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Abstract: The cooperative control of multiple autonomous surface vehicles (ASVs) is a
critical area of research due to its significant applications in maritime operations, such as
search and rescue and environmental monitoring. However, challenges such as communi-
cation delays and dynamic topologies often hinder stable cooperative control in practical
scenarios. This study addresses these challenges by developing a formation control method
based on consensus theory, focusing on both formation control and time delay. First, a
simplified ASV characteristic model is established, and a basic consensus control algorithm
is designed and analyzed for stability, considering different communication topologies.
Then, to handle delays, the formation control method is extended, and the stability of the
revised algorithm is rigorously proven using the Lyapunov function. Simulation results
demonstrate that the proposed control strategy effectively maintains formations, even in
the presence of communication delays. In the end, comparative simulations are carried
out to demonstrate the effectiveness and robustness of the proposed controller. Simulation
results demonstrate that the proposed control strategy effectively maintains formations,
even in the presence of communication delays, with a convergence time of approximately
100 s and a formation error stabilizing at around 7 m. This research lays a foundation for
more reliable cooperative control systems for ships, with potential applications in a variety
of maritime and autonomous systems.

Keywords: autonomous surface vehicles; cooperative control; communication topologies;
time delay; consensus theory

1. Introduction
The collaboration of vessels in waterway transportation systems offers many benefits.

First, it can enhance the safety of waterway transport through communication between
vessels. Such communication provides additional information, such as data about objects
that sensors cannot detect and the intentions of other vessels. This information helps vessel
operators collaborate and take effective actions [1]. Second, collaboration can improve
transportation efficiency [2]. For example, vessels can coordinate their navigation plans to
avoid congestion at ports and locks [3]. Additionally, by integrating route planning with
infrastructure scheduling, vessels can adjust their speeds to reach their destinations on time,
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optimizing the use of infrastructure resources [4]. Finally, collaboration allows a group of
vessels to perform tasks more effectively, such as search and rescue, ocean sampling, and
hydrographic surveys [5]. Therefore, optimizing waterway transport performance requires
not only the automation of individual vessels but also collaboration between them.

Given the advantages of vessel cooperation, recent years have seen increasing research
on various cooperative methods [6,7]. For cooperative methods, communication is the
premise of formation control. However, communication delays are inevitable in reality.
Delays in communication among formation members may lead to inaccuracies in the status
of the ship and even lead to invalidation of the whole operation. Thus, communication
delays are crucial in ship formation control.

Cooperative control of multiple autonomous surface vehicles has become a crucial area
of research due to its potential to revolutionize various maritime applications, including
search-and-rescue operations, environmental monitoring, and autonomous transporta-
tion [8]. These applications benefit from the cooperative capabilities of multiple ships,
leading to enhanced efficiency, safety, and adaptability in dynamic maritime environments.
However, the practical implementation of cooperative control for ships is often hindered
by challenges such as communication delays, which significantly impact the stability and
performance of cooperative behaviors, especially in real-time operations.

This study addresses the challenges of formation control by proposing a novel strategy
based on consensus theory. The core methodology involves the design and analysis of
a simplified autonomous surface vehicle model, in which a basic consensus algorithm
is employed to ensure the stability of formation control under varying communication
topologies. Building on this approach, this study also accounts for communication delays, a
common issue in practical scenarios, and adapts the formation control method accordingly.
The stability of the revised control algorithm is rigorously validated using Lyapunov’s
stability theory, providing a solid theoretical foundation for its reliability. Our contributions
are as follows:

(1) Development of a consensus-based formation control algorithm capable of handling
various communication topologies, ensuring stability in dynamic environments.

(2) Extension of the control strategy to accommodate communication delays, with rigor-
ous proof of its stability through Lyapunov’s stability theory.

This article is organized as follows. In Section 1, the introduction presents the impor-
tance of cooperative control for ships and outlines the research objectives and contributions
of this study. Section 2 defines the core challenges of communication delays and dy-
namic topologies in multi-ASV coordination and formulates the problem to be addressed.
Section 3 discusses the development of a consensus-based formation control strategy for
ships, designed to handle communication delays and dynamic topologies. The proposed
formation control strategy is verified through simulations in Section 4. Section 5 summa-
rizes the findings and discusses the implications and potential future research directions.

2. Literature Review
Formation control in multi-agent systems, especially for autonomous surface vehicles

(ASVs), is crucial for tasks like navigation and coordination in dynamic environments. Sev-
eral key approaches have shaped the field, focusing on decentralized control and stability.
Jadbabaie et al. introduced the nearest neighbor rules for agent coordination, enabling
decentralized consensus and stable formations without a central controller [9]. Chung et al.
highlighted the challenges of aerial swarm coordination, underscoring the need for adap-
tive strategies in complex environments [10]. Bunic and Bogdan’s potential-function-based
approach ensures formation stability and collision avoidance in 3D space [11]. Chang et al.
also contributed with algorithms for collision avoidance, vital for maintaining safe forma-
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tions in high-density environments [12]. Do’s local potential functions allow for dynamic
position adjustments while avoiding obstacles [13]. Anh et al. advanced this by combining
rotational and repulsive forces for better obstacle avoidance and formation stability [14].
Optimization-based methods, such as those explored by Piet et al., offer valuable extensions
by improving formation efficiency in constrained environments [15].

In recent years, several studies have further expanded the field. For instance, a study
on multi-agent systems under external communication disturbances developed new control
strategies for formation stability in the presence of unreliable communication [16]. Another
work focused on formation control in directed topologies, providing a comprehensive
framework for the stability of multi-agent systems [17]. Research on uncertain multi-agent
systems addressed formation control under nonlinear constraints, integrating control bar-
rier functions to ensure both safety and stability [18]. A recent paper also explored collision
avoidance in multi-agent systems using consensus mechanisms, demonstrating effective
formation control and collision avoidance in multi-agent systems [19]. Additionally, a study
on discrete-time linear multi-agent systems proposed a control method based on stress
matrices, addressing formation stability in both static and dynamic leader scenarios [20].
Another significant contribution is from a neural-network-based approach, which handles
uncertainty in nonlinear multi-agent systems, enhancing cooperative formation control [21].
These studies provide the foundation for robust formation control methods. Our work
extends these principles by developing a consensus-based algorithm that addresses the
unique challenges of communication delays and dynamic topologies in ASV formations.

Many studies have focused on addressing the formation control problem in the presence
of communication delays in ASVs, AUVs (Autonomous Underwater Vehicles), and UAVs
(Unmanned Aerial Vehicles). Broadly, the existing approaches can be categorized into three
main types: data-driven, observer-based, and event-triggered methods, as outlined in Table 1.

Table 1. Literature review.

Research
Article

Type of Vehicles Number of Vehicles Communication
Constraints

Method
ASV AUV UAV 3 4 5 6 Time-

Delay
Packet

Dropouts

[22] • • • • Auto-regressive model

[23] • • • Proportional–integral (PI) predictive
control

[24] • • • RBF neural networks

[25] • • •
Rational approximation, based on the
Hermite–Feje’r tangential
interpolation condition

[26] • • • Luenberger observer

[27] • • • Radial basis function (RBF) neural
networks, event-triggered

[28] • • • Consensus theory, adaptive control

[29] • • • Consensus theory

[30] • • • • Consensus theory

[31] • • • Robust control, observer

[32] • • • Consensus theory

[33] • • • • Consensus theory

The • represents the objects (including the values of aircraft type, quantity, and communication constraints)
studied in the paper.

