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Article 
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Abstract: This paper proposes a novel approach to measuring human driving performance by using 
the AI capabilities of automated driving systems, illustrated through three example scenarios. Tra-
ditionally, the assessment of human driving has followed a bottom-up methodology, where raw 
data are compared to fixed thresholds, yielding indicators such as the number of hard braking 
events. However, acceleration threshold exceedances are often heavily influenced by the driving 
context. We propose a top-down context-aware approach to driving assessments, in which record-
ings of human-driven vehicles are analyzed by an automated driving system. By comparing the 
human driver’s speed to the AI’s recommended speed, we derive a level of disagreement that can 
be used to distinguish between hard braking caused by aggressive driving and emergency braking 
in response to a critical event. The proposed method may serve as an alternative to the metrics cur-
rently used by some insurance companies and may serve as a template for future AI-based driver 
assessment. 

Keywords: artificial intelligence; context-aware driving assessment; hard braking; emergency brak-
ing; aggressive driving style 
 

1. Introduction 
Human drivers are increasingly being evaluated by algorithms, particularly in terms 

of fuel efficiency and safety. Safe driving is of interest to insurance companies, fleet own-
ers, and licensing organizations. For example, some insurance companies now offer in-
centives for defensive driving based on acceleration-based metrics such as hard braking 
(exceeding longitudinal acceleration thresholds), sharp cornering (exceeding lateral accel-
eration thresholds), and speeding [1–6]. Similarly, Tesla’s Safety Score Beta calculates a 
score based on factors like hard braking, speeding, and following distance [7]. 

While studies have found that acceleration-based metrics can be used to predict driv-
ers’ likelihood of being involved in crashes and damage incidents (e.g., [8–11]), there are 
challenges in holding drivers accountable for exceeding acceleration thresholds. One is-
sue is that the need for high acceleration levels can depend on the road type. For example, 
urban areas typically require more frequent (hard) braking than rural roads. One solution 
is to make the driver’s assessment dependent on the road type based on GPS (e.g., [12–
14]). However, such location-based assessments lack the ability to account for local road 
geometry. 

A second concern is that traffic conditions can play a key role. For example, an unex-
pected event, such as a pedestrian crossing the road or a lead vehicle suddenly decelerat-
ing, may force the driver to brake hard. When evaluating drivers based on deceleration 
events or offering discounts and rewards for not showing such events, it is important to 
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consider the traffic conditions in which these actions occur. One approach to include con-
textual information is to compare the speed of the vehicle with the speed of other traffic 
or to take weather conditions into consideration (e.g., [11,15,16]). However, such global 
statistical measures will only provide limited context. 

A third concern is the risk of unintended consequences. If drivers are penalized for 
hard braking, they may hesitate to brake hard when needed, leading to dangerous situa-
tions. In summary, simply counting “dangerous events” based on predefined acceleration 
thresholds may not be a reliable indicator of an individual’s driving behavior. 

In recent years, computational resources in vehicles and the sophistication of algo-
rithms have increased to the point that vehicles have become advanced enough to perform 
most of the driving tasks themselves. These developments can be seen in systems like 
those of Waymo [17,18], Lyft [19,20], Tesla’s “Full Self-Driving” (FSD), and AI/data com-
panies such as NVIDIA [21] and comma.ai [22,23]. A dilemma, however, arises from the 
fact that these systems are not yet perfect. They either have to operate in limited regions 
or still require human attention and intervention. For example, current Tesla FSD systems 
require drivers to keep their hands on the wheel or remain attentive to the road, as moni-
tored by a cabin camera [24], whereas the autonomous fleets of Waymo and Zoox rely on 
remote operators to solve difficult situations [25,26] (see also [27]). 

Given that vehicles are becoming increasingly capable of driving automatically in a 
human-like manner, yet still cannot drive wholly automatically, we propose the concept 
of using automation to assist in measuring human driving behavior. The idea we explore 
is to evaluate human driving by comparing it to AI-generated driving behavior. This con-
cept can be traced back over three decades to the GIDS (Generic Intelligent Driver Sup-
port) project in the late 20th century [28], where a reference driving behavior was gener-
ated through computer-simulated driving. However, at the time, this idea was considered 
“(too) far ahead of its time” [29] and did not gain traction. Today, however, it has become 
a realistic possibility. 

