

Jump Markov Nonlinear System

Identification in Multi-Sensor Target

Tracking

A Novel Approach for Multiple Model Joint Tracking and

Behavior Classification

By

Carlos Eduardo Richa

in partial fulfilment of the requirements for the degree of

Master of Science

in Electrical Engineering

at the Delft University of Technology,

to be defended publicly on Friday August 24th, 2018 at 10:30 AM.

Daily Supervisors (Thales):

Dr. ir. Rienk Bakker

Dr. ir. Martin Podt

Academic Supervisor:

Dr. ir. Hans Driessen

Thesis committee:

Prof. DSc. A. Yarovoy TU Delft

Dr. ir. Hans Driessen TU Delft

Dr. ir. Martin Podt Thales Nederland BV

Dr. David Tax TU Delft

Approval Internship report/Thesis of:

Eduardo Richa

Title: Multiple model behavioral classification based on parameter estimation

Educational institution: TU Delft

Internship/Graduation period: 21-8-2017 to 31-5-2018

Location/Department: System engineering

Thales Supervisor: Martin Podt, Rienk Bakker

This report (both the paper and electronic version) has been read and commented on by the

supervisor of Thales Netherlands B.V. In doing so, the supervisor has reviewed the contents

and considering their sensitivity, also information included therein such as floor plans,

technical specifications, commercial confidential information and organizational charts that

contain names. Based on this, the supervisor has decided the following:

o This report is publicly available (Open). Any defence may take place publicly and

the report may be included in public libraries and/or published in knowledge bases.

Approved: Approved:

Martin Podt

(Thales Supervisor) (Educational institution)

Hengelo, 29-05-2018

(city/date)

 (copy security)

In memory of Armando Quirós, Fritz Schilling, and Fernando Lugo

 for their impact on my life and the world

 C.E.R

Acknowledgements

I would like to begin by expressing my gratitude for all the help and support I received

throughout my time at Thales. To my three supervisors, Hans Driessen, Martin Podt, and

Rienk Bakker. Hans, thank you for the opportunity you gave me to work at a defense

company, it had always been a dream of mine since I was young. I appreciate your continuous

advice and support both academically and personally throughout this thesis. Martin, having

you as a supervisor at Thales was a delightful experience. Thanks for all the coffee breaks to

brainstorm and bounce ideas around. Rienk, thanks for the repetitive tours around the

facilities and all the coffee breaks as well. I won’t forget the most important lesson you taught

me: take small steps when tackling large problems. The roll the three of you had on me as

mentors will without a doubt have a lasting impact both on my life and my career. I was

fortunate to have learned from three world-class engineers.

Next, I would like to thank my parents Eduardo and Lucila for their relentless support

throughout my academic career that lasted nearly a decade. Words cannot express how

blessed I have been. Dad, thanks for showing me how to build computers before the ripe old

age of 6 and how to read math books to teach myself at 13 years old. You prepared me far

before I arrived in Holland to do research on my own. Mom, I can sum up the most important

thing you taught me since I was a baby that got me through all these challenges—resilience—

I owe that one to you. To my brother Andres, thanks for putting up with me for all these

years. I won’t forget all the coffee rants about random stuff and a bright future we had all

those years we lived together at Bull Creek in Austin.

After three incredible years in The Netherlands I managed to meet a lot of fantastic new

people, whom without, this would have not been the same experience. Levar, that year on

Wagenstraat was definitely one for the books, and you bet that there is more to come. Kiran,

thanks for being an awesome trench mate through this signals and systems track. That was

terrific preparation for the work to follow. Harriet, Sophie, Hannah, and Alex, I will miss

seeing you guys. We had some pretty good times, and I hope we will continue to do so every

time I come to Europe. Jaap, Esther, Bori, David, and Jesse, that trip to Ibiza was one of the

highlights of my time here. There is indeed no replacement for sunshine, wine, great food,

and good company. To Daniel and all my friends in the mastermind group, you will be

missed. Thanks for all the good times and for helping me grow as a person.

Lastly, I would like to thank Maria, for all her love and support throughout my thesis. Words

cannot express my gratitude. I won’t forget all the times you harassed me from across the

world to make sure I was eating and sleeping. I’m glad you visited my a couple of times while

I was here and were part of my experience in Holland. You truly are my best friend.

ii

Contents

Contents .. ii

List of Figures ... iv

List of Symbols .. v

Abbreviations ... vii

1 Introduction ... 1

1.1 Motivation .. 1

1.2 Problem Statement and Thesis Objective ... 2

1.3 Related work .. 4

1.4 Structure and Contributions ... 6

2 Preliminaries .. 8

2.1 Overview .. 8

2.2 Time Series Analysis .. 8

2.2.1 State-Space Model ... 9

2.2.2 Jump Markov Systems .. 9

2.3 Maximum Likelihood Estimation .. 10

2.4 Bayesian Inference ... 12

2.5 Sequential Monte Carlo Methods ... 14

2.5.1 Sequential Importance Sampling .. 14

2.5.2 Sampling Importance Resampling .. 16

2.5.3 Bootstrap Particle Filters ... 17

2.6 Smoothing .. 18

3 Algorithm Design .. 21

3.1 System Identification overview .. 21

3.1.1 Mathematical Formulation .. 22

3.2 Expectation Maximization ... 23

3.2.1 Computing State Filtered Densities ... 25

3.2.2 Computing Smoothed Marginal Densities .. 26

3.2.3 Computing Expectations (E-Step) ... 27

3.2.4 Maximization (M-Step) ... 28

3.3 Learning Phase ... 29

3.4 Joint Tracking and Classification ... 30

4 System Modeling and Data Fusion ... 34

4.1 Dynamic and Measurement models ... 34

4.1.1 Constant Velocity Models ... 34

4.1.2 Coordinated Turn Models .. 35

4.2 Radar and Optical Sensor Measurement Models ... 36

Contents

iii

4.3 Sensor Data Fusion ... 37

5 Simulations and Results .. 41

5.1 Parameter Learning .. 41

5.1.1 Computing Closed-Form Maximizers ... 41

5.1.2 Example 1: Training a Zig-Zag ... 45

5.2 Trajectory Classification .. 49

5.2.1 Example 2: Straight Line ... 50

5.2.2 Example 3: Zig-Zag .. 53

5.2.3 Example 4: Holding Pattern With Two Added Sensors .. 54

6 Conclusions ... 57

6.1 Summary and Contributions ... 57

6.2 Future work and Improvements ... 58

References .. 61

Appendices ... 69

Appendix A: Analysis of Sequential Monte Carlo Approximatins 70

Appendix B: Additional Simulations and Results .. 77

Appendix C: Proofs .. 80

C.1 Multiple Model fixed-interval FFBSm .. 80

C.2 Closed-Form Maximizer for Transition Probabilities ... 82

iv

List of Figures

1.1 Hierarchy of signal and data processing chain .. 2

3.1 Diagram of proposed JTC system ... 30

4.1 A photo of a Thales integrated mast, seen on top of the naval vessel,

containing all major radars, sensors, and antennas ... 40

5.1 Trajectory and modes for parameter learning example ... 46

5.2 Process noise estimates for 100 EM iterations .. 47

5.3 Estimates of transition probabilities 𝜋_𝑗 for 100 EM iterations. 48

5.4 Graphical representation of the classes of trajectories .. 50

5.5 Straight constant velocity trajectory .. 51

5.6 System outputs for a (nearly) straight trajectory. (a) filtered mode estimates

(b) posterior class probabilities ... 52

5.7 Zig-zag pattern trajectory .. 53

5.8 System outputs for a zig-zag pattern trajectory. (a) filtered mode estimates

(b) posterior class probabilities ... 54

5.9 Holding Pattern ... 55

5.10 System outputs for a holding pattern trajectory. (a) filtered mode estimates

(b) class posterior probabilities. .. 56

6.1 Bayesian Networks .. 57

A.1 Trajectory of speed boat going in circular motion with particle clouds. 72

A.2 Kalman filter variance plots. ... 73

A.3 Particle filter and smoother variance plots using 100 particles. 74

A.4 Particle filter and smoother variance plots using 500 particles. 74

A.5 RMSE for all filters at each times step. ... 75

A.6 Total RMSE using 25 Monte Carlos runs for the particle filter and smoother 76

B.1 Zig-zag trajectory tracking by particle filter with particle clouds shown. 77

B.2 Process noise estimates for 80 EM iterations using nonlinear

measurement model and three sensors. ... 78

B.3 Estimates of transition probabilities for 80 EM iterations using nonlinear

measurement model and three sensors. ... 79

v

 List of Symbols

ℝ𝑛 The n-dimensional Euclidian space

ℝ+ The non negative real numbers

ℕ The natural numbers

𝕊+
𝑛 The set of 𝑛𝑥 × 𝑛𝑥 symmetric positive semi-definite matrices

⊆ Subset

⨄ Disjoint Union

𝔼[⋅] Expectation operator

𝔼[⋅ | ⋅] Conditional expectation operator

∇𝜃 Gradient with respect to a parameter 𝜃

Λ(⋅) Closed-form maximizer

𝑝𝜃(𝑟𝑡+1|𝑟𝑡) Transition density for the discrete (modes) Markov process

𝑝𝜃(𝑥𝑡+1|𝑥𝑡, 𝑟𝑡+1) State transition density

𝑝𝜃(𝑦𝑡|𝑥𝑡, 𝑟𝑡+1) Measurement likelihood function
𝑝
→ Convergence in probability

𝑑
→

Convergence in distribution

𝒟KL(∙ ‖ ∙) Kullback-Liebler divergence

𝐿𝜃(⋅) Log-likelihood function

𝑣𝑎𝑟(∙) Variance operator

𝑐𝑜𝑣(⋅,∙) Covariance operator

𝒳 The state space

𝒴 The measurement space

𝒴0 The joint measurement space

𝜉0 The joint sensor state space

𝒮 The set of modes

ℛ(⋅) The Bayes’ risk function

𝒞 Cost function

Θ The parameter Space

Φ The class space

𝒩(𝜇, Σ) Multivariate Gaussian distribution with mean 𝜇 and covariance matrix Σ

𝒰(𝑎, 𝑏) Uniform distribution on the interval [𝑎, 𝑏]
𝛿(⋅) The Dirac delta function

𝑁̂𝑒𝑓𝑓 Estimated number of effective Particles

𝑁𝑡ℎ𝑟𝑒𝑠ℎ Threshold for resampling

𝑁𝑝 Number of Particles

Ω The sample Space

ℱ The event space (a 𝜎-algebra)

ℙ A probability measure

𝒪(∙) Computational complexity (big O notation)

𝑤𝑡
𝑖 The 𝑖𝑡ℎ particle weight at time 𝑡

𝑤𝑡|𝑁
𝑖 The 𝑖𝑡ℎ particle weight at time 𝑡 for the marginal smoothed density over

𝑁 samples

List of Symbols

vi

𝑤𝑡
(𝑖,𝑘)

 The 𝑖𝑡ℎ particle weight, from the 𝑘𝑡ℎ class, at time 𝑡

𝑥𝑡 The state variable at time 𝑡

𝑥𝑡
𝑖 The 𝑖𝑡ℎ particle, at time t

𝑥𝑡
(𝑖,𝑘)

 The 𝑖𝑡ℎ state particle, from the 𝑘𝑡ℎ class, at time 𝑡

𝑥̂𝜑𝑘|𝑡 The combined state (point) estimate at time 𝑡 for the 𝑘𝑡ℎ class.

𝑟𝑡 The mode at time 𝑡

𝑟𝑡
𝑖 The 𝑖𝑡ℎ mode particle at time 𝑡

𝑟̂𝜑𝑘|𝑡 The combined mode (point) estimate at time 𝑡 for the 𝑘𝑡ℎ class.

𝑟𝑡
(𝑖,𝑘)

 The 𝑖𝑡ℎ mode particle, from the 𝑘𝑡ℎ class, at time 𝑡

𝑦𝑡 The measurement at time 𝑡

𝑦0:𝑁 The set of all measurements up to time 𝑁

𝑧𝑡 The augmented state variable

𝜑𝑘 The 𝑘𝑡ℎ class

𝑠(𝜑𝑘) The number of modes in the 𝑘𝑡ℎ class.

𝑦
𝑗

𝑡

Measurement from the 𝑗𝑡ℎ sensor

𝒴
𝑗

0

Measurement space for the 𝑗𝑡ℎ sensor

𝑥
𝑗
∗

Sensor state for the 𝑗𝑡ℎ sensor

𝜉
𝑗

0

Sensor state space for the 𝑗𝑡ℎ sensor

ℎ
𝑗

𝜃

Measurement function for the 𝑗𝑡ℎ sensor

vii

 Abbreviations

ASR Airport surveillance radar

CLT Central limit theorem

CRLB Cramér-Rao lower bound

CRW Correlated random walks

CT Coordinated turn

CV Constant velocity

DLM Dynamic linear model

EAP Expected a posteriori

EM Expectation maximization

FFBSi Forward filtering backward simulation

FFBSm Forward filtering backward smoothing

GPB Generalized pseudo Bayesian

HMM Hidden Markov model

IMM Interacting multiple model

IR Infrared

IRST Infrared search and track

JMLS Jump Markov linear system

JMNLS Jump Markov nonlinear system

JMS Jump Markov system

JTC Joint tracking and classification

KL Kullback-Liebler

MAP Maximum a posteriori

MC Monte Carlo

MCMC Markov chain Monte Carlo

ML Maximum likelihood

MLE Maximum likelihood estimator

MM Multiple model

MM–FFBSm Multiple model forward filter backwards smoother

MTT Multi-target tracking

PaRIS Particle based, rapid incremental smoother

PDF Probability distribution function

PSD Power spectral density

RBPF Rao-Blackwellized particle filter

RCS Radar cross section

RW Random walk

SIS Sequential importance sampling

SLLN Strong law of large numbers

SMC Sequential Monte Carlo

SSR Secondary surveillance radar

STT Single target tracking

SCFG Stochastic context-free grammars

SVM Support vector machines

TBD Track-before-detect

Abbreviations

viii

TPM Transition probability matrix

UAV Unmanned aerial vehicle

1 Introduction

1.1 Motivation

Data processing is a central and key concept to modern remote sensing systems. Beginning

with the introduction of the Kalman filter in the early 1960s, the possibilities to track moving

targets using radar, sonar, infrared (IR) or optical sensors, became even more promising, and

since then a growing amount of research has been devoted to the topic. This thesis focuses on

how to design an algorithm, by augmenting a tracking system with a classifier capable of

recognizing the dynamic behavior of moving targets using data from multiple sensors. Much

work has been done in classifying targets by object type [1] [2] [3] [4] in remote sensing

applications, but little research exists on the classification of dynamic behavior in the context

of target tracking using multi-sensor data. The detection of unusual behavior plays a crucial

role in the prevention of illegal and harmful activities such as smuggling, piracy, arms

trading, human trafficking and illegal immigration [5]. Also for military applications, it is

useful to detect anomalous behavior to provide an alert for potential threats, especially with

the more recent widespread use of drones for terrorist activities [6]. In order to provide a

solution for these emerging needs, in this work, we present a novel method for target behavior

classification by analyzing trajectories using data gathered from multiple sensors.

The primary goal of tracking is to make statistical inferences about the state of one or more

unknown objects, such as their speed and position. The former is referred to as single-target

tracking (STT) while the latter is referred to as multi-target tracking (MTT). The most basic

function of any tracking algorithm is called measurement-to-track data association, and as the

name implies, it involves assigning a measurement to an existing track or creating a new one

when necessary. This track, in turn, is assigned to a single detected source (or group of

sources) while differentiating it from other targets and reducing unwanted background noise

(such as clutter) and false targets. Creating the proper statistical models and algorithms to

make accurate predictions of future states and classification characteristics can then be carried

out for the individual tracks [7]. These types of data processing problems are not only limited

to remote sensing applications. In finance and economics for example, “tracking” and

predicting future prices and characteristics bonds, interest rates, commodities, currencies, or

options are similar problems in nature. Here we may be interested in other quantities such as

the derivative prices, volatility, asset risk, market regimes, or exchange rates. The asset log-

returns above the risk-free rate, or other econometric variables such as a nation's output

(GDP) for example, can be seen as the data or "measurements" [8] [9] [10].

Once a track has been assigned to an object, there are multiple ways to classify the target's

characteristics. Typically, objects are classified into sets that represent what type of object

they are, such as an airliner, boat, fighter plane, UAV, or a bird [11]. Before measurement

data can be processed, a sensor system usually follows a signal processing chain composed of

a detection and discrimination phase where some information sequences are accepted or

rejected in order to minimize the probability of false alarms. The standard hierarchy of a

1 Introduction

2

signal and data processing chain is illustrated in Figure 1.1. Different authors use various

definitions of classification, recognition, and identification depending on the application (e.g.,

see [1] for a discussion of NATO definitions). In this work, classification and recognition will

be used interchangeably. Identification in the context of the work done here is used to

describe the process of estimating system parameters.

Fig. 1.1. Hierarchy of signal and data processing chain

An important note is that there are systems such as track-before-detect (TBD), which are a

class of algorithms designed to operate in low SNR (signal-to-noise ratio) environments.

Under these conditions, the detector may discard valuable information and the system could

be made more robust by tracking an object before declaring it as a target [12]. In this

situation, the chain in figure 1.1 is not accurate.

The acquisition of data can come from a single (just one sensor) or a mixture of sensors such

as an array of radars. Due to the increased availability of computing power available today

and advances in statistics and machine learning over the past half a century, processing data

from multiple sensors, earning the name sensor or information fusion, has also become an

area of growing interest. The need for multiple heterogeneous sensors comes from the fact

that single sensors generally can only provide limited or partial information to make accurate

inferences. In order to make full use of all these collected data, multi-sensor management

techniques are becoming increasingly important, as the increased agility of sensors and

increasing amounts of data are usually more than what a human operator is capable of

processing. Essentially, multi-sensor management deals with the process of coordinating data

from multiple sensors to improve performance and perception [13].

A perfect example is the Lockheed f-35, which is arguably the most advanced fighter jet at

the date of this writing, in terms of sensor fusion technology. It was designed to process all

the information received from all the sensors on the aircraft and to display the information in

an easy to read manner, giving the pilot a clear picture of his threats and surrounding

environment with minimal effort for interpretation. In light of this growing demand, it is of

interest to develop solutions for distributed sensor fusion systems where individual sensors

could have different characteristics, and where sensors could be added or replaced with ease.

There is definite economic value in designing algorithms that are robust against these changes

in system configuration without costly consequences. Modularity, in other words, is a critical

requirement that will be addressed in this thesis.

1.2 Problem Statement and Thesis Objective

Maneuvering targets rarely undergo motions that can be accurately captured by a single

model, and therefore to accurately model dynamic motion, it should be assumed that targets

1.2 Problem Statement and Thesis Objective

3

can traverse several dynamic behavior modes. A multiple (dynamic) model-based approach is

proposed here which requires little training data, and can easily adapt to the addition or

replacement of sensors. Multiple model (MM) algorithms allow for targets to "switch" or

"jump" between different modes to more accurately capture their more complicated dynamics.

This sort of dynamic behavior usually cannot be described accurately by a single maneuver

model—especially if the target is highly maneuverable. It will be assumed that each

(multiple) model contains its own set of individual unknown parameters including transition

probabilities that govern the mode switching, and the random process noise which represents

the uncertainty in the dynamic motion model for the case of target tracking. Typically, these

parameters are tuned manually, which is not easily done by a human with high accuracy. In

this work, it is proposed that these parameters be estimated, using a Bayesian framework with

a multi-sensor data configuration.

Since the true state of the system described above is unknown, data is gathered through

observations from multiple sensors, and thus, a measurement or observation model is also

needed to make a probabilistic relation between the data and the true state. The dynamic and

measurement models together form a state space model. A well-known class of these types of

multiple model systems is referred to in the literature by many different titles such as jump

Markov systems (JMS), hybrid systems or regime switching models. This class of models, in

the context of Bayesian state estimation and tracking, is widely explored in many fields and

applications such as target tracking, biological time series [14], ecology [15], finance and

econometrics [16], and audio signal processing [17].

With this understanding, the problem addressed in this work can now be stated more

formally. The question to be answered is: how to develop a context-free (i.e., sensor

indifferent) method to robustly classify a selected set of anomalous trajectories and present

those results to a human operator? In this context, robustness is aimed at correctly classifying

trajectories with a low false alarm rate. For example, to reduce the error of a human radar

operator, it is desirable to be able to distinguish between a fishing boat, an attack pattern such

as a highly maneuverable and weaving aircraft, or to classify different behavior of drones

which are being used for a vast number of purposes, including terrorism. Since MM

algorithms are widely used in tracking, they are a natural and convenient choice. Now that a

problem has been clearly defined, the following are the three primary objectives of this thesis:

1. The first objective of this thesis is to estimate the parameters that govern the dynamics

of object behavior described by multiple model (hybrid) systems. These parameters

will be learned from multi-sensor data.

2. The second objective will be used to jointly track and classify dynamic object

behavior based on trajectory analysis using the these trained hybrid models. The idea

behind this is that the estimation of the transition probabilities, which describe the

tendency for the object to switch to a different mode, can capture the information

needed for classification by distinguishing trajectories. This will be done by fitting

future data to a number of trained models (in parallel) and then using a Bayes

classifier.

3. The third objective is to address the need for modularity. Another advantage of using a

hybrid model is that they are very suitable for information fusion. As will be shown in

later chapters, the addition or removal of sensors requires one to merely make small

1 Introduction

4

adjustments in the sequential processing of measurements—thus reducing or

eliminating the need for retraining.

1.3 Related work

Here we cover existing work in the realm of dynamic behavior classification. An overview of

current methods in the literature at the time of this writing, and their shortcomings (for our

purposes) is given here. The literature presented here is by no means exhaustive but is meant

merely to give the reader an idea of the need and interest for the application of behavior

classification and anomaly detection in various tracking scenarios and a vast range of other

applications.

To begin, there is a large body of research in the area of machine vision for behavior

recognition (see [18][19][20]). Recognition of moving vehicle trajectories is one application

that is receiving much attention [21]. These methods are not appropriate for our application

since they use large amounts of image data and are not context-free solutions regarding sensor

modularity. A distinction must be made that we are tracking objects using remote sensors

such as radars, sonar, infrared search and track (IRST), and optical cameras which typically

give only bearing information about the target. Data-driven techniques aimed at analyzing

trajectories using artificial neural networks (ANN) [22] and deep neural networks (DNN) [23]

also exist. So-called data-driven “black box” methods like neural network approaches were

also considered as a potential candidate for modeling and classifying dynamic behavior. In

order to train neural networks, which have a large number of parameters, deep learning could

be applied, but this has four main drawbacks. The first foreseeable issue is that this approach

typically requires enormous amounts of data which is not always available, and typically

implies very long training times. second issue would be that if the data is gathered from

multiple sensors, then the system would have to be retrained if sensors are added or replaced,

thus not meeting the requirement of modularity mentioned earlier. The third drawback to

mention is that prior knowledge which is typically available cannot be easily incorporated.

Lastly, the solutions corresponding to the training data can be quite variable [24].

Given the discussion mentioned above about data-driven techniques, it would seem like a

more natural choice for the application in this thesis to use a model-based approach since they

are already widely used in tracking systems. To avoid confusion, the term “model-based

approaches” implies that explicit models and expert knowledge are used to carefully design

the models, as opposed to black box modeling. For airport surveillance radar (ASR), it is vital

to classify tracks to distinguish aircraft from non-aircraft tracks, such as weather or biological

tracks. Furthermore, for air traffic safety it is crucial to classify different targets such as

unmanned aerial vehicles (UAV), helicopters, or aircraft that do not have Secondary

Surveillance Radar (SSR) because it has been purposely disabled or a transmitter has failed.

The authors in [25] recognize the limitations of neural network techniques due to the massive

amounts of training data required, and aim to address this problem using a single source

model and support vector machines (SVM) to discriminate between aircraft and non-aircraft

targets by analyzing trajectories, radar cross section (RCS), and velocities. This method does

not address the use of multiple sensors—nor does it say anything about the behavior of the

classified object types— the latter of which can be beneficial in predicting potential safety

hazards.

1.3 Related work

5

Hidden Markov models (HMM), initially introduced by Leonard E. Baum, Ted Petrie, and

their colleagues in the late 1960's to early 1970's in a series of papers [26][27][28] at the

Institute for Defense Analyses, have become a popular choice to model stochastic systems.

An HMM can be seen as a specific case of JMS where the unknown states are discrete. Baum

was also the co-inventor the Baum-Welch algorithm, which is a method of computing ML

estimates of the parameters that govern the HMM. The use of discrete hidden Markov models

(DHMM) for trajectory classification is not new. Beginning in the 1980's DHMMs became

widely used in speech [29] and handwriting [30] recognition and became a core modeling

technique in genomic sequencing [31], the most famous appearance being in the Human

Genome Project [32]. More recently DHMMs have been used in seismology in the early

2000's and have also been shown to outperform many methods, especially in low SNR

scenarios, for earthquake detection and classification due to their ability explicitly model time

dependence [19]. In the context of radar tracking, DHMMs require a sufficiently dense

discretization of the continuous state space, which can make these methods susceptible to the

curse of dimensionality (i.e., computationally expensive in high dimensions). It also requires

the state space to be predefined and therefore makes it difficult to achieve high resolution in

areas of vital importance [33].

DHMMs have been used in ecology to estimate behavioral states based on movement paths of

using telemetry and GPS data. It is of interest to deduce the influence of landscape features

and conditions on animal behavior in different habitats, such as foraging and resting. One

proposed method to model such behavior is to use a mixture of random walks (RW) and

correlated random walks (CRW) where each mode differs in step length and turning angle,

and with unknown transition probabilities between behavioral modes. The authors in [34],

which initially proposed this method, use a Markov chain Monte Carlo (MCMC) approach,

namely a Gibbs sampler, for inference on data of the movement of elk. A number of behavior

modes, composed of a mix of CRW are first defined. They aimed to classify dynamic animal

behavior by analyzing their trajectories and movement patterns. Each GPS measurement is

composed of a step length and turning angle, which are assumed to be random variables from

a Weibull distribution and wrapped Cauchy distribution, respectively, both with unknown

parameters. This work was expanded upon in [35], and it was found that classification

accuracy depends strongly on the degree of separation between the distributions in each

behavior mode, as well as the amount of time spent in each mode for a given data set. One of

the significant shortcomings in these papers is that the authors explicitly ignored

measurement error and hence assumed the position of the animals to be known exactly. The

measurement inaccuracy from the GPS systems claimed to be negligible. This eliminates the

need for a measurement model and dramatically simplifies the problems and limits its

findings to other applications where these assumptions cannot be made. A significant

contribution of this thesis will be to expand upon DHMM methods mentioned, where the

entire state space is discrete, to include a hybrid state space composed of a continuous part in

conjunction with a discrete mode.

In the context of surveillance, in [36] a method is proposed for using MTIR (moving target

indicator radar) using UAVs for behavior recognition and anomaly detection for assisting

human operators to recognize potential threats. The authors in this paper also recognized the

burden of data-driven approaches, and point out that on top of the requirement for large

amounts of data, they suffer from high computational loads which can pose issues for real-

time applications. The authors propose a classification method by applying string matching

theory, which has had some success in text-processing applications. They then combine this

1 Introduction

6

method with a fuzzy expert rule-based decision-making process to avoid excess false alarms.

