑡) was the highest, but shortly tended to zero as the first turn took place, never 

coming back. An important note is that the class probabilities approach zero and are very 

small values but do not equal zero. Due to the recursive nature of (3.26),  once the class 

probabilities are very low, it is difficult for them to rise again and care should be taken to 

address this issue in practice.  

 

 

 

 

 

 

Initial position  
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(a) 

 

 
(b) 

 

Fig. 5.10. System outputs for a holding pattern trajectory. (a) filtered mode estimates (b) class 

posterior probabilities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

6 Conclusions  
 

 

 

 

 

6.1 Summary and Contributions  

A novel method for classifying target behavior based on measurements from multiple sensors 

was proposed here. Put concisely, the purpose of this work was to investigate whether JMS 

were suitable for distinguishing trajectories, which in turn allows us to classify behavior. 

Training of hidden Markov models where the state space is discrete (DHMM) is well 

explored in the literature. As mentioned in Chapter 1, classification based on training of 

DHMMs in not new, and is widely used in many applications dating back to the 1970's. The 

first main contribution of this work can be illustrated through the use of dynamic Bayesian 

networks. The reader unfamiliar with these probabilistic graphical models is referred to [103] 

as an in-depth reference. The methods proposed in this thesis extend the classical methods 

used to train DHMMs shown in figure 6.1(a) to the Bayesian network shown in figure 6.1(b). 

These graphs give a high-level probabilistic representation of the relationship between the 

latent (hidden) variables and the observed data in HMMs. One can immediately see the 

difference by comparing this network to that of figure 6.1(a). The added continuous latent 

variable node in the graphical model called for the simultaneous sequential estimation of both 

the state variables 𝑥𝑡 and the discrete mode 𝑟𝑡 in the hybrid state space. This is in contrast to a 

DHMM where the unobserved process is solely composed of a discrete random variable in a 

finite state space. This problem was addressed via multiple model particle filters and 

smoothers. 

 

 

  
(a) DHMM  

        
            (b) Hybrid system (JMS) 

Fig. 6.1. Bayesian Networks 

 

The second contribution of this thesis is that a novel method for jointly tracking and 

classifying dynamic object behavior using multi-sensor data was developed. It was shown in 
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the previous chapter that trajectories can indeed be recognized using a bank of particle filters, 

each corresponding to a specific class characterized by its unique transition matrix. 

 

The third contribution of this thesis is the proposed solution addresses the requirement that 

the sensor system must be modular, in the sense that adding new sensors to the network 

should not require retraining or changes that deviate greatly from the original design. In the 

simulations, a scenario where two sensors were added, required simply making a slight 

adjustment to the measurement model and processing and did not require another training 

phase. This clearly met the goal of system modularity regarding sensor configuration. 

 

Finally, the last contribution of this work is that simulations were carried out to validate these 

theoretical formulations. The simulations in section 5.1 showed that the techniques for system 

identification proved to be a suitable approach for estimating the parameters of dynamic 

stochastic systems with jumps. The simulations of the JTC scheme in section 5.2 showed 

promising results for classifying targets' special-temporal behavior based trajectory analysis 

from measurements from multiple sensors. In these examples, the proposed JTC scheme, 

using a Bayes classifier, quickly reacted to changes when the target changed its behavior. In 

the last example, simulations showed that the addition of an extra sensor required only the 

processing of additional measurements using a similar measurement model that had different 

noise characteristics. All of this culminates to one crucial point: JMNLS is a suitable class of 

models for trajectory recognition using multi-sensor data. 

 

6.2 Future work and Improvements  

A discussion of potential improvements will be given here. The following observations and 

suggestions can be made naturally by examining the assumptions and results from the 

previous chapter:  

 

 In the simulations, only 3-4 models were used, and many simplifying assumptions 

were made. For starters, the turn rate omega is typically not known in practice and 

should be added to the state vector. 

 The multiple-model bootstrap particle filter implemented is inefficient due to the 

suboptimal proposal distribution. This required a higher number of particles to avoid 

divergence, which drastically increases the number of floating-point operations. One 

approach to combat this issue would be to implement a more efficient particle filter 

which fixes the number of particles in each mode (see, e.g.,  [102]).  Alternatively, one 

can take advantage of the structure of JMNLS proposed in [78], where the authors 

present an online EM algorithm Rao-Blackwellized particle filter to marginalize the 

mode out analytically and reduce estimation error variance.  

