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Abstract—Novel robot technologies are becoming available to
automate more complex tasks, more flexibly, and collaborating
with humans. Methods and tools are needed in the automation
and robotics industry to develop and integrate this new breed of
robotic systems. In this paper, the ISE&PPOOA methodology for
Model-Based Systems Engineering is applied for the development
of robotic systems. The methodology is described through its
application to reengineer a state-of-the-art collaborative robot
application. The challenges that robotic systems present to
model-based systems engineering are discussed, together with
the benefits of MBSE methodologies.

I. INTRODUCTION

Robotic solutions in traditional automation allow to auto-
mate simple, repetitive tasks over large volumes of products,
with little variations, in completely controlled environments.
Typical applications include welding, painting, or handling
the same parts presented in fixed positions. Traditional en-
gineering methods were sufficient to integrate these systems,
which mainly consist of robot manipulators that execute fixed
motions, with very little flexibility. However, currently there
is a need to automate high-mix and low volume productions.
New robotic systems with perception capabilities to adapt their
behaviour at runtime, and easily reconfigurable for different
tasks are demanded by industry [1]. To meet these needs, novel
robot technologies are becoming available to automate more
complex tasks, more flexibly, and collaborating with humans
[2].

Developing these new robotic applications requires the
integration of diverse components to implement advanced
robot capabilities. An example is the winning entry in the
international Amazon Robotics Challenge 2016 [3], led by
one of the authors. The system integrated 3D cameras, a
industrial manipulator and a custom gripper, to be able to
detect and handle a large variety of products in a semi-
structured warehouse environment.

These new robotic components include novel technologies
in mechanical engineering, electronics, control, and embedded
software. Traditional, document-centric engineering method-
ologies can no longer cope with the complexity and the
engineering demands in these new robotic systems.

Methods and tools are needed in the automation and
robotics industry to develop and integrate this new breed of
robotic systems. Model-based systems engineering (MBSE)

uses models to consistently integrate the diverse information
and engineering decisions through the life-cycle, including
requirements, functional and physical architectures, detailed
design, implementation, and validation.

This paper presents the early results of applying the In-
tegrated Systems Engineering and Pipelines of Processes in
Object-Oriented Architectures (ISE&PPOOA) [4] to the re-
engineering of a collaborative robotic system for a product
handling application. The motivation is to obtain a functional
architecture of the system, independent of concrete technical
solutions. Analysing the robot’s behaviour at this abstract
level allows to detect issues and identify solutions in the
design that can be reused across different implementations, for
example in relation to safety, and modularity in the robot’s
physical architecture. The application of the methodology
also allows to identify the design heuristics and patterns
realised in the robot behaviour to address functional and non-
functional requirements, such as safety, and their interfaces.
This allows to decouple the design solutions for the different
robot capabilities from their specific physical implementation,
promoting their reuse.

The remaining of the paper is organized as follows: Section
2 presents the ISE&PPOOA MBSE process. Section 3 presents
the early modelling results of its application to a collaborative
robot. Section 4 discusses the main benefits of the approach
and the contributions of this work. Finally, Section 5 provides
some concluding remarks.

II. THE ISE&PPOOA MBSE PROCESS

The ISE&PPOOA method can be used as a re-engineering
process for software intensive autonomous systems [5]. Tradi-
tional functional based systems engineering is combined with
MBSE using the functional paradigm to represent the system
behavior. The systems engineering part of the ISE&PPOOA
process, shown in Figure 1 as an activity diagram, is described
below with more detail.

The main goal of using systems engineering process in
this work is the creation of the functional and physical
architectures of the robotic system, identifying the subsystems
and their interfaces. The robotic system may have subsystems
that are software intensive and/or non software intensive where
physics conservation laws of mass, energy and momentum are
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Fig. 1. ISE&PPOOA Systems Engineering Process.

an important issue that should be considered when represent-
ing the system views.

The process presented in Figure 1 has five main steps that
are performed sequentially for steps 1, 2 and iteratively for
steps 3 and 4. The Step 2 is split into two parallel or concurrent
steps labeled 2a and 2b. For the sake of simplicity, we only
represent the process steps avoiding the representation of the
deliverables that are inputs and outputs of the different steps.

The goal of each step and the deliverables produced are
described below.

A. Step 1. Identify the system operational scenarios

Goal: Identify the operational context of the system and
describe its operational scenarios for different modes of oper-
ation.
Deliverable: The collaborative robotic system intended be-
haviors are described by the operational scenarios, where
additionally to the preconditions, post conditions and steps
of each scenario, the operational needs are identified. These
operational needs are the inputs for the later identification of
some system capabilities and quality attributes in the following
steps of the subprocess.

