
Evaluating Robustness of Deep Reinforcement Learning for Autonomous Driving
Effects of Domain Randomization on Training and Robustness

Ege Bayram1

Supervisor(s): Matthijs Spaan1, Moritz Zanger1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 24, 2023

Name of the student: Ege Bayram
Final project course: CSE3000 Research Project
Thesis committee: Matthijs Spaan, Moritz Zanger, Elena Congeduti

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract

Deep reinforcement learning has been a topic of
research in recent years and has been expanding
into the domain of autonomous driving. As au-
tonomous driving is likely to involve people, such
as daily commuters, it is necessary to ensure the
machine will perform well enough in real-life en-
vironments not to put anyone at risk. There exist
possible approaches to make the transition from a
simulation to real life easier, such as domain ran-
domization. This paper uses OpenAI’s CarRacing-
v2 environment and the CARLA simulator [4] to
investigate the effect of domain randomization on
training efficiency and robustness for a Deep Q-
Network algorithm for autonomous driving. The
results show a decrease in training efficiency and
higher variance during training for both environ-
ments. CARLA also indicates an overestimation
during training. As for robustness testing, while vi-
sual domain randomization in CarRacing-v2 does
not suggest a significant influence on robustness,
the dynamic domain randomization in CARLA of-
fers a positive influence toward robustness at the
expense of some reward.

1 Introduction
The interest in neural networks in reinforcement learning has
been on the rise with Gerald Tesauro’s TD-Gammon program
to play backgammon in 1992 [13] and the model introduced
by Mnih et al. to play Atari in 2013 [9]. After witness-
ing such success in games, the interest in deep reinforce-
ment learning (deep RL) expanded to other domains, such
as robotics, autonomous driving, and autonomous navigation.
With the field of autonomous driving increasing in fame with
the latest achievements of companies such as Benz, Tesla,
and Google competing for fully autonomous commercial ve-
hicles, various autonomous driving system applications were
made. With the previous success of reinforcement learning in
handling complex raw input and its ability to learn and im-
prove a policy without a manual design, the application of
deep RL expanded to the autonomous driving domain as well
[2]. The expansion brought new simulation environments and
algorithm libraries helpful to use for researchers. This re-
search also utilizes one such simulation, CARLA, a highly
realistic and customizable simulation useful for autonomous
driving research [4].

The expansion and new research of deep RL in autonomous
driving also brought forth various drawbacks, namely the re-
ality gap between the simulation and the real-world environ-
ment, and the lack of robustness of autonomous driving. The
reality gap refers to the collection of differences between the
simulation environment and the real world, as generally, sim-
ulations are not as complex or random as real-world envi-
ronments can get. Some differences in CARLA simulation
and real-world traffic environments may include various traf-
fic signs, differences in the behavior of other drivers, and sud-
den traffic accidents or congestion. The robustness of an al-

gorithm, on the other hand, refers to the stability of the per-
formance under different environments, meaning whether the
algorithm provides consistent results in various environments
or performs better in some environments and worse in others.
Since autonomous driving cars are likely to involve people,
this gives rise to a critical issue where any mistake can be
lethal, thus it is desired that the algorithm performs consis-
tently in every environment than the latter.

This is why it is necessary to investigate the approaches to
bridge the existing gap to create an algorithm stable enough
for real-world use. The approach we focus on is domain ran-
domization, one that introduces variability to simulations by
randomizing the parameters of the environment during train-
ing in hopes that the real-world environment will be perceived
as just another randomization for the algorithm [15]. By eval-
uating the training data of a model trained with domain ran-
domization, we can check the training performance and effi-
ciency of domain randomization compared to a model trained
with just one set of parameters. Training performance in this
context includes the comparison between the episodic returns
of the agent and estimated rewards, and the efficiency is mea-
sured by how fast the agent starts learning and how fast the
agent’s episodic returns start converging. Subsequently, by
testing the performance of the trained model on various en-
vironments, we can gain insight into domain randomization’s
influence on robustness compared to a base model.