 The measurement models used in simulations assumed a constant noise variance. In 

practice, the measurement noise will vary under different conditions. The range 

measurement, for example, will have a higher variance the farther the target is away 

from the radar, and this should be accounted for. The reason for this is that the farther 

away the target is from the radar, the longer the pulsed wave has to travel and the 

lower the received power at the receiver.  This in turn decreases the SNR at the 

receiver, leading to less accurate measurements. In these low SNR environments, a 

track-before-detect scheme could be an alternative solution.  
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 Regarding the random error in the parameter estimates in section 5.1, due to the 

stochastic nature of SMC methods and the approximation of the complete data log-

likelihood 𝒬(𝜃, 𝜃𝑘), it is desirable to investigate a suitable stopping criterion for the 

EM algorithm. Although the stopping criterion chosen in this work was based on the 

work in [55] which showed reasonable performance, it is generally only been shown 

to be effective when 𝒬(𝜃, 𝜃𝑘) can be calculated exactly. This could lead to poor 

performance in practice. Therefore, it is suggested for future work to investigate a 

more optimal stopping criterion (see, e.g., [42] for one such proposal).   

 

Future work to follow could be aimed in many directions. The first one to discuss is 

computational efficiency. Recall one of the primary requirements of this work was to provide 

a solution that required relatively short training times. Here we showed that training JMS did 

not require large amounts of data which in itself can reduce training times, but we cannot 

overlook the fact that smoothing is a computationally expensive process. Therefore, in the 

training phase,  the computation of the smoothed marginal densities, being the main culprit, 

would be the most impactful place to begin looking for improvements. Recall, that the 

FFBSm smoothing algorithm, which eradicates the path degeneracy problem entirely, has a 

convergence rate of 𝒪(𝑁𝑁𝑃
2), can be quite costly as the number of particles increases. One 

might naturally think to replace this smoother with a conventional fixed-lag smoother, but this 

will not perform as well regarding variance reduction. The FFBSi and PaRIS algorithms 

mentioned in 2.7 are two potential candidates. FFBSi having a complexity of 𝒪(𝑁𝑃
2) would 

only have a marginal increase in performance. Following [64], this rate can be reduced to 

𝒪(𝑁𝑃), by employing an accept-reject approach, under the weak assumption that the 

transition kernel is uniformly bounded. The FFBSi although computationally cheaper than the 

FFBSm, comes at the cost of reduced accuracy (higher variance) due to the simulation of 

backward trajectories. The PaRIS algorithm [66] [104] on the other hand was shown to have 

the same complexity 𝒪(𝑁𝑃) and performed as well as the FFBSm, with the advantage of 

being an online fixed-lag algorithm which reduces memory requirements. At the time of this 

writing, the author of this thesis proposed that PaRIS algorithm could be used to estimate the 

required smoothed marginal densities for the calculations of the expectations in the EM 

algorithm. Shortly before the completion of this thesis, it was discovered that authors in [79] 

did just that—they proposed an EM-based recursive ML estimation scheme for NLJMS using 

the PaRIS. The authors published their work during the timeframe of this master’s thesis, 

which is why it was not found earlier. Their results showed near identical performance 

compared to the batch FFBSm smoothers with the exception of the transition probabilities 

which had a slight dependence on the number of backward samples needed.    

 

Another area for potential expansion of this work would be to explore the adoption of semi-

Markov models and stochastic context-free grammars (SCFG). Beginning with the former, 

recall from Chapter 1, a hidden semi-Markov models allow the unobservable process to be 

governed by a Markov renewal process, allowing for an arbitrary sojourn time. By contrast in 

a hidden Markov model, the sojourn time is exponentially distributed by construction. As 

mentioned, this has previously been exploited in [37] in a JTC scheme to classify targets 

based on their maneuverability. This behavior was characterized by the corresponding semi-

Markov model the target was most likely to be following. Using this more general class of 

models for trajectory analysis could bring for some promising results since semi-Markov 

models have a more descriptive representation of the real underlying process.  
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Lastly, SCFGs were considered by the author as a potential direction for future work. One 

main advantage of SCFGs is that they can model more complex trajectories and they have a 

higher predictive capacity than HMMs. The latter is measured by a reduction in entropy (see 