The dynamics of the system assume a single model for ground traffic vehicles, and therefore

would not be feasible for tracking highly maneuverable targets whose behavior is challenging

to capture accurately through a single model, and typically requires multiple models.

Perhaps one of the closest works related to this topic would be in [37] where the author

proposes the use of a semi-Markov model to classify targets based on their dynamic behavior.

No trajectory analysis was done in this work. The approach presented was to classify targets

based on their maneuverability, which in this case was defined by the sojourn time

distributions that govern the switching between the current mode governing the system

dynamics. This is in contrast to a typical HMM where transition distributions all have the

same exponentially distributed sojourn time. The joint tracking and classification of the

targets and their dynamic behavior is carried out using a robust Rao-Blackwelized particle

filter to track the maneuvers while a Kalman filter is used to track the target.

1.4 Structure and Contributions

Here we present a brief overview of the rest of this document and contributions with more

detail. Recall, the goal of the work here is to present a novel method for classifying target

behavior based on trajectory analysis. Recall, the primary research question in focus is to

investigate if it is possible to learn the parameters in hybrid (multiple model) systems from

multi-sensor data, and whether this class of models is suitable for jointly tracking and

classifying target behavior. Since we are dealing with multiple sensors, this implies that we

require using data fusion techniques to process the measurements. This, in turn, requires the

use of multiple measurement models, and the configuration can be done so with ease in JMS.

For estimation of the unknown state in linear Gaussian Jump systems, the well-known

suboptimal Interacting Multiple Model (IMM) algorithm [38] and generalized pseudo

Bayesian (GPB) schemes which use a bank of optimal Kalman Filter running in parallel, are a

widely adopted method that has shown to perform well [39] [40]. Unfortunately though, for

many applications, it is desirable to handle a wide range of nonlinear/non-Gaussian models.

Measurement models for example, which are typically nonlinear, must be handled in another

way as the Kalman filter is only suitable for linear models. Approximate solutions such as the

extended Kalman filters (EKF) or unscented Kalman filters (UKF) do not have these

constraints but have been shown to have other limitations such as poor performance in highly

nonlinear systems. Particle filters, or sequential Monte Carlo (SMC), methods are an

alternative choice that does not suffer from these drawbacks. It was shown in [41] that the

particle filter increased performance for nonlinear/non-Gaussian Bayesian tracking over both

the EKF and UKF. Due to their ability to deal with these highly nonlinear/non-Gaussian

systems, they will be the chosen method for accurate state estimation in this work.

To estimate the system's parameters (system identification) which are needed to form a

classifier, a maximum likelihood (ML) approach is a popular choice for many applications

and is widely used and understood. More specifically, the expectation maximization (EM)

algorithm will be employed for the numerical calculation ML estimates due to many desirable

properties such as numerical robustness and a guaranteed convergence to a (local) maximum.

It was shown in [42] that and [43] that the EM algorithm in combination with the SMC

methods previously mentioned is capable of learning parameters in Jump Markov non-linear

Systems (JMNLS), and will be the class of methods used here. Although there are other

1.4 Structure and Contributions

7

methods for nonlinear system identification, we choose this one, due to the fact that is has

shown promising results for estimating transition probabilities in systems with switching

(jumps).

This thesis is organized as follows, including a description of this introduction for

completeness.

 Chapter 1: An introduction and motivation behind the problem are provided. A brief

literature review is also given.

 Chapter 2: The reader will be given some context and preliminaries needed for the

work to follow. A brief treatment of Bayesian methods for statistical inference,

including ML estimation, which are the core principles of our approach, will be

presented. Included in this discussion are sequential Monte Carlo (SMC) methods or

particle methods for state space systems which are central to the techniques used later.

 Chapter 3: This chapter will present the core novel algorithm design composed of

two main parts. In the first part, the system identification techniques will be covered.

First, the EM algorithm will be discussed in more detail. This will be done by first

extending SMC methods for multiple model systems and explain how to use them to

calculate expectations in the EM algorithm. Then the maximization step of the EM

algorithm will be discussed. We finish this chapter by discussing the second part of

the algorithm: the Joint tracking and classification (JTC) algorithm, for classifying

targets behavior (as defined by their trajectory) in real time through trained models.

This is essentially classification by model selection using a Bayesian classifier, where

a unique set of learned parameters defines each model.

 Chapter 4: Here the gap will be bridged between the generic algorithms of the

previous chapter and specific kinematic and measurement models that are used in

remote sensing applications. Also, one of the main novel contributions of this work

will be explained here, namely to incorporate data fusion techniques for parameter

learning. The measurement models will, therefore, be extended for multiple sensor

scenarios.

 Chapter 5: Covers simulations in MATLAB. Basic assumptions will be described,

including parameters to be estimated and the configuration of the sensor system. An

example of the learning portion of the proposed novel algorithm for system

identification is first examined for estimating a set of parameters including the

transition probabilities and noise parameters for the individual dynamic models

(process noise). Finally, simulations of the JTC algorithm are carried out over multiple

trajectories. A discussion of the results will take place within each example.

 Chapter 6: A brief summary of the work and contributions provided by this work is

given. Finally, recommendations, proposed improvements, and direction for future

work is touched on.

2 Preliminaries

2.1 Overview

The purpose of this chapter is to give the reader a brief overview of Bayesian methods for

inference in time series models. The methods described here are found in a vast number of

fields ranging from machine learning, statistics, financial econometrics to engineering. We

begin by introducing the reader to state space models, which were initially proposed by

Kalman and Bucy in 1960. Following this and the emersion of the Kalman filter shortly after,

linear dynamical systems with Gaussian noise became a popular model for aerospace and

control systems applications. These models and state estimation techniques were quickly

adopted in many other applications, but their limitations became abundantly clear. They are

not suitable for more complicated dynamical systems that are nonlinear in nature. Suboptimal

methods such as the extended Kalman filter were developed to tackle the challenge of

nonlinearities in system dynamics. Sequential Monte Carlo methods were proposed as early

as the 1950’s, although the lack of computational power of computers at the time rendered

them infeasible. It wasn’t until 1993 that these methods resurfaced when Gordon et al. [44]

proposed a practical implementation of what is referred to as the bootstrap particle filter to

tackle to problem of nonlinear and non-Gaussian Bayesian state estimation.

This chapter is organized as follows. We begin by introducing state space hidden Markov

models in section 2.2. Then in section 2.3 maximum likelihood estimation will be treated. The

Bayesian framework for statistical inference, which is a core idea of the work to follow, will

be presented in section 2.4, along with MAP (maximum a posteriori) estimators. In this

section, the reader will see the link between the Bayesian and maximum likelihood

estimation. SMC filtering and smoothing methods for state estimation will be discussed in

sections 2.5-2.6. Although much effort was put into explaining these building blocks, it is

assumed the reader has a basic foundation in probability theory, and many topics will be

expected to be known a priori.

2.2 Time Series Analysis

The analysis of data, gathered from observations or measurements at discrete time steps and

the statistical properties and relations of these sequences is known as time series analysis.

Any discrete-time data or signal such as daily stock prices, blood pressure measurements,

brain wave patterns in functional MRI imaging, data samples in digital communication

systems, and the amount of rainfall or weather patterns are all examples of time series data

[45].

2.2 Time Series Analysis

9

2.2.1 State-Space Model

A state-space model, which can be viewed as a generalization of a hidden Markov model

(HMM), is one in which the data in question is not known directly. Instead, a transformed

version of it in the form of an observation or measurement is known. To avoid confusion,

from here on, we refer to a state-space hidden Markov model as a state-space model.

Therefore, we require a model which describes the temporal evolution of the state, which is

known as the evolution or system model. Another equation is then needed to model the

relationship between the state and the measurements, which we will refer to as the

measurement model. Both the system and measurement equations are assumed to be in

stochastic form. The most general structure of a state space system is defined by two

stochastic processes {𝑥𝑡}𝑡≥0 and {𝑦𝑡}𝑡≥0, 𝑡 ∈ {0,1,2,3… } as

𝑥𝑡+1 = 𝑓𝜃(𝑥𝑡, 𝑢𝑡, 𝑣𝑡) (2.1𝑎)

 𝑦𝑡 = ℎ𝜃(𝑥𝑡, 𝑢𝑡 , 𝑒𝑡) (2.1𝑏)

where 𝑓𝜃 and ℎ𝜃 are known possibly nonlinear and time-varying mapping functions that

depend on a set of parameters 𝜃 ∈ Θ ⊆ ℝ𝑛𝜃. The central assumptions here are that the

continuous state vector 𝑥𝑡 ∈ 𝒳 ⊆ ℝ𝑛𝑥 is a latent Markov process and is only observed

indirectly through noisy measurements 𝑦𝑡 ∈ 𝒴 ⊆ ℝ𝑛𝑦 which are conditionally independent.

It is important to note that although the state variable and measurements are continuous

variables, the systems presented here are their discrete-time equivalents and therefore can be

seen as sampled values. We will assume 𝑣𝑡 ~ 𝑝𝑣(⋅) and 𝑒𝑡~ 𝑝𝑒(⋅) are mutually independent

white noise processes with known probability density functions, which may also be

parameterized by the parameter 𝜃. The variable 𝑢𝑡 is the exogenous system input and is

assumed to be known and can be ignored without loss of generality. Further, we assume that

all random variables are defined on a common probability space (Ω,ℱ, ℙ). Here we assume,

Ω is the sample space, and let 2Ω be the power set of Ω. Then, let ℱ ⊆ 2Ω be the 𝜎-algebra

containing the event space and ℙ is an appropriate probability measure.

2.2.2 Jump Markov Systems

In many applications where structural uncertainty occurs, such as navigation,

telecommunications, control theory, target tracking, and financial risk management and

economics [46]. it is necessary to form more adaptive models. The state can be expanded to

be comprised of a continuous and discrete component, and these types of systems are referred

to in the literature as jump Markov systems (JMS) or hybrid systems. JMS assume that the

dynamic system can abruptly change between different modes according to a Markovian

switching scheme. The underlying assumption is that a single model is not sufficient to

describe the system dynamics and therefore multiple model (MM) descriptions are needed to

account for the uncertainty. The discrete component of the state is referred to as the mode 𝑟𝑡 ∈
 𝒮 ⊆ ℕ𝑛𝑟, where 𝒮 = {1, 2, 3, … , 𝑠} is a finite set. The mode evolves according to an s-state

(discrete-time) Markov chain, governed by transition probability matrix (TPM) Π𝜃 =

[𝜋𝑖𝑗], which is time-invariant and therefore can be considered a parameter of the system,

defined as

2 Preliminaries

10

𝜋𝑖𝑗 ≜ 𝑃(𝑟𝑡+1 = 𝑗 |𝑟𝑡 = 𝑖), ∀𝑖, 𝑗 ∈ 𝑆 , 𝑡 ≥ 0 (2.2)

 The augmented state vector can now be defined as 𝑧𝑡 = [𝑥𝑡

𝑇 , 𝑟𝑡]
𝑇, and it is referred to as a

hybrid process [39]. A linear jump Markov system (LJMS), is a state space model where both

the mode dependent state and measurements evolve according to a mode dependent dynamic

linear model (DLM):

 𝑥𝑡+1 = 𝐴(𝑟𝑡+1)𝑥𝑡 + 𝐵(𝑟𝑡+1)𝑣𝑡 (2.3𝑎)
𝑦𝑡 = 𝐶(𝑟𝑡)𝑥𝑡 + 𝐷(𝑟𝑡)𝑒𝑡 (2.3𝑏)

where the system matrices 𝐴(⋅), 𝐵(⋅), 𝐶(⋅), 𝐷(⋅) evolve over time according to the finite state

Markov chain 𝑟𝑡. These models are also referred to as dynamic linear models with switching

[45]. A jump Markov nonlinear system (JMNLS) is similar to (2.1), except now it is mode

dependent as well:

𝑥𝑡+1 = 𝑓𝜃(𝑥𝑡, 𝑟𝑡+1, 𝑣𝑡) (2.4𝑎)
 𝑦𝑡 = ℎ𝜃(𝑥𝑡, 𝑟𝑡, 𝑒𝑡) (2.4𝑏)

With a slight abuse of notation, and due to the stochastic nature of the noise components in

the above descriptions, we can also express the above random variables in terms of their

transition densities 𝑝𝜃(∙ | ∙), where the parameter subscript indicates what is intended, as

𝑟𝑡+1 ~ 𝑝𝜃(𝑟𝑡+1|𝑟𝑡) (2.5𝑎)
 𝑥𝑡+1 ~ 𝑝𝜃(𝑥𝑡+1|𝑥𝑡 , 𝑟𝑡) (2.5𝑏)

 𝑦𝑡 ~ 𝑝𝜃(𝑦𝑡|𝑥𝑡 , 𝑟𝑡) (2.5𝑐)

One last remark the reader should keep in mind is that although the state variable is

continuous by nature, here we will focus on the discrete-time formulation of these problems.

The transition or difference equations will be used to make inferences on the state of the

system by processing the measurements at discrete time steps.

2.3 Maximum Likelihood Estimation

The maximum likelihood (ML) approach is one of the central principles in modern statistics,

and although it is different on the surface, it is ultimately linked to Bayesian estimation.

Therefore we present it here, and the similarity between the two will become clear in the next

section. Suppose we have 𝑁 conditionally independent measurements (observed data) 𝑦0:𝑁 =
[𝑦0, … , 𝑦𝑁], then the likelihood function ℒ(𝜃; 𝑦0:𝑁) = 𝑝𝜃(𝑦0:𝑁) is the joint density probability

distribution function (PDF) of all the measurements as a function of the unknown parameters

𝜃. The goal of ML estimation is then to maximize the likelihood function with respect to the

unknown parameters. In many applications, especially those where the data comes from a

family of exponential distributions, it is more convenient to work with the log-likelihood

function 𝐿𝜃(𝑦1:𝑁) , which is defined by merely taking the natural logarithm of the likelihood

function

𝐿𝜃(𝑦0:𝑁) ≜ log ℒ(𝜃; 𝑦0:𝑁) = log 𝑝𝜃(𝑦0:𝑁) = ∏𝑝𝜃(𝑦𝑡|𝑦0:𝑡−1)

𝑁

𝑡=1

 . (2.6)

2.3 Maximum Likelihood Estimation

11

The maximum likelihood estimator (MLE) can then be written as

𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥
θ

 𝐿𝜃(𝑦0:𝑁)

= 𝑎𝑟𝑔𝑚𝑖𝑛
θ

 −𝐿𝜃(𝑦0:𝑁) (2.7)

where the last part follows from the fact that that the likelihood function is monotonic.

The MLE is a popular choice for practical applications due to a number of desirable

large sample properties. Typically it is regarded as an approximately optimal estimator, or

approximately the minimum variance unbiased (MVU) estimator [47]. The most important

properties of the MLE will be presented here without proof: (see [48][49][50]):

1. Consistency: An estimator 𝜃 is said to be (weakly) consistent if 𝜃
𝑝
→ 𝜃, where

𝑝
→

denotes convergence in probability.

2. Asymptotic efficiency: Even though we cannot guarantee that any estimator can attain the

Cramér-Rao Lower Bound (CRLB), which gives a lower bound on the variance of the

estimator, for a finite amount of data the MLE will reach it asymptotically as 𝑛 → ∞.

Furthermore, the MLE is unbiased and can be stated as

 𝔼(𝜃𝑀𝐿) = 𝜃 (2.8)

 lim
𝑛→∞

𝑣𝑎𝑟(𝜃𝑀𝐿) = 𝐶𝑅𝐿𝐵. (2.9)

3. Asymptotic normality: Using the central limit theorem (CLT) it can be shown that this can

be stated more formally as

√𝑛(𝜃 − 𝜃)
𝑑
→ 𝒩(0, 𝐼−1(𝜃)) (2.10)

Where 𝐼(𝜃) is the Fisher information matrix:

𝔼𝜃 [∇𝜃𝐿𝜃(𝑦0:𝑁)∇𝜃𝐿(𝑦0:𝑁)𝑇] (2.11)

and
𝑑
→ denotes convergence in distribution as 𝑛 → ∞.

4. Invariance: The MLE is preserved by parametrization 𝜆 = 𝑞(𝜃) where 𝑞 is a known

function. Under the condition that 𝑞 is non-invertible, then 𝜆 maximizes the

modified likelihood:

𝐿∗(𝜆|𝑥) ≜ sup
θ:q(θ)=𝜆

 𝐿(𝜃|𝑥). (2.12)

5. The MLE for a set of data is equivalent to the MLE of the sufficient statistics.

It is important to note that the asymptotic properties (1-3) require certain regularity conditions

on the family conditions as smoothness, the existence of the derivatives of 𝐿𝜃 , and non-zero

Fisher information (see [47] and [50] for more detail).

2 Preliminaries

12

2.4 Bayesian Inference

Here the Bayesian approach to statistical inference provided to give the reader the necessary

background for understanding the state and parameter estimation in the following chapter.

This can be achieved by using previous information about an unknown parameter (in this case

the state can be viewed as the unknown) contained in the prior distribution and using the

received measurement data to update it to the posterior distribution by using Bayes’ law. The

two distributions are related by proportionality as

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ∝ 𝑝𝑟𝑖𝑜𝑟 × 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑. (2.13)

It is through this combination of using the observed data and the prior knowledge that

Bayesian analysis allows us to model the uncertainty in the outcomes of an underlying

process. From (2.13) we can already see a hint that ML estimation is indeed connected to the

Bayesian framework, and this will become clear shortly. The discussion herein will be in the

context of state space models. Our focus will be on the posterior distribution of the state

because all the necessary information to describe the system is contained within it [16]. Our

focus will now turn to recursive Bayesian estimation. The goal is to sequentially estimate the

posterior distribution of the unobserved data 𝑝𝜃(𝑥𝑡|𝑦0:𝑡) given all available measurements at

time 𝑡. The Markov property of (2.1a) and the independence of the observations are key

assumptions in the explanations to follow. Assuming we have a set of observations 𝑦0:𝑡 then

by repeated use of Bayes’ theorem, the posterior densities can be computed in a two-stage

iterative process:

Prediction stage:

 𝑝𝜃(𝑥𝑡+1|𝑦0:𝑡) = ∫𝑝𝜃(𝑥𝑡+1|𝑥𝑡)𝑝𝜃(𝑥𝑡|𝑦0:𝑡)𝑑𝑥𝑡 (2.14)

Update/Correction stage:

 𝑝𝜃(𝑥𝑡|𝑦0:𝑡) =
𝑝𝜃(𝑦𝑡|𝑥𝑡)𝑝𝜃(𝑥𝑡|𝑦0:𝑡−1)

𝑝𝜃(𝑦𝑡|𝑦0:𝑡−1)
 (2.15)

with

 𝑝𝜃(𝑦𝑡|𝑦0:𝑡−1) = ∫𝑝𝜃(𝑦𝑡|𝑥𝑡)𝑝𝜃(𝑥𝑡|𝑦0:𝑡−1)𝑑𝑥𝑡 (2.16)

2.4 Bayesian Inference

13

where the normalizing factor (2.15) is known as the evidence. An important thing to notice is

that (2.15) is consistent with the relation in (2.13). The procedure for arriving at the

prediction equation (2.14) involves the use of the Chapman-Kolmogorov equation and the

Markov nature of the state evolution distribution. The calculation of the three densities on the

right-hand side of (2.15) is the primary focus in Bayesian inference. All together (2.14-2.16),

including the measurement likelihood function 𝑝𝜃(𝑦𝑡|𝑥𝑡), provide the basis to estimate the

posterior state density recursively. The reader is referred to [48] for the details.

Lastly, we discuss the concept of optimality. An estimator can only be optimal in a specific

sense [51]. The natural question that arises is how to define or measure optimality? To

answer this let’s first define the Bayes risk as

ℛ(𝑥𝑡, 𝑥̂𝑡) = 𝔼[𝒞(𝜂)] (2.17)

where 𝜂 = (𝑥𝑡 − 𝑥̂𝑡) is the prediction (estimation) error, and where 𝒞 is referred to as the

cost or loss function. The value of 𝑥̂𝑡 which minimizes the Bayes risk is considered the

optimal Bayes estimator [52]. Now that this has been established, we name three fundamental

Bayesian optimality criterion [53]:

1. Minimum mean square error (MMSE): Here we aim to compute the conditional mean

𝑥̂ = 𝔼[𝑥𝑡|𝑦0:𝑡] = ∫ 𝑥𝑡𝑝𝜃(𝑥𝑡|𝑦0:𝑡)𝑑𝑥𝑡
𝒳

(2.18)

This is the equivalent of defining a quadratic cost function 𝒞 = 𝜂2 and attempt to

minimize the Bayes risk:

𝔼[‖𝑥𝑡 − 𝑥̂𝑡 ‖
2|𝑦0:𝑡] = ∫ ‖𝑥𝑡 − 𝑥̂𝑡 ‖

2𝑝𝜃(𝑥𝑡|𝑦0:𝑡)𝑑𝑥𝑡
𝒳

(2.19)

And hence 𝑥̂ is also called a conditional mean estimator or the expected a posteriori

(EAP) estimator.

2. Maximum a posteriori (MAP): This estimator does exactly what the name says—it

maximizes the posterior density 𝑝𝜃(𝑥𝑡|𝑦0:𝑡). Another way to say this is that it finds the

largest mode of the posterior, and a major drawback of this approach is that for multi-

modal distributions, it can lead to poor estimations. In terms of the Bayes risk, the

MAP estimator minimizes a "hit or miss" [54] loss function:

𝒞 = 1 − 𝟙𝑥𝑡:(‖𝜂‖)≤𝜁
(𝑥𝑡) (2.20)

 Where 𝜁 is a small scalar and 𝟙𝒜(⋅) is the indicator function over some set 𝒜.

3. Maximum Likelihood: We revisit the MLE to show its connection to the Bayesian

philosophy. If we define the prior density in the posterior distribution to be a uniform

distribution, then the prior plays no role in maximizing the posterior, and therefore, the

MLE can be seen as a particular case of the MAP estimator.

2 Preliminaries

14

Any estimator that minimizes the Bayes risk is referred to as Bayes-optimal. It is important to

note that the MLE is typically only Bayes-optimal in the case of a uniform prior, which is

rarely the case [55].

2.5 Sequential Monte Carlo Methods

Now that we have established the general Bayesian inference scheme, we can move on to

methods for sequential Bayesian estimation appropriate for nonlinear non-Gaussian systems,

based on Monte Carlo (MC) techniques. MC techniques are a class of methods for

approximate inference based on numerical sampling method when exact inference is

infeasible. We, therefore, turn our attention to so-called Sequential Monte Carlo (SMC)

approaches; also known as particle methods. The aim is to recursively approximate the

sequence of posterior probability distributions defined on a sequence of probability spaces.

This can be achieved by a combination of the sequential importance sampling (SIS) and

sampling importance resampling (SIR) algorithms, which will be discussed shortly. The

result is a sequence of posterior distributions that are represented by a set of particles with

associated nonnegative particle weights.

2.5.1 Sequential Importance Sampling

We begin our discussion about SMC by introducing the concept of importance sampling. As

mentioned earlier, for nonlinear non-Gaussian problems, not always feasible to sample from

the posterior distribution. Since it is usually not possible to draw samples directly from the

posterior distribution, except in special cases where there exists a random number generator

for that distribution (e.g., Gaussian), a workaround is to draw samples from another (known)

distribution 𝑞𝜃(𝑥) called a proposal distribution or importance density. Samples drawn from

the importance density, for which a well-constructed random number generator exists, can

then be used to compute an approximation of the target distribution 𝑝𝜃(𝑥). The choice of

importance density is a crucial design parameter, and should be as close as possible to the

target density, and should have the same support. As the name implies, the goal of the

sequential importance sampling (SIS) algorithm is to estimate the filtered posterior

distributions recursively, through a Bayesian filter, and represent them as a histogram of point

masses or particles 𝑥𝑡
𝑖 with associated importance weights 𝑤𝑡

𝑖. Therefore, to facilitate the

computation of integration in Bayesian estimation, the posterior distribution can be

characterized as a weighted particle system {𝑥𝑡
𝑖 , 𝑤𝑡

𝑖}
𝑖=1

𝑁𝑝
, where the weights for each time step

sum to one. With this being said, an approximation of the target posterior density can be

expressed as an empirical point-mass distribution

𝑝𝜃(𝑥𝑡|𝑦0:𝑡) ≈ 𝑝̂
𝜃

𝑁𝑝(𝑥𝑡|𝑦0:𝑡) ≜ ∑𝑤𝑡
𝑖

𝑁𝑝

𝑖=1

𝛿(𝑥𝑡 − 𝑥𝑡
𝑖) (2.21)

where 𝛿(∙) is the Dirac delta function. Now suppose the importance density can be factorized

using Bayes’ law as

𝑞𝜃(𝑥0:𝑡|𝑦0:𝑡) = 𝑞(𝑥𝑡|𝑥0:𝑡−1 𝑦0:𝑡)𝑞(𝑥0:𝑡−1|𝑦0:𝑡−1) (2.22)

= 𝑞(𝑥0)∏ 𝑞(𝑥𝑛|𝑥0:𝑛−1

𝑡

𝑛=1
, 𝑦0:𝑛) (2.23)

2.5 Sequential Monte Carlo Methods

15

where we have used the chain rule of probability to arrive at (2.23). If we further assume that

the posterior can be factorized as

𝑝(𝑥0:𝑡|𝑦0:𝑡) = 𝑝(𝑥0:𝑡−1|𝑦0:𝑡−1)
𝑝𝜃(𝑦𝑡|𝑥𝑡)𝑝𝜃(𝑥𝑡|𝑥𝑡−1)

𝑝(𝑦𝑡|𝑦0:𝑡−1)
(2.24)

we can now define the weights as (see [53])

𝑤𝑡
𝑖 =

𝑝𝜃(𝑥0:𝑡
𝑖 |𝑦0:𝑡)

𝑞𝜃(𝑥0:𝑡
𝑖 |𝑦0:𝑡)

∝
𝑝𝜃(𝑦𝑡|𝑥𝑡

𝑖)𝑝𝜃(𝑥𝑡
𝑖|𝑥𝑡−1

𝑖)𝑝𝜃(𝑥0:𝑡
𝑖 |𝑦0:𝑡−1)

𝑞𝜃(𝑥𝑡
𝑖|𝑥0:𝑡−1

𝑖 , 𝑦0:𝑡)𝑞𝜃(𝑥0:𝑡−1
𝑖 |𝑦0:𝑡−1)

= 𝑤𝑡−1
𝑖

𝑝𝜃(𝑦𝑡|𝑥𝑡
𝑖)𝑝𝜃(𝑥𝑡

𝑖|𝑥𝑡−1
𝑖)

𝑞𝜃(𝑥𝑡
𝑖|𝑥0:𝑡−1

𝑖 , 𝑦0:𝑡)
(2.25)

If we now impose the Markov and measurement independence assumptions on the

importance density such that 𝑞𝜃(𝑥𝑡
𝑖|𝑥0:𝑡−1

𝑖 , 𝑦0:𝑡) =𝑞𝜃(𝑥𝑡
𝑖|𝑥𝑡−1

𝑖 , 𝑦𝑡) then the update recursion

(2.25) reduces to

𝑤𝑡
𝑖 ∝ 𝑤𝑡−1

𝑖
𝑝𝜃(𝑦𝑡|𝑥𝑡)𝑝𝜃(𝑥𝑡|𝑥𝑡−1)

𝑞𝜃(𝑥𝑡
𝑖|𝑥𝑡−1

𝑖 , 𝑦𝑡)
. (2.26)

This will usually be the case in most applications where only the current filtered estimate of

the posterior is required. To ensure that (2.21) is a properly defined probability measure the

weights must be normalized

𝑤𝑡
𝑖 =

𝑤𝑡
𝑖

∑ 𝑤𝑡
𝑗𝑁𝑝

𝑗=1

(2.27)

As 𝑁𝑠 → ∞ the approximation (2.22) approaches the true posterior density. One time step of

the SIS filter is presented in here in Algorithm 1.

