
Characterizing the knowns and
unknowns of text simplification
models

Siwei. Wang

Characterizing
the knowns and
unknowns of

text
simplification

models
by

Siwei. Wang
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Tuesday August 23rd, 2022 at 10:00 AM.

Student number: 5239982
Project duration: November 23rd, 2021 – August 23rd,2022
Thesis committee: Prof. dr. ir. G.J.P.M Houben, TU Delft, Thesis advisor

Dr. J. Yang, TU Delft, Daily supervisor
Dr. Luís. Cruz, TU Delft

This thesis is confidential and cannot be made public until 23rd August.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

Last year I enrolled in a course in Delft called Information Retrieval, which is a combination of two sections:
information retrieval and natural language processing. Dr. Jie Yang is responsible for the NLP(natural lan-
guage processing) part, and I became increasingly interested in such an area. Jie’s teaching style helped me
immensely through this course and sparked my curiosity. So I wrote an email to Dr. Jie for suggestions about
my thesis; Jie provided me with an idea of interpreting an NLP-based model, which combined several sub-
jects I have been interested in for a long time. So my journey with characterizing text simplification models
knowns and unknowns started. This thesis project combined the local interoperability and human-in-the-
loop method to interpret the text simplification model. It can identify model unknowns, and therefore we
can predict when the text simplification model will fail.

The journey is combined with tears and joy; on the one hand, the depth of such a project is beyond
my imagination. I had to read many papers and re-implement codes to understand and thus get inspired.
Sometimes, deadlines and weekly meetings push me to work all night long; people who love me give me the
strength not to give up and move forward. On the other hand, by solving one and another difficulty, I feel
great joy. Also, Jie and Lorenzo’s praise and affirmation give me much confidence and make me proud. Since
this journey is about to end, I want to thank everyone who helped me.

Honestly, I want to thank my supervisor Jie and Lorenzo, for their excellent guidance and help during this
period. Their advice helped me during all research time, implementing the research idea, writing the thesis,
and preparing the final defense. I want to express my warm gratitude to my direct advisor Prof. dr. ir. Geert-
Jan Houben for chairing the defense and helping with preparing various forms and guidance. I also want to
thank Dr. Luís Cruz for being a committee member. Besides, I want to say thank you to my family, thank you
for supporting me. Thanks to all my friends who have contributed their time to complete annotation work,
mainly thanks to my boyfriend, who always encourages me to tackle the challenge.

Siwei. Wang
Delft, August 2022

iii

Contents

1 Introduction 1
1.1 Problem statement . 2
1.2 Challenges . 2
1.3 contributions . 3
1.4 Organization . 3

2 Background Information 5
2.1 Text simplification . 5

2.1.1 Rule-based text TS methods . 5
2.1.2 Data-driven TS methods . 6

2.2 Interpretable machine learning . 6
2.2.1 Intrinsic interpretable method . 7
2.2.2 Post-hoc Interpretability method . 7
2.2.3 Interpretable machine learning tools . 9

2.3 Human-in-the-Loop Machine Learning. 10
2.3.1 What do You Mean? . 10
2.3.2 What Should You Know? . 10

3 Framework 13

4 What model really know 15
4.1 Post-hoc interpretability . 15

4.1.1 Attention-based . 15
4.1.2 Gradient-based Pixel Attribution method . 15

4.2 Human-in-the-loop method . 16
4.2.1 Annotation phase . 17
4.2.2 Training phase . 19
4.2.3 Pilot study . 20
4.2.4 Budget calculation . 21

5 What model should know 23
5.0.1 Annotation phase . 23
5.0.2 Pilot study . 24
5.0.3 Budget calculation . 25

6 Implementation Details 27
6.1 Technology Stack . 27
6.2 User interface of Web application . 27
6.3 Data storage . 27

7 Experiment Set-up and Results 29
7.1 Overview of the experiment . 29
7.2 Text simplification . 29

7.2.1 Datasets . 29
7.2.2 Models . 30

7.3 Data Preprocessing . 32
7.4 Human intelligence task . 33

7.4.1 Task overview . 33
7.4.2 Quality control . 33
7.4.3 Acceptance criteria . 34

v

vi Contents

7.5 Data Aggregation . 34
7.5.1 Results of Really-Know task and Should-Know test on validation set 34
7.5.2 Results of Really-Know task and Should-Know test on test set 36

7.6 Extract the unknowns . 36
7.7 Prediction results . 37

7.7.1 Really-Know prediction . 37
7.7.2 Should-Know prediction . 38
7.7.3 Unknowns prediction . 38

8 Conclusion and Future work 41
8.1 Conclusion . 41

8.1.1 Really-know task . 41
8.1.2 Should-Know task . 41
8.1.3 Predict the unknowns . 41

8.2 Limitations and future work . 41

Bibliography 43

1
Introduction

In the Netherlands, approximately 2.35 million inhabitants between the ages of 16 and 65 are people with
low education levels and second language readers[1]. It is difficult for them to know what an advertisement
is about, to gain knowledge about any subject or even to understand the meaning of posts on social media.
Thus, the complex text is causing trouble in the lives of these people.

For example, the National Library of the Netherlands(KB), is one of the largest cultural heritage institu-
tions and is responsible for providing data available to all Dutch citizens. There are millions of materials and
nearly 120 kilometres of books. If the public cannot obtain these materials, KB will not be able to fulfil its
responsibilities. Therefore, a simple text is needed to help everyone understand these materials and a simple
text may improve their experience and quality of life[36]. In order to facilitate access, KB has tried to simplify
the text manually. However, there are too much data in KB, so manual rewriting is laborious and costly. So,
adopting a more efficient way to simplify text is urgent. Thus, we can ask Artificial intelligence for help.

In the field of natural language processing, there is a task named Text Simplification. Text simplification
lessens the text’s complexity to make it easier to read and comprehend while keeping the original informa-
tion’s content[2]. There are various algorithms to do so, however, these methods are not good enough to apply
in the industry. Even the state-of-the-art methods make mistakes and tend to fail in the following situations:
(1). Sometimes models delete important words which may change the original meaning of the sentence. (2).
The model may replace a complex word with a simple word, however, the changed word may bring a different
meaning to the original sentence. (3). Additional words may also be added to a simplified sentence, as to help
readers to understand in a more easy way, but this may bring confusion to the sentence.

If we want to build better text simplification models, it is essential to first understand the situations in
which state-of-the-art methods fail. Therefore, if we can figure out why the model failed, We can find ways
to improve it to get a better model. we also find that interpretable machine learning is a way to address
this problem. More specifically, it is a method that helps us know how the model gives this output. When
applied to the text simplification task, it is a way to tell which words play a more important role in the model’s
simplification. Therefore, we can use the method to describe the interior of the black box model and to look
for in what kind of situation the model fails.

Interpretable machine learning provides explanations based on some artificial intelligence methods. But
some of its explanatory forms are not easy to understand by humans. In our task, the explanation form
generated by Interpretable machine learning methods is complex-simple word pair. Hence, it is hard to infer
all simplified operations from the generated word pairs since some operations involve multiple words. Here
we would like to bring human intelligence into the loop of interpreting models. Several works have combined
human-in-loop and interpretable machine learning methods to better interpret the model. Balayn et al[9]
recently proposed a human-in-the-loop pipeline named SECA to interpret models in the image classification
tasks, where human involvement provides a richer semantic interpretation. In addition, humans can help to
contribute knowledge that models should learn.

Previous work has targeted the field of computer vision and focused on classification problems. Little
work has been done on the language generation task. This research proposes a human-in-the-loop frame-
work combined with a machine learning interpretability method, which can analyze what the black-box
model knows and what the model should know and then extract the model-unknown knowledge. By gaining
such knowledge, we can clearly understand in which circumstances our model fails and why our model fails.

1

2 1. Introduction

1.1. Problem statement
Under the incentives of these emerging fields, some state-of-the-art text simplification methods do have
good results by automatically evaluation metrics.

However, it is still not good for human evaluation, and these methods are not good enough to apply in the
industry. We can take an example to explain this situation: The original sentence is They are culturally akin
to the coastal peoples of Papua New Guinea., and the model simplified it as They are a lot like the coastal
peoples of Papua New Guinea.. This simplification gained a high score by automatically evaluation metrics.
But the meaning of the original sentence is changed: it loses the sense of culture.

Therefore, we aim to know why our model fails and what kind of situation my model fails thus to gain a
better text simplification model. With the deepening of the research, the critical problem we need to solve
is To what extent can our framework identify and characterize the Text simplification model’s unknowns.
And for this, we can also study and discuss the following three aspects.

1. How can we know what the text simplification model really knows?

2. How can we know what the text simplification model should know?

3. how effective are rule-based unknowns for predicting model behavior on out-of-distribution data?

This research will generally explore why and under what circumstance the text simplification model fails.
The process implemented by this pipeline is as follows: First, take the interpretable machine learning and a
human-in-the-loop approach to extract what the model really knows. Then, human intelligence is used to
gain what the model should know. Finally, we calculate what model does not know by the Really-Know part
and the Should-Know part. Figure 1.1 displays the overall idea of our framework.

Figure 1.1: The proposed framework to collect what the model does not know

1.2. Challenges
Achieving the purpose of characterizing the unknowns of the text simplification model is challenging in sev-
eral ways. The challenges are as follows:

1. Hard to explain model behaviour only by Interpretable machine learning methods

Text simplification can be divided into two types: lexical simplification and syntactic simplification[2].
The most widely used is the interpretable machine learning methods, which operate mainly by exploit-
ing its important input features[41]. In other words, it provides connections between the original and
generated simple words. Thus these generated links can be used to specify lexical changes, but not
enough to describe syntactic changes. And syntactic changes usually refer to the changes in syntac-
tic structure, so this change often involves more than one word. However, relationships generated by
interpretable machine learning methods are generally one-to-one correspondence, so We can not in-
fer from one-to-one generated word pairs. Therefore, interpretable machine learning methods are not
enough to explain the model behavior.

2. Hard to explain model behaviour only by human intelligence

We will describe the model behavior by designing a human intelligence task. We all know that text sim-
plification is the simplification of complex sentences through synonym replacement, syntactic struc-
ture transformation, and the removal of irrelevant information into simplified sentences. So even

1.3. contributions 3

though interpretable machine learning can provide information about simple words that are gener-
ated and their relevant original words, figuring out how sentences are still a huge burden for humans,
the descriptions they offer have no exact format, so it is hard to extract their descriptions for the model
behavior.

3. Difficult to evaluate the result from the framework

So far, no framework has been proposed in this field, so it is hard to prove the effectiveness of the
proposed method without comparative analysis with other approaches. In addition, the output of this
framework is a set of rules representing the unknowns of the model, but it is hard for us to prove the
credibility of the unknown rules. For example, there is some work done on image classification, but it
is still challenging to apply it to our task. In this case, we can add some fake noise to see whether the
framework can extract the added noise as a piece of unknown information. By analogy, the state-of-
the-art method for our task is to adopt a pre-trained language model, but the technique requires a lot
of time for training, so we can hardly apply this method in the field of computer vision. So the only way
is that We have to come up with another effective way to evaluate our framework.

1.3. contributions
Current research mainly focuses on characterizing model knowns and unknowns in the classification task.
The framework proposed in this research is one of the pioneering work to try its best to extract the unknowns
in language generation tasks. Besides, the framework combines the interpretability method and human in-
telligence to explore what is inside the model and what the model should learn. Therefore, we can use our
framework to predict what kind of situation the model will fail and to explain why the model fails. In addi-
tion, we also adopt knowledge from the framework to reduce human cognitive load and help them to provide
better explanations. The contribution can be described in detail as follows:

1. A novel human-in-the-loop interpretability framework to describe model knowledge and for speci-
fying domain knowledge

In this thesis, we propose and design a novel framework to describe what the model knows and should
know. It is a framework that combines human intelligence and the interpretable machine learning
method to describe model behavior. It can specify both lexical and syntactic simplification opera-
tions. Thus, this method minimizes the deficiency of only using the machine learning interpretability
method.

2. A method to use rules from the knowledge base to better explain model behaviour

We adopted rules from the PPDB (a simple paraphrase database[32]) to reduce human burgeon and
to help humans better describe how the model simplifies the sentences at both lexical and syntactic
levels. The PPDB knowledge base[32] contains a set of lexical rules and syntactic rules which users can
use to describe the changes as to reduce human cognitive load. In addition, the rules can also provide
the same format for crowd workers to follow.

3. A computational method to evaluate model unknowns

The method mentioned above is to extract the really know, and the should know of the model by com-
bining the framework, then calculate the model unknowns by calculating the difference set of the
Really-Know task and the Should-Know task. From this, we take an approach to verify whether our
framework is practical. More specifically, the method is that we predict the failure cases in the test set
from the unknowns extracted from the validation set. If we can predict most failure cases, we can know
that our method is accurate and practical.