Appendix C). The authors in [104] form a generalization where a multiple model particle 

filter can be used with SCFGs. Their aim in their paper is also the classify anomalous 

trajectories to aid a human operator, and they present two examples in radar tracking. They 

also improve their classification performance by combining SCFGs with a reciprocal Markov 

process (RP) model. The latter of which performed rather poorly on its own. There was even 

a mentioned of possibly using these methods on a network of sensors. The author of this 

thesis was not aware of this publication until nearing the end of this writing; hence this work 

was not mentioned in the related work section in Chapter 1. 
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Appendix A 
Analysis of Sequential Monte 

Carlo Approximations  
 
 

The Kalman filter is one of the most widely used algorithms for state estimation in target 

tracking, data fusion, control theory, econometrics, aerospace, and telecommunications to 

name a few. Examples include tracking moving targets in aerospace applications, to the 

dynamic estimation of hedging ratios between two equities which is common in many 

statistical arbitrage strategies in finance. In this section, we will show the reader that the 

particle filter, can provide close to optimal results if enough particles are used. These 

examples will show the correctness of the implementation of the SIR particle filter used in all 

the simulations of this thesis.   

  

 

A closed form solution for a state space model only exists when either the system is linear and 

Gaussian, or when the state space of the hidden Markov chain is finite. Consider a Gaussian 

DLM where the future state for time 𝑡 ∈ {1, … , 𝑛} is described by 

 

     𝑥𝑡+1 = 𝛷𝑥𝑡 + 𝑣𝑡 (A. 1a) 
𝑦𝑡 = 𝐴𝑥𝑡 + 𝑒𝑡. (A. 1b) 

 

The Kalman filter aims at producing a sequence of state estimates and an associated error 

covariance estimates. In the case of a Gaussian DLM where the dynamic and measurement 

models accurately describe the system, the Kalman filter is the optimal Bayesian estimator in 

the mean square sense [51]. Furthermore, it has other optimal properties such as the fact that 

it is an MVU estimator. As an alternative view, it can also be seen and derived as a recursive 

least squares estimator. All of these properties make it a great candidate to use as a reference 

to measure the accuracy of the particle filter performance. The following notation will be used 

in the rest of this section: 

 

𝑥𝑡
𝑠 =  𝔼[𝑥𝑡|𝑦0:𝑠] (A. 2) 

 

𝑃𝑡
𝑠 =  𝔼[(𝑥𝑡 − 𝑥𝑡

𝑠)(𝑥𝑡 − 𝑥𝑡
𝑠)𝑇] (A. 3) 

  

Assume that 𝑣𝑡  ~ 𝒩(0, 𝑄), 𝑒𝑡 ~ 𝒩(0, 𝑅), and initial conditions  𝑥0
0 = 𝜇0 and 𝑃0

0 = Σ0. 

Then the Kalman equations for 𝑡 = {1,… , 𝑛} are  

 

𝑥𝑡
𝑡−1 =  Φ𝑥𝑡−1

𝑡−1 (A. 4)
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𝑃𝑡
𝑡−1 =  Φ𝑃𝑡−1

𝑡−1Φ′ + 𝑄 (A. 5) 

𝑥𝑡
𝑡 = 𝑥𝑡

𝑡−1 + 𝐾𝑡(𝑦𝑡 − 𝐴𝑡𝑥𝑡
𝑡−1) (A. 6) 

𝑃𝑡
𝑡 = [𝐼 − 𝐾𝑡𝐴𝑡]𝑃𝑡

𝑡−1 (A. 7) 

𝐾𝑡 = 𝑃𝑡
𝑡−1𝐴𝑡

′ [𝐴𝑡𝑃𝑡
𝑡−1𝐴𝑡

′ + 𝑅]−1 (A. 8) 

Together, (A.4) and (A.5) are the prediction stage, since they forecast the future state and 

associated covariance matrix before the measurements are received. The update stage is 

comprised of the state update (A.6) and covariance update (A.7) once the new measurements 

are received, where 𝐾𝑡 is called the Kalman gain matrix. We also include the innovations 

(prediction error) and the corresponding innovation-covariance matrices    

 

𝜖𝑡 = 𝑦𝑡 − 𝔼[𝑦𝑡|𝑌0:𝑡−1] =  𝑦𝑡 − 𝐴𝑡𝑥𝑡
𝑡−1  (A. 9) 

Σ𝑡  ≜  𝑣𝑎𝑟(𝜖𝑡) = 𝑣𝑎𝑟[𝐴𝑡(𝑥𝑡 − 𝑥𝑡
𝑡−1) + 𝑣𝑡] = 𝐴𝑡𝑃𝑡

𝑡−1𝐴𝑡
′ + 𝑅 (A. 10) 

 

for 𝑡 = 1,… , 𝑛. It is important to note that the equations in this section will still hold for the 

time-varying case where the system matrices and covariance matrices are all time dependent, 

provided the appropriate substitutions are made, see [45] for more details.  