Algorithm 1: SIS Particle filter

INPUTS: {𝑥𝑡−1
(𝑖) , 𝑤𝑡−1

(𝑖) }
𝑖=1

𝑁𝑝

, 𝑦𝑡

1. For 𝑖 = 1,… ,𝑁𝑝 draw the samples from the proposal distribution as 𝑥𝑡
(𝑖)

 ~ 𝑞(𝑥𝑡|𝑥𝑡−1
(𝑖)

 , 𝑦𝑡)

2. For 𝑖 = 1,… ,𝑁𝑝 calculate the importance weights 𝑤𝑡
(𝑖)

 according to (2.26)

3. For 𝑖 = 1,… ,𝑁𝑝 normalize the importance weights according to (2.27)

4. Set 𝑡 ⟼ 𝑡 + 1 go back to step 2.

OUTPUTS: {𝑥𝑡
(𝑖)

, 𝑤𝑡
(𝑖)

}
𝑖=1

𝑁𝑝

2 Preliminaries

16

Importance sampling provides a framework for producing approximations of expectations

with respect to a distribution 𝑝𝜃(𝑥). Suppose we seek to produce the expectation of a

nonlinear measurable function 𝑓: ℝ𝑛𝑥 → ℝ of a random variable 𝑥, which can be written as

𝔼[𝑓(𝑥)] = ∫𝑓(𝑥)𝑝𝜃(𝑥)𝑑𝑥 = ∫𝑓(𝑥)
𝑝𝜃(𝑥)

𝑞𝜃(𝑥)
𝑞𝜃(𝑥)𝑑𝑥. (2.28)

To form an approximation of (2.28), we begin drawing 𝑁𝑠 i.i.d samples 𝑥𝑖 ~ 𝑞𝜃(∙) and using a

Monte Carlo estimator [56] while making the appropriate substitutions we arrive at the

following expression:

𝔼[𝑓(𝑥)] ≈
1

𝑁𝑠
∑𝑤(𝑥𝑖)𝑓(𝑥𝑖)

𝑁𝑠

𝑖=1

(2.29)

where 𝑤(𝑥𝑖) are the normalized importance weights (2.27). This process is also referred to as

Monte Carlo integration. These techniques will be used extensively in the next chapter, as

they are a critical part of the computing the expectations in E-step of the EM algorithm.

2.5.2 Sampling Importance Resampling

In practice, the SIS filter suffers from some severe drawbacks, which leads us to discuss an

improved version known as the sampling importance resampling (SIR) algorithm. The first

issue faced when implementing an SIS filter is known as the degeneracy problem [33][48].

This phenomenon that occurs after a few iterations in which all the weight tends to a single

particle, while the rest of them have negligible influence. Furthermore, the unconditional

variance of the importance weights is guaranteed to increase with time, and therefore it is

impossible to avoid this problem [57]. One way to measure degeneracy is known as the

effective sample size [58] defined as

𝑁𝑒𝑓𝑓 =
𝑁𝑝

1 + 𝑣𝑎𝑟(𝑤𝑡
∗𝑖)

 ≤ 𝑁𝑝 (2.30)

where 𝑤𝑡
∗𝑖 = 𝑝𝜃(𝑥𝑡

𝑖|𝑦0:𝑡) 𝑞𝜃(𝑥𝑡
𝑖|𝑥𝑡−1

𝑖 , 𝑦𝑡)⁄ is called the “true weight” [33]. Since this cannot

be evaluated, a common approach is to use an approximation using normalized weights:

𝑁̂𝑒𝑓𝑓 =
1

∑ (𝑤𝑡
𝑖)

2𝑁𝑝

𝑖=1

 . (2.31)

A simple approach to combat the degeneracy problem is to increase the number of particles

one uses, but this is inefficient as it leads to a significant increase in computation complexity.

One of the most common ways to deal with the degeneracy problem is by resampling. The

basic concept is to remove particles with negligible weight and concentrate more particles in

areas of higher importance, to more accurately capture regions of high probability in the true

posterior. One of the most basic ways to achieve this is by replacing each particle 𝑥𝑡
𝑗
 with a

new particle 𝑥̃𝑡
𝑖 according to 𝑃(𝑥𝑡

𝑗
= 𝑥̃𝑡

𝑖) = 𝑤𝑡
𝑖 if the effective sample size falls below some

threshold 𝑁𝑡ℎ𝑟𝑒𝑠ℎ. The SIS filter which resamples each time the effective sample size falls

2.5 Sequential Monte Carlo Methods

17

below 𝑁𝑡ℎ𝑟𝑒𝑠ℎ is known as the sampling importance resampling (SIR) particle filter. A

conventional algorithm to perform resampling task is known as systematic resampling and is

presented below in Algorithm 2. Although there are many other methods for resampling (see

[48] [53] [58]) each with different properties, we choose the systemic approach due to its ease

of implementation.

Algorithm 2: Systemic Resampling

INPUTS: {𝑥𝑡
(𝑖), 𝑤𝑡

(𝑖)}
𝑖=1

𝑁𝑝

1. Initialize CDF: 𝑐1 = 0.
2. For 𝑖 = 2,… ,𝑁𝑝 construct the CDF as: 𝑐𝑖 = 𝑐𝑖−1 + 𝑤𝑡

𝑖

3. Begin by drawing a starting point 𝑢1~ 𝕌 [0 , 𝑁𝑝
−1]

4. For 𝑗 = 1,… ,𝑁𝑝 let 𝑢𝑗 = 𝑢1 + 𝑁𝑝
−1(𝑗 − 1) and do:

 WHILE 𝑢𝑗 > 𝑐𝑖

o 𝑖 = 𝑖 + 1
 END WHILE

 Set 𝑥̃𝑡
(𝑖)

= 𝑥𝑡
(𝑖)

 Set 𝑤̃𝑡
(𝑖)

 = 𝑁𝑠
−1

OUTPUTS: {𝑥̃𝑡
(𝑖)

, 𝑤̃𝑡
(𝑖)

}
𝑖=1

𝑁𝑝

Resampling helps alleviate the degeneracy problem but also produces other undesirable by-

products. The most important one is known as path degeneracy [59] or sample

impoverishment, which is especially an issue when there is little to no process noise and is a

consequence of the strong law of large number (SLLN). The problem arises because after

resampling the sequences of particles are no longer statistically independent [60]. Other issues

can be the limited possibility of parallelization and a reduction in diversity, the latter of which

can lead to inaccurate estimates of statistics [33]. There are a variety of methods to handle

these issues (see [53]) but are beyond the scope of this document and do not concern us for

the work to be done here.

2.5.3 Bootstrap Particle Filters

The bootstrap particle filter, first introduced by Gordon, Salmond, and Smith [44] in 1993, is

widely recognized as being the first practical implementation of the particle methods

previously mentioned. The algorithm is also referred to by different names in the literature

such as the condensation algorithm or the survival of the fittest algorithm [61][48]. As

mentioned before one of the most crucial design parameters in the design of a particle filter is

the choice of importance density 𝑞𝜃(𝑥𝑡
𝑖|𝑥𝑡−1

𝑖 , 𝑦𝑡). One standard approach is to choose a

density that maximizes the effective sample size by minimizing the variance. The second

approach is more complicated but is shown in [62] to be

2 Preliminaries

18

𝑞𝜃(𝑥𝑡
𝑖|𝑥𝑡−1

𝑖 , 𝑦𝑡)𝑜𝑝𝑡
=

𝑝𝜃(𝑦𝑡|𝑥𝑡)𝑝𝜃(𝑥𝑡|𝑥𝑡−1
𝑖)

𝑝𝜃(𝑦𝑡|𝑥𝑡−1
𝑖)

. (2.32)

Unfortunately, this choice faces a lot of practical problems such as the need to generate

samples which may not always be so straightforward, and the computation of an integral for

the normalizing constant 𝑞𝜃(𝑦𝑡|𝑥𝑡−1
𝑖) = ∫ 𝑝𝜃(𝑦𝑡|𝑥𝑡)𝑝𝜃(𝑥𝑡|𝑥𝑡−1

𝑖)𝑑𝑥𝑡, which generally has no

closed-form solution except in certain special cases. A good compromise is to choose the

suboptimal state transition density 𝑝𝜃(𝑥𝑡|𝑥𝑡−1) as the importance density, which leads to the

bootstrap filter. This is one of the most widely used particle filters due to its simplicity and

ease of implementation. One iteration of the SIR and bootstrap filter is presented below in

Algorithm 3.

Algorithm 3: SIR/Bootstrap Particle Filter

INPUTS: {𝑥t−1
(i) , 𝑤𝑡−1

(𝑖) }
𝑖=1

𝑁𝑝

, 𝑦𝑡

1. Initialize particles according to prior density, {𝑥0
(i)

}
𝑖=1

𝑁𝑝
 ~ 𝑝𝜃(𝑥0) and set 𝑡 = 1.

2. For 𝑖 = 1,… ,𝑁𝑝 predict particles forward by drawing 𝑀 i.i.d. particles sampled as

𝑥𝑡
(𝑖)

 ~ 𝑞𝜃(𝑥𝑡|𝑥t
(i)

 , 𝑦𝑡) for optimal SIR filter or use 𝑞𝜃(𝑥𝑡|𝑥𝑡−1) for bootstrap filter

3. Evaluate the importance weights {𝑤t
(i)

}
𝑖=1

𝑁𝑝
 as,

𝑤𝑡
(𝑖)

= 𝑝𝜃(𝑦𝑡|𝑥𝑡
(i)

)

4. For 𝑖 = 1,… ,𝑁𝑝 , normalize the importance weighs:

𝑤𝑡
(𝑖)

 =
𝑊𝑡

(𝑖)

∑ 𝑊𝑡
(𝑗)𝑁𝑝

𝑗=1

5. Compute 𝑁𝑒𝑓𝑓̂ according to (insert equation number)

6. If 𝑁𝑒𝑓𝑓̂ ≤ 𝑁𝑇𝐻𝑅resample particles and reset weights according to Algorithm 2.

7. Set 𝑡 ⟼ 𝑡 + 1 go back to step 2.

OUTPUTS: {𝑥𝑡
(i)

, 𝑤𝑡
(𝑖)

}
𝑖=1

𝑁𝑝

2.6 Smoothing

The process of using past, present, and future data to make an inference on the state at time 𝑡

is referred to as smoothing. In the Bayesian context, the goal is to recursively estimate the

sequence (smoothed) marginal posterior densities 𝑝𝜃(𝑥𝑡|𝑦0:𝑡+𝜏), ∀ 𝑥𝑡 ∈ [𝑥0, … , 𝑥𝑁], 𝜏 ≥ 1

and 𝑡 < 𝑁. There are many different flavors of smoothing, and the former is referred to as

(off-line) fixed interval smoothing, but there are other types as well. In fixed-point smoothing,

2.6 Smoothing

19

one is interested in estimating the posterior 𝑝𝜃(𝑥𝑡|𝑦0:𝑁) for fixed 𝑡 as 𝑁 increases. In fixed-

lag smoothing the goal is to estimate 𝑝𝜃(𝑥𝑡|𝑦0:𝑡+Δ𝑡) for fixed Δ𝑡 as 𝑡 increases, and is used for

recursive (on-line) implementations. Smoothing can be thought of as two filters: a forward

filter that makes a state estimate based on previous data and a backward filter that uses only

future data. Under white noise assumptions for both the process and measurements, the errors

from the two filters are uncorrelated [51]. In the work to follow we will focus on fixed-

interval smoothing. More specifically, for a particle smoother, we aim to obtain an

approximation of the smoothed marginal posterior distributions as

𝑝𝜃(𝑥𝑡|𝑦0:𝑁) ≈ 𝑝̂
𝜃

𝑁𝑝(𝑥𝑡|𝑦0:𝑁) ≜ ∑𝑤𝑡|𝑁
𝑖

𝑁𝑝

𝑖=1

𝛿(𝑥𝑡 − 𝑥𝑡
𝑖)

 (2.33)

Where 𝑁 > 𝑡 and 𝑤𝑡|𝑁
𝑖 are the smoothed weights at time 𝑡 taking into account all the data up

till time 𝑡 = 𝑁. To be explicit, we aim to arrive at a weighted particle system {𝑥𝑡
𝑖 , 𝑤𝑡|𝑁

𝑖 }
𝑖=1

𝑁𝑝
.

As originally proposed in [62] and [63], the forward filter/backward smoother (FFBSm),

where the “m” stands for marginal, is an approximate method to compute the marginal

smoothing distributions 𝑝̂
𝜃

𝑁𝑝(𝑥𝑡|𝑦0:𝑁). In this procedure, the particles from the forward

filtering pass remain unchanged, weights of the filtered particle system are updated in a

backward pass. The weights can be updated according to the following relation:

𝑤𝑡|𝑁
𝑖 = ∑𝑤𝑡+1|𝑁

𝑗

𝑁𝑝

𝑗=1

𝑤𝑡
𝑖 𝑝𝜃(𝑥𝑡+1

𝑗
|𝑥𝑡

𝑖)

∑ 𝑤𝑡
𝑙 𝑝𝜃(𝑥𝑡+1

𝑗
|𝑥𝑡

𝑖)
𝑁𝑝

𝑙=1

. (2.34)

The algorithm is presented below in Algorithm 4, and the reader is referred to [53] for more

details.

Algorithm 4: Fixed-interval smoother (FFBSm)

INPUTS: {𝑥𝑡
𝑖 , 𝑤𝑡

𝑖}
𝑖=1

𝑁𝑝
 (Forward filter particle systems for 𝑡 = 1,… ,𝑁)

1. Initialize at time 𝑡 = 𝑁,

 For 𝑖 = 1,… ,𝑁𝑝 set 𝑤𝑁|𝑁
𝑖 = 𝑤𝑡

𝑖

2. For 𝑡 = 𝑁 − 1,… ,1

 For 𝑖 = 1,… ,𝑁𝑝 evaluate importance weights according to (2.34)

OUTPUTS: {𝑤𝑡|𝑁
𝑖 }

𝑖=1

𝑁𝑝
 for 𝑡 = 1,… , 𝑁

Smoothing is critical for the system identification techniques that will be discussed in the next

chapter. It is important to note that there exist various algorithms for implementation, all with

different computational complexity and ease of implementation (see [58] [59] [60]).

2 Preliminaries

20

Some of the more sophisticated algorithms include the and forward filtering backward

simulation (FFBSi) and the particle-based, rapid incremental smoother (PaRIS) to name a

few.

3 Algorithm Design

This chapter contains the general mathematical formulation of the behavior classification

algorithm, while the next two chapters will contain the explicit system modeling and

simulations with remote sensing applications. We take an unsupervised learning approach

using the state-space representation to model the dynamics of the system. Recall, the state

space approach is a way of modeling the relationship between the unknown state and mode,

to the measurements. The parameters that govern the dynamics, including the TPM, must be

estimated. The estimation of the parameters can be seen as a "training" step. We investigate

the system identification problem for JMNLS using the EM algorithm for ML estimation of

the unknown parameters. To compute the expectations, we must expand on the particle

filtering methods of the previous chapter to handle hybrid (multiple model) systems. We then

extend existing methods for particle smoothing and tailor them to form a multiple model

particle smoother, which is crucial for the E-step of the EM algorithm. We follow by

discussing the subsequent the M-step. The last section culminates with the final proposed

algorithm with the aim of being able to both track targets and classify their behavior using a

Bayes' classifier that will be implemented via a multiple model particle filter.

3.1 System Identification overview

Nonlinear system identification with Markovian switching is known to be a challenging

problem (see [60] and references therein). To be explicit, by system identification, we mean

the learning of the unknown parameters that define the system. Since the method of

estimating these system parameters, in the context of state-space models, is one of the core

novel contributions of this work, the topic deserves a separate discussion of prior work. Here

a concise yet thorough overview of system identification techniques for general state space

models is presented.

State estimation in state-space models received much attention after the invention of the

Kalman filter. Although this was a great stride forward, a new issue arrived due to the fact

that in order to use a Kalman filter the system must be linear and driven by a Gaussian white

noise process. Another issue is that the system parameters are assumed to be known, which is

rare in practice [42]. An algorithm for smoothing and forecasting in DLM with unknown

parameters using a Kalman smoother in combination with the EM algorithm was first

proposed by Shumway and Stoffer in 1982 [67], where they apply their proposed method to

economic data. In the early 2000's, a great deal of effort began towards system identification

in more general settings such as nonlinear systems with Markovian switching (jumps). For the

linear case, in [68] a method was proposed to recursively MMSE estimates of transition

probabilities in an IMM setting. Shortly after, an alternative Bayesian approach for estimating

these transition probabilities for linear systems was proposed in [69], and later a ML

approaching using the EM algorithm was presented in [70].

3 Algorithm Design

22

The rise of stochastic sampling methods in systems with jumps such as particle methods (see,

e.g. [71][72]), led to more general system identification methods that could estimate all

system parameters, as well an handle nonlinear systems. In the first decade or so of the

2000's, there was a large body of work devoted to using SMC methods in conjunction with

the EM algorithm to estimate parameters of nonlinear systems without jumps in both an

online and offline fashion [73] [74] [75] [76] [60]. There was also some work proposing the

use of particle filters to compute Jacobians needed for a direct ML approach via gradient

ascent methods [77].

A framework for the estimation of all parameters of a JMNLS using SMC methods first

appeared in 2012 in [43], where an online EM-based fashion using fixed-lag particle

smoothers to compute approximate expectations in the E-step. This formulation was explicitly

for systems where both the measurement and process noise are mixtures of members from the

exponential family. Two years later in 2014, the authors in [42] expanded upon the work in

[60] for systems without jumps in order to generalize the work done in [43] to more generic

JMNLS, which could be done in an offline fashion as well. Shortly after, the authors in [78]

expanded on their previous work in [43], to present a recursive approach using Rao-

Blackwellized particle filters (RBPF) for joint-state and parameter estimation, resulting in a

more efficient parameter inference scheme. Recently this work was further expanded upon in

[79] where a general method for system identification of JMNLS was proposed using the

PaRIS smoothing algorithm which reduced the computational complexity of and variance of

the parameter estimates. Lastly, in 2017, a recursive gradient-based approach for ML

estimation was proposed as an alternative to the EM approaches in [80].

Another noteworthy mention is that much work was also done in other fields such as

mathematical finance. In 2006 for example, the authors in [80] estimated the model

parameters, including the transition probabilities, for a Markov switching stochastic volatility

model. The reader is referred to [16],[81] and the references therein for an overview for

existing work done in parallel in the areas of finance and economics.

Lastly, we have only covered model-approaches here. There are also black box deep learning

methods for nonlinear system identification, but as mentioned previously, these approaches

typically involve estimating a huge amount of parameters, and hence require a lot of data (see,

e.g., [82]). For these reasons, we will not consider these methods further.

3.1.1 Mathematical Formulation

Let’s assume that the target dynamics evolve according to a JMNLS (2.4a-2.4b) which is

shown again here for convenience:

𝑥𝑡+1 = 𝑓(𝑥𝑡, 𝑟𝑡+1, 𝑣𝑡, 𝜃) (3.1𝑎)
 𝑦𝑡 = ℎ(𝑥𝑡, 𝑟𝑡, 𝑒𝑡, 𝜃) (3.1𝑏)

We again assume 𝑡 ∈ ℕ = {0,1,2, … }, 𝑣𝑡 ~ 𝑝𝑣(⋅) and 𝑒𝑡 ~ 𝑝𝑒(⋅). The initial state 𝑥0 has a

known prior 𝑝𝜃(𝑥0|𝑟0) and the initial mode probabilities 𝜋𝑖 ~ 𝑝𝜃(𝑟0) are available.

The TPM Π𝜃 = [𝜋𝑖𝑗] is defined as in (2.2) and the transition densities using (2.5a-2.5c). Our

first challenge is to estimate a set of deterministic and time-independent parameters contained

in a set 𝜃 ∈ Θ ⊆ ℝ𝑛𝜃, which includes the transition probabilities 𝜋𝑖𝑗. The goal is to do this

3.2 Expectation Maximization

23

based on all available independent measurements 𝑦0:𝑁. If we denote 𝜃𝑛 as the parameters

corresponding to the 𝑛𝑡ℎ mode can express the unknown parameters as

𝜃 = ({𝜃𝑛}𝑛=1
𝑠 , {Π𝜃}). (3.2)

To learn these parameters, we will incorporate the ML approach for reasons such as the fact

that it does not require a prior and the other favorable statistical properties already mentioned

in section 2.3. With a clear direction in place, we now explicitly state our system

identification problem mathematically as:

𝜃𝑀𝐿 = 𝑎𝑟𝑔𝑚𝑎𝑥
θ

 𝐿𝜃(𝑦0:𝑁) (3.3)

A typical direct approach to maximizing (3.3) would be to employ a gradient-ascent

algorithm. Potential challenges with this approach that one could encounter are that direct

knowledge of 𝑝𝜃(𝑦0:𝑁) is scarce, and when it is available, analytical closed-form solutions

typically do not exist, and direct maximization requires the numerical computation of high-

dimensional integrals [43]. In [80], the authors propose a gradient-based recursive maximum

likelihood (RML) approach and acknowledge other potential drawbacks such as the need for

explicitly dealing with parameters constraints such as those of the Markov transition matrix

by re-parameterization or using constrained optimization methods. The re-parameterization

will cause a change in the gradient which can cause a change in convergence results, and

therefore the algorithm must be carefully designed. The EM algorithm is on the other hand, is

well known for its numerical stability, ease of implementation, and the ability to often handle

parameter constraints explicitly [84]. It also guarantees an increase in likelihood every

iteration, although to be fair, its rate of convergence is known to be very slow at best. Two

main drawbacks are the lack of a built-in method for computing covariance parameter

estimates and potentially slow convergence [85]. For JMNLS, if the noise sequences are

members of the exponential family, then very efficient implementations for online estimation

make the EM algorithm an attractive choice as well [78]. There is merit in both the EM and

gradient-based RML approaches. The former converges linearly, but the latter can reach

quadratic convergence rates. The EM algorithm has another significant advantage in that it

does not require the calculation of the gradient of the likelihood function. This is one of the

main reasons it is the chosen candidate since it simplifies computations.

3.2 Expectation Maximization

The EM algorithm [56][86], is a two-stage iterative optimization process for computing

maximum likelihood estimates in stochastic models that have latent (hidden) variables. In our

case, the unobserved or hidden data is the augmented state variable comprised of the state and

the mode 𝑧𝑡 = [𝑥𝑡
𝑇 , 𝑟𝑡]

𝑇 . The algorithm will produce a sequence of estimates for the unknown

parameters {𝜃𝑘}𝑘≥0, 𝑘 ∈ ℕ. One of the properties that makes it a popular choice is its ability to

guarantee an increase in (log) likelihood 𝐿𝜃𝑘
(𝑦0:𝑁) > 𝐿𝜃𝑘−1

(𝑦0:𝑁) at every iteration. The key

is to instead approach the maximization problem (3.3) from a different angle, and consider the

joint log-likelihood of the observations and the hidden data (also referred to as the complete

data log-likelihood) 𝐿𝜃(𝑦0:𝑁 , 𝑧0:𝑁). The critical assumption is that it is (usually) easier to

optimize than the (incomplete) log-likelihood 𝐿𝜃(𝑦0:𝑁). In the case of the hybrid system

(3.11), the complete data likelihood can be expressed as

3 Algorithm Design

24

𝑝𝜃(𝑦0:𝑁, 𝑧0:𝑁) = ∏𝑝𝜃(𝑧𝑡, 𝑦𝑡|𝑧𝑡−1)

𝑁

𝑡=0

(3.4)

= 𝑝𝜃(𝑟0)𝑝𝜃(𝑥0|𝑟0)∏𝑝𝜃(𝑧𝑡, 𝑦𝑡|𝑧𝑡−1)

𝑁

𝑡=1

(3.5)

where we assume we have a known priors 𝑝𝜃(𝑟0) and 𝑝𝜃(𝑥0|𝑟0). We define the augmented

state transition density 𝑝𝜃(𝑧𝑡|𝑧𝑡−1) = 𝑝𝜃(𝑥𝑡+1|𝑥𝑡, 𝑟𝑡+1)𝑝𝜃(𝑟𝑡+1|𝑟𝑡) and subsequently let

𝑝𝜃(𝑧𝑡, 𝑦𝑡|𝑧𝑡−1) = 𝑝𝜃(𝑦𝑡|𝑧𝑡)𝑝𝜃(𝑧𝑡|𝑧𝑡−1). After substituting the appropriate densities and

taking the logarithm of both sides of (3.5) we arrive at the complete data log-likelihood as:

𝐿𝜃(𝑦0:𝑁, 𝑧0:𝑁) = log 𝑝𝜃(𝑟0) + log 𝑝𝜃(𝑥0|𝑟0) + ∑ log 𝑝𝜃(𝑟𝑡+1|𝑟𝑡)

𝑁−1

𝑡=0

+∑log 𝑝𝜃(𝑦𝑡|𝑥𝑡, 𝑟𝑡)

𝑁

𝑡=0

+ ∑ log 𝑝𝜃(𝑥𝑡+1|𝑥𝑡, 𝑟𝑡+1) .

