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Abstract
The Curie-Weiss model is a simplification of the Ising model to show the existence of a phase transition
for ferromagnetism. In this thesis, we study the behaviour of sums of these dependent variables. We
prove in general that under the appropriate assumptions, we can still conclude a version of the Law of
Large Numbers. We also find that if there exists a certain 𝑚 ∈ ℝ, 𝜆 > 0 and integer 𝑘 ≥ 1, we have
that (𝑆𝑛 − 𝑛𝑚)/𝑛1/2𝑘 converges to exp(−𝜆𝑠2𝑘/(2𝑘)!) in distribution.

For the Curie-Weiss model this means that for 𝛽, which is a constant proportion to inverse tem-
perature, we find that if 𝛽 ∈ (0, 1) we have 𝑆𝑛/𝑛 → 𝛿(𝑠) and 𝑆𝑛/√𝑛 → 𝑁(0, 𝜎2) in distribution where
𝜎2 = (1 − 𝛽)−1 − 1. At 𝛽 = 1 there occurs a phase transition, we still have that 𝑆𝑛/𝑛 → 𝛿(𝑠), but now
𝑆𝑛/𝑛3/4 → exp(−𝑠4/12). When 𝛽 > 1 we can find an𝑚 > 0 such that 𝑆𝑛/𝑛 →

1
2 [𝛿(𝑠 − 𝑚) + 𝛿(𝑠 + 𝑚)].

We also study the Curie-Weiss model where we assume that it is under the influence of a magnetic
field. We prove that we do not find a phase transition, and we always have 𝑆𝑛/𝑛 → 𝛿(𝑠 − 𝑚) in
distribution for some 𝑚 ∈ ℝ. Next to this we find that (𝑆𝑛 − 𝑛𝑚)/√𝑛 always converges to a normal
distribution.
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Lay Summary
When a magnetized piece of metal is heated to a specific temperature, it will lose it’s magnetic sus-
ceptibility. This is known as a phase transition and at which temperature this happens is determined
by Curie’s Law. In this thesis, we will look at the particles of the metal that behave like tiny magnets by
themselves. If we assume that the particle can be magnetic into one of two directions, up or down, we
can say that it takes the value 1 if it points up and −1 when it points down. If all the particles point up,
then the average is 1 and the metal is very magnetic in this direction. But if there are as much parti-
cles pointing down as up, then the average is zero and the metal does not show signs of magnetism.
Physics tells us that when a particle decides on the direction it wants to take, it is influenced by the
direction of other particles around it, where the amount of influence is determined by the temperature.
So all of the particles together follow a certain rule on how they want to be oriented. In this thesis we
will research if we find the same results as Curie’s Law, if we assume that the particles follow the rules
given by what is know as the Curie-Weiss model.

Summary
We want to determine if we can show that there occurs a phase transition in a piece of metal, by
modelling the magnetic properties on the basis of the distribution of magnetic moments (spins) of the
particles. The distribution of the direction of these spins is influenced by neighboring particles. We will
assume that they only take one of two possible directions which we will denote by {1, −1}. Another
simplifying assumption is that all of the spins influence each other in the system, this means that we
don’t have the geometry which determines which particles are neighbours. This leads to the use of the
Curie-Weiss model which gives an expression for joint distribution of the spins, with a parameter 𝛽 ≥ 0
which is proportional to inverse temperature.

Because the random variables are dependent for 𝛽 > 0, we will prove two theorems in this thesis
as an alternative to the Law of Large Numbers and the Central Limit Theorem, both of which are not
applicable. We will define a function 𝐺 which will be of great importance in the proofs of these theorems,
and is determined by a measure 𝜌, which in turn is determined by the assumption about conditions the
metal is in. This leads to the statement 𝑆𝑛 → ∑𝑖 𝑏𝑖𝛿(𝑠 − 𝑚𝑖) in distribution where the 𝑏𝑖 ’s and 𝑚𝑖 ’s
are real and determined by 𝜌. Moreover, we find that under the right assumptions on 𝜌, there exists
a unique 𝑚 ∈ ℝ, 𝜆 > 0 and integer 𝑘 ≥ 1 such that (𝑆𝑛 − 𝑛𝑚)/𝑛1/2𝑘 → exp(−𝜆𝑠2𝑘/(2𝑘)!). With
these results we can conclude that there exists a specific temperature such that there occurs a phase
transition.

We also extend the model by assuming that the metal is under the influence of a magnetic field. This
leads to the conclusion that there does not occur a phase transition, and we always have 𝑆𝑛 → 𝛿(𝑠−𝑚)
is distribution for some 𝑚 ∈ ℝ.
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1
Introduction

When a magnetic piece of metal is heated, the ability to be magnetized weakens up to a specific
temperature, where this ability disappears altogether. Once the metal is cooled down, it does not
return to it’s original state. Only if the metal is put under the influence of a strong enough magnetic
field, the magnetization comes back.