B. Step 2a. Specify system capabilities and high level func-
tional requirements

Goal: Transform the operational needs into a set of system
capabilities and high level system requirements.
Deliverable: The deliverable is the representation of the
robotic system capabilities with a hierarchical decomposition
using the block definition diagram of SysML. System func-
tional requirements specified in natural language but based on
the hierarchical decomposition are obtained.

C. Step 2b. Specify quality attributes and system NFRs
Goal: Transform operational needs into a set of quality at-
tributes for example efficiency, availability, safety and others
including the associated non-functional requirements.
Deliverable: In decomposing a non-functional requirement,
the systems engineer can chose to decompose its type (safety,
reliability, other) based on a selected quality framework, or
its topic considering if they apply to the whole system or one
of its parts. It is possible and should be taken into account,
that some non-functional requirement may be affected either
positively or negatively at the same time. These interactions
are very important because they have an impact on the
following architecting steps of the SE process.

D. Step 3. Create system functional architecture
Goal: Transform functional requirements into a functional
architecture identifying the functional hierarchy, functional
behavior and functional interfaces.
Deliverable: The deliverable is the functional architecture
representing the functional hierarchy using a SysML block
definition diagram. This diagram is complemented with activ-
ity diagrams for the main system functional behavior flows.
The N2 diagram is used as an interface diagram where the
main functional interfaces are identified. A textual description
of the system functions is provided as well.

E. Step 4. Create system physical architecture
Goal: Transform the functional architecture into the ar-
chitecture of the solution or physical architecture. In the
ISE&PPOOA process, the selection of the solution is based on
functions clustering and design heuristics. An heuristic here is
a means of satisfying a quality attribute response measure by
manipulating some aspect of a quality attribute model through
design decisions.
Deliverable: The deliverable is the physical architecture rep-
resenting the system decomposition into subsystems and parts
using a SysML block definition diagram. This diagram is
complemented with SysML internal block diagrams for each
subsystem and activity and state diagrams as needed. A textual
description of the system blocks is also provided as well.
The heuristics used for the particular architecture solution are
identified and documented. Optionally and if it is needed,
SysML parametric diagrams are used to describe constraints
in system properties to support engineering analysis.

III. EXEMPLARY CASE: COLLABORATIVE ROBOT
APPLICATION

The ISE&PPOOA methodology has been applied to re-
engineer a collaborative product handling robot application.
The robot picks products from a packaged stack, and delivers
them to a human operator by dropping them at a specified
location (see Fig. 2). The robot prototype has been developed
as part of the Factory-in-a-day European project [2], and has
been demonstrated already in industrial and research events1)

1The robot was showcased during RoboBusiness Europe 2017 delivering
Lego sets to visitors (see http://www.factory-in-a-day.eu/successfull-trade-fair-
for-factory-in-a-day



Fig. 2. Collaborative product handling robot application developed in Factory-
in-a-day.

The following operation scenarios have been identified in step
1 of ISE&PPOOA methodology:
S0. System Configuration and Calibration: the robot is de-
ployed in its operation environment, calibrate the reference
locations to pick and deliver the products, and configure the
stacking pattern in the product feeding container.
S1. System Start: all components in the system are booted up
making them ready for standard operation.
S2. Pick product: the robot manipulator grasps and retrieves a
product from the container, holding it.
S3. Deliver product: the robot moves to the deliver location
and drops the item if the bag held by the operator is detected.
S4. Shutdown: all system activity is stopped and its compo-
nents powered off.

As an example, the description of the ’Pick product’
scenario in ISE&PPOOA is presented in Table I.

From the operational scenarios the set of capabilities shown
in Fig. 3 were identified in ISE&PPOOA step 2.a, which
are described in the domain of the system’s mission, totally
independent of the concrete technical solutions implemented.
Including general categories for capabilities helps analyse
new applications without leaving out specific capabilities that
could otherwise be forgotten. This is the case of Quick
deployment times in this case, in relation to increased avail-
ability, a general capability for production systems. It also
allows identifying different concerns in the desired behaviour.
For example, avoiding obstacles is a behaviour intended for
safety (Harmless capability), but it also relates to contingency
management, and important issue for increased availability.

A key safety consideration is that robot and the operator
share part of the workspace: it is a collaborative application.