Data-driven approaches primarily aim to develop models that predict communication la-
tency or the states of multi-agent systems at each time step based on historical communication
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data. Common techniques in this category include auto-regressive models [22], PID con-
trol [23], emerging artificial intelligence models [24], and function approximation [25]. These
methods are heavily dependent on historical data but can be computationally expensive and
are prone to overfitting, especially when large datasets are required for model development.

Observer-based methods involve designing state observers or estimators to estimate
the states of neighboring agents in the system. Notable observer models include high-gain
observers [26], predictive state observers [27], and Luenberger observers [28]. Despite their
strengths, these methods are often challenged by issues related to parameter selection and
tuning, and they tend to be sensitive to external disturbances or noise.

Event-triggered methods adjust the communication topology dynamically when com-
munication delays or bandwidth usage exceed predefined thresholds. These strategies
often depend on measurable control variables such as rudder angles [29] or the current
system state. Event-triggered mechanisms are frequently combined with other approaches,
such as neural networks (NNs) [30], to reduce the communication burden among formation
members. In addition to the methods mentioned above, consensus-based formation control
algorithms have successfully addressed the delay problem due their convenient design [31].

Problems involving consensus-based formation control whilst considering delay have
been applied and validated on various intelligent transportation platforms, including
underwater [32–34] and air vehicles [35,36], though their application in the maritime field
remains relatively limited.

On the other hand, current research classifies formation control methods into three
primary categories based on formation structure [37]. The leader–follower approach desig-
nates one vessel as the leader, which follows a desired trajectory, while the followers adjust
their positions relative to the leader using predefined offsets. The behavioral approach
assigns different weights to various desired behaviors, such as clustering and formation
maintenance, to guide the control process [38]. The virtual structure approach treats the
entire formation as a single virtual entity, with the motion of individual vessels governed
by the movement of this virtual structure. Formation control focuses on guiding a group of
vessels to achieve a specific geometric configuration and follow a predefined path [39]. The
majority of research in vessel formation control adopts one of three primary strategies: the
leader–follower framework [40], the behavioral approach, or the virtual structure method.
These approaches consider vessel-specific characteristics and environmental disturbances,
ensuring adaptability to varying operational conditions [41–43].

Despite the extensive research on these methods, several critical gaps remain in the
literature. Firstly, most existing methods either ignore or only partially account for the
impact of communication delays on the stability of multi-agent systems. In maritime
applications, where delays are often caused by long communication distances or limited
bandwidth, effective compensation for delays is essential to maintaining system stability.
Secondly, many studies assume a static communication topology, but in practice, the
topology of communication links can change dynamically due to the motion of agents.
Methods that can adapt to changing communication topologies while maintaining stable
formation control are still lacking.

3. Problem Statement and Formulation
This section addresses the key challenges and formulations necessary for the coopera-

tive control of autonomous surface vehicles in a formation.

3.1. Formation Matrix Description for Ship Formation

In designing formation control strategies, a matrix capable of describing the ASV
formation structure is required. This matrix enables ships positioned at different locations
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and with varying initial states to converge with the desired formation through control
strategies, ensuring that their states become consistent. In real-world scenarios, the for-
mation structure of ships is determined based on the tasks to be executed. Selecting an
appropriate formation structure contributes to improved formation stability and enhanced
cooperative capabilities.

The formation description method, as shown in Figure 1, directly projects the desired
relative distances between the ships and the virtual center of the formation onto the
coordinate axes. In this figure, we present a method for describing the formation of
autonomous surface vehicles (ASVs) in a two-dimensional plane. The desired relative
distances between the ASVs and the virtual center of the formation are projected onto the
coordinate axes, simplifying the geometric relationships between the vehicles. Specifically,
the virtual center serves as the reference point, and the relative positions of the ships
are described in terms of their distance from this center. This approach allows for a
straightforward representation of the formation, making it easier to design and implement
control strategies. The cooperative variables, including position, velocity, and orientation
angle, are key to achieving consensus in the formation control algorithm. These variables
are synchronized among the ships to maintain the desired formation and ensure stability.
This approach uses the direction coordinate system to represent these projections more
straightforwardly. In Figure 1, pc represents the virtual center of the formation and serves
as the reference point for other vehicles. pi = [xi, yi]

T denotes the spatial coordinates
of ASV i. piF = [xiF, yiF]

T represents the desired relative position between ASV i and the
virtual center of the formation. In the context of formation control strategies, the information
that needs to achieve consensus is referred to as cooperative variables. For example, if the
desired outcome is for all ships in the formation to align their orientation angles, then the
orientation angle becomes a cooperative variable.
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The two-dimensional spatial coordinates of ships are first selected as cooperative
variables. The control goal is to ensure that each ASV achieves the desired distance from a
reference point, expressed as:

∥pic − pc∥ → 0 (1)

where pic = pi − piF. To preserve the formation, it is also necessary to ensure that the
velocities and orientation angles of all ships remain consistent. These requirements are
expressed as: ∥∥vi − vj

∥∥ → 0,
∥∥ψi − ψj

∥∥ → 0 (2)
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where vi and ψi denote the linear velocity and angle of ASV i, respectively. To design
an effective formation control strategy, it is essential to ensure that each ASV accurately
obtains and converges to these cooperative variables, which include position, velocity, and
orientation angle.

3.2. Construction of Communication Topology Models

To model and control twin-propulsion ships, graph theory is utilized to establish
a communication topology structure that connects individual ships, thereby forming a
coordinated formation system. The following discusses the use of mathematical graph
theory to describe the information exchange relationships between ships within a group.

In graph theory, graphs are divided into directed graphs and undirected graphs. A
directed graph is represented as G = (vn, εn), where vn = {1, 2, . . ., n} is the set of nodes
(representing the ships). εn = vn × vn is the set of edges (representing communication links
between nodes). An edge (i, j) ∈ ε indicates that node j is a neighboring node of node i.

In most practical formation scenarios, directed graphs are typically used to represent
the communication topology. In a directed graph, multiple nodes capable of transferring
information can be connected, forming a directed path. For instance, in a directed path,
information can flow from node 1 to node 4 sequentially.