The phenomenon of ferromagnetism is caused by the angular momentum of individual electrons
all pointing in the same direction. Wilhelm Lenz invented the Ising model as an approximation of the
actual physical phenomenon and gave his student Ernst Ising the assignment to study whether this
model could explain the phase transition caused by the increasing temperature. Instead of orienting in
any direction on a three-dimensional sphere this model assumed that the particles could only be in one
of two different states given by {1, −1}. These states are often referred to as spin and because spins
which are aligned have a lower energy than those who are opposed, nature prefers neighboring spins
which have the same state. The edges of the graph on which the particles live determine whether they
are neighbours and is usually considered to be ℤ𝑑, with 𝑑 ∈ ℕ.

It is, however, easier to assume that each spin is influenced by all the other spins in the system.
In this case we talk about the Curie-Weiss model. Suppose the system consists of 𝑛 distinct atoms.
Given a vector 𝜎 = (𝜎𝑖)𝑖=1,…,𝑛 where each 𝜎𝑖 represents the spin of an individual particle, we assume
that the spins tend to align. Which is why we introduce the term

𝛽
2𝑛

𝑛

∑
𝑖=1

𝑛

∑
𝑗=1
𝜎𝑖𝜎𝑗 , (1.1)

where 𝛽 ≥ 0 is a constant proportional to the inverse temperature. When two spins 𝜎𝑖 and 𝜎𝑗 of opposite
sign are multiplied in the summation, they have a negative contribution, whereas two spins of equal
sign have a positive contribution. Thus the more spins are oriented in the same direction, the larger
the outcome of the term in (1.1). To put the parameter 𝛽 to use we define the joint distribution of 𝜎 as

ℙ𝑛𝛽({𝜎}) =
1
𝑍𝑛

exp( 𝛽2𝑛

𝑛

∑
𝑖=1

𝑛

∑
𝑗=1
𝜎𝑖𝜎𝑗), (1.2)

where 𝑍𝑛 is a normalization constant. We now see that the magnitude of 𝛽 plays a big role in the
distribution of themass of the probability measureℙ𝑛𝛽 . When we increase 𝛽, then so does the probability
of a configuration where the majority of spins has the same sign. For 𝛽 close to zero, the contribution
of the exponent 1.1 starts to decrease, and the amount of aligned spins loses it’s importance.

When we considering the case 𝛽 = 0 in (1.2) we find that this corresponds physically to infinite
temperature and mathematically to independence. This implies that the individual 𝜎𝑖 ’s have a uniform
distribution on {−1, 1}. If we set 𝑆𝑛 =

1
𝑛 ∑

𝑛
𝑖=1 𝜎𝑖, then together with 𝔼[𝜎𝑖] = 0 and 𝔼[𝜎2𝑖 ] = 1, both the

1



2 1. Introduction

Law of Large Numbers and the Central Limit Theorem hold with

lim
𝑛→∞

𝑆𝑛
𝑛 = 0 a.s., (1.3)

lim
𝑛→∞

𝑆𝑛
√𝑛

= 𝑁(0, 1) in distribution. (1.4)

Although this is a satisfying result, it does not say much about the case where 𝛽 > 0 since we lose
our assumption of independence. We already suggested that for small values of 𝛽 we might observe
behaviour which coincides with the independent case, where for large values of 𝛽 it is more likely to
observe a configuration 𝜎 where 𝑆𝑛 moves away from zero. Since the value of the sum 𝑆𝑛/𝑛 determines
the strength of the magnetization in the system, it is common to denote the magnetization by 𝑚𝑛(𝜎) =
𝑆𝑛/𝑛, but throughout the thesis we will often mention 𝑆𝑛/𝑛 instead of 𝑚𝑛.

In Chapter 2 we will derive that for values of 𝛽 close enough to zero we do in fact find that 𝑆𝑛/𝑛
converges to a discrete distribution with all it’s mass centered at the point zero. We even find that
𝑆𝑛/√𝑛 converges to a normal distribution. When 𝛽 = 1 we will find the same convergence for 𝑆𝑛/𝑛,
but it will appear that we don’t have normality in the limit anymore. But under the appropriate scaling,
there still exists a limiting distribution. The convergence to the Dirac distribution is in a way comparable
to (1.3). Intuitively, this means that when the temperature is high enough, the influence of the spins
among each other is negligible compared to the energy in the system caused by the temperature.