𝑁−1

𝑡=1

(3.6)

Since 𝑧0:𝑁 are unknown or "hidden," we must form an approximation 𝒬(𝜃, 𝜃𝑘) where we

assume a true parameter value 𝜃𝑘. The approximation is then formed by averaging over the

unobserved variables by evaluating the conditional mean estimate (MMSE estimator)

𝒬(𝜃, 𝜃𝑘) ≜ 𝔼𝜃𝑘
[𝐿𝜃(𝑦0:𝑁, 𝑧0:𝑁)|𝑦0:𝑁)

= ∫ 𝐿𝜃(𝑦0:𝑁, 𝑧0:𝑁)𝑝𝜃𝑘
(𝑧0:𝑁|𝑦0:𝑁)𝑑𝑧0:𝑁 (3.7)

Therefore, in the case of the system (3.1a-3.1b), we can form 𝒬(𝜃, 𝜃𝑘) by applying the

conditional mean operator 𝔼𝜃𝑘
[⋅ |𝑦1:𝑁] to both sides of (3.6) we arrive at:

𝒬(𝜃, 𝜃𝑘) = Υ1 + Υ2 + Υ3 + Υ4 + Υ5 (3.8)

where we have broken down the function into:

Υ1 = ∑ log 𝑝𝜃(𝑟0)

𝑟0∈ Ω

𝑝𝜃𝑘
(𝑟0)

(3.9a)

Υ2 = ∑ ∫ log 𝑝𝜃(𝑥0|𝑟0)𝑝𝜃𝑘
(𝑥0|𝑟0, 𝑦0:𝑁)𝑑𝑥0

𝒳𝑟0∈ Ω

(3.9b)

Υ3 = ∑ ∑ ∑ ∫ log 𝑝𝜃(𝑟𝑡+1|𝑟𝑡)𝑝𝜃𝑘
(𝑥𝑡+1, 𝑟𝑡+1 , 𝑟𝑡|𝑦0:𝑁)𝑑𝑥𝑡+1

𝒳𝑟𝑡 ∈ Ω𝑟𝑡+1 ∈ Ω

𝑁−1

𝑡=0

(3.9c)

3.2 Expectation Maximization

25

Υ5 = ∑ ∑ ∬ log𝑝𝜃(𝑥𝑡+1|𝑟𝑡+1, 𝑥𝑡)𝑝𝜃𝑘
(𝑥𝑡+1, 𝑥𝑡 , 𝑟𝑡+1|𝑦0:𝑁)𝑑𝑥𝑡+1𝑑𝑥𝑡

𝒳𝑟𝑡+1 ∈ Ω

𝑁−1

𝑡=0

(3.9d)

Υ5 = ∑ ∑ ∫ log 𝑝𝜃(𝑦𝑡|𝑥𝑡 , 𝑟𝑡)𝑝𝜃𝑘
(𝑥𝑡, 𝑟𝑡 |𝑦0:𝑁)𝑑𝑥𝑡

𝒳𝑟𝑡 ∈ Ω

𝑁

𝑡=0

(3.9e)

Looking at (3.9a-3.9e) we can see that the computation of the approximate complete data log-

likelihood 𝒬(𝜃, 𝜃𝑘) requires the computation of multi-dimensional integrals. As will be

shown in section 3.2.3, this typically requires numerical approximations, where MC

integration will prove to be a crucial tool.

3.2.1 Computing State Filtered Densities

To accommodate the extension to a JMNLS, we must extend the particle filtering methods of

the previous chapter to accommodate for the system dynamics being able to switch between

modes. Initially proposed by McGinnity and Irwin [87], the multiple model bootstrap filter is

an alternative to the IMM algorithm, and it can also deal with nonlinear and non-Gaussian

systems. The process aims to represent the mode dependent state posterior densities as

𝑝𝜃(𝑥𝑡, 𝑟𝑡|𝑦0:𝑡) ≈ 𝑝̂
𝜃

𝑁𝑝(𝑥𝑡 , 𝑟𝑡|𝑦0:𝑡) ≜ ∑𝑤𝑡
𝑖

𝑁𝑝

𝑖=1

𝛿(𝑥𝑡 − 𝑥𝑡
𝑖)𝟙(𝑟𝑡 = 𝑟𝑡

𝑖) (3.10)

The algorithm is presented below, and the reader is referred to [88] for more details.

Algorithm 5: Multiple model bootstrap particle filter

INPUTS: {𝑦0:𝑡}

1. Initialize particles according to prior density {𝑥0
𝑖 , 𝑟0

𝑖}
𝑖=1

𝑁𝑝 ~ 𝑝𝜃(𝑥0) and set 𝑡 = 1.

2. Predict mode particles {𝑟𝑡+1
𝑖 }

𝑖=1

𝑁𝑝 forward based on {𝑟𝑡
𝑖}

𝑖=1

𝑁𝑝 and Π𝜃

3. Draw process noise samples {𝑣𝑡
𝑖}

𝑖=1

𝑁𝑝 ~ 𝑝𝑟𝑡
(𝑣) and predict particles 𝑥𝑡+1

𝑖 forward using

the Markov transition density:

𝑥𝑡+1 = 𝑓𝜃(𝑥𝑡, 𝑟𝑡+1, 𝑣𝑡)

4. Evaluate importance weights for the augmented state particles {𝑧𝑡+1
𝑖 }

𝑖=1

𝑁𝑝 =

 {𝑥𝑡+1
𝑖 , 𝑟𝑡+1

𝑖 }
𝑖=1

𝑁𝑝 as

𝑤𝑡+1
𝑖 = 𝑝𝜃(𝑦𝑡+1| 𝑥𝑡+1

𝑖 , 𝑟𝑡+1
𝑖)

5. For 𝑖 = 1,… , 𝑁𝑝, normalize the importance weighs:

3 Algorithm Design

26

𝑤𝑡
𝑖 =

𝑊𝑡
𝑖

∑ 𝑊𝑡
𝑗𝑁𝑝

𝑗=1

6. Compute 𝑁𝑒𝑓𝑓̂ according to (2.31)

7. If 𝑁𝑒𝑓𝑓̂ ≤ 𝑁𝑇𝐻𝑅resample particles and reset weights according to Algorithm 2.

8. Set 𝑡 ⟼ 𝑡 + 1 go back to step 2.

OUTPUTS: {𝑧0:𝑡
𝑖 , 𝑤0:𝑡

𝑖 }
𝑖=1

𝑁𝑝

The use of multiple model particle filtering for target tracking is not new, and a large volume

of literature is devoted to the topic (see, e.g. [89] [91][92]).

3.2.2 Computing Smoothed Marginal Densities

By taking a closer look at (3.7) and (3.9a-3.9e), one can see that the calculate the expectations

of the complete data log-likelihood with respect to the conditional distribution 𝑝𝜃(𝑧0:𝑁|𝑦0:𝑁),

requires knowledge of the smoothed densities

𝑝𝜃(𝑥0|𝑟0, 𝑦0:𝑁), 𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1 , 𝑟𝑡|𝑦0:𝑁), 𝑝𝜃(𝑥𝑡+1, 𝑥𝑡 , 𝑟𝑡+1|𝑦0:𝑁), and 𝑝𝜃(𝑥𝑡, 𝑟𝑡 |𝑦0:𝑁).

Furthermore, to combat the particle degeneracy problem that arises when 𝑡 ≪ 𝑁 in

approximating (3.10), where a single particle represents the posterior density, we require

similar empirical approximations of the form

𝑝𝜃(𝑥𝑡, 𝑟𝑡|𝑦0:𝑁) ≈ 𝑝̂
𝜃

𝑁𝑝(𝑥𝑡, 𝑟𝑡|𝑦0:𝑁) ≜ ∑𝑤𝑡|𝑁
𝑖

𝑁𝑝

𝑖=1

𝛿(𝑥𝑡 − 𝑥𝑡
𝑖)𝟙(𝑟𝑡 = 𝑟𝑡

𝑖) (3.11)

This approximation does not suffer from the degeneracy problem needed for accurate

parameter estimation [92]. Doucet, Godsill and Andriu [57] first proposed a fixed interval

particle smoother; recall from section 2.7, this algorithm, referred to as, the FFSBm

algorithm, where again “m” stands for marginal, and can be extended to the multiple model

case. In practice, due to its high computational complexity 𝒪(𝑁𝑁𝑃
2), the FFSBm algorithm is

only suitable for situations where the data sets are relatively small. Given that for this thesis,

we aim to develop methods for situations where data is limited this is not seen as an obstacle.

To be clear, the method for computing the sequence of smoothed marginals

{𝑝̂
𝜃

𝑁𝑝(𝑥𝑡 , 𝑟𝑡|𝑦0:𝑁)}
𝑡=0

𝑁

 is a design choice, and the general procedure for computing

expectations does not change. For applications where the computational load is a limitation,

the smoothing technique presented here can be replaced by other alternatives such as a fixed-

lag smoother [93]; other alternatives will also be suggested in Chapter 6.

With this in mind, an expression for the smoothed weights 𝑤𝑡|𝑁
𝑖 in (3.11) can be calculated

recursively by extending the work done in [57], and again, the particles will remain the

unchanged. A proof of this extension is provided in Appendix C. The smoother will,

3.2 Expectation Maximization

27

therefore, be fed the augmented state particles {𝑧𝑡
𝑖}

𝑖=1

𝑁𝑝
≜ {𝑥𝑡

𝑖 , 𝑟𝑡
𝑖}

𝑖=1

𝑁𝑝
 and will update their

corresponding weights to form the approximated smoothed state density (3.11) as:

𝑤𝑡|𝑁
𝑖 = ∑𝑤𝑡+1|𝑁

𝑗

𝑁𝑝

𝑗=1

𝑤𝑡
𝑖 𝑝𝜃(𝑥𝑡+1

𝑗
|𝑥𝑡

𝑖 , 𝑟𝑡+1
𝑗

)𝑝𝜃(𝑟𝑡+1
𝑗

|𝑟𝑡
𝑖)

∑ 𝑤𝑡
𝑙 𝑝𝜃(𝑥𝑡+1

𝑗
|𝑥𝑡

𝑙 , 𝑟𝑡+1
𝑗

)𝑝𝜃(𝑟𝑡+1
𝑗

|𝑟𝑡
𝑙)

𝑁𝑝

𝑙=1

(3.12)

We will name this algorithm the multiple model forward filter backward smoother (MM-

FFBSm), where once again “m” stands for marginal.

Algorithm 6: Fixed-interval multiple model particle smoother (MM-FFBSm)

INPUTS: {z𝑡
i , 𝑤𝑡

𝑖}
𝑖=1

𝑁𝑝
 (Forward filter particle systems for 𝑡 = 1,… ,𝑁).

1. Initialize at time 𝑡 = 𝑁,

 For 𝑖 = 1,… ,𝑁𝑝 set 𝑤𝑁|𝑁
𝑖 = 𝑤𝑡

𝑖

2. For 𝑡 = 𝑁 − 1,… ,1

 For 𝑖 = 1,… ,𝑁𝑝 update the importance weights according to (3.12)

OUTPUTS: {𝑤𝑡|𝑁
𝑖 }

𝑖=1

𝑁𝑝
 for 𝑡 = 1,… , 𝑁

3.2.3 Computing Expectations (E-Step)

We now turn to the computations of the expectations (3.15a-3.15e) which require the

computation of integrals with respect to smoothed densities. The reader may now understand

the importance of MC estimators introduced in the previous chapter since these integrals

generally have no closed-form solutions except when dealing with linear systems [60]. We

can express an approximation to (3.8) as

𝒬(𝜃, 𝜃𝑘) ≈ 𝒬̂(𝜃, 𝜃𝑘) = Υ1̂ + Υ2̂ + Υ3̂ + Υ4̂ + Υ5̂ (3.13)

with

Υ1 ≈ Υ1̂ = ∑ 𝑤0|𝑁
𝑖

𝑁𝑝

𝑖=1

log 𝑝𝜃(𝑟0
𝑖)

(3.14a)

Υ2 ≈ Υ2̂ = ∑ 𝑤0|𝑁
𝑖

𝑁𝑝

𝑖=1

log 𝑝𝜃(𝑥0
𝑖 |𝑟0

𝑖)

(3.14b)

Υ3 ≈ Υ3̂ = ∑ ∑ ∑ 𝑤𝑡|𝑁
𝑖𝑗

𝑁𝑝

𝑗=1

log 𝑝𝜃(𝑟𝑡+1
𝑖 |𝑟𝑡

𝑖)

𝑁𝑝

𝑖=1

𝑁−1

𝑡=0

(3.14c)

3 Algorithm Design

28

Υ4 ≈ Υ4̂ = ∑ ∑ ∑ 𝑤𝑡|𝑁
𝑖𝑗

𝑁𝑝

𝑗=1

log 𝑝𝜃(𝑥𝑡+1
𝑗

|𝑥𝑡
𝑖, 𝑟𝑡+1

𝑗
)

𝑁𝑝

𝑖=1

𝑁−1

𝑡=0

(3.14d)

Υ5 ≈ Υ5̂ = ∑∑𝑤𝑡|𝑁
𝑖 log 𝑝𝜃(𝑦𝑡|𝑥𝑡

𝑖, 𝑟𝑡
𝑖)

𝑁𝑝

𝑖=1

𝑁

𝑡=0

(3.14e)

where the weights 𝑤𝑡|𝑁
𝑖𝑗

 are defined as

𝑤𝑡|𝑁
𝑖 =

𝑤𝑡
𝑖𝑤𝑡|𝑁

𝑗
𝑝𝜃𝑘

(𝑥𝑡+1
𝑗

|𝑟𝑡+1
𝑗

, 𝑥𝑡
𝑖)𝑝𝜃𝑘

(𝑟𝑡+1
𝑗

|𝑟𝑡
𝑖)

∑ 𝑤𝑡
𝑙𝑝𝜃𝑘

(𝑥𝑡+1
𝑗

|𝑟𝑡+1
𝑗

, 𝑥𝑡
𝑙)𝑝𝜃𝑘

(𝑟𝑡+1
𝑗

|𝑟𝑡
𝑙𝑁𝑝

𝑙)
. (3.15)

The derivation of this is a straightforward use of importance sampling and Bayes law (see

[42]).

3.2.4 Maximization (M-Step)

To maximize 𝒬̂(𝜃, 𝜃𝑘), we can do this via numerical methods, or in some cases via a closed-

form maximizer Λ(⋅). Both approaches typically require the calculation of the gradient, which

must vanish to find an inflection point that yields a maximizer 𝜃. By taking the gradient of

(3.13), we can compute the gradient of the particle representations of 𝒬(𝜃, 𝜃𝑘) by

∇𝜃𝒬̂(𝜃, 𝜃𝑘) = ∇𝜃Υ1̂ + ∇𝜃Υ2̂ + ∇𝜃Υ3̂ + ∇𝜃Υ4̂ + ∇𝜃Υ5̂ (3.16)

with

∇𝜃Υ1̂ = ∑ 𝑤0|𝑁
𝑖

𝑁𝑝

𝑖=1

∇𝜃log 𝑝𝜃(𝑟0
𝑖)

(3.17a)

∇𝜃Υ2̂ = ∑ 𝑤0|𝑁
𝑖

𝑁𝑝

𝑖=1

∇𝜃log 𝑝𝜃(𝑥0
𝑖 |𝑟0

𝑖)

(3.17b)

∇𝜃Υ3̂ = ∑ ∑ ∑ 𝑤𝑡|𝑁
𝑖𝑗

𝑁𝑝

𝑗=1

∇𝜃log 𝑝𝜃(𝑟𝑡+1
𝑖 |𝑟𝑡

𝑖)

𝑁𝑝

𝑖=1

𝑁−1

𝑡=0

(3.17c)

∇𝜃Υ4̂ = ∑ ∑ ∑ 𝑤𝑡|𝑁
𝑖𝑗

𝑁𝑝

𝑗=1

∇𝜃log 𝑝𝜃(𝑥𝑡+1
𝑗

|𝑥𝑡
𝑖 , 𝑟𝑡+1

𝑗
)

𝑁𝑝

𝑖=1

𝑁−1

𝑡=0

(3.17d)

3.3 Learning Phase

29

∇𝜃Υ5̂ = ∑∑𝑤𝑡|𝑁
𝑖 ∇𝜃log 𝑝𝜃(𝑦𝑡|𝑥𝑡

𝑖, 𝑟𝑡
𝑖)

𝑁𝑝

𝑖=1

𝑁

𝑡=0

(3.17e)

For many problems, no closed-form maximizer exists. Therefore, as mentioned before, a

numerical approximation can be employed for more general models. Following the

suggestion in [84], a gradient-based search technique could be employed. See [94] for a

treatment of such numerical schemes.

3.3 Learning Phase

In this section, we put together the different components of the system identification approach

to be used in this work for JMNLS, or to put it another way, the unsupervised learning phase

of the hybrid state HMMs defined by (3.1a-3.1b). A common stopping criterion for the

algorithm is 𝜁 = 𝒬̂(𝜃𝑘+1, 𝜃𝑘) − 𝒬̂(𝜃𝑘 , 𝜃𝑘) ≤ 𝜖 and the algorithm is terminated once this

value is below some user-defined tolerance 𝜖 > 0. Since the focus of this work is

classification, the process here is a batch algorithm due to its simplicity. The algorithm can be

modified to an online implementation by using fixed-lag smoothers if needed in practice. In

Chapter 5, we will use training data (measurements) generated from kinematic motion models

to train the system for recognizing trajectories based on their dynamic behavior using multiple

sensors.

Algorithm 7: Multiple Model Particle EM Algorithm for Jump Markov Nonlinear System

Identification

INPUTS: {𝑧0:𝑁
𝑖 , 𝑤0:𝑁

𝑖 }
𝑖=1

𝑁𝑝
, 𝑦0:𝑁

1. Initialize {𝜃𝑘| 𝐿𝜃𝑘

(𝑦0:𝑁) < ∞} and set 𝑘 = 1.

2. E-Step:

 Run Algorithms 5 and 6 to obtain the filtered and smoothed particle

representations (3.10) and (3.11)

 Use these approximate densities to compute (3.7) via (3.9a-3.9e)

3. M-Step:

 Compute 𝜃𝑘+1 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜃 ∈ 𝛩

 𝒬̂(𝜃, 𝜃𝑘)

4. Evaluate the stopping criterion 𝜁 = 𝒬̂(𝜃𝑘+1, 𝜃𝑘) − 𝒬̂(𝜃𝑘, 𝜃𝑘) for some chosen tolerance

𝜖 > 0 and do :

 If 𝜁 > 𝜖

 Set 𝑘 ⟼ 𝑘 + 1 go back to step 2.

 Else

 Terminate loop and continue to step 5.

5. Set 𝜃𝑀𝐿 = 𝜃𝑘+1

OUTPUTS:{𝜃𝑀𝐿}

3 Algorithm Design

30

3.4 Joint Tracking and Classification

We finalize this chapter by formalizing one of the main contributions in this work, namely to

build a classification algorithm for targets based on their behavior. This can be inferred from

the information of their temporal behavior contained in the estimated transition matrix and

process noise parameters based on their trajectories.

This process is referred to in the literature as joint tracking and classification (JTC) [95]. The

task of classification (or model selection) will be carried out by using a bank of multiple

model particle filters in parallel to both track and classify targets, as illustrated in figure 3.1.

The outputs of these filters will be used at each time step to calculate the posterior class

probabilities. Typically, JTC problems include a class measurement such as RCS, in addition

to kinematic measurements, used in classifying object type (e.g., military aircraft or

commercial airliner) [96]. This will be ignored as we have no measurement for behavior in

our problem formulation since we instead distinguish between trajectories with the use of

different estimated transition probabilities. Now instead suppose each target belongs to one

of 𝑚 (behavior) classes 𝜑𝑘 ∈ Φ = {𝜑1, … , 𝜑𝑚}. Our goal in this section is to estimate the

state 𝑥𝑡 ∈ 𝒳 and posterior class probabilities 𝑃(𝜑𝑘|𝑦0:𝑡) for each 𝑘 ∈ {1, … ,𝑚} = 𝒦. We

assume, that for each class, an initial prior 𝑃0(𝜑𝑘), such that ∑ 𝑃0(𝜑𝑘)𝜑𝑘 ∈ Φ = 1, is available.

The parameters for all the classes are denoted by

𝜃 = ({𝜃𝜑𝑘
}
𝑘=1

𝑚
, {Π𝜑𝑘

}
𝑘=1

𝑚
) ⊆ Θ (3.18)

where 𝜃𝜑𝑘
 are the system parameters and Π𝜑𝑘

= [𝜋𝑖𝑗,𝑘] are the transition probabilities for the

𝑘𝑡ℎ class. A diagram of the algorithm to be derived is shown in Figure 3.1.

Fig. 3.1. Diagram of proposed JTC system

3.4 Joint Tracking and Classification

31

The number of modes in each class is not restricted to be the same, and we define 𝑠(𝜑𝑘) as

the number of modes per class. The likelihood for each class will be expressed more

compactly for convenience as

𝜆𝜑𝑘

(𝑦𝑡|𝑥𝑡) = 𝑝𝜃(𝑦𝑡|{𝑥𝑡, 𝜑𝑘}, 𝑦0:𝑡−1) (3.19)

Prediction and measurement updates for each class can be calculated in the usual manner

using the Bayesian recursions (2.10-2.11):

𝑝𝜃({𝑥𝑡+1, 𝜑𝑘}|𝑦1:𝑡−1) = ∫ 𝑝𝜃(𝑥𝑡+1, {𝑥𝑡, 𝜑𝑘}|𝑦0:𝑡)𝑑𝑥𝑡
𝑥𝑡∈𝒳

= ∫ 𝑝𝜃(𝑥𝑡+1|{𝑥𝑡, 𝜑𝑘}, 𝑦0:𝑡)𝑝𝜃({𝑥𝑡, 𝜑𝑘}|𝑦0:𝑡)𝑑𝑥𝑡
𝑥𝑡∈𝒳

= ∫ 𝑝𝜃(𝑥𝑡+1|{𝑥𝑡, 𝜑𝑘})𝑝𝜃({𝑥𝑡, 𝜑𝑘}|𝑦0:𝑡)𝑑𝑥𝑡
𝑥𝑡∈𝒳

(3.20)

with

𝑝𝜃(𝑥𝑡+1|{𝑥𝑡, 𝜑𝑘}, 𝑦0:𝑡) = ∑ 𝑝𝜃(𝑥𝑡+1|𝑥𝑡 , 𝑟𝑡+1 = 𝑗, 𝑦0:𝑡)

𝑠(𝜑𝑘)

𝑗=1

⋅ 𝑃(𝑟𝑡+1 = 𝑗 |𝑥𝑡 , 𝜑𝑘, 𝑦0:𝑡)

= ∑ 𝑝𝜃(𝑥𝑡+1|𝑥𝑡, 𝑟𝑡+1 = 𝑗, 𝑦0:𝑡)

𝑠(𝜑𝑘)

𝑗=1

⋅ ∑ 𝜋𝑖𝑗,𝑘

𝑠(𝜑𝑘)

𝑖=1

𝑃(𝑟𝑡 = 𝑖 | 𝜑𝑘 , 𝑦0:𝑡) (3.21)

We can evaluate the posterior mode probabilities for a given class 𝜑𝑘 by

𝑃(𝑟𝑡 = 𝑗 |𝜑𝑘, 𝑦0:𝑡) =
1

𝑎𝑡
𝑝𝜃(𝑦𝑡|𝑟𝑡 = 𝑗, 𝜑𝑘 , 𝑦0:𝑡−1) ⋅ ∑ 𝜋𝑖𝑗

𝑠(𝜑𝑘)

𝑖=1

𝑃(𝑟𝑡−1 = 𝑖 | 𝜑𝑘 , 𝑦0:𝑡−1) (3.22)

where 𝑎𝑡 is a normalizing constant. Similarly, the measurement updates for each class can be

carried out by the following recursion:

𝑝𝜃({𝑥𝑡, 𝜑𝑘}|𝑦0:𝑡) =
𝑝𝜃(𝑦𝑡|{𝑥𝑡, 𝜑𝑘}, 𝑦0:𝑡−1)𝑝𝜃({𝑥𝑡 , 𝜑𝑘}|𝑦0:𝑡−1)

𝑝𝜃(𝑦𝑡|𝑦0:𝑡−1)
(3.23)

 =
1

𝑐𝑘
𝜆𝜑𝑘

(𝑦𝑡|𝑥𝑡)𝑝𝜃({𝑥𝑡, 𝜑𝑘}|𝑦0:𝑡−1) (3.24)

with,

𝑐𝑘 = ∑ ∫ 𝜆𝜑𝑘
(𝑦𝑡|𝑥𝑡)𝑝𝜃({𝑥𝑡, 𝜑𝑘}|𝑦0:𝑡−1)

𝑥𝑡∈𝒳

𝑠(𝜑𝑘)

𝑖=1

𝑑𝑥𝑡 (3.25)

Finally, we arrive at an expression for the target class posterior probabilities as:

3 Algorithm Design

32

𝑃(𝜑𝑘|𝑦0:𝑡) =
𝑝𝜃(𝑦𝑡|𝜑𝑘, 𝑦0:𝑡−1)𝑃(𝜑𝑘|𝑦0:𝑡−1)

∑ 𝑝𝜃(𝑦𝑡|𝜑𝑘, 𝑦0:𝑡−1𝜑𝑘 ∈ Φ)𝑃(𝜑𝑘|𝑦0:𝑡−1)
. (3.26)

The state estimates for each class 𝜑𝑘 ∈ Φ can be estimated via the MMSE estimator or MAP

estimator. If we denote 𝑥𝑡
(𝑖,𝑘)

 and 𝑤𝑡
(𝑖,𝑘)

 as the particles and their corresponding weights for

the 𝑘𝑡ℎ class respectively, we can form the MMSE approximation as

𝑥̂𝜑𝑘|𝑡
𝑀𝑀𝑆𝐸 = ∑ ∫ 𝑥𝑡𝑝𝜃(𝑥𝑡 , 𝑟𝑡, 𝜑𝑘|𝑦0:𝑁)

𝑥𝑡∈𝒳𝑟𝑡∈𝒮

𝑑𝑥𝑡 ≈ ∑𝑤𝑡
(𝑖,𝑘)

𝑁𝑝

𝑖=1

𝑥𝑡
(𝑖,𝑘)

 (3.27)

and the corresponding estimates for the modes 𝑟̂𝜑𝑘|𝑡 are given by

𝑟̂𝜑𝑘|𝑡
MMSE = ∑𝑤𝑡

(𝑖,𝑘)

𝑁𝑝

𝑖=1

𝑟𝑡
(𝑖,𝑘) (3.28)

For non-linear non-Gaussian systems, sometimes the MMSE estimator can perform poorly. In

target tracking, multi-modal posteriors are common, and an MMSE estimator might be a poor

choice since it can give a point estimate in areas of low probability. In these situations, a

MAP estimate might perform better. A detailed discussion of this is outside the scope of this

text; see [97][98] for more details on the implementation of the MAP estimator using particle

filters, and a comparison of its performance with the MMSE estimator. The final JTC

algorithm is now presented in Algorithm 8 below.