In essence, the research question derived is ”How do do-
main randomizations influence training and the robustness
of final policies under various testing conditions?”. Sec-
tion 2 details the necessary background information about
the Markov decision process, deep RL model, domain ran-
domization, and related work. We then identify a research
methodology, detailed in Section 3, to answer our question.
Section 4 introduces the experimental results and provides an
evaluation of the findings. The next section, section 5, dis-
cusses the possible ethical implications of the experiment and
its findings, as well as the reproducibility of the research by
others. Section 6 discusses the limitations encountered dur-
ing the study. The paper ends with section 7, which contains
conclusions and possible future work for improvement.

2 Background
This section introduces the necessary background informa-
tion to understand the components of this work. We first
introduce the Markov decision process, a decision-making
model widely used in reinforcement learning, in subsection
2.1. Afterward, we delve into the deep Q-network (DQN)
model used in the experiments in subsection 2.2. Then we
discuss domain randomization in section 2.2, followed up by
previous work in the literature related to our research in sub-
section 2.3.

2.1 Markov Decision Process (MDP)
Markov decision process is a framework introduced by
Ronald Howard for optimal decision-making. It is denoted
as a 4-tuple (S,A, P,R) where S is the state space, a collec-
tion of all possible configurations in the environment. A is
the action space, also denoted as A(s) to show all the actions



Q(s, a)← Q(s, a)+α× [R+ γ×maxQ(s
′
, a

′
)−Q(s, a)]

Figure 1: Equation for updating Q-values according to Bellman op-
timality equation

that can be taken within a state. P is the probability distribu-
tion, or transition function, also shown as P (s, a, s′) for the
probability of ending up in a new state s′ if one takes an ac-
tion a in state s. Lastly, R is the reward notation, also known
as the reward function R(a, s) to denote the expected reward
if action a is taken in state s. MDP also introduces a policy
function π, inputs a state s and outputs which action a should
be taken for maximum reward. Maximizing the policy func-
tion for all states in the state space leads to optimal policy π∗,
revealing the optimization objective of MDPs. The probabil-
ity distribution P and rewards R are unknown for MDPs in
reinforcement learning and the agents try to maximize a cu-
mulative reward starting from an initial state s0, thus aiming
to learn an optimal policy from s0, π∗(s0).

A partially observable MDP (POMDP) occurs when the
current state s is unknown, and the model is unable to calcu-
late π(s), which is the case in our environments’ outputs of
single frames because the agent cannot gauge its direction of
movement or current velocity. This can be mitigated by uti-
lizing the last few frames, also known as frame stacking, to
understand the current state of the agent. By utilizing frame
stacking, the problem turns into an MDP again.

2.2 Deep Q-Networks (DQN)
Introduced by Mnih et al. in 2013, the deep Q-network al-
gorithm utilizes a neural network trained with a variation of
the Q-learning reinforcement learning algorithm to estimate
the optimal action to take in a given state, also known as
the action-state function or the Q-function [9]. The term Q-
network comes from the neural network approximator used
in the algorithm to estimate the action-state function. The
following subsections will explore the key components of the
DQN algorithm.

Q-Learning and Q-Network
Q-Learning is an off-policy temporal-difference learning al-
gorithm to find an optimal target policy [6]. The algorithm
inputs the state and action spaces in the environment and gen-
erates a Q-table, also known as a Q-matrix, that maps each
state-action pair (s, a) to a Q-value. The algorithm then up-
dates these Q-values iteratively following the Bellman opti-
mality equation, a variation for updating Q-values is shown
in Figure 1 [6]. This equation describes the Q-value for a
state-action pair during time t Q(st, at) can be defined by a
weighted sum of the current Q-value and the future value,
where α is the learning rate, rt is the reward received from
taking action a in state s during time t, and γ is the discount
factor for future rewards. Over time, these values can con-
verge to the optimal value Q∗ [12].

The main difference between Q-Learning described above
and the Q-Network Mnih et al. introduces within DQN is
the difference within the Q-function. While Q-Learning takes

Li(θi) = Es,a∼p(.)[(yi −Q(s, a; θi))
2]

Figure 2: Loss function for DQN introduced by [9]

the state and action spaces in the environment and maps a Q-
value to all possible pairs, Q-Network takes the current state
and returns a Q-value for all actions using the neural network.
The Q-Network itself is trained by minimizing the loss func-
tion, shown in Figure 2, updated at each iteration i.

