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Traffic Flow on a Ring with a Single Autonomous
Vehicle: an Interconnected Stability Perspective

Vittorio Giammarino, Simone Baldi, Paolo Frasca and Maria Laura Delle Monache

Abstract—In recent years, field experiments have been per-
formed on ring roadways with human-driven vehicles or with
a mix of human-driven and autonomous vehicles. While these
experiments demonstrate the potential for controlling traffic
flows by a small number of autonomous vehicles, the theoretical
framework about such a possibility is to a large extent incom-
plete. Indeed, most work on mixed traffic focused on classical
asymptotical stability notions, neglecting that human drivers are
prone to the interconnected instability known in the literature as
string instability. This work aims to enhance the existing theories
to meet the questions raised by the field experiments. It starts
from the observation that the standard notion of string stability
on a ring roadway is too demanding for a mixed traffic scenario:
therefore, a new interconnected stability definition, named weak
ring stability, is proposed. This new interconnected stability
notion, in combination with classical stability, is able to explain
phenomena observed in field experiments and to highlight possi-
bilities and limitations of traffic control via sparse autonomous
vehicle. Furthermore, it allows designing AV controllers with
improved string stability specifications, at the price of reducing
the sparsity of the autonomous vehicles.

Index Terms—String stability, control of traffic flow, stability
of traffic, autonomous vehicle, ring roadway.

I. INTRODUCTION

Several experimental settings have reproduced spontaneous
emergence of stop-and-go waves in traffic flow. The first
experiment of this kind is due to Sugiyama et al. in [1], who
conducted an experiment with twenty-two Human-driven Vehi-
cles (HVs) on a single-lane ring roadway as an approximation
for an infinite open road. This experiment demonstrates how
human driving behavior can be responsible of triggering stop-
and-go waves. Recent advances in automation have brought
forward the idea of exploiting Autonomous Vehicles (AVs) to
dissipate stop and go waves and control traffic [2]–[7]. In
2018, Stern et al. [8] demonstrated experimentally that a single
autonomous vehicle is able to dampen stop-and-go waves in
the ring setup of [1]. In this ring setup, which approximates an
open road in which AVs are sparsely introduced, controlling
the AV dynamics is sufficient to prevent and even dissipate
stop-and-go-waves.

V. Giammarino is with Division of Systems Engineering, Boston University,
15 St Marys St, Brookline, MA 02446, USA and was with Delft Center for
Systems and Control, Delft University of Technology (TU Delft), 2628 CD
Delft, The Netherlands vittoriogiammarino@gmail.com

S. Baldi (corresponding author) is with School of Mathematics, Southeast
University, Nanjing, China, and with Delft Center of Systems and Control,
TU Delft, 2628 CD Delft, The Netherlands s.baldi@tudelft.nl

P. Frasca is with Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, GIPSA-
Lab, 38000 Grenoble, France paolo.frasca@gipsa-lab.fr

M. L. Delle Monache is with Univ. Grenoble Alpes, Inria,
CNRS, Grenoble INP, GIPSA-Lab, 38000 Grenoble, France
ml.dellemonache@inria.fr

Despite this practical evidence of the possibility of con-
trolling traffic flows via a limited number of autonomous
vehicles, the theoretical analysis around these experiments is
still not complete. In fact, research on the effects of AVs on
traffic has mostly focused on classical asymptotical stability
notions: that is, perturbations around the equilibrium flow
should be disappear as time goes by [9]. These studies, in
fact, neglect another type of instability known in literature as
interconnected or string instability, which is often observed
in multi-vehicle platoons [3], [10]–[12]: a flow is said string
stable if the effect (e.g. energy or magnitude) of a disturbance
acting on one vehicle is not amplified throughout the platoon
interconnection. Even when the flow is stable in the classical
asymptotic sense, a string unstable flow can amplify distur-
bances over transients as per effect of vehicle interaction.
To the best of our knowledge, the only paper looking at a
single-lane lane string stability for heterogeneous platoons is
[13], whose authors study the linearized model presented in
[14] and derive a numerical bound for the penetration rate
of the AVs to stabilize traffic. In this work, we extend the
existing theories and provide a theoretical framework for the
aforementioned experiments by studying both classical and
interconnected stability on the ring roadway. Our framework
is based on Linear Time Invariant (LTI) systems theory: this
choice is consistent with most analytic studies on the topic
of mixed traffic [13], [15]–[18], relying on linearization of
the nonlinear vehicle dynamics around the equilibrium flow.
Furthermore, LTI systems allow us to work in the frequency
domain, in which string stability lends itself to a natural
characterization based on the ratio of two transfer functions.
Nonlinear analysis methods have been considered in literature
[19], which however do not give insight on the design of
stabilizing AVs.