 

The Kalman filter can also be extended for smoothing [51] by the following equations for 𝑡 =
{𝑛, 𝑛 − 1,… ,1}: 
 

𝑥𝑡−1
𝑛 = 𝑥𝑡−1

𝑡−1 + 𝐽𝑡−1(𝑥𝑡
𝑛 − 𝑥𝑡

𝑡−1) (A. 11) 

          𝑃𝑡−1
𝑛 = 𝑃𝑡−1

𝑡−1 + 𝐽𝑡−1(𝑃𝑡
𝑛 − 𝑃𝑡

𝑡−1) 𝐽𝑡−1
𝑇 (A. 12) 

where,  

𝐽𝑡−1 = 𝑐𝑜𝑣(𝑥𝑡−1, 𝑥𝑡 − 𝑥𝑡−1
𝑛 )[𝑃𝑡

𝑡−1]−1 

= 𝑃𝑡−1
𝑡−1ΦT[𝑃𝑡

𝑡−1]−1 (A. 13) 

 

Example A.1 

In this example, a comparison of the performance of the Kalman optimal state estimator 

against the boothstrap particle filter on a coordinated turn model for 100 and 500 particles 𝑁𝑝 

will be examined. Resampling will be done every time step. A sampling period of 𝑇 = .5 𝑠 

will be used. Suppose that in this example we are trying to track a speedboat under the 

presence of sea clutter moving in circles at about 140 km/h with a turn-rate of 𝜔 =
 .20 𝑟𝑎𝑑/𝑠. The process noise variance for the coordinated turn model is 𝜎𝜔

2 = 7. The 

measurement noise for the linear model was set to Ξ =
𝑑𝑖𝑎𝑔(3𝑚 𝑠⁄ , 3 𝑚 𝑠2⁄ , 3 𝑚 𝑠⁄ , 3𝑚 𝑠2⁄ ). The object is first detected at a distance of 

approximately 2.8 km away heading northeast. The sensor tracking the object is assumed to 
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be on a vessel at the origin. Below in Figure A.1, we can see the trajectory and particle 

clouds. 

 

 

 
Fig.  A.1. Trajectory of speed boat going in circular motion with particle clouds. 

 

 

Now if zooming in to a small area and plot the variance of both the Kalman and Particle state 

estimators, it will give a good picture of how they compare. For the following simulations, an 

MMSE estimator was used to approximate the state. In Figure A.2 we see the variance of both 

the Kalman filter and smoother. As expected the smoother (seen in green) has a much smaller 

variance, and the smoothed state estimate is much closer to the true value. 
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Fig.  A.2.  Kalman filter variance plots. 

 

 

Now in Figure A.3, we can see a similar plot showing the results for a particle filter running 

with only 100 particles on the same data. Here it is evident that the covariance ellipses are 

skewed or tilted, especially the ones for the smoothed data. Also on some of the state 

estimates, neither the filtered nor the smoothed variances cover the true state. The smoothed 

estimate is still more accurate than the filtered estimate but it's variance does not cover the 

true state. These observations are due to particle depletion issues. There are just not enough 

particles to cover the true posterior leading to a poor estimate. 
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Fig. A.3.  Particle filter and smoother variance plots using 100 particles.   

 

If we increase the number of particles to 500, we can see below in Figure A.4 that we get a 

much better result. Now both the filtered and smoothed variances cover the actual state. The 

results look quite similar to those of the Kalman filter. 

 

 

 
Fig. A.4.  Particle filter and smoother variance plots using 500 particles. 

Now we turn to the root mean square error (RMSE) to quantify performance and obtain a 

clear metric as opposed to visually inspecting. Beginning with the RMSE for each time step 𝑡:  
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𝑅𝑀𝑆𝐸(𝑡) =  √
1

𝑁𝑚𝑐
∑  (𝑥̂𝑡

𝑗
− 𝑥𝑡

𝑗
)
2
 

𝑇

𝑡=1

(A. 14) 

 

where 𝑁𝑀𝐶 is the number of Monte Carlo runs, and 𝑥̂𝑡
𝑗
 and 𝑥𝑡

𝑗
 are the estimated and true states 

respectively. We can plot the error at ever time step as seen in Figure A.5. For this simulation, 

500 particles were used. A close look will reveal that performance is as expected, with the 

Kalman filter performing the best, and the particle filter giving the highest RMSE on most 

samples.    