Some specific communication topology structures in graph theory have significant
implications for formation control of ships. During the design process, these structures are
often referred to or adapted to optimize the communication topology for the formation
system. By leveraging insights from graph theory, the design of robust communication
structures enables efficient coordination and control of ASV formations. For a directed
graph (vn, εn), the adjacency matrix An =

[
aij

]
∈ Rn×n is defined as follows: for any edge

(i, j) ∈ εn, node i can receive information from node j, and aij > 0.
For a directed weighted graph with n n nodes, the in-degree of a certain node is

defined as dii = ∑ aij The in-degree matrix is then D = diag{dii}.
The Laplacian matrix Ln =

[
lij
]
∈ Rn×n is defined as:

lij =

{
−aij, i ̸= j
∑i ̸=j aij, i = j

(3)

Equivalently, Ln =
[
lij
]
∈ Rn×n, Ln = D − An, where D =

[
dij

]
∈ Rn×n. By the

properties of the matrix, for any (i, j) /∈ εn, lij = −aij = 0, the Laplacian matrix Ln satisfies
the following:

lij ≤ 0, i ̸= j, ∑j=1 lij = 0, i = 1, 2, · · · n (4)

The Laplacian matrix of a directed graph is asymmetric; it satisfies the property of
having a simple zero eigenvalue. For the communication topology shown in Figure 2,
using graph theory, we model the communication network between the ships, with nodes
representing the ships and edges representing communication links. A directed graph is
used to depict the flow of information, ensuring that each ship can receive and transmit
data to its neighboring ships. The structure of this communication network is critical for
maintaining stable formation control, as it determines how the ships share information
with each other. The corresponding matrix representation is as follows:
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A =



0 1 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 1 1 0 0 0
0 0 1 0 0 1
0 0 0 1 1 0


, D =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2


, L =



1 −1 0 0 0 0
−1 0 0 0 0 0
−1 0 1 0 0 0
0 −1 −1 2 0 0
0 0 −1 0 2 1
0 0 0 −1 −1 2
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3.3. Dynamic Model

Assuming that the formation consists of multiple ships, according to the literature [44],
the kinematic model of the ith (i = 1, 2, · · · N) ASV can be represented as:

.
ηi = R(φi)vi (5)

where ηi =
[

xi yi φi

]T
is the position and heading vector of the ASV, xi is the longitudinal

position of the ASV, yi is the lateral position of the ASV, φi is the heading angle of the

ASV, vi =
[
ui vi ri

]T
is the velocity vector of the ASV, and R(φi) is the standard rotation

matrix of the ASV, defined as:

R(φi) =

cos(φi) − sin(φi) 0
sin(φi) cos(φi) 0

0 0 1

 (6)

The research object of this study is a two-propeller-driven unmanned surface vehicle.
This type of ASV is equipped with two independently operating propellers, which are
controlled by DC motors. The heading angle of the ASV is adjusted by the speed difference
between the left and right propellers.

To better analyze the cooperative control problem of ASV formations, a simplified
dynamics model was constructed based on a single ASV. A global coordinate system XOY
is established in a two-dimensional plane, as shown in Figure 3. A structural diagram
of the two-propeller-driven ASV is provided to facilitate the analysis of its dynamics
model. According to the literature [45], the nonlinear dynamics model of the ith ASV can
be expressed via a characteristic modeling approach.

Firstly, the relationship between motor commands and thrust on the vessel can be
described as a nonlinear equation:

Tthrust = fthrust(Cconmand) (7)
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where Tthrust is the motor’s thrust force, Ccommand is the thrust command to the motor, and
fthrust is a nonlinear function between thrust force and thrust command. We obtain the
model employed for building the characteristic model from Equation (5):

X(k + 1) = f1(k)X(k) + f2(k)X(k − 1) + g0(k)ui(k) (8)

X(k) = [ψ(k), u(k)] (9)

ui(k) =
[
Cpart-command · Cstbd-command

]T
(10)

f1(k) =

[
f11(k) 0

0 f22(k)

]
f2(k) =

[
f12(k) 0

0 f21(k)

]
(11)

g0(k) =

[
g11(k) g12(k)
g13(k) g14(k)

]
(12)

where ψ(k) is the heading angle of the ASV, X(k) is the vector that consists of the heading
and surge speed, ui(k) is the linear speed in surge direction, ui(k) is the control vector, and
the parameters f1(k), f2(k), g0(k) are the time-varying characteristic parameters.
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4. Cooperative Formation Control Strategies for Autonomous
Surface Vehicles

Formation control refers to enabling a group of ships, initially at different positions
and states, to form a specific formation structure that allows for mutual communication and
cooperation based on predefined rules. These rules represent cooperative control strategies
for the formation. This study focuses on studying the capabilities of multi-ASV systems in
formation generation, maintenance, etc. Based on consensus theory, cooperative formation
control strategies are designed for conditions with time delays.

4.1. Cooperative Formation Control Strategy

Before designing cooperative formation control strategies, the stability of consensus
under the communication topology is analyzed, and a fundamental consensus-based
cooperative control strategy is presented.

4.1.1. Stability Analysis of Consensus Control Strategy

The formation of an ASV group is influenced by the communication topology within
the formation. Therefore, it is essential to analyze the stability of the designed control strate-
gies. For the formation communication topology, Ren proposed the consensus conditions
for Lagrangian dynamics under a fixed communication topology.
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Lemma 1. For entities with autonomous decision-making and execution capabilities, their state
information equations can be represented using a double-integrator dynamic system, also known as
a second-order system. The equations are as follows:

.
pi = qi,

.
qi = ui (13)

where pi represents the state information of the i-th ASV, qi corresponds to the derivative of the
state information, representing the velocity, and ui is the control input for the i-th ASV. For motion
systems that can be expressed using Equation (13), a consensus algorithm can be applied during
formation control. The consensus algorithm is given as:

ui = −∑n
j aij

[(
pi − pj

)
+ α

(
qi − qj

)]
(14)

where α is a positive scalar, representing the gain coefficient for the derivative changes between two
moving entities.

Further, when directly considering higher-order multi-intelligent systems, the state
equations can be represented as: 

.
x(0)i = x(1)i

...
.
x(l−1)

i = ui

(15)

where xl
i ∈ Rm represents the state variable of information, xl

i represents the l-th order

derivative of xi, x(0)i is the original state variable, and ui is the control input. For the
aforementioned higher-order system, a consensus algorithm for higher-order systems can
be designed based on the second-order consensus algorithm referenced in the literature.
The algorithm is as follows:

ui = −∑j∈Ni
aij

[
∑l−1

k=0 αk

(
x(k)i − xk

j

)]
(16)

where αk ∈ N, αk ̸= 0 represent the weights of the state variables, when x(k)i → xk
j indicates

that the k-th derivatives of the state variables of agents i and j approach each other as time
progresses. The multi-agent system achieves asymptotic stability when the states across
agents converge.

Properly setting the state variable weights, αk, is a critical step in designing the
consensus algorithm. To address this, the following theorem is provided.

Lemma 2. In a multi-agent system with a minimum spanning tree, if the weights of the state
variables αk ensure that the system is Hurwitz-stable, the information of all agents can achieve
consensus stability.

To prove this, control Algorithm (16) is substituted into the system Equation (17). This
yields: 

.
x(0)i = x(1)i
.
x(1)i = x(2)i
...
.
x(l−1)

i = −∑j∈Ni
aij

[
∑l−1

k=0 αk

(
x(k)i − xk

j

)] (17)
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where xi =
[

x(0)i , x(1)i , · · · , x(l−1)
i

]T
. To represent the system in state-space form, let yi = xi.

The state-space matrix equation for the multi-agent system can be expressed as follows:{ .
xi = A′xi + Blui

yi = C′xi + D′ui
(18)

If ui is represented in matrix form, it can be expressed as follows:

ui =


−∑n

j=1 l11

(
x(0)i − x(0)j

)
−∑n

j=1 l22

(
x(1)i − x(1)j

)
...