Our analysis starts from the observation that the standard
notion of string stability on a ring roadway is too demanding
for a mixed traffic scenario, since human drivers are prone
to string instability (and this drawback also affects current
ACC systems [20], [21]). A new definition, named weak
ring stability, is therefore proposed (Section II). Classical
asymptotic stability and weak ring stability are analyzed,
first for the homogeneous HVs case and then for the mixed
HVs-AV scenario (Sections III and IV, respectively). For
both scenarios, it is shown that recently proposed sufficient
conditions for classical stability [15], [22] can be very conser-
vative, while a necessary and sufficient condition for classical
stability for a ring of homogeneous HVs is formulated. It
is shown that the proposed weak ring stability notion, in
combination with classical stability, can explain the oscillatory
phenomena occurring in the field experiments of [1], [8].

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works. 
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Fig. 1: Scheme and notation for interconnected vehicles.

Fig. 2: Block-diagram for interconnected vehicles on a line.

The weak ring stability notion also completes the currently-
known range of possibilities and limitations of traffic control
via sparse autonomous vehicle [22]: most notably, it indicates
how to design mixed traffic scenarios with improved string
stability specifications (dampening any oscillation). Key to this
development is studying the AV controller originally proposed
in [17], which employs a Proportional Integral (PI) control
with saturation: once its limitations are understood, we can
propose a novel design that partly overcomes them. Indeed,
string stability can be ensured at the price of reducing the
sparsity of the autonomous vehicles (Section V).

Summarizing, the contributions of this work are: (i) a neces-
sary and sufficient condition for classical stability for a ring of
homogeneous HVs (Theorem 1); (ii) a theoretical framework
for classical and string stability of HVs and mixed HVs-AV
traffic on ring roadways (Definition 4, Theorem 2); (iii) a
novel design procedure for AVs with improved performance
(Theorem 3); and (iv) a discussion of the experimental findings
in the light of our theoretical developments (Section VI).

Notation: The following notation is used throughout the
paper: C, R, N are the sets of complex, real and natural
numbers, || · ||∞ is the H∞-norm in systems theory, On×m is
the n×m zero matrix, and In is the n×n identity matrix. The
product of elements in a set {xj : j = 1, . . . , n} is written as∏n
j=1 xj , where by convention the product is 1 if the set is

empty, i.e.
∏
j∈∅ xj = 1.

II. STRING STABILITY DEFINITIONS

In this section we provide the string stability definitions
that are relevant to our work. We begin our presentation by
recalling the relevant notions for vehicles on a line, before
moving to our case of interest of the ring.

A. String Stability on the Line

Fig. 1 provides a graphical representation of the interaction
between two adjacent vehicles in a predecessor-follower topol-
ogy (also known as one-vehicle look-ahead interconnection).
Let us recall some standard interconnected stability definitions
with such a topology, noting that different topologies might
require modified versions of the definitions stated in this
section [10]. Let us assume for each vehicle i the linear stable
vehicle model

yi(s) = Pi(s)ur(s), s ∈ C (1)

where yi(s) and ur(s) are respectively the Laplace transforms
of the vehicle output yi(t) and of the exogenous input ur(t)
in Fig. 1. Typical outputs and inputs are velocities and accel-
eration commands, respectively, although different choices are
also possible [23]: for example, ur(s) can also be seen as an
exogenous disturbance acting on the vehicles. From (1), it is
possible to define

yi(s) = Γi(s)yi+1(s), Pi(s) = Γi(s)Pi+1(s), (2)

being Γi(s) the transfer function between two adjacent vehi-
cles outputs. A platoon is said to be ”homogeneous” if all
vehicles have identical dynamics in (2) (Γi = Γ ∀i), and
”heterogeneous” otherwise. The interconnection of N possibly
heterogeneous vehicles is given in Fig. 2 and leads to the
transfer function:

yi(s) = PN (s)

N−1∏
j=i

Γj(s)ur(s). (3)

Based on (1)-(3), two notions of string stability on the line
arise, named for brevity as line stability:

Definition 1 (Strong Line Stability (SLS) [23]). Consider the
linear line interconnected system whose input-output relation
is described by (1) and (2). Then, the system (3) is said to be
strong line stable if

||PN (jω)||∞ is finite; (4)
||Γi(jω)||∞ ≤ 1 ∀i ∈ {1, . . . , N − 1}, ∀N. (5)

Definition 1 prevents amplification of the disturbance ur
between a vehicle i and its predecessor i + 1 (||Pi||∞ =
||ΓiPi+1||∞ ≤ ||Pi+1||∞). A weaker definition requires de-
creasing H∞-norm on a fixed-length line, which does not
exclude ||Γi||∞ > 1:

Definition 2 (Weak Line Stability (WLS)). Consider the
linear line interconnected system whose input-output relation
is described by (1) and (2). Then, the system (3) is said to be
weak line stable if there exists a number N of vehicles such
that

||PN (jω)||∞ is finite; (6)
||Pi(jω)||∞ ≤ ||Pi+1(jω)||∞ ∀i ∈ {1, . . . , N − 1}. (7)

From a physical point of view, the H∞-norm represents
the L2 induced gain, i.e. the ratio between the energy of
output and input signals [10], [23]. Both strong and weak
string stability require decreasing the induced gain as per (7).
However, Definition 1 asks (7) to hold for any arbitrary N
(uniformity with respect to N ), whereas Definition 2 asks
(7) to hold for a fixed string length N : in fact, (7) can fail
for too large N when ||Γi||∞ > 1 (lack of uniformity with
respect to N ). Different relaxations to Definition 1 have been
studied in literature, such as the head-to-tail string stability
[4]. In this work we consider a relaxation in the sense of
Definition 2 motivated by analogous definitions for platoons
on a ring, which are the object of the next subsection. These
two notions motivate two analogous definitions for platoons
on a ring, which are the object of the next subsection.
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Fig. 3: Block-diagram for interconnected vehicles on a ring.