1.4. Organization
The following sections of the thesis report are organized: In Chapter 2, we will provide background informa-
tion on the three main topics in our thesis: Text simplification, Interpretable machine learning, and Human-
in -the-Loop Machine learning. Next, we will illustrate the main framework for extracting model unknowns.
Then, we will describe the methodology of the first task in our paper: what the model really knows. Chapter
5 is going to explain what models should know. The experiment setup and the results will be presented in
Chapter 6. Finally, conclusions are drawn, and future work has prospected.

2
Background Information

This report presents how model interpretability technology and human explanation can be used to explain
what our text simplification model knows and collect information about what our model should know, and
then extract the unknowns to predict when the model fails. In order to help readers have a more compre-
hensive understanding of our work, we research the background information of the following three research
areas: text simplification, machine learning interpretability and the human-in-the-loop method.

Firstly, it will introduce the definition of text simplification and then the classification of text simplifica-
tion should be summarized. After that, we are going to illustrate several typical text simplification methods.
Then, some interpretability methods for interpreting language models discussed. The next step is to illustrate
existing work on how human intelligence can help us to interpret language models.

2.1. Text simplification
Text Simplification(TS) is a task of reducing the linguistics of a sentence while preserving its original meaning[2],
here is an example as shown in table 2.1. There are so many reasons why such a task is needed. Firstly, it can
help people with low literacy, children, and non-native speakers to understand the text of a sentence. Besides,
People with reading comprehension problems like autism, aphasia, dyslexia, and deaf people also benefit
from simple text[2]. In addition, TS is a pre-task of several natural language processing tasks like question
generation and information extraction[56]. Thus, these natural language processing tasks can also benefit
from TS[45].

Examples of Text Simplification

Example of a complex sentence Grammarly provide assistance in order to optimize users’ communication

Example of a simple sentence Grammarly helps people communicate

Table 2.1: Examples of Text Simplification

TS can be divided into two sub-tasks, Lexical Simplification and Syntactic Simplification[2]. Lexical sim-
plification focuses on the word level while syntactic simplification focuses on the sentence level. Lexical
simplification is going to replace complex words with simple synonyms while Syntactic simplification will
replace the complex syntactic with a simple structure[2].

Existing technologies can be divided into two groups: the first is rule-based method. It can simplify sen-
tences by the extracted lexical and syntactic rules. Besides, the second is data-driven methods. Those ap-
proaches extract knowledge from large datasets. To comprehend and analyze data, it applies methods from
numerous disciplines, including computer science, mathematics, and statistics [2].

2.1.1. Rule-based text TS methods
The first rule-based TS system was proposed in 1998[11]. This method is aimed to simplify English newspa-
per texts to assist aphasic readers. The system consists of a simplifier and an analyzer. The analyzer is used to
analyse the syntactic information of the sentence and the simplifier aims to simplify the text using the infor-
mation provided by the analyser[11]. The simpler simplified words by the following steps. It adopts WordNet

5

6 2. Background Information

[28] to generate synonyms and then replaces the original word with the highest frequency of synonyms based
on the Oxford Psycholinguistic Database[2]. However, the limitation of this approach is so obvious that some-
times will lose its original meaning.

While the method mentioned before pay more attention on lexical simplification, the following research
presented on appositives, coordination clause separation, and structures like relational clauses and appositives[2].
The widely known method is to simplify the syntactic structure by manually formulationg rules. Consider the
following rule: X : N P, RELPRON Y , Z . X : N P Z . X : N P Y . If a sentence begins with a noun phrase
(X) followed by a relative pronoun (RELPRON) with the pattern Y followed by Z, where Y and Z are word
sequences, then the embedded clause can be broken down into two sentences, namely the sequences X fol-
lowed by Z and the X followed by Y[2]. Following this rule, the Sentences can be simplified. In actual use,
the system is not always extremely effective. It sometimes fails in long-distance sentences and ambiguous
sentence[2]. Biran et al [10]proposed YATs, which focused on both lexical simplification and syntactic sim-
plification. For the lexical part, it adopts a vector space model to calculate the most possible meaning of the
given word in the context and then rank the possible alternatives according to their word simplicity and word
frequency. For the syntactic structure, it adopts part of the speech tagging and syntactic dependency tree to
simplify the original complex sentence.

2.1.2. Data-driven TS methods
The traditional rule-based TS methods are using hand-crafted rules and then apply these rules to the TS
corpora, while the data-driven methods extract knowledge from the aligned corpus[2]. Horn et al.[18] to
learn simplification knowledge from the aligned Wikipedia datasets using GIZA++. They trained a feature-
based ranker by utilizing SVM in order to choose the best candidate in a specific situation. A series of features
are used to represent the best candidate words, such as candidate alignment likelihood, word frequency,
language model, and context frequency. From this we can conclude that The proposed system produced
positive outcomes.

The following talks about TS methods who solved the problem as mono-linguistic machine translation,
Zhu et al[55] proposed a probabilistic, Tree-based Simplification model which firstly adopted statistical sim-
plification models and simultaneously covered the four simplification operations: split, delete, reorder, and
replacement. This paper gives a more comprehensive simplification steps that considered by researchers,
but it still does not achieve a good result in terms of BLEU and NIST(evaluation metrics of TS). Sander et
al.[50] follow Zhu et al [55] work which also treats the complex-simple sentence pairs as the input of a mono-
linguistic machine translation tasks, but they do not explicitly take the syntactic information into account,
and instead they learn the transformation of syntactic implicitly. Besides, this method pay more attention to
the difference between two sentences than to the drop operation.

This paragraph describes a method of TS from sequence to sequence structure, which is widely used in
machine translation. The first method was introduced by Sergiu et al [30] in 2017.They use sequence-to-
sequence neural network to replace the complex words for TS [30], and it also adopts human evaluation to
prove the effectiveness of the method.

After the introduction of the transformer-based architecture, Zhao et al [54] proposed a method that in-
herited from the machine-translation method and combines a transformer-based architecture. They demon-
strated that the transformer-based architecture has the ability to understand the text by selecting the complex
word in the original text and then replacing it with a simpler word, while also it shows the effectiveness of the
database[54].

2.2. Interpretable machine learning
Even using the state of the art methods for TS, results are still not good. From the test set, we can find that
model is prone to failure in some certain situations. Therefore, the existing state of the art methods of text
simplification still needs to be refined[35]. Our solution is first to find out what model has learnt. So, here we
need to take interpretable machine learning methods to show what is inside our model[12].

Interpretable machine learning can described as methods and models that make the behaviour and pre-
dictions of machine learning systems understandable to humans[23]. In other worlds, Interpretability refers
to the extent to which a human can consistently predict the model’s result[20]. The more interpretable a ma-
chine learning model is, the simpler it is to understand why particular judgments or predictions have been
made[29]. Therefore, it can help us figure out what the model really know and then learn why the model fails.

Interpretable machine learning can be categorized into two groups: intrinsic interpretability method and

2.2. Interpretable machine learning 7

post-hoc interpretability method[15]. The difference between the two methods is the time when we use the
interpretability method. The intrinsic interpretability method is like combined the interpretability structure
with the model like the attention-based model and decision tree[15]. In contrast, Post-hoc interpretabil-
ity method is like we need another method or model to provide an explanation for the existing model. In
addition, baseing on the categorization provides here, each group still can be categorized into two types:
global interpretability and local interpretability[49]. Global interpretability means that users can know how
the model behalves on a global view while local interpretability means that users can understand why the
model gives this prediction for one specific example[15]. Figure 2.1 displays the category of interpretable
machine learning.

Figure 2.1: The classification of Interpretable machine learning method

2.2.1. Intrinsic interpretable method
Intrinstic interpretable method refers to machine learning models that are considered interpretable due to
their simple and straightforward structure, such as short decision trees or sparse linear models[29]. More
specifically, For linear regression models, the importance of each feature is easily known by the weights or
the coefficients. Besides, a decision tree is another good example because we can access the partition of each
feature. Moreover, it is easy for us to know how the decision is made.

There is another typical interpretability method: attention-based mechanism, which is widely used in the
explanation of sequence to sequence pattern prediction mode(eg. recurrent neural network)[15]. The benefit
of the attention mechanism is that it enables the users to understand which aspects of the input of the model
focuses on by displaying the attention weight matrix for a specific predictions[15]. This mechanism can be
used in the field of computer vision,Xu et al.[39] proposed a method to automatically generate descriptions
for images, and when generating each word [39], the model shifts its attention to the relevant regions reflect-
ing the image. In addition, the attention mechanism can be used in the field of machine translation[8]. More
specifically, the attention mechanisms are used to improve the performance of Neural Machine Translation
by selectively focusing on sub-parts of the sentence during translation[33].

2.2.2. Post-hoc Interpretability method
Post-hoc Interpretability method can also be used to describe what the input tokes model looks at when
generating the output. The following is an example that shows when applying saliency score to the machine
translation task, the darker colour means that the input token is more important when generating the specific
output. The post-hoc interpretable method analyses the model after training [29]. It also can be divided
into two categories: one is global model interpretable methods, and the other is local model interpretable
methods[29].

The global model interpretable methods explain the general model behavior towards a given dataset. The
working process of the global model interpretability method can be described as follows: Starting from train-
ing, the model can learn much knowledge from the data and store them in the parameters. Then the inter-
pretable approach provides a global understanding of what the knowledge-based model has learned. There
is another typical method named permutation importance[4], which is a method to calculate the importance
of one feature by the degree of the accuracy of the model changed when the feature is removed. This method
specifically measures the correlation between a set of features and the output result[4]. This algorithm is

8 2. Background Information

Figure 2.2: Decision tree Figure 2.3: Word Alignment

done for each component, and the final prediction scores are obtained for each N feature, respectively. Then
the importance of the N features is ranked according to the reductions of their score compared to baseline
accuracy[15]. This method has several advantages:

1. It can preserve the relationship between each feature [4]

2. This method is unified and can be applied to any model as long as it can generate feature importance
[4].

Post-hoc locally interpretable method emphasizes explaining individual predictions of Ml models. This
type of interpretability method is what we focus on most in this paper. There are two types of post-hoc inter-
pretable methods that are most commonly used:

1. Counterfactual explanations

The counterfactual explanation is a way to see what would happen if the input changed in a particu-
lar way[46]. The working process can be described as follows: The counterfactual explanations adopt
what-if Serino to give explanations. Here, we can tell the predicted outcome of an instance as an
event, and then we describe the particular eigenvalues of this instance which caused the "event" as
the “cause.” Both feed them into the model, and we can get a specific prediction. We then change the
"causes" to analyze how the result of prediction changes[29]. The advantage of this method is that it
provides good explanations since the explanations are contrastive and focus on a few reasons[29].

2. Saliency map

It is an interpretable method, and saliency methods are widely used in language processing and com-
puter vision. Usually, we use an image as input, then use the information to predict the output. For
example, if we use an image to indicate the category of a bird, we do not need to consider all the pix-
els of the input. Therefore, we only need some necessary pixels from the original picture to give the
output. The saliency map allows us to find the critical pixel from the input image. The following figure
shows an example; Figure 2.4 shows the input picture, in which the model identified as 26% to be a
sheep and 17% to be a cow, and other figures show what the model looks at when identifying it as a
sheep or cow. Ways to implement a saliency map can be divided into two categories: Gradient-based
and Perturbation-based. The following paragraphs briefly describe typical methods for implementing
saliency maps.

– Gradient-based approach

The gradient-based methods compute the gradient of the prediction with respect to the input
features[29]. Many types of gradient-based methods mainly differ in calculating gradient[29].
Then three gradient-based methods will be explained:

⋄ Gradient
The idea of Vanilla Gradient was first proposed by Simonyan et al. [40], and the working
process is the same as the backpropagation function. This function finally can provide a rank
for the importance of the input features[29].

2.2. Interpretable machine learning 9

Figure 2.4: Sheep 26%,cow 17% Figure 2.5: Saliency map of sheep Figure 2.6: Saliency map of a cow

⋄ Integrated Gradient
Integrated Gradient was first introduced in 2017 from a paper named Axiomatic Attribution
for Deep Networks [44]. Sometimes, we do not know that an incorrect attribution is due to
an error in the model or the attribution method. But this method can solve this problem. It
proves that it can provide reliable results because if an input feature changes the classification
score, the attribution value for that input is not equal to 0[44].

⋄ SmoothGrad
SmoothGrad was proposed and tested by smilkov et al. [41],[7]. The goal of SmoothGrad
is to average across these artificially noisy gradients and add noise to make gradient-based
explanations less noisy[29]. SmoothGrad is an addition to any gradient-based explanation
approach, rather than a stand-alone explanation method itself[29].

– Perturbation-based approach

Perturbation-based methods seek to gain insight into how the model works by changing its inputs,
such as the pixels in a picture, the words in a text, or similar components of other data types, and
then tracking changes in the model output. There is one typical method (Shapley Values) can be
introduced in the following:

⋄ Shapley Values
Shapley value is an original method from game theory[29]. It is a method to explain predic-
tion by pretending that each feature value of the instance is a "player" in a game, where the
prediction is the "payout"[29].