 

 
Fig. A.5.  RMSE for all filters at each times step. 

 

As a last test, we define the total RMSE [41] as:  

 

 

𝑅𝑀𝑆𝐸𝑡𝑜𝑡𝑎𝑙 = √
1

𝑇
∑

1

𝑁𝑚𝑐
∑(𝑥̂𝑡

𝑗
− 𝑥𝑡

𝑗
)
2

𝑁𝑚𝑐

𝑗=1

𝑁

𝑡=1

(A. 15) 

 

This is a measure of the overall RMSE for the entire data set. Blow in Figure A.6 we can see 

the results for a varying number of particles starting from 50 all the way to 500 in increments 

of 50 particles.  The Kalman filter and smoother results are plotted for reference. Here 25 MC 

runs were executed. It is evident that as the number of particles increased, the SMC 

approximations converge towards the optimal (Kalman) estimates for both the filter and 

smoother. 
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Fig. A.6. Total RMSE using 25 Monte Carlos runs for the particle filter and smoother. The Kalman 

filter and smoother are shown for comparison.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Appendix B 
Additional Simulations and 

Results  
 

 
 

In this section, we present the results of a parameter learning example using a nonlinear 

measurement model. We will repeat the example in section 5.2 for a zig-zag trajectory but 

instead, use and process data from three sensors. The nosie characteristics and the sensor 

states (positions) 𝑥
𝑗
∗ = (𝑥𝑠 , 𝑦𝑠) for each sensor are listed in Table B.1. For this simulation, 

600 particles were used. We repeat the same example as in section 5.1 and assume the same 

dynamic models and process nose parameters are used. 

 
Table 6.1. Sensor parameters  

Sensor  Range (m) Doppler (m/s) Bearing (mrad)  𝑥∗ (m) 

1 (Radar) 15 5 10 (0,0) 

2 (Radar) 10 3 5 (200,1000) 
3 (Optical)  N/A N/A 1 (0,0) 

  

 

 
Fig. B.1. Zig-zag trajectory tracking by particle filter with particle clouds shown.
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In Figure B.1 we can see already that some of the particles deviate from the real trajectory, 

already giving a hint that the state estimates are not as accurate. Below in figure B.2, we can 

see the process noise parameters perform moderately well with slightly less accuracy on the 

CV model noise. It is essential to keep in mind that an additional 250 particles had to be used 

to achieve similar accuracy. This drastically increased the amount of memory needed for the 

smoothing recursions and the use of additional particles resulted in MALAB running out of 

storage on a computer with 8GB of RAM. 

 
Fig. B.2. Process noise estimates for 80 EM iterations using nonlinear measurement model and three 

sensors. 

 

The estimates of the transition probabilities seen in figure B.3 are also on par with the 

simulations from section 5.1 except with a higher variance. Is should now be clear that 

Algorithm 7 is capable of estimating systems parameters with nonlinear measurement models. 

The limitations here are due to the reasons discussed in Chapter 6 involving a suboptimal 

particle filter. 
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Fig. B.3. Estimates of transition probabilities for 80 EM iterations using nonlinear measurement model 

and three sensors. 

 



 

 

Appendix C 
Proofs  

 
C.1 Multiple Model fixed-interval FFBSm  
 

Recall that the goal of SMC smoothing using the FFBSm algorithm in the case of hybrid 

systems is to obtain an approximation of the marginal posterior density 

 

𝑝𝜃(𝑥𝑡, 𝑟𝑡|𝑦0:𝑁) ≈ 𝑝̂
𝜃

𝑁𝑝(𝑥𝑡 , 𝑟𝑡|𝑦0:𝑁) ≜ ∑𝑤𝑡|𝑁
𝑖

𝑁𝑝

𝑖=1

𝛿(𝑥𝑡 − 𝑥𝑡
𝑖)𝟙(𝑟𝑡 = 𝑟𝑡

𝑖) (C1.1) 

 

where 𝑤𝑡|𝑁
𝑖  are the smoothed weights. Suppose 𝑁 data samples are available. To derive an 

expression for these weights, we build upon the work done in [60] to include a discrete mode 

𝑟𝑡.  
 

