
PERFORMANCE IMPACT OF THE MODULAR ARCHITECTURE IN
THE INCREMENTAL SGLR PARSING ALGORITHM

RESEARCH PROJECT
TU DELFT

Mara Stefania Coman Eelco Visser Jasper Denkers

Daniel Pelsmaeker

June 27, 2021

ABSTRACT

JSGLR2 is a modular Java implementation of the SGLR parsing algorithm that supports systematic
benchmarking and improvement of its several parsing variants. By splitting the code into several com-
ponents, they can be tested in isolation and thus optimized more effortlessly. The modular architecture,
although beneficial for efficiently identifying and implementing optimizations, negatively impacts the
performance of the parsing algorithm. This paper aims to measure the overhead introduced by the
code architecture for one of the variants, more specifically the incremental variant, which combines
incremental parsing with SGLR parsing. It does so by comparing the original implementation with
a version with the modularity removed. The evaluation is done on programming languages used in
practice: Java, WebDSL and SDF3. The results show that the inlined parser outperforms the previous
one, achieving speedups of up to 16% in batch parsing and up to 10% in incremental parsing.

Keywords Parsing · Incremental parsing · SGLR · ISGLR

Delft Universi ty of Technology, Bachelor Seminar of Computer Science and Engineering

1 Introduction

As languages become more complex, time spent on maintainability and experimentation becomes a considerable
bottleneck in the process of designing new ones. For this reason, the TU Delft Programming Language research group
developed the Spoofax Languages Workbench [1], a platform meant to aid the development of programming languages.
It provides means for specifying languages, which serves as a base for generating parsers, interpreters, compilers, and
other tools. The provided parser is based on the Scannerless Generalized LR (SGLR) parsing [2] algorithm. This
algorithm has several advantages, such as removing the need for a scanner component and unifying the lexical syntax
and context-free syntax. However, it has not yet achieved its full potential in terms of performance. In practice, better
parsing performance creates a more seamless human-computer interaction and provides fast responsiveness necessary
for common IDE tools such as auto-completion and syntax highlighting. In efforts of increasing the overall efficiency,
JSGLR2 [3] is a re-implementation of the original algorithm (JSGLR), which takes a modular approach. The modular
architecture facilitates code maintainability and allows for systematic benchmarking and optimizing of its comprising
components. Moreover, optimization experiments encompass several variations of the main implementation that are
maintained in parallel. For example, one such variant combines incremental parsing [4] with SGLR parsing and is called
the incremental variant. Although JSGLR2 achieved considerable speedups by combining the improved components, it
possibly introduced an overhead through its design. Currently, it is unknown to what extent the refactoring [5], through
which the modular architecture was achieved, negatively impacts the performance of the system.

This paper aims to quantify the impact of the modular design on the parsing performance of JSGLR2, focusing on the
overhead of the incremental variant. Because all variants are implemented in a modular fashion, they all suffer from the
same architectural overhead, although possibly to different degrees. To examine the impact of the modular architecture,
the refactoring that introduced these changes will be reverted. This process will be further called inlining. Consequently,
a hypothesis that this work aims to confirm is that inlining reduces the overhead. Moreover, this study will examine
how much the efficiency improves when particular components are inlined. Furthermore, which languages and inputs
can benefit the most from inlining? What alternatives are there that maintain modularity but minimize the performance
overhead? The main contribution of this paper is the inlined implementation of the incremental variant. The modular
overhead is identified by comparing the performance of the two programs.

The paper has been organised in the following way. This paper first gives a brief overview of the SGLR algorithm
background and Spoofax framework in Section 2. Section 3 is concerned with the methodology used for this study.
Consequently, Section 4 will then go to describe the steps of the inlining process. In Section 5 the setup design and
results will be discussed. Section 6 mentions reproducibility issues, while Section 7 contains further discussions on
limitations and future work. Finally, a summary of the paper will be provided in Section 8.

2 Background

This section provides an overview of the main concepts behind SGLR and an outline of the frameworks that will be
used in this research paper.

2.1 Parsing algorithms

LR parsing LR(k) parsing [6] is an algorithm that can deterministically parse a string in a given language. This type
of parsing works on a subset of context-free grammars. These grammars have the property that they can be parsed by
analyzing the input characters from left to right, by only looking ahead a finite number of characters, without looking at
previous decisions, at any given time during parsing.

GLR parsing LR parsing algorithm fails to parse ambiguous grammars due to conflicts that are encountered in the
parse table1. These have two origins: either the grammar could be ambiguous or the lookahead2 needed is unbounded.
These two causes cannot be distinguished in practice. This is because determining if a grammar is ambiguous is an
undecidable problem [7]. Hence, it’s not possible to determine if a conflict is due to ambiguity and therefore due to a
lack of lookahead.
Generalized-LR parsing solves these issues by running parallel parsers whenever encountering a conflict in the parse
table. If the conflict was caused by a lack of lookahead, only one of the parsers will successfully terminate, while the
others will eventually fail. Otherwise, if ambiguity was the cause, multiple parsers will survive and a parse forest3 will
be constructed that will represent the possible parses of the input string.

1A language-specific table that indicates which action (shift/reduce) ought to be done in the certain scenario.
2Lookahead is the number of string characters a parser has to look ahead to be able to make a decision.
3A parse forest is a compact representation of a set of parse trees.

2

SGLR parsing Scannerless parsing aims to remove the separate lexical analysis preceding the parsing stage. During
lexical analysis, the input is scanned and transformed into a stream of lexical tokens4 which would next be provided to
the parser. A reason for avoiding the use of a scanner is that disambiguation based on context already appears at the
character level. As an example, take the string "matrix", which analysed can be considered as one identifier ("matrix")
or a sequence of smaller identifiers ("m"; "a"; "trix"). As another example, take the string "ifx" which contains a
reserved word ("if"). In this case, the first one is preferred, since multiple adjacent identifiers are not allowed. A
solution to these is to let decisions at the lexical level to informed by context. To this end, the lexical and context-free
syntax are combined into one context-free grammar. In doing so, the scanner and scanner-parser interface are removed.
Furthermore, the parser is directly provided with a stream of characters instead of tokens.

Scannerless Generalized-LR parsing [2] combines the above idea with GLR. SGLR introduces follow restrictions and
reject productions to solve disambiguation problems that would normally be tackled by the scanner (they solve the
longest match and prefer literals disambiguation, respectively). Priorities and association attributes are further used for
rule disambiguation. Moreover, a more compact parse table is achieved by using character classes5.

Incremental parsing Incremental parsing [4] is a technique to increase time-efficiency when parsing large inputs.
This is achieved by only parsing input differences, rather than the complete input as a batch when incremental changes
are made.