2.2.3. Interpretable machine learning tools
With the development of the field of interpretable machine learning, there are a number of toolboxes that
integrate several interpretable methods. The following paragraph will list some of the widely used toolboxes,
most of which are related to the natural language processing field.

• LIME

LIME [34] is a toolbox that provides local model-agostic interpretations. The idea of LIME is to use
a simple (for example, linear regression model) to approximate the behavior of the black model[34].
This idea was implemented by tweaking the feature value to see how it affected the output[34]. The
advantage of LIME is that it can be used to interpret any model, but sometimes it is not enough to
explain a complex model.

• Allennlp

Allennlp [48] is not only a toolbox for interpreting models; it provides an NLP pipeline for users to train,
test, and evaluate their models. The interpret part of Allennlp consists of two interpretation methods:
• Gradient-based saliency map and counterfactual explanations[48]. Compared with lime, this toolbox
can support the explanation of a more complex model: For example, it can illustrate why Bert makes
the prediction for the mask. It also provides a more user-friendly interface.

• Seq2seq-vis

Since the purpose of our research is to focus on the TS tasks, seq2seq-vis is a toolbox used for debugging
sequence-to-sequence structured models. Seq2seq-vis provides opportunities for users to interact with

10 2. Background Information

the model and explain each stage of the natural language processing task[42]. What’s more, it allows
users to use what-if science to explore the model[42]. For example, in the specific case of machine
translation, users can change one word into another, and then the translation results can be displayed.

• Bertviz

One way to interpret the model is to use the attention scores. Since the state-of-the-art method of
TS uses a transformer-based architecture, an attention-based approach, Bertviz is an excellent tool
to interpret[47]. This tool provides an easier way to decipher the complex model’s attention score and
supports two views to interpret the model: the high-level model view and the low-level neuron view[47].

• Ecco

Compared with previously mentioned tools, Ecco is a more powerful toolbox. Ecco consists of a set
of tools to analyze and visualize the different model types, allowing users to interact with the internal
states of models[3]. There are three benefits of using this tool: The first is that it supports all the models
built with Hugging face[3]. Besides, users can use this tool to explore model behavior through different
types of feature attribution methods. Last, it contains rich visualization types for users to choose from.

2.3. Human-in-the-Loop Machine Learning
The previous section gives detailed information about our task: interpretable machine learning can serve as
our solution. For the TS tasks, interpretable machine learning is not enough to describe the model behavior.
So, humans can participate in the process, thus giving a more complete explanation, which also includes
the syntactic simplification operations. Here, we are going to introduce two related works which can bring
humans into the process of interpreting models.

2.3.1. What do You Mean?
Balan et al. [9] proposed a human-in-the-loop pipeline named SECA to interpret the model in the image
classification task. The existing interpretability techniques mostly describe a model’s behavior by finding
salient visual patches, which the users must manually interpret because it supports the model validation
with queries to verify many visual concepts[9]. To enable automatic statistical analysis of model activity,
salient image regions detected by local interpretability methods are annotated with semantic concepts and
then compiled into a tabular representation of images[9]. Here, the crowdsourcing task is to draw a bounding
box of the highlighted area of the saliency map and then provide concepts of these circuited boxes. Doing so
can provide a set of knowledge for developers to figure out what models really know. Figure 2.7 displays the
whole annotation process:

2.3.2. What Should You Know?
Compared to the previous approach, which aims to explain what the model has learned, this paper adds one
more task based on it[37]. It also adopts a human-in-the-loop method to analyze what the model should
know, then combines the two tasks to characterize the model unknown unknowns. Unknown unknowns
means that the model feels confident about its prediction while the prediction is wrong[37]. This framework
is named Scalpel-HS and engages humans in two tasks: what a model should know and what it really knows.
The task’s objective is to identify the scene’s elements that impact the machine learning model prediction and
determine whether this corresponds to the human mental model[37]. Crowd workers categorize the items
and connections found by the model and rank the importance of each item in the identification scenario[37].
Figure 2.8 shows the interface of the crowd task, which is described in detail as follows:

a. Draw bounding boxes according to the saliency map.

b. Label the objects and attributes.

c. Classify the relationships among the objects.

d. Concrete all items and relations together.

e. Establish a relevance score for relationships among object pairs.

2.3. Human-in-the-Loop Machine Learning 11

Figure 2.7: The crowdsourcing task of SECA

For the Should-know task, crowd workers must identify the objects and their relationships in the scene
to predict the classification results[37]. Figure 2.9 shows the interface of the crowd task which is described in
the following paragraph[37]:

a. Determine whether or not the relationship between two objects in the scene graph is right.

b. Given a relevance score for relationships among object paris.

c. Adding missing concepts.

d. Find the minimum objects that are needed to give the result of the classification result.

e. Find the minimum relation sets that are needed to give the result of the classification result.

Figure 2.8: Really-Know task[37] Figure 2.9: Should-Know task[37]

3
Framework

This chapter is going to talk about how our method works to extract the model unknowns. It is a human-in-
the-loop method that can be divided into three parts: the first part is to extract what the model really knows,
the second part is what the model should know, and finally, we extract the model’s unknown by subtracting
these two parts. This chapter displays an overview of how to characterize the model unknowns. Figure 3.1
shows the framework. In the following, we will describe each component in detail.

Figure 3.1: Extracting the unknown unknowns framework, which is taking a pair of complex and simple sentences with a fine-tuned
text simplification model as input. Then it will produce a set of unknowns containing both lexical and syntactic ones as outputs. To do so,
the (1a) constituency tree (1b) saliency map and a set of lexical and syntactic rules are extracted from the PPDB knowledge base(([32]).
Only the sentence pairs with more than one simplification operation are selected(2.prepossessing); The preprocessed sentence, saliency
map, and constituency tree are then fed into (3a) what should be known and (3b) what is really known. These two tasks are human
computation tasks where crowded workers can participate in providing knowledge . The final step is to aggregate((4) the output of two
tasks for unknown unknowns characterization.

1a. Consituency tree extract

Understanding how a complex sentence becomes a simple sentence requires an understanding of the
syntactic information of the sentence. For example, a pair of sentences may turn a clause into two
sentences. Among the tasks that are Really-Know and Should-Know, we should help crowd workers

13

14 3. Framework

figure out how the syntactic changes occur. The Constituency tree can display the syntactic information
in the sentence. Thus we generate a Constituency tree for each sentence.

1b. PPDB knowledge base

Understanding how the sentences are simplified, we need external knowledge to describe these opera-
tions. Except to introduce human intelligence, a paraphrase database named PPDB([32]) can also help.
It is a database consisting of paraphrase rules in both lexical and syntactic parts. Therefore, it can be
used to help humans to find out simplified operations.

1c. Saliency map extract

Understanding model behavior is a machine learning interpretable problem. The widely used method
is the saliency map. A saliency map is a post-hoc local interpretability method that can specify which
words contribute most when generating new sentences.

2. Text prepocessing

For the validation set, this step is going to select informative and meaningful pairs. Only pairs have
more than 10% modified words, and they have lexical changes, and syntactic changes can be chosen.
For the test set, we will find failure cases selected by three metrics: Fluency, Simplicity, Adequacy, and
human annotations.

3a. The Should-Know task

The goal of this task is to identify what the model should know. To be more specific, human annota-
tors helped specify what kind of lexical and syntactic operations are needed to get a simplified golden
sentence.

3b. The Really-Know task

In the Really-Know task, annotators will specify how the model simplifies the sentence by looking at
the saliency map.

4. Aggregation

First, we rejected some meaningless annotations through three standards(finish time, multiple lexical
rules, and more than one syntactic rules). Then, according to our experiment setup, we collect three
annotations for each pair of sentences. Here, we will adopt the most vote algorithm for the three an-
notations, and for each manually input annotation, we add them into the result after a detailed review.
After that, we computed the intersection set of the Should-Know and Really-Know sets. In the end,
we subtract the intersection set from the Really-know set, and the Should-Know set separately to get a
bunch of unknown rules.

4
What model really know

This chapter will describe the pipeline to characterize what the model really knows. First, we introduce how
to select and test the local interpretability methods. After that, it will illustrate how human intelligence and
knowledge from the knowledge base help interpret models.

4.1. Post-hoc interpretability
4.1.1. Attention-based
Even though the attention-based scores are associated with the model, in machine translation tasks, it is
the most widely used method to see how the output is contributed to the input tokens in the task. Text
simplification is often treated as the mono linguistic machine translation, So here we would like to see the
effect of attention score as our local interpretability method.

In the implementation, we use the cross-attention score of the T5. After an apparent reformation and
squeezing, the attention score of all layers and heads is equally weighted. Finally, we use the attention score
to select all the relevant complex words for each simple word. The precise algorithm is written as follows:
ruled

Implement saliency methods 1 algorithm Attention score calculation

1: function ATTENTION SCORE CALCULATION(cr oss at tenti on scor e tor ch(X))
2: l ayer ← 0
3: head ← 0
4: x = x.tr anspose(1,0)
5: x = x.tr anspose(1,3)
6: x = x.squeeze(x,4)
7: x = x.tr anspose(2,1)
8: x = x[l ayer,0,head]
9: for i = 0 → xNumber do

10: i d x = np.ar g sor t (at t [i].cpu().numpy())[:: −1][: 6]
11: scor e = np.sor t (at t [i].cpu().numpy())[:: −1][: 6]
12: stor e[i d x] = scor e
13:

14: return Stor e

4.1.2. Gradient-based Pixel Attribution method
Here we also tested the effect of the saliency map. After trying all the toolboxes mentioned in Chapter 2,
finally, we use Ecco [3] to generate a saliency map since it provides multiple ways to produce saliency maps.
Given the characteristics of T5, we chose gradient-based ways to interpret it. And there are three typical
gradient-based ways:

1. Gradient

15

16 4. What model really know

As mentioned in the background, it is a method that relies on a backward pass. To be more specific,
assuming that the classification results of a neural network are linearly dependent on each pixel or fea-
ture in the input image, the formula can be written as y = xW +b. The gradient of output y concerning

input x can be measured by w = ∂y
∂x , so it can be used to measure the importance of each input token to

the final output.

2. Intergrated Gradient

Ecco [3] also implemented the integrated gradient approach proposed by Denil et al. [13]. As men-
tioned in the background part, the Integrated gradient method is a method proposed for the gradient
vanishing problem caused by the first traditional method. Its formula can be written as follows:

Inter g r atedGr adi ent s = (xi −x(
i
′))×∫ 1

α=0
∂F (x(

i
′)+αX (xi−x(

i
′)

∂x(
i
′)

dα

3. Input X Gradient

This method, proposed here in 2020 [16], is also a gradient-based method but differs in that it performs
pretty well in the transformer-architecture model, especially on the text classification tasks.

This gradient can be calculated by this formula:

i nput XGr adi ent = ||▽xi fc (X(1 : n)Xi ||2

Here xi is the embedding vector of the input token x at the time, and the back-propagated gradient of
the selected token’s score is ▽xi fc (X(1 : n). The L2 norm is then used to aggregate the resultant vector
into a score. Atanasova et al. [16]’ does show the effectiveness of this method.

Here, We measure the effectiveness of the four interpretability methods based on intuition. Since each
interpretability method can generate a relationship that displays which complex words are more relevant
to the simple terms, we will select ten pairs of sentences from my validation data. Then for each changed
simple word, we will choose one origin complex word more relevant to the simple one by our intuitions. In
other words, we create the ground truth on our own, and then we use four methods to generate a complex
word - a simple word relationship of the ten pairs of sentences. After that, we calculate to which degree the
interpretability method covers the ground truth and then choose the interpretability method that can cover
most ground truth. The results can be displayed in the table 4.1. According to the table, there are 72 word

Evaluation of four interpretability methods

Method Total word pairs Covered word pairs Coverage

Attention-based one 72 54 75%

Gradient 72 58 80%

Integrated gradient 72 59 82%

Input x gradient 72 63 88%

Table 4.1: Evaluation of four interpretability methods

pairs in total, and the input x saliency map gets the highest correct rate, so here this method is used as our
local interpretability method.

4.2. Human-in-the-loop method
As Described in the background information, humans can be involved in the loops to provide more com-
plete and understandable explanations. For example, syntactic simplifications made by the model can be
explained by humans. But if humans were to explain all the tasks manually, it would be a huge burden. More-
over, everyone has their ideas, and the explanation format is not the same, so it is difficult for us to extract the
explanations.