Algorithm 8: Multiple Model Particle Filter Bayesian Classifier

INPUTS: {𝑦0:𝑁}

1. Initialization at time 𝑡 = 0,
 For 𝜑𝑘 = 1, 2,… 𝑠(𝜑)

o set 𝑃(𝜑𝑘) = 𝑃0(𝜑𝑘)
 For 𝑖 = 1,… ,𝑁𝑝

o draw particles 𝑥0
𝑖 ~ 𝑝𝜃(𝑥0, 𝜑𝑘)

o draw particles 𝑟0
𝑖 ~ 𝑝𝜃(𝑟0, 𝜑𝑘)

2. For 𝜑𝑘 , 𝑘 = 1, 2, …𝑚 (in parallel)
Prediction:

 Predict mode particles {𝑟𝑡+1
𝑖 }

𝑖=1

𝑁𝑝 forward based on {𝑟𝑡
𝑖}

𝑖=1

𝑁𝑝 and Π{𝜑𝑘}

 Draw process noise samples {𝑣𝑡
𝑖}

𝑖=1

𝑁𝑝 ~ 𝑝𝜃
(𝑣 |𝜃𝑘 , 𝜑𝑘) and predict particles

𝑥𝑡+1
𝑖 forward using the Markov transition density:

𝑥𝑡+1 = 𝑓𝜃(𝑥𝑡, 𝑟𝑡+1, 𝑣𝑡 , 𝜑𝑘)

Measurement Update:

3.4 Joint Tracking and Classification

33

 For 𝑖 = 1,… ,𝑁𝑝 evaluate importance weights for the augmented state particles

𝑧𝑡 = {𝑥𝑡+1
𝑖 , 𝑟𝑡+1

𝑖 }
𝑖=1

𝑁𝑝
 as

𝑤𝑡+1
𝑖 = 𝑝𝜃(𝑦𝑡+1|𝑥𝑡+1

𝑖 , 𝑟𝑡+1
𝑖 , 𝜑

𝑘
)

 Evaluate 𝑝𝜃(𝑦𝑡+1|𝜑𝑘 , 𝑦0:𝑡) = ∑ 𝑤𝑡+1
𝑖𝑁𝑝

𝑖=1

o Set Γ(𝜑𝑘) = ∑ 𝑤𝑡+1
𝑖𝑁𝑝

𝑖=1

Selection Step:

 Normalize importance weights as

𝑤𝑡
𝑖 =

𝑊𝑡
𝑖

∑ 𝑊𝑡
𝑗𝑁𝑝

𝑗=1

 Evaluate 𝑁̂𝑒𝑓𝑓

 If 𝑁̂𝑒𝑓𝑓 ≤ 𝑁𝑇𝐻𝑅 resample particles {𝑧𝑡+1
𝑖 }

𝑖=1

𝑁𝑝 = {𝑥𝑡+1
𝑖 , 𝑟𝑡+1

𝑖 }
𝑖=1

𝑁𝑝 and reset weights

according to Algorithm 2
Compute state MMSE (or substitute with MAP if desired) estimate and posterior mode

probabilities:

 𝑥̂𝜑𝑘|𝑡
𝑀𝑀𝑆𝐸 = ∑ 𝑤𝑡

(𝑖,𝑘)𝑁𝑝

𝑖=1
𝑥𝑡

(𝑖,𝑘)

 𝑟̂𝜑𝑘|𝑡
𝑀𝑀𝑆𝐸 = ∑ 𝑤𝑡

(𝑖,𝑘)𝑁𝑝

𝑖=1
𝑟𝑡
(𝑖,𝑘)

3. Compute posterior class probabilities and combined state estimate:

 For𝜑𝑘, 𝑘 = 1, 2, …𝑚 evaluate class posteriors according to (3.26) as

𝑃(𝜑𝑘|𝑡|𝑦0:𝑡) =
Γ(𝜑𝑘)𝑃(𝜑𝑘|𝑡−1|𝑦0:𝑡−1)

∑ Γ(𝜑𝑘)𝑃(𝜑𝑘|𝑡−1|𝑦0:𝑡−1)𝜑𝑘 ∈ Φ

 Evaluate combined state estimate:

𝑥̂𝑡 = ∑ 𝑃(𝜑
𝑘
|𝑦

0:𝑡
) ⋅ 𝑥̂𝜑𝑘|𝑡

𝜑𝑘 ∈ Φ

4. Set 𝑡 ⟼ 𝑡 + 1 go back to step 2.

OUTPUTS: {𝑃(𝜑𝑘|𝑡|𝑦0:𝑡), 𝑥̂𝑡}𝑘=1

𝑚
 for 𝑡 = 1, … , 𝑁

4 System Modeling and Data

Fusion

We now turn our attention to explicit system modeling for target tracking and the

incorporation of data fusion techniques. Sections 4.1 and 4.2 introduce some kinematic

motion models to describe target motion, and measurement models, respectively for remote

sensing applications. We build upon this in section 4.3 by tackling the multi-sensor problem

showing how to process measurements from multiple sensors sequentially.

4.1 Dynamic and Measurement models

In dynamic target tracking, the choice of models can drastically alter the performance of

tracking systems, and their importance cannot be stressed enough. The goal of target tracking

is to extract information about the state of an object from available measurements or

observations.

Here we will introduce two-dimensional kinematic motion models. These class of models

generally fall into two categories: maneuver and nonmaneuver models. There are a vast

number of motion models developed over the years such as constant velocity (CV), and

coordinated turn (CT), and variable turn models to name a few. The models presented here

are the discrete-time equivalents of their continuous time versions. For a more thorough and

complete treatment of these kinematic motions, the reader is referred to [7] and [99].

It will be assumed that the state of an object will be described by the state vector at time 𝑡 as

𝑥𝑡 = [𝑥𝑡
𝑐 , 𝑣𝑥𝑘, 𝑦𝑡

𝑐, 𝑣𝑦𝑘]′ , where (𝑥𝑡
𝑐 , 𝑦𝑡

𝑐)′ ∈ ℝ2 are the horizontal and vertical Cartesian

position coordinates in Euclidian space, and 𝑣𝑥𝑡 = 𝑥𝑡
𝑐̇ and 𝑣𝑦𝑡 = 𝑦𝑡

𝑐̇ are the corresponding

velocities in each direction. We assume each state variable is a member of state space of the

system 𝑥𝑡 ∈ 𝒳 ⊆ ℝ4 and evolves according to the mode dependent Markov transition

density 𝑝𝜃(𝑥𝑡+1|𝑥𝑡, 𝑟𝑡+1).

The exact description of target motion is never truly known, and therefore some uncertainty is

always present due to model inaccuracy and external factors such as turbulence. Furthermore,

in most target tracking applications, the dynamic state of real targets to be estimated is poorly

described by a single kinematic model [89]; multiple model descriptions of target dynamics

are desirable in these situations.

4.1.1 Constant Velocity Models

4.1 Dynamic and Measurement models

35

Constant velocity models are a class of nonmaneuver models. This means that the target

travels at a constant velocity as well as straight and level. The constant velocity model can be

expressed as

𝑥𝑡+1 = 𝐹𝑐𝑣𝑥𝑡 + 𝑣𝑡 (4.1)

Where

𝐹𝑐𝑣 = 𝑑𝑖𝑎𝑔[𝐹2, 𝐹2], (4.2)

𝐹𝑐𝑣 = [
1 𝑇
0 1

] (4.3)

𝑇 is the sampling time and 𝑣𝑡 ∈ ℝ4 is an additive white Gaussian noise (AWGN) process to

account for uncertainties in the model with covariance matrix

𝑐𝑜𝑣(𝑒𝑡) = 𝑑𝑖𝑎𝑔 [
𝜎𝑥

2

𝑇
⋅ 𝑄2,

𝜎𝑦
2

𝑇
⋅ 𝑄2] , (4.4)

𝑄2 =

[

𝑇4

3

𝑇3

2
𝑇3

2
𝑇2

]

. (4.5)

where 𝜎𝑥
2 and 𝜎𝑦

2 are the power spectral density (PSD) of the acceleration for each directional

component.

4.1.2 Coordinated Turn Models

A model that describes an object that performs a constant acceleration is known as a

coordinated turn model. Let's assume the turn-rate ω is known. Then the CT model with

known turn-rate can be described as follows

𝑥𝑡+1 = 𝐹𝑐𝑡𝑥𝑡 + 𝑣𝑡 (4.6)

where 𝐹𝑐𝑡 is defined as

𝐹𝑐𝑡 =

[

 1

sin𝜔𝑇

𝜔
0 −

1 − cos𝜔𝑇

𝜔

0 cos𝜔𝑇 0 − sin𝜔𝑇

0
1 − cos𝜔𝑇

𝜔
1

sin𝜔𝑇

𝜔

0 sin(𝜔𝑇) 0 cos𝜔𝑇]

(4.7)

4 System Modeling and Data Fusion

36

and 𝑣𝑡~ 𝑝𝑣(⋅) is also an additive white Gaussian noise process with covariance (see [99]):

𝑐𝑜𝑣(𝑣𝑡) = 𝜎𝜔
2 ⋅

[

2(𝜔𝑇 − sin𝜔𝑇)

𝜔3

1 − cos𝜔𝑇

𝜔2
0

𝜔𝑇 − sin𝜔𝑇

𝜔2

1 − cos𝜔𝑇

𝜔2
𝑇 −

𝜔𝑇 − sin𝜔𝑇

𝜔2
0

0 −
𝜔𝑇 − sin(𝜔𝑇)

𝜔2

2(𝜔𝑇 − sin𝜔𝑇

𝜔3

1 − cos𝜔𝑇

𝜔2

𝜔𝑇 − sin𝜔𝑇

𝜔2
0

1 − cos(𝜔𝑇)

𝜔2
𝑇]

(4.8)

It is important to note that in practice the turn-rate is typically not known. An alternative

approach would be to assume 𝜔 is unknown and include it as a component of the state vector

𝑥𝑡. If a multiple model configuration is implemented with a fixed number of turn-rates

{𝜔1, … , 𝜔𝑛}, then this is referred to as a multiple turn-rate model.

4.2 Radar and Optical Sensor Measurement Models

Since we do not know the actual state of a system but instead a transformed version of them

we must now define these measurement equations. In the case of remote sensing, specifically

in radar systems, measurements are usually in polar or spherical coordinates and must be

transformed to Cartesian coordinates. All of the following models can be extended to three

dimensions to include elevation, see [100] for more details. The measurement equation is

defined by a nonlinear mapping function ℎ𝜃: 𝒳 → ℳ ⊆ ℝ𝑛𝑦 , where ℳ is the measurement

space, and 𝑛𝑦 is the dimension of the measurements 𝑦𝑡.

𝑦𝑡 = [

𝑟𝑡
𝑏𝑡

𝑟̇𝑡

] = ℎθ(𝑥𝑡) + 𝑒𝑡 = [

ℎ𝑟(𝑥𝑡)

ℎ𝑏(𝑥𝑡)

ℎ𝑑(𝑥𝑡)
] + [

𝑒𝑟𝑡

𝑒𝑏𝑡

𝑒𝑑𝑡

] (4.9)

where 𝑟𝑡, 𝑏𝑡, 𝑟̇𝑡, are the measured range, bearing, and Doppler-derived range rate respectively

at time 𝑡, and 𝑒𝑡 ~ 𝑝𝑒(⋅) is a white noise multivariate Gaussian process that characterized the

measurement noise or error with statistics:

𝑐𝑜𝑣(𝑒𝑡) ≜ 𝑅𝑠 = 𝑑𝑖𝑎𝑔(𝜎𝑟
2, 𝜎𝑏

2, 𝜎𝑑
2). (4.10)

Also,

4.3 Sensor Data Fusion

37

ℎθ(𝑥𝑡) = [

ℎ𝑟(𝑥𝑡)

ℎ𝑏(𝑥𝑡)

ℎ𝑑(𝑥𝑡)
] =

[

 √(𝑥𝑡

𝑐)2 + (𝑦𝑡
𝑐)2

arctan((𝑦𝑡
𝑐 𝑥𝑡

𝑐⁄)

(
𝑥𝑡

𝑐⋅𝑣𝑥𝑘+𝑦𝑡
𝑐⋅𝑣𝑦𝑘

√(𝑥𝑡
𝑐)2+(𝑦𝑡

𝑐)2
)
]

. (4.11)

Care must be taken to ensure that a four-quadrant arctangent function must be used to avoid

ambiguities and acquire a proper estimate of the target position. It is also important to note

that not all sensors use all three kinematic measurements described above. For example,

optical sensors only provide bearing information, but with much higher accuracy. Long-range

surveillance radars only measure rage and bearing, and sometimes range rate, but cannot be

extended to include elevation in 3D models as mentioned earlier [100]. The measurement

equation at time 𝑡 for an optical sensor therefore takes only the bearing component in 𝑏𝑜𝑝𝑡,𝑡

and can be expressed as [101]:

𝑦𝑜𝑝𝑡,𝑡 = 𝑏𝑜𝑝𝑡,𝑡 = ℎ𝑜𝑝𝑡,𝜃(𝑥𝑡) + 𝑒𝑜𝑝𝑡,𝑡 (4.12)

ℎ𝑜𝑝𝑡,𝜃(𝑥𝑡) = arctan((𝑦𝑡

𝑐 𝑥𝑡
𝑐⁄) (4.13)

where 𝑒𝑜𝑝𝑡,𝑡~ 𝒩(0, 𝜎𝑜𝑝𝑡
2) is also AWGN with the distinction that 𝜎𝑜𝑝𝑡

2 ≪ 𝜎𝑏
2.

4.3 Sensor Data Fusion

When gathering data from multiple sensors, we must describe what are known as a multi-

source measurement models. First, we will discuss basic assumptions and then specify the

multi-sensor likelihood functions that will be used to describe the uncertainty in the fused

data measurements. Suppose we have a total of 𝑠 sensors each with its own sensor tag 𝑗 =
{1,… , 𝑠}, then the multi-sensor measurement space is the disjoint union

𝒴0 = 𝒴
1

0 ⨄…⨄𝒴
𝑠

0 (4.14)

where 𝒴
𝑗

0 corresponds to measurement space for 𝑗th sensor. In practice for tracking

applications, the sensors themselves are described by a state vector. If for example, a

sensor is on an airborne surveillance aircraft or UAV then we could describe the sensor state

as 𝑥∗ = (𝑥𝑠 , 𝑦𝑠, 𝑣𝑥
𝑠 , 𝑣𝑦

𝑠, 𝜔𝑠, ℓ𝑠, 𝜇, 𝜒). Here (𝑥𝑠, 𝑦𝑠) are the position parameters, (𝑣𝑥
𝑠 , 𝑣𝑦

𝑠) are

the corresponding velocities, 𝜔𝑠 is the turn radius, ℓ𝑠 is the fuel level, 𝜇 represents the

sensor’s current mode, and 𝜒 represents the currently selected datalink channel used for

transmission for the particular sensor. Now that this has been established, we can define the

joint state space for all sensors as

𝜉0 = 𝜉
1

0 ⨄…⨄𝜉
𝑠

0 (4.15)

4 System Modeling and Data Fusion

38

where 𝜉
𝑗

0 ∋ 𝑥
𝑗
∗ is the state space for the 𝑗𝑡ℎ sensor. In a multi-sensor multi-target system, it is

common in control theory to regard the evolution of the targets and sensors as a joint

stochastic process described in an augmented state variable 𝜍 = (𝑥, 𝑥∗) [55].

Now that basic assumptions have been established, we can explore techniques for processing

measurement from multiple sensors. For simplicity, let’s assume we have two sensors that

generate statistically independent observations 𝑦
1

𝑡 ∈ 𝒴
1

0 and 𝑦
2

𝑡 ∈ 𝒴
2

0 that have the same

sampling time. Under the assumptions from the previous section (4.8-4.10) and expanding on

the notation from 2.5c we can express the corresponding sensor likelihood functions for the

𝑗𝑡ℎsensor as 𝑝𝜃 (𝑦
𝑗

𝑡|𝑥𝑡)~ 𝒩(ℎ
𝑗

𝜃(𝑥𝑡), 𝑅𝑠,𝑗). Then the process of measurement fusion can be

done recursively through the Bayesian update equation by processing one measurement and

then the next:

 𝑝𝜃 (𝑥𝑡+1|𝑌0:𝑡, 𝑦
1

𝑡+1) ∝ 𝑝𝜃 (𝑦
1

𝑡+1|𝑥𝑡+1) ⋅ 𝑝𝜃(𝑥𝑡+1|𝑌0:𝑡) (4.16𝑎)

 𝑝𝜃 (𝑥𝑡+1|𝑌0:𝑡, 𝑦
1

𝑡+1, 𝑦
2

𝑡+1) ∝ 𝑝𝜃 (𝑦
2

𝑡+1|𝑥𝑡+1) ⋅ 𝑝𝜃 (𝑥𝑡+1|𝑌0:𝑡, 𝑦
1

𝑡+1) (4.16𝑏)

Where we have defined 𝑌0:𝑡 = {𝑦
1

0:𝑡, 𝑦
2

0:𝑡} ∈ 𝒴0 to be all the measurements available at time 𝑡

from both sensors. This process can be repeated for additional sensors.

If the samples are gathered at the exact same time then another way this can be done is by

updating the state using the joint measurement likelihood:

𝑝𝜃 (𝑦
1

𝑡+1, 𝑦
2

𝑡+1|𝑥𝑡+1) ≜ 𝑝𝜃 (𝑦
1

𝑡+1|𝑥𝑡+1) ⋅ 𝑝𝜃 (𝑦
2

𝑡+1|𝑥𝑡+1) (4.17)

To see how we can formulate this joint measurement model for our problem, let’s first

assume that samples from both sensors are gathered at the same time and consider the joint

measurement model:

(
𝑦
1

𝑡

𝑦
2

𝑡

) = (
ℎ
1

𝜃(𝑥𝑡)

ℎ
2

𝜃(𝑥𝑡)
) + (

𝑒
1

𝑡

𝑒
2

𝑡

) (4.18)

where we assume that the joint correlation matrix 𝑅𝑠𝑠 of 𝑒
1

𝑡 and 𝑒
2

𝑡 is known. In our case since

the sensors generate statistically independent variables (this must not always be the case) we

have

𝑅𝑠𝑠 = [
𝑅𝑠,1 0

0 𝑅𝑠,2
] (4.19)

which can be justified by using the mathematics of Gaussians. We can, therefore, express the

joint measurement update equation as a single multivariate Gaussian as:

4.3 Sensor Data Fusion

39

𝑝𝜃 (𝑦
1

𝑡+1, 𝑦
2

𝑡+1|𝑥𝑡+1) ∽ 𝒩(ℎ𝜃, 𝑅𝑠𝑠) (4.20)

where

ℎ𝜃 = (
ℎ
1

𝜃(𝑥𝑡)

ℎ
2

𝜃(𝑥𝑡)
) (4.21)

These results can be generalized for situations where more sensors are added (or removed),

even when they differ in their dimensions or measurement spaces. By repeating the process

just explained we can express the fused measurement equation for a (finite) number of

𝑠 sensors as

(

𝑦
1

𝑡

⋮

𝑦
𝑗

𝑡

⋮

𝑦
𝑠

𝑡)

=

(

ℎ
1

𝜃(𝑥𝑡)
⋮

ℎ
𝑗

𝜃(𝑥𝑡)
⋮

ℎ
𝑠

𝜃(𝑥𝑡))

+

(

𝑒
1

𝑡

⋮

𝑒
𝑗

𝑡

⋮

𝑒
𝑠

𝑡)

(4.22)

The covariance matrix (4.14) can also be expanded in a similar fashion:

𝑅𝑠𝑠 =

[

𝑅𝑠,1𝑠 ⋯ 0 ⋯ 0

⋮ ⋱ 0 0 ⋮
0 0 𝑅𝑠,𝑗 0 0

⋮ 0 0 ⋱ ⋮
0 ⋯ 0 ⋯ 𝑅𝑠,𝑠]

(4.23)

where we again assume that all sensors have the same sampling time.

In the simulations to follow we will neglect all elements of the sensor states 𝑥
𝑗
∗except the

position elements (𝑥𝑠, 𝑦𝑠) which will be held constant. It is straightforward to generalize the

algorithms to incorporate all the information contained in each 𝑥
𝑗
∗ as needed. If for example,

using an airborne radar or on a ship moving across the ocean. An example of a system where

these techniques would be required is shown in Figure 4.1 which shows a naval vessel with an

integrated mast containing multiple heterogeneous sensors.

4 System Modeling and Data Fusion

40

Fig. 4.1. A photo of a Thales integrated mast, seen on top of the naval vessel, containing all major

radars, sensors, and antennas.

5 Simulations and Results

This chapter provides the presentation and discussion of simulations done in MATLAB and

their results. The purpose of these simulations is to illustrate the capabilities of the work in

Chapters 3 and 4 to address the three primary objectives of this thesis described in the

introduction. The first is the effectiveness of the system identification techniques, presented in

the previous chapter for training JMNLS. The second thing is to show the suitability of these

JMNLS for the classification of dynamic object behavior while providing modularity. Section

5.1 will give an example of the learning phase, while section 5.2 gives three examples of joint

tracking and behavior classification with different sensor configurations.

5.1 Parameter Learning

In this section, an example will be given to examine and illustrate the capabilities of

Algorithm 7 for system identification in target tracking.

5.1.1 Computing Closed-Form Maximizers

In the case of the dynamic motion models defined in the previous chapter, it is possible to

find closed-form maximizers, and this will aid in speeding up simulations in the next section.

We will assume that we are only estimating the transition probabilities and the process noise

parameters since the noise characteristics of a sensor system are typically known in practice.

Those parameters do not need to be estimated, but an extension to evaluate them is trivial.

Let us now take a special case of (3.1), and find a closed-form maximizer Λ(⋅). Assume that

the system is of the separable form

 𝑥𝑡+1 = 𝑓𝜃(𝑥𝑡, 𝑟𝑡+1) + 𝑣𝜃,𝑡(𝑟𝑡) (5.1𝑎)

𝑦𝑡 = ℎ𝜃(𝑥𝑡) + 𝑒𝑡 (5.1𝑏)

where 𝑣𝜃,𝑡(𝑟𝑡)~𝒩(0, 𝑅𝑣(𝑟𝑡)), 𝑓𝜃: ℝ𝑛𝑥 ⟶ ℝ𝑛𝑥, ℎ𝜃: ℝ𝑛𝑥 ⟶ ℝ𝑛𝑦, and let 𝑟𝑡 ∈ 𝒮 =
{1, 2, 3, … , 𝑠}. More specifically, we will assume that the unknown process noise covariance

matrix 𝑅𝑣(𝑟𝑡) can be expressed in the following form:

𝑅𝑣(𝑟𝑡) = 𝜎(𝑟𝑡)
2 𝑅𝑄 (5.2)

where 𝑅𝑄 ∈ 𝕊+
𝑛𝑥 (symmetric positive semi-definite, 𝑛𝑥 × 𝑛𝑥) and 𝜎(𝑟𝑡)

2 are the individual

unknown noise variances. The measurement noise distribution 𝑝𝑒(∙) and its parameters are

assumed to be known, but this need not be the case and the derivations to come can easily be

generalized to include them as unknowns in a straightforward manner. The set of unknown

parameters, therefore, contains only the process noise parameters and the TPM, so we have

5 Simulations and Results

42

𝜃 = ({𝜃(𝑟𝑡)}𝑟𝑡=1
𝑠 , Π) ⊆ Θ, where in this case 𝜃(𝑟𝑡) = 𝜎(𝑟𝑡)

2 . In the case of this example, it is

possible to find a closed form maximizer Λ(⋅) since the process noise 𝑣𝜃,𝑡(𝑟𝑡) is Gaussian and

because only (3.18) is dependent on the transition probabilities 𝜋𝑖𝑗. Lastly, we assume that we

have prior densities 𝑝𝜃(𝑟1
𝑖)~𝒰(0,1) and the initial state 𝑥0 is fully known.

We proceed by first recognizing that the gradient for Υ1̂ vanishes and does not contribute to

finding a maximizer since 𝑝𝜃(𝑟1
𝑖)~𝒰(0,1). The argument is similar for why the MLE is equal

to the MAP estimator with a uniform prior. The second component Υ2̂ also vanishes since the

state is fully known (i.e., let 𝑝(𝑥𝑡
𝑖|𝑟𝑡)~𝒩(𝑥0, 0(𝑛𝑥×𝑛𝑥)).

Moving on to the third component, recall that 𝒮 is the set of all modes. We can then find the

maximizer for the transition probabilities 𝜋̂𝑖𝑗 by solving an equivalent constrained

optimization problem:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑝𝑖𝑗

 ∑∑Ψ𝑖𝑗

𝑗∈𝒮𝑖∈𝒮

log 𝜋𝑖𝑗

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑𝜋𝑖𝑗 = 1,

𝑗∈

 ∀𝑖 ∈ 𝒮 (5.3)

 𝜋𝑖𝑗 ≥ 0, ∀(𝑖, 𝑗) ∈ 𝒮 × 𝒮

with

Ψ𝑖𝑗 = ∑ ∑ ∑ 𝑤𝑡|𝑁
𝑘𝑙

𝑁𝑝

𝑙=1

𝑁𝑝

𝑘=1

𝑁−1

𝑡=1

𝟙(𝑟𝑡
𝑘 = 𝑗)𝟙(𝑟𝑡

𝑙 = 𝑖) (5.4)

It can be shown that if Ψ𝑖𝑗 ∈ ℝ+ ∀(𝑖, 𝑗) ∈ (𝒮 × 𝒮) then

𝜋̂𝑖𝑗 =
Ψ𝑖𝑗

∑ Ψ𝑖𝑘𝑘∈𝒮
, ∀(𝑖, 𝑗) ∈ (𝒮 × 𝒮) (5.5)

is a maximizer for (5.3). This is the usual maximizer for HMMs [78]. The proof is included in

Appendix C for completeness.

For calculating Υ4̂ will make use of the following two identities in the following derivations

(see [47]). Suppose 𝜙 ∈ ℝ𝑝 and A(𝜙) ∈ ℝ𝑛×𝑛, then

𝜕

𝜕𝜙𝑘
log det [Α(𝜙)] = 𝑡𝑟𝑎𝑐𝑒 (Α−1(𝜙)

𝜕

𝜕𝜙𝑘
Α(𝜙)) (5.6)

5.1 Parameter Learning

43

and

𝜕

𝜕𝜙𝑘
Α−1(𝜙) = −Α−1(𝜙)

𝜕

𝜕𝜙𝑘
Α(𝜙)Α−1(𝜙). (5.7)

Where we define 𝜕Α−1(𝜙)/𝜕𝜙𝑘 ∈ ℝ𝑛×𝑛 as the matrix with element [𝑖, 𝑗] as 𝜕[Α−1(𝜙)]𝑖𝑗/

𝜕𝜙𝑘. Also to simplify the notation, we will let 𝟙𝑟𝑡(𝑟𝑡+1
𝑗

) = 𝟙(𝑟𝑡+1
𝑗

= 𝑟𝑡) for some 𝑟𝑡 ∈ 𝒮.