When 𝛽 becomes greater we see that the term in the exponent of (1.2) will give large portions of
it’s mass to configurations of 𝜎 where most of the spins are aligned. In this case it is unlikely that 𝑆𝑛/𝑛
converges the point zero in some way, since it favors a configuration where the absolute value of the
sum 𝑆𝑛 is large. In Chapter 3 we prove two theorems which will show us that for 𝛽 > 1 the limit 𝑆𝑛/𝑛
will converge to a linear combination of Dirac measures. This is where we can make a distinction in
the limiting behaviour by changing the parameter 𝛽 and hence observe a phase transition when 𝛽 = 1.
These theorems will also generalize the obtained results from Chapter 2 such that we can study more
complex variations of (1.2). Most of the theorems and lemmas found in Chapter 4 are based on results
in [1] and is often an identical statement under a different hypothesis.

The model in (1.2) assumed that the spins where only influenced by the temperature in the system,
it is however more interesting to study a system that is under the influence of a magnetic field. If one
brings a piece of metal such as iron into a magnetic field, the magnetic properties of the metal change.
In the model this can be explained by the spins which tend to align with the direction of the field, this
translates to a joint distribution given by

ℙ𝛽ℎ({𝜎}) =
1
𝑍𝑛

exp( 𝛽2𝑛

𝑛

∑
𝑖=1

𝑛

∑
𝑗=1
𝜎𝑖𝜎𝑗 + ℎ√𝛽

𝑛

∑
𝑖=1
𝜎𝑖), (1.5)

where ℎ ∈ ℝ is a constant proportional to the direction and magnitude of the field. From a physical
point of view it makes more sense to replace the term replaces ℎ = √𝛽ℎ̃𝐽−1 and 𝛽 = 𝐽𝛽̃, such that one
can write the exponent as exp(−𝛽̃ℋ(𝜎)), where

ℋ(𝜎) = − 𝐽
2𝑛

𝑛

∑
𝑖=1

𝑛

∑
𝑗=1
𝜎𝑖𝜎𝑗 − ℎ̃

𝑛

∑
𝑖=1
𝜎𝑖 ,

denotes the Hamiltonian as described in [3]. However, it is helpful to use the expression as in (1.5)
because it will be more convenient to work with in Chapter 4. In this chapter we find that the behaviour at
𝛽 = 1 in the previous model vanishes due to the presence of the magnetic field, where 𝑆𝑛/𝑛 converges
to a point of mass whenever ℎ ≠ 0. At the end of the chapter we will briefly consider an extreme case
where 𝛽 is several orders of magnitude larger than ℎ. We know that for large values of 𝛽, in the model
described by (1.2), 𝑆𝑛/𝑛 converges to two different points of mass. Regardless of the strength of the
magnetic field, we will always find that 𝑆𝑛/𝑛 converges to one point if the distribution is given by (1.5).
When ℎ is extremely small, this convergence happens very slow. Since a piece of metal only has a
finite amount of atoms, say 𝑛, one might not observe this result in an experiment.



2
Limit behaviour of the Curie-Weiss

model
In this chapter we will analyse a specific case of the Curie-Weiss model where the joint distribution is
given by ℙ𝑛𝛽 in (1.2). This will serve as an illustrative example for the more general results in later chap-
ters. The ultimate goal is to determine under which circumstances we will observe a phase transition,
which means that we have study the behaviour of 𝑆𝑛/𝑛 by looking at different values of 𝛽. Because
(1.3) and (1.4) do not hold for 𝛽 > 0, we are to find out how large sums of these dependent random
variables are distributed. We will start by setting up some general notation which will help us identify
similar objects in later chapters.

Given a sequence of random variables 𝑋1, … , 𝑋𝑛 with joint distribution ℙ𝑛𝛽 , we will express this dis-
tribution in a more general form. Since the 𝑋𝑖 take values in {−1, 1} and in the independent case 𝛽 = 1
we had a uniform distribution for an individual 𝑋𝑖, we will introduce the following measure

𝜌({𝑥}) = {
1
2 if 𝑥 = ±1,
0 otherwise.

(2.1)

We can use this measure 𝜌 to express the ℙ𝑛𝛽 in terms of an integral

ℙ𝑛𝛽((𝑋1, … , 𝑋𝑛) ∈ 𝐴) = ∫
𝐴

1
𝑍𝑛

exp[ 𝛽2𝑛(
𝑛

∑
𝑖=1
𝜎𝑖)

2

]
𝑛

∏
𝑗=1

d𝜌(𝜎𝑗). (2.2)

Because 𝜌 in (2.1) is a discrete and finite measure it is helpful to introduce the Dirac measure which is
defined by

𝛿({𝑥}) = {1, if 𝑥 = 0,
0, otherwise,

(2.3)

where we may also write 𝛿(𝑥) = 𝛿({𝑥}). Furthermore, if we want to give all mass to a point 𝑚 ∈ ℝ not
necessarily zero, we write 𝛿𝑚(𝑥) = 𝛿(𝑥 −𝑚). Thus we can recover 𝜌 in the form 𝜌 = 1