We proposed a rule-based method to help humans explain how models simplify sentences. Because the
traditional text simplification is a rule-based approach, it simplifies corrections by hand-crafted rules. So,

4.2. Human-in-the-loop method 17

we aimed to explain model behaviors by rules. Now our sentences have undergone multiple changes; the
previous existing handcrafted rules were not enough. After a careful search, we found a simple paraphrase
knowledge base named PPDB knowledge base([32]). It contains over 100 million paraphrases. Besides, the
paraphrase type can be divided into three types: lexical, syntactic, and phrasal, and examples of these dif-
ferent types of rules can be described in table 4.2. Moreover, this knowledge base is available in 21 different
languages, and here we primarily focus on English. This knowledge base is constructed by extracting pairs
from a bilingual parallel corpus of nearly 10 million sentences[17]. In addition, each rule in the knowledge
base has a score that indicates the confidence score for the complex words or structures that are paraphrased
into a single structure. Here, we decide to use the lexical and syntactic parts in the PPDB knowledge base([32])
to describe our model behavior because traditional rule-based text simplification also selects rules from the
lexical and syntactic parts.

Examples of three different types of paraphrase rules

Lexical required - must

Syntactic is required to [Verb phrase] [Noun phrase] - must [Verb phrase] [Noun phrase]

Phrasal is required to - must

Table 4.2: Examples of three different types of paraphrase rules

4.2.1. Annotation phase
To better apply the crowdsourcing method to help describe model behavior, we developed a web application
to involve humans. This paragraph describes the most important part: the structure of the annotation phase.
Figure 4.1 shows the annotation interface. Part 1 is the sentences table(complex and simple tables), and part
2 is the table that shows the relationship from the saliency map produced by Ecco[3]. In addition, part 3
is the first task for humans to select lexical changes for the application. Section 3a displays the suggested
word level changes(automatically retrieved), and part 3b shows an input box for users to enter the additional
lexical changes that the users deem reasonable but do not appear in the original sentence. What’s more, part
4 focuses on the syntactic level. The next part is to illustrate the implementation details of each part.

Figure 4.1: The overview of a user interface for Really-Know task

18 4. What model really know

1. Pair of sentence The first part is a table which displays the original complex sentence and simple sen-
tence.

2. Saliency map

The second part is the saliency map which shows simplified words and their relevant original words.
We have implemented three ways to display this information. All the three methods use the same in-
formation generated by Ecco, and only differs in their presentation ways.

1 . It is an interactive picture. When the user clicks one simple word, its corresponding complex
words can be shown. And the darker color is a complex word; it contributes more to generating a
simple word.

Figure 4.2: It is an interactive visualization map, if we click the main in the simple sentence, then the most relevant word principal in
the complex sentence can be labelled with a dark colour

2. The second method is done by HeatmapVisual(a python library). The difference is that when
users click on the words in the simple sentence, all relevant words in the complex sentence will
appear in the head of the simple words and ranked one by one. From my point of view, this way
of displaying information is much easier to understand. [3.] We also proposed a more simple way

Figure 4.3: It is also an interactive visualization tool but only plays the simple sentence and the related complex word. For example, if we
click the word main, then six complex related words like principal appear at the head of the simple sentence.

to display information. It is formatted like a table, with the first columns being words that appear
in simple sentences but not in complex sentences. What’s more, each of those simple words is
paired with the words from the complex sentence that significantly impact simplification.

Figure 4.4: The changing table displays simple words and the corresponding six complex words.

The point of crowdsourcing is that we hire people from different backgrounds. As a result, some do not
have a computer science background. After displaying three visualization methods to my colleagues,
they all agreed that the third way is easier to be understood. Therefore, we adopted the third way to
illustrate the saliency map.

3. lexical changes

Simplification can be divided into the lexical part and the syntactic part. This paragraph is mainly fo-
cused on lexical changes. It is quite difficult for humans to describe the simplified operations by them-
selves. Here, we automatically select the appropriate lexical rules from the PPDB knowledge base([32]),

4.2. Human-in-the-loop method 19

and crowd workers can choose the reasonable rules aligned with their idea. The automatic process of
retrieving rules can be described as follows:

– Find all the words that appeared in the simple text but not the complex text. The Tokenizer of T5
tends to detokenize words into tokes which is not easy to manipulate, so here we recover all the
tokens to their original word forms.

– According to the saliency map, we have got a relationship list of which complex words can con-
tribute most to the simple word, and here we choose six relevant complex words for each word we
found in the first set according to the relationship list.

– Then, all the combinations are searched in the PPDB knowledge base([32]). Here, the exact match
has been executed(rules can only be added to the output if both complex and simple words are
equal to the complex-simple pairs in the knowledge base.

In addition, the knowledge base can not include all the lexical changes, so there may exist some other
lexical rules that do not appear in the knowledge base but appear in the sentences. Therefore, in part
3b, we provided an input box for crowd workers to enter additional rules they have found.

4. syntactic changes

Compared with lexical changes, syntactic changes are a more complex task. Rules can also be used
to describe syntactic changes, but crowd workers have a hard time understanding the meaning of the
rules without a linguistic background.

Here, we aim to use more comprehensive and easily understood rules to explain the syntactic changes
that the model has made. As mentioned in the previous paragraph, there is also a syntactic version
of the PPDB knowledge base([32]), which we can apply here. The format of syntactic rules in PPDB
knowledge base([32]) is as follows:

[POS t ag g er s] Complex phr ases [POS t ag g er s]−>
[POS t ag g er s] Complex phr ases [POS t ag g er s]

Part of speeding taggers(POS taggers) mark words in a text (corpus) corresponding to a particular part
of speech based on its definition and context. For example, an apple can be marked as a noun in a
sentence: My favourite fruit is apple. These pos taggers help us specify the syntactic structures in the
sentences, and we can figure variations in words and structures with these pos taggers. For defining
these syntactic structures, we also applied a consistency phrase tree which can split the sentences into
constituents. The explicit steps on how to retrieve syntactic rules are as follows:

1. Gain a set where all the words appear in the simple text but not in the complex text.

2. According to the saliency map, we have got a relationship list of which complex words can con-
tribute most to the simple words, and here we choose six relevant complex words for each word
we found in the set according to the relationship list.

3. Using the generated complex-simple pair to find the rules in the database, but here, due to the
reason that a phrase may contain multiple words, we can add the rule to the output list if the
complex structure contains the complex words, and if the simple structure contains the simple
words.

4. 4. Then, we use the constituency tree of the pair of sentences to select all the rules with the same
syntactic structure as the pair of the sentence.

5. Since we want to reduce the cognitive load of crowd workers, we do not wish to display all these
rules. Therefore, we used the paraphrase score to rank all the rules in the previous steps and
showed the top five rules to the crowd workers.

4.2.2. Training phase
After presenting our crowd task to supervisors, they thought it difficult for crowd workers with no computer
science or linguistic background to understand. After an initial pilot study, We found that the poor perfor-
mance of our application could be due to the lack of linguistic knowledge and not having proficient task pro-
cessing abilities(they do not know how it works). Thus, in this phase, we adopt an explicit training method:

20 4. What model really know

workers are asked to finish training tasks. Once they have completed these tasks and labeled each training
task perfectly, they can process the annotation task.

We have added a training phase which consists of two tasks, each of which takes about 3 minutes, as a
longer training period may discourage crowd workers from joining. The crowd workers have to finish all the
training tasks with 90% accuracy before they can start the main tasks, and during the training process, of
course, they can get hints if their answers are wrong. When they submit the training task, the correct choice
will be labeled in green, and the wrong choice will be marked in red. After that, the crowd workers can change
their answers. If they are confused about what to do, there is a hints button explaining why the answers are
correct.

90% was set as the passing score because there are no absolutely correct answers for the linguistic changes,
and it’s unrealistic for the crowd workers to choose the exact choice as the ground truth. So except for the
training part, We have also added a syntactic information table in the instruction part to help crowd workers
to finish our tasks better. As mentioned above, syntactic rules may contain information about the syntactic
structure, which is hard for crowd workers without a linguistic background to understand. To solve this prob-
lem, the syntactic information table gives information about the syntactic structure and provides a specific
example of how to apply syntactic structure. Table 4.3shows the format of the syntactic structure.

Example of syntactic information table

Syntactic structure Explanation Example

Adverb Phrase Phrasal category headed by an adverb (including comparative and superlative adverbs) rather timidly, very well indeed

Table 4.3: Example of syntactic information table

4.2.3. Pilot study
This section will examine the performance of our application, and we will focus on two parts: the first is what
the results of our application’s collection are, and the second is the efficiency of our application. In this pilot
study, we focused on investigating two phases: the training and annotation phases.

a Training phase

In this phase, we will study three aspects: how long it took them to finish the training task, how many
attempts they tried to complete it, and whether they think the training is helpful for them in under-
standing the annotation task. To know how the crowd worker understands the task, we collected data
from five users with no computer science or linguistic background. None of the Five users all are not
speaking English, and they came from different majors like microelectronics, civil engineering, and
embedded systems. Table 4.4 shows the finish time for each task, the attempts they made to finish the
training task, and some other information.

Pilot study(Training phase)

Crowd worker1 Crowd worker2 Crowd worker3 Crowd worker4 Crowd worker5 Average

Training task 1 finish time 3min 2min14s 5min28s 3min27s 2min13s 3min16s

Training task 2 finish time 4min28s 3min13s 6min11s 4min28s 3min 27s 3min45w

All training cost time 7min28s 5min27s 11min39s 7min55s 5min40s 7min1s

Attempts to finish training task1 1 1 2 2 1 1.4

Attempts to finish training task2 3 3 4 5 2 3.4

Helpful or not Yes Yes Yes Yes Yes Yes

Need hints of not No No No No No No

Table 4.4: Pilot study of Training phase

Table 4.5 shows the results of our training pilot study. From my point of view, training task 1 is easier
than training task 2 since there are only two changes from the original sentence to the simple sentence.
And the results indicate that crowd workers spent an average of 3 minutes on a simple training task
and 4 minutes on a more challenging training task. So for each task, they try three times on average to
get 90% accuracy. Thus, we can find that our job makes it difficult for them to understand what to do,

4.2. Human-in-the-loop method 21

and sometimes it takes time for second language readers to describe specific changes. However, none
of them use the hints to see the correct answer, which means the task can still be completed even if it
takes time. In addition, our study shows that the training phase is essential for them to understand how
the process works.

b annotation phase

There were ten tasks for the annotators to finish, and we studied how long it took for them to complete
all of them, whether they understood our task or not, and whether their answers were of quality. For
the third question, one of my friends who studied English education and I annotated all ten tasks,
and we made a golden answer. Then, we compare the user’s response with the golden answer(if their
answer covered all our golden answers, the score is one. Also, the score can be higher than one because
sometimes crowd workers can find additional information). The calculation formula can be written as
follows:

Accur ac y = Label l ed accur ate r ul es

Gol den accur ate r ules
(4.1)

This formula can be used to evaluate both lexical parts and syntactic parts.And table 4.5 showed the
experiment results: This table indicates the average task completion time is 2min20s, and based on

Pilot study(Annotation phase)

Crowd worker1 Crowd worker2 Crowd worker3 Crowd worker4 Crowd worker5 Average

All task finish time 28min 17min26s 23min 29min15s 20min24s 25min

Average task finish time 2min54s 2min8s 2min18s 3min9s 2min2s 2min30s

Understand the task or not
(0-10(understand very well))

8 9 8 7 9 8.2

Lexical accuracy 82% 88% 76% 82% 84% 82%

Syntactic accuracy 75% 80% 68% 79% 77% 75.6%

Table 4.5: Results of the annotation phase

my findings, each task’s completion time decreased with the crowd workers’ completed task. Besides,
there were five tasks in the pilot study, which only consisted of several simplification operations, so
the average finish time for the accurate tasks may be longer. And people all understand the task well
because they can recite the purpose of our application. In addition, we also found that the lexical
accuracy was 6.4 percent higher than the syntactic part since the lexical task were more straightforward.
Last but not least, we did find the accuracy and the time to complete our task is relevant to the English
level of crowd workers. One of the crowd workers has an excellent English level and the complete time
of each task is 28s shorter than the average completion time. So here, in our real experiment setting, we
aimed to search for crowd workers with high English proficiency to do those annotation tasks.

Except for the numerical findings, this pilot study also aimed to collect feedback about our application.
When we get users’ feedback, we can know the real needs of the users. Therefore, we can make it easier
for them to use our application. The Suggestions can be divided into two parts: one on the format of
the user interface and the other on the lack of clarity of information.

4.2.4. Budget calculation
This section is going to introduce how we calculate the budget. With the growing development of crowdsourc-
ing, there are several crowd platforms now like Amazon Mechanical Turk1 (mTurk), politics, and CrowdFlower[22].
The workflow of these platforms is like this: Programmers designed and posted their tasks, and then these
tasks are visible to the crowd workers, who can choose which task they want to complete. And the average
hourly wage depends on where the crowd workers are located [22]. For example, in the United States, An
ethical minimum hourly wage for crowd-sourcing work is $8.50/hour, which is the national average mini-
mum wage based on the population distribution. For our research, we consider hiring crowd workers from
European countries, and the average salary is 9.31 euros per task.

Here, we also want a high quality of the final results, so multiple labels are needed because sometimes
crowd workers tend to make mistakes. So we adopt a majority vote algorithm to ensure a more accurate
result: each task requires three annotations, and then we choose to mark the answers which are more than or
equal to twice.

