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Marchenko Without Up/Down Decomposition on the Marmousi Model and Retrieval
of the Refracted Waves: Are They Caused by the Marchenko Algorithm?
Mert S. R. Kiraz & Roel Snieder, Center for Wave Phenomena, Colorado School of Mines
Kees Wapenaar, Delft University of Technology

SUMMARY

Marchenko algorithms retrieve the Green’s function for
arbitrary subsurface locations, and the retrieved Green’s
function includes the primary and multiple reflected
waves. The Marchenko algorithms require the estimate
of the direct arrivals and the reflected waves; however,
most previous Marchenko algorithms also require the
up/down components of the Marchenko equation for the
Green’s function retrieval. We use the Marmousi model
to retrieve the Green’s function without using the up/-
down components of the Marchenko equation and show
that the retrieved Green’s function matches with the
numerically modeled Green’s function. We also show
that the refracted waves can be successfully produced in-
dependently from the acquisition geometry, i.e., single-
sided or two-sided; however, the retrieval of refracted
waves that arrive before the first primary waves is incon-
sistent with the requirement that the Green’s function
vanishes before the direct wave. Even though we retrieve
such refracted waves, they are caused by the injection
of the direct wave into su�ciently detailed background
velocity and density models instead of operations of the
Marchenko algorithm on the recorded wavefields.

INTRODUCTION

The Marchenko equation was first introduced by the in-
verse scattering community to make the connection be-
tween the scattered data and the scattering potential,
as well as medium reconstruction (Newton, 1980; Bur-
ridge, 1980; Chadan and Sabatier, 1989; Gladwell, 1993;
Colton and Kress, 1998). Rose (2001, 2002) utilizes the
Marchenko equation for focusing and shows that the so-
lution of the Marchenko equation creates an incident
wavefield which at t = 0 becomes a delta function at
a prescribed focusing location. Broggini and Snieder
(2012) make the single-sided autofocusing concept appli-
cable to the seismic exploration studies, and show that
we can focus the wavefield inside the unknown medium
using the surface-recorded waves. They also make the
connection between the Marchenko equation and seis-
mic interferometry (Weaver and Lobkis, 2001; Wape-
naar et al., 2005) and show that the Green’s function can
be retrieved without illumination from both sides and
without a physical receiver at the virtual source loca-
tion. Following this, Wapenaar et al. (2013) retrieve the
three dimensional Green’s function and provide a two
dimensional example of the Green’s function retrieval.
Wapenaar et al. (2013) introduce up/down decomposi-
tion of the Marchenko equation which constraints the

limitations of the Marchenko equation. The up/down
decomposition assumes that the wavefield at the focal
point propagates only in the up-down direction; there-
fore, the algorithm does not work well at large o↵sets
in layered media where refracted waves and near-surface
inhomogeneity zones exist.
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Figure 1: (a) Source and receiver configuration in the
Marmousi velocity model. The red asterisk shows the
virtual source location and the blue lines show the re-
ceiver locations in the subsurface. (b) Smooth version
of the Marmousi velocity model. (c) Density model. (d)
Smooth version of the density model.

Recently, there have been several studies to address the
limitation of the Marchenko method due to the up-
/down separation of the Marchenko equation. Kiraz
et al. (2020) show wavefield focusing for an arbitrary
point inside an unknown highly scattering inhomoge-
neous medium where we have access to the data acquired
on a closed boundary. They show that the Green’s
function for an arbitrary location in the medium can
be retrieved and the retrieved Green’s function con-
tains all the scattering e↵ects of the medium, includ-
ing primary and multiple events. They also show that
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the Marchenko focusing without up/down decomposi-
tion provides better focusing than the direct wave in-
jection focusing. Diekmann and Vasconcelos (2021) and
Wapenaar et al. (2021) present alternative approaches
to Green’s function retrieval without up/down decom-
position for single-sided acquisition, each with their own
pros and cons.

(a)

(b)

Figure 2: (a) Utotal(x, t) for the fourth iteration. (b)
Utotal(x, t)� Utotal(x,�t) for the fourth iteration.