Comparing human driving behavior to an AI’s intended plan offers advantages over 
the aforementioned assessment strategies. For example, in the case of a detected hard-
braking event, an AI system could be used to retrospectively differentiate between reck-
less driving and a sudden, unavoidable event requiring an immediate response. A high 
level of disagreement between the driver and the AI may suggest reckless driving, where 
both the AI and the human would have had the time to respond to a visible obstruction. 
On the other hand, a high level of agreement could indicate a justified reaction, where 
neither the driver nor the AI could anticipate the need to brake sooner. An algorithm based 
on fixed acceleration thresholds, however, would flag both scenarios as instances of un-
safe driving. 

It is important to note that our proposed approach does not assume the AI is infalli-
ble. The idea is that even an imperfect AI can be effective for assessing human driving 
behavior, as long-term data collection may reveal that certain drivers consistently deviate 
more from AI-referenced behavior than others. 
1.1. Aim 

This study presents three driving scenarios conducted in a driving simulator. After 
recording, the scenarios were analyzed using Openpilot, an open-source platform [30] that 
can be described as SAE level 2 vehicle automation [31]. Online videos [32,33] demonstrate 
that Openpilot is capable of driving vehicles both on highways and in urban environ-
ments. We fed the recordings of our driving scenarios to the Openpilot system and ana-
lyzed the internal metrics of Openpilot to understand how it interprets each situation. 

This study aims to present a technical demonstration of how AI can be used to assess 
human driving behavior. Using three driving scenarios in a simulator environment, we 
demonstrate the feasibility of comparing human driving behavior with driving behavior 
of an existing automated driving system. 
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Our scenarios include hard braking, which is practically relevant for applications like 
insurance assessments. However, the technical framework we demonstrate is adaptable 
to other scenarios due to the generalizable nature of the automated driving system. In the 
discussion section, we illustrate this broader potential impact with specific examples. Ad-
ditionally, we contribute a publicly accessible adaptation of Openpilot’s tools, which en-
ables the replay of externally recorded driving data to support future research. 

2. Method 
2.1. Setup 

Three demonstration driving scenarios were driven by the first author of this paper. 
The video and vehicle data were recorded in a virtual world using JOAN [34], a Python 
software package developed to enable human-in-the-loop experiments in the CARLA 
driving simulator [35]. JOAN provides the possibility to connect USB steering wheels to 
CARLA vehicles (in this case, the Logitech Driving Force G923 steering wheel), record 
vehicle data, and create reproducible experiments with other traffic following predefined 
trajectories. The simulation ran on a PC running Windows 11. The repository contains the 
experimental setup files that were used within JOAN. 

2.2. Scenarios 
The three scenarios were chosen to be simple to explain and feasible for simulator 

implementation without the need for complex hard-coded choreographies. Moreover, the 
scenarios were chosen to make our specific point: that AI-based assessments can be used 
to help classify a hard-braking event as either unnecessary or necessary. In other words, 
while traditional assessment methods, such as those used by insurance companies, would 
classify every hard-braking event as undesirable and contributing to the driver’s risk pro-
file, we illustrate that hard braking in a surprise emergency condition does not need to be 
marked as undesirable but rather as desirable and necessary. 

The scenarios involved two situations where an obstruction was clearly visible and 
the driver of the ego-vehicle reacted either aggressively (i.e., braked too late) or calmly 
(i.e., braked in time), and a third scenario where a surprise event justified hard braking by 
the driver. These scenarios are illustrated in Figure 1, where orange represents the ob-
structions encountered in the Aggressive and Calm scenarios, and pink indicates the mov-
ing obstruction in the Surprise scenario. Figure 2 shows a view during the Surprise sce-
nario, and Figure 3 shows the buses from the Aggressive and Calm scenarios. Video files of 
the three scenarios can be found in the repository. 

In all scenarios, the ego-vehicle began from the same starting point and followed a 
straight road leading to a T-junction (Figure 1). The driver controlling the vehicle aimed 
at a target speed of 50 km/h. 

2.2.1. Calm Scenario (Driver of Ego-Vehicle Did Not Brake Hard) 
In the Calm scenario, two stationary buses were positioned on the road, forcing the 

ego-vehicle to stop behind them. The experimenter achieved this by braking moderately 
and gradually letting the vehicle come to a stop. 