22 4. What model really know

For Really-Know task, there are 809 complex-simple sentence pairs in our task. As mentioned in the pre-
vious part, each sentence needs three annotations, and in our pilot study, each task needs 3mins to complete.
Besides, we are willing to pay 9.31 euros for one hour of work for a crowd worker. So our budget should be:

Bud g et = Number o f t ask ∗Number o f annot ati ons ∗Mi nutes per Task

hour
∗W ag e (4.2)

1129.77 = 809∗3∗3

60
∗9.31 (4.3)

5
What model should know

This chapter will cover the application to collect what our T5 model should know. It will first introduce the
user interface of what the model should know. Since some application parts were discussed in Chapter 4,
here we will only focus on the different parts compared with the Really-Know application.

5.0.1. Annotation phase
This paragraph discusses how the annotation phase works. It can be structured as follows: 1a is the introduc-
tion which gives the overall image of the task. 2a is the pair of sentences (a complex sentence and a golden
answer from the Asset data set). 3 is the lexical task. 3a provides automated retrieval rules from PPDB lexical
database ([32]), and 3b is an input box for crowd workers to submit rules which describe the model behavior,
but this does not appear in 3a. In addition, part 4 is the syntactic task. 4a displays the automated generate
pairs from the PPDB syntactic database([32]). 4b is also an input box for the additional rules. The interface is
almost the same as the Really-Know application, but there are some key differences listed as followings:

Figure 5.1: The overview of the annotation task for what model should know

23

24 5. What model should know

1. Pair of Sentence

The origin and golden sentences are all from the Asset dataset[6]. The golden answer sentences are
generated by a reasonable process and the details of which will be talked in the following paragraph:

– These golden simplified sentences are generated by crowd workers. First, these crowd workers
are hired with strict requirements: they should be native English speakers and finish more than
1000 human intelligence tasks; in other words: they should be professional crowd workers[6]. In
addition, their task acceptance rate is more than 80%[6]. These strict requirements do ensure the
quality of the results[6].

– Then, they are provided with a set of instructions about how to simplify the sentence[6]. Examples
of phase splitting, compression, and lexical paraphrasing (lexical simplification and reordering)
(deleting unimportant information) are given[6].

– There is a training task that needs every crowd worker to pass[6].

– After that, they can move to the annotation task; they are asked to give their simplification of the
original sentence[6]. Besides, they have to enter their confidence score about their simplification
using a 5-point scale[6].

– Their answers are justified by linguistic experts[6].

The strict work process proved the quality of the golden sentences. Therefore this dataset is adopted as
data for our Should-Know task.

2. Lexical task

For the lexical task, we also adopt automatically retrieved rules from the PPDB knowledge base(([32])
to describe simplified operations. But without a saliency map, the process of retrieving the lexical rules
is changed, and the new method is described in the following paragraphs.

– We first find out the generated simple words, meaning that these words do not exist in the complex
sentence but in the simple one. Here, we describe this as words set A.

– Then, we subtract complex sentences with words in the simple sentence, and the remaining words
are called word set B . Words set B contains the words most likely to be replaced by words set A.

– We generate word pairs by fully matching the word set A and word set B. The formula can be
written as: ∀a ∈ A,∀b ∈ B ,−> pai r s (b −a)

– The rules search process is the same as the Really-Know application, and it is going to retrieve
exact match rules.

3. Syntactic task

The difference for the syntactic tasks is how we generate the word pairs, which we have already illus-
trated in the last part.

5.0.2. Pilot study
This pilot study is going to explore how my application works. Then, when we get feedback, we can iterate
and reiterate our application to improve the user experience and thus the quality of results. Our pilot study
will be divided into two parts:

a training phase

We found five crowd workers who had not seen the model Really-know application before and that they
had no computer science background or linguistic background. They are all highly proficient in English
and study at Tu Delft. Here, we aim to check whether our training task is easy for them to understand
and complete. Besides, we explore whether they can benefit from our training tasks. Also, to estimate
how long it took them to finish the training task. According to the result displayed below, it is easy to
notice that the training time is longer than required for the Really-know task. It shows that without
the saliency map, it is more difficult for crowd workers to find the simplification operations. Besides,
crowd workers have tried more attempts to reach 90 % accuracy. What’s more, almost all of the workers
finished the tasks without hints, and they did agree that training is helpful for them to complete the
annotations.

25

Pilot study(Training phase)

Crowd worker1 Crowd worker2 Crowd worker3 Crowd worker4 Crowd worker5 Average

Training task 1 finish time 4min28s 4min21s 4min1s 3min15s 2min19s 3min45s

Training task 2 finish time 5min33s 3min27s 4min42s 3mins9s 3min24s 4min3s

All training cost time 10min1s 7min48s 8min43s 6min24s 5min43s 7min48s

Attempts to finish training task 1 2 1 2 3 1 1.8

Attempts to finish training task 2 3 4 2 2 1 2.4

Helpful or not Yes Yes Yes Yes Yes Yes

Need hints of not Yes No No No Yes NA

Table 5.1: Pilot study of the training phase

b Anotation phase

Regarding the annotation phase, we randomly select ten tasks. Each of the tasks has one more simpli-
fication operation. In addition to studying how long a task takes, we also want to check how much they
understand our mission. In addition, we aimed to find the accuracy of their annotations (the golden
answer pairs were also made by a friend who studies English Education).

Pilot study(Annotation phase)

Crowd worker1 Crowd worker2 Crowd worker3 Crowd worker4 Crowd worker5 Average

All task finish time 30min14s 22min15s 27min 18min15s 25min24s 24min22s

Average task finish time 3min1s 2min27s 2min42s 2mins9s 2min54s 2mins44s

Understand the task or not
(0-10(understand very well))

9 10 8 9 9 9.2

Lexical accuracy 85% 88% 70% 80% 84% 81.4%

Syntactic accuracy 72% 76% 61% 77% 77% 72.6%

Table 5.2: Pilot study of the annotation phase

Table 5.2 shows the average finish time per task, which costs 2min44s per task, so it is longer than the
Really-Know annotation tasks. However, without the saliency map, our Should-Know application is
easier for them to understand than the Really-know application. Refers to the accuracy, both lexical
accuracy and syntactic accuracy are calculated by the following formula:

Accur ac y = Label l ed accur ate r ul es

Gol den accur ate r ules
(5.1)

If the crowd workers label more reasonably simplified operations, the accuracy can be higher than one. As
you can see From the table, 5.2, the accuracy of the two tasks that should be known is lower than the accuracy
of the actually known tasks. Therefore, without the help of a saliency map, it is more challenging to figure out
the relationship between a generated simple word and a complex word.

5.0.3. Budget calculation
This paragraph will calculate the budget we need to collect the suitable data. As mentioned in the previous
section, we would like to collect three annotations for one task, and 9.5 euros is the average wage for a crowd
worker for an hour. From the pilot study, on average, it costs 2min44s for one crowd worker to finish one
task. And We considered the task’s difficulty, so we assumed it would take three minutes to complete one
task. Then, the final cost can be calculated by the following formula:

Bud g et = Number o f t ask ∗Number o f annot ati ons ∗Mi nutes per Task

hour
∗W ag e (5.2)

1129.77 = 809∗3∗3

60
∗9.31 (5.3)

6
Implementation Details

This chapter introduces the implementation details of the Really-know application and Should-Know appli-
cation. It first introduces the technology stack and libraries we use to implement the web application and
then talks about the web application’s user interface. After that, the storage of data is also talked about.

6.1. Technology Stack
To better apply the crowdsourcing method to help describe model behavior, we developed a web application
to involve humans. Python-Flask is adopted as our main framework for a more lightweight development
environment and a more compatible setting with our model output. For accessibility, I use SURF Research
Cloud to deploy my application so that every crowd worker can access my application easily. In addition,
Docker is used for composing my application, so it is easy to version iterations.

6.2. User interface of Web application
This section talks about the user interface of my web application. Since Really-Know and Should-know ap-
plications are almost identical, we illustrate the interface together. Figure 6.1 displays how the application
works, with the following details for each page.

• Introduction page This is the home page of our application, which provides explicit information about
the task. Besides, there is a straightforward tutorial to teach crowd workers how to finish the annotation
task step by step. In addition, due to the specification of our task, linguistic knowledge is required to
complete the annotation task. On this page, there is a table showing the explanations of each specific
term.

• Register page This page is designed for each crowd worker to register, and each crowd worker should
have a unique username.

• Login page After the crowd workers are successfully registered, they can move to the login page. Only
by logging into the system can they move to the training task.

• training page Training page is designed to help crowd workers understand how our application works.

• Annotation page When the user completes the training task, they can start performing the annotation
task. The implementation details of the annotation task will be discussed in the next paragraph.

6.3. Data storage
In this part, we will illustrate how we store these data and how to process them. As discussed in the last
part, our annotation task contains two sub-tasks: the lexical change task and the syntactic change task. We
provided a set of automated retrieved rules and input boxes for each task for crowd workers to enter ad-
ditional rules. Therefore, the data we collected is a rule-based format(Complex word - simple word or [pos
taggers][complex phrase][pos taggers]-[pos taggers][simple phrase][pos taggers]. These data are stored in the
database whenever a task is submitted.

27

28 6. Implementation Details

Figure 6.1: Work process of web application Users first log into the introduction page to get the essential information about how this
application works, then they can go to the registration page to register an account; after that, they can log in and begin to finish the
training task. When they finish their training task, they can start annotating.

For an easier way to get our results, we use SQLite as our central database. Since it is a lightweight database
and all its data is stored in a .db file, it is easier for us to process these ppdb format rules submitted by crowd
workers.

7
Experiment Set-up and Results

In this chapter, we will revise how different experiments are set up, present the results, then conduct an in-
depth analysis of the results. First, let’s start with an overview of the experiments. Then, you will be intro-
duced to choosing the state art of text simplification model. After that, the experiments on human intelli-
gence tasks will be presented. The final step is how we characterize the unknown, where the goal is to prove
the effectiveness of our framework.

7.1. Overview of the experiment
In order to prove the effectiveness of our framework, we have to show that the unknowns we extracted can
indeed predict the failure cases that the model will face in the future. So the overall experiment set-up can be
described as follows: First, run the framework on the validation set, and then we get a set of rules that should
be known, a set of rules that model really know and then extract a set of unknowns extracted from the Should-
Know set and the Really-Know set. After that, we run the framework on the failure cases of the test set and get
a bunch of unknowns from the test set. Finally, we override the unknowns from the failed cases in the test set
by calculating the unknowns from the validation set. If the unknowns cover the failure cases, our framework
proves its effectiveness in extracting the unknowns that predict future failures. In addition, we also calculate
how part of our framework covers the unknowns, proving part of our framework is still adequate to predict
the failure cases.

7.2. Text simplification
As discussed in the previous sections, the state-of-the-art TS method is not so good because it makes mistakes
in several situations. We are trying to figure out why it was flawed. Furthermore, we can understand why our
model made such simplifications because The increased understanding of the inside can make the users
more convinced with the model. Therefore, we aim to analyze the state-of-the-art text simplification models.
So, first of all, we will study which dataset we will use.

7.2.1. Datasets
After searching the keywordsText simplification dataset by Google Scholar and Tu Delft library, there are
three widely used textual simplification datasets:

• Newsela

Before the Newsela dataset was proposed, Simple Wiki data sets were mainly used for the Text simpli-
fication tasks. Due to the fact that Simple Wikipedia was created for children and adults who are new
beginners to English[27]. There are several problems in the dataset:1) It’s prone to automated sentence
alignment errors; 2) A high proportion of insufficient simplifications. 3) It doesn’t translate well to other
text genres[51]. Therefore, the Newsela dataset[51] was created to solve this problem. Newsela is a new
simplification corpus of news articles rewritten by expert editors to fulfill the readability standards for
children of various grades[51]. This parallel corpus contains 1,130 news articles, so it is the size of the
simple Wikipedia dataset[51].

29

30 7. Experiment Set-up and Results

• TurkCorpus[52]

Data-driven text simplification models are difficult to evaluate on the complex, simply aligned datasets,
especially if there is only one complex sentence with one paired simple sentence. To solve this problem,
Xu et al. [52] conducted an in-depth application of statistical machine translation, which combined
both advantages of large-scale paraphrases learned from bilingual texts with simplification rules from
the PPDB knowledge base([32])[52]. They built a dataset named TurkCorpus, which consists of 2,359
original sentences from the large bilingually paired dataset English Wikipedia. Besides, each complex
sentence has 8 manual reference simplifications. The dataset is divided into two subsets: 2,000 sen-
tences for validation and 359 sentences for testing simplification models[24]. The advantage of this
dataset is that the quality of the golden simplified sentences is quite good.

• ASSET

Asset is a simplification dataset focused on multiple transformations: deletion, paraphrase(including
syntactic structure and lexical words), and splitting(decomposing the long sentence into sub sentences),
while other datasets only focus on one or two transformations[6]. The method uses crowdsourcing to
create ten simplifications referencing each complex sentence from the TurkCorpus dataset and perform
multiple transformations for each created simple sentence. So the quality of these simplified sentences
is better than the original Wikipedia data set. It consists of 23,590 human simplifications paired with
2,359 authentic TurkCorpus sentences in total[6].