−∑n
j=1 lll

(
x(l−1)

i − x(l−1)
j

)

 (19)

In this case, l11, l22, · · · , ln, refer to the diagonal elements of the Laplacian matrix L,
which are defined based on the communication topology. According to the definition of the
Laplacian matrix:

A′ =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0


l×l

, Bl =


0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0
α0 α1 α2 · · · αl−1


l×l

(20)

For a high-order system, with Cl as the l-order identity matrix and Dl as the zero matrix,
the stability analysis of the closed-loop system can be conducted. According to modern control
theory, the open-loop transfer function of the system can be derived as follows:

Gl(s) = Cl
(

sI − Al
)

Bl (21)

After simplification, the matrix form of the open-loop transfer function for the high-
order system can be expressed as:

Gl(s) =


α0
sl

α1
sl . . . αl−1

sl
α0

sl−1
α1

sl−1 . . . αl−1
sl−1

...
...

. . .
...

α0
s

α1
s . . . αl−1

s

 (22)

The closed-loop transfer function matrix ϕL(s) for the system satisfies the following
form:

ϕL(s) = Gl(s)
(

Il + Gl(s)
)−1

(23)

The characteristic polynomial of the closed-loop transfer function, which determines
the eigenvalues of the system, satisfies the following relationship:

det
(

ϕl(s)
)
= det

(
Il + Gl(s)

)
· det

(
sIl − Al

)
(24)
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To compute the characteristic polynomial for the closed-loop system, we derive the
determinants det

(
Il + Gl(s)

)
and det

(
sIl − Al

)
as follows:

Il + Gl(s) =


1 + α0

sl
α1
sl · · · αl−1

sl
α0

sl−1 1 + α1
sl−1 · · · αl−1

sl−1

...
...

. . .
...

α0
s

α1
s · · · 1 + αl−1

s


l×l

(25)

By performing elementary row and column operations on Equation (25), we obtain:

Il + Gl(s) =


1 + α0

sl + · · ·+ αl−1
s

α1
sl

α2
sl · · · αl−1

sl

−s 1 0 · · · 0
0 −s 1 · · · 0
...

...
...

. . .
...

0 0 · · · −s 1


l×l

(26)

Expanding along the first column yields:

det
(

Il + Gl(s)
)
= 1 +

α0

sl +
α1

sl−1 · · ·+ αl−1
s

(27)

det
(
sIl − A′) =


s −1 0 · · · 0
0 s −1 · · · 0
...

. . .
...

0 0 · · · s −1
0 0 · · · 0 s


|x|

= sl (28)

The closed-loop characteristic polynomial is expressed as:

det(ϕ′(s)) = det
(

Il + Gl(s)
)
· det(sIl − A′)

=
(

1 + α0
sl +

α1
sl−1 · · ·+

αl−1
s

)
· sl

(29)

According to the polynomial stability theorem, the necessary and sufficient condition for
the asymptotic stability of the closed-loop system is that all closed-loop poles (roots of the
polynomial) lie in the left-half plane of the complex domain. Based on the Routh–Hurwitz
criterion, the system is stable if α0, α1, · · · , αI−1 form a Hurwitz polynomial. If α0, α1, · · · , αI−1

satisfy the Hurwitz condition, the control strategy introduced in this section ensures that the
state information of all system orders achieves consensus stability.

The subsequent cooperative formation control strategy and encirclement control strat-
egy for unmanned surface vehicles, as discussed in later sections of this paper, are designed
based on the principles in Equation (16).

4.1.2. State Control for Cooperative Motion

In the study of cooperative motion for multiple autonomous surface vehicles, state control
is a critical factor that cannot be overlooked. The designed cooperative control strategy must
ensure the convergence of state information for the ships to have practical significance. As
discussed in the mathematical modeling section in Section 2, the heading angle and velocity
are the two most important state variables, as they directly affect the motion trajectory of
ships. Therefore, this study prioritizes the control of these two state variables.

Heading control is crucial for the state control of ships. The designed formation control
strategy must ensure that the heading angles of all individual ships converge to a common
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value when the formation stabilizes. The simplified formula for the change in heading
angle is expressed as:

.
ψi =

1
τψ

(ψc
i − ψi) (30)

where ψi is the current heading angle of ASV i, ψc
i is the desired heading angle generated

by the formation control strategy, and τψ is the time constant for heading adjustment.
The next stage heading angle of an ASV is calculated based on its current heading angle

ψi and the control command ψc
i . The control command ψc

i is generated by the formation
control strategy and integrates the heading angles of all ships in the formation at the same
time, producing a control adjustment specific to ASV i.

As illustrated in Figure 4, consider three ships with initial heading angles ψ1 > ψ2 > ψ3

through internal communication within the formation and adjustment based on the neigh-
boring ships’ heading angles; the heading angles are gradually aligned, ultimately achiev-
ing ψ1 = ψ2 = ψ3. During the adjustment process, the following constraint must be
satisfied: |∆ψi| < π.

J. Mar. Sci. Eng. 2025, 13, x FOR PEER REVIEW 12 of 28 
 

 

common value when the formation stabilizes. The simplified formula for the change in 
heading angle is expressed as: 

𝜓ሶ  = 1𝜏ట (𝜓 − 𝜓) (30)

where 𝜓𝑖 is the current heading angle of ASV 𝑖, 𝜓 is the desired heading angle generated 
by the formation control strategy, and 𝜏ట is the time constant for heading adjustment. 

The next stage heading angle of an ASV is calculated based on its current heading 
angle 𝜓 and the control command 𝜓. The control command 𝜓 is generated by the for-
mation control strategy and integrates the heading angles of all ships in the formation at 
the same time, producing a control adjustment specific to ASV 𝑖. 

As illustrated in Figure 4, consider three ships with initial heading angles 𝜓ଵ > 𝜓ଶ >𝜓ଷ through internal communication within the formation and adjustment based on the 
neighboring ships’ heading angles; the heading angles are gradually aligned, ultimately 
achieving 𝜓ଵ = 𝜓ଶ = 𝜓ଷ. During the adjustment process, the following constraint must be 
satisfied: |Δ𝜓| < 𝜋. 

 

Figure 4. Schematic diagram of multi-ship formation direction adjustment. 

This ensures smooth convergence and avoids abrupt or excessive heading changes, 
facilitating stable and cooperative formation behavior. The consensus control strategy for 
the heading angle is given by: 

൝𝜓 = 𝜓 + ଵଵା 𝑢𝑢 = − ∑  ୀଵ 𝑎൫𝜓 − 𝜓൯  (31)

where 𝑛 is the number of ships connected to ASV 𝑖 in the communication topology, 𝑎 
is the weight of the adjacency matrix in the communication topology, and 𝑢 is the coop-
erative control term for the heading angle of ASV 𝑖. Traditional methods use Equation (31) 
for heading control. However, this approach cannot guarantee that the ships reach the 
desired heading angle, meaning it cannot determine the final attitude. This paper 

Figure 4. Schematic diagram of multi-ship formation direction adjustment.