Proof:  

 

With the use the of the definition of conditional probability: 

 

𝑝𝜃(𝑥𝑡|𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑁) = 𝑝𝜃(𝑥𝑡|𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡, 𝑦𝑡+1:𝑁) 

=  
𝑝𝜃(𝑥𝑡, 𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡, 𝑦𝑡+1:𝑁)

𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡, 𝑦𝑡+1:𝑁)
 

=  
𝑝𝜃(𝑦𝑡+1:𝑁|𝑥𝑡, 𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡)𝑝𝜃(𝑥𝑡, 𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡)

𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡, 𝑦𝑡+1:𝑁)
 

=
𝑝𝜃(𝑦𝑡+1:𝑁|𝑥𝑡, 𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡)𝑝𝜃(𝑥𝑡|𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡)𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡)

𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡, 𝑦𝑡+1:𝑁)
 

=
𝑝𝜃(𝑦𝑡+1:𝑁|𝑥𝑡, 𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡)𝑝𝜃(𝑥𝑡|𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡)𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡)

𝑝𝜃(𝑦𝑡+1:𝑁|𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡)𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡)
 

=
𝑝𝜃(𝑦𝑡+1:𝑁|𝑥𝑡, 𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡)𝑝𝜃(𝑥𝑡|𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡)

𝑝𝜃(𝑦𝑡+1:𝑁|𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡)
 

     (C1.2)  
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 Given the Markov property of 3.1a-3.1b then:  

𝑝𝜃(𝑦𝑡+1:𝑁|𝑥𝑡, 𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡) = 𝑝𝜃(𝑦𝑡+1:𝑁|𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡) (C1.3) 

Applying this to C1.2, we arrive at:  

𝑝𝜃(𝑥𝑡|𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑁) =  𝑝𝜃(𝑥𝑡|𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡). (C1.4) 

Next, we apply Bayes’ theorem and the law of total probability to 𝑝𝜃(𝑥𝑡, 𝑟𝑡|𝑦0:𝑁): 

𝑝𝜃(𝑥𝑡, 𝑟𝑡|𝑦0:𝑁) =  ∑ ∫ 𝑝𝜃(𝑥𝑡 , 𝑟𝑡|𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡)𝑝𝜃(
𝒳𝑟𝑡+1∈ 𝒮

𝑥𝑡+1, 𝑟𝑡+1|𝑦0:𝑁)𝑑𝑥𝑡+1 

= ∑ ∫
𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1|𝑥𝑡, 𝑟𝑡)𝑝𝜃(𝑥𝑡 , 𝑟𝑡|𝑦0:𝑡)

𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1|𝑦0:𝑡)𝒳𝑟𝑡+1∈ 𝒮

𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1|𝑦0:𝑁)𝑑𝑥𝑡+1 

= 𝑝𝜃(𝑥𝑡 , 𝑟𝑡|𝑦0:𝑡) ∑ ∫
𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1|𝑥𝑡 , 𝑟𝑡)𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1|𝑦0:𝑁)

𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1|𝑦0:𝑡)𝒳𝑟𝑡+1∈ 𝒮

𝑑𝑥𝑡+1 

 

If one takes a close look at C1.5 one will notice that the first term is the filtered density 

(3.10). This term is multiplied times a summation and integral dependent on 𝑟𝑡 and 𝑥𝑡.  
Again using the law to total probability the denominator can be written as:  

 

𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1|𝑦0:𝑡) = ∑ ∫ 𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1|𝑥𝑡, 𝑟𝑡)𝑝𝜃(
𝒳𝑟𝑡∈ 𝒮

𝑥𝑡, 𝑟𝑡|𝑦0:𝑡)𝑑𝑥𝑡  

 

                            = ∑ ∫ 𝑝𝜃(𝑥𝑡+1|𝑥𝑡, 𝑟𝑡+1)𝑝𝜃(𝑟𝑡+1|𝑟𝑡)𝑝𝜃(
𝒳𝑟𝑡∈ 𝒮

𝑥𝑡, 𝑟𝑡|𝑦0:𝑡)𝑑𝑥𝑡   (C1.6) 

 

This distribution can be approximated using importance sampling discussed in Chapter 2 to 

approximation using a particle filter:  

The smoothing recursion begins with the weights at time 𝑁 being set equal to those of the 

filtered density, and same goes for their particles. Therefore at time 𝑁 the smoothed weights 

can be initialized as 𝑤𝑡|𝑁
𝑖 = 𝑤𝑁

𝑖 . We now have all the necessary components to estimate the 

integral in (C1.5) recursively. It is easy to see that at any time 𝑡 the importance density 