The fourth component Υ4̂ deals with finding the process noise parameters, since we have a

Gaussian Markov transition density 𝑝𝜃 where we have assumed the process noise parameters

𝜃(𝑟𝑡) = 𝜎𝑟𝑡
2 are unknown. By construction, we have

𝑝𝜃(𝑥𝑡+1
𝑗

|𝑥𝑡
𝑖, 𝑟𝑡+1

𝑗
) ~ 𝒩(𝑓𝜃(𝑥𝑡

𝑖 , 𝑟𝑡+1
𝑗

), 𝑅𝑣(𝑟𝑡+1
𝑗

)), so we can evaluate (3.17d) explicitly:

∇𝜃Υ4̂ = ∑ ∑ ∑ 𝑤𝑡|𝑁
𝑖𝑗

𝑁𝑝

𝑗=1

𝑁𝑝

𝑖=1

𝑁−1

𝑡=1

∙
𝜕

𝜕𝜃

[

log

exp (−
1
2 (𝑥𝑡+1

𝑗
− 𝑓𝜃(𝑥𝑡

𝑖 , 𝑟𝑡+1
𝑗

))
𝑇

𝑅𝑣
−1(𝑟𝑡+1

𝑗
) (𝑥𝑡+1

𝑗
− 𝑓𝜃(𝑥𝑡

𝑖 , 𝑟𝑡+1
𝑗

)))

√(2𝜋)𝑛𝑥 det 𝑅𝑣(𝑟𝑡+1
𝑗

)
]

 (5.8)

Each component of the gradient can be computed individually. To make the calculations

easier, we exploit the structure of the covariance matrix (5.2) and factor out the noise

parameter and maximize (3.17d) directly for each mode 𝑟𝑡 ∈ 𝒮:

∇𝜃Υ4̂ = ∑ ∑ ∑ 𝑤𝑡|𝑁
𝑖𝑗

𝑁𝑝

𝑗=1

𝟙𝑟𝑡(𝑟𝑡+1
𝑗

)

𝑁𝑝

𝑖=1

𝜕

𝜕𝜎𝑟𝑡
2

𝑁−1

𝑡=1

[(−
1

2
𝜎(𝑥𝑡+1

𝑗
− 𝑓𝜃(𝑥𝑡

𝑖 , 𝑟𝑡+1
𝑗

))
𝑇
𝑅𝑣

−1(𝑟𝑡+1
𝑗

)

 ∙ 𝑅𝑣
−1(𝑟𝑡+1

𝑗
)(𝑥𝑡+1

𝑗
− 𝑓𝜃(𝑥𝑡

𝑖 , 𝑟𝑡+1
𝑗

))

 − log√(2𝜋)𝑛𝑥 det(𝑅𝑣(𝑟𝑡+1
𝑗

))]

= ∑ ∑ ∑ 𝑤𝑡|𝑁
𝑖𝑗

𝑁𝑝

𝑗=1

𝟙𝑟𝑡(𝑟𝑡+1
𝑗

)

𝑁𝑝

𝑖=1

𝜕

𝜕𝜎𝑟𝑡
2

𝑁−1

𝑡=1

[−
1

2
(𝑥𝑡+1

𝑗
− 𝑓𝜃(𝑥𝑡

𝑖 , 𝑟𝑡+1
𝑗

))
𝑇

 ∙ 𝑅𝑣
−1(𝑟𝑡+1

𝑗
)(𝑥𝑡+1

𝑗
− 𝑓𝜃(𝑥𝑡

𝑖 , 𝑟𝑡+1
𝑗

))

5 Simulations and Results

44

 −
1

2
 (log(det 𝑅𝑣(𝑟𝑡+1

𝑗
)) − log(2𝜋)

𝑛𝑥
2)]

= ∑ ∑ ∑ 𝑤𝑡|𝑁
𝑖𝑗

𝑁𝑝

𝑗=1

𝟙𝑟𝑡(𝑟𝑡+1
𝑗

)

𝑁𝑝

𝑖=1

𝑁−1

𝑡=1

[−
1

2
(𝑥𝑡+1

𝑗
− 𝑓𝜃(𝑥𝑡

𝑖 , 𝑟𝑡+1
𝑗

))
𝑇

 ∙
𝜕

𝜕𝜎𝑟𝑡

𝑅𝑣
−1(𝑟𝑡+1

𝑗
)(𝑥𝑡+1

𝑗
− 𝑓𝜃(𝑥𝑡

𝑖, 𝑟𝑡+1
𝑗

))

 −
1

2

𝜕

𝜕𝜎𝑟𝑡
2

(log(det 𝑅𝑣(𝑟𝑡+1
𝑗

)))]

= ∑ ∑ ∑ 𝑤𝑡|𝑁
𝑖𝑗

𝑁𝑝

𝑗=1

𝟙𝑟𝑡(𝑟𝑡+1
𝑗

)

𝑁𝑝

𝑖=1

𝑁−1

𝑡=1

[
1

2
(𝑥𝑡+1

𝑗
− 𝑓𝜃(𝑥𝑡

𝑖, 𝑟𝑡+1
𝑗

))
𝑇
𝑅𝑣

−1(𝑟𝑡+1)

 ∙
𝜕

𝜕𝜎𝑟𝑡
2
𝑅𝑣(𝑟𝑡+1

𝑗
)𝑅𝑣

−1(𝑟𝑡+1
𝑗

)(𝑥𝑡+1
𝑗

− 𝑓𝜃(𝑥𝑡
𝑖 , 𝑟𝑡+1

𝑗
))

 −
1

2
𝑡𝑟𝑎𝑐𝑒 (𝑅𝑣

−1(𝑟𝑡+1
𝑗

)
𝜕

𝜕𝜎𝑟𝑡
2
𝑅𝑣(𝑟𝑡+1

𝑗
))]

= ∑ ∑ ∑ 𝑤𝑡|𝑁
𝑖𝑗

𝑁𝑝

𝑗=1

𝟙𝑟𝑡(𝑟𝑡+1
𝑗

)

𝑁𝑝

𝑖=1

𝑁−1

𝑡=1

 ∙ [
1

2
(𝑥𝑡+1

𝑗
− 𝑓𝜃(𝑥𝑡

𝑖 , 𝑟𝑡+1
𝑗

))
𝑇

𝑅𝑣
−1(𝑟𝑡+1

𝑗
)𝑅𝑄𝑅𝑣

−1(𝑟𝑡+1
𝑗

)

 ∙ (𝑥𝑡+1
𝑗

− 𝑓𝜃(𝑥𝑡
𝑖 , 𝑟𝑡+1

𝑗
)) −

1

2
𝑡𝑟𝑎𝑐𝑒(𝑅𝑣

−1(𝑟𝑡+1
𝑗

)𝑅𝑄)]

= ∑ ∑ ∑ 𝑤𝑡|𝑁
𝑖𝑗

𝑁𝑝

𝑗=1

𝟙𝑟𝑡(𝑟𝑡+1
𝑗

)

𝑁𝑝

𝑖=1

𝑁−1

𝑡=1

 ∙ [
1

2
(𝑥𝑡+1

𝑗
− 𝑓𝜃(𝑥𝑡

𝑖 , 𝑟𝑡+1
𝑗

))
𝑇 1

𝜎𝑟𝑡
4
𝑅𝑄

−1𝑅𝑄𝑅𝑄
−1

5.1 Parameter Learning

45

Where 𝐼(𝑛) is the 𝑛 × 𝑛 identity matrix and have used identities (5.1) and (5.2) in the last two

steps. Now by setting (5.10) equal to 0 and rearranging terms we arrive at a maximizer for

𝜎𝑟𝑡
2 :

𝜎𝑟𝑡
2 =

∑ ∑ ∑ 𝑤𝑡|𝑁
𝑖𝑗𝑁𝑝

𝑗=1
𝟙𝑟𝑡(𝑟𝑡+1

𝑗
)

𝑁𝑝

𝑖=1
𝑁−1
𝑡=1 [(𝑥𝑡+1

𝑗
− 𝑓𝜃(𝑥𝑡

𝑖 , 𝑟𝑡+1
𝑗

))
𝑇
𝑅𝑄

−1(𝑥𝑡+1
𝑗

− 𝑓𝜃(𝑥𝑡
𝑖 , 𝑟𝑡+1

𝑗
))]

𝑛𝑥 ⋅ ∑ ∑ ∑ 𝑤𝑡|𝑁
𝑖𝑗𝑁𝑝

𝑗=1
𝟙𝑟𝑡(𝑟𝑡+1

𝑗
)

𝑁𝑝

𝑖=1
𝑁−1
𝑡=1

. (5.10)

These closed-form maximizer Λ(⋅), composed of (5.5) and (5.10) will be used in the

simulation to follow.

5.1.2 Example 1: Training a Zig-Zag

Now an example will be presented to examine training step provided by Algorithm 7.

Due to constraints in computational power and memory, a linear measurement model 𝑦𝑡 =

𝑥𝑡 + 𝜉𝑡 where 𝜉𝑡 ~ 𝒩(0, Ξ), where Ξ = 𝑑𝑖𝑎𝑔(𝜎𝑥𝑥
2 , 𝜎𝑣𝑥

2 , 𝜎𝑦𝑦
2 , 𝜎𝑣𝑦

2) will be used to for the

training step. This relaxes the number of particles needed by reducing the variance for

accurate parameter estimation, as opposed to using the measurement models of the previous

chapter which are highly nonlinear.

For simplicity, assume the target is performing a “zig-zag” trajectory—the target will begin in

a straight pattern and alternate between the three modes creating the pattern in figure 5.1. The

first mode will correspond to a constant velocity model. The CT models to describe left and

right turns with known turn rates will be represented by the second and third modes

respectively. We assume that the system is coupled in the x and y directions for the CV model

so 𝜎𝑥
2 = 𝜎𝑦

2. These assumptions are summarized in Table 5.1.

 ∙ (𝑥𝑡+1
𝑗

− 𝑓𝜃(𝑥𝑡
𝑖 , 𝑟𝑡+1

𝑗
))

1

2
𝑡𝑟𝑎𝑐𝑒 (

1

𝜎𝑟𝑡
2
𝐼(𝑛𝑥))]

= ∑ ∑ ∑ 𝑤𝑡|𝑁
𝑖𝑗

𝑁𝑝

𝑗=1

𝟙𝑟𝑡(𝑟𝑡+1
𝑗

)

𝑁𝑝

𝑖=1

𝑁−1

𝑡=1

 ∙ [
1

2
(𝑥𝑡+1

𝑗
− 𝑓𝜃(𝑥𝑡

𝑖 , 𝑟𝑡+1
𝑗

))
𝑇 1

𝜎𝑟𝑡
4
𝑅𝑄

−1(𝑥𝑡+1
𝑗

− 𝑓𝜃(𝑥𝑡
𝑖 , 𝑟𝑡+1

𝑗
)) −

𝑛𝑥

2
𝜎𝑟𝑡

−2]. (5.9)

5 Simulations and Results

46

Table 5.1. Mode assignments

Mode

𝑟𝑡 ∈ 𝒮 = {1,2,3}
Model Turn rate (rad/s) Process noise (𝑚 𝑠2⁄)

𝑟𝑡 = 1 CV 0 𝜎1
2

𝑟𝑡 = 2 CT 𝜔𝐿 𝜎2
2

𝑟𝑡 = 3 CT 𝜔𝑅 𝜎3
2

 (a) zig-zag trajectory with particle clouds (b) smoothed mode estimates

Fig. 5.1. Trajectory and modes for parameter learning example

In the simulations to follow the closed form maximizers derived in the previous section will

be used for the M-step of the EM algorithm. For this simulation, a total of 𝑁𝑝 =

350 particles were used. The measurement noise was set to Ξ =
𝑑𝑖𝑎𝑔(3𝑚 𝑠⁄ , 2 𝑚 𝑠2⁄ , 5 𝑚 𝑠⁄ , 2𝑚 𝑠2⁄). The initial guesses for the true estimates were

chosen to be farther than 50% away from the true value, and are listed in table 5.2 and table

5.3 at the end of this section along with the estimated results. For illustration purposes, the

stopping criterion is not used in this example to show the convergence behavior of the EM

algorithm.

Below in Figure 5.2 the results for the process noise estimates can be seen. It can be seen that

estimates get quite close to the true value parameter values for both CT after 20 EM

iterations. For the CV model, it takes longer, getting closer to the true value around 80

iterations. Once the estimated value of 𝒬̂(𝜃, 𝜃𝑘) gets close enough to the true value, the

estimates start to hover around while fluctuating. The reason for this fluctuation is due to the

sampling nature of SMC methods (particle filters). Since we are approximating 𝒬(𝜃, 𝜃𝑘),

convergence to the true maximum is not feasible unless we let 𝑁𝑝 → ∞. Since an

approximation of is being calculated using SMC methods, this means the estimates 𝜃𝑘 can

also be seen as a stochastic process, and there is no guarantee that the new estimate will lead

to a local increase in approximate complete data log-likelihood 𝒬(𝜃, 𝜃𝑘) for every iteration.

Only if the exact value of 𝒬(𝜃, 𝜃𝑘) can be calculated will the EM algorithm be guaranteed to

converge to a local maximum [42]. Since every EM iteration new samples are generated, so is

5.1 Parameter Learning

47

a new estimate with the variance dependent on the type of SMC method employed. The error

of these estimates is limited by the variance of the approximated expectations (3.14a-3.14e),

which in turn are dependent on the empirical approximations of the marginal smoothed

densities in (3.9a-3.9e). As explained in [74] there are a number of factors that control the

variance of the Monte Carlo estimates. One of them being the choice of importance density.

Since we did not use the optimal importance density, this already caused a reduction in

estimation accuracy.

Fig. 5.2. Process noise estimates for 100 EM iterations

5 Simulations and Results

48

Table 5.2. Process noise estimates and true values (𝑚 𝑠2⁄)

Parameter 𝜎1
2 𝜎2

2 𝜎3
2

Estimated 3.6443 9.8366 10.6993

True Value 4 10 10

The estimated transition probabilities 𝜋𝑖𝑗 can be seen in Figure 5.3. As can be seen, the EM

algorithm arrived at an accurate estimate quite quickly after just a few iterations. These values

are quite close to the ground truth, and by careful observation, one can see that they make

sense intuitively for zig-zag trajectory which can go either straight or turn left or right.

Fig. 5.3. Estimates of transition probabilities 𝜋𝑖𝑗 for 100 EM iterations. Red line indicates the true

value and the black curves indicate the numerical approximations

5.2 Trajectory Classification

49

Table 5.3: Estimates of transition Probabilities and the true values (ground truth)

Transition Probabilities

 𝜋11

𝜋12

𝜋13

𝜋21

𝜋22

𝜋23

𝜋31

𝜋32

𝜋33

True value .95 .0250 .0250 .0323 .9677 0 .0323 0 .9677

Estimated .9521 .239 .240 .0355 .9645 0 .0242 0 .9758

As a final note in this section, it should be reiterated that although a linear measurement

model was used, this does not mean the training step cannot be done using a nonlinear

measurement model. This was in fact tested, but the results were quite inaccurate, using

anything less than 500 particles. As the number of particles was increased, simulations

showed estimates closer to their true value, but with limited memory, a cap was reached in

how many particles could be used. This issue here was the smoother, which requires storing

all the particles, their weights, and the transition probabilities 𝑝𝜃(𝑥𝑡+1
𝑗

|𝑥𝑡
𝑖 , 𝑟𝑡+1

𝑖) that are

necessary to compute the smoothed weights in both the numerator or denominator of (3.12).

These values had to be either stored or recomputed, both having negative consequences on

available memory storage or runtime. An example using a nonlinear measurement model can

be found in Appendix B for illustration purposes.

5.2 Trajectory Classification

This section will cover the testing and evaluation of the joint tracking and classification

algorithm (8) proposed in section 3.4 with three examples. In each example, the tracking of

the object in motion will be illustrated to give a picture of the trajectory in question. Tracking

performance is outside the scope of this thesis, and therefore will not be considered further.

Afterward, the posterior class probabilities, the primary quantity of interest, will be carefully

considered. In the first two examples, only one sensor will be assumed to be gathering

measurements, and in the final example, two extra sensors will be added to the system to

illustrate the ease of modularity without the need for retraining. The added sensors will have

different noise characteristics, and one of them will be placed at a separate location.

In the work to follow, three classes 𝜑𝑘 of trajectories will be considered. These classes are

shown in Figure 5.4. Trajectories (a) and (b) are relatively straightforward. Trajectory (c)

must be studied with caution since this pattern consists of an alternating sequence of turn,

straight and turn in the opposite direction. It is evident that this same sequence of modes, can

also create a "figure eight," by increasing the turn rate or the amount of time spent in each

turning mode. Using similar reasoning, by alternating the turn rate, a "weave" pattern can be

formed such as those typical of fishing boats continuously sweeping a small area. For the

work in this thesis, the trajectories have been chosen to be distinct enough that no overlap

occurs as this would unnecessarily complicate the problem at hand–how to distinguish more

closely related trajectories will be discussed in Chapter 6. The concept is that there is some

ambiguity in specific trajectories, and Algorithm 7 will reflect this by estimating similar

transition probabilities. In the simulations to follow, each model was trained using 350

particles and running 10 Monte Carlo averages. For the JTC portion, each one of the parallel

filters will run with 15,000 particles each. The reason for the drastic increase in the number of

5 Simulations and Results

50

particles is that filtering performed without smoothing reduces the amount of memory

required since it is an online process and storing the data is not necessary. The computational

complexity is also significantly reduced allowing for shorter simulation times. This allowed

for a more considerable amount of particles to be used in the JTC phase.

Fig. 5.4. Graphical representation of the classes of trajectories

5.2.1 Example 2: Straight Line

Let us first consider an example where we aim to classify the behavior of an object moving

with a constant heading such as an airliner (class 1). The trajectory and filter output

corresponding to class for the correct class and the filtered mode sequences are shown in

Figure 5.6. Here we assume the target is being tracked by two sensors: one radar and one

optical sensor (bearing only) placed at the origin. Their noise characteristics are 𝜎𝑟,1
2 =

15 𝑚, 𝜎1,𝑏
2 = 10 𝑚𝑟𝑎𝑑 , 𝜎1,𝑑

2 = 5 𝑚/𝑠 for the radar, and 𝜎𝑜𝑝𝑡
2 = 1 𝑚𝑟𝑎𝑑 for the optical

sensor. The object is first detected at a distance of approximately 56.5 km away heading

northeast (away from the radar) at a speed of approximately 885 km/h (550 mph), the typical

speed of a subsonic airliner at cruising altitude. In this example, the trajectory carried out by

the airliner is assumed to belong to one of three classes defined in table 5.4. Assume a

sampling interval of 𝑇 = .5 𝑠. For simplicity, the initial state is assumed to be fully known,

and the plane is first detected at 𝑥0 = [40 × 103𝑚, 175 𝑚 𝑠⁄ , 40 × 103𝑚, 175 𝑚 𝑠⁄]𝑇 . As a

reminder, each particle filter will run with 𝑁𝑝 = 15,000 particles (per class). The initial mode

and class probabilities will both be uniformly distributed so that: 𝑃0(𝜑𝑘)~𝒰(0,1) and

𝑝𝜃(𝑟0, 𝜑𝑘) ~𝒰(0,1). Lastly, the plane will be constrained to turn rates 𝜔𝐿 = 𝜔𝑅 = .25 𝑟𝑎𝑑/
𝑠.

 Table 5.4. Class assignments 𝜑𝑘

Class (𝑘) 1 2 3

trajectory straight holding pattern weave or zig-zag

5.2 Trajectory Classification

51

Fig. 5.5. Straight constant velocity trajectory

Looking at Figure 5.5, one will notice slight adjustments in heading. This is typical behavior

of an airliner, as the inaccuracy of avionics, turbulence, crosswinds and other factors such as

the curvature of the earth do not allow for a constant heading to reach a target destination.

While in flight, corrections have to be made every so often to ensure a more direct path.

Therefore, for the straight class 𝜑1, the model was trained using data of trajectories that made

slight adjustments in heading while maintaining an overall straight path. Another advantage

of this is that if a model is trained with no turns, then naturally all probabilities of mode

transitions to left and right turns will be estimated to be zero, or close to it. This could cause

potential issues depending on the type of particle filter being used especially during mode

transitions. The lack of sufficient particles could cause all the particles to go into the straight

mode when a turn is occurring due to the sampling nature of SMC methods. If few or no

particles are in the turning modes, then the filter will diverge and fail to track the target. An

alternative is to use a more efficient particle filter where the particles are fixed in each mode.

This will be discussed further In Chapter 6. For now, we train the models allowing for

infrequent small turns to overcome depletion issues typically encountered by the multiple

model bootstrap filter [102].

5 Simulations and Results

52

(a)

(b)

Fig. 5.6. System outputs for a (nearly) straight trajectory. (a) filtered mode estimates (b) posterior

class probabilities

By analyzing Figure 5.6 closely, we can see that the classifier initially goes through a period

of confusion since the object initially begins in a straight line, which could potentially be any

one of the three classes. As class 1 begins to rise in probability, there is a slight dip with a

corresponding rise in class 2. This is expected since the first turn is slightly left and looking at

the filtered modes around the first turn we can see that class two has a precise point estimate

of nearly 2 (turn left), therefore making it the most accurate class. As more samples are

processed, the posterior class probability rises steadily to its true class, namely a straight

trajectory. Another important thing to note is that although both class 3 and class 1 accurately

estimate the switch to mode three, we see that class 1 reacts more quickly to return to a

straight trajectory as expected. This occurs because the transition probabilities for staying in a

turn mode are much higher for zig-zag since it has longer turns.

5.2 Trajectory Classification

53

5.2.2 Example 3: Zig-Zag

For further illustration, now consider the behavior of an airliner with the same assumptions,

but this time let us analyze a zig-zag trajectory, pictured below in Figure 5.7.

Fig. 5.7. Zig-zag pattern trajectory

In this situation, we can now face a similar problem as before where one of the filters can

diverge. In this situation since we have both left and right turns, the filter for the model

corresponding to class 2 can be problematic. Since a holding pattern (as we have defined it in

this work) only turns in one direction (left), the estimated probabilities for turning in the

opposite direction (right), are either zero or extremely low. If the probability of switching into

a turn mode is .005 for example, then with 15,000 particles that leaves on average only 75

particles to cover the mode switching. Again, we increase these probabilities slightly to avoid

the filter from diverging. This is not an optimal solution, but for these simple “toy” examples,

it does not have a drastic impact on performance. A better solution will be suggested in

Chapter 6.

The posterior class probabilities and mode estimates are shown in Figure 5.8 below. This time

we see more a decisive action from the classifier since the zig-zag trajectory is the only class

that contains sustained right turns (mode 3). Initially starting in a straight heading, all three

classes have a high probability of being the true class as we can see they all struggle against

each other. As in the last example when going straight, class one has a higher probability

since it has the highest weight of staying in mode 1 (𝜋11). As the target approaches the first

turn, the holding pattern takes the lead as can be seen from the filtered mode estimates, class 1

and three overshoot the true mode (2), also causing a poor estimate of the true state (see

trajectory above). One can easily see that on the second turn, class 2 fails to detect the turn,

and likely had no particles in mode 3 (turn right), choosing instead mode two causing the

posterior class probability to decline drastically and allowing the true class to take the lead.

After two turns, we see that the zig-zag is correctly classified permanently with a high degree

5 Simulations and Results

54

of accuracy. From this, we could infer that classification performance is directly affected by

how distinct the classes are from each other.

(a)

(b)

Fig. 5.8. System outputs for a zig-zag pattern trajectory. (a) filtered mode estimates (b) posterior class

probabilities

5.2.3 Example 4: Holding Pattern With Two Added Sensors

In this example, a third sensor (radar) is incorporated at a position about one kilometer away

from the original two sensors for a total of three sensors gathering measurements. The new

location is contained in the sensor state 𝑥
3

∗ = (200𝑚, 1000𝑚). The noise characteristics for

this new sensor are 𝜎2,𝑟
2 = 10 𝑚, 𝜎2,𝑏

2 = 5 𝑚𝑟𝑎𝑑 , 𝜎2,𝑑
2 = 3 𝑚/𝑠, for range, bearing and

Doppler respectively. Notice these parameters are different from those of the first radar

5.2 Trajectory Classification

55

sensor. Suppose now that a target is being observed at a distance in a holding pattern as

shown in Figure 5.9. The same initial conditions from the previous two examples hold here.

Fig. 5.9. Holding Pattern

As can be seen from Figure 5.9, the object in motion initially undergoes straight motion then

performs a left turn, and this process repeats a few times so that it stays circling the same

general area. Therefore we expect the system to classify the trajectory as a holding pattern

which is indeed the case as shown in Figure 5.10b. The filtered mode estimates are also

shown for convenience. If we look at the filtered mode sequences, it is easy to see that the

output sequence from the filter for class two (shown in red) most closely follows the true

trajectory, which never enters mode three (turn right). A closer look reveals that the mode

estimates for class two are most accurate when the system is in mode two. This is be

explained by the fact that during training, the holding patterns received a slightly lower

probability of staying in straight motion of about .92, while class three had a higher estimated

probability of about .98. Therefore, when in straight motion the two class probabilities moved

towards each other, while when turning, they moved away from each other as

𝑃(𝜑2|𝑡|𝑦0:𝑡) tended to one. Since the target started in straight motion, initially as expected

𝑃(𝜑1|𝑡|𝑦0:𝑡) was the highest, but shortly tended to zero as the first turn took place, never

coming back. An important note is that the class probabilities approach zero and are very

small values but do not equal zero. Due to the recursive nature of (3.26), once the class

probabilities are very low, it is difficult for them to rise again and care should be taken to

address this issue in practice.

Initial position

5 Simulations and Results

56

(a)

(b)

Fig. 5.10. System outputs for a holding pattern trajectory. (a) filtered mode estimates (b) class

posterior probabilities.

6 Conclusions

6.1 Summary and Contributions

A novel method for classifying target behavior based on measurements from multiple sensors

was proposed here. Put concisely, the purpose of this work was to investigate whether JMS

were suitable for distinguishing trajectories, which in turn allows us to classify behavior.

Training of hidden Markov models where the state space is discrete (DHMM) is well

explored in the literature. As mentioned in Chapter 1, classification based on training of

DHMMs in not new, and is widely used in many applications dating back to the 1970's. The

first main contribution of this work can be illustrated through the use of dynamic Bayesian

networks. The reader unfamiliar with these probabilistic graphical models is referred to [103]

as an in-depth reference. The methods proposed in this thesis extend the classical methods

used to train DHMMs shown in figure 6.1(a) to the Bayesian network shown in figure 6.1(b).

These graphs give a high-level probabilistic representation of the relationship between the

latent (hidden) variables and the observed data in HMMs. One can immediately see the

difference by comparing this network to that of figure 6.1(a). The added continuous latent

variable node in the graphical model called for the simultaneous sequential estimation of both

the state variables 𝑥𝑡 and the discrete mode 𝑟𝑡 in the hybrid state space. This is in contrast to a

DHMM where the unobserved process is solely composed of a discrete random variable in a

finite state space. This problem was addressed via multiple model particle filters and

smoothers.

(a) DHMM

 (b) Hybrid system (JMS)

Fig. 6.1. Bayesian Networks

The second contribution of this thesis is that a novel method for jointly tracking and

classifying dynamic object behavior using multi-sensor data was developed. It was shown in

6 Conclusions

58

the previous chapter that trajectories can indeed be recognized using a bank of particle filters,

each corresponding to a specific class characterized by its unique transition matrix.

The third contribution of this thesis is the proposed solution addresses the requirement that

the sensor system must be modular, in the sense that adding new sensors to the network

should not require retraining or changes that deviate greatly from the original design. In the

simulations, a scenario where two sensors were added, required simply making a slight

adjustment to the measurement model and processing and did not require another training

phase. This clearly met the goal of system modularity regarding sensor configuration.