This ensures smooth convergence and avoids abrupt or excessive heading changes,
facilitating stable and cooperative formation behavior. The consensus control strategy for
the heading angle is given by: {

ψc
i = ψi +

1
1+ni

ui

ui = −∑n
j=1 aij

(
ψi − ψj

) (31)

where ni is the number of ships connected to ASV i in the communication topology, aij is
the weight of the adjacency matrix in the communication topology, and ui is the cooperative
control term for the heading angle of ASV i. Traditional methods use Equation (31) for
heading control. However, this approach cannot guarantee that the ships reach the desired
heading angle, meaning it cannot determine the final attitude. This paper proposes an
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improved control strategy based on consensus theory to ensure convergence of the ships’
heading angles. The improved method is as follows:{

ψc
i = ψi +

1
1+ni

ui

ui = −bi(ψi − ψq)− ∑n
j=1 aij

(
ψi − ψj

) (32)

where ui is the cooperative control term, composed of two parts, and bi is the coefficient
of the desired tracking term. The velocity variation formula for the formation can be
simplified as:

.
vi =

1
τv
(vc

i − vi) (33)

The consistency control strategy for speed convergence to the expected value is as follows:{
vc

i = vi +
1

1+ni
ui

ui = −ci(vi − vq)− ∑n
j=1 aij

(
vi − vj

) (34)

Then, the characteristic model-based intelligent adaptive control of ψ and ψ can be
designed based on our research [1], with the controllers involved achieving tracking control
of the desired ship state.

4.1.3. Cooperative Formation Control Strategy Based on Consensus Theory

In addition to ensuring that the heading angles and velocities of all ships converge,
formation control must also ensure that the positions of all ships form a specific formation.
Therefore, under the condition of a communication topology, a cooperative formation
control strategy is designed based on consensus theory to enable ships to autonomously
form a given formation. Since ships operate in a two-dimensional space, the design of the
cooperative formation control strategy only needs to consider the North and East directions.

When the ships have not completed the formation task, the desired spacing between
vehicles in the final formation must be obtained from the communication topology structure.
For ASV i, the completion of the formation task must satisfy the following conditions, as
shown in Equation (35): (

x′i − x′iF
)
−

(
x′j − x′jF

)
= 0(

y′i − y′iF
)
−

(
y′j − y′jF

)
= 0

(35)

Simplifying these equations yields:

x′i − x′j − x′qij = 0

y′i − y′j − y′qij = 0
(36)

where x′qij , y′qij represent the desired spacing between ASV i and its neighboring ASV j in the
communication topology.

Assume the current position of ASV i is p; to achieve the formation, ASV i adjusts its
heading angle and velocity to reach position pi′. The velocity components in the X- and
Y-axes are given as:

v′xi = vi cos ∆ψi (37)

v′yi = vi sin ∆ψi (38)
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During the process of forming the predetermined formation, the heading angle and
velocity—two critical state variables—are continuously changing. The cooperative forma-
tion control strategy based on consensus theory is expressed as:

vc
i = vi − ∑n

j=1 aij

[
τr
(
vi − vj

)
+ kvch

i

(
x′i − x′j − x′qij

)]
(39)

ψc
i = ψi − ∑n

j=1 aij

[
1

1 + ni

(
ψi − ψj

)
+ kψch

i

(
y′i − y′j − y′qij

)]
(40)

where kvch
i , kψch

i represent the variable gains that measure the influence of the desired formation
spacing on the control commands. Their values become 0 when the formation is achieved.

Using Equations (39) and (40), ships with different initial positions and states can form
a specified formation, and their heading angles and velocities will converge to a consistent
state. During the actual motion of ASV formations, specific motion directions and speeds
are assigned based on different task requirements, and different control strategies are
adopted accordingly. The following three improved algorithms are proposed:

vc
i = vi − ∑n

j=1 aij

[
τv
(
vi − vj

)
+ kvch

i

(
x′i − x′j − x′qij

)]
(41)

ψc
i = ψi − bch

i (ψi − ψq)− ∑n
j=1 aij

[
1

1 + ni

(
ψi − ψj

)
+ kψch

i

(
y′i − y′j − y′qij

)]
(42)

By using Equations (40)–(42), the direction of convergence of the formation can be
made to reach ψq:

vc
i = vi − cch

i (vi − vq)− ∑n
j=1 aij

[
τv
(
vi − vj

)
+ kvch

i

(
x′i − x′j − x′qij

)]
(43)

ψc
i = ψi − ∑n

j=1 aij

[
1

1 + ni

(
ψi − ψj

)
+ kψch

i

(
y′i − y′j − y′qij

)]
(44)

By using Equations (43) and (44), the convergence speed of the formation can be set to vq:

vc
i = vi − cch

i (vi − vq)− ∑n
j=1 aij

[
τv
(
vi − vj

)
+ kvch

i

(
x′i − x′j − x′qij

)]
(45)

ψc
i = ψi − bch

i (ψi − ψq)− ∑n
j=1 aij

[
1

1 + ni

(
ψi − ψj

)
+ kψch

i

(
y′i − y′j − y′qij

)]
(46)

By constructing a reasonable communication topology within the ASV group and
combining the algorithms described in Equations (43) and (44) through (45) and (46), the
ASV cluster can effectively achieve the desired formation in a two-dimensional plane. These
algorithms ensure that the heading angle, velocity, and relative positions between ships
converge to the specified formation parameters, enabling efficient and robust cooperative
formation control.

4.1.4. Formation Maintenance and Transformation of ASV Formations

During the execution of tasks by an ASV formation, the formation system may adapt
to different tasks by adjusting its heading angles and velocities. Sometimes, only one state
variable is adjusted, while at other times, both heading angles and velocities are changed
simultaneously. Therefore, it is essential to ensure that the ASV formation can perform
autonomous cooperative motion under any circumstance.

The previous section identified that factors influencing computational burden include
the complexity of the algorithm and the number of variables. Considering that during ASV
formation movement, there are scenarios where only one state variable (heading angle or
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velocity) needs to change, while in others, both must change simultaneously, different formation
control strategies should be adopted accordingly. The following introduces two cases.

During the task execution process, when the task point’s position changes or
an obstacle appears in the path ahead, the formation control strategy described in
Equations (41) and (42) can be used to reset the heading angle of the ASV formation.

When performing target tracking tasks, where the target’s position and state continu-
ously change, the ASV formation needs to utilize the formation control strategy described
in Equations (45) and (46). This enables the ships to adjust their heading angles and veloc-
ities in real-time based on the target’s position and state information. By employing the
strategies provided above, ASV formations can effectively complete various tasks. Part of
these formation control strategies will be validated in the simulation section.

4.2. Cooperative Control Strategies for Formations Under Delay

During the motion of an ASV formation, individual ships must exchange information
with others to understand their motion states. However, in practical formation experiments,
issues such as communication delay, noise, and packet loss are unavoidable. Therefore,
delays must be considered in the design and implementation of formation control strategies.

4.2.1. Sources of Communication Delays

Communication delay is the time required for a signal to travel from one agent to
another. It depends on the communication medium and the physical distance between the
agents. Longer distances or slower communication mediums result in longer transmission
times. The communication diagram and controller diagram of an unmanned ship are
shown in Figure 5.
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Communication delays can severely impact the performance of formation control
algorithms. The key challenges caused by delays include lag in feedback and instability
in the formation. When agents rely on outdated information from neighbors, it can result
in decisions based on inaccurate positions or velocities, leading to inefficient coordination
and delayed responses in formation adjustments. In some cases, long delays can prevent
the system from achieving consensus, causing the formation to oscillate or fail to reach a
stable state.