2.2.2. Aggressive Scenario (Driver of Ego-Vehicle Braked Hard, But Hard Braking Was 
Avoidable) 

The Aggressive scenario was identical to the Calm scenario, except for the behavior of 
the ego-vehicle. The experimenter maintained the target speed until approaching the 
buses and then applied a high braking input at the last moment, to demonstrate an ag-
gressive driving style. 
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Figure 1. Demonstration scenarios. Aggressive and Calm: The ego-vehicle (blue) approached station-
ary buses (orange) at a T-junction requiring a full stop, which the driver of the ego-vehicle executed 
aggressively or calmly. Surprise: The ego-vehicle drove along an empty road until a bus (pink) 
emerged from behind a wall, necessitating an emergency brake to avoid a collision. 

 
Figure 2. Video stills from the Surprise scenario. 

 
Figure 3. Openpilot user interface during the Calm scenario. The Aggressive scenario uses the same 
setup. The green band displays the predicted trajectory, and the lines provide information about the 
lane line estimates. The yellow triangle indicates a detected lead vehicle. 
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2.2.3. Surprise Scenario (Driver of Ego-Vehicle Braked Hard, and Hard Braking Was Un-
avoidable) 

The Surprise scenario contained an unforeseeable event. The scenario started with the 
ego-vehicle in the same position as in the previous two scenarios. Unlike the other scenar-
ios, no stationary vehicles obstructed the road, allowing the ego-vehicle to proceed 
straight through the T-junction. However, a bus (depicted in pink in Figure 1) approached 
the junction at the same time as the ego-vehicle. The bus was hidden from the ego-vehi-
cle’s view before entering the junction due to a high wall along the sidewalk. The bus 
followed a predefined path, turning left at the junction without yielding to the ego-vehicle 
(Figure 2). The timing of the bus’s appearance forced the ego-vehicle to brake abruptly to 
avoid a collision. 

2.3. Analysis 
The Openpilot software was adapted to work with pre-recorded driving data to en-

able a comparison between human driving and AI-generated predictions. This adaptation 
involved modifying Openpilot’s existing simulation module, originally designed to inter-
face with the CARLA driving simulator for development purposes. Driving in the simu-
lator with Openpilot running in real time could also have been a suitable setup for this 
demonstration. However, we first recorded the data and replayed it with Openpilot, as 
this also enables the module to work with other sources of data, such as dashcam videos 
supplemented with a CSV file containing speed and acceleration information (e.g., logged 
using a phone), allowing for the post-hoc analysis of other existing driving datasets. 

The adapted module allows two primary inputs: 
1. A 1928 × 1208 pixel forward-facing driving video recorded at 20 frames per second, 

simulating the visual input an autonomous system would receive. 
2. A corresponding CSV file with a row for each video frame containing vehicle state 

data, including speed, bearing, steering angle, brake, and throttle inputs. 
Thus, the video file provided the visual context, while the CSV file supplied data 

about the vehicle state. The module processed these inputs sequentially, mimicking the 
real-time data flow that Openpilot would experience in a live driving situation. Note that 
the module still works when omitting some of this data, such as brake and throttle input. 
This allows for some flexibility when using other datasets that may not feature all vehicle 
state data. Our limited experimentation with other sources suggests that reasonable esti-
mates can often still be obtained. Figure 3 shows a screenshot of the Openpilot user inter-
face during the replay of one of our recordings. 

The software was run on an Ubuntu 20.04 desktop PC. As the input data were pro-
cessed by Openpilot, the system’s generated predictions and plans were logged to a CSV 
file for later analysis. For the current demonstration, we used the desired speed originat-
ing from Openpilot’s longitudinal planner module. Other variables logged by the module 
that are suitable for comparison to human driving execution but not used are discussed 
in Appendix A. The full implementation details can be found in the project repository. 

3. Results 
Figure 4 compares Openpilot’s desired speed with the actual speed at which the hu-

man drove. A positive difference (shown in green) can be interpreted as a desire by the 
model to obtain a higher speed (a desire to accelerate), while a negative difference (shown 
in red) indicates a desire to decelerate. 
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Figure 4. Measured speed (blue), AI’s desired speed (orange), and the difference between the two, 
for all scenarios. To reduce noise in the visualization, a median filter with a window size of 3 samples 
(0.15 s) was applied to the prediction signal. The letters denote specific moments in the scenarios 
that are discussed in the text. 