2(𝛿1 + 𝛿−1). We
can now factor out 𝛽 in (2.2) by introducing

𝜌𝛽 =
1
2(𝛿√𝛽 + 𝛿−√𝛽), (2.4)

and substitute 𝑥 = √𝛽𝜎 for which we have d𝜌𝛽(𝑥) = d𝜌(𝑥/√𝛽). This gives us the expression

ℙ𝑛𝛽((𝑋1, … , 𝑋𝑛) ∈ 𝐴) = ∫
𝐴

1
𝑍𝑛

exp[(𝑥1 +⋯+ 𝑥𝑛)
2

2𝑛 ]
𝑛

∏
𝑗=1

d𝜌𝛽(𝑥𝑗), (2.5)

which is the notation we will use in this and following chapters. Because we will study the same object
in later chapters but for an arbitrary measure 𝜌, we write d𝜌 instead of d𝜌𝛽 from now on.

3



4 2. Limit behaviour of the Curie-Weiss model

2.1. Distribution of sums
In this section we will prove claims about how 𝑆𝑛 = ∑𝑛𝑖=1 𝑋

(𝑛)
𝑖 is distributed, where 𝑋(𝑛)1 , … , 𝑋(𝑛)𝑛 is a

sequence of random variables with distribution (2.5). We will however assume that 𝜌 is an arbitrary
measure and thus write

1
𝑍𝑛

exp[(𝑥1 +⋯+ 𝑥𝑛)
2

2𝑛 ]
𝑛

∏
𝑗=1

d𝜌(𝑥𝑗). (2.6)

In this expression we notice the summation of the variables 𝑥𝑖, which is useful to derive an expression
for the probability measure of 𝑆𝑛. In the following lemma we will derive the distribution of 𝑆𝑛.

Lemma 2.1.1. Let 𝑋(𝑛)1 , … , 𝑋(𝑛)𝑛 be a sequence of random variables with joint distribution (2.6) and let
𝑆𝑛 = ∑

𝑛
𝑖=1 𝑋

(𝑛)
𝑖 . Then the distribution of 𝑆𝑛 is given by

1
𝑍𝑛

exp(𝑥
2

2𝑛)d𝜌
∗𝑛(𝑥), (2.7)

where 𝜌∗𝑛 is the n-fold convolution of 𝜌 with itself.

Proof. We will prove this claim by showing that the distribution of 𝑆𝑛 can be expressed in terms of a
Radon-Nikodym derivative with respect to the measure 𝜌∗𝑛. First note that for a sequence of indepen-
dent random variables 𝑌(𝑛)1 , … , 𝑌(𝑛)𝑛 with distribution 𝜌, the distribution measure of 𝑌 = ∑𝑛𝑖=1 𝑌

(𝑛)
𝑖 is given

by Theorem 15.1 from [2] as

𝜌∗𝑛(𝐴) = ∫
𝐴
1{𝑥1+⋯+𝑥𝑛=𝑥}

𝑛

∏
𝑗=1

d𝜌(𝑥𝑗).

Inspired by (2.6) which contains the sum ∑𝑖 𝑥𝑖, we can define a new measure 𝜈 using the Radon-
Nikodym derivative with respect to 𝜌∗𝑛

d𝜈
d𝜌∗𝑛 =

1
𝑍𝑛
𝑒𝑌2/2𝑛 ,

which will give the expression

𝜈(𝐴) = ∫
𝐴

1
𝑍𝑛
𝑒𝑥2/2𝑛d𝜌∗𝑛(𝑥).

Observe now that we can obtain the distribution of 𝑆𝑛 very easily in terms of 𝜌∗𝑛 because

𝔼[1𝑆𝑛∈𝐴] = ∫
1
𝑍𝑛

1{𝑥1+⋯+𝑥𝑛∈𝐴} exp[
(𝑥1 +…+ 𝑥𝑛)2

2𝑛 ]
𝑛

∏
𝑗=1

d𝜌(𝑥𝑗)

= ∫
𝐴

1
𝑍𝑛

exp(𝑥
2

2𝑛)1{𝑥1+⋯+𝑥𝑛=𝑥}
𝑛

∏
𝑗=1

d𝜌(𝑥𝑗)

= ∫
𝐴

1
𝑍𝑛

exp(𝑥
2

2𝑛)d𝜌
∗𝑛(𝑥) = 𝜈(𝐴).

Hence 𝑆𝑛 has distribution 𝜈 which was indeed what we meant to prove in (2.7).