The stability of the delay-based consensus formation cooperative control strategy was
demonstrated in the previous section. Therefore, it is crucial to study the communication
topology structure of ASV formations under delay conditions. The delay communication
topology structure increases the number of undirected paths between nodes, reducing the
dependence on single sources of information. The structure is shown in Figure 6.

The internal communication topology of ships plays a crucial role in ensuring formation
control. Forming a directed spanning tree is a necessary condition for achieving convergence
and consensus in the formation. The main advantage of the delay communication model is
that while building upon the strong connectivity structure, it increases the feedback among
ships, thereby reducing communication delays during the formation process.
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Additionally, this topology provides some level of protection for individual ships. For
example, if there are differences in the construction costs of various ships, the communi-
cation topology architecture can leverage these differences through weight coefficients to
influence the formation. Higher-cost ships, often with better communication capabilities,
act as primary nodes, and other ships adjust their formation direction relative to these
primary nodes.

For addressing the delay issue in ASV formations, adopting the delay communication
model offers significant advantages. It ensures formation convergence, enhances feedback, and
optimizes the communication structure by prioritizing critical nodes. This approach reduces
the maximum directed path threshold, making the formation more robust and efficient.

4.2.2. Control Strategies for Delayed Formations Based on Consensus Theory

Communication delays within an ASV formation mean that the state of an ASV at the
next time step is influenced not only by its current state but also by the previous states of
other ships. Thus, the control strategy for delayed formations must account for providing
control inputs to the ships. Ensuring the stability of the cooperative control strategy under
delay conditions. To address the negative effects of communication delays, we developed a
consensus mechanism within the control algorithm.

By considering the synchronous coupling method, it is possible to achieve state
synchronization among the formation ships. This method is applied to the cooperative
control strategy by using the delayed state of the previous time step to construct the control
input for the current time step.

The control components for the ASV formation in the X- and Y-plane dimensions are
given as:ux

i = −η1∑j∈Ni

[
xi(t − τ)− xj(t − τ)− dx

ij

]
− η2∑j∈Ni

[
vx

i (t)− vx
j (t)

]
+ η2bi

[
vo(t)− vx

i (t)
]

uy
i = −η1∑j∈Ni

[
yi(t − τ)− yj(t − τ)− dy

ij

]
− η2∑j∈Ni

[
vy

i (t)− vy
j (t)

]
+ η2bi

[
vo(t)− vy

i (t)
] (47)

To combine the control components in the X- and Y-directions, the velocity and heading
angle control commands for formation ships are derived based on the ASV kinematic model:

vc
i = vi + τv

(
ux

i cos ψi + uy
i sin ψi

)
(48)

ψc
i = ψi +

τψ

v

(
uy

i cos ψi − ux
i sin ψi

)
(49)

Further, the precise control commands with added desired convergence values are
given as:

vc
i = vi − ci(vi − vq) + τv

(
ux

i cos ψi + uy
i sin ψi

)
(50)
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ψc
i = ψi − bi(ψi − ψq) +

τψ

v

(
uy

i cos ψi − ux
i sin ψi

)
(51)

The above strategy enables the effective cooperative control of multi-ASV formations
under delayed conditions. By combining kinematic modeling with precise control adjust-
ments for the velocity and heading angle, the strategy ensures the formation can achieve
the desired configuration while compensating for communication delays.

The following block diagrams shown in Figure 7 illustrate the steps involved in the
proposed consensus-based formation control strategy. The diagrams show the flow of
information through the system, from the initial measurement of the relative positions,
velocities, and headings of the ASVs to the computation of control inputs. The diagrams
also demonstrate how the communication topology and time delays are incorporated into
the control process to adjust the control inputs accordingly.
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4.2.3. Stability Proof of Cooperative Control Strategies Under Delay

In this subsection, we prove the stability of the cooperative control strategy under
delay conditions for ASV formations, as designed in the previous section. Assume the state

information of ASV i is represented by pi = [xi, yi]
T , qi =

[
vx

i , vy
i

]T
For the ASV formation

construct p = [p1, p2, · · · pn]
T , the formation system is modeled using a double-integrator

dynamic system based on the motion characteristics of ASV formations. By substituting



J. Mar. Sci. Eng. 2025, 13, 549 18 of 27

the control inputs derived from the delayed formation control strategy into the system
equations, we obtain:{ .

p(t) = q(t)
.
q(t) = −η1[Lp(t − τ)− diag(AR1)]− η2(L + B)[q(t)− vo(t)⊗ In]

(52)

where A is the adjacency matrix, R1 =
[
rij
]

is the desired formation spacing matrix

rij =
[
rx

ij, ry
ij

]T
represents the desired spacing in the x- and y-directions, and In =

[
1, · · · , 1]T

is identity vector.
Let Lp(t − τ)− diag(AR1) = p(t), q(t)− vo(t)⊗ In = q(t); the system then transforms

to: { .
p(t) = lq(t)
.
q(t) = −η1 p(t − τ)− η2(L + B)q(t)

(53)

Further, define [p(t), q(t)] = w(t), and the system becomes:

.
w(t) =

[
0 L
0 −η2(B + L)

]
w(t) +

[
0 0

−η1 In 0

]
w(t − τ) (54)

To analyze stability, we construct a Lyapunov–Krasovskii function as follows:

V(t) = wT(t)Pw(t) +
∫ t

t−τ
w(s)Qw(s)ds +

∫ 0

− f

∫ t

t+θ

.
wT

(s)R
.

w(s)dθds (55)

Taking the derivative of V(t) gives:

.
V(t) = 2wT(t)P

.
w(t) + wT(t)Qw(t)− wT(t − τ)Qw(t − τ)

+τ
.

wT
(t)R

.
w(t)−

∫ t
t−τ

.
wT

(s)R
.

w(s)ds
(56)

Then, we obtain:
.

w(t) = Ew(t) + Fw(t − τ) (57)

We can obtain the following:

2wT(t)P
.

w(t) = 2wT(t)P(Ew(t) + Fw(t − τ)) (58)

For any x, y ∈ Rn and positive definite matrix M ∈ Rn×n, the following can be obtained:

2xTy ≤ xT M−1x + yT My (59)

For Equation (59), there are:

2wT(t)PFw(t − τ) = 2wT(t)PF
[
w(t)−

∫ t
t−τ

.
w(s)ds

]
= 2wT(t)PFw(t)− 2wT(t)PF

∫ t
t−τ

.
w(s)ds

≤ 2wT(t)PFw(t) + τwT(t)PFR−1FT Pw(T) +
∫ t

t−r
.

wT
(s)R

.
w(s)ds

(60)

Furthermore, for the integral terms within Equation (61), there are:∫ t
1−t

.
wT

(s)R
.

w(s)ds = τ
[
Ew(t) + Fw(t − τ)]T R[Ew(t) + Fw(t − τ)]

= τwT(t)Eτ REw(t) + τwT(t − τ)Fτ REw(t)+
τwT(t)ET RFw(t − τ) + τwT(t − τ)FT REw(t − τ)

(61)



J. Mar. Sci. Eng. 2025, 13, 549 19 of 27

Furthermore, Equation (57) can be converted into:

.
V(t) ≤ 2wT(t)PFw(t) + τwT(t)PFR−1FT Pw(t) + wT(t)Qw(t)
−wT(t − τ)Qw(t − τ) + τwT(t)ET REw(t) + τwT(t − τ)FT REw(t)
+τwT(t)ET RFw(t − τ) + τw(t − τ)FT REw(t − τ)

(62)

Further, extracting the variables from Equation (63) gives:

N = (E + F)T P + P(E + F) + τET RE + τPFR−1FT P + Q (63)

where
.