3.1. Calm Scenario 
In the Calm scenario, the driver drove slower than the AI deemed appropriate for the 

current situation (Figure 4 left, annotation A). As the two stationary buses became closer, 
the driver decelerated, and the AI indicated a similar desire. At some point, the model 
suggested a speed lower than the current speed (Figure 4 left, B), indicating the AI pre-
ferred to slow down faster for the oncoming obstacles. The human driver also decelerated 
around the same time, indicated by the steeper slope, coming to a full stop. 

3.2. Aggressive Scenario 
In the Aggressive scenario, we see a similar start, with Openpilot suggesting a higher 

speed for the current empty road (Figure 4 middle, C). As the car approached the obsta-
cles, the driver kept his speed, while the AI suggested deceleration (Figure 4 middle, D). 
Only at the last moment, the driver decided to brake, and the speed dropped to 0 (Figure 
4 middle, E). 

When comparing the Calm and the Aggressive scenarios, we see that, in both graphs, 
some level of disagreement was present. However, the graph of the Aggressive scenario 
clearly shows a larger negative difference. 

3.3. Surprise Scenario 
The Surprise scenario started similarly until the surprise event (a bus suddenly ap-

pearing and cutting off the path of the ego-vehicle) happened. The model only suggested 
deceleration after the surprise event, around the same time the human driver was decel-
erating (Figure 4 right, F). Further note that, after the full stop, the model suggested in-
creasing speed again (Figure 4 right, G), since the bus had continued on its way and the 
ego-vehicle was alone again. 

The Aggressive and Surprise scenarios would both likely have been flagged in tradi-
tional assessment methods. When presented with the Aggressive scenario, Openpilot sug-
gested braking earlier, as judged by the difference graph at the bottom. In other words, it 
saw reason to decelerate before the human decided to decelerate. In the Surprise scenario, 
however, the model suggested deceleration at about the same time the human started de-
celerating. There was no large negative peak visible in the difference graph at the bottom, 
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as the bus was a surprise for Openpilot as well. This means that this stop was executed in 
a manner that was more similar to the way the AI would have executed it than in the case 
of the Aggressive scenario. In other words, the AI’s interpretation allows us to distinguish 
between an unnecessary hard brake and a necessary hard brake. 

In the above comparisons, the height of the difference peak was highest in the Ag-
gressive scenario, which means it could be identified as the braking event where there was 
the most disagreement between the AI and the human execution. This means that the cur-
rent method provides a way to judge whether a hard brake event was justified after this 
brake event happened. A possible implementation could be, for every hard brake event 
(when a certain static threshold was exceeded), to let the AI assess whether the brake event 
was justified, in order to improve the validity of the assessments of driver behavior. Other 
metrics that could be considered are the total area between the two curves or the time 
since the first model suggested deceleration until a full stop. 

4. Discussion 
This study demonstrated the potential of using AI from an automated driving system 

to assess human driving behavior. The method compared the state of a human-driven 
vehicle with the AI’s desired state. This approach allowed discrimination between neces-
sary and unnecessary hard braking by using a variable that indicates the level of disagree-
ment of the human driver’s actions relative to the AI’s recommendations. 

Traditional methods for assessing driver behavior, such as the predefined thresholds 
used by insurance companies (e.g., for speed, acceleration, or braking), are situation-ag-
nostic. In contrast, the AI-assisted method provides a context-aware evaluation by com-
paring the human driver’s actions with model predictions. Driving examiners previously 
identified the lack of a holistic perspective as a key barrier to effective data-driven driver 
assessment [36]. 

We achieved our results using Openpilot, a system that relies on a vision feed and 
CAN-bus data to control the vehicle automatically in many situations. One may argue 
that using Openpilot is overkill for the current demonstration purposes and that simpler, 
more widely used radar-based solutions, like those found in forward collision warning 
systems (FCWS) or adaptive cruise control (ACC), could have sufficed. An equivalent ar-
gument could be made that potential field methods, which examine the extent to which 
other objects and road users intrude in this field, could be used to quantify the level of 
risk in driving (e.g., [37–39]). These existing concepts, however, are still limited in their 
ability to interpret the overall driving context. Our approach relies on a visual understand-
ing of the scenario, including, e.g., traffic signs. It uses a neural network [40] that provides 
an estimate of the appropriate speed given the entire driving situation, rather than provid-
ing an estimate of risk based on relatively simple indicators such as time to collision (TTC) 
or potential field intrusion. The system’s ability to process visual information and make 
context-aware decisions mirrors the decision-making process of human drivers. 