We now have an expression for the distribution of 𝑆𝑛. What we want to know is if the limit of 𝑆𝑛/𝑛
converges to a point of mass, and similar to the case of 𝛽 = 1, whether we have normality in the limit of
𝑆𝑛/√𝑛. When we observe that the latter is not possible, it might just be that we do have convergence
of 𝑆𝑛/𝑛𝛼, where 𝛼 ≠

1
2 . For this reason we want to study the behaviour of

𝑆𝑛
𝑛1−𝛾 ,



2.1. Distribution of sums 5

where 𝛾 is arbitrary, but only the cases where 𝛾 ∈ [0, 12 ] will appear to be relevant. Because 𝜌 is
assumed to be a discrete measure in this chapter, the distribution function is a summation which is
different for each 𝑛. This is very inconvenient, which is why we slightly modify the object such that the
cumulative distribution function is given by

∫
𝜃

−∞
𝑓(𝑠)d𝑠,

for some density function 𝑓 with respect to the Lebesgue measure. This can be done by adding an
independent random variable which also is characterized by some density function. When 𝛾 = 1

2 , we
might find a normal distribution in the limit. Thus if we add 𝑊 ∼ 𝑁(0, 1) to the object 𝑆𝑛/√𝑛, and the
resulting limiting distribution is a normal distribution, we can argue that 𝑆𝑛/√𝑛 is also normal in the limit.

We have a different scaling of 𝑆𝑛 when 𝛾 < 1
2 , thus we do not expect a normal distribution in the

limit. Hence the added factor must lose it’s contribution as 𝑛 → ∞. For this reason we will try to find
the distribution of the object

𝑊
𝑛
1
2−𝛾

+ 𝑆𝑛
𝑛1−𝛾 , (2.8)

with𝑊 ∼ 𝑁(0, 1) with𝑊 independent of 𝑆𝑛. The assumption that𝑊 is independent of 𝑆𝑛 is necessary,
in order to draw conclusions about the limiting distribution of 𝑆𝑛/𝑛1−𝛾. Why this is the case becomes
clear when we state and prove the following lemma.

Lemma 2.1.2. Suppose that for each 𝑛, 𝑊𝑛, and 𝑌𝑛, are independent random variables such that
𝑊𝑛 → 𝜈, where

𝜈̂(𝑎) = ∫𝑒𝑖𝑎𝑥d𝜈(𝑥) ≠ 0, all 𝑎 ∈ ℝ.

Then 𝑌𝑛 → 𝜇 if and only if𝑊𝑛 + 𝑌𝑛 → 𝜈 ∗ 𝜇.

Proof. First suppose that 𝑌𝑛 → 𝜇 and 𝑢1, 𝑢2 ∈ ℝ, because of the independence we can apply Corollary
14.1 from [2] and we have

𝜑𝑊𝑛 ,𝑌𝑛(𝑢1, 𝑢2) = 𝜑𝑊𝑛(𝑢1)𝜑𝑌𝑛(𝑢2) (2.9)

where 𝜑𝑊𝑛 and 𝜑𝑌𝑛 are the characteristic functions of 𝑊𝑛, and 𝑌𝑛 respectively. Now Lévy’s Continuity
Theorem tells us that

𝜑𝑊𝑛(𝑢1)𝜑𝑌𝑛(𝑢2) = 𝜈̂(𝑢1)𝜇̂(𝑢2) as 𝑛 → ∞, (2.10)

where 𝜇̂(𝑎) = ∫ 𝑒𝑖𝑎𝑥d𝜇(𝑥). Thus if we denote the random variables 𝑊 and 𝑌 such that 𝑊𝑛 → 𝑊 and
𝑌𝑛 → 𝑌 we obtain that𝑊 and 𝑌 are independent. Hence using (2.9) and (2.10) together with Theorem
15.2 from [2] we obtain

𝜑𝑊𝑛+𝑌𝑛(𝑢) = 𝜑𝑊𝑛(𝑢)𝜑𝑌𝑛(𝑢) → 𝜑𝑊(𝑢)𝜑𝑌(𝑢) = 𝜑𝑊+𝑌(𝑢) as 𝑛 → ∞ (2.11)

where𝑊 + 𝑌 has distribution 𝜈 ∗ 𝜇 which proves the implication.
Now assume that𝑊𝑛+𝑌𝑛 → 𝜈∗𝜇 where 𝜈 ∗𝜇 is the distribution of𝑊+𝑌 for some random variable 𝑌

with distribution 𝜇, and we know that 𝜈 is the distribution of𝑊 to which𝑊𝑛 weakly converges. Note that
these are independent by definition. This gives us a similar argument using (2.9)-(2.11) which leads to

𝜑𝑊𝑛(𝑢)𝜑𝑌𝑛(𝑢) → 𝜑𝑊(𝑢)𝜑𝑌(𝑢) as 𝑛 → ∞,

for all 𝑢 ∈ ℝ. And the assumption that 𝜑𝑊 is nonzero on ℝ gives us pointwise convergence of 𝜙𝑌𝑛 → 𝜙𝑌
which implies 𝑌𝑛 → 𝜇 and proves the converse.