Finally, the last contribution of this work is that simulations were carried out to validate these

theoretical formulations. The simulations in section 5.1 showed that the techniques for system

identification proved to be a suitable approach for estimating the parameters of dynamic

stochastic systems with jumps. The simulations of the JTC scheme in section 5.2 showed

promising results for classifying targets' special-temporal behavior based trajectory analysis

from measurements from multiple sensors. In these examples, the proposed JTC scheme,

using a Bayes classifier, quickly reacted to changes when the target changed its behavior. In

the last example, simulations showed that the addition of an extra sensor required only the

processing of additional measurements using a similar measurement model that had different

noise characteristics. All of this culminates to one crucial point: JMNLS is a suitable class of

models for trajectory recognition using multi-sensor data.

6.2 Future work and Improvements

A discussion of potential improvements will be given here. The following observations and

suggestions can be made naturally by examining the assumptions and results from the

previous chapter:

 In the simulations, only 3-4 models were used, and many simplifying assumptions

were made. For starters, the turn rate omega is typically not known in practice and

should be added to the state vector.

 The multiple-model bootstrap particle filter implemented is inefficient due to the

suboptimal proposal distribution. This required a higher number of particles to avoid

divergence, which drastically increases the number of floating-point operations. One

approach to combat this issue would be to implement a more efficient particle filter

which fixes the number of particles in each mode (see, e.g., [102]). Alternatively, one

can take advantage of the structure of JMNLS proposed in [78], where the authors

present an online EM algorithm Rao-Blackwellized particle filter to marginalize the

mode out analytically and reduce estimation error variance.

 The measurement models used in simulations assumed a constant noise variance. In

practice, the measurement noise will vary under different conditions. The range

measurement, for example, will have a higher variance the farther the target is away

from the radar, and this should be accounted for. The reason for this is that the farther

away the target is from the radar, the longer the pulsed wave has to travel and the

lower the received power at the receiver. This in turn decreases the SNR at the

receiver, leading to less accurate measurements. In these low SNR environments, a

track-before-detect scheme could be an alternative solution.

6.2 Future work and Improvements

59

 Regarding the random error in the parameter estimates in section 5.1, due to the

stochastic nature of SMC methods and the approximation of the complete data log-

likelihood 𝒬(𝜃, 𝜃𝑘), it is desirable to investigate a suitable stopping criterion for the

EM algorithm. Although the stopping criterion chosen in this work was based on the

work in [55] which showed reasonable performance, it is generally only been shown

to be effective when 𝒬(𝜃, 𝜃𝑘) can be calculated exactly. This could lead to poor

performance in practice. Therefore, it is suggested for future work to investigate a

more optimal stopping criterion (see, e.g., [42] for one such proposal).

Future work to follow could be aimed in many directions. The first one to discuss is

computational efficiency. Recall one of the primary requirements of this work was to provide

a solution that required relatively short training times. Here we showed that training JMS did

not require large amounts of data which in itself can reduce training times, but we cannot

overlook the fact that smoothing is a computationally expensive process. Therefore, in the

training phase, the computation of the smoothed marginal densities, being the main culprit,

would be the most impactful place to begin looking for improvements. Recall, that the

FFBSm smoothing algorithm, which eradicates the path degeneracy problem entirely, has a

convergence rate of 𝒪(𝑁𝑁𝑃
2), can be quite costly as the number of particles increases. One

might naturally think to replace this smoother with a conventional fixed-lag smoother, but this

will not perform as well regarding variance reduction. The FFBSi and PaRIS algorithms

mentioned in 2.7 are two potential candidates. FFBSi having a complexity of 𝒪(𝑁𝑃
2) would

only have a marginal increase in performance. Following [64], this rate can be reduced to

𝒪(𝑁𝑃), by employing an accept-reject approach, under the weak assumption that the

transition kernel is uniformly bounded. The FFBSi although computationally cheaper than the

FFBSm, comes at the cost of reduced accuracy (higher variance) due to the simulation of

backward trajectories. The PaRIS algorithm [66] [104] on the other hand was shown to have

the same complexity 𝒪(𝑁𝑃) and performed as well as the FFBSm, with the advantage of

being an online fixed-lag algorithm which reduces memory requirements. At the time of this

writing, the author of this thesis proposed that PaRIS algorithm could be used to estimate the

required smoothed marginal densities for the calculations of the expectations in the EM

algorithm. Shortly before the completion of this thesis, it was discovered that authors in [79]

did just that—they proposed an EM-based recursive ML estimation scheme for NLJMS using

the PaRIS. The authors published their work during the timeframe of this master’s thesis,

which is why it was not found earlier. Their results showed near identical performance

compared to the batch FFBSm smoothers with the exception of the transition probabilities

which had a slight dependence on the number of backward samples needed.

Another area for potential expansion of this work would be to explore the adoption of semi-

Markov models and stochastic context-free grammars (SCFG). Beginning with the former,

recall from Chapter 1, a hidden semi-Markov models allow the unobservable process to be

governed by a Markov renewal process, allowing for an arbitrary sojourn time. By contrast in

a hidden Markov model, the sojourn time is exponentially distributed by construction. As

mentioned, this has previously been exploited in [37] in a JTC scheme to classify targets

based on their maneuverability. This behavior was characterized by the corresponding semi-

Markov model the target was most likely to be following. Using this more general class of

models for trajectory analysis could bring for some promising results since semi-Markov

models have a more descriptive representation of the real underlying process.

6 Conclusions

60

Lastly, SCFGs were considered by the author as a potential direction for future work. One

main advantage of SCFGs is that they can model more complex trajectories and they have a

higher predictive capacity than HMMs. The latter is measured by a reduction in entropy (see

Appendix C). The authors in [104] form a generalization where a multiple model particle

filter can be used with SCFGs. Their aim in their paper is also the classify anomalous

trajectories to aid a human operator, and they present two examples in radar tracking. They

also improve their classification performance by combining SCFGs with a reciprocal Markov

process (RP) model. The latter of which performed rather poorly on its own. There was even

a mentioned of possibly using these methods on a network of sensors. The author of this

thesis was not aware of this publication until nearing the end of this writing; hence this work

was not mentioned in the related work section in Chapter 1.

References

[1] E. Blasch, C. Yang, I. Kadar, “Summary of Tracking and Identification

Methods,” Proc. SPIE, Vol. 9119, 2014.

[2] R. Soleti, L. Cantini, F. Berizzi, A. Capria and D. Calugi, "Neural Network for

polarimetric radar target classification," 2006 14th European Signal Processing Conference,

Florence, 2006, pp. 1-5.

[3] P. Zhang, L. Yang, G. Chen and G. Li, "Classification of drones based on micro-Doppler

signatures with dual-band radar sensors," 2017 Progress in Electromagnetics Research

Symposium - Fall (PIERS - FALL), Singapore, 2017, pp. 638-643.

[4] D. Habermann, E. Dranka, Y. Caceres and J. B. R. do Val, "Drones and helicopters

classification using point clouds features from radar," 2018 IEEE Radar Conference

(RadarConf18), Oklahoma City, OK, 2018, pp. 0246-0251.

[5] R. Gabler, W. Koch, “Detection and Tracking of Non-Cooperative Vessels,” NATO

Symposium on Port and Regional Maritime Security Proceedings, Lerici, Italy, May, 2012

http://publica.fraunhofer.de/eprints/urn_nbn_de_0011-n-2171262.pdf, accessed in June 2018.

[6] ’Warning over drones use by terrorists.’ http://www.bbc.co.uk/news/uk-england-

35280402, accessed in June 2018.

[7] S. Blackman and R. Popoli, Design and analysis of Modern Tracking

Systems, Norwood, MA: Artech House, 1999.

[8] R. S. Mamon, R. J. Elliott, Hidden Markov Models in Finance, New York: Springer,

2007.

[9] E. Barucci, C. Fontana, Financial Markets Theory, London: Springer-Verlag, 2017.

[10] R.J. Elliott, T.K.Siu, “Option pricing and filtering with hidden Markov-modulated pure-

jump processes,” Applied Mathematical Finance, vol. 20, no. 1, pp.1-25, 2013.

[11] A. Stuart. “Target Classification, Recognition and Identification with HF Radar,”

https://www.sto.nato.int/publications/STO%20Meeting%20Proceedings/RTO-MP-SET-

080/MP-SET-080-25.pdf , 2004, accessed in June 2018.

[12] Mahendra Mallick; Vikram Krishnamurthy; Ba-Ngu Vo, "Track-Before-Detect

Techniques," in Integrated Tracking, Classification, and Sensor Management:Theory and

Applications , 1, Wiley-IEEE Press, 2012, pp.768-

[13] Mahendra Mallick; Vikram Krishnamurthy; Ba-Ngu Vo, "Track-Before-Detect

Techniques," in Integrated Tracking, Classification, and Sensor Management:Theory and

Applications , 1, Wiley-IEEE Press, 2012, pp.768-

http://publica.fraunhofer.de/eprints/urn_nbn_de_0011-n-2171262.pdf
http://www.bbc.co.uk/news/uk-england-35280402
http://www.bbc.co.uk/news/uk-england-35280402
http://wcnjk.wp.mil.pl/plik/file/N_20130808_AAP6EN.pdf
http://wcnjk.wp.mil.pl/plik/file/N_20130808_AAP6EN.pdf
http://wcnjk.wp.mil.pl/plik/file/N_20130808_AAP6EN.pdf

References

62

[14] D. Wang, F. He, S. Maslov, M. Gerstein, “DREISS: Using State-Space Models to Infer

the Dynamics of Gene Expression Driven by External and Internal Regulatory Networks,”

PLoS Computational Biology, vol. 12, no. 10, 2016.

[15] M. W. Pedersen, C. W. Berg, U. H. Thygesen, A. Nielsen, H. Madsen, “Estimation

methods for nonlinear state-space models in ecology,” Ecological Modeling, vol. 222, no. 8,

pp. 1394-1400, Apr. 2011.

[16] Y. Zeng, S. Wu, State-Space Models: Applications in Econometrics and Finance, New

York: Springer Science & Business Media, 2013.

[17] G. Zhang and S. Godsill, "Fundamental Frequency Estimation in Speech Signals With

Variable Rate Particle Filters," in IEEE/ACM Transactions on Audio, Speech, and Language

Processing, vol. 24, no. 5, pp. 890-900, May 2016.

[18] Weiming Hu, Xuejuan Xiao, Zhouyu Fu, D. Xie, Tieniu Tan and S. Maybank,

"A system for learning statistical motion patterns," in IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 28, no. 9, Sept. 2006, pp. 1450-

1464.

[19] J. C. Nascimento, M. A. T. Figueiredo and J. S. Marques, "Trajectory

Classification Using Switched Dynamical Hidden Markov Models," in IEEE

Transactions on Image Processing, vol. 19, no. 5, May 2010, pp. 1338-1348.

[20] J. Wen, C. Li, Z. Xiong, “Behavior pattern extraction by trajectory analysis.” in

Frontiers of Computer Science in China. Vol. 5, no. 1, pp. 37-44, 2011.

[21] R. Fraile and S. J. Maybank, “Vehicle trajectory approximation

and classification.” in British Machine Vision Conference, vol. 698, pp.702,1998.

[22] Corina Sas, Gregory O’Hare, and Ronan Reilly, Online Trajectory Classification, Berlin

Heidelberg: Spriger, 2003.

[23] Y. Endo, H. Toda, K. Nishida, J. Ikedo, “Classifying spatial trajectories using

representation learning.” in International Journal of Data Science & Analytics. Vol. 2, no.3-4,

2016, pp.107–117.

[24] A. Milan, H. Rezatofighi, A. Dick, I. Reid, K. Schindler, “Online Multi-Target Tracking

Using Recurrent Neural Networks.” In Proceedings of the Thirty-First AAAI Conference on

Artificial Intelligence (AAAI-17). 2017.

[25] H. Ghadaki and R. Dizaji, "Target track classification for airport surveillance radar

(ASR)," 2006 IEEE Conference on Radar, 2006, pp. 4 pp.-.

[26] L. E. Baum, T. Petrie, “Statistical inference for probabilistic functions of

finite state Markov chains,” in Annals of Mathematical Statistics, vol. 37, no. 6, 1996, pp.

1554-1563.

References

63

[27] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A maximization technique occurring in

the statistical analysis of probabilistic functions of Markov chains,” Annals of Mathematical

Statistics, vol. 41, no. 1, 1970, pp. 164-171.

[28] L. E. Baum, “An inequalityand associated maximization technique in statistical

estimation for probabilistic functions of Markov processes,” Inequalities, vol. 3, 1972,

 pp. 1-8.

[29] L. R. Rabiner, "A tutorial on hidden Markov models and selected applications in speech

recognition," in Proceedings of the IEEE, vol. 77, no. 2, pp. 257-286, Feb 1989.

[30] T. Plötz, G. A. Fink, “Markov models for offline handwriting recognition: a survey.” in

International Journal on Document Analysis and Recognition (IJDAR). 2009. pp. 269-298.

[31] M.J. Bishop, E.A Thompson. "Maximum likelihood alignment of DNA sequences". in

Journal of Molecular Biology. vol. 190, no. 2, pp 159–65, Jul. 1986.

[32] R. Durbin, S. R. Eddy, S. Eddy, A. Krogh, G. Mitchison, Biological Sequence Analysis:

Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, 1998.

[33] M. S. Arulampalam, S. Maskell, N. Gordon and T. Clapp, "A tutorial on particle filters

for online nonlinear/non-Gaussian Bayesian tracking," in IEEE Transactions on Signal

Processing, vol. 50, no. 2, pp. 174-188, Feb 2002.

[34] J.M. Morales,; D.T Haydon, J. Frair, K. E Holsinger, J.M Fryxell, "Extracting more out

of relocation data: building movement models as mixtures of random walks" EEB Articles. 4.

2004.

[35] H. L. Beyer, MJ Fortin, J. M. Morales. D. Murray, “The Effectiveness of Bayesian state-

space models for estimating behavioural states from movement paths.” In Methods in Ecology

and Evolution. Vol. 4, no. 5, 2013, pp. 413-441.

[36] S. Kim, R. Zbikowski, A. Tsourdos, B.A. White, “Behaviour recognition of ground

vehicle for airborne monitoring of unmanned aerial vehicles” in International Journal of

Systems Science. Vol. 45, no. 12, 2014, pp. 2499 -2514.

[37] S. Maskell, “Joint tracking of manoeuvring targets and classification of their

manoeuvrability.” in EURASIP Journal on Advances in Signal Processing, 2004, pp. 2339–

2350.

[38] H. A. P. Blom and Y. Bar-Shalom, "The interacting multiple model algorithm for

systems with Markovian switching coefficients," in IEEE Transactions on Automatic Control,

vol. 33, no. 8, pp. 780-783, Aug 1988.

[39] X. Rong Li and V. P. Jilkov, "Survey of maneuvering target tracking. Part V. Multiple-

model methods," in IEEE Transactions on Aerospace and Electronic Systems, vol. 41, no. 4,

pp. 1255-1321, Oct. 2005.

References

64

[40] R.R. Pitre, V. P. Jilkov, X. R. Li, “A comparative study of multiple-model algorithms for

maneuvering target tracking” Proceedings of the SPIE, vol. 5809, p. 549-560, 2005.

[41] W. Shu, Z. Zheng, “Performance Analysis of Kalman-Based Filters and Particle Filters

for non-linear/non-gaussian Bayesian Tracking,” in IFAC Proceedings Volumes, vol. 38,

 no.1, pp. 1131-1136, 2005.

[42] T. T. Ashley and S. B. Andersson, "A Sequential Monte Carlo framework for the system

identification of jump Markov state space models," 2014 American Control Conference,

Portland, OR, 2014, pp. 1144-1149.

[43] C. Fritsche, E. Özkan and F. Gustafsson, "Online EM algorithm for jump Markov

systems," 2012 15th International Conference on Information Fusion, Singapore, 2012, pp.

1941-1946.

[44] N. J. Gordon, D. J. Salmond and A. F. M. Smith, "Novel approach to nonlinear/non-

Gaussian Bayesian state estimation," in IEE Proceedings F - Radar and Signal Processing,

vol. 140, no. 2, pp. 107-113, April 1993.

[45] R.H Shumway, and D.S. Stoffer. Time Series Analysis and Its Applications: With R

Examples. 3rd ed. New York: Springer, 2011.

[46] S. N. Durlauf, L. E. Blume, Macroeconometrics and Time Series Analysis, New York:

Macmillan Publishers, 2010.

[47] S. M. Kay, Fundamentals of Statistical Signal Processing vol. 1: Estimation Theory,

Upper Saddle River, NJ: Prentice-Hall, Inc., 1993.

[48] J. V. Candy. Bayesian Signal Processing: Classical Modern and Particle Filtering

Methods. Hoboken NJ USA: Wiley/IEEE Press 2009.

[49] G. A. Young, Essentials of Statistical Inference, Cambridge University Press, 2005.

[50] D. Panchenko, “Lecture 3: Properties of Maximum Likelihood Estimators,” in Statistics

for Applications (MIT course number: 18.650), 2006,

[51] The Analytic Sciences Corporation , Arthur Gelb, Applied Optimal Estimation, The MIT

Press, 1974

[52] E. L. Lehmann, G. Casella, Theory of Point Estimation (2nd ed.). New York: Springer,

1998.

[53] Z. Chen, "Bayesian filtering: From Kalman filters to particle filters and beyond"

Statistics vol. 182 no. 1 pp. 1-69 2003.

[54] D. Panchenko, Lecture notes, Topic: “Statistics for Applications” 18.650, Faculty of

Mathematics, MIT, 2006, https://ocw.mit.edu/courses/mathematics/18-443-statistics-for-

applications-fall-2006/lecture-notes/lecture3.pdf, accessed May 2018.

[55] R. P. S. Mahler, Statistical Multisource-Multitarget Information Fusion, Norwood MA:

Artech House, 2007.

https://dl.acm.org/citation.cfm?id=2823801
https://dl.acm.org/citation.cfm?id=2823801
https://ocw.mit.edu/courses/mathematics/18-443-statistics-for-applications-fall-2006/lecture-notes/lecture3.pdf
https://ocw.mit.edu/courses/mathematics/18-443-statistics-for-applications-fall-2006/lecture-notes/lecture3.pdf

References

65

[56] C. M. Bishop, Pattern Recognition and Machine Learning, New York: Springer, 2006.

[57] A. Doucet, S. J. Godsill, and C. Andrieu. On sequential Monte Carlo sampling methods

for Bayesian filtering. In Statistics and Computing, vol. 10, no. 3 pp.197–208, 2000.

[58] A. Doucet, J. F. G. de Freitas, N. J. Gordon, A. Doucet, J. F. G. de Freitas, N. J. Gordon,

"An introduction to sequential Monte Carlo methods" in Sequential Monte Carlo Methods in

Practice, New York: Springer-Verlag, 2001.

[59] F. Lindsten; T.B. Schön, "Backward Simulation Methods for Monte Carlo Statistical

Inference," in Backward Simulation Methods for Monte Carlo Statistical Inference , Now

Foundations and Trends, vol. 6, no. 1, pp. 1-143, 2013.

[60] T. B. Schön, A. Wills, and B. Ninness, “System identification of

nonlinear state-space models,” Automatica, vol. 47, no. 1, pp. 39–49,

2011.

[61] M. Isard and A. Blake,“Condensation–conditional density propagation for visual

tracking,” International. Journal of Computer Vision, vol. 29, no.1, pp. 5–28, 1998.

[62] A. Doucet, “On sequential Monte Carlo methods for Bayesian filtering,” Dept. Eng.,

Univ. Cambridge, UK, Tech. Rep., 1998.

[63] M. Hürzeler, H. R. Künsch, “Monte Carlo approximations for general state-space

models,” Journal of Computational and Graphical Statistics vol. 7, no. 2, pp. 175–193. 1998.

[64] R. Douc, A. Garivier, E. Moulines “Sequential Monte Carlo Smoothing for General State

Space hidden Markov Models” in The Annals of Applied Probability, Vol. 21 No. 6, Dec.

2011., pp. 2019-2145.

[65] M. Briers, A. Doucet, and S. R. Maskell. “Smoothing algorithms for state-space models.

Annals of the Institute of Statistical Mathematics ,” in Annals of the institue of Mathematical

Statistics, vol 62. pp. 61-89, 2010.

[66] J. Westerborn and J. Olsson, "Efficient particle-based online smoothing in general hidden

Markov models," 2014 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), Florence, 2014, pp. 8003-8007.

[67] R.H. Shumway, D. Stoffer. “An Approach to Time Series Smoothing and Forecasting

Using the EM Algorithm.” in Journal of Time Series Analysis. Vol. 3, no. 4, Jul. 1982, pp.

253-264.

[68] V. P. Jilkov, X. R. Li, “Adaptation of Transition Probability Matrix for Multiple Model

Estimators,” Proceedings of 4th Annual Conference on Information Fusion, Montreal, Aug.

2006.

[69] A. Doucet and B. Ristic, "Recursive state estimation for multiple switching models with

unknown transition probabilities," in IEEE Transactions on Aerospace and Electronic

Systems, vol. 38, no. 3, pp. 1098-1104, Jul 2002.

References

66

[70] U. Orguner and M. Demirekler, "Maximum Likelihood Estimation of Transition

Probabilities of Jump Markov Linear Systems," in IEEE Transactions on Signal Processing,

vol. 56, no. 10, pp. 5093-5108, Oct. 2008.

[71] A. Doucet, N. J. Gordon and V. Krishnamurthy, "Particle filters for state estimation of

jump Markov linear systems," in IEEE Transactions on Signal Processing, vol. 49, no. 3, pp.

613-624, Mar 2001.

[72] Y. Boers and J. N. Driessen, "Interacting multiple model particle filter," in IEE

Proceedings - Radar, Sonar and Navigation, vol. 150, no. 5, pp. 344-349, 2 Oct. 2003.

[73] C. Andrieu and A. Doucet, "Online expectation-maximization type algorithms for

parameter estimation in general state space models," Acoustics, Speech, and Signal

Processing, 2003. Proceedings. (ICASSP '03). 2003 IEEE International Conference on, 2003,

pp. VI-69-72 vol.6.

[74] T. B. Schön, A. Wills, B. Ninness, “Parameter Estimation for Discrete-Time Nonlinear

Systems Using EM Algorithm,” IFAC Proceedings Volumes, vol. 41, no. 2, pp. 4012-4017,

2008.

[75] T. B. Schön, A. Wills, B. Ninness, “Maximum Likelihood Nonlinear System

Estimation,” IFAC Proceedings Volumes, vol. 39, no. 1, pp. 1003-1008, 2006.

[76] O. Cappe, "Online sequential Monte Carlo EM algorithm," 2009 IEEE/SP 15th

Workshop on Statistical Signal Processing, Cardiff, 2009, pp. 37-40.

 [77] A. Doucet, V. B. Tadić, “Parameter Estimation in General State-Space Models using

particle methods,” Annals of the institute of Statistical Mathematics, vol. 55, no. 2, pp. 409-

422, Jun. 2003.

[78] E. Özkan, F. Lindsten, C. Fritsche and F. Gustafsson, "Recursive Maximum Likelihood

Identification of Jump Markov Nonlinear Systems," in IEEE Transactions on Signal

Processing, vol. 63, no. 3, pp. 754-765, Feb.1, 2015.

[79] A. R. Braga, C. Fritsche, F. Gustafsson and M. G. S. Bruno, "Rapid system identification

for jump Markov non-linear systems," 2017 IEEE 7th International Workshop on

Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), Curacao, 2017,

pp. 1-5.

[80] R. Braga, C. Fritsche, F. Gustafsson and M. G. S. Bruno, "Gradient-based recursive

maximum likelihood identification of Jump Markov Non-Linear Systems," 2017 20th

International Conference on Information Fusion (Fusion), Xi'an, 2017, pp. 1-7.

[81] C. M. Carvalho, H. F. Lopes, “Simulation-based sequential analysis of Markov switching

stochastic volatility models,” Computational Statistics and Data Analysis, vol. 51, no. 9, May

2007, pp- 4526-4542.

[82] R. S. Mamon, R. J. Elliott, Hidden Markov Models in Finance, Further Developments

and Applications, Volume II, New York: Springer, 2014.

References

67

[83] P. Dreesen, K. Tiels, M. Ishteva and J. Schoukens, "Nonlinear system identification:

Finding structure in nonlinear black-box models," 2017 IEEE 7th International Workshop on

Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), Curacao, 2017,

pp. 1-4.

[84] O. Capp´e, E. Moulines, and T. Ryden, Inference in Hidden Markov Models (Springer

Series in Statistics). Secaucus, NJ, USA: Springer Verlag New York, Inc., 2005.

[85] Ng S.K., Krishnan T., McLachlan G.J. “The EM Algorithm.” In Handbook of

Computational Statistics, Springer Handbooks of Computational Statistics. Gentle J.,

Härdle W., Mori Y. (eds) Berlin, Heidelberg: Springer, 2012.

[86] A. P. Dempster, N. M. Laird, D. B. Rubin, “Maximum Likelihood from Incomplete Data

via the EM Algorithm.” in Journal of the Roayal Statistical Society. Series B

(Methodological). vol. 39, no. 1, 1977, pp. 1-38.

[87] S. McGinnity and G. Irwin, "Multiple model estimation using the bootstrap filter," IEE

Colloquium on Target Tracking and Data Fusion (Digest No. 1998/282), Birmingham, 1998,

pp. 3/1-3/3.

[88] S. McGinnity and G. W. Irwin, "Multiple model bootstrap filter for maneuvering target

tracking," in IEEE Transactions on Aerospace and Electronic Systems, vol. 36, no. 3, Jul

2000, pp. 1006-1012.

[89] C. Kreucher A. O. Hero K. Kastella "Multiple model particle filtering for multi-target

tracking" in Proceedings of the Twelfth Annual Workshop on Adaptive Sensor Array

Processing, Mar. 2004.

[90] M. Ekman and E. Sviestins, "Multiple model algorithm based on particle filters for

ground target tracking," 2007 10th International Conference on Information Fusion, Quebec,

Que., 2007, pp. 1-8.

[91] De-Ping Yuan and Juan-Yi Zheng, "Interacting multiple model target tracking algorithm

based on particle filtering," Proceedings of 2011 IEEE CIE International Conference on

Radar, Chengdu, 2011, pp. 1907-1910.

[92] A. Doucet, A. Johansen. A tutorial on particle filtering and smoothing: Fifteen years

later. http://www.cs.ubc.ca/_arnaud/doucet johansen tutorialPF.pdf, 2008.

[93] N. Kantas, A. Doucet, S. Singh, J. Maciejowski, N. Chopin, “Particle methods for

parameter estimation in state-space models” in Statistical Science, vol. 30, no. 3. Pp- 328-351,

2015.

[94] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge UK: Cambridge University

Press, 2009.

[95] N.Gordon, S.Maskell and T.Kirubarajan, Efficient particle filters for joint tracking and

classification, Proceedings of SPIE: Signal and Data Processing of Small Targets, vol. 4728,

pp 439-449, 2002

References

68

[96] D. Angelova, L. Mihaylova, “Sequential Monte Carlo algorithms for joint target tracking

and classification using kinematic radar information”, in: Proceedings of the Seventh

International Conference on Information Fusion, Stockholm, Sweden, 2004, pp. 709–716.