V(t) ≤
[

w(t)
w(t − τ)

]T[
N τET RF

τFT RF − Q

][
w(t)
w(t − τ)

]

≤
[

w(t)
w(t − τ)

]T

M

[
w(t)
w(t − τ)

] (64)

According to the Schur complement lemma, for a given symmetric matrix X ∈ Rn×n,
it can be partitioned as follows:

X =

[
x11 x12

x21 x22

]
(65)

where x11 ∈ Rm×m, x22 ∈ R(n−m)×(n−m), x12 = xT
21, x21 ∈ R(n−m)×m, x12 ∈ Rm×(n−m).

Then, X < 0 if and only if either of the following conditions are satisfied: x11 < 0,
x22 − x21x−1

11 x12 < 0 or x22 < 0, x11 − x12x−1
22 x21 < 0.

Define N1 = (E + F)T P + P(E + F) + τET RE + Q. For the matrix M in Equation (65),
we have:

M =

N1 PF τEτ RF
∗ − R

τ 0
∗ ∗ τFτ RF − Q

 (66)

Using the Schur complement lemma, M < 0 can be determined by ensuring the
conditions of the lemma are satisfied. Once M < 0 is confirmed, Equation (66) yields
.

V(t) < 0.
Based on the Lyapunov stability theorem,

.
V(t) < 0 ensures that the formation control

strategy under delay conditions stabilizes the formation. This means that applying the
proposed delay-based cooperative control strategy enables the ASV formation to maintain
stability and achieve the desired formation even under communication delay conditions.
Thus, for formations with a directed spanning tree communication topology and positive
definite symmetric matrices satisfying Equation (66), the consensus-based formation control
strategy designed in this study ensures that the ASV cluster can complete formation tasks
in the presence of communication delays.

5. Simulation Verification of Multi-ASV Cooperative Formation
Control Strategy

This section validates the designed cooperative formation control strategy through
simulations. In this study, three experiments were conducted to design and validate the
consistency-theory-based formation control under the delay of the formation.

5.1. Parameter Selection

The model we used in the simulation experiments was obtained by parameter identification
based on a real twin-propulsion ship and real experimental data. Figure 8 shows the real twin-
propulsion ASV used in our simulation. This ASV was predeveloped by us (as described in [44])
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and a simulation model based on the feature model was built for it. This ASV is equipped with
two 24 V thrust motors with a maximum thrust of 55 N. The length, width, and distance of the
vessel from the propulsion motors are about 1.7, 0.75, and 0.5 m, respectively.

Based on the above unmanned ship model, three sets of experiments were carried
out in this thesis to verify the effectiveness of the formation cooperative control algorithm
based on the consistency theory, the cooperative control strategy under the formation time
delay, and the comparison of the cooperative control under different control parameters,
respectively. For the experiments conducted in this study, the simulation was performed
using MATLAB 2023 a for modeling the system dynamics, control algorithm development,
and simulation of the formation control strategy. MATLAB 2023 a provided a robust
platform for implementing the control laws and performing the necessary computations.
Additionally, to simulate real-time communication between the ASVs, we utilized the
Robot Operating System 1(ROS 1). ROS 1 facilitated the integration of various system
components, including communication between the ASVs and the simulation environment.
It also allowed for the simulation of sensor data exchange and actuator control in real
time, ensuring a more realistic representation of the cooperative behavior and interactions
between the ASVs.
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In Case I, the cooperative formation control algorithm based on consensus theory, as
designed in the previous section, was applied. The parameter values in the control algorithm

were set as kwh
i = kzch

i = 1.1/t, kych
i =

√
1.1
t , η = 1.2. The formation was set to achieve a

square formation, with the velocity maintained at 1.5 m/s and the heading angle changing
dynamically to enable circular motion. The corresponding formation matrix is as follows:

Kx =


0 75 0 75

−75 0 0 −75
−75 0 0 −75

0 75 75 0

, Ky =


0 0 59 59
0 0 59 59

−59 −59 0 0
−59 −59 0 0


To demonstrate the excellence of designed method for formation control, other algo-

rithms were used to compare with the method in this paper. In the longitudinal direction,
two good formation control methods [41–43] were selected.

In Case II, the algorithm coefficients were set as η1 = 0.73, η2 = 1.02, bi = 0.8. The
desired formation was a diamond shape, with a desired heading angle of π/4. The initial
position of ASV 1 was [36, −5], the horizontal velocity was 0.8, and the angle of direction was
0.59 rad. The initial position of ASV 2 was [20, 8], the horizontal velocity was 2.8, and the angle
of direction was 0.38 rad. The initial position of ASV 3 was [7, −2], the horizontal velocity was
3.8, and the angle of direction was 1.22 rad. The initial position of ASV 4 was [23, −8], the
horizontal velocity was 1.8, and the angle of direction was 0.89 rad. The transmission delay
caused by data exchange was approximately 220 ms. Considering the high volume of data
communication among the four ships, the simulation assumed a random communication
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delay ranging from 0.7 s to 1.2 s. The communication topology structure is shown in Figure 6.
The cooperative control strategy based on consensus theory under delay conditions was
applied to control the state variables of the ships within the formation.

In Case III, the experimental trajectory was parameterized as xR = t, yR = 20 · sin(0.05t).
The control method and control parameters of the second group of experiments were adopted,
and the control parameters were set as the first group, while the second group of control
parameters was set, and the controller under the second group of control parameters was
set as the control group to explore the effect of the change in the control parameters on the
experimental results. The first set of parameters was set as η1 = 0.73, η2 = 1.02, bi = 0.8, and
the second set of parameters was set as η1 = 0.93, η2 = 1.42, bi = 0.8. The initial position of
the leader was [−45, −5, 0]. The initial position of the first follower was [−53, −13, 0], and
the relative position of its formation was [−5, −5]. The initial position of the second follower
was [−53, −2, 0], and the relative position of its formation was [−5, 5]. The desired speed in
the experimental setup was 1.2 m/s. The main parameter settings are shown in Table 2.

Table 2. Main parameter settings.

Parameter
Value

Case 1 Case 2 Case 3

η 1 0.73, 1.02 1st 0.73, 1.02;
2nd 0.93, 1.42.

initial position of ASV 1 [19, 0] [36, −5] [−53, −13, 0]
initial position of ASV 2 [8, 0] [20, 8] [−5, −5]
initial position of ASV 3 [0, 0] [7, −2] [−53, −2, 0]
initial position of ASV 4 [32, 0] [23, −8] [−5, 5]

5.2. Results and Analysis

The results of our simulations and the analysis of these results are presented in this
section. The simulations were designed to test the effectiveness of the cooperative formation
control strategy, especially under conditions involving time delays. The experiments were
conducted in three cases, each testing different aspects of the control strategy.