We present and discuss a new approach to retrieve the
full Green’s function at an arbitrary depth location in
a complicated medium with a series of normal faults,
tilted blocks, horizontally layered horizons, variable ve-
locity, and variable density profiles. We extend the al-
gorithm of Rose (2001, 2002) to two dimensions where
we have access to the two-sided illumination and we
show that we can circumvent the up/down component
separation of the Marchenko equation to retrieve the
full Green’s function. We present our numerical exam-
ples using the Marmousi model for the two-sided illu-
mination where velocity and density are varying for the
Green’s function retrieval. We compare the numerically
modeled Green’s function to those obtained from the
proposed iterative algorithm and present 2D numeri-
cal examples. We also show that we can produce the

refracted waves caused by the complexity of the Mar-
mousi velocity model but their existence only depends
on the correctness of the initial estimates of the velocity
and density models. By presenting 2D numerical ex-
periments, we show that the retrieved refracted waves
have nothing to do with the iterative Marchenko al-
gorithm both in one-sided and two-sided illumination
cases; they only depend on the background velocity and
density models.

(a)

(b)

Figure 3: (a) The retrieved Green’s function using the it-
erative algorithm. (b) The numerically modeled Green’s
function.

NUMERICAL EXAMPLE AND GREEN’S

FUNCTION RETRIEVAL

Kiraz et al. (2020) give the details of the Marchenko
algorithm without up/down decomposition. While the
examples they use assume a recording array on a closed
surface, and constant velocity and variable density, we
show that the same iterative algorithm can, in prac-
tice, be applied to the two-sided illumination with vari-
able velocity, and density models. Figure 1a shows the
Marmousi velocity model and the source and receiver
geometry of our numerical experiment. The red aster-
isk in Figure 1a denotes the virtual source location and
blue lines located at the upper and lower boundaries of
the model represent the receiver locations. The virtual
source location is given by xs = 5 km and zs = 2 km
in depth. Figure 1c shows the variable density model
used for the numerical example and Figure 1d shows
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the smooth version of the density model. We use finite-
di↵erence modeling with absorbing boundaries where
surface-related multiples are excluded in the modeling.
The source wavelet is a Ricker with a central frequency
of 30 Hz.

Figure 4: Comparison of the 400th normalized trace of
the retrieved Green’s function (blue line) and the nu-
merically modeled Green’s function (red line).

For this numerical simulation, we use the two-sided data
and only show the wavefield recorded at the upper re-
ceiver array in Figure 1, and we start the iterative scheme
by modeling the direct wave using the smooth version of
the velocity and the density models given in Figures 1b
and 1d, respectively, for the virtual source location de-
noted with the red asterisk. We use the modeled direct
wave which is ingoing when injected into the medium
from the receiver arrays, and use the iterative algorithm
to define the outgoing wavefield. Figure 2a shows the
superposition of the ingoing wavefield and the outgoing
wavefield as U total(x, t) = U in(x, t) + Uout(x, t) for the
fourth iteration. The wavefield in Figure 2a is symmet-
ric in time, defined using the arrival time of the direct
arrival, for �td < t < td (approximately between the
tips of the direct arrivals at -1s and 1s). If we take
the di↵erence between the total wavefield in Figure 2a
and its time-reversed version, i.e., Udif = Utotal(x, t) �
Utotal(x,�t), all events in the interval �td < t < td
vanish as shown in Figure 2b. Figure 2a shows that the
wavefield is symmetric in time for �td < t < td, hence in
Figure 2b they vanish in this interval. Although some
energy remains in Figure 2b for �td < t < td, this
is due to numerical inaccuracies in our solution of the
Marchenko equation.

The di↵erence wavefield Udif enables us to create the
response to a virtual source located in the subsurface at
the focal point without using the up/down decomposi-
tion of the Marchenko equation. Figure 3a shows Udif

for the fourth iteration for positive times only and Fig-
ure 3b shows the numerically modeled Green’s function
for the virtual source location. The retrieved Green’s
function in Figure 3a matches with the numerically mod-
eled Green’s function in Figure 3b for t > td; however,
the retrieved direct waves do not include the refracted
waves shown between the receiver numbers 500 and 700.
This is due to the smooth version of the velocity and
density models used for the iterative scheme that is too

smooth to produce refracted waves. Figure 4 shows the
normalized trace comparison of the estimated and true
Green’s functions for the receiver number 400 for pos-
itive times only to emphasize the similarities between
the retrieved and modeled Green’s function. As a result
of our iterative solution, we retrieve the direct wave and
multiply-scattered wave information, and directly mod-
eled and retrieved Green’s functions match both in time
and amplitude.

DISCUSSION

Figure 2b shows that for positive times, the wavefield
Utotal(x, t) � Utotal(x,�t) vanishes at the receivers for
�td < t < td. If we consider this wavefield at t = 0,
the direct waves radiated at t = 0 from xs arrive at a
receiver location xR at td. If we suppose that waves
would radiate at t = 0 from a point x 6= xs, for some
receivers, those waves would arrive at a time t < td;
however, as shown in Figure 2b, no waves arrive at time
t < td. This means that waves do not radiate from any
point x 6= xs at t = 0, and the retrieved Green’s function
therefore is, up to a multiplicative constant, the Green’s
function.