B. String Stability on the Ring

The concept of string stability on a ring road topology is
now considered, named for brevity as ring stability. The block
diagram representation for N possibly heterogeneous vehicles
on a ring is given in Fig. 3, and leads to the following transfer
function:

yi(s) = F
(N)
i (s)ur(s), F

(N)
i (s) = Γi(s)F

(N)
i+1 (s), (8)

F
(N)
i (s) =

∏N−1
j=i Γj(s)

1−
∏N
j=1 Γj(s)

PN (s) (9)

Even with the same number of vehicles N , ring and line
present different structures, as the distribution of poles in the
complex plane differs between (3) and (9). In (3), all poles
are certainly in the left half-plane; the same does not hold
in general for (9), as unstable poles might arise regardless of
having stable poles in Pi(s). Consequently, one cannot directly
apply definitions given for a line: the notion of ring stability
is less studied in literature and the most common one involves
homogeneous platoons with Γi = Γ, ∀i and

F
(N)
i (s) =

ΓN−i(s)

1− ΓN (s)
PN (s). (10)

Definition 3 (Strong Ring Stability (SRS) [24]). Consider the
linear homogeneous ring interconnection whose input-output
relation is described by (8) (with Γi = Γ,∀i). Further, assume
||Γ||∞ ≤ 1. Then, the system (10) is said to be strong ring
stable if there exists c > 0 such that

||F (N)
i (jω)||∞ ≤ c i ∈ {1, . . . , N} ∀N. (11)

It is shown in [24] that SRS is equivalent to SLS for
homogeneous platoons. Definition 3 is too restrictive in the
applications, for several important reasons:
(a) It assumes ||Γ||∞ ≤ 1 for all vehicles. Unfortunately, all

human-driven vehicle models require ||Γ||∞ > 1 [18].
(b) It is based on homogeneity, i.e. it does not allow to

consider a mixed traffic situation in which automated
vehicles appear together with human-driven vehicles.

(c) Even though ||Γ||∞ ≤ 1 is sufficient to ensure stability
of (10), it is not necessary, since despite ||Γ||∞ > 1,
F

(N)
i (s) might have all its poles in the open-left-half

plane. These cases are excluded by Definition 3.
These drawbacks make the definition unsuitable to be

applied to Sugiyama’s or Stern’s experiments [1], [8]. To
overcome these drawbacks, we propose a weaker notion of
ring stability:

Definition 4 (Weak Ring Stability (WRS)). Consider the lin-
ear possibly heterogeneous ring interconnection whose input-
output relation is described by (8). Then, for fixed N , system
(9) is said to be weakly ring stable if

||FNi (jω)||∞ is finite; (12)

||F (N)
i (jω)||∞ ≤ ||F (N)

i+1 (jω)||∞ i ∈ {1, . . . , N}. (13)

Remark 1 (Benefits of WRS). Definition 4 implies that the
effect of the worst-case disturbance is not amplified. Notably,
as compared to Definition 3, we have that Definition 4:
(a) can address platoons of heterogeneous vehicles;
(b) does not require ||Γi||∞ ≤ 1;
(c) covers the cases where (9) is stable although ||Γi||∞ > 1.

III. TRAFFIC WITH HUMAN DRIVERS

This section examines human-driven vehicles on a ring, by
providing first their model and then classical stability and ring
stability properties.

A. Human-driven Vehicle (HV) Model

The Optimal Velocity-Follow The Leader (OV-FTL) is a
popular model for human driving behavior, taking the form

ẋi = vi i ∈ {1, . . . , N},

v̇i =
vi+1 − vi

(xi+1 − xi)2
a+ [V (xi+1 − xi)− vi]b

(14)

where xi is the position of vehicle i and vi its velocity. Define
hi = xi+1 − xi as the headway, and note that N + 1 = 1,
being the platoon on a ring. The nonlinear function V (hi) is

V (hi) =
tanh(hi − lv − ds) + tanh(lv + ds)

1 + tanh(lv + ds)
vmax (15)

being lv the vehicle length and ds > 0 a safety distance
between vehicles; (15) determines the desired speed since it
tends to zero for small hi and approaches vmax for large hi.
The parameters a > 0 and b > 0 in (14) represent weights
between the OV and the FTL models [25]–[27].