2.2 Context and framework

Spoofax language Workbench [1] is a platform designed for the creation of new languages. It provides a meta-
language (SDF3 [8]) in which a new language can be described. This language definition is used for generating a set of
tools such as compilers, parsers, IDE plugins, etc. Spoofax also provides an evaluation tool that will be used in this
work to benchmark the efficiency of various implementations.

JSGLR2 [3] is a Java implementation of the SGLR algorithm used in Spoofax. It includes several parsing variants that
apply different strategies such as Elkhound optimization, parsing with recovery and incremental parsing. To provide
support for performance optimizations and easy maintenance, JSGLR2 takes a modular approach. To achieve this,
it introduces code refactoring to divide the algorithm into components for which performance can be measured and
consequently improved. This type of code manipulation changes the structure and inner workings of the software
without impacting the overall functionality and output. It is a practice that aims to improve the code design. However, it
may introduce changes that may be costly on performance [5]. Therefore, the modular architecture achieved through
code refactoring allows for time-efficient modification of its components, but it negatively impacts the overall efficiency
of the algorithm. Currently, there is not enough information to identify the extent to which the architecture slows down
the parsing performance.

3 Methodology

In order to evaluate if the parsing performance is affected by the modular architecture, the refactoring that introduced
the modularity had to be reverted. If the modified code would exhibit enhanced performance then the modular overhead
hypothesis would be true. Thus, a new version of the same algorithm was implemented, which will be further called
the inlined version. The new implementation will undergo a series of code transformations that would negate some of
the refactoring actions. Because refactoring only modifies the internal structure of the code and does not affect the
expected behavior, the same will be true for removing the refactoring. Consequently, the two implementations will be
functionally equivalent. Thus, by comparing the two, the overhead could be identified and measured. An important
factor in this comparison is fairness, therefore to have a valid differentiation no further optimizations were added to the
inlined code.

Throughout this paper, we will refer to inlining as the process of modifying the code to reduce modularity. That
includes the following refactoring actions: method inlining, class inlining, removing dead code, collapse inheritance, etc.
Choosing these actions was a matter of identifying the refactoring actions that introduce code structure, and reverting
those. For example, method inlining is the opposite of method extraction. It is usually applied when there is too much
indirection. For instance, when a method calls upon another for functionality. Thus, by inlining, we would effectively
reduce the number of method calls. Similarly, with class inlining, we reduce the number of instances created and the
method calls.

4A lexical token represents a sequence of characters that compose a language element.
5A character class efficiently represents a set of characters by either describing one character (’a’) or a range of characters (’a-z’).

3

The approach to inlining was to incrementally modify the existing codebase by systematically stripping away its
modularity. By using the original implementation as a starting point, we ensure that the base algorithm is the same.
More specifically, no subtle changes are added which would skew the results. Moreover, the reason for adding
incremental changes, as opposed to modifying the algorithm in one go, is to aid in code validation. Besides, this strategy
will allow measuring each modification individually by using the commit history of the inlined program. A detailed
account of the aforementioned changes to the parsing algorithm will be explained in Section 4.

While working on the code rewriting, an obvious requirement was its correctness. For this purpose, the already provided
integration tests were used. For these tests to work with the new inlined implementation, certain structural elements
of the code had to be maintained. This includes certain types and class inheritances. That implies that to ensure the
validity of the code, certain elements were not inlined. This decision was taken due to time constraints and only affects
a small number of classes.

For comparing the two versions, we will use the already existing benchmark project from JSGLR2 together with the
JSGLR2 evaluation suite [9] to evaluate their performance. The benchmarks were executed on a set of languages and
various input sources. To assess the performance implications in a more realistic scenario, a set of languages used in
practice were chosen for the final results. Furthermore, the comparison will regard both batch parsing and incremental
parsing performance.

With some of the components removed in the inlining process, the benchmark project had to be modified to be
compatible with the new implementation. These modifications consisted mainly of changing some variable types to
allow both variants to be handled. This is achieved by, for example, using a common class parent rather than the
implementation class. It is important to mention that these should not change the way the benchmarks are calculated
and will not skew the results in favor of either. Further similar adjustments were made for incremental benchmarks.
Finally, the evaluation suite was also modified to include the inlined incremental implementation.

4 Inlining the algorithm

The main contribution of this paper is the inlined re-implementation of the incremental variant of JSGLR2. This
implementation improves over its predecessor by stripping away its modularity and reducing the performance overhead
associated with it. This section will provide a detailed description of the modifications brought to the algorithm,
benchmark project, and evaluation suite.

4.1 Inlining the incremental variant of JSGLR2

First, a new class, InlinedIncrementalJSGLR2, was created which would eventually hold the entire inlined algorithm.
Initially, it contained a copy of JSGLR2ImplementationWithCache, the class implementing the incremental variant.
Subsequently, JSGLR2Variant class, which handles all different variants, was modified to include the inlined one
by adding a new option to JSGLR2Variant.Preset called inlinedIncremental. This option will return a new Inlined-
IncrementalJSGLR2Variant class that extends JSGLR2Variant. The sole purpose of this class is to override the
getJSGLR2 method, which is responsible for building the right implementation, to instead directly return the inlined
class (InlinedIncrementalJSGLR).

After the above adjustments have been taken, a systematic rewriting of the algorithm was in order. The process of
inlining the algorithm uses a combination of well-established refactoring actions [5] as well as modified ones to suit
this particular goal. InlinedIncrementalJSGLR2 contains three main components: a parser, an imploder, and a tokenizer.
The next step was to inline each class separately to allow measuring the overhead of each. They where further named
IncrementalParser2, IncrementalStrategoTermImploder2 and IncrementalTreeShapedTokenizer2.

The strategy applied to inlining the classes’ contents and their subsequent sub-classes will be exemplified through the
change process of IncrementalParser2. First, the original class was copied into the new one. The second step was to
apply “change function declaration” [5, pp. 124] refactoring by removing parameters from the IncrementalParser2
constructor. The reason for this modification was that the parameters were known in this case. Therefore, the parameters
from the constructor were removed and instantiated inside the class. The only parameter kept is the parse table which is
needed as input to the algorithm. A high-level abstraction of this step is shown in Listing 1.

4

1 parser = new IncrementalParser2(value) parser = new IncrementalParser2 ()
2 ... → ...
3 IncrementalParser2(Type a) { IncrementalParser2(Type a) {
4 } Type a = value
5 }

Listing 1: Remove parameter from function declaration refactoring.

Furthermore, the generics were replaced with the hard-coded classes. Following this, the “collapse hierarchy” [5, pp.
380] refactoring action was taken. Class inheritance was removed, leaving the parser only implementing the topmost
parent, the IParser<IncrementalParseForest> interface. This was done by applying the “push down field” [5, pp. 361]
and the “push down method” [5, pp. 358] code manipulations to bring the content from the parent into the parser. The
main concept of this refactoring is exemplified in Listing 2.