Now that we are at the point where we can immediately derive the limiting distribution of 𝑆𝑛/𝑛1−𝛾, we
will derive the distribution of the object in (2.8) in the following claim.

Claim 2.1.3. Given that 𝑆𝑛 has distribution (2.7) with 𝜌 as in (2.4), then for some𝑊 ∼ 𝑁(0, 1) indepen-
dent of 𝑆𝑛 we have that

𝑊
𝑛
1
2−𝛾

+ 𝑆𝑛
𝑛1−𝛾 ∼

exp(−𝑛𝐺(𝑠/𝑛𝛾))d𝑠
∫ exp(−𝑛𝐺(𝑠/𝑛𝛾))d𝑠 . (2.12)
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where the function 𝐺 ∶ ℝ → ℝ is defined by

𝐺(𝑠) = 𝑠2
2 − ln cosh(𝑠√𝛽). (2.13)

Proof. Define the interval 𝐼 ∶= (−∞, 𝑛1−𝛾𝜃] which will be helpful regarding notation. This gives the
following equation

ℙ( 𝑊
𝑛
1
2−𝛾

+ 𝑆𝑛
𝑛1−𝛾 ≤ 𝜃) = ℙ(√𝑛𝑊 + 𝑆𝑛 ≤ 𝑛1−𝛾𝜃) = ℙ(√𝑛𝑊 + 𝑆𝑛 ∈ 𝐼). (2.14)

We know that the distributions of √𝑛𝑊 and 𝑆𝑛 are given by 𝑁(0, 𝑛) and (2.7) respectively. It then follows
by Theorem 15.1 from [2] that as they are independent, the distribution measure of √𝑛𝑊 + 𝑆𝑛 is given
by the convolution product of √𝑛𝑊 and 𝑆𝑛 their measures. This is

[𝑁(0, 𝑛)∗ exp(𝑥2/2𝑛)𝜌∗𝑛](𝐴)

= ∫∫1𝐼(𝑢 + 𝑥)
1

√2𝜋𝑛
exp(−𝑢

2

2𝑛)d𝑢
1
𝑍𝑛

exp(𝑥
2

2𝑛)d𝜌
∗𝑛(𝑥)

Continuing with (2.14) we obtain

ℙ(√𝑛𝑊 + 𝑆𝑛 ∈ 𝐼) =
1
𝑍𝑛
∫
𝐼
d[𝑁(0, 𝑛) ∗ exp(𝑥2/2𝑛)𝜌∗𝑛] (𝑥)

= 1
𝑍𝑛

1
√2𝜋𝑛

∫∫1𝐼(𝑢 + 𝑥) exp(−
𝑢2
2𝑛)d𝑢 exp(

𝑥2
2𝑛)d𝜌

∗𝑛(𝑥).
(2.15)

Now if we use substitution for 𝑠 = 𝑢 + 𝑥, we obtain

∫1𝐼(𝑢 + 𝑥) exp(−
𝑢2
2𝑛)d𝑢 = ∫1𝐼(𝑠) exp(−

(𝑠 − 𝑥)2
2𝑛 )d𝑠, (2.16)

and expanding (𝑠 − 𝑥)2 leads to

−(𝑠 − 𝑥)2 + 𝑥2
2𝑛 = − 𝑠

2

2𝑛 +
𝑠𝑥
𝑛 . (2.17)

Because we want an integral with respect to the Lebesgue measure, we use Tonelli-Fubini’s Theorem
to interchange d𝑠 and exp( 𝑥

2

2𝑛)d𝜌
∗𝑛(𝑥). We then obtain the following for (2.15)

1
𝑍𝑛

1
√2𝜋𝑛

∫∫1𝐼(𝑢 + 𝑥) exp(−
𝑢2
2𝑛)d𝑢 exp(

𝑥2
2𝑛)d𝜌

∗𝑛(𝑥)

(2.16)= 1
𝑍𝑛

1
√2𝜋𝑛

∫∫1𝐼(𝑠) exp(−
(𝑠 − 𝑥)2
2𝑛 )d𝑠 exp(𝑥

2

2𝑛)d𝜌
∗𝑛(𝑥)

(2.17)= 1
𝑍𝑛

1
√2𝜋𝑛

∫
𝐼
exp(− 𝑠

2

2𝑛)∫ exp(𝑠𝑥𝑛 )d𝜌
∗𝑛(𝑥)d𝑠.