𝑝̂
𝜃

𝑁𝑝(𝑥𝑡+1, 𝑟𝑡+1|𝑦0:𝑁) is available during the backward recursion. This together with (C1.7) 

= 𝑝𝜃(𝑥𝑡, 𝑟𝑡|𝑦0:𝑡) ∑ ∫
𝑝𝜃(𝑥𝑡+1|𝑥𝑡 , 𝑟𝑡+1)𝑝𝜃(𝑟𝑡+1|𝑟𝑡)𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1|𝑦0:𝑁)

𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1|𝑦0:𝑡)𝒳𝑟𝑡+1∈ 𝒮

𝑑𝑥𝑡+1  (C1.5) 

𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1|𝑦0:𝑡)  ≈  ∑𝑤𝑡
𝑖

𝑁𝑝

𝑖=1

𝑝𝜃(𝑥𝑡+1|𝑥𝑡
𝑖 , 𝑟𝑡+1)𝑝𝜃(𝑟𝑡+1|𝑟𝑡

𝑖) 

 

 (C1.7) 



C2 Closed-Form Maximizer for Transition Probabilities  

82 

 

allows us to make yet another approximation using importance sampling to approximate the 

integral and sum in (C1.5) as:   

 

∑ ∫
𝑝𝜃(𝑥𝑡+1|𝑥𝑡 , 𝑟𝑡+1)𝑝𝜃(𝑟𝑡+1|𝑟𝑡)𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1|𝑦0:𝑁)

𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1|𝑦0:𝑡)𝒳𝑟𝑡+1∈ 𝒮

𝑑𝑥𝑡+1 =  

∑
𝑤𝑡+1|𝑁

𝑘  𝑝𝜃(𝑥𝑡+1
𝑗

|𝑥𝑡 , 𝑟𝑡+1
𝑗

)𝑝𝜃(𝑟𝑡+1
𝑗

|𝑟𝑡)

∑ 𝑤𝑡
𝑖𝑝𝜃(𝑥𝑡+1

𝑗
|𝑥𝑡

𝑖 , 𝑟𝑡+1
𝑗

)𝑝𝜃(𝑟𝑡+1
𝑗

|𝑟𝑡
𝑖)

𝑁𝑝

𝑖=1

𝑁𝑝

𝑗=1

(C1.8) 

 

Finally, to calculate (C1.5) the only thing missing is the filtered density. Since the particle 

filter approximation this density is already available from the forward recursion, we can 

approximate the smoothed density at time 𝑡 as: 

 

𝑝𝜃(𝑥𝑡, 𝑟𝑡|𝑦0:𝑁)  ≈ 𝑝̂
𝜃

𝑁𝑝(𝑥𝑡 , 𝑟𝑡|𝑦0:𝑁) ≜ ∑𝑤𝑡|𝑁
𝑖

𝑁𝑝

𝑖=1

𝛿(𝑥𝑡 − 𝑥𝑡
𝑖)𝟙(𝑟𝑡 = 𝑟𝑡

𝑖) 

 

Where the smoothed weights can be updated recursively for as 

 

𝑤𝑡|𝑁
𝑖 = 𝑤𝑡

𝑖 ∑𝑤𝑡+1|𝑁
𝑗

𝑁𝑝

𝑗=1

 𝑝𝜃(𝑥𝑡+1
𝑗

|𝑥𝑡
𝑖 , 𝑟𝑡+1

𝑗
)𝑝𝜃(𝑟𝑡+1

𝑗
|𝑟𝑡

𝑖)

∑ 𝑤𝑡
𝑙  𝑝𝜃(𝑥𝑡+1

𝑗
|𝑥𝑡

𝑙 , 𝑟𝑡+1
𝑗

)𝑝𝜃(𝑟𝑡+1
𝑗

|𝑟𝑡
𝑙)

𝑁𝑝

𝑙=1

 ∎ 

 

 

C.2 Closed-Form Maximizer for Transition Probabilities  
 

The derivation for the closed-form maximizer (5.5) is placed here for completeness. The 

proof presented here is taken directly from [42].  