Epsilon-Greedy Policy
DQN utilizes an ϵ-greedy policy, meaning that at each time
t, the agent selects one of two possible actions: exploration,
where the agent takes a random action, possibly with an un-
known outcome to gain information; or it can use its pre-
viously gathered knowledge and act to gain rewards, also
known as exploitation [7]. This concept is also known as
the exploitation-exploration trade-off since if the agent keeps
choosing exploitation it is likely to only reach a local max-
imum for its rewards, but if it continuously chooses explo-
ration the agent will only choose random actions and will
likely not reach an optimal reward [12]. Thus, the balance is
important for the agent to both explore and utilize its knowl-
edge. The agent determines which action to take based on its
ϵ value, the probability of choosing exploration is ϵ whereas
the probability of choosing exploitation is 1− ϵ. Initially, the
agent prioritizes exploration as its knowledge is limited, and
this gradually shifts towards prioritizing exploitation.

Experience Replay
The trial-and-error approach may be inefficient, as the net-
work can forget its knowledge over time with each adjustment
within the network until it goes through that transition pattern
again, also known as the re-learning problem. To overcome
this, an experience replay mechanism can be utilized, where
the experiences, a tuple (s, a, s

′
, r) denoting an action a taken

in state s causing the agent to reach a new state s
′

and rein-
forcement r, are stored in memory during training. These
experiences are then randomly sampled to re-experience to
improve the training distribution and mitigate the re-learning
problem [7], [9].

2.3 Domain Randomization (DR)
When the domain the agent is trained on, also known as the
source domain, and the domain the agent is tested on, also
known as the target domain, differ from each other, there ex-
ists a gap between these two domains that may lead to the
agent underperforming in the target domain. Domain ran-
domization is an approach used to close the gap between these
domains by generalizing a model trained in a source domain
such that it also performs at a desired level in the target do-
main. By controlling a set of parameters in the source domain
and generating other domains by randomizing these parame-
ters with a specified configuration, we train the policy pa-
rameter to generalize across various configurations [15]. A
conceptual illustration for this can be seen in Figure 3, where
the calibrated sim is the source domain and reality is the target
domain. This figure depicts what is known as the Sim-to-Real



gap, which is the gap between the domains when the source
is a simulation environment and the target is the real world.

Figure 3: Conceptual illustration for domain randomization [15]

The set of controlled parameters can range from visual pa-
rameters, such as the work by Tobin et al., where they ran-
domized the textures of objects, the location of the camera, or
random observation noise added to images [14], to more dy-
namic parameters that will affect the agent’s policies to some
extent, for instance, Peng et al.’s experiment where they ran-
domized the mass, friction, and damping values [10].

2.4 Related Work
Previous work done by Peng et al., Sadeghi and Levine, and
Tobin et al. all showcase a successful generalization by do-
main randomization and increased robustness of the model,
[10], [11], [14]. These papers indicate that both visual and
dynamic randomization can increase the robustness of the
model. However, Mehta et al. have also shown that domain
randomization may also lead to worse performance than the
baseline algorithm [8]. We will investigate the effects of do-
main randomization with both visual and dynamic parameters
on training efficiency and robustness for autonomous driving
since the previously mentioned papers employ these meth-
ods for different tasks. If successful, our paper could lead to
future research in Sim-to-Real transfer for autonomous driv-
ing.

3 Methodology
It is necessary to come up with a systematic methodology to
answer the research question “How do domain randomiza-
tions influence training and the robustness of final policies
under various testing conditions?”. This section will first dis-
cuss the environments and the setup, and then explain the con-
crete methodology in stages according to their main focus.

As we are investigating the visual and dynamic parame-
ters separately, the research is also separated into two differ-
ent stages. The first stage, consisting of visual parameters
will be trained and tested in the CarRacing-v21 environment
in OpenAI’s Gym framework, and the dynamic parameters

1https://www.gymlibrary.dev/environments/box2d/car racing

will be trained and tested using the CARLA simulator [4].
The CarRacing-v2 environment is a top-down racing envi-
ronment with a single car and a Formula 1 race track gener-
ated randomly at each episode. As this environment is sim-
pler than CARLA in terms of computation and variables, the
data generated from this part will also be utilized as an early
insight into the computationally expensive CARLA environ-
ment, which is more complex and similar to real-world traf-
fic. Through CleanRL [5], a DQN implementation that was
easy to use and alter with research-friendly features was avail-
able from the start. Some alterations were made to the algo-
rithm to adapt it to the CARLA environment. We also utilized
the gym-carla wrapper [1], a wrapper that adapts the CARLA
environment to that of an OpenAI Gym third-party environ-
ment, to be able to apply the DQN implementation inside the
CARLA simulator. The wrapper also introduces a parameter
list for the environment, which makes parameter randomiza-
tion easier. A full list of customizable parameters is provided
in Appendix A.1.