5.2.1. Case I: Circular Cooperative Formation Control

In this experiment, the ships were tasked with forming a square formation while main-
taining circular motion. The formation was achieved successfully, as shown in the trajectory
results (Figure 9). The results confirm that the proposed consensus-based cooperative
formation control strategy effectively guided the ships to their target positions. The virtual
ship in Figure 8 served as an idealized reference to evaluate the performance of the actual
ASVs in the formation. It was not a physical entity but rather a computational model that
represented the perfect trajectory and positioning of the ASVs in the formation, assuming
no errors or delays. The inclusion of the virtual ship allowed for a clear comparison be-
tween the ideal and real behaviors of the ASVs, helping to highlight the deviations caused
by factors such as communication delays, velocity constraints, and heading adjustments.

By comparing the actual ASVs with the virtual ship, we can assess how well the
formation control algorithm performed and whether the ASVs maintained the desired
formation under realistic conditions. For the formation trajectory, as shown in Figure 9a, the
four ships, starting from different initial positions, utilized the proposed control strategy
to eventually form a square formation while maintaining circular motion. Although the
trajectories intersected in space, ships passed through the same points at different times,
preventing collisions. The coordinate system used in Figure 9 is a standard Cartesian
coordinate system (X, Y), which allows for a clear representation of the relative positions
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and movements of the ships. The “ground truth” was defined as the reference system
from which these coordinates were derived, ensuring that all position data presented in the
figure are based on a consistent frame of reference.
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From Figure 9c,d, it can be observed that the final positions of ASV1 and ASV2
converged to the same state in the Y direction, while maintaining the given formation
spacing in the X direction. Similarly, ASV2 and ASV4 converged to the same state in
the X direction, while maintaining the given formation spacing in the Y direction. This
demonstrates that, within a finite time, the four ships with different initial positions and
states successfully formed a formation. In our study, the formation error stabilized at
approximately 7 m after 100 s of operation. In contrast, previous methods, such as those
proposed by [41–43], resulted in formation errors of 11 m, 10 m, and 13 m, respectively,
under similar conditions. This shows that our approach achieved a more accurate formation
with less deviation. Our method converged to the desired formation in about 100 s.
Refs. [41,42] achieved convergence in 120 s, while [43] reported a convergence time of
150 s. The shorter convergence time of our approach suggests better efficiency in forming
the desired configuration. Table 3 presents the results of the comparison of the average
trajectory tracking error values between the control method used in this paper and the
comparison method. As can be seen from the table, the method proposed in this paper had
smaller tracking errors.

In conclusion, the consensus-based cooperative formation control strategy designed in
the previous sections enables ships with different initial states and positions to effectively
form a predetermined formation and achieve circular motion.
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Table 3. Comparison of mean trajectory tracking errors for the heterogeneous MSV system.

Error Proposed DEFSMFC NONNS NOETC

ea(m) 7.605 10.895 10.0975 13.3825
eAsv1(m) 9.73 11.91 11.39 13.51
eAsv2 (m) 8.60 10.63 17.6 14.38
eAsv3 (m) 5.31 9.81 10.31 10.73
eAsv4 (m) 6.78 11.23 1.090 14.91

5.2.2. Case II: Cooperative Control Strategy Under Delays

This experiment was conducted to evaluate the control strategy under communication
delays. The ships were tasked with forming a diamond-shaped formation.

The results of the formation trajectory, shown in Figure 10a, indicate that despite the
delays, the ships successfully formed the diamond-shaped formation.
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Figure 10. Results of cooperative control strategy under delays. (a) Results of formation trajectory;
(b) results of heading angle; (c) experimental results of speed.

The responses of the heading angle and speed of each ship in the first thirty seconds
are presented in Figure 10b,c. The results demonstrate that the delay-based cooperative
control strategy enabled the ships to converge in both heading angle and speed. The system
remained stable despite the communication delays.

A significant feature of this experiment is that the control strategy could adapt to delays,
allowing the ships to achieve consensus in a reasonable time. The 220 ms delay was handled
effectively, demonstrating the robustness of the control strategy under real-world conditions.
In our simulations, the 220 ms delay was considered acceptable because our method adapted to
this delay through the adaptive control strategy and ensured that the system remained stable.
The results from our simulations, which show minimal formation errors and stable control
under this delay, are provided to substantiate this claim. Our experiment was conducted
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under ideal conditions in an obstacle-free environment, and with a fixed 220 ms delay, the
algorithm of our proposed new framework was effective. The strategy also effectively tracked
the desired heading angle and velocity. However, due to the presence of delays and the fact
that the control inputs for the next time step depend on the states from the previous time step,
the convergence time for heading angle and velocity increased.

5.2.3. Case III: Sinusoidal Cooperative Formation Control

In this case, the cooperative formation control was tested under sinusoidal trajec-
tory conditions. The goal was to evaluate how well the formation control could handle
parameter changes. The effectiveness of the control effect under different parameter set-
ting scenarios was analyzed using the sinusoidal trajectory as an example. Among them,
Figure 11a shows the experimental results of the control method under different param-
eter setting scenarios, i.e., the effectiveness of ASV formation control under delays. The
experimental results show that the first set of parameter settings had a better smoothing
effect on the reference trajectory generation of the follower, while the smoothed desired
trajectory affected the control effect of ASV formation. Combined with Figure 11b, it can
be concluded that the desired trajectory smoothing process could effectively improve the
convergence speed of the ASV formation. Figure 11c demonstrates the variation in the bow
angle and speed of the following ship with different controllers. The experimental results
demonstrate that the method proposed in this paper can effectively realize ship formation
control and can handle the time delay disturbance.
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6. Conclusions
This paper mainly studied the cooperative control strategy of ASV formations. Firstly,

a separate state control strategy was designed based on the kinematic model of ships,
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which can control the speed and direction angle of ships within the formation to converge.
Secondly, based on consistency theory, a control strategy for multiple ASV formations
in ideal environments was designed, effectively enabling multiple ships to form and
maintain a certain formation. Then, in response to the time delay problem that occurs
during the formation of ships, a multi-ASV formation cooperative control strategy based
on consistency theory under time delay conditions was designed, and the convergence and
stability of the control strategy were proven using Lyapunov’s theorem. Finally, simulation
verification was conducted on the proposed ASV formation cooperative control strategy.
As a direction for future research, we plan to explore the interaction between autonomous
vessels and human-operated vessels, particularly in cases where human operators deviate
from expected behaviors or regulations. In addition, we will focus on incorporating
additional environmental factors, such as ocean currents, and expanding the application
scenarios of this method under different tasks.
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Abbreviations
Main Symbol Definition/Description
pi Spatial coordinates of ASV i
piF The desired relative position between ASV i and the virtual center of the formation
ηi The position and heading vector of the ASV
vi The velocity vector of the ASV
φi The heading angle of the ASV
R(φi) The standard rotation matrix of the ASV
pi The state information of the i-th ASV
ui The control input for the i-th ASV
xl

i The state variable of information which is the l-th order derivative of xi
αk The weights of the state variables
Gl(s) The open-loop transfer function matrix of the system
ϕL(s) The closed-loop transfer function matrix of the system

kvch
i , kψch

i Variable gains that measure the influence of the desired formation spacing
on the control commands
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