Quantification of thermal resilience in buildings Evaluation of Building Envelope Performance and Operational Parameters

Building Technology Graduation Project Nathanail Tzoutzidis | 5611725

Simona Bianchi, Resilient Structural & Climate Design Charalampos Andriotis, Al in Structural Design & Mechanics Jonathan Ciurlanti, Arup

"I am developing a **dynamic** computational **workflow**, that can be utilized at the **early stage** of the design process, for assessing the **thermal resilience** of buildings against extreme over heat stresses, by alternating building's and material **properties**."

Climate Change & & Early Design Support

Intro

Definition

"Thermal resilience is the capability of the building to prepare, absorb, adapt and recover from overheating events."

Resilience

Definition

"Thermal resilience is the capability of the building to prepare, absorb, adapt and recover from overheating events."

Resilience

Key Performance Indicators

Indoor comfort

Energy Demand

Environmental Analysis

Early design support

MIT CSHub: Buildings Life Cycle Assessment

- **gain new knowledge** regarding the field of **thermal resilience** in buildings by pointing out the thermal resilience **definition** and its **indicators** that should be quantified
 - implement uncertainty quantification method in order to point out the probability of results
- define a **computational workflow** for assessing thermal resilience of buildings against overheating via dynamic environmental simulation method
- bridge the gap between qualitative and **quantitative assessment** of thermal resilience in buildings and indicate the **influence** of facade and buildings systems **parameters** to **performance**

"In what manner can a digital design **workflow** be devised to assess the **thermal resilience** of buildings against **extreme heat wave** stresses, and how it can support designers and engineers in the **decision-making** process during the **early** design **stage**?"

Research question

Influential parameters Probabilistic approach

Case Study

Facade set up

Workflow

Overview of the simulation model

Core of the GH model

Simulation Results

Workflow

Correlation matrix

Simulation Results

Inter-relationships among problem variables

Sensitivity Analysis workflow

			t_c	cond_c	den_c	c_c	tabs_c	sabs_c	vabs_c	t_xps	cond_xps	den_xps	c_xps	tabs_xps	sabs_xps	vabs_xps	t_al	cond_al	den_al	c_al	tabs_al	sabs_al	vabs_al	U-value	g-value	Vtrans	WWR	ACH	EXVH	ppl/m^2	Infil	flow/p
	EUI	[kWh/m ²]	-0.05	0.22	0.24	0.15	0.03	0.09	-0.01	-0.17	0.02	-0.24	-0.14	0.02	0.01	0.01	0.03	0.01	0.01	0.01	0.01	0.01	0.00	0.65	0.73	0.54	0.84	0.72	0.12	0.18	0.11	0.14
	Cooling	[kWh/m ²]	-0.01	-0.17	0.19	0.05	-0.02	0.02	0.02	0.22	0.13	0.22	-0.16	0.01	0.01	0.01	0.01	-0.02	-0.04	0.03	0.00	0.01	0.00	0.52	0.89	0.71	-0.78	-0.86	-0.09	-0.16	0.06	0.16
ŝ	Mech Vent	$[kWh/m^2]$	0.03	0.12	-0.23	0.02	-0.03	-0.04	0.06	0.15	-0.14	-0.26	0.18	-0.03	-0.01	-0.05	0.01	-0.01	-0.03	0.00	-0.01	-0.01	0.01	-0.25	0.35	-0.43	-0.57	0.14	0.25	-0.23	0.08	-0.31
able	Cooling	[kWh]	0.15	-0.21	-0.17	-0.03	0.02	-0.02	-0.04	-0.16	0.06	0.25	-0.12	0.01	0.03	-0.01	-0.01	0.03	0.02	-0.02	-0.02	-0.01	0.01	-0.58	-0.91	0.77	0.72	0.82	-0.05	-0.26	-0.07	0.13
vari	Mech Vent	[kWh]	-0.05	0.16	-0.28	-0.01	0.01	0.04	0.03	0.19	-0.07	0.14	0.24	0.01	0.04	-0.04	-0.03	0.03	-0.01	-0.01	0.03	-0.01	-0.01	0.27	-0.32	-0.38	0.51	-0.20	-0.34	0.15	0.12	-0.41
, tuc	Edemand	[kWh]	0.12	-0.19	-0.16	0.05	0.01	-0.03	-0.01	0.10	-0.05	-0.17	0.11	0.03	-0.06	0.01	0.01	-0.02	0.01	-0.03	0.00	0.01	0.00	-0.68	0.72	0.58	-0.87	-0.71	0.06	0.24	-0.10	0.25
Jut	PMV	[-3,,+3]	0.22	0.41	0.32	0.15	0.00	0.03	0.01	0.33	0.08	-0.39	-0.41	-0.04	0.01	0.01	0.02	0.01	0.06	0.03	0.01	0.02	0.01	0.49	0.64	0.43	0.52	0.48	-0.05	0.28	0.05	0.02
0	T _{oper}	[°C]	-0.13	-0.57	0.45	0.02	0.06	-0.01	0.06	-0.58	0.01	-0.43	-0.46	-0.04	-0.03	0.03	-0.01	-0.02	0.04	0.00	-0.01	0.00	-0.02	-0.78	-0.89	-0.64	-0.95	0.82	0.03	-0.16	0.03	-0.14

Post-proccesing

Total-order highest score

λ: Conductivity (concrete)
p: Density (concrete)
t: Thickness (xps)
Specific Heat Capacity (xps)
U-value (glass)
SHGC (glass)
Visible transmittance (glass)
Wall Window Ratio
Airchange per hour

Sensitivity Analysis - Energy demand

Sensitivity Analysis - Operative temperature Total-order sensitivity indices

Probability of the results

3.5

Energy demand

32500 35000 37500 40000 42500 45000 47500 Cooling [kWh]

Quantification

of Uncertainty

800

Thermal Comfort

Post-proccesing

Probability of the Temperature results

Post-proccesing

$$R_{Loss} = \int_{t_0}^{t_1} [100 - P(t)] dt$$

$$R_{Loss} = \int_{t_0}^{t_1} [100 - P(t)] dt$$

		Hazard penalty
	Inhabitable level	0.7
0		
9	Habitable level	0.5
3	Acceptance level	0.2
	Comfort level	0.1

$$R_{Loss} = \int_{t_0}^{t_1} [p_{(t)}^{optimised} - p_{(t)}^{real}] dt$$

Thermal Resilience Performance

Thermal resilience performance: different **wall-window ratio**

Entire building

Thermal resilience performance: different **solar-heat gain coefficient** (G-value)

Entire building

Thermal resilience performance: different **air change/h** (ACH)

Entire building

Thermal resilience performance: different glazzing **thermal transmittance** (U-value)

Entire building

Thermal resilience performance: floor comparison

Thermal resilience performance: floor - atrium comparison

Results per thermal zone

Thermal resilience performance: different ACH in atrium

Conclusion & Discussion

Influential parameters

Building Performance for different case scenarios

Thermal Zone Comparison

Building performance: thermal zone comparison

Discussion

Large data handling and deep knowledge of climate modeling

Time-consuming and high computational cost process

Levels of comfort can vary for different building types

Research insights

Multidisciplinary research that engages the fields of building, climate, computer sciences

Further Development

Suggestions for Further development

Labelling buildings according to their Resilience Class

Entire building simulation with **eppy** library

Expand to the **urban scale** Urban Heat Islands

55

Implementation of **RL** and CNN in existing buildings

Thank you!

June 2023