Stage One: Visual domain randomization in
CarRacing-v2

Figure 4: Observation view of CarRacing-v2 environment

Figure 5: CarRacing-v2 environment with domain randomization
examples

This stage makes up the first part of this study - investi-
gating domain randomization with visual parameters and its
effects on the training and robustness of the model using Ope-
nAI’s CarRacing-v2 environment. The steps involved in this
stage are as follows:

• Get a working DQN algorithm for the CarRacing-v2 en-
vironment with the help of CleanRL.

• Train the algorithm for one million steps, once with the
domain randomize parameter set to True while making
the environment, and once with False, which is the de-
fault value.

• Compare the training data in terms of overall episodic
returns, how fast the variations start to learn, and how



fast they start to converge, as well as the variations’ es-
timated Q-values.

• Run 10 evaluation episodes with the trained model for
both variations and compare the results for robustness
testing.

Stage Two: Dynamic domain randomization in CARLA

Figure 6: Birdeye view of CARLA simulator [1]

This stage makes up the second part of this study - inves-
tigating domain randomization with dynamic parameters and
its effects on the training and robustness of the model using
the CARLA simulator and the gym-carla wrapper. Since the
gym-carla wrapper does not provide a randomize option by
itself, we utilize the domain-randomizer 2 library provided
by Mehta and Raparthy. Following the tutorial on the GitHub
page allows one to configure their desired training randomiza-
tions to the extent of identifying a default value, a minimum
multiplier, and a maximum multiplier where at each episode
a random number between the two multiplier values changes
the value of the parameter. The steps involved in this stage
are as follows:

• Adapt the DQN algorithm into CARLA’s environment.

• Identify training randomization parameters that will be
different than the evaluation randomization. The train-
ing randomization parameters identified in this research
are:

– Steering angle, the value to control the angle of
steering for when the agent decides to turn to a di-
rection within a step

– Acceleration value, the value to control the accel-
eration and deceleration of the vehicle within a step

– Out-of-lane threshold, the threshold to detect
whether the car is out of the lane to terminate the
current episode, leading to possible subpar rewards

• Train the algorithm twice for five hundred thousand
steps on CARLA. Once with domain randomization and
once without.

• Compare the training data in terms of overall episodic
returns, how fast the variations start to learn, and how
fast they start to converge, as well as the variations’ es-
timated Q-values.

2https://github.com/montrealrobotics/domain-randomizer

• Conduct a robustness test by running 10 evaluation
episodes with differing evaluation randomization. The
randomization for robustness testing defined in this re-
search was to change the map. We used three maps pro-
vided by CARLA: Town03, Town04, and Town05.

4 Experiments
The experiments were designed and conducted with the
methodology described in section 3. The experimental setup
included using the DQN algorithm provided by CleanRL
on two different environments with different complexities
to train two different types of randomization parameters.
The environments used were OpenAI’s CarRacing-v2 and
CARLA simulator version 0.9.13. The motivation behind us-
ing visual domain randomization (visual DR) in CarRacing-
v2 and dynamic domain randomization (dynamic DR) in
CARLA is the difference in complexity between the environ-
ments besides the limitation that their available parameters
offered. As CarRacing-v2 is a simpler environment only con-
sisting of a background, a race track, and a vehicle, visual
randomization parameters could influence the agent more.

The following subsections provide results for visual do-
main randomization in CarRacing-v2 and dynamic domain
randomization in CARLA.

4.1 Visual domain randomization in CarRacing-v2
The CarRacing-v2 environment already provides an argu-
ment to enable the domain randomization variant. By en-
abling this variation, the background and track color of the
environment changes at each reset individually, meaning
there are also cases where the colors are the same as can
be seen in Figure 5. There is also the randomization fac-
tor where the generated race track is also random at every
episode, which is enabled for both variations of the environ-
ment.