The retrieved Green’s function shown for positive times
only in Figure 3a matches with the numerically modeled
Green’s function in Figure 3b except for the refracted
waves, and Figure 4 shows that the Marchenko algo-
rithm without up/down decomposition retrieves the pri-
mary and multiple events for the variable velocity and
density Marmousi model. However, because we inject
the wavefield from a limited aperture (blue lines in Fig-
ure 1) back into the medium in the iterative process, we
use a cosine taper on both right and left edges of the
wavefield to suppress truncation artefacts. Therefore,
the right and left sides of the retrieved Green’s function
are reduced by the taper, leading to a poor match of the
retrieved and the modeled Green’s function around the
edges of the receiver aperture.

The major di↵erence between the retrieved and the mod-
eled Green’s function can be seen around the direct ar-
rivals. The modeled Green’s function in Figure 3b shows
that due to the virtual source location and complexity of
the medium, refracted waves are present in the recorded
Green’s function; however, the retrieved Green’s func-
tion in Figure 3a does not include the refracted waves
around the direct arrivals. The lack of the refracted
waves in the retrieved Green’s function is due to the
smoothness of the velocity and density models used to
model the direct arrivals. For comparison, Figures 5a
and 5b show less smooth version of the velocity and
density models, respectively, than the one we use in the
iterative process for the same source and receiver loca-
tions. Using these velocity and density models, Figure
5c shows the retrieved Green’s function without up/-
down decomposition and the labels R1, R2, and R3 in
Figure 5c show the observed refracted waves which are
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not present in Figure 3a. We see that both retrieved
Green’s functions in Figures 3a and 5c, are similar to
each other for times when t > td. This indicates that the
proposed Marchenko algorithm without up/down de-
composition retrieves the primaries and multiples; how-
ever, the retrieved refracted waves do not come from the
Marchenko iterations but depend on the spatial varia-
tions of the velocity and density models used to model
the direct arrivals.

(a)

(b)

(c)

(d)

Figure 5: (a) Smooth version of the velocity model. (b)
Smooth version of the density model. (c) The retrieved
Green’s function. (d) The retrieved Green’s function
using only the upper acquisition boundary.

The one-sided illumination does su�ce to include the
refracted waves using a less smooth version of the ve-

locity and density models. Figure 5d shows an estimate
of the Green’s function from the direct wave injection
only from the upper acquisition boundary (upper blue
line) in Figure 5a and the labels R1, R2, and R3 de-
note the recorded refracted waves. The refracted waves
are present despite the single-sided acquisition and de-
spite the fact that the direct wave injection does not
include any iterations of the Marchenko algorithm. Fig-
ure 5d shows that the refracted waves depend only on
the initial estimates of the velocity and density models
and on the injection of the direct wave. The acquisition
boundary, either one-sided or two-sided, and the itera-
tions of the Marchenko algorithm do not a↵ect the ob-
served refracted waves. Figure 5d also shows that the re-
fracted waves even with the direct wave injection match
well with the numerically modeled refracted waves (see
Figure 3b). The direct wave injection produces the re-
fracted waves and this shows that the retrieval of these
refracted waves is not the result of the Marchenko al-
gorithm. While these observations still require further
investigation, we claim that the accurateness of the re-
fracted waves in this experiment depends only on the ini-
tial estimate of the velocity and density models, rather
than on the iterative processing of recorded waves in the
Marchenko algorithm.

CONCLUSIONS

We present the Green’s function retrieval without up-
/down decomposition using the Marmousi model. We
show that we can retrieve the Green’s function for an ar-
bitrary depth location independent of the medium com-
plexity. Our retrieved Green’s function retrieves both
the primary and multiple events of the heterogeneous
subsurface model. We also successfully produce the re-
fracted waves in the retrieved Green’s function when
detailed velocity and density information are available
for the initial estimate of the direct waves. We com-
pare the e↵ects of the background velocity and density
models for one-sided and two-sided illumination on pro-
ducing the refracted waves. Our results show that the
observed refracted waves only depend on the initial esti-
mates of the velocity and density models, and are not a
result of the Marchenko algorithm. The refracted waves
can be produced even at the first iteration when the
velocity and density models have detailed information
about the subsurface, these refracted waves do not arise
because of the iterative Marchenko algorithm.
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