Dynamics (14) has equilibrium

xi+1 − xi = h∗ =
lr(N)

N
vi = vi+1 = v∗ = V (h∗)

(16)

where lr(N) is the circumference of the ring. Note that,
in order to keep the same h∗ when varying N , we vary
lr proportionally, that is why we write lr(N). Around this
equilibrium the dynamics can be linearized as

ẋi = vi i ∈ {1, . . . , N} (i = N + 1 = 1)

v̇i = (vi+1 − vi)ā+ [(xi+1 − xi)k̄ − c̄− vi]b̄
(17)

The linearization coefficients in (17) are calculated as:

k̄ =
∂V (h∗)

∂hi
=

1− tanh2(h∗ − lv − ds)
1 + tanh(lv + ds)

vmax,

ā =
a

h2
∗
, b̄ = b, c̄ = −k̄h∗ + V (h∗).

(18)

The linearized model (17) broadly appears in traffic flow
literature (cf. [18] and reference therein). In this literature it is
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Fig. 4: Schematic model of the ring road topology.

common to consider a homogeneous human driving behavior:
under such simplification, the HV dynamics in (17) result in
the transfer function

Γ(s) =
ās+ b̄k̄

s2 + (ā+ b̄)s+ b̄k̄
(19)

derived by taking vi as the output yi in (2). It can be verified
that the same transfer function is obtained using yi = vi−vi−1.
[23], [28].

When put in a ring topology as in Fig. 4, the linearized OV-
FTL model gives rise to a linear system which is the equivalent
state-space formulation of (19):

χ̇1

...
χ̇N−1

χ̇N

=


A1 A2 O2×2 · · · O2×2

. . . . . .

O2×2 · · · O2×2 A1 A2

A2 O2×2 · · · O2×2 A1


︸ ︷︷ ︸

A


χ1

...
χN−1

χN

+


0

...
0

Br


︸ ︷︷ ︸
B

ur

(20)
where

A1 =

[
0 −1

b̄k̄ −ā− b̄

]
A2 =

[
0 1

0 ā

]
Br =

[
0

1

]
, (21)

χi =
[
xi+1 − xi − h∗, vi − v∗

]T
and where ur in (20) rep-

resents an external disturbance, which is taken for convention
acting on vehicle N .

B. Classical stability criteria

Before proceeding to the analysis of stability of (20) in
the classical (asymptotic) sense, one observation is in order.
As already observed in [15], the matrix A in (20) necessarily
has one eigenvalue equal to 0 and its corresponding nontrivial
eigenspace is spanned by the eigenvector u = [1, k̄, . . . , 1, k̄]T .
This fact means that the dynamics of χ and the dynamics
of χ + αu coincide for any scalar α: note that replacing χ
with χ+αu would mean increasing all intervehicle distances
and vehicle speeds by quantities whose ratio is 1/k̄. However,
we are assuming the ring length to be fixed and therefore
by definition

∑N
i=1 χi = [0,

∑N
i=1 vi − Nv∗]: this constraint

implies that the dynamics actually cannot evolve along the
eigenvector u. For this reason, in our stability analysis we

TABLE I: Standard values used for the numerical analysis.

Variable name Symbol Value
Vehicle length lv 4.5m

Maximum vehicle velocity vmax 9.75m/s
Safety distance ds 6m

shall disregard the presence of this zero eigenvalue, similarly
to what was done in [28], [29]: this choice is equivalent
to removing the redundant states that arise from the ring
structure by a suitable change of variable. To remind the
reader that classical stability shall be established up to this
structurally unavoidable zero eigenvalue, we shall say that
matrix A is structurally stable when all its eigenvalues are
negative, except the zero eigenvalue associated to u: also,
whenever unambiguous, we will refer to this classical stability
notion simply as stability. Note that literature conveniently
assesses structural stability in the time domain via eigenvalue
analysis of matrix A [15], [16], [22]; on the other hand, the
different notions of string stability were conveniently studied
in the frequency domain via transfer function analysis (cf. [23],
[30] and [24], [28], [29] for line and ring configurations).

A sufficient condition for structural stability of (20)-(21) is
known in literature.

Lemma 1 (Sufficient condition for stability [15]). Consider
the linear state-space system (20) arising from the ring inter-
connection of Fig. 4. Then, its equilibrium (16) is structurally
stable if

2ā+ b̄ ≥ 2k̄ (22)

Although (22) provides a simple analytical result to check
stability of (20)-(21), it can be conservative, especially for
relatively small N (conservativeness of (22) will be illustrated
in Section III-C). Therefore, we propose a necessary and
sufficient condition which removes this conservativeness.

Theorem 1 (Necessary and sufficient condition for stability).
Consider the linear state-space system (20) arising from the
ring interconnection of Fig. 4. Then, its equilibrium (16) is
structurally stable if and only if

−1

2
γi ±

1

2

(√
r2
i + (ηi + 2γiφi)2 + ri

2

)1/2

≤ 0, (23)

with

γi = ā+ b̄− ā cos

(
2π(i− 1)

N

)
, (24)

φi = −ā sin

(
2π(i− 1)

N

)
, ηi = 4b̄k̄ sin

(
2π(i− 1)

N

)
,

(25)

ri = γ2
i − φ2

i − 4b̄k̄

(
1− cos

(
2π(i− 1)

N

))
, (26)

for all i ∈ {1, . . . , N} and the inequality is strict except for
the structural zero eigenvalue that can be found by putting
i = 1 and ”+” in (23).