[97] Y. Boers, H. Driessen and A. Bagchi, "Point estimation for jump Markov systems:

Various MAP estimators," 2009 12th International Conference on Information Fusion,

Seattle, WA, 2009, pp. 33-40.

[98] S. Saha, Y. Boers, H. Driessen, P. K. Mandal and A. Bagchi, "Particle based MAP state

estimation: A comparison," 2009 12th International Conference on Information Fusion,

Seattle, WA, 2009, pp. 278-283.

[99] X. Rong Li and V. P. Jilkov, "Survey of maneuvering target tracking. Part I. Dynamic

models," in IEEE Transactions on Aerospace and Electronic Systems, vol. 39, no. 4, pp.

1333-1364, Oct. 2003.

[100] M. A. Richards, J. A. Scheer, W. A. Holm, Principles of Modern Radar vol 1: Basic

Principles, Raleigh, NC: Scitech Publishing, 2010.

[101] X. Lin, T. Kirubarajan, Y. Bar-Shalom, S. Maskell, “Comparison of EKF,

pseudomeasurement, and particle filters for a bearing-only tracking problem,” SPIE

Proceedings, vol. 4728, 2002.

[102] H. Driessen and Y. Boers, "An efficient particle filter for jump Markov nonlinear

systems," IEE Target Tracking 2004: Algorithms and Applications, 2004, pp. 19-22.

[103] D. Koller, N. Friedman, Probabilistic Graphical Models: Principles and Techniques,

Cambridge, Massachusetts, London, England: The MIT Press, 2009.

[104] J. Olsson, J. Westerborn, “Efficient Parameter Inference in General Hidden Markov

Models Using the Filter Derivatives,” in 2016 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), March 2016,

pp. 3984–3988.

[105] M. Fanaswala and V. Krishnamurthy, "Detection of Anomalous Trajectory Patterns in

Target Tracking via Stochastic Context-Free Grammars and Reciprocal Process Models," in

IEEE Journal of Selected Topics in Signal Processing, vol. 7, no. 1, pp. 76-90, Feb. 2013.

Appendices

Appendix A
Analysis of Sequential Monte

Carlo Approximations

The Kalman filter is one of the most widely used algorithms for state estimation in target

tracking, data fusion, control theory, econometrics, aerospace, and telecommunications to

name a few. Examples include tracking moving targets in aerospace applications, to the

dynamic estimation of hedging ratios between two equities which is common in many

statistical arbitrage strategies in finance. In this section, we will show the reader that the

particle filter, can provide close to optimal results if enough particles are used. These

examples will show the correctness of the implementation of the SIR particle filter used in all

the simulations of this thesis.

A closed form solution for a state space model only exists when either the system is linear and

Gaussian, or when the state space of the hidden Markov chain is finite. Consider a Gaussian

DLM where the future state for time 𝑡 ∈ {1, … , 𝑛} is described by

 𝑥𝑡+1 = 𝛷𝑥𝑡 + 𝑣𝑡 (A. 1a)
𝑦𝑡 = 𝐴𝑥𝑡 + 𝑒𝑡. (A. 1b)

The Kalman filter aims at producing a sequence of state estimates and an associated error

covariance estimates. In the case of a Gaussian DLM where the dynamic and measurement

models accurately describe the system, the Kalman filter is the optimal Bayesian estimator in

the mean square sense [51]. Furthermore, it has other optimal properties such as the fact that

it is an MVU estimator. As an alternative view, it can also be seen and derived as a recursive

least squares estimator. All of these properties make it a great candidate to use as a reference

to measure the accuracy of the particle filter performance. The following notation will be used

in the rest of this section:

𝑥𝑡
𝑠 = 𝔼[𝑥𝑡|𝑦0:𝑠] (A. 2)

𝑃𝑡
𝑠 = 𝔼[(𝑥𝑡 − 𝑥𝑡

𝑠)(𝑥𝑡 − 𝑥𝑡
𝑠)𝑇] (A. 3)

Assume that 𝑣𝑡 ~ 𝒩(0, 𝑄), 𝑒𝑡 ~ 𝒩(0, 𝑅), and initial conditions 𝑥0
0 = 𝜇0 and 𝑃0

0 = Σ0.

Then the Kalman equations for 𝑡 = {1,… , 𝑛} are

𝑥𝑡
𝑡−1 = Φ𝑥𝑡−1

𝑡−1 (A. 4)

Appendix A: Analysis of Sequential Monte Carlo Approximations

71

𝑃𝑡
𝑡−1 = Φ𝑃𝑡−1

𝑡−1Φ′ + 𝑄 (A. 5)

𝑥𝑡
𝑡 = 𝑥𝑡

𝑡−1 + 𝐾𝑡(𝑦𝑡 − 𝐴𝑡𝑥𝑡
𝑡−1) (A. 6)

𝑃𝑡
𝑡 = [𝐼 − 𝐾𝑡𝐴𝑡]𝑃𝑡

𝑡−1 (A. 7)

𝐾𝑡 = 𝑃𝑡
𝑡−1𝐴𝑡

′ [𝐴𝑡𝑃𝑡
𝑡−1𝐴𝑡

′ + 𝑅]−1 (A. 8)

Together, (A.4) and (A.5) are the prediction stage, since they forecast the future state and

associated covariance matrix before the measurements are received. The update stage is

comprised of the state update (A.6) and covariance update (A.7) once the new measurements

are received, where 𝐾𝑡 is called the Kalman gain matrix. We also include the innovations

(prediction error) and the corresponding innovation-covariance matrices

𝜖𝑡 = 𝑦𝑡 − 𝔼[𝑦𝑡|𝑌0:𝑡−1] = 𝑦𝑡 − 𝐴𝑡𝑥𝑡
𝑡−1 (A. 9)

Σ𝑡 ≜ 𝑣𝑎𝑟(𝜖𝑡) = 𝑣𝑎𝑟[𝐴𝑡(𝑥𝑡 − 𝑥𝑡
𝑡−1) + 𝑣𝑡] = 𝐴𝑡𝑃𝑡

𝑡−1𝐴𝑡
′ + 𝑅 (A. 10)

for 𝑡 = 1,… , 𝑛. It is important to note that the equations in this section will still hold for the

time-varying case where the system matrices and covariance matrices are all time dependent,

provided the appropriate substitutions are made, see [45] for more details.

The Kalman filter can also be extended for smoothing [51] by the following equations for 𝑡 =
{𝑛, 𝑛 − 1,… ,1}:

𝑥𝑡−1
𝑛 = 𝑥𝑡−1

𝑡−1 + 𝐽𝑡−1(𝑥𝑡
𝑛 − 𝑥𝑡

𝑡−1) (A. 11)

 𝑃𝑡−1
𝑛 = 𝑃𝑡−1

𝑡−1 + 𝐽𝑡−1(𝑃𝑡
𝑛 − 𝑃𝑡

𝑡−1) 𝐽𝑡−1
𝑇 (A. 12)

where,

𝐽𝑡−1 = 𝑐𝑜𝑣(𝑥𝑡−1, 𝑥𝑡 − 𝑥𝑡−1
𝑛)[𝑃𝑡

𝑡−1]−1

= 𝑃𝑡−1
𝑡−1ΦT[𝑃𝑡

𝑡−1]−1 (A. 13)

Example A.1

In this example, a comparison of the performance of the Kalman optimal state estimator

against the boothstrap particle filter on a coordinated turn model for 100 and 500 particles 𝑁𝑝

will be examined. Resampling will be done every time step. A sampling period of 𝑇 = .5 𝑠

will be used. Suppose that in this example we are trying to track a speedboat under the

presence of sea clutter moving in circles at about 140 km/h with a turn-rate of 𝜔 =
 .20 𝑟𝑎𝑑/𝑠. The process noise variance for the coordinated turn model is 𝜎𝜔

2 = 7. The

measurement noise for the linear model was set to Ξ =
𝑑𝑖𝑎𝑔(3𝑚 𝑠⁄ , 3 𝑚 𝑠2⁄ , 3 𝑚 𝑠⁄ , 3𝑚 𝑠2⁄). The object is first detected at a distance of

approximately 2.8 km away heading northeast. The sensor tracking the object is assumed to

Appendix A: Analysis of Sequential Monte Carlo Approximations

72

be on a vessel at the origin. Below in Figure A.1, we can see the trajectory and particle

clouds.

Fig. A.1. Trajectory of speed boat going in circular motion with particle clouds.

Now if zooming in to a small area and plot the variance of both the Kalman and Particle state

estimators, it will give a good picture of how they compare. For the following simulations, an

MMSE estimator was used to approximate the state. In Figure A.2 we see the variance of both

the Kalman filter and smoother. As expected the smoother (seen in green) has a much smaller

variance, and the smoothed state estimate is much closer to the true value.

Appendix A: Analysis of Sequential Monte Carlo Approximations

73

Fig. A.2. Kalman filter variance plots.

Now in Figure A.3, we can see a similar plot showing the results for a particle filter running

with only 100 particles on the same data. Here it is evident that the covariance ellipses are

skewed or tilted, especially the ones for the smoothed data. Also on some of the state

estimates, neither the filtered nor the smoothed variances cover the true state. The smoothed

estimate is still more accurate than the filtered estimate but it's variance does not cover the

true state. These observations are due to particle depletion issues. There are just not enough

particles to cover the true posterior leading to a poor estimate.

Appendix A: Analysis of Sequential Monte Carlo Approximations

74

Fig. A.3. Particle filter and smoother variance plots using 100 particles.

If we increase the number of particles to 500, we can see below in Figure A.4 that we get a

much better result. Now both the filtered and smoothed variances cover the actual state. The

results look quite similar to those of the Kalman filter.

Fig. A.4. Particle filter and smoother variance plots using 500 particles.

Now we turn to the root mean square error (RMSE) to quantify performance and obtain a

clear metric as opposed to visually inspecting. Beginning with the RMSE for each time step 𝑡:

Appendix A: Analysis of Sequential Monte Carlo Approximations

75

𝑅𝑀𝑆𝐸(𝑡) = √
1

𝑁𝑚𝑐
∑ (𝑥̂𝑡

𝑗
− 𝑥𝑡

𝑗
)
2

𝑇

𝑡=1

(A. 14)

where 𝑁𝑀𝐶 is the number of Monte Carlo runs, and 𝑥̂𝑡
𝑗
 and 𝑥𝑡

𝑗
 are the estimated and true states

respectively. We can plot the error at ever time step as seen in Figure A.5. For this simulation,

500 particles were used. A close look will reveal that performance is as expected, with the

Kalman filter performing the best, and the particle filter giving the highest RMSE on most

samples.

Fig. A.5. RMSE for all filters at each times step.

As a last test, we define the total RMSE [41] as:

𝑅𝑀𝑆𝐸𝑡𝑜𝑡𝑎𝑙 = √
1

𝑇
∑

1

𝑁𝑚𝑐
∑(𝑥̂𝑡

𝑗
− 𝑥𝑡

𝑗
)
2

𝑁𝑚𝑐

𝑗=1

𝑁

𝑡=1

(A. 15)

This is a measure of the overall RMSE for the entire data set. Blow in Figure A.6 we can see

the results for a varying number of particles starting from 50 all the way to 500 in increments

of 50 particles. The Kalman filter and smoother results are plotted for reference. Here 25 MC

runs were executed. It is evident that as the number of particles increased, the SMC

approximations converge towards the optimal (Kalman) estimates for both the filter and

smoother.

Appendix A: Analysis of Sequential Monte Carlo Approximations

76

Fig. A.6. Total RMSE using 25 Monte Carlos runs for the particle filter and smoother. The Kalman

filter and smoother are shown for comparison.

Appendix B
Additional Simulations and

Results

In this section, we present the results of a parameter learning example using a nonlinear

measurement model. We will repeat the example in section 5.2 for a zig-zag trajectory but

instead, use and process data from three sensors. The nosie characteristics and the sensor

states (positions) 𝑥
𝑗
∗ = (𝑥𝑠 , 𝑦𝑠) for each sensor are listed in Table B.1. For this simulation,

600 particles were used. We repeat the same example as in section 5.1 and assume the same

dynamic models and process nose parameters are used.

Table 6.1. Sensor parameters

Sensor Range (m) Doppler (m/s) Bearing (mrad) 𝑥∗ (m)

1 (Radar) 15 5 10 (0,0)

2 (Radar) 10 3 5 (200,1000)
3 (Optical) N/A N/A 1 (0,0)

Fig. B.1. Zig-zag trajectory tracking by particle filter with particle clouds shown.

Appendix B: Additional Simulations and Results

78

In Figure B.1 we can see already that some of the particles deviate from the real trajectory,

already giving a hint that the state estimates are not as accurate. Below in figure B.2, we can

see the process noise parameters perform moderately well with slightly less accuracy on the

CV model noise. It is essential to keep in mind that an additional 250 particles had to be used

to achieve similar accuracy. This drastically increased the amount of memory needed for the

smoothing recursions and the use of additional particles resulted in MALAB running out of

storage on a computer with 8GB of RAM.

Fig. B.2. Process noise estimates for 80 EM iterations using nonlinear measurement model and three

sensors.

The estimates of the transition probabilities seen in figure B.3 are also on par with the

simulations from section 5.1 except with a higher variance. Is should now be clear that

Algorithm 7 is capable of estimating systems parameters with nonlinear measurement models.

The limitations here are due to the reasons discussed in Chapter 6 involving a suboptimal

particle filter.

Appendix B: Additional Simulations and Results

79

Fig. B.3. Estimates of transition probabilities for 80 EM iterations using nonlinear measurement model

and three sensors.

Appendix C
Proofs

C.1 Multiple Model fixed-interval FFBSm

Recall that the goal of SMC smoothing using the FFBSm algorithm in the case of hybrid

systems is to obtain an approximation of the marginal posterior density

𝑝𝜃(𝑥𝑡, 𝑟𝑡|𝑦0:𝑁) ≈ 𝑝̂
𝜃

𝑁𝑝(𝑥𝑡 , 𝑟𝑡|𝑦0:𝑁) ≜ ∑𝑤𝑡|𝑁
𝑖

𝑁𝑝

𝑖=1

𝛿(𝑥𝑡 − 𝑥𝑡
𝑖)𝟙(𝑟𝑡 = 𝑟𝑡

𝑖) (C1.1)

where 𝑤𝑡|𝑁
𝑖 are the smoothed weights. Suppose 𝑁 data samples are available. To derive an

expression for these weights, we build upon the work done in [60] to include a discrete mode

𝑟𝑡.

Proof:

With the use the of the definition of conditional probability:

𝑝𝜃(𝑥𝑡|𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑁) = 𝑝𝜃(𝑥𝑡|𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡, 𝑦𝑡+1:𝑁)

=
𝑝𝜃(𝑥𝑡, 𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡, 𝑦𝑡+1:𝑁)

𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡, 𝑦𝑡+1:𝑁)

=
𝑝𝜃(𝑦𝑡+1:𝑁|𝑥𝑡, 𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡)𝑝𝜃(𝑥𝑡, 𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡)

𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡, 𝑦𝑡+1:𝑁)

=
𝑝𝜃(𝑦𝑡+1:𝑁|𝑥𝑡, 𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡)𝑝𝜃(𝑥𝑡|𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡)𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡)

𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡, 𝑦𝑡+1:𝑁)

=
𝑝𝜃(𝑦𝑡+1:𝑁|𝑥𝑡, 𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡)𝑝𝜃(𝑥𝑡|𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡)𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡)

𝑝𝜃(𝑦𝑡+1:𝑁|𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡)𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡)

=
𝑝𝜃(𝑦𝑡+1:𝑁|𝑥𝑡, 𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡)𝑝𝜃(𝑥𝑡|𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡)

𝑝𝜃(𝑦𝑡+1:𝑁|𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡)

 (C1.2)

Appendix C: Proofs

81

 Given the Markov property of 3.1a-3.1b then:

𝑝𝜃(𝑦𝑡+1:𝑁|𝑥𝑡, 𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡) = 𝑝𝜃(𝑦𝑡+1:𝑁|𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡) (C1.3)

Applying this to C1.2, we arrive at:

𝑝𝜃(𝑥𝑡|𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑁) = 𝑝𝜃(𝑥𝑡|𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡). (C1.4)

Next, we apply Bayes’ theorem and the law of total probability to 𝑝𝜃(𝑥𝑡, 𝑟𝑡|𝑦0:𝑁):

𝑝𝜃(𝑥𝑡, 𝑟𝑡|𝑦0:𝑁) = ∑ ∫ 𝑝𝜃(𝑥𝑡 , 𝑟𝑡|𝑥𝑡+1, 𝑟𝑡+1, 𝑦0:𝑡)𝑝𝜃(
𝒳𝑟𝑡+1∈ 𝒮

𝑥𝑡+1, 𝑟𝑡+1|𝑦0:𝑁)𝑑𝑥𝑡+1

= ∑ ∫
𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1|𝑥𝑡, 𝑟𝑡)𝑝𝜃(𝑥𝑡 , 𝑟𝑡|𝑦0:𝑡)

𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1|𝑦0:𝑡)𝒳𝑟𝑡+1∈ 𝒮

𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1|𝑦0:𝑁)𝑑𝑥𝑡+1

= 𝑝𝜃(𝑥𝑡 , 𝑟𝑡|𝑦0:𝑡) ∑ ∫
𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1|𝑥𝑡 , 𝑟𝑡)𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1|𝑦0:𝑁)

𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1|𝑦0:𝑡)𝒳𝑟𝑡+1∈ 𝒮

𝑑𝑥𝑡+1

If one takes a close look at C1.5 one will notice that the first term is the filtered density

(3.10). This term is multiplied times a summation and integral dependent on 𝑟𝑡 and 𝑥𝑡.
Again using the law to total probability the denominator can be written as:

𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1|𝑦0:𝑡) = ∑ ∫ 𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1|𝑥𝑡, 𝑟𝑡)𝑝𝜃(
𝒳𝑟𝑡∈ 𝒮

𝑥𝑡, 𝑟𝑡|𝑦0:𝑡)𝑑𝑥𝑡

 = ∑ ∫ 𝑝𝜃(𝑥𝑡+1|𝑥𝑡, 𝑟𝑡+1)𝑝𝜃(𝑟𝑡+1|𝑟𝑡)𝑝𝜃(
𝒳𝑟𝑡∈ 𝒮

𝑥𝑡, 𝑟𝑡|𝑦0:𝑡)𝑑𝑥𝑡 (C1.6)

This distribution can be approximated using importance sampling discussed in Chapter 2 to

approximation using a particle filter:

The smoothing recursion begins with the weights at time 𝑁 being set equal to those of the

filtered density, and same goes for their particles. Therefore at time 𝑁 the smoothed weights

can be initialized as 𝑤𝑡|𝑁
𝑖 = 𝑤𝑁

𝑖 . We now have all the necessary components to estimate the

integral in (C1.5) recursively. It is easy to see that at any time 𝑡 the importance density

𝑝̂
𝜃

𝑁𝑝(𝑥𝑡+1, 𝑟𝑡+1|𝑦0:𝑁) is available during the backward recursion. This together with (C1.7)

= 𝑝𝜃(𝑥𝑡, 𝑟𝑡|𝑦0:𝑡) ∑ ∫
𝑝𝜃(𝑥𝑡+1|𝑥𝑡 , 𝑟𝑡+1)𝑝𝜃(𝑟𝑡+1|𝑟𝑡)𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1|𝑦0:𝑁)

𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1|𝑦0:𝑡)𝒳𝑟𝑡+1∈ 𝒮

𝑑𝑥𝑡+1 (C1.5)

𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1|𝑦0:𝑡) ≈ ∑𝑤𝑡
𝑖

𝑁𝑝

𝑖=1

𝑝𝜃(𝑥𝑡+1|𝑥𝑡
𝑖 , 𝑟𝑡+1)𝑝𝜃(𝑟𝑡+1|𝑟𝑡

𝑖)

 (C1.7)

C2 Closed-Form Maximizer for Transition Probabilities

82

allows us to make yet another approximation using importance sampling to approximate the

integral and sum in (C1.5) as:

∑ ∫
𝑝𝜃(𝑥𝑡+1|𝑥𝑡 , 𝑟𝑡+1)𝑝𝜃(𝑟𝑡+1|𝑟𝑡)𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1|𝑦0:𝑁)

𝑝𝜃(𝑥𝑡+1, 𝑟𝑡+1|𝑦0:𝑡)𝒳𝑟𝑡+1∈ 𝒮

𝑑𝑥𝑡+1 =

∑
𝑤𝑡+1|𝑁

𝑘 𝑝𝜃(𝑥𝑡+1
𝑗

|𝑥𝑡 , 𝑟𝑡+1
𝑗

)𝑝𝜃(𝑟𝑡+1
𝑗

|𝑟𝑡)

∑ 𝑤𝑡
𝑖𝑝𝜃(𝑥𝑡+1

𝑗
|𝑥𝑡

𝑖 , 𝑟𝑡+1
𝑗

)𝑝𝜃(𝑟𝑡+1
𝑗

|𝑟𝑡
𝑖)

𝑁𝑝

𝑖=1

𝑁𝑝

𝑗=1

(C1.8)

Finally, to calculate (C1.5) the only thing missing is the filtered density. Since the particle

filter approximation this density is already available from the forward recursion, we can

approximate the smoothed density at time 𝑡 as:

𝑝𝜃(𝑥𝑡, 𝑟𝑡|𝑦0:𝑁) ≈ 𝑝̂
𝜃

𝑁𝑝(𝑥𝑡 , 𝑟𝑡|𝑦0:𝑁) ≜ ∑𝑤𝑡|𝑁
𝑖

𝑁𝑝

𝑖=1

𝛿(𝑥𝑡 − 𝑥𝑡
𝑖)𝟙(𝑟𝑡 = 𝑟𝑡

𝑖)

Where the smoothed weights can be updated recursively for as

𝑤𝑡|𝑁
𝑖 = 𝑤𝑡

𝑖 ∑𝑤𝑡+1|𝑁
𝑗

𝑁𝑝

𝑗=1

 𝑝𝜃(𝑥𝑡+1
𝑗

|𝑥𝑡
𝑖 , 𝑟𝑡+1

𝑗
)𝑝𝜃(𝑟𝑡+1

𝑗
|𝑟𝑡

𝑖)

∑ 𝑤𝑡
𝑙 𝑝𝜃(𝑥𝑡+1

𝑗
|𝑥𝑡

𝑙 , 𝑟𝑡+1
𝑗

)𝑝𝜃(𝑟𝑡+1
𝑗

|𝑟𝑡
𝑙)

𝑁𝑝

𝑙=1

 ∎

C.2 Closed-Form Maximizer for Transition Probabilities

The derivation for the closed-form maximizer (5.5) is placed here for completeness. The

proof presented here is taken directly from [42].

Recall the solution to the constrained maximization problem (5.3-5.4) is proposed to be :

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑝𝑖𝑗

 ∑∑Ψ𝑖𝑗

𝑗∈𝑖∈

log 𝜋𝑖𝑗

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑𝜋𝑖𝑗 = 1,

𝑗∈

 ∀𝑖 ∈ 𝒮 (C2.1)

 𝜋𝑖𝑗 ≥ 0, ∀(𝑖, 𝑗) ∈ 𝒮 × 𝒮

with

Ψ𝑖𝑗 = ∑ ∑ ∑ 𝑤𝑡|𝑁
𝑘𝑙

𝑁𝑝

𝑙=1

𝑁𝑝

𝑘=1

𝑁−1

𝑡=1

𝟙(𝑟𝑡
𝑘 = 𝑗)𝟙(𝑟𝑡

𝑙 = 𝑖) (C2.2)

Appendix C: Proofs

83

It can be shown that if Ψ𝑖𝑗 ∈ ℝ+ ∀(𝑖, 𝑗) ∈ (𝒮 × 𝒮) then

𝜋̂𝑖𝑗 =
Ψ𝑖𝑗

∑ Ψ𝑖𝑘𝑘∈𝒮
, ∀(𝑖, 𝑗) ∈ (𝒮 × 𝒮) C2.3

is a maximzer of B2.1.

Proof:

Due to the equality constraint, in B2.1 the system can be decoupled into 𝑆 independent

optimization problems. Thus for each 𝑖 ∈ 𝑆, the following individual optimization problems

are solved which is equivalent to the original problem:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑝𝑖𝑗

 ∑Ψ𝑖𝑗

𝑗∈𝒮

log 𝜋𝑖𝑗

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 0 ≤ 𝜋𝑖𝑗 ≤ 1, ∀(𝑖, 𝑗) ∈ 𝒮 × 𝒮 C2.4

Then,

𝜋̂𝑖𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜋𝑖𝑗

 ∑Ψ𝑖𝑗

𝑗∈𝒮

log 𝜋𝑖𝑗

= 𝑎𝑟𝑔𝑚𝑖𝑛
𝜋𝑖𝑗

 (−
1

∑ Ψ𝑖𝑘𝑘∈𝒮
)∑Ψ𝑖𝑗 log 𝜋𝑖𝑗

𝑗∈𝒮

= 𝑎𝑟𝑔𝑚𝑖𝑛
𝜋𝑖𝑗

 ∑{
Ψ𝑖𝑗

∑ Ψ𝑖𝑘𝑘∈𝒮
log (

Ψ𝑖𝑗

∑ Ψ𝑖𝑘𝑘∈𝒮
) −

Ψ𝑖𝑗

∑ Ψ𝑖𝑘𝑘∈𝒮
log 𝜋𝑖𝑗}

𝑗∈𝒮

= 𝑎𝑟𝑔𝑚𝑖𝑛
𝜋𝑖𝑗

 ∑{
Ψ𝑖𝑗

∑ Ψ𝑖𝑘𝑘∈𝒮
log [

Ψ𝑖𝑗

∑ Ψ𝑖𝑘𝑘∈𝒮
(

1

𝜋𝑖𝑗
)]}

𝑗∈𝒮

= 𝑎𝑟𝑔𝑚𝑖𝑛
𝜋𝑖𝑗

 ∑{
Ψ𝑖𝑗

∑ Ψ𝑖𝑘𝑘∈𝒮
log [

Ψ𝑖𝑗

∑ Ψ𝑖𝑘𝑘∈𝒮
(

1

𝜋𝑖𝑗
)]}

𝑗∈𝒮

= 𝑎𝑟𝑔𝑚𝑖𝑛
𝜋𝑖𝑗

 𝒟KL (
Ψ𝑖𝑗

∑ Ψ𝑖𝑘𝑘∈𝒮
‖𝜋𝑖𝑗)

Appendix C: Proofs

84

where 𝒟KL(𝑝‖𝑞) ≥ 0 operator denotes the Kullback-Liebler (KL) divergence or the relative

entropy, which is a measure of dissimilarity between two distributions 𝑝 and 𝑞 [56]. Since the

KL divergence satisfies 𝒟KL(𝑝‖𝑞) ≥ 0, with equality iff 𝑝 = 𝑞, then it follows that C2.3 is a

unique feasible maximize of each of the decoupled optimization problems in (C2.4) and is

therefore a feasible maximize for the original optimization problem (C2.1) ∀(𝑖, 𝑗) ∈ 𝒮 × 𝒮. ∎