For this reason, the application design uses a UR5 Univer-
sal Robot collaborative manipulator and a light 3D printed
suction-based gripper without sharp edges. A standard safety
design provided by many collaborative manipulators, such as
the UR5, is to trigger a robot safety stop when a collision
is detected. However, this decreases productivity. Avoiding
collisions is a more desirable. This is the approach taken in the
Factory-in-a-day project, for which different technologies have
been developed to augment collaborative robot manipulators
with dynamic obstacle avoidance [6]. Two of these technolo-
gies have been integrated in the system presented here: a robot
skin and a motion planning framework. The engineering effort
discussed here includes the development of the application
control system that integrates the different elements presented
in Fig. 4 as external entities or actors.

The motion planning framework is a key part of the Robot
Control. It generates collision-free trajectories for the task,
using planning algorithms and a 3D model of the environment.
The proximity-sensing skin provides dynamic obstacle detec-
tion information. A motion planning and execution module
executes the task trajectories. When a trajectory crosses the
shared space in the environment, the module also monitors the
obstacle detection input to pause the execution of the current
trajectory and if an obstacle is detected, to resume the robot
motion once obstacles are cleared (e.g. see how interruptible
regions are used in the application’s activity diagram in Fig.
5).

The innovative proximity-sensing Artificial Robot Skin
(ARS) developed by the Institute of Cognitive Systems Sys-
tems in the Technical University of Munich [7], [8]. This
modular skin consist of identical ’cells’ physically connected
forming skin patches. These patches can be applied to cover
the robots links and joints, while being electronically con-
nected to work as a single, modular robot skin. Each cell in
the skin produces 4 modalities of perception: 3D acceleration,

TABLE I
ISE&PPOOA DESCRIPTION OF THE Pick product SCENARIO.

Pick product

Preconditions System initialized.
Non-empty feeder container.

Triggering event New bag detected at the delivery location.
Description The robot arm performs the actions required topick

a product from the container. The system uses the
skin sensing information to avoid any collisionswhile
moving.

Postconditions Robot gripper is holding a product.
The stack has decreased by one unit.

Operational
needs

ON S2 1 The system shall pick cardboard boxes of
dimensions,263 x 162 x 65 mm and lightweight.
ON S2 2 The system shall pick parts from a
500x330x250 mm,box, stacked in two rows and
standing in vertical orientation.
ON S2 3 The system shall complete the task in less
than 4,secs if there are no potential collisions while
performing.
ON S2 4 The system should shall pick the item
safely,,guaranteeing the safety of the operator sharing
its workspace.



Fig. 3. Capabilities identified for the collaborative robot application using the ISEE&PPOOA method.

force, temperature, and distance. In the current application the
distance readings are used to detect obstacles.

The motion planning and execution module is implemented
using the MoveIt! framework [9]. The complete application
control has been integrated using the Robot Operating System
(ROS) framework [10] and using available open-source ROS
packages, e.g. to interface the different hardware devices. The
application logic is implemented as a state machine to control
the execution of the different robot actions.

Contrary to a new development, reverse engineering of
the robotic system has been applied to obtain the functional
architecture. The initial functional behavior of the robotic
system can be represented by the activity diagram in Fig. 5,
which shows the basic actions in the system. The identification
of the interruptible regions in the different activity flows are
the basis for the safety analysis at the functional level, and it is
additional value of ISE&PPOOA. As shown in Fig. 5, only the
execution of two specific motion segments can be interrupted
by the detection of obstacles. These are the two trajectories
in which the robot moves inside the workspace shared with
the operator. The behaviour triggered by the interruption is a

Fig. 4. Context diagram for the robot control system developed.

discrete sequence of actions. To guarantee the verifiability of
the behaviour, the initial design of the functions to generate
collision-free trajectories, initially based on stochastic online
planners, will be modified to use a database of trajectories
computed and verified offline.

A preliminary functional decomposition of the system has
been obtained by identifying functional interfaces and group-
ing the low level actions in the activity diagram in Fig. 5.
The functional interfaces of the high level functions of the
robot control system are represented with a N2 chart (see
Table II). The upper row represents the inputs from other
subsystems, while the last column represent its outputs. This
tabular representation facilitates the modular design of the
physical architecture by clustering techniques to be applied
at the appropriate level of the functional architecture. For
example, table III represents the functional interfaces of F3
subfunctions.

IV. MAIN CONTRIBUTIONS AND BENEFITS

The main benefits of the ISE&PPOOA methodology applied
to the control of the robotic system are related to the mod-
elling of the robot capabilities and functional interfaces. This
facilitates reuse, maintenance and scalability.

Firstly, the modelling of the functional interfaces allows to
identify the functional dependencies amongst the robot capa-
bilities, modularizing the design solutions and thus promoting
their reuse for other applications, or modifying their imple-
mentation to address new operational needs. For example, if
in a new application the robot has to pick the product from a
human who hands it over,the subfunctions of F3 Move Robot
Safely can be reused in a different design of the pick behaviour,
in which interruptible trajectories and obstacle information
are used to implement the motions for picking the products.
Another example could be a new requirement for the robot to
perform faster. In this case the implementation of the functions
to plan the motions and execute the trajectories could be
modified with faster planning algorithms or better performing
robot control parameters.