As a next step, the factory pattern classes were removed, and instead, hard-coded component classes (ParseState,
Disambiguator, etc.) and manager classes (ReduceManager, StackManager, etc.) were instantiated directly. Although
there is no defined refactoring procedure for this modification, it represents the inverse of “replace constructor with
factory function” [5, pp. 334]. Listing 3 shows this code alteration.

1 class AbstractParser {}
2 class IncrementalParser2 extends

AbstractParser {}
3 ↓
4 class IncrementalParser2 {}

Listing 2: Inheritance removal inheritance refactoring.

1 parseState = parseStateFactory.get()
2 ↓
3 parseState = new IncrementalParseState2 ()

Listing 3: Replace factory function with constructor.

Afterward, each component used by the parser was inlined through a similar process as above. Certain functions,
particularly short ones that had 2-3 applications were inlined [5, pp. 115], nullifying “extract function” [5, pp. 106]
refactoring. An example is presented in Listing 4. Furthermore, variable inlining [5, pp. 123] was performed (Listing 5)
to reduce the number of variable assignments.

1 .createInitialStackNode () {
2 createStackNode () createInitialStackNode () {
3 } → [code_block]
4 }
5 createStackNode () {
6 [code_block]
7 }

Listing 4: Inline function refactoring.

5 stackNode = value
6 return stacknode
7 ↓
8 return value

Listing 5: Inline variable
refactoring.

“Remove middle man” [5, pp. 192], inverse of “hide delegate” [5, pp. 189] action was used to eliminate forwarding.
Listing 6 gives a visual representation of this modification.

1 var = parseState.newParseNodeAreReusable ()
2

3 newParseNodeAreReusable () { → var = !parseState.multipleStates
4 return !multipleStates
5 }

Listing 6: Remove middle man refactoring.

Finally, the component class was inlined [5, pp. 186] (operation opposite to “extract class” [5, pp. 182]), by moving its
content into the parser class. Thus, effectively reducing class coupling which in turn reduced parameter passing and the
number of method calls.

In the parser class, further method and variable inlining were performed. Moreover, “remove dead code” [5, pp. 237]
was applied to eliminate unused lines of code to clean up the source. Redundant code (such as methods that return the
same value) removal was also done.

5

In the above manner, the IncrementalParser2 and similarly IncrementalStrategoTermImploder2 and IncrementalTree-
ShapedTokenizer2 were inlined. Fig. 1 shows a a high level abstraction of the architecture changes.

Figure 1: High level diagram of the architecture changes brought by inlining. In red are the removed classes, while in
yellow are the remaining inlined classes.

As previously mentioned in Section 3, certain classes were kept in the inlined version such to have it work with the
integration tests. This classes were JSGLR2<IStrategoTerm>, a common parent for JSGLR2 implementations, and
IParser interface. As a consequence, a few other classes were partially inlined, meaning they still inherit from a common
interface. This is due to the return type of the parse method in IParser. ParseResult class depends on the parse state and
forces it to inherit from AbstractParseState, which in turn forces the input stack and stack node classes to implement
their interface. Thus, IncermentalParseState2, HybridStackNode2, and others still implement an interface.

Finally, all inlined main components and sub-classes reside in the inlinedIncremenetal package. However, the
InlinedIncrementalJSGLR2Variant and InlinedIncrementalJSGLR2 classes are found in the main package. A list of all
modified classes excluding parent classes is available in Appendix A.

4.2 Updating the benchmarks

To benchmark the inlined incremental implementation alongside the modular one, the benchmark project was modified
to incorporate both options. For this purpose, in the main benchmark class, JSGLR2Benchmark, the type of the
variable responsible for holding the JSGLR2 implementation was modified to instead hold a common parent to the old
implementation interface and the inlined implementation class. This parent is JSGLR2<IStrategoTerm> (class parent
to both JSGLR2Implementation and InlinedIncrementalJSGLR2). For incremental parsing benchmarks, a new entry
was added to ParserType in JSGLR2BenchmarkIncremental called InlinedIncermental. Further modifications were
added to adjust the rest of the benchmark classes to the above modifications. They are available for inspection on a Git
repository6. Finally, the inlined variant was added to the evaluation suite. The exact files modified to incorporate this
are available in the evaluation repository7.

6https://github.com/Marocco000/inlined-jsglr2.
7https://github.com/Marocco000/jsglr2evaluation.

6

5 Evaluation Setup and Results

This section includes information about the evaluation setup in Section 5.1, while Section 5.2 discusses results for both
batch and incremental parsing scenarios.

5.1 Setup

Evaluating the performance of the inlined algorithm was done with the JSGLR2 evaluation suite [9]. The evaluation
is performed on different languages, while the input sources for parsing consist of Git repositories. The behavior of
the evaluation can be configured through several parameters in a YAML configuration file. They specify the variants
under test, the languages used and associated git repositories used as input sources, etc. The modularity overhead
hypothesis was tested by analyzing both batch and incremental parsing performances. The exact configurations for
the above benchmark cases can be found in Appendix B. It can be observed that in both cases the incremental and
inlinedIncremental variants are included for the comparison. For batch parsing, the relatively high number of warm-up
iterations ensures that runtime optimizations are not taken into account in the benchmark calculation. Furthermore,
the number of benchmark iterations provides a better impression of the performance by giving a confidence interval.
Both values were chosen to reduce measurement errors and to consequently arrive at more consistent results. These
parameters, however, have a lower value in the case of incremental parsing. Due to time constraints and the drastic
increase in run time when executing incremental parsing, the above compromise has been made. The evaluation was
performed on a set of three real languages (Java, WebDSL and SDF3) to better understand the implications of parsing
performance in practice.

The benchmarks were run on a computer with an Intel Core i7 processor and 16 GB RAM, with a base frequency of
2.2 GHz. The machine operated on Ubuntu 20.04.2 LTS and used Java OpenJDK version 1.11.0. Moreover, during
executions, all possible applications were closed. As mentioned in Section 3, the benchmarks had to be modified to be
compatible with the inlined implementation. This, however, should not affect the consistency of the benchmarks when
comparing them with other variants.

5.2 Results

First, the performance for batch parsing will be discussed. The exact benchmark values can be found in Appendix C.
Fig. 2 showcases the comparison between the incremental and inlined incremental variants in terms of throughput8

(left) and parse time (right). In both cases, the inlined version exhibits better performance than its modular counterpart.
When considering character throughput, the difference can be clearly seen for all languages for both parsing time with
(Fig. 2, c) and without (Fig. 2, a) imploding. On average, there is a 2%, 11%, 19% improvement9 of throughput for
Java, SDF3 and WebDSL respectively. Regarding parse time, again the inlined variant outperforms the non-inlined one.
There is a 2% speedup10 achieved for Java, 10% for SDF3, and 16% for WebDSL. The variation between performance
differences between the languages could be attributed to the size of the input sources. For Java, the input files amount to
a total of 83319 bytes, while 43245 bytes for SDF3, and 85496 bytes for WedDSL. A breakdown of the size distribution
of the files per language can be examined in Appendix D. When looking at individual inlined component improvements,
we found that the parser contributes to the majority of the overhead. This can be observed by comparing the graph
bars in Fig. 2, b with the corresponding ones in Fig. 2, d. Parse time with imploding is similar to parse time without
imploding. The difference between inlining the parser compared to inlining the imploder and tokenizer can be attributed
to the increased complexity of the parser component compared to the other two.