Proof: See Appendix.
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C. Numerical analysis of stability

Let us investigate numerically the stability and WRS of
(20)-(21) for different pairs (a, b) and by varying the number
of vehicles N on the ring. The parameters in (15) are as in
Tab. I. In line with the experiment of Sugiyama, the headway
equilibrium is taken as h∗ = 11.81m, resulting in k̄ = 1.2163.

We begin by studying stability of (20)-(21) via Theorem 1
for different vehicle numbers N . In the (a,b)-plane, Fig. 5
illustrates that the stability region decreases by increasing N .
The color-bar on the right-hand side associates colors with
different numbers of vehicles N . For instance, the dark-blue
area on the top-left is the instability region related to N = 3.
Increasing to N = 5, an additional area (blue) turns unstable.
Eventually, for N → ∞ the instability region converges to
the condition in (22) that is represented by a white line.
The conservativeness of (22) arises from the fact that it is
equivalent to ||Γ||∞ ≤ 1 and therefore does not take into
account the cases in which, despite ||Γ||∞ > 1, the equilibrium
of (20) is in fact stable.

Next, we proceed to fix some specific values of (a, b) and
let N vary. Namely, we select

a = 20 b = 0.5 (27)
which have been proposed in literature for human drivers from
field data [8], [17] and consider the two exemplary cases of
N = 3 and N = 22. For N = 3, we can see that we have
stability (cf. the × sign in Fig. 5). According to Definition 4,
Fig. 6a shows that the peaks of F

(N)
i (s) decrease while

moving from vehicle 3, where the disturbance acts, to vehicle
1. Fig. 6b verifies the numerical analysis by simulating the
nonlinear OV-FTL (14) with an impulse disturbance acting on
vehicle 3 at t = 60s. The disturbance is not amplified between
vehicles and its effect is rejected in about 40s, indicating both
stability and weak ring stability. Instead, for N = 22 as in
Sugiyama’s experiment, system (20)-(21) resulting from (27)
is unstable. These evidences suggest that the wide oscillations
seen in Sugiyama’s experiment should be an outcome of the
instability of the equilibrium, which consequently produces
the onset of nonlinear oscillatory phenomena (Fig. 7 shows
Sugiyama’s experiment reproduced in simulations).

IV. TRAFFIC WITH SINGLE AUTONOMOUS VEHICLE

This section studies a dynamics that describes the experi-
ments in [8], where an AV is placed in the ring. We adopt the
following convention: the AV is taken as the N -th vehicle,
i.e. the AV follows vehicle 1 and precedes vehicle N − 1.
Consequently, we indicate with ΓAV the transfer function from
v1 to vN . Consider the following state-space formulation for
the linearized platoon with N − 1 HVs and a single AV:

χ̇1

...
χ̇N−1

χ̇N

 =


A1 A2 O2×2

. . . . . .

A1 A2

−AAV . . . O AAV




χ1

...
χN−1

χN

+


0

...
0

Br

ur,
(28)

with A1, A2 and Br as in (21) and AAV = [0 1; 0 0]. The
literature provides us with the following stabilizability result.

Lemma 2 (Stabilizability of mixed platoons [15]). The linear
state-space system in (28) is structurally stabilizable for all
N ∈ N.

Lemma 2 states that it is possible to stabilize any pla-
toon of N vehicles by means of a single AV, even though
the stabilization of a large number of vehicles would incur
performance limitations underlined in [22]. Since Lemma 2 is
not a constructive result, it is important to have a criterion to
verify whether a specific form of AV dynamics stabilizes the
platoon. A sufficient condition for stability of a mixed HV-AV
platoon is conjectured in [22], as an extension of the sufficient
condition in Lemma 1. Such a conjecture is now proven:

Theorem 2 (Sufficient condition for stability of mixed pla-
toons [22]). Consider Γ(s) as in (19) and ΓAV (s) the transfer
function of the AV dynamics. The equilibrium of (28) is
structurally stable if

|Γ(jω)|1− 1
N · |ΓAV (jω)| 1N ≤ 1 ω ∈ R (29)

where 1
N represents the ratio between HVs and AVs.

Proof: See Appendix.

Theorem 2 poses two natural questions.
• Since it was shown that the condition in Lemma 1 is

conservative for HVs (cf. Fig. 5), it is interesting to see
to what extent (29) is conservative for mixed platoons.

• Some AV designs have been proposed in the literature
[17], and even used for the experiments in [8], but it is
unclear if these designs meet condition (29).

Let us now address these two questions. We first focus on the
AV controller, recalling AV designs in literature and proposing
a novel design. Next, we investigate how conservative (29) is,
showing that the condition is tight for large platoons.