To compare the training efficiency of these models, we
logged the shift in episodic lengths, episodic returns, and Q-
values of the training data and plotted these for each timestep,
visualized by Figures 7, 8, and 9. Firstly, the trends of Q-
values and episodic returns show signs of converging, so it
can be assumed that both models were able to train to some
extent, although the oscillation for DR on episodic returns
may indicate the agent could learn further if it had more time.
The slight delay in Figure 8 for DR indicates that the model
with domain randomization started learning later, which is
expected since the agent is faced with multiple variations and
has to train itself to adapt to these different circumstances. It
is also observed that the smoothed episodic returns for DR are
always lower than the base variation. This difference cannot
be attributed to the episodic length, since even though each
frame causes a -1 in reward, there is hardly any difference
in episodic length for the algorithms. Therefore, it is safe
to assume that the DR model underperforms compared to its
counterpart in terms of rewards.

The raw data for episodic returns, indicated by the faded
lines in the background, seem to have high variance because it
oscillates throughout the training. Witnessing a similar trend
in Q-values as well, this can be an implication that the agent



Figure 7: Episodic length over total timesteps for CarRacing-v2
models

Figure 8: Episodic return over total timesteps for CarRacing-v2
models

Figure 9: Q-Value over total timesteps for CarRacing-v2 models

has failed to generalize, thus causing oscillations in the data
where it performs randomly based on generated colors. How-
ever, evaluating the data generated from the robustness testing
is healthier to argue about the model’s capabilities of gener-
alizing.

Lastly, there is also a hint of overestimation of the DR
model. When compared to the difference in episodic returns,
we see that the difference in smoothed Q-values in Figure 9
is lower, as well as the DR variation surpassing the baseline
until just before the four hundred thousand mark. Overall,
we can suggest that the DR model underperforms compared
to the model trained without randomization when it comes to
training efficiency.

Episode Base DR
1 849.8461304 911.8059692
2 913.4052734 801.102417
3 862.8520508 815.0369873
4 900.8054199 868.5147705
5 805.5440674 845.0214233
6 896.2034302 465.7452393
7 840.352356 748.2772827
8 896.8123169 866.7800293
9 510.4972534 877.9499512
10 912.0064087 662.7657471
MEAN 838.8324707 786.2999817
STDEV 120.6565133 133.8916188

Table 1: Evaluation data for CarRacing-v2 models

For robustness testing, we individually ran both models
for ten episodes after training. Domain randomization was
disabled for the DR variation, and since the track maps are
generated randomly at each episode, the agents were most
likely evaluated on tracks they had no prior knowledge of.
The collected data for both models can be observed in Fig-
ure 10 and Table 1. Overall, it can be argued that the gener-
ated episodic returns are similar, the only notable differences
are in episodes 6 and 9, and a slightly smaller difference in
episode 10. Table 1 indicates that the mean episodic return
for DR is lower than the baseline while the standard devia-
tion is higher. Judging by these ten episodes alone, it can be
argued that due to the higher standard deviation, the model
also underperforms in terms of stability and generalization
when compared to the baseline algorithm, which aligns with
the findings of Mehta et al. [8]. However, we can still reason
that domain randomization increases stability and provides
generalization to some extent when considering the standard
deviation from the training data is heavily reduced, and the
difference in episodic return with the baseline algorithm is
also narrower which supports Tobin et al.’s findings [14].

4.2 Dynamic domain randomization in CARLA
CARLA simulator provides a variety of parameters for the
domain to customize. In this experiment, we chose to ran-
domize three variables: the acceleration value, the steering
angle, and the out-of-lane threshold. These values are chosen
to influence the agent’s policies more directly during training.
While the acceleration value and the steering angle directly



Figure 10: Evaluation scores over ten episodes for CarRacing-v2
models

influence the action the agent takes, the out-of-lane threshold
can force the episode to terminate prematurely, resulting in
subpar rewards, and influence the vehicle to keep away from
the edges of the lane. The full list of CARLA parameters and
the values we used for randomization are given in Appendix
A.