4.1. Limitations 
The system that we used still has limitations. Like all current automated driving sys-

tems, it can make errors in perception, prediction, and decision-making. For example, it 
may misclassify objects, fail to anticipate complex traffic situations, or make wrong speed 
recommendations. However, our method’s effectiveness does not require the AI to be in-
fallible. Rather than relying on individual instances of disagreement, our approach is en-
visioned to identify patterns in driving behavior over extended periods. This aggregation 
helps mitigate the impact of occasional AI errors. Even with imperfect AI, the additional 
context helps distinguish between necessary and unnecessary hard braking events better 
than approaches relying on kinematic thresholds only. 

As explained in the last paragraph of the Results section, the calculation and accom-
panying threshold values that distinguish a “high level of disagreement” from a “low 
level of disagreement” warrant further development and research with real datasets. 
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Research will also be needed into “gray areas”, where, for example, the AI detects a pre-
cursor to a hazard and considers braking intervention necessary while a human driver 
may barely recognize it. To this end, for different traffic situations, the driving behavior 
or recommendations of expert drivers could be compared to those of AI. This, in turn, 
raises fundamental questions about who should ultimately be the arbiter in defining suc-
cessful driving performance: an expert driver or an AI agent. It also brings up questions 
about the required quality of cameras and the level of intelligence an AI-based automated 
driving system should or could possess. 

The demonstrated scenarios represent only a fraction of potential applications. Fu-
ture research could examine disagreements in lateral driving behavior, i.e., identify dis-
crepancies between a driver’s chosen maneuver and the vehicle’s suggested alternative. It 
should be noted here that, in some emergency situations, where the braking distance is 
too long to avoid a collision, an evasive steering maneuver may be the only way to prevent 
an accident [41]. Additionally, the method could assess whether higher-level strategic de-
cisions (e.g., Michon’s model of driving behavior; [42]) can be evaluated using multiple 
agents as reference points. As AI continues to improve, its ability to assess human driving 
behavior will likely expand. This is especially relevant because improved AI systems may 
not always result in safer automated driving. As AI takes more control, human drivers 
may be kept out of the loop for longer periods, potentially leading to slower response 
times when manual intervention is required. 

Finally, it is important to note that this study serves as a proof of concept only; it 
represents a single demonstration conducted by the author in a virtual environment. Fur-
ther research is needed to validate the approach, which should include testing the system 
across a broader range of real-world driving scenarios with more human participants. 

4.2. Recommendations 
In the insurance industry, our proposed method could allow for fairer assessments 

of driving incidents. This could lead to more precise risk profiling and personalized in-
surance premiums based on individual driving styles. For fleet operators, the ability to 
detect risky driving behaviors and offer targeted coaching could help reduce accidents, 
improve driver performance, and lower operating costs. Additionally, our algorithmic as-
sessment concept could benefit driver education and testing, as well as provide concurrent 
feedback on driving behavior after obtaining a license. 

In academia, our work opens up possibilities in several ways. First, existing datasets 
with human driving videos and car state variables could be augmented with AI-generated 
predictions, removing the need for costly new data annotation or data collection efforts. 
Discrepancies could be used to extract critical situations from the datasets, for example. 
Secondly, future research could explore the use of multi-agent systems, where disagree-
ments between two or more concurrently observing AI models could provide a more ro-
bust assessment of driver behavior. Using multiple AI systems would essentially provide 
the driver with a “committee” of reference drivers, reducing the potential for bias present 
in individual models. An approach in which multiple agents arbitrate their perspectives 
on current driving events was previously suggested by Fridman et al. [43]. 

The current method assumes that hard braking events are evaluated after they oc-
curred by observing whether the AI detected a need to decelerate earlier for these specific 
events. Future work could explore whether more continuous measures of disagreement 
can be developed. We propose an overall “deviation score”, determined by the total level 
of disagreement between the driver and one (or multiple) AI(s) regarding variables such 
as speed, acceleration, steering input, and braking input. 