After clearly reading the paper and the dataset itself, Newsela contains multiple transformations, while its
sentence alignments are automatically generated and thus not very good. Moreover, it is not easy to obtain its
date due to the needs of the signed agreements. As for Turkcorpus, it mainly focuses on the transformations of
lexical paraphrasing like reducing the number of a difficult word and does not consider some modifications,
such as deleting and reordering[6]. Simplifying phrases prevents evaluating a model’s capacity to perform
a more diverse collection of rewriting operations[6]. So, here we would like to evaluate models on a dataset
asset that targets multiple transformations and is more accessible.

7.2.2. Models
Since our goal is to work with Asset datasets, I am committed to finding the state-of-the-art models that
achieve the best performance on this dataset. We search on the websiteand found there are the ten most
popular models. After careful analysis, I picked 5 of them for in-depth research:

• Dress-LS

Zhang et al. [53] proposed a model named Dress(Deep Reinforcement sentence simplification), com-
bining the encoder-decoder structure with Deep Reinforcement Learning. It shows the possibility of
combining a reward function, encouraging simple and fluency output. This model is trained on a
simple wiki dataset, and the experiments showed the effectiveness of deep reinforcement learning.
framework[53].

• DMASS+DCSS

This method adopts a transformer-based architecture to build a sequence-to-sequence model. Its nov-
elty lies in the fact that it combines rules from the Simple PPDB knowledge base (A Paraphrase Database
for Simplification)[54]. In addition, it adopts two ways to incorporate rules: (1) DMASS: it uses the ad-
ditional component to identify the context of these simplified rules and outputs [54]. (2). DCSS: it
encodes the context and the output of the simplification rules into the model share parameters[54].
The experiments reveal that the integration component has two key advantages: [1]. The evaluation
metrics indicate that the combined model outperforms some state-of-the-art methods in Sentence
simplification[54]. The model aims to pick more accurate simplification rules by analyzing rules us-
age so that the simplified sentence has better readability[54].

• Access

Martin et al. [25] aims to solve the text simplification task by a standard Sequence-to-Sequence struc-
ture. Besides, a discrete parametrization scheme is designed to satisfy the users’ different targets. As a
result, users can control the output by restricting the length of the output and the number of paraphras-
ing operations. They named this method ACCESS(Audience-CEntric Sentence Simplification) and con-
ducted experiments to demonstrate that the method was more effective than the out-of-box sequence

https://paperswithcode.com/task/text-simplification

7.2. Text simplification 31

to sequence models. Also, they explicitly analyzed the effects of several controlled attributes and then
applied the controlled attributes with the best performance.

• Muss

In 2020, a simplification method named Muss was proposed[26]. This method adopts the control
mechanism from Access([25]) to generate simple text. Besides, instead of using the traditional sequence-
to-sequence model, it adopts a pertained sequence-to-sequence model with a denoising auto-encoder
named Bart([21]).

• T5

T5 (A Unified Text-to-Text Transfer Transformer) is a sizeable pre-trained language model that has re-
cently obtained best-in-class performance in various NLP tasks. Sheang et al. explored the possibility
of combining the powerful T5 model and control mechanisms together[38]. This combined method
has two advantages: first, T5 is a compelling model, and it is pretrained on several supervised and un-
supervised NLP tasks such as machine translation and document summarization. Besides, it employs
the best style of token and masking strategies. Compared with ACCESS, this method explores the effec-
tiveness of adding more different tokens, such as word length(controlling the length of the generated
word).

As we are going to interpret the best simplification model, we reimplement the above five methods. Then,
we ran an experiment on the Asset dataset and used three metrics(SARI, BLEU, FKGl) to evaluate the model
performance. The following part describes the details of the three mentioned text simplification evaluation
metrics:

• SARI

The system outputs are compared to the references and the original text using SARI[52]. It assesses
the effectiveness of text simplification on the lexical level by evaluating the quality of words added,
eliminated, and retained. It is currently the most widely used metric, and we use it as the primary
evaluation metric[38].

• BLEU

BLEU[31] was designed for Machine Translation and has been widely utilized. Due to its low correla-
tion with human judgments and frequent penalization of smaller phrases, BLEU has lost favor in Text
Simplification[43].

• FKGL

FKGL was designed to measure the text’s readability level, and a lower score means that it is more ac-
cessible to be understood[19]. However, these metrics do not consider grammatically and meaning
preservation, which means that sometimes even the sentences lose their original meaning, but still can
gain a good FKGL score[38].

Evaluation of existing text simplification methods

Model Dataset Evaluation metrics

SARI BLEU FKGL

Dress-LS WikiLarge 36.59 86.29 7.66

DMASS+DCSS WikiLarge 38.76 70.44 7.36

ACCESS WikiLarge 40.12 74.05 7.01

Muss WikiLarge 43.01 75.21 6.24

T5 WikiLarge 44.62 70.08 5.84

Table 7.1: Evaluation of existing text simplification methods

As you can see from Table 7.2, T5 does perform better than the other four sequence-to-sequence models
in terms of the score of SARI(the primary evaluation metric). Therefore, we decide to interpret the T5 model.

32 7. Experiment Set-up and Results

7.3. Data Preprocessing
As mentioned before, Asset is adopted as our main dataset. For the validation set, there are sentence pairs
that do not have multiple simplified operations. And there are also pairs of sentences that do not have au-
tomatically retrieved rules. So here, even though there are transformations between sentences, it is difficult
for crowd workers to describe the changes and post-process the collected rules. Therefore, We need to find a
pair of sentences with more than one simplified operation to gather more quality and valuable results. The
following algorithm chooses these sentences:

Select informative sentence 2 algorithm Select informative sentence

1: function SELECT INFORMATIVE SENTENCE(Modi f i ed wor d s,Lexi calRul es,Synt acti cr ules,Sentence)
2: Sentence ← F al se
3: if Modi f i ed wor d s > 0 then
4: if l exi cal Rules > 0 then
5: if Synt acti cr ules > 0 then
6: Sentence = Tr ue
7: return Sentence

According to the algorithm, it is easy to find our goal is to select pairs with one more lexical operation and
one more syntactic operation. Therefore, the size of the validation set changed from 2000 to 649 pairs.

For the test set, we aimed to select the failure cases. The failed cases are chosen by the two criteria:

* Text Simplification evaluation metrics

There are three frequently used metrics in the area of text simplification: SARI[52], BLEU[31], and
FKGL[19]. We use Easse[5](a text simplification evaluation library that consists of various evaluation
metrics) to compute these three scores for each pair of sentences. Then, we calculate the three average
scores for all sentences, and if two of the three sentences are lower than the average score, the three
sentences are considered to have failed. In this step, 127 pairs of sentences are chosen as failure cases.

* human evaluation

As mentioned in previous parts, these three automatic evaluation metrics are not absolutely correct.
For example, BLEU is mainly used in the area of machine translation, so it is concerned with how to
obtain the meaning of a sentence while ignoring whether the changed structure or words are simpler.
FKGL is a measure of whether this sentence is easy to read or not, but it tends to give a high score to
a short sentence while ignoring its meaning. So, even if some of the pairs of sentences are deemed
correct by automatic evaluation metrics, human intelligence is adopted to evaluate these sentences.

Following the previous work([14],[38]), we developed a crowd-sourcing task to collect human evalua-
tions of these sentences. And we required our colleagues who participated in this task with a high level
of English proficiency and to read a clear task guide about the task. They will then score the remaining
pair of sentences using a 5-point Likert scale in three aspects[38]:

– Fluency This indicates whether the sentence is fluent or not and whether it is easy to understand
its meaning. Besides, it also investigates whether it has any grammar mistakes.

– Simplificity This metric measures whether the simplified sentence is simpler than the original
sentence.

– Adequacy It shows the extent to which the simplified sentence preserves the meaning of the orig-
inal sentence.

Figure 7.1 shows the interface of the designed interface and averages the scores for each sentence. We
didn’t choose all the sentences, but we only chose the ones with a score below 3. Finally, the 33 samples
in the “correct” test set were failed.

After combining these two methods, 160 failure cases were selected from the total 359 test cases. The extract
failure cases can be divided into three types:

1. Poor choices of what to leave out Sometimes, models tend to leave words behind in order to simplify
the sentences. However, the words they leave behind may hinder the original meaning of the sentence.

7.4. Human intelligence task 33

Figure 7.1: Human evaluation of TS user interface[38]

2. faulty use of synonyms The model tends to change one complex word to another. These transforma-
tions are prone to errors. Even though the transformation of the phrase seems correct, the meaning of
the sentence changes after the transformation.

3. Introduce ‘knowledge’ from outside of the original text When the model tends to simplify the sen-
tences, they will most likely add some words to explain the sentence. Instead, some of the added words
are irrelevant because they change the meaning of the sentences.

Table 7.2 shows examples of the three mentioned failure cases.

Examples of Failure cases

Poor choices of what to leave out

Original Sentence In 1990, she was the only female entertainer allowed to perform in Saudi Arabia.

Simplified Sentence In 1990, she was the only female to perform in the country of Saudi Arabia.

Faulty use of synonyms

Original Sentence She performed for President Reagan in 1988’s Great Performances at the White House series

Simplified Sentence She sang for President Ronald Reagan in 1988’s Great Performances at the White House series

Introduce ‘knowledge’ from outside of the original text

Original Sentence For Rowling, this scene is important because it shows Harry’s bravery in finding Cedric’s corpse

Simplified For Rowling, this scene is important because it shows Harry’s bravery. When he finds Cedric’s body,he shows that he cares.

Table 7.2: Examples of Failure cases

7.4. Human intelligence task
7.4.1. Task overview
For the crowdsourcing tasks that capture Really-Know and Should-Know, we conducted a pilot study (dis-
cussed in section 4.2.3 and 5.0.2) to investigate whether the estimated time and our task design for each task
were precise. Based on the feedback from the pilot study, we have made the following changes to make it
more understandable. Followed our pilot study setup, there are a total of 809 tasks (649 validation sets and
160 failure cases) for both Really-Know and Should-Know tasks. Three annotations are required for each
annotation tasks in order to obtain high-quality results.

7.4.2. Quality control
In order to carry out quality control, we mainly look for those crowd workers that were not computer science
majors but had high English proficiency. Because the professional English proficiency ensures that the crowd
workers can more easily find the appropriate rules and also choose the rules more accurately in this case, it is
also worth noting that the task only allows them to work on their personal computers, as the rules selection
may not work well on devices with smaller screens such as smartphones, so the effect is not very good. Apart
from this, we also require crowd workers to have an education level equal to or higher than that of an under-
graduate. In addition, they must complete the training task with more than 90% accuracy and read the task
description to understand how the application works clearly enough.

34 7. Experiment Set-up and Results

7.4.3. Acceptance criteria
This paragraph talks about our acceptance criteria, during which the crowd workers must complete the task
for more than a minute and a half unless we will reject this annotation. Except for this, responses are man-
ually checked and accepted to avoid meaningless annotations, the acceptance criteria with the following
acceptance criteria.

1. At least one lexical rule should be selected.

2. At least one syntactic rule should be selected.

3. For a Really-Know task, rules match with the modified part in the sentence.

4. For the Should-Know task, rules match with the modified part in the sentence.

7.5. Data Aggregation
As mentioned in the previous section, we collect three annotations for each pair of sentences. We now process
them with two criteria: the first is that as our extracted rules all take the same complex word, the majority vote
algorithm is applied. Another criterion is that if the first few parts are different words, we combine these rules
in a join set since every crowd worker can identify transformations that others have not found.

7.5.1. Results of Really-Know task and Should-Know test on validation set
For the validation set, we have got 649 pairs of sentences, 1947 annotations for Really-Know tasks, and 1947
annotations for Should-Know tasks. Table 7.4 shows details about the Really-Know rules we collected for the
Really-Know task. Through experimentation, we ended up with 1528 rules, including 869 lexical rules and 659
syntactic rules. We found that the number of syntactic rules is smaller than that of lexical rules. From my point
of view, this situation may be caused by the following two reasons: one is that the sentence simplification
operation itself has more lexical transformations. Second, if no retrieved rules exist, it is difficult to describe
the syntactic changes. As a result, sometimes crowd workers tend to ignore them. However, since we are only
using the large size of the knowledge base, there may still be some existing rules that may not be matched,
and human annotators may not be able to describe these simplified operations. Therefore, we believe that
the size of the knowledge base is related to the number of rules; that is to say, through the above analysis, it
is not difficult to find that if the size of the knowledge base increase, the collected syntactic rules may also
increase.