A. Analysis of state-of-the-art AV control: PI with saturation

The starting point is the PI with saturation AV introduced
in [17], whose nonlinear dynamics are

ẋN = vN

v̇N = Kveh(αvtarget + (1− α)v1 − vN )
(30)
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Fig. 6: WRS analysis and nonlinear simulation of the ring with N = 3, a = 20 and b = 0.5. An impulse disturbance at t = 60s
is not amplified denoting weak ring stability.
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Fig. 7: Nonlinear simulations with N = 22, a = 20 and b = 0.5, showing backward-travelling stop-and-go waves in line with
Sugiyama’s experiment.

where vtarget and α are defined via

vtarget = Vd + min
(

max
(x1 − xN − 7

δ
, 0
)
, 1
)

Vd =
(vN + v1

2

)
∆xs = max

(
2(v1 − vN ), 4

)
α = min

(
max

(x1 − xN −∆xs
γ

, 0
)
, 1
)
.

(31)

As commonly considered in [31], δ > h∗ − 7, which leads to
the following linearization

ẋN = vN

v̇N =Kveh

(
(1− α)v1 + α

vN + v1

2
+ α

x1 − xN − 7

δ
− vN

)
=
Kvehα

δ
(x1 − xN )−Kveh

(
1− α

2

)
vN

+Kveh

(
1− α

2

)
v1 − 7

Kvehα

δ
.

The corresponding transfer function is therefore

ΓAV (s) =
Kveh[(1− α

2 )s+ α
δ ]

s2 +Kveh(1− α
2 )s+Kveh

α
δ

. (32)

Using a condition similar to (22), it is possible to verify
that ||ΓAV ||∞ > 1 for any choice of the parameters. Since
in practice it happens that ||Γ||∞ > 1 for the HVs, we can
conclude that, according to the linear criteria proposed in this
work, the stabilizing AV in the experiments of [17] does meet
weak ring stability criteria (we will further elaborate on our
interpretation of the these experiments in Section V). In order
to overcome this apparent lack of string stability, clearly it is
preferable for the AV to have ||ΓAV ||∞ ≤ 1, so as to damp
the frequency peak of the HVs according to (13). Note from
(32) that the AV is merely a second-order system with little
degrees of freedom with respect to frequency shaping. In order
to improve the overall platoon performance, it is therefore
crucial to build on the previous analysis to improve the design
in [17] and accomplish some form of ring stability.
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B. Proposed AV control design

In view of the poor properties of AV dynamics (30), we
propose the following improved design

ẋN = vN (33)
v̇N = Kveh(αvtarget + (1− α)v1 − vN ) + c(vAV ∗ − vN )

with variables as in (31), being vAV ∗ the desired velocity of
the AV at equilibrium and c > 0 to be designed. Similarly to
the previous design, δ > h∗ − 7 leads to the linearization

ẋN = vN

v̇N =
Kvehα

δ
(x1 − xN )−

(
Kveh

(
1− α

2

)
+ c
)
vN

+Kveh

(
1− α

2

)
v1 −

(7Kvehα

δ
− cvAV ∗

) (34)

and the following transfer function:

ΓAV (s) =
Kveh[(1− α

2 )s+ α
δ ]

s2 +
(
Kveh(1− α

2 ) + c
)
s+Kveh

α
δ

. (35)

It is not difficult to verify that ||ΓAV ||∞ ≤ 1, provided that(
Kveh

(
1− α

2

)
+ c
)2

−K2
veh

(
1− α

2

)2

− 2Kveh
α

δ
≥ 0,

which is satisfied if c is large enough:

c > −Kveh

(
1− α

2

)
+

√
K2
veh

(
1− α

2

)2

+ 2Kveh
α

δ
(36)

For this controller, the following stability result holds.

Theorem 3 (AV design for stability). Let us consider HVs as
in (19) with (a,b) such that ||Γ||∞ > 1 and ΓAV as in (35).
Then, condition (29) holds if (36) is satisfied and

Kveh <

(
1− α

2

)
cω̄2

Γ − α
δ ω̄

2
Γ[

α2

δ2 +
(

1− α
2

)2

ω̄2
Γ

]
(||Γ||2(N−1)

∞ − 1)
+

ω̄Γ

√√√√√√−
(

1− α

2

)2

ω̄4
Γ −

α

δ

[
2c
(

1− α

2

)
ω̄2

Γ +
α

δ
c
]

+ (ω̄2
Γ + c2)

[α2

δ2
+
(

1− α

2

)2

ω̄2
Γ

]
||Γ||2(N−1)

∞[
α2

δ2 +
(

1− α
2

)2

ω̄2
Γ

]
(||Γ||2(N−1)

∞ − 1)

(37)

where ω̄Γ = arg maxω |Γ(jω)|.
Proof: See Appendix.

It can be shown that the righthand side of (37) is strictly
positive thanks to ||Γ||∞ > 1.

C. Conservativeness of the sufficient condition of stability

Here we investigate numerically the conservativeness of
Theorem 2, resulting in condition (37). The numerical values
used for the analysis are the same as in Tab. I, with (a,b) in

5 10 15 20 25

Number of vehicles

10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2

K
v
e
h

Indirect Lyapunov Method

Sufficient Condition for Stability

Fig. 8: Comparison between the largest (structurally) stabi-
lizing Kveh obtained from (37) and those obtained using the
indirect Lyapunov method. For N ≤ 4 the system is stable for
any Kveh > 0.

(27). Condition (37) is compared with the indirect Lyapunov
method applied on the system

χ̇1

...
χ̇N−1

χ̇N

 =


A1 A2 O2×2

. . . . . .