The software was run on a desktop PC, with the data analyzed after the scenario 
recordings. However, future versions could allow real-time data collection in a real vehi-
cle. Openpilot’s plug-and-play design offers advantages over traditional onboard sys-
tems. It can be installed in different vehicle models [22]. In contrast, manufacturer-in-
stalled automation systems are typically integrated into onboard computers. 
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Though the model weights remain the private property of comma.ai, the software 
itself has been made open-source. The broader automotive industry still lags behind in 
embracing open-source frameworks. This closed nature may hinder innovation and re-
strict improvements in safety. We argue that manufacturers should, at a minimum, con-
sider offering accessible APIs to allow developers and researchers to interact with vehicle 
data. This may be counterintuitive to traditional automotive manufacturers, where inno-
vation is typically patented and kept private. However, some examples indicate that the 
industry is increasingly seeing the value in open-sourcing data and code. Waymo has re-
leased its Open Dataset [44], Tesla occasionally publishes repositories that may prove use-
ful to outsiders [45], and the Automotive Grade Linux [46] initiative is another example. 
By inviting public collaboration, manufacturers could benefit from faster development 
cycles, while the broader community gains access to tools for creating safer vehicles. When 
done right, such openness advances the company’s technology and also strengthens the 
entire ecosystem. 
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Appendix A 
This appendix provides an overview of how Openpilot works, what parts of the soft-

ware were modified, and what other variables are suited for similar analyses where hu-
man and AI plans are compared. For implementation details, we refer to the GitHub re-
pository of this paper. 

Appendix A.1. Openpilot Overview and Modifications 
Openpilot’s intended usage is in a live vehicle, where it is run on a comma device 

[22]. On the device, the vehicle’s CAN-bus data are processed and combined with data 
from the device’s sensors and two forward-facing cameras. These data are fed to a neural 
network, along with a data buffer of previous predictions, providing the model with a 
temporal context of 5 s. The model returns the location of road features and lead vehicles 
and creates a plan for the vehicle’s coming states (i.e., where the vehicle wants to be). In 
addition, a second model can monitor the driver (e.g., distraction, face pose, phone usage, 
etc.); this module was disabled in the current work. Figure A1 gives an overview of the 
way the car, the comma device, and Openpilot interact under normal operating condi-
tions. 
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Figure A1. Diagram of Openpilot’s intended use. Openpilot ingests vehicle data and data from the 
comma device and feeds this data to the neural networks for driving and driver monitoring. When 
Openpilot is in control of the vehicle, it provides steering, throttle, and brake commands to the car 
via the CAN interface. 

The Openpilot repository contains developer tools that allow bridging Openpilot 
with a CARLA [47] driving simulator. However, this module requires a live simulator and 
does not allow replays of pre-recorded rides. While driving in the simulator in real time 
would have been a suitable setup for the current demonstration, we opted for an approach 
where we first recorded our data and then replayed the recording, with Openpilot observ-
ing the recordings in the background. 

To achieve this, we modified the existing sim module so that it can ingest a forward-
facing driving video (20 Hz, 1928 × 1208 pixels), along with an input CSV file that contains, 
for each video frame, car state data such as speed and bearing, as well as steering, brake, 
and throttle inputs. Note that the module still works when omitting some of these data, 
such as brake and throttle input. This allows for some flexibility when using other datasets 
that may not feature all vehicle state data. However, it comes at the expense of the model 
prediction and planning quality (from our limited experimentation with other sources, 
reasonable estimates can often still be obtained). 

Appendix A.2. Other Variables 
Although not directly used in the current demonstration, other variables are being 

logged in the current implementation of the module. These variables could be relevant for 
the evaluation of human driving. Noteworthy are variables contained in the lateralPlan 
and the metaPredictions structures of the model. The lateral plan contains the desired cur-
vature (rad/s) and curvature rate (rad/s2) predictions. These values could be compared to 
human execution of trajectories, for example, when merging or overtaking. Moreover, 
there are variables that represent the model’s planned “lateral desire”, which can take on 
the values none, turnLeft, turnRight, laneChangeLeft, laneChangeRight, keepLeft, or keepRight. 
The meta-prediction data structure contains several probabilistic measures, such as the 
probability that a hard brake will be executed within the upcoming seconds or the proba-
bility of executing one of the maneuvers mentioned before. 

The desired predictions can be considered higher-level decisions (in comparison to 
the predicted dynamics values, such as future speeds or accelerations). Comparison to 
human execution data becomes more complex in this area. However, the data do look 
promising: If the current paradigm of using AI as a reference can be extended to these 
decision-level measures, this opens up possibilities for even more holistic assessments of 
human driving. 
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Appendix A.3. Further Notes 
The performance of the current module is sufficient for demonstration, but we still 

had some issues with high-frequency noise. Possible causes could be the implementation 
of the bridge model, incorrect calibration of vehicle data, mismatch in frame rates between 
Openpilot and the video, or bugs in the implementation of the simulator bridge. 
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