Secondly, design heuristics application is one of the main
issues to develop the system’s physical architecture. Heuristics



Fig. 5. Activity diagram of the robot control.

contents'of'the'
container

'-'environment'3D'
model
'-'drop'pose
'-'start'application
'-'skin'distance'signal
'-'current'robot'status

'-'start'application'
event
'-'skin'pressure'signal

'-'positions'of'items'in'
the'container
'-'current'robot'joint'
configuration

bag'sensor'signal

F1#Coordinate#
application

'-'stack'contents'
request
'-'update'stack

'-'request'plan
-'request'motion'
execution

'-'request'plan
'-'request'motion'
execution
'-'gripper'OFF
'-'gripper'ON

container'empty
F2#Manage#stack#of#
products index'of'current'item index'of'current'item

updated'contents'of'
the'container

'-'joint'trajectory'to'
input'pose
'-'robot'at'desired'
location

F3#Move#Robot#Safely
'-'robot'joint'path
'-'stop'robot'&'cancel'
current'joint'path'

'-'start'request
'-'refilled'update

refilled'update F4#Operator#interface

'-'joint'trajectory'to'
input'pose
'-'robot'at'desired'

current'robot'joint'
configuration

F5#Handle#product '-'vacuum'in'the'gripper
'-'robot'joint'path

bag'detected F.6#Detect#bag

N2'Chart'of'the'Collaborative'Robot'Application'Functional'Interfaces'''

TABLE II

from several sources and based on experience have been col- lected by the authors. For the robot application, the heuristics



applied are related to safety, efficiency and general systems
engineering concerns such as functional clustering. Safety
is a main concern in a collaborative robotic system. Safety
concerns are the identification and management of hazards and
hazards are caused by failures. Physical devices can produce
random failures but software does not fail randomly; software
failures are due to design faults. Safety is achieved by avoiding
or protecting against system failures. One heuristic we applied
is the avoidance of non-deterministic behavior. This heuristic
is aimed to enforce a specific sequence of actions, by handling
random events (for example dynamic obstacle detection) and
controlling all access to shared resources. This heuristic is
related to the efficiency concerns as well. This heuristic can
be used when correct sequencing of actions must be ensured,
especially when commission failures are safety concerns. It
can be implemented by either hardware or software. The
robot behavior models and the identification of interruptible
regions in the activity diagrams of the robotic system in Fig.
5 contribute to implement this heuristic.

Finally, consistent modeling of the requirements and robot
system capabilities has allowed to detect elements missing in
the initial design, for example implementation of more auto-
mated and simple routines for calibration and configuration,
system start and shutdown.

V. CONCLUSIONS

This paper presents the application of model-based systems
engineering and architecture centric design for advanced in-
dustrial robot applications. The ISE&PPOOA methodology is
applied to obtain the functional architecture of a collaborative
product handling robot application. The benefits identified
include:

• Modelling the interfaces of the robot functions allows to
modularize the system, reducing the time to implement
changes, for example replacing certain components, to
address new requirements.

• Identification of design heuristics and patterns allows to
capture design solutions for robot capabilities indepen-
dently or their physical implementation, promoting their
reuse.

In addition, challenges for the application of MBSE to robotic
systems have been encountered, such as: modelling robot
behaviours that implement multiple functions, and reuse of
the modelling artifacts. The research presented is work in

!"!environment!3D!model!(URDF)
!"!request!plan
!"!drop!pose
!"!index!of!current!item

!"!current!robot!status
!"!request!motion!execution

!"!start!application
!"!skin!distance!signal

F3.1%Plan%collision.free%trajectory !"!joint!trajectory!to!input!
pose

!"!joint!trajectory!to!input!
pose

!"!current!robot!joint!configuration
F3.2%Execute%and%Monitor%
interruptible%trajectory

!"!robot!joint!path
!"!robot!at!desired!location
!"!stop!robot!&!cancel!current!
joint!path!

!"!obstacle!detected
!"!no!obstacle

F3.3%Sense%obstacle

N2!Chart!of!'F3:!Move!Robot!Arm!Safely'!Functional!Interfaces

TABLE III

progress. Next steps include the integrated modelling of the
physical architecture and the functional architecture in SysML,
the detailed specification and traceability to the application’s
quality attributes and associated performance and other non-
functional requirements, with a special focus on safety.
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