A1 A2

AAV 2 . . . 0 AAV 1




χ1

...
χN−1

χN

+


0

...
0

Br

ur,
(38)

where A1, A2 and Br are as in (21), and

AAV 1 =

[
0 −1

αKveh

δ −
(
Kveh(1− α

2 ) + c
)] (39)

AAV 2 =

[
0 1

0 Kveh(1− α
2 )

]
. (40)

System (38) represents the HVs with the linearized AV dy-
namics as N -th row, with design parameters δ = 23, α = 0.9,
c = 0.5 for the AV. The numerical analysis in Fig. 8 shows
that condition (37) is conservative for very small N , but works
well for N ≥ 5, which is the scope of interest of [1], [8].

V. SIMULATIONS ON MIXED HV-AV PLATOONS

This section investigates the role of WRS (Definition 4) for
mixed platoons with a single AV. Assuming an exogenous
disturbance acting on the AV, the transfer function F

(N)
i (s)

for a vehicle i from disturbance to velocity is

F
AV (N)
i (s) =

ΓN−i(s)

1− ΓAV (s)ΓN−1(s)
PN (s) (41)

whose stability can be tested via Theorem 3. For N = 22, we
find that a stabilizing gain is Kveh = 0.0029.

We simulate the ring with the stabilizing gain and the
remaining parameters as in the previous section. Fig. 9a illus-
trates how the peak increases moving throughout the platoon
denoting lack of weak ring stability according to Definition 4.

The lack of weak ring stability is confirmed by the nonlinear
simulations. Fig. 9b shows that equilibrium is reached from
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Fig. 9: WRS analysis and nonlinear simulations with N = 22 for a mixed traffic with modified AV (33). The peaks of F (N)
i (s)

are amplified denoting ring instability. As a result, an impulse disturbance acting on the AV is amplified throughout the platoon.

(a) Response to white noise on only the (N -1)-th HV with 15dB signal-noise-ratio

(b) Response to white noise on all the HVs with 20dB signal-noise-ratio.

(c) Vehicles velocities measured during the experiment [8].

Fig. 10: For the mixed traffic scenario of Fig. 9, the effect of a white noise on a single HV (Fig. 10a) is persistently amplified
due to lack of weak ring stability. Similar effects occur when noises affect all HVs (Fig. 10b). This situation can be compared
with experimental results of [8] (Fig. 10c). Vehicle velocities of [8] have been reproduced using the open source codes and
data provided by the authors in [32]): our simulations qualitatively replicate the dynamics in the Autonomy phase after 150s.
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Fig. 11: WRS analysis and nonlinear simulation with N = 4 for a mixed traffic with modified AV (33). The peaks of F (N)
i (s)

are not amplified denoting weak ring stability. Differently from Fig. 10b, when white noise is added to all the HVs, its effect
is rejected throughout the platoon.

zero initial conditions, indicating stability. However, a small
1s impulse disturbance on the AV acceleration at t=60s creates
a sizeable transient amplification throughout the platoon. This
phenomenon poses the question of what happens if any ad-
ditive noise (representing measurement noises or unmodelled
dynamics) affects the platoon. The outcome is in Fig. 10a
(where noise only affects the (N -1)-th HV) and in Fig. 10b
(where noise affects all HVs). In both cases, noise creates
oscillations that persistently appear and disappear. Indeed,
Fig. 10b qualitatively replicates the behavior observed in the
experiment [8] (cf. Fig. 3 in [8], reproduced in this work as
Fig. 10c by using the open source code and data provided
in [32]). Despite the different equilibrium velocities of the
two flows, which are due to the different AV settings used in
simulations and in field experiments, Fig. 10b is similar to the
Autonomy phase of Fig. 10c, where oscillations experience
transient amplification. In conclusion, our simulations quali-
tatively replicate the dynamics in the Autonomy phase in [8],
and show that AVs (34) cannot achieve both stability and ring
stability when too sparse (1 AV out of 22 vehicles).

Ring stability becomes possible, instead, if the sparsity of
AVs is reduced. For N = 4, the indirect Lyapunov method
shows that (38) is stable for any Kveh > 0 (Fig. 8). We find
that Kveh = 15 results in a decrease in the peaks of (41)
according to Definition 4, which denotes weak ring stability
(cf. Fig. 11a). Fig. 11b shows that a stable system that is also
weak ring stable has a remarkably good response even with
additive noise. In other words, the proposed WRS analysis
explains how to design mixed traffic scenarios with improved
string stability specifications (Fig. 10b vs Fig. 11b): the price
to be paid is reducing the sparsity of the autonomous vehicles.