 

Recall the solution to the constrained maximization problem (5.3-5.4)  is proposed to be :  

 

 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑝𝑖𝑗

   ∑∑Ψ𝑖𝑗

𝑗∈𝑖∈

log 𝜋𝑖𝑗   

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  ∑𝜋𝑖𝑗 = 1,

𝑗∈

  ∀𝑖 ∈ 𝒮 (C2.1) 

                       𝜋𝑖𝑗 ≥ 0, ∀(𝑖, 𝑗) ∈ 𝒮 × 𝒮 

with  

Ψ𝑖𝑗 = ∑ ∑ ∑ 𝑤𝑡|𝑁
𝑘𝑙

𝑁𝑝

𝑙=1 

𝑁𝑝

𝑘=1

𝑁−1

𝑡=1

𝟙(𝑟𝑡
𝑘 = 𝑗)𝟙(𝑟𝑡

𝑙 = 𝑖) (C2.2)
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It can be shown that if Ψ𝑖𝑗 ∈ ℝ+ ∀(𝑖, 𝑗) ∈ (𝒮 × 𝒮) then  

 

𝜋̂𝑖𝑗 = 
Ψ𝑖𝑗

∑ Ψ𝑖𝑘𝑘∈𝒮
, ∀(𝑖, 𝑗) ∈ (𝒮 × 𝒮) C2.3 

 

is a maximzer of B2.1. 

 

Proof:  

 

Due to the equality constraint, in B2.1 the system can be decoupled into 𝑆 independent 

optimization problems. Thus for each 𝑖 ∈ 𝑆, the following individual optimization problems 

are solved which is equivalent to the original problem:  

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑝𝑖𝑗

  ∑Ψ𝑖𝑗

𝑗∈𝒮

log 𝜋𝑖𝑗   

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   0 ≤ 𝜋𝑖𝑗 ≤ 1, ∀(𝑖, 𝑗) ∈ 𝒮 × 𝒮 C2.4 

Then,  

 

𝜋̂𝑖𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜋𝑖𝑗

 ∑Ψ𝑖𝑗

𝑗∈𝒮

log 𝜋𝑖𝑗  

=  𝑎𝑟𝑔𝑚𝑖𝑛
𝜋𝑖𝑗

 (−
1

∑ Ψ𝑖𝑘𝑘∈𝒮
)∑Ψ𝑖𝑗 log 𝜋𝑖𝑗

𝑗∈𝒮

 

=  𝑎𝑟𝑔𝑚𝑖𝑛
𝜋𝑖𝑗

 ∑{
Ψ𝑖𝑗

∑ Ψ𝑖𝑘𝑘∈𝒮
log (

Ψ𝑖𝑗

∑ Ψ𝑖𝑘𝑘∈𝒮
) −

Ψ𝑖𝑗

∑ Ψ𝑖𝑘𝑘∈𝒮
log 𝜋𝑖𝑗}

𝑗∈𝒮

 

=   𝑎𝑟𝑔𝑚𝑖𝑛
𝜋𝑖𝑗

 ∑{
Ψ𝑖𝑗

∑ Ψ𝑖𝑘𝑘∈𝒮
log [

Ψ𝑖𝑗

∑ Ψ𝑖𝑘𝑘∈𝒮
(

1

𝜋𝑖𝑗
)]}

𝑗∈𝒮

 

=  𝑎𝑟𝑔𝑚𝑖𝑛
𝜋𝑖𝑗

 ∑{
Ψ𝑖𝑗

∑ Ψ𝑖𝑘𝑘∈𝒮
log [

Ψ𝑖𝑗

∑ Ψ𝑖𝑘𝑘∈𝒮
(

1

𝜋𝑖𝑗
)]}

𝑗∈𝒮

 

=  𝑎𝑟𝑔𝑚𝑖𝑛
𝜋𝑖𝑗

 𝒟KL (
Ψ𝑖𝑗

∑ Ψ𝑖𝑘𝑘∈𝒮
‖𝜋𝑖𝑗)  
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where 𝒟KL(𝑝‖𝑞) ≥ 0 operator denotes the Kullback-Liebler (KL) divergence or the relative 

entropy, which is a measure of dissimilarity between two distributions 𝑝 and 𝑞 [56]. Since the 

KL divergence satisfies 𝒟KL(𝑝‖𝑞) ≥ 0, with equality iff 𝑝 = 𝑞, then it follows that C2.3 is a 

unique feasible maximize of each of the decoupled optimization problems in (C2.4) and is 

therefore a feasible maximize for the original optimization problem  (C2.1) ∀(𝑖, 𝑗) ∈ 𝒮 × 𝒮. ∎ 