So far, the batch results are in line with the modularity overhead expectations. Parsing performance is increased for all
three languages given the above metrics and evaluation corpus.

The next section of the evaluation was concerned with incremental parsing. In this case, the benchmarks are run on
several successive versions for any source. The first one will be parsed in batch, while the consecutive ones incrementally
(by only looking at the differences from the previous version). Unfortunately, some results are inconclusive because
of the large error margins which overlap between the variant. This is possibly due to the small number of warm-up
and benchmark iterations. While further extensive benchmarks have to be executed to fully grasp the real implications
of parsing performance, this section will examine some of the consistent results. Because incremental benchmarks
are calculated separately for each language and source, this section will analyze only a representative subset of them.

8Throughput is defined as the number of input characters parsed in a time unit.
9The throughput improvement is calculated with the following formula: new−old

old
∗ 100%. Where old refers to the modular

version, and new is the inlined one.
10The time speedup is calculated in the same way as for the throughput, but it’s multiplied with -1.

7

(a) Throughput comparison for batch parsing without imploding. (b) Parse time comparison for batch parsing without imploding.

(c) Throughput comparison for batch parsing with imploding. (d) Parse time comparison for batch parsing with imploding.

Figure 2: Batch parsing benchmark results.

The full collection of incremental benchmarks results per source can be inspected in Appendix E. The source sizes are
available there as well.

Fig. 3 present the parsing time in the incremental parsing scenario. The leftmost set of symbols (green for the modular
variant, and red for the inlined one) represents the first parse time, which would be for the initial batch parse of the
input. The following two sets of symbols indicate the incremental parsing time for two subsequent input modifications.
For the first version, the inlined program takes less time than the modular one, thus the batch parse time values are in
agreement with the previously discussed results. In Fig. 3, a, incremental parsing time results are showcased for parsing
without imploding, while Fig. 3, b for parsing with imploding for the apache.common.lang.stringutil Java repository.

8

In both cases, the inlined variant is more efficient than the other one. For the first input modification, with 285 bytes
altered, there is a 2% speedup. In the second phase of input editing, the change size is only 4 bytes, the same speedup is
encountered.

Meanwhile, the largest improvement can be observed in Fig. 3, c for an SDF3 repository. This graph shows that there is
a 10% speedup in the two consecutive code versions. In Fig. 3, d a performance improvement of 6% is presented for
parsing time without imploding of a WebDSL repository.

(a) Parsing time without imploding for the Java
apache.commons.lang.stringutils repository.

(b) Parsing time with imploding for the Java
apache.commons.lang.stringutils repository.

(c) Parse time without imploding for the SDF3 Java reposi-
tory.

(d) Parse time without implding for the WebDSL Yellow-
grass repository.

Figure 3: Incremental parsing benchmark results on 3 consecutive versions.

In an attempt to gather more data concerning incremental parsing, a larger benchmark was executed for the
apache.commons.lang.stringutils Java source. This run consists of 10 consecutive versions with a maximum size
change of 1316 bytes. The benchmark details are available in Appendix F. The results of this benchmark run are
displayed in Fig. 4 In the case of parse time only (Fig. 4, a) the results are consistent with what has been observed so
far. Interestingly, Fig. 4, b reveals otherwise. In this case, the inlined imploding components (imploder and tokenizer)
slow down the variant. This is a rather unexpected result. More research is needed to explain this outcome. This case
proves that the results should be interpreted with caution given the small evaluation suite. Such threats to validity will
be discussed in Section 7. Since this only affects the imploder part, this case will be treated as an exception and will be
ignored from the conclusions.

9

(a) Parsing time without imploding for the Java
apache.commons.lang.stringutils repository.

(b) Parsing time with imploding for the Java
apache.commons.lang.stringutils repository.

Figure 4: Incremental parsing benchmarks on 10 consecutive versions.

We have shown that in the above test conditions there is a performance improvement when the modular structure is
removed from the code. Since the two implementations are functionally the same, the difference can only be attributed
to the modularity itself. Thus, we have proven that the modular architecture negatively impacts the parsing efficiency.
Moreover, we have shown that applying inlining reduces that overhead. On average, the inlined algorithm has achieved
speedups between 2-16% in batch parsing time and between 2-10% in incremental parsing time compared to the old
version. It is important to bear in mind that the results for parsing with imploding are questionable due to unexplained
results.

10

6 Responsible Research

To allow the results to be validated by the scientific community, guaranteeing the reproducibility of the methods is a
must. For that, the chosen approach is explained in a great amount of detail in Section 3. Two distinct components affect
reproducibility: the modification of the algorithm and the evaluation method. Regarding the inlined implementation, the
steps used to rewriting the algorithm are laid out in Section 4. In this way, the implementation can be replicated by
an external party. Furthermore, the code has open access and will be hosted on a public Git repository 11 to facilitate
further investigations. Another critical component that impacts reproducibility is the evaluation suite. In a similar
manner as above, the modified evaluation suite is described and will be publicly available 12. The selected tests used for
the final results are detailed in Section 5 and can also be found in the repository. It is important to note that the results
reached in this paper were possible in the context of the provided evaluation suite for which validation was not in the
scope of this paper.

7 Discussion

Limitations These results show increased performance when removing the modular architecture from the original
incremental variant of JSGLR2. This data must be interpreted with caution because it only represents an estimation
of the overhead. The data can be regarded as a lower bound improvement since not all modularity was removed as
explained in Section 4.1. Furthermore, while there is a comparison that indicates the largest overhead factor among
the three main components (parse, imploder, and tokenizer), further research is needed to conclude which types of
refactoring and code alterations bring the largest improvement. While benchmarking the individual commits in the
inlining process might provide some insight into which steps added the highest performance boost, it cannot relate the
efficiency increase to individual code refactoring actions in the current form. This is due to the high inter-dependency
between the program components, which usually implies creating a chain of needed adjustments when one line is
altered.

Another limitation of this work is posed by the incremental benchmarks. To better understand the implications of
inlining in the incremental parsing context, a larger corpus of sources for each language is needed. This entails including
subsequent Git repository versions and disabling shrinkBatchSources. Moreover, larger values for benchmark iterations
and benchmark warm-ups are needed to obtain more precise results. During this project, these results were limited by
time, since the execution time of an evaluation, as mentioned above, would take a week. Future work is required to
investigate the impact of modularity in the case of incremental parsing.