VI. STABILITY IN SUGIYAMA’S AND STERN’S
EXPERIMENTS

This concluding section aims to summarize what our
system-theoretic framework tells us about the experiments in

[1] and [8] and more generally about stabilizing traffic by AVs.
Sugiyama’s experiment [1] has reproduced the spontaneous

emergence of stop-and-go waves. Our study of the correspond-
ing linearized dynamics shows that the dynamics is unstable,
triggering the onset of large periodic oscillations in the non-
linear dynamics. These theoretical findings and simulations,
illustrated in Section III, are consistent with the experimental
evidence of stop-and-go waves. In Stern’s experiment, the
presence of an AV prevents and dampen stop-and-go waves. In
Section IV, our study of the corresponding linearized dynamics
has shown that the dynamics is (asymptotically) stable, but
not string stable. Therefore, noise induces oscillations that are
amplified only transiently, so that stop-and-go behavior is not
triggered. Our theoretical findings and simulations are again
consistent with the experiments that show a lack of stop-and-
go waves but the presence of smaller, irregular, oscillations.

In order to guarantee better platooning performance, we
have designed an improved AV controller that is able to ensure
both stability and string stability for platoons with N ≤ 4 ve-
hicles. This ability has been theoretically verified and validated
by simulations. Our analysis suggests that string stability can
be achieved in platoons with HVs and AV, provided the ratio
HV/AV is large enough. In fact, in contrast with the experiment
in [8] where only 1/22 = 4.5% of the vehicles is controlled
(but string stability is not ensured), our result requires at least
1/4 = 25% of the vehicles to be controlled to ensure string
stability (compare Fig. 10b with Fig. 11b). It remains an open
question whether better controllers can deliver string stability
with fewer autonomous vehicles. Another open question is
how to use communication among vehicles to improve string
stability without increasing the number of AVs [2], [33].

APPENDIX

A. Proof of Theorem 1

For the sake of brevity we define α1 = b̄k̄, α2 = ā+b̄, α3 =
ā. Being (20) a block circulant matrix [34], an expression for
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its eigenvalues can be found as the eigenvalues of

Λi = A1 + wi−1A2 =

[
0 w(i−1) − 1

α1 −α2 + w(i−1)α3

]
,

Λi − λI2 =

[
−λ 1

α1(w(i−1) − 1) −α2 + w(i−1)α3 − λ

]
,

λ2+(α2 − α3 · w(i−1))λ− α1(w(i−1) − 1) = 0,

with w = exp (2πj/N) and i ∈ {1, . . . , N}. The eigenvalues
of Λi are

λi,± =
−α2 + α3w

(i−1)

2

± 1

2

(
(α2 − α3w

(i−1))2 + 4α1(w(i−1) − 1)
)1/2

.

(42)

To ensure asymptotical stability we require that:

Re
−α2 + α3w

(i−1)

2
±

Re
1

2

(
(α2 − α3w

(i−1))2 + 4α1(w(i−1) − 1)
)1/2

≤ 0,

which is equivalent to (23).

B. Proof of Theorem 2

The poles of a mixed platoon with a ring interconnection
are given by the roots (λ) of

1− ΓAV (λ)ΓN−1(λ) = 0 (43)

where λ = µ + jξ. For all N , it can be shown that all the
roots of (43) lie in the following subset of the complex plane:

C = {λ ∈ C : |Γ(λ)|1−γ |ΓAV (λ)|γ = 1}, (44)

where we defined as γ = 1/N the ratio between the single AV
and all vehicles. Function |Γ(λ)|1−γ |ΓAV (λ)|γ is a meromor-
phic function, which means that, given an open subset D of the
complex plane, the function is holomorphic on all D except
for the poles of the functions [35]. By definition, both Γ and
ΓAV have the poles in the open left half plane, indicating that
|Γ(λ)|1−γ |ΓAV (λ)|γ is holomorphic in the closed right half
plane. That is: the function is complex differentiable at every
point of the considered subset and its maximum value lies
along the edge of its domain. Being the domain the closed right
half plane, its edge is the imaginary axis [35]. Consequently,
ensuring |Γ(jξ)|1−γ |ΓAV (jξ)|γ ≤ 1 for all ξ ∈ R we can
ensure that does not exist any λ = µ + jξ with µ > 0 such
that |Γ(jξ)|1−γ |ΓAV (jξ)|γ = 1. In other words, we ensure
that there does not exist any λ ∈ C which is at the same time
root of (43) and has strictly positive real part.

C. Proof of Theorem 3

The most critical point for condition (29) is given by ||Γ||∞,
the peak of (19). This peak occurs at frequency ω̄Γ. Thus,
condition (29) leads to the following inequality(

K2
veh[(1− α

2 )2ω̄2
Γ + α2

δ2 ]

(Kvehα
δ − ω̄2

Γ)2 + ω̄2
Γ[Kveh(1− α

2 ) + c]2

)
||Γ||2(N−1)

∞ < 1

(45)

By developing (45), the following inequality is obtained

K2
veh

[
α2

δ2
+
(

1− α

2

)2

ω̄2
Γ

]
(||Γ||2(N−1)

∞ − 1)

+ 2Kveh

(
α

δ
ω̄Γ −

(
1− α

2

)
cω̄2

Γ

)
− (ω̄4

Γ + ω̄2
Γc) < 0

(46)

which yields (37).
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[29] S. Stüdli, M. M. Seron, and R. H. Middleton, “Vehicular platoons in
cyclic interconnections,” Automatica, vol. 94, pp. 283–293, 2018.
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