(2.18)

The n-fold convolution product of 𝜌 with itself is defined as the distribution measure for the sum of 𝑛
independent random variables with distribution 𝜌, hence if we let 𝑌1, 𝑌2, … , 𝑌𝑛 be sequence of random
variables which satisfy this condition it follows that

∫ exp(𝑠𝑥𝑛 )d𝜌
∗𝑛(𝑥) = 𝔼[exp(𝑠

∑𝑛𝑖=1 𝑌𝑖
𝑛 )] = 𝔼[

𝑛

∏
𝑖=1

exp(𝑠𝑌𝑖𝑛 )]

=
𝑛

∏
𝑖=1

𝔼[exp(𝑠𝑌𝑖𝑛 )] = 𝔼[exp(
𝑠𝑌1
𝑛 )]

𝑛
.

(2.19)
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Where we used that the 𝑌𝑖 ’s are independent and identically distributed. Since our measure 𝜌 is given
by (2.4) we can calculate the expectation in (2.19)

𝔼[exp(𝑠𝑌1𝑛 )] = ∫ exp(𝑠𝑥𝑛 )d𝜌(𝑥) =
1
2[exp(

𝑠√𝛽
𝑛 ) + exp(−𝑠√𝛽𝑛 )]

= cosh(𝑠√𝛽𝑛 ).
(2.20)

Returning to (2.18) we now have

1
𝑍𝑛

1
√2𝜋𝑛

∫
𝐼
exp(− 𝑠

2

2𝑛)∫ exp(𝑠𝑥𝑛 )d𝜌
∗𝑛(𝑥)d𝑠

(2.19)= 1
𝑍𝑛

1
√2𝜋𝑛

∫
𝐼
exp(− 𝑠

2

2𝑛)𝔼[exp(
𝑠𝑌1
𝑛 )]

𝑛
d𝑠

(2.20)= 1
𝑍𝑛

1
√2𝜋𝑛

∫
𝐼
exp(− 𝑠

2

2𝑛)[cosh(
𝑠√𝛽
𝑛 )]

𝑛

d𝑠

= 1
𝑍𝑛

1
√2𝜋𝑛

∫
𝐼
exp(− 𝑠

2

2𝑛) exp(𝑛 ln cosh(
𝑠√𝛽
𝑛 ))d𝑠,

(2.21)

where we used that 𝑎𝑛 = exp(𝑛 ln𝑎) for any 𝑎 > 0 in the last equation. Observe that we can rewrite
the term in the exponent as

− 𝑠2
2𝑛 + 𝑛 ln cosh(

𝑠√𝛽
𝑛 ) = −𝑛((𝑠/𝑛)

2

2 − ln cosh( 𝑠𝑛√𝛽)) = −𝑛𝐺(𝑠/𝑛), (2.22)

where 𝐺 is given by (2.13). Since we want an expression for the distribution we need to change the
upperbound to 𝜃 by means of substitution. This will be obtained by substituting 𝑡 for 𝑠𝑛𝛾−1 which will
give an extra factor 𝑛1−𝛾 in front of the integral. At last we can put it together and obtain for (2.21)

1
𝑍𝑛

1
√2𝜋𝑛

∫
𝐼
exp(− 𝑠

2

2𝑛) exp(𝑛 ln cosh(
𝑠√𝛽
𝑛 ))d𝑠

(2.22)+(2.13)= 1
𝑍𝑛

1
√2𝜋𝑛

∫
𝑛1−𝛾𝜃

−∞
exp(−𝑛𝐺( 𝑠𝑛))d𝑠

𝑡=𝑠𝑛𝛾−1= 1
𝑍𝑛

𝑛1−𝛾

√2𝜋𝑛
∫
𝜃

−∞
exp(−𝑛𝐺( 𝑡𝑛𝛾 ))d𝑡,

(2.23)

where the integrand has the desired form. To arrive at the normalization constant we have to let 𝜃 → ∞
which will give

lim
𝜃→∞

ℙ( 𝑊
𝑛
1
2−𝛾

+ 𝑆𝑛
𝑛1−𝛾 ≤ 𝜃) = 1.

And because 𝜃 → ∞ gives us the required integral and we obtain the expression

1
𝑍𝑛

𝑛1−𝛾

√2𝜋𝑛
∫ exp(−𝑛𝐺( 𝑡𝑛𝛾 ))d𝑡 = 1 ⟺

1
𝑍𝑛

𝑛1−𝛾

√2𝜋𝑛
= 1
∫ exp(−𝑛𝐺( 𝑡

𝑛𝛾 ))d𝑡
. (2.24)

Hence it follows from (2.23) and (2.24) that (2.12) holds if we replace 𝑡 by 𝑠.