Threats to validity Due to the above limitations and the generally restricted evaluation suite, two threats to validity
arise. First, in terms of representativeness, the results discussed in this paper for the Java, SDF3, and WebDSL languages
may not be entirely representative. A factor in this is the small benchmark test sizes. This is due in part because of
the reduced number of repositories used for the sources and in part because of the small number of files from each
source. The outcomes of the benchmarks might be different on a larger benchmark suite, as observed in the incremental
parsing case. Therefore caution is warranted for concluding the impact on the respective languages. Another aspect is
generality. Since the behavior of the modularity differs drastically for the above languages, it is difficult to generalize
the effects on other languages and inputs.

Related work Regarding batch parsing, these results reflect those of Kapitonenko’s [10] on the recovery variant,
who also found that the architecture negatively impacts the performance. The improvement levels observed in this
investigation are far below those observed by Kapitonenko [10]. The discrepancy could be attributed to the difference in
the inlining approaches. While this work removes several classes, it fails to remove multiple inheritance relations. This
approach is in contrast to the other paper, where removing inheritance took precedence over class removal. Comparing
the performance improvement in the two papers also shows that these findings cannot be generalized to all variants.

Future work Since the ultimate goal is increased performance, future work could benefit from incorporating
optimizations found by De Ruiter [11]. The improvements include data structure specializations and other optimizations.
For further experimentation and improvement to the JSGLR2 variants, the modular architecture is highly beneficial.
It allows quick adjustment and replacement of components and a high-grained view of their individual parsing
performance. Refactoring “can certainly make software go more slowly—but it also makes the software more amenable
to performance tuning” [5]. With the inlined program, future work would be impeded by the time needed to comprehend
the code, resulting in less time spent on implementing adjustments. As a consequence, future optimization work

11Inlined algorithm is available at: https://github.com/Marocco000/inlined-jsglr2.
12Evaluation fork is available at: https://github.com/Marocco000/jsglr2evaluation.

11

would benefit the most by improving the modular implementation. Afterward, when a satisfactory performance has
been achieved, the code can be further inlined for an extra efficiency boost. An alternative that could remove the
modularity from the main algorithm but allow experimenting with multiple variants could be achieved by considering
feature-oriented programming [12]. This programming paradigm allows composing software from a set of features. In
doing so, it removes the need for class inheritance and dependencies. The modularity is lifted at the composition level,
while the generated variant can be inlined. Therefore, the flexibility and modularity are maintained, but it does not
affect the performance of the exact implementation.

8 Conclusion

This paper aimed to determine the performance overhead introduced by the modular architecture of JSGLR2, a Java
implementation of the SGLR parsing algorithm. This work focuses particularly on the negative impact in the incremental
variant of JSGLR2, an implementation that combines incremental parsing with SGLR parsing. To tackle this problem,
an inlined version of the algorithm was created, which was then compared to the variant in question. To inline the
variant, the original codebase was modified through refactoring to reduce the modularity. Consequently, the two
algorithms are still equivalent.

Regarding the evaluation method, the comparison was achieved by benchmarking the parsing time and character
throughput of the two programs with the JSGLR2 evaluation suite. The assessment was conducted on a set of three real
languages (Java, SDF3, and WebDSL) using Git repositories as input sources. Therefore, the evaluation corpus simulates
performance implications in a practical scenario. The evaluation was performed for both batch and incremental parsing
cases. The results on the above test suite show that the inlined implementation outperforms its modular counterpart in
batch parsing, as well as in incremental parsing. In the batch parsing case, speedups of 2% were registered for Java,
10% for SDF3, and 16% for WebDSL. For incremental parsing, results showcase up to 10% speedup. A note of caution
is due here since this data might not be the same for larger test suites. This data provides proof that inlining reduces the
overhead. Further investigation into the source of the overhead indicates that, out of the three main components (parser,
imploder, tokenizer), the parser is responsible for the largest contribution in batch parsing.

While this paper proves inlining to be an effective method for increasing the performance of a given codebase, applying
it is not recommended in the development cycle. For this purpose, a modular architecture will be more effective, by
allowing efficient optimization identification and implementation. However, inlining parts of the code that attribute to
most of the overhead, in this case, the parser, without compromising the modularity could prove beneficial for future
development. As an alternative approach, feature-oriented programming could provide the needed modularity for
experimenting with different parsers without sacrificing efficiency. Further research might explore the effectiveness of
this alternative.

12

A Modified classes

Original class New class
org.spoofax.jsglr2.JSGLR2ImplementationWithCache InlinedIncrementalJSGLR2
org.spoofax.jsglr2.incremental.IncrementalParser IncrementalParser2
org.spoofax.jsglr2.imploder.incremental.IncrementalStrategoTermImploder IncrementalStrategoTermImploder2
org.spoofax.jsglr2.stack.hybrid.HybridStackNode HybridStackNode2
org.spoofax.jsglr2.stack.collections.ActiveStacksArrayList ActiveStacksArrayList2
org.spoofax.jsglr2.stack.hybrid.EmptyStackPath2 EmptyStackPath2
org.spoofax.jsglr2.stack.collections.ForActorStacksArrayDeque ForActorStacksArrayDeque2
org.spoofax.jsglr2.stack.hybrid.HybridStackManager -Removed-
org.spoofax.jsglr2.stack.hybrid.HybridStackNode HybridStackNode2
org.spoofax.jsglr2.imploder.incremental.IncrementalImplodeInput IncrementalImplodeInput2
IncrementalParseForestManager -Removed-
org.spoofax.jsglr2.incremental.IncrementalParser IncrementalParser2
org.spoofax.jsglr2.incremental.IncrementalParseState IncrementalParseState2
org.spoofax.jsglr2.imploder.incremental.IncrementalStrategoTermImploder IncrementalStrategoTermImploder2
org.spoofax.jsglr2.stack.paths.NonEmptyStackPath NonEmptyStackPath2
org.spoofax.jsglr2.imploder.incremental.IncrementalTreeImploder.ResultCache ResultCache2
org.spoofax.jsglr2.stack.StackLink StackLink2
org.spoofax.jsglr2.stack.paths.StackPath StackPath2
org.spoofax.jsglr2.imploder.treefactory.StrategoTermTreeFactory StrategoTermTreeFactory2
org.spoofax.jsglr2.imploder.TreeImploder TreeImploder2
org.spoofax.jsglr2.reducing.ReducerOptimized -Removed-
org.spoofax.jsglr2.parser.failure.DefaultParseFailureHandler -Removed-
org.spoofax.jsglr2.incremental.diff.ProcessUpdates -Removed-
org.spoofax.jsglr2.parser.observing.ParserObserving -Removed-
org.spoofax.jsglr2.reducing.ReduceActionFilter -Removed-

Table 1: List of modified and removed classes in the inlining process.

13

B Evaluation configuration files

1 warmupIterations: 10
2 benchmarkIterations: 10
3 individualBatchSources: false
4 #implode: false
5 variants:
6 - incremental
7 - inlinedIncremental
8 shrinkBatchSources: 30
9 languages:

10 - id: java
11 name: Java
12 extension: java
13 parseTable:
14 repo: https :// github.com/metaborg/java -front.git
15 subDir: lang.java
16 sources:
17 batch:
18 - id: apache -commons -lang
19 repo: https :// github.com/apache/commons -lang.git
20 - id: netty
21 repo: https :// github.com/netty/netty.git
22 - id: webdsl
23 name: WebDSL
24 extension: app
25 parseTable:
26 repo: https :// github.com/webdsl/webdsl -statix.git
27 subDir: webdslstatix
28 sources:
29 batch:
30 - id: webdsl -yellowgrass
31 repo: https :// github.com/webdsl/yellowgrass
32 - id: sdf3
33 name: SDF3
34 extension: sdf3
35 parseTable:
36 repo: https :// github.com/metaborg/sdf.git
37 subDir: org.metaborg.meta.lang.template
38 sources:
39 batch:
40 - id: nabl
41 repo: https :// github.com/metaborg/nabl
42 - id: dynsem
43 repo: https :// github.com/metaborg/dynsem
44 - id: flowspec
45 repo: https :// github.com/metaborg/flowspec

Listing 7: config.yml for batch benchmarks.

1 shrinkBatchSources: 30
2 batchSamples: 3
3 warmupIterations: 5
4 benchmarkIterations: 5
5 jsglr2variants:
6 - inlinedIncremental
7 - incremental
8 variants:
9 - incremental

10 - inlinedIncremental
11 languages:
12 - id: java
13 name: Java
14 extension: java
15 parseTable:

14

16 repo: https :// github.com/metaborg/java -front.git
17 subDir: lang.java
18 sources:
19 incremental:
20 - id: apache -commons -lang -stringutils
21 name: StringUtils
22 repo: https :// github.com/apache/commons -lang.git
23 files:
24 - src/main/java/org/apache/commons/lang3/StringUtils.java
25 versions: 3 # 16
26 - id: gson
27 repo: https :// github.com/google/gson.git
28 versions: 3 # 16
29 - id: slf4j
30 repo: https :// github.com/qos -ch/slf4j.git
31 versions: 3 # 16
32 - id: webdsl
33 name: WebDSL
34 extension: app
35 parseTable:
36 file: ../ parsetables/WebDSL.tbl
37 subDir: webdslstatix
38 sources:
39 incremental:
40 - id: webdsl -yellowgrass -incremental
41 name: YellowGrass
42 repo: https :// github.com/webdsl/yellowgrass
43 fetchOptions:
44 - ’--depth =200’
45 versions: 3 # 16
46 - id: webdsl -elib -utils
47 name: elib -utils
48 repo: https :// github.com/webdsl/elib -utils
49 versions: 3 # 16
50 - id: sdf3
51 name: SDF3
52 extension: sdf3
53 parseTable:
54 repo: https :// github.com/metaborg/sdf.git
55 subDir: org.metaborg.meta.lang.template
56 sources:
57 incremental:
58 - id: nabl
59 name: NaBL
60 repo: https :// github.com/metaborg/nabl
61 versions: 3 # 16
62 - id: dynsem
63 name: DynSem
64 repo: https :// github.com/metaborg/dynsem
65 versions: 3 # 16
66 - id: flowspec
67 name: FlowSpec
68 repo: https :// github.com/metaborg/flowspec
69 versions: 3 # 16
70 - id: webdsl
71 name: WebDSL
72 repo: https :// github.com/webdsl/webdsl -statix.git
73 versions: 3 # 16
74 - id: java
75 name: Java
76 repo: https :// github.com/metaborg/java -front.git
77 versions: 3 # 16

Listing 8: config.yml for incremental benchmarks.

15

C Parsing results for batch benchmarks

Java SDF3 WebDSL
Variant Score Error Low High Score Error Low High Score Error Low High

Incremental 3975 17 3958 3992 200 1 198 201 335 5 330 340
Inlined 3865 12 3853 3877 179 0 179 180 280 1 279 281

Table 2: Parse time results for batch parsing without imploding.

Java SDF3 WebDSL
Variant Score Low High Score Low High Score Low High

Incremental 210 209 211 217 216 218 255 252 259
Inlined 216 215 216 241 241 242 305 304 306

Table 3: Throughput results for batch parsing without imploding.

Java SDF3 WebDSL
Variant Score Error Low High Score Error Low High Score Error Low High

Incremental 3972 20 3951 3992 201 0 201 201 335 2 332 337
Inlined 3852 14 3838 3866 178 0 178 178 280 0 279 280

Table 4: Parse time results for batch parsing with imploding.

Java SDF3 WebDSL
Variant Score Low High Score Low High Score Low High

Incremental 210 209 211 215 215 215 256 254 257
Inlined 216 216 217 243 242 243 305 305 306

Table 5: Throughput results for batch parsing with imploding.

16

D File size for batch benchmarks

(a) Java (b) SDF3

(c) WebDSL

Figure 5: File size distribution per language for the batch benchmarks.

17

E Parsing results for incremental benchmarks

The results are displayed on three consecutive source versions. The initial one is parsed as batch file, while the next two
are parsed incrementally. Score represents the parse time results, while error entails the confidence interval of the result.
The last four columns give an overview of the changes.

E.1 Incremental benchmark results for Java sources

Incremental Inlined Source change
Version Score Error Score Error Size (bytes) Removed Added Changes

0 1033.809818 18.444811 943.149426 27.456445 397077 0 397077 1
1 420.282313 4.396608 409.541925 2.972963 396792 754 469 78
2 281.252805 0.571876 274.944223 0.917415 396796 80 84 7

Table 6: Parse time results for incremental parsing without imploding for the apache.commons.lang.stringutils git
repository.

Incremental Inlined Source change
Version Score Error Score Error Size (bytes) Removed Added Changes

0 1207.633681 44.828865 1121.123156 53.371931 397077 0 397077 1
1 434.621008 6.052436 424.774793 2.167861 396792 754 469 78
2 285.467009 5.085665 279.462036 1.63767 396796 80 84 7

Table 7: Parse time results for incremental parsing with imploding for the apache.commons.lang.stringutils git
repository.

Incremental Inlined Source change
Version Score Error Score Error Size (bytes) Removed Added Changes

0 6315.817796 33.414149 5737.880433 30.710028 1267762 0 1267740 205
1 671.292385 6.041778 636.393676 4.403128 1268412 788 1438 40
2 667.910698 2.050482 629.914798 1.115894 1268030 1135 753 25

Table 8: Parse time results for incremental parsing without imploding for the Gson git repository.

Incremental Inlined Source change
Version Score Error Score Error Size (bytes) Removed Added Changes

0 7604.091235 79.48801 6990.964926 56.833465 1267762 0 1267740 205
1 711.237101 10.884736 671.58207 8.781639 1268412 788 1438 40
2 702.014724 2.020836 671.373367 12.398547 1268030 1135 753 25

Table 9: Parse time results for incremental parsing with imploding for the Gson git repository.

Incremental Inlined Source change
Version Score Error Score Error Size (bytes) Removed Added Changes

0 3244.491091 13.953685 3026.688003 1.546083 881618 0 881618 239
1 513.622617 1.787211 473.233137 1.185892 883547 202 2131 5
2 512.084029 1.597435 471.635066 8.467117 883490 399 342 14

Table 10: Parse time results for incremental parsing without imploding for the SLF4J git repository.

18

Incremental Inlined Source change
Version Score Error Score Error Size (bytes) Removed Added Changes

0 3880.372401 293.834349 3685.690771 140.316691 881618 0 881618 239
1 548.003901 2.643984 506.056588 2.2188 883547 202 2131 5
2 547.405188 6.707607 504.8967 2.487885 883490 399 342 14

Table 11: Parse time results for incremental parsing with imploding for the SLF4J git repository.

E.2 Incremental benchmark results for SDF3 sources

Incremental Inlined Source change
Version Score Error Score Error Size (bytes) Removed Added Changes

0 49.760579 0.232469 41.733383 0.155687 10027 0 10027 4
1 20.226442 0.699069 17.57428 0.271149 10248 0 221 2
2 18.769945 0.80611 16.560819 0.479382 10248 2 2 2

Table 12: Parse time results for incremental parsing without imploding for the DynSem git repository.

Incremental Inlined Source change
Version Score Error Score Error Size (bytes) Removed Added Changes

0 63.561911 0.285142 55.350358 0.5216 10027 0 10027 4
1 24.45504 1.128161 21.846444 0.632374 10248 0 221 2
2 22.610002 0.800692 20.262662 0.595706 10248 2 2 2

Table 13: Parse time results for incremental parsing with imploding for the DynSem git repository.

Incremental Inlined Source change
Version Score Error Score Error Size (bytes) Removed Added Changes

0 74.179238 3.542244 62.143451 0.1754 13540 0 13540 20
1 24.197385 0.144094 22.496737 0.119463 13980 0 440 6
2 22.836035 0.091008 21.257564 0.161094 14154 14 188 5

Table 14: Parse time results for incremental parsing without imploding for the flowspec git repository.

Incremental Inlined Source change
Version Score Error Score Error Size (bytes) Removed Added Changes

0 93.16225 6.99976 79.511199 1.057024 13540 0 13540 20
1 30.007047 0.339842 28.120143 0.374352 13980 0 440 6
2 28.32554 0.465432 26.459504 0.35741 14154 14 188 5

Table 15: Parse time results for incremental parsing with imploding for the flowspec git repository.

Incremental Inlined Source change
Version Score Error Score Error Size (bytes) Removed Added Changes

0 199.57989 17.872918 158.095056 0.723302 45752 0 45752 65
1 107.859821 2.1245 96.780585 1.857393 45752 0 0 0
2 109.94456 3.150701 98.074098 0.16577 46227 0 475 1

Table 16: Parse time results for incremental parsing without imploding for the Java git repository.

19

Incremental Inlined Source change
Version Score Error Score Error Size (bytes) Removed Added Changes

0 240.08968 22.021079 195.522932 6.080613 45752 0 45752 65
1 133.062811 3.268712 120.519673 1.207274 45752 0 0 0
2 134.590323 2.859786 122.511302 0.57671 46227 0 475 1

Table 17: Parse time results for incremental parsing with imploding for the Java git repository.

Incremental Inlined Source change
Version Score Error Score Error Size (bytes) Removed Added Changes

0 491.115527 23.59855 390.089755 1.714005 100115 0 100115 127
1 248.233383 0.4939 223.217672 0.69141 100148 191 224 9
2 248.191583 0.791198 221.669483 0.791668 100115 224 191 9

Table 18: Parse time results for incremental parsing without imploding for the nabl git repository.

Incremental Inlined Source change
Version Score Error Score Error Size (bytes) Removed Added Changes

0 615.117686 61.470319 495.080774 3.393949 100115 0 100115 127
1 302.191144 2.650512 274.266443 4.249153 100148 191 224 9
2 302.143027 2.173932 275.124839 1.894727 100115 224 191 9

Table 19: Parse time results for incremental parsing with imploding for the nabl git repository.

Incremental Inlined Source change
Version Score Error Score Error Size (bytes) Removed Added Changes

0 353.768407 1.649842 327.14673 1.20991 86370 0 86370 26
1 132.226049 4.516577 124.262882 1.996462 86543 0 173 1
2 132.689236 6.128813 124.17377 2.602851 86538 35 30 4

Table 20: Parse time results for incremental parsing without imploding for the WebDSL git repository.

Incremental Inlined Source change
Version Score Error Score Error Size (bytes) Removed Added Changes

0 449.714572 3.036198 414.201825 3.824561 86370 0 86370 26
1 159.0602 7.51142 149.866223 3.662193 86543 0 173 1
2 159.724543 6.42259 149.986069 5.260329 86538 35 30 4

Table 21: Parse time results for incremental parsing with imploding for the WebDSL git repository.

20

E.3 Incremental benchmark results for WebDSL sources

Incremental Inlined Source change
Version Score Error Score Error Size (bytes) Removed Added Changes

0 151.810157 1.852306 132.331717 0.337403 39821 0 39821 17
1 26.380207 0.499133 24.589184 0.039509 40480 169 828 59
2 18.852763 0.046475 17.721104 0.157806 40589 22 131 12

Table 22: Parse time results for incremental parsing without imploding for the elib-utils git repository.

Incremental Inlined Source change
Version Score Error Score Error Size (bytes) Removed Added Changes

0 185.880497 1.392006 164.17817 6.416399 39821 0 39821 17
1 29.848188 0.580249 27.442882 0.520305 40480 169 828 59
2 20.325259 0.137952 19.03698 0.097517 40589 22 131 12

Table 23: Parse time results for incremental parsing with imploding for the elib-utils git repository.

Incremental Inlined Source change
Version Score Error Score Error Size (bytes) Removed Added Changes

0 597.320512 12.151184 508.846789 3.885016 159255 0 159255 52
1 100.804936 1.009478 94.64607 1.140683 159227 67 39 9
2 118.199089 0.825666 109.924011 0.126597 159948 0 721 45

Table 24: Parse time results for incremental parsing without imploding for the yellowgrass git repository.

Incremental Inlined Source change
Version Score Error Score Error Size (bytes) Removed Added Changes

0 722.803985 4.700597 628.611049 5.700614 159255 0 159255 52
1 111.337703 0.86559 103.228556 1.741948 159227 67 39 9
2 131.855874 0.88965 122.386898 0.774526 159948 0 721 45

Table 25: Parse time results for incremental parsing with imploding for the yellowgrass git repository.

21

F Extended incremental benchmark

Incremental Inlined Source change
Version Score Error Score Error Size (bytes) Removed Added Changes

0 1041.617352 26.515388 948.722174 15.175868 395896 0 395896 1
1 165.039814 1.872445 161.60821 2.305434 395842 64 10 9
2 155.547885 2.333521 151.772748 0.581446 395842 7 7 4
3 94.261832 0.154905 91.858521 0.244288 397158 0 1316 1
4 212.660421 0.950212 205.596192 0.329347 397176 0 18 3
5 308.772296 3.751749 299.202277 0.380217 397184 0 8 4
6 274.551614 1.369688 269.479605 0.690448 397048 136 0 11
7 144.950832 1.949517 141.421847 1.995579 397077 0 29 26
8 418.512521 3.306794 412.012262 2.954598 396792 754 469 78
9 280.034265 0.482315 277.686069 3.554332 396796 80 84 7

Table 26: Parse time results for incremental parsing without imploding for the apache.commons.lang.stringutils git
repository.

Incremental Inlined Source change
Version Score Error Score Error Size (bytes) Removed Added Changes

0 1209.303984 66.720214 1090.736034 35.312431 395896 0 395896 1
1 168.047289 1.027854 220.091318 4.821185 395842 64 10 9
2 160.458725 0.966742 214.285399 7.320482 395842 7 7 4
3 95.864898 0.844084 156.309689 16.292616 397158 0 1316 1
4 215.584354 0.475625 271.973207 17.445074 397176 0 18 3
5 311.056554 0.548062 360.331869 20.797911 397184 0 8 4
6 283.265738 2.559716 334.584718 18.238101 397048 136 0 11
7 148.377498 1.976207 201.147121 5.477651 397077 0 29 26
8 435.207436 5.982853 478.961763 6.805869 396792 754 469 78
9 286.401615 0.362552 337.628681 8.813776 396796 80 84 7

Table 27: Parse time results for incremental parsing with imploding for the apache.commons.lang.stringutils git
repository.

References

[1] Spoofax language workbench. [Online]. Available: http://www.metaborg.org/en/latest/index.html,
(accessed: 10.06.2021).

[2] E. Visser, “Scannerless generalized-LR parsing,” Programming Research Group, University of Amsterdam, Tech.
Rep. P9707, Jul. 1997.

[3] J. Denkers, “A modular sglr parsing architecture for systematic performance optimization,” M.S. thesis, Delft
University of Technology, 2018. [Online]. Available: http://resolver.tudelft.nl/uuid:7d9f9bcc-
117c-4617-860a-4e3e0bbc8988.

[4] T. A. Wagner and S. L. Graham, “Efficient and flexible incremental parsing,” ACM Trans. Program. Lang. Syst.,
vol. 20, no. 5, pp. 980–1013, Sep. 1998, ISSN: 0164-0925. DOI: 10.1145/293677.293678. [Online]. Available:
https://doi-org.tudelft.idm.oclc.org/10.1145/293677.293678.

[5] K. B. M Fowler, Refactoring: improving the design of existing code. Boston: Addison-Wesley, 2019.
[6] D. E. Knuth, “On the translation of languages from left to right,” Information and Control, vol. 8, no. 6, pp. 607–

639, 1965, ISSN: 0019-9958. DOI: https://doi.org/10.1016/S0019-9958(65)90426-2. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0019995865904262.

[7] R. W. Floyd, “Syntactic analysis and operator precedence,” J. ACM, vol. 10, no. 3, pp. 316–333, Jul. 1963, ISSN:
0004-5411. DOI: 10.1145/321172.321179. [Online]. Available: https://doi-org.tudelft.idm.oclc.
org/10.1145/321172.321179.

[8] Spoofax language workbench. [Online]. Available: http://www.metaborg.org/en/latest/source/
langdev/meta/lang/sdf3/, (accessed: 10.06.2021).

22

http://www.metaborg.org/en/latest/index.html
http://resolver.tudelft.nl/uuid:7d9f9bcc-117c-4617-860a-4e3e0bbc8988
http://resolver.tudelft.nl/uuid:7d9f9bcc-117c-4617-860a-4e3e0bbc8988
https://doi.org/10.1145/293677.293678
https://doi-org.tudelft.idm.oclc.org/10.1145/293677.293678
https://doi.org/https://doi.org/10.1016/S0019-9958(65)90426-2
https://www.sciencedirect.com/science/article/pii/S0019995865904262
https://doi.org/10.1145/321172.321179
https://doi-org.tudelft.idm.oclc.org/10.1145/321172.321179
https://doi-org.tudelft.idm.oclc.org/10.1145/321172.321179
http://www.metaborg.org/en/latest/source/langdev/meta/lang/sdf3/
http://www.metaborg.org/en/latest/source/langdev/meta/lang/sdf3/

[9] Jsglr2 evaluation suite. [Online]. Available: https://github.com/metaborg/jsglr2evaluation/tree/
43b5b30e04cf5520acf2892175948002f8d1c2dd, (accessed: 10.06.2021).

[10] N. Kapitonenko, “Undoing software engineering: Demodularization of a sglr parser for performance gains,”
Bachelor’s Thesis, Computer Science Bachelor Project, TU Delft, 2021.

[11] J. de Ruiter, “Optimizing sglr parser performance,” Bachelor’s Thesis, Computer Science Bachelor Project, TU
Delft, 2021.

[12] C. Prehofer, “Feature-oriented programming: A fresh look at objects,” Lecture Notes in Computer Science,
vol. 1241, Oct. 1997. DOI: 10.1007/BFb0053389.

23

https://github.com/metaborg/jsglr2evaluation/tree/43b5b30e04cf5520acf2892175948002f8d1c2dd
https://github.com/metaborg/jsglr2evaluation/tree/43b5b30e04cf5520acf2892175948002f8d1c2dd
https://doi.org/10.1007/BFb0053389

	Introduction
	Background
	Parsing algorithms
	Context and framework

	Methodology
	Inlining the algorithm
	Inlining the incremental variant of JSGLR2
	Updating the benchmarks

	Evaluation Setup and Results
	Setup
	Results

	Responsible Research
	Discussion
	Conclusion
	Modified classes
	Evaluation configuration files
	Parsing results for batch benchmarks
	File size for batch benchmarks
	Parsing results for incremental benchmarks
	Incremental benchmark results for Java sources
	Incremental benchmark results for SDF3 sources
	Incremental benchmark results for WebDSL sources

	Extended incremental benchmark