Similar to subsection 4.1, we logged and plotted the change
in episodic lengths, episodic returns, and Q-values of the
training data over timesteps, visualized by Figures 11, 12,
and 13. Judging by the episodic length and episodic return
graphs, we can argue that the DR algorithm is still in the pro-
cess of learning as the episodic returns do not show a sign of
converging and the episodic length seems to be in an upward
trend towards the end. Compared to DN, the baseline algo-
rithm seems to be converging around the two hundred return
value as the episodic length has converged and the episodic
return seems to be starting to converge after it stopped its rise.

Another notable observation of the DR model is that the
episodic return trends downwards twice. This could be due to
randomization influencing the agent’s policy. However, the
Q-value of the algorithm is on the rise throughout training,
thus it is hard to say that this caused the agent to change its
policies drastically. Additionally, contrary to the comparison
of episodic returns, DR outperforms the baseline algorithm
when it comes to Q-values. Although it is trending downward
at the end, the Q-value for DR is higher than the base model
for almost three hundred thousand timesteps. This is an in-
dication of the overestimation of the DR model, as the agent
is estimating higher reward compared to the base model, but
underperforming in terms of episodic returns for almost the
whole duration of three hundred thousand timesteps. Overall,
we can argue that similar to the CarRacing-v2 environment,
the DR model underperforms compared to the base algorithm,
except for a higher possible overestimation and a large oscil-
lation in episodic return.

To test both models’ robustness, we utilized three differ-
ent maps provided by CARLA. Although the first of these
maps, Town 03, is used for training, the agents do not pos-
sess any knowledge about the other two maps. We ran each
model for ten episodes on each map and plotted the mean
and standard deviation graphs visualized in Figures 14 and
15. We can observe that in general, the DR model performed
worse than the baseline in terms of mean evaluation score.

Figure 11: Episodic length over total timesteps for CARLA models

Figure 12: Episodic return over total timesteps for CARLA models

Figure 13: Q-Value over total timesteps for CARLA models



The performance in Town04 is especially low, with the base
algorithm peaking and the DR model plunging. The differ-
ence between Town04 and the other towns is that it involves
outskirt roads with junctions and curves. It might be possible
that the curvy ring road within the environment resulted in
a decrease in performance due to the change in acceleration
values and steering angles. Even after considering the neg-
ative bias from the training as the DR agent was not able to
converge and did not find the opportunity to optimize its Q-
Network, we can argue the agent was not able to generalize
for curvy roads and narrow junctions. Figure 15, on the other
hand, shows that the DR algorithm had a notably less stan-
dard deviation of evaluation scores. This can indicate that
the DR model is more consistent and stable in different en-
vironments, thus domain randomization positively influenced
robustness. Overall, we can assume domain randomization
positively influences the stability and consistency of the algo-
rithm at the cost of performance; however, there also exists
some generalization problems that may be due to the lack of
policy training for the model. These findings align with Peng
et al.’s in the sense that we see similar performance and in-
creased robustness [10].

Figure 14: Mean evaluation scores for CARLA models in different
towns

Figure 15: Standard deviation of the evaluation scores for CARLA
models in different towns

5 Responsible Research
Although it is discussed that domain randomization is an ap-
proach used to bridge the gap between simulation and the real
world, the purpose of this research was to investigate their ef-
fect on training efficiency and robustness in a simulation en-
vironment. The purpose of the experiment is by no means

creating an autonomous driving vehicle suitable for use in the
real world.

The setup and adaptation of the DQN algorithm were done
in collaboration with other researchers in the same research
group. We utilized a seed to be able to reproduce the ran-
domness involved in the algorithm, such as the ϵ-greedy pol-
icy, or the randomized starting conditions. We ran the base
algorithm several times and picked one of the seeds that per-
formed on average to mitigate any possible positive or nega-
tive influence the seed can provide on the results. The seed
we chose as the representative is ”0”, and future research can
also utilize this seed to reproduce the randomness in the ex-
periment to an extent. In addition, the training data for the
baseline DQN model in the CarRacing-v2 environment was
shared with one other researcher.

There is also the question of whether the experiment results
are significant or not. Due to the time constraints of the re-
search and the hardware constraints of the CARLA simulator,
the training results for the experiment come from a single run
instead of a combination of multiple runs. In that sense, we
can argue that the training results are not significant enough,
and it is advised for future research to take this into consid-
eration. Instead, we could run the evaluation tests multiple
times to get a better average result. The randomly generated
track on CarRacing-v2 and the random starting conditions in
CARLA provided enough randomness for the models to gen-
erate results not biased by chance. As the code consists of an
algorithm from CleanRL [5], the gym-carla wrapper [1], and
the domain-randomizer3, it is easily reproducible.