It will turn out that in a more general setting the function 𝐺 in (2.13) will play a very important role as it
characterizes the distribution of objects similar to that of (2.8). When we are discussing convergence
of random variables in the next sections and chapters, we will often write 𝑋𝑛 → 𝑓(𝑠) when a sequence
(𝑋𝑛)𝑛≥1 converges weakly to a measure 𝜈, which is determined by a density function 𝑓(𝑠) with respect
to the Lebesgue measure d𝑠. Hence if d𝜈(𝑠) ≡ 𝑓(𝑠)d𝑠, the statements 𝑋𝑛 → 𝑓(𝑠) and 𝑋𝑛 → 𝜈 are
assumed to be equivalent.
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2.2. Law of Large Numbers
In the previous section we found the distribution in (2.12) which will help us to obtain a limiting distribu-
tion for 𝑆𝑛𝑛 . Thus if we take 𝛾 = 0, we have to look at the density function exp(−𝑛𝐺(𝑠)). For 𝛽 ∈ (0, 1]
the function 𝐺 will visually resemble one of the graphs in Figure 2.1. Observe that 𝐺 has a unique global
minimum at zero and that 𝐺(𝑠) > 0 for 𝑠 ≠ 0. We obtain that

−2 −1 0 1 2

0

0.2

0.4

0.6

0.8

1

𝑠

𝐺(
𝑠)

𝛽 = 1
2𝛽 = 1

Figure 2.1: Plot of 𝐺 for 𝛽 = 1
2 and 𝛽 = 1.

exp(−𝑛𝐺(𝑠)) → {1, if 𝑠 = 0,
0, otherwise,

(2.25)

as 𝑛 → ∞. Now that we know that all the mass is given at a single point we have to show that our
distribution converges to the Dirac measure given by (2.3). Theorem 18.1 from [2] tells us that this is
equivalent to showing that

lim
𝑛→∞

∫ 𝑒−𝑛𝐺(𝑠)ℎ(𝑠)d𝑠
∫ 𝑒−𝑛𝐺(𝑠)d𝑠 = ∫ℎ(𝑥)d𝛿(𝑥) = ℎ(0), (2.26)

for any continuous, bounded function ℎ. We can use dominated convergence with

exp(−𝑛𝐺(𝑠))ℎ(𝑠) → {ℎ(0), if 𝑠 = 0,
0, otherwise,

as 𝑛 → ∞,

as in (2.25) for the pointwise convergence and we have the upperbound

exp(−𝑛𝐺(𝑠))ℎ(𝑠) ≤ exp(−𝐺(𝑠))max{|ℎ(𝑠)| ∶ 𝑠 ∈ ℝ},

for each 𝑛 ≥ 1 as exp(−𝐺(𝑠)) is integrable by (2.24) for 𝑛 = 1. Hence we obtain that in the left hand
side of (2.26) the numerator converges to

∫𝑒−𝑛𝐺(𝑠)ℎ(𝑠)d𝑠 → ℎ(0) as 𝑛 → ∞,

where the same holds for the denominator with ℎ ≡ 1.
What we have shown now is that for some𝑊 ∼ 𝑁(0, 1) independent of 𝑆𝑛 we have

𝑊
√𝑛

+ 𝑆𝑛𝑛 → 𝛿(𝑠),
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where we know that𝑊/√𝑛 → 𝛿(𝑠). It follows from Lemma 2.1.2 that this implies

𝑆𝑛
𝑛 → 𝛿(𝑠), (2.27)

for 0 < 𝛽 ≤ 1 which is similar to (1.3). When 𝛽 > 1 we see that 𝐺 does not have an unique global
minimum, but two global minima which is made visible in Figure 2.2. Because of this it is intuitively not
possible to arrive at the same result as in (2.26), since all of the mass will be given to the two points
where the global minima occur. We will develop additional tools in later chapters to show that there
exists a limiting distribution for the case 𝛽 > 1 as well.

−2 −1 0 1 2

0

0.2

0.4

0.6

𝑠

𝐺(
𝑠)

𝛽 = 1.5

Figure 2.2: Plot of 𝐺 for 𝛽 = 1.5.

2.3. The Central Limit Theorem
Now that we have shown that a weaker version of the Law of Large Numbers exists under the condition
that 0 < 𝛽 ≤ 1, we will do the same with respect to the Central Limit Theorem. For a sequence of
independent and identically distributed random variables we would have that

lim
𝑛→∞

𝑆𝑛 − 𝑛𝜇
𝜎√𝑛

→ 𝑁(0, 1) in distribution, (2.28)

where 𝜇 and 𝜎 are the mean and standard deviation respectively, which corresponds to (1.4). But
since we don’t have independence in the Curie-Weiss model for 𝛽 > 0, the argument is not applicable.
However, we do have the expression (2.12) which can help us find a normal distribution in the limit. Note
that in (2.28) we subtract 𝑛𝜇 to center the limiting distribution around zero, in the following derivation