Results for the Really-Know task on the validation set

Aggregated result

Number of all rules 1528

Number of All lexical rules 869

Number of All Syntactic rules 659

Number of Average rules 2.25

Number of Average lexical rules 1.27

Number of Average syntactic rules 0.79

Number of tasks 649

Table 7.3: Results of the Really-Know task on the validation set

Table 7.4 shows the rules we collected for the Should-Know task. According to Table 7.4, the number of
all rules we collected is less than the number of all collected rules for a Really-Know task. This can happen
for two reasons, through preliminary research has found that it is difficult for crowd workers to describe the
simplified operations in the Should-Know task. Especially in the absence of saliency maps, crowd workers
have to pay more attention to discovering the relationships between words. And as a result, sometimes they
may overlook some simplified operations. Moreover, the study also points out that the way we currently
search for retrieving rules may not be able to find all the possible rules.

7.5. Data Aggregation 35

Results for the Should-Know task on the validation set

Aggregated result

Number of All rules 1302

Number of All lexical rules 781

Number of All Syntactic rules 521

Number of Average rules 1.92

Number of Average lexical rules 1.15

Number of Average syntactic rules 0.77

Number of Tasks 649

Table 7.4: Results of the Should-Know task on the validation set

Results for the Really-Know task on the test set

Aggregated result

Number of All rules 476

Number of All lexical rules 296

Number of All Syntactic rules 170

Number of Average rules 2.98

Number of Average lexical rules 1.85

Number of Average syntactic rules 1.06

Number of Tasks 160

Table 7.5: Results of the Really-Know task on the test set

36 7. Experiment Set-up and Results

7.5.2. Results of Really-Know task and Should-Know test on test set

Results for the Should-Know task on the test set

Aggregated result

Number of all rules 366

Number of All lexical rules 235

Number of All Syntactic rules 131

Number of Average rules 2.29

Number of Average lexical rules 1.47

Number of Average syntactic rules 0.82

Number of tasks 160

Table 7.6: Results of the Should-Know task on the test set

This paragraph will explain the results of the two tasks we obtained on the test set. As mentioned in the
previous part, here, we only need to focus on the failure cases of the test set. So we labeled 160 pairs of
sentences as a failure, and then for each couple of sentences, we collected three annotations. While for the
Really-Know tasks, we have collected 476 rules. And The number of lexical rules is larger than the number of
syntactic rules, which is the same as that in the validation set. Thus, syntactic rules are more complex than
lexical rules, and in the process of simplification, models tend to be more inclined to simplify words than to
change the syntactic structure.

For the Should-Know task, we collected 366 rules, which contain 235 lexical and 131 syntactic rules. The
number of rules we collected for the Should-Know task is smaller than the number of rules we gathered for
the Really-Know task. In addition, the average number of rules we collected is less than one. Two reasons can
be caused: the first is that the number of syntactic operations is smaller, and the other is that it is difficult for
crowd workers to describe these changes.

7.6. Extract the unknowns
Before discussing how we extract the known rules, we first give a clear definition of these extracted rules. In
our framework, we classified the information into two categories: known knowns and unknowns. Known
knowns is a set of rules that the model has learned, and it is also the rules that human annotators thought
it should learn. While Unknowns can be categorized into two types: (1) known shouldn’t know: It is a set
of rules that model learns, but we do not want them to learn. (2)unknown should know: It is a set of rules
the model does not learn, but human annotators thought they should learn this. Figure 7.2 displays the
classification of knowns and unknowns. After setting the definitions of the knowns, we simply extract the

Figure 7.2: Classification of knowns

unknowns by the following steps:

1. The data we aggregated for the Really-Know and Should-Know task is collected from our web applica-
tion and in the form of sentence ID, Lexical rules, Syntactical rules.

7.7. Prediction results 37

2. We then find the intersection of the set that the Really-Know set and the Should-know set. Then, if the
rule is in the Really-Know set but not in the intersection set, we treat it as a model known but shouldn’t
know. Besides, if the rule is in the set that should be known but not in the intersection set, it is classified
as the model unknown but should know.

The extracted unknowns for the failure cases in the test set are shown in Table 7.8. We have extracted 672
unknown rules consisting of 388 knowns that shouldn’t know and 384 unknown should know rules. The
model knows but shouldn’t know more rules than the model should know but not know, so in most cases,
the model may make mistakes because they know some incorrect knowledge. In contrast, in some other
situations, the model may fail because it lacks the proper knowledge of paraphrase.

Results for the unknowns on the test set
Aggregated result

Number of all unknown rules 672
Number of all known shouldn’t know rules 388

Number of lexical known shouldn’t know rules 239
Number of syntactic known shouldn’t know rules 149

Number of all unknown should know rules 284
Number of lexical unknown should know rules 169

Number of syntactic unknown should know rules 115

Table 7.7: Results for the unknowns on the test set

7.7. Prediction results
This section talks about how to evaluate the effectiveness of our framework through three different experi-
ments to show whether our framework can be used to predict future failure situations.

7.7.1. Really-Know prediction
Our first experiment is discussed in this subsection. To demonstrate that part of our framework can still
predict the failure cases, we evaluate well the Really-Know rules extracted from the validation set cover partial
failure cases. So we then compute the coverage by exact matching, and of course we only count rules in the
Really-Know set and rules predicted in exactly the same way as the rules from the unknown set. Therefore,
The coverage rate can be calculated according to the following formula:

cover ag e = pr edi cted unknown r ules

Al l unknown r ul es
(7.1)

Table 7.8 shows the Really-Know set coverage for unknown rules in the failure cases. As mentioned above,
the unknowns can be divided into two types: known shouldn’t know, and unknown should know. And since
we only use our Really-Know rule set, we will measure how our Really-Know rule set overrides part of the
unknowns(known shouldn’t know). Finally, The experimental results showed that the Really-Know set we
extracted covers 40.21% of the set of known shouldn’t know rules, which also proved that the validity of our
partial framework. In addition, the number of syntactic unknowns covered is greater than the number of lex-
ical unknowns covered. The following reasons may cause the previous situation: Lexical changes replace one
word with another word, while syntactic changes replace a syntactic structure with another syntactic struc-
ture(involving multiple words). There are more lexical substitutions than syntactic structures substitutions,
so it is more difficult to predict them.

Results of the Really-Know rules predicts unknowns
Known shouldn’t know

Dataset Lexical cover rate Syntactic cover rate All cover rate
Test set 36.40% 46.31% 40.21%

Table 7.8: Results of the Really-Know rules predict unknowns

38 7. Experiment Set-up and Results

7.7.2. Should-Know prediction
This part will illustrate the second experiment, which is how to predict the partial unknown by extracting a
set of rules that should be known from the validation set. And Table 7.9 shows the exactly calculated cover-
age rate, which is also calculated from formula 7.1. Compared with the previous experiment, the prediction
coverage of the proposed method for unknown rules is lower(failure rule coverage is 34.86%). From my point
of view, the Should-Know task differs from the Really-Know task. Really-Know task reflect the simplification
done by the model, while the Should-Know tasks reflect the simplification made by crowd workers. Crowd
workers provide good quality simplified sentences, while different crowd workers may have different ideas for
simplifying the sentences. For example, propose can be replaced by suggest and offer. Both substitutions are
correct, but two crowd workers may tend to choose different substitutions. Therefore, it is harder to predict
unknown should know.

Results of the Should-Know rules predicts unknowns
Unknown should know

Dataset Lexical cover rate Syntactic cover rate All cover rate
Test set 34.32% 35.65% 34.86%

Table 7.9: Results of the Should-Know rules predict unknowns

7.7.3. Unknowns prediction
This paragraph talks about the most important experiments. Here, we will measure the effectiveness of the
entire framework. First, we follow the steps mentioned in section 6.7 to compute the unknowns from the
validation set, and then we calculate how the extracted unknowns predict the unknowns of failure cases. And
the coverage rate is also calculated by formula 7.1. The results are displayed in Table 7.10. As you can see from
the table, a total of 35.27% of the rules are predicted. After explicit analysis, we categorize failure cases into
three types: (1). Poor choices of what to leave out. (2).faulty use of synonyms (3). Introduce ’knowledge’ from
outside of the original text. Based on our research, our framework makes it easier to predict the first(Poor
choices of what to leave out) and second failure situation (faulty use of synonyms) since the first and second
situation is more likely to be carried out as a rule and is easier to describe by crowd workers. For classification
tasks, we can describe the global behavior of each class. In contrast, it is difficult for our task to describe
global behavior. Here, I will only describe some examples of local prediction about the first and the second
types of failure to show what kind of unknowns types are predicted by my framework. For example, from
the failure cases we mentioned earlier, the model tends to ignore allowed to which changes the sentence’s
meaning. This kind of failure also occurs in the validation set. Refers to the second kind of failure, the original
sentence is They are culturally akin to the coastal peoples of Papua New Guinea. and model simplified it
as They are a lot like the coastal peoples of Papua New Guinea.. Model changes the word culturally to a lot
while it refers to culture. Therefore, the unknown is that culturally - a lot and culturally - culture. This kind
of mistake is also found in the validation set.

There are still a large number of unknown rules our framework can not predict. And as mentioned before,
the third type of unknown is difficult to predict because it is hard to find rules to describe the added external
change. For example, according to Table 7.2, the third example adds one sub-sentence he shows that he
cases. This is described by the rule bravery-cares, so it is hard to find the same one in the validation set.
Besides, crowd workers tend to input some rules which are not retrieved by the knowledge base. Such a
rule is hard to match because other crowdsourcing workers may not find it even if it exists in the sentence.
In addition, the number of predicted failure cases was evaluated. Because even though there are multiple

Results of the unknowns predicts unknowns

Cover rate

Known shouldn’t know Unknown should know All

Dataset Lexical cover rate Syntactic cover rate All Lexical cover rate Syntactic cover rate All
35.27%

Test set 33.05% 43.62% 37.11% 31.95% 33.91% 32.74%

Table 7.10: Results of the unknowns predict unknowns

unknown rules in a failure case, we consider that if an unknown rule is included, the failure case is predicted

7.7. Prediction results 39

since some unknown rules are not the cause of the failure, we want to follow this setting to reduce the work
burgeon. The formula is shown as follows:

pr edi cted r ate = Pr edi cted cases

Al l test cases
(7.2)

Our framework predicted 105 failure cases, the our final predict case rate is 65.6%.

8
Conclusion and Future work

In this chapter, we will summarize the results of the previous three experiments to answer our research ques-
tions. We will then draw conclusions based on the experiment results. In addition, we make a discussion
about the limitation and have a vista for the future

8.1. Conclusion
This section will illustrate our findings: we first start with results we extracted to describe what the model
really knows, where we employed a human-in-the-loop combined with an interpretable machine learning
method(RQ1). Then we talk about that result of the model should learn extracted by applying a human in
the loop method and also applying the knowledge base to reduce human cognitive burgeon(RQ2). Next, we
talked about the results of the extracted model unknowns in combination with the first two results(RQ3).

8.1.1. Really-know task
Our proposed approach, human-in-the-loop with machine learning interpretable method, compensated for
the limitations of the saliency map. We designed the task to efficiently extract knowledge to describe model
behavior since we extracted an average of 3 rules for each pair of sentences to explain its changes. In addition,
we also applied the format of syntactic rules from the PPDB knowledge base([32]) to describe model syntactic
variations. Therefore, our rules are meaningful and easy to understand.

8.1.2. Should-Know task
In our research, Here we also proposed that human intelligence could be applied to describe what the model
should learn. For the Should-Know task, we also found an average of three rules (both lexical rules and syn-
tactic rules) for each pair of sentences. Therefore, to sum up, our rule-based applications described what the
model should learn.

8.1.3. Predict the unknowns
Here we combine the Really-Know tasks and the Should-Know tasks, and then we can get a set of unknown
rules. Based on our findings, models tend to be error-prone in the following three situations:(1). poor choices
of what to leave out (2). Faulty use of synonyms (3). Introduce ’knowledge’ from outside of the original text.
However, our proposed model is more inclined to predict first two failures, while the third type of failure is
more difficult to be predicted. Our evaluation shows that our framework can predict 35.27% of the unknowns
in the test set and 65.6% of failure cases. Thus, it proves that our framework can predict when and under what
circumstance our model will fail.

8.2. Limitations and future work
There are several limitations we want to address, so our future work can be done in the following directions:

1. Text simplification can be divided into the following operations: adding, deleting, and instituting. Even
though our application can describe all these simplification operations, it performs well in terms of

41

42 8. Conclusion and Future work

instituting. So in the future, we consider that we can continue to add sub-tasks to describe adding and
deleting operations continuously.

2. In the case of classification, Our Really-Know and Should-Know application is still complex and time-
consuming compared to human intelligence tasks. Therefore, we can further study how to improve the
crowd-sourcing interface and reduce human cognitive load in the future.

3. In terms of annotation quality, we can continue to improve its quality. For example, nowadays, we only
collect three annotations for each task. Then in the future, we can collect more annotations for it, which
will help us to describe the model behavior better and more completely.

4. We can also migrate our framework to other language generation tasks on the application of the frame-
work since now we only apply our framework towards text simplification tasks. So in the future, we
can evaluate the performance of our framework in some other language generation tasks like question
answering.