6 Limitations
We faced several limitations during the experiment. One of
the main limitations we encountered was the hardware con-
straints of the CARLA simulator. To mitigate the hardware
constraints, we were allowed to use DelftBlue [3], the TU
Delft supercomputer, for experiments involving the CARLA
environment. This brought forth the second limitation, the
time constraint. Due to congestion on DelftBlue at the start
of May, it was not possible to test different parameters and
their possible level of influence over the model. There was
also a smaller congestion at the start of June, due to this the
scheduled experiments were delayed for multiple days before
starting. Combined with the fact that we were only allowed a
24-hour reservation for one experiment at a time and had to
schedule it afterward to continue the experiment on the same
model, the models were not trained until clear sign of conver-
gence. It is possible that this led to a bias in CARLA models,
especially for the model trained with domain randomization,
and possibly affected the evaluation results.

7 Conclusions and Future Work
To summarize, the research desired to investigate the influ-
ence of domain randomizations on training and the robust-
ness of final policies under various testing conditions. We
approached this question in two stages by investigating vi-
sual domain randomizations in OpenAI’s CarRacing-v2 envi-
ronment and dynamic domain randomizations in the CARLA

3https://github.com/montrealrobotics/domain-randomizer



simulator. For visual domain randomization, the experiments
indicate a decrease in training efficiency and a general un-
derperformance when compared to the model trained without
domain randomization. The evaluation tests performed on
the trained models show no noticeable difference differences
between each other, thus demonstrating that domain random-
ization does not contain heavy influence on the robustness,
stability, and consistency of the model. On the other hand, we
also witness an increase in stability when comparing the eval-
uation and training data of the DR model, as the standard de-
viation and the episodic return difference with the base model
decrease significantly during evaluation.

For the dynamic domain randomization in CARLA, we see
that there is a bigger difference in training efficiency between
the models. While the DR model was able to converge in
the CarRacing-v2 environment, the model could not converge
during training in CARLA thus extending the necessary train-
ing time when compared to the baseline model, and we see
a generally larger variance in the training data. We also ob-
served some overestimation of the DR agent when comparing
its Q-values and episodic returns. As for the robustness test-
ing, we observe a lower standard deviation at the expense of a
lower mean, indicating that domain randomization is able to
provide more stability and consistency to the model by sac-
rificing some performance. There is also the influence of the
negative bias from the model not being able to converge dur-
ing training, thus it can be argued that there is a notable im-
provement by domain randomization on stability.

A possible improvement to this research could be extend-
ing the training time for the models so that their training con-
verges and stops trending upward or downward for more op-
timal training. Other possible studies include changing the
evaluation parameters for the robustness testing, as CARLA
provides other parameters such as the number of vehicles and
pedestrians on the map. It could also be interesting to change
the training parameters for domain randomization and test the
models with different parameters or ranges to see which pa-
rameters influence the model more. One final idea for future
research is to investigate other approaches like auxiliary tasks
or adversarial training and compare their influence on training
and robustness with domain randomization.

References
[1] Jianyu Chen. gym-carla. https://github.com/cjy1992/

gym-carla, 2020.
[2] Jianyu Chen, Bodi Yuan, and Masayoshi Tomizuka.

Model-free deep reinforcement learning for urban au-
tonomous driving, 2019.

[3] Delft High Performance Computing Centre (DHPC).
DelftBlue Supercomputer (Phase 1). https://www.
tudelft.nl/dhpc/ark:/44463/DelftBluePhase1, 2022.

[4] Alexey Dosovitskiy, German Ros, Felipe Codevilla, An-
tonio M. Lopez, and Vladlen Koltun. CARLA: an open
urban driving simulator.

[5] Shengyi Huang, Rousslan Fernand Julien Dossa, Chang
Ye, Jeff Braga, Dipam Chakraborty, Kinal Mehta, and
João G.M. Araújo. Cleanrl: High-quality single-file

implementations of deep reinforcement learning al-
gorithms. Journal of Machine Learning Research,
23(274):1–18, 2022.

[6] Beakcheol Jang, Myeonghwi Kim, Gaspard Hareri-
mana, and Jong Wook Kim. Q-learning algorithms:
A comprehensive classification and applications. IEEE
Access, 7:133653–133667, 2019.

[7] Long-Ji Lin. Reinforcement Learning for Robots Using
Neural Networks. PhD thesis, USA, 1992. UMI Order
No. GAX93-22750.

[8] Bhairav Mehta, Manfred Diaz, Florian Golemo,
Christopher J. Pal, and Liam Paull. Active domain ran-
domization, 2019.

[9] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin Riedmiller. Playing atari with deep reinforce-
ment learning, 2013.

[10] Xue Bin Peng, Marcin Andrychowicz, Wojciech
Zaremba, and Pieter Abbeel. Sim-to-real transfer of
robotic control with dynamics randomization. In 2018
IEEE International Conference on Robotics and Au-
tomation (ICRA). IEEE, may 2018.

[11] Fereshteh Sadeghi and Sergey Levine. Cad2rl: Real
single-image flight without a single real image, 2017.

[12] Richard S. Sutton and Andrew G. Barto. Reinforcement
Learning: An Introduction. The MIT Press, second edi-
tion, 2018.

[13] Gerald Tesauro. Temporal difference learning and td-
gammon. Commun. ACM, 38(3):58–68, mar 1995.

[14] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider,
Wojciech Zaremba, and Pieter Abbeel. Domain ran-
domization for transferring deep neural networks from
simulation to the real world, 2017.

[15] Lilian Weng. Domain randomization for sim2real trans-
fer. lilianweng.github.io, 2019.

https://github.com/cjy1992/gym-carla
https://github.com/cjy1992/gym-carla
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1


A CARLA Parameters and Randomization
Values

A.1 CARLA Parameters
’number of vehicles’: 100,
’number of walkers’: 0,
’display size’: 256, # screen size of bird-eye render
’max past step’: 1, # the number of past steps to draw
’dt’: 0.1, # time interval between two frames
’discrete’: False # whether to use discrete control space
’discrete acc’: [-3.0, 0.0, 3.0], # discrete value of accel-
erations
’discrete steer’: [-0.2, 0.0, 0.2], # discrete value of steer-
ing angles
’continuous accel range’: [-3.0, 3.0], # continuous ac-
celeration range
’continuous steer range’: [-0.3, 0.3], # continuous steer-
ing angle range
’ego vehicle filter’: ’vehicle.lincoln*’, # filter for defin-
ing ego vehicle
’port’: 2000, # connection port
’town’: ’Town03’, # which town to simulate
’task mode’: ’random’, # mode of the task, [random,
roundabout (only for Town03)]
’max time episode’: 1000, # maximum timesteps per
episode
’max waypt’: 12, # maximum number of waypoints
’obs range’: 32, # observation range (meter)
’lidar bin’: 0.125, # bin size of lidar sensor (meter)
’d behind’: 12, # distance behind the ego vehicle (meter)
’out lane thres’: 2.0, # threshold for out of lane
’desired speed’: 8, # desired speed (m/s)
’max ego spawn times’: 200, # maximum times to
spawn ego vehicle
’display route’: True, # whether to render the desired
route
’pixor size’: 64, # size of the pixor labels
’pixor’: False, # whether to output PIXOR observation

A.2 Randomization Values
The values for discrete acc and discrete steer are given as
floats and multiplied once because the lists for these parame-
ters are symmetrical.

• ’out lane thres’:
– ’default’: 2.0,
– ’multiplier min’: 0.5,
– ’multiplier max’: 2.0

• ’discrete acc’:
– ’default’: 3.0,

– ’multiplier min’: 0.5,
– ’multiplier max’: 2.0

• ’discrete steer’:
– ’default’: 0.2,
– ’multiplier min’: 0.5,
– ’multiplier max’: 2.0


	Introduction
	Background
	Markov Decision Process (MDP)
	Deep Q-Networks (DQN)
	Domain Randomization (DR)
	Related Work

	Methodology
	Experiments
	Visual domain randomization in CarRacing-v2
	Dynamic domain randomization in CARLA

	Responsible Research
	Limitations
	Conclusions and Future Work
	CARLA Parameters and Randomization Values
	CARLA Parameters
	Randomization Values