5. As for failure prediction, since the way we currently evaluate our method is to see whether our frame-
work can predict future failure work. So same as this, our future work can continue to work in this
direction, continuously improving our models’ ability to correct these unknowns.

Bibliography

[1] 2.5 million people in NL can’t read or write properly, costing society over €1bn
- DutchNews.nl — dutchnews.nl. https://www.dutchnews.nl/news/2018/04/
2-5-million-people-in-nl-cant-read-or-write-property-costing-society-over-e1bn/.
[Accessed 11-Aug-2022].

[2] Suha S Al-Thanyyan and Aqil M Azmi. Automated text simplification: A survey. ACM Computing Surveys
(CSUR), 54(2):1–36, 2021.

[3] J Alammar. Ecco: An open source library for the explainability of transformer language models. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing: System Demonstrations, pages 249–257,
2021.

[4] André Altmann, Laura Toloşi, Oliver Sander, and Thomas Lengauer. Permutation importance: a cor-
rected feature importance measure. Bioinformatics, 26(10):1340–1347, 2010.

[5] Fernando Alva-Manchego, Louis Martin, Carolina Scarton, and Lucia Specia. Easse: Easier automatic
sentence simplification evaluation. arXiv preprint arXiv:1908.04567, 2019.

[6] Fernando Alva-Manchego, Louis Martin, Antoine Bordes, Carolina Scarton, Benoît Sagot, and Lucia Spe-
cia. Asset: A dataset for tuning and evaluation of sentence simplification models with multiple rewriting
transformations. arXiv preprint arXiv:2005.00481, 2020.

[7] Meghna P Ayyar, Jenny Benois-Pineau, and Akka Zemmari. Review of white box methods for explana-
tions of convolutional neural networks in image classification tasks. Journal of Electronic Imaging, 30
(5):050901, 2021.

[8] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[9] Agathe Balayn, Panagiotis Soilis, Christoph Lofi, Jie Yang, and Alessandro Bozzon. What do you mean?
interpreting image classification with crowdsourced concept extraction and analysis. In Proceedings of
the Web Conference 2021, pages 1937–1948, 2021.

[10] Or Biran, Samuel Brody, and Noémie Elhadad. Putting it simply: a context-aware approach to lexical
simplification. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguis-
tics: Human Language Technologies, pages 496–501, 2011.

[11] John Carroll, Guido Minnen, Yvonne Canning, Siobhan Devlin, and John Tait. Practical simplification of
english newspaper text to assist aphasic readers. In Proceedings of the AAAI-98 Workshop on Integrating
Artificial Intelligence and Assistive Technology, pages 7–10. Citeseer, 1998.

[12] Diogo V Carvalho, Eduardo M Pereira, and Jaime S Cardoso. Machine learning interpretability: A survey
on methods and metrics. Electronics, 8(8):832, 2019.

[13] Misha Denil, Alban Demiraj, and Nando De Freitas. Extraction of salient sentences from labelled docu-
ments. arXiv preprint arXiv:1412.6815, 2014.

[14] Yue Dong, Zichao Li, Mehdi Rezagholizadeh, and Jackie Chi Kit Cheung. Editnts: An neural programmer-
interpreter model for sentence simplification through explicit editing. arXiv preprint arXiv:1906.08104,
2019.

[15] Mengnan Du, Ninghao Liu, and Xia Hu. Techniques for interpretable machine learning. Communica-
tions of the ACM, 63(1):68–77, 2019.

43

https://www.dutchnews.nl/news/2018/04/2-5-million-people-in-nl-cant-read-or-write-property-costing-society-over-e1bn/
https://www.dutchnews.nl/news/2018/04/2-5-million-people-in-nl-cant-read-or-write-property-costing-society-over-e1bn/

44 Bibliography

[16] Spencer Frei, Yuan Cao, and Quanquan Gu. Agnostic learning of a single neuron with gradient descent.
Advances in Neural Information Processing Systems, 33:5417–5428, 2020.

[17] Juri Ganitkevitch, Benjamin Van Durme, and Chris Callison-Burch. Ppdb: The paraphrase database. In
Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 758–764, 2013.

[18] Colby Horn, Cathryn Manduca, and David Kauchak. Learning a lexical simplifier using wikipedia. In Pro-
ceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers), pages 458–463, 2014.

[19] J Peter Kincaid, Robert P Fishburne Jr, Richard L Rogers, and Brad S Chissom. Derivation of new readabil-
ity formulas (automated readability index, fog count and flesch reading ease formula) for navy enlisted
personnel. Technical report, Naval Technical Training Command Millington TN Research Branch, 1975.

[20] Daniel D Lee, P Pham, Y Largman, and A Ng. Advances in neural information processing systems 22.
Technical report, Tech. Rep., Tech. Rep, 2009.

[21] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension. arXiv preprint arXiv:1910.13461, 2019.

[22] Qi Li, Fenglong Ma, Jing Gao, Lu Su, and Christopher J Quinn. Crowdsourcing high quality labels with a
tight budget. In Proceedings of the ninth acm international conference on web search and data mining,
pages 237–246, 2016.

[23] Kuo-Yi Lin, Yuguang Liu, Li Li, and Runliang Dou. A review of explainable artificial intelligence. In
IFIP International Conference on Advances in Production Management Systems, pages 574–584. Springer,
2021.

[24] Louis Martin. Automatic sentence simplification using controllable and unsupervised methods. PhD
thesis, Sorbonne Université, 2021.

[25] Louis Martin, Benoît Sagot, Eric de la Clergerie, and Antoine Bordes. Controllable sentence simplifica-
tion. arXiv preprint arXiv:1910.02677, 2019.

[26] Louis Martin, Angela Fan, Éric de la Clergerie, Antoine Bordes, and Benoît Sagot. Muss: multilingual
unsupervised sentence simplification by mining paraphrases. arXiv preprint arXiv:2005.00352, 2020.

[27] Matej Martinc, Senja Pollak, and Marko Robnik-Šikonja. Supervised and unsupervised neural ap-
proaches to text readability. Computational Linguistics, 47(1):141–179, 2021.

[28] George A Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, and Katherine J Miller. Introduc-
tion to wordnet: An on-line lexical database. International journal of lexicography, 3(4):235–244, 1990.

[29] Christoph Molnar. Interpretable machine learning. Lulu. com, 2020.

[30] Sergiu Nisioi, Sanja Štajner, Simone Paolo Ponzetto, and Liviu P Dinu. Exploring neural text simplifica-
tion models. In Proceedings of the 55th annual meeting of the association for computational linguistics
(volume 2: Short papers), pages 85–91, 2017.

[31] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation
of machine translation. In Proceedings of the 40th annual meeting of the Association for Computational
Linguistics, pages 311–318, 2002.

[32] Ellie Pavlick, Pushpendre Rastogi, Juri Ganitkevitch, Benjamin Van Durme, and Chris Callison-Burch.
Ppdb 2.0: Better paraphrase ranking, fine-grained entailment relations, word embeddings, and style
classification. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers),
pages 425–430, 2015.

[33] Dejan Radovanovic. Introducing natural language interface to databases for data-driven small and
medium enterprises. Data Science–Analytics and Applications, pages 11–15, 2021.

Bibliography 45

[34] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i trust you?" explaining the pre-
dictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, pages 1135–1144, 2016.

[35] Victor Henrique Alves Ribeiro, Paulo Cavalin, and Edmilson Morais. A dynamic multi-criteria multi-
engine approach for text simplification. In 2021 International Joint Conference on Neural Networks
(IJCNN), pages 1–8. IEEE, 2021.

[36] Matthew Shardlow. A survey of automated text simplification. International Journal of Advanced Com-
puter Science and Applications, 4(1):58–70, 2014.

[37] Shahin Sharifi Noorian, Sihang Qiu, Ujwal Gadiraju, Jie Yang, and Alessandro Bozzon. What should you
know? a human-in-the-loop approach to unknown unknowns characterization in image recognition. In
Proceedings of the ACM Web Conference 2022, pages 882–892, 2022.

[38] Kim Cheng Sheang and Horacio Saggion. Controllable sentence simplification with a unified text-to-text
transfer transformer. In Proceedings of the 14th International Conference on Natural Language Genera-
tion, pages 341–352, 2021.

[39] Attend Show. Tell: Neural image caption generation with visual attention kelvin xu. Jimmy Ba, Ryan
Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard Zemel, Yoshua Bengio arXiv
(2015-02-10) https://arxiv. org/abs/1502.03044 v3.

[40] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Visual-
ising image classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013.

[41] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. Smoothgrad: re-
moving noise by adding noise. arXiv preprint arXiv:1706.03825, 2017.

[42] Hendrik Strobelt, Sebastian Gehrmann, Michael Behrisch, Adam Perer, Hanspeter Pfister, and Alexan-
der M Rush. S eq 2s eq-v is: A visual debugging tool for sequence-to-sequence models. IEEE transactions
on visualization and computer graphics, 25(1):353–363, 2018.

[43] Elior Sulem, Omri Abend, and Ari Rappoport. Bleu is not suitable for the evaluation of text simplification.
arXiv preprint arXiv:1810.05995, 2018.

[44] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In Interna-
tional conference on machine learning, pages 3319–3328. PMLR, 2017.

[45] António Teixeira, Vera Lúcia Strube de Lima, Luís Caldas de Oliveira, and Paulo Quaresma. Computa-
tional Processing of the Portuguese Language. Springer, 2008.

[46] Sahil Verma, John Dickerson, and Keegan Hines. Counterfactual explanations for machine learning: A
review. arXiv preprint arXiv:2010.10596, 2020.

[47] Jesse Vig. A multiscale visualization of attention in the transformer model. arXiv preprint
arXiv:1906.05714, 2019.

[48] Eric Wallace, Jens Tuyls, Junlin Wang, Sanjay Subramanian, Matt Gardner, and Sameer Singh. Allennlp
interpret: A framework for explaining predictions of nlp models. arXiv preprint arXiv:1909.09251, 2019.

[49] Maonan Wang, Kangfeng Zheng, Yanqing Yang, and Xiujuan Wang. An explainable machine learning
framework for intrusion detection systems. IEEE Access, 8:73127–73141, 2020.

[50] Sander Wubben, Antal Van Den Bosch, and Emiel Krahmer. Sentence simplification by monolingual
machine translation. In Proceedings of the 50th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1015–1024, 2012.

[51] Wei Xu, Chris Callison-Burch, and Courtney Napoles. Problems in current text simplification research:
New data can help. Transactions of the Association for Computational Linguistics, 3:283–297, 2015.

46 Bibliography

[52] Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze Chen, and Chris Callison-Burch. Optimizing statistical
machine translation for text simplification. Transactions of the Association for Computational Linguis-
tics, 4:401–415, 2016.

[53] Xingxing Zhang and Mirella Lapata. Sentence simplification with deep reinforcement learning. arXiv
preprint arXiv:1703.10931, 2017.

[54] Sanqiang Zhao, Rui Meng, Daqing He, Saptono Andi, and Parmanto Bambang. Integrating transformer
and paraphrase rules for sentence simplification. arXiv preprint arXiv:1810.11193, 2018.

[55] Zhemin Zhu, Delphine Bernhard, and Iryna Gurevych. A monolingual tree-based translation model for
sentence simplification. In Proceedings of the 23rd International Conference on Computational Linguis-
tics (Coling 2010), pages 1353–1361, 2010.

[56] Chengqing Zong, Jian-Yun Nie, Dongyan Zhao, and Yansong Feng. natural language processing and
chinese computing. Communications in Computer & Information Science, vo, 333(3):262–273, 2012.

	Introduction
	Problem statement
	Challenges
	contributions
	Organization

	Background Information
	Text simplification
	Rule-based text TS methods
	Data-driven TS methods

	Interpretable machine learning
	Intrinsic interpretable method
	Post-hoc Interpretability method
	Interpretable machine learning tools

	Human-in-the-Loop Machine Learning
	What do You Mean?
	What Should You Know?

	Framework
	What model really know
	Post-hoc interpretability
	Attention-based
	Gradient-based Pixel Attribution method

	Human-in-the-loop method
	Annotation phase
	Training phase
	Pilot study
	Budget calculation

	What model should know
	Annotation phase
	Pilot study
	Budget calculation

	Implementation Details
	Technology Stack
	User interface of Web application
	Data storage

	Experiment Set-up and Results
	Overview of the experiment
	Text simplification
	Datasets
	Models

	Data Preprocessing
	Human intelligence task
	Task overview
	Quality control
	Acceptance criteria

	Data Aggregation
	Results of Really-Know task and Should-Know test on validation set
	Results of Really-Know task and Should-Know test on test set

	Extract the unknowns
	Prediction results
	Really-Know prediction
	Should-Know prediction
	Unknowns prediction

	Conclusion and Future work
	Conclusion
	Really-know task
	Should-Know task
	Predict the unknowns

	Limitations and future work

	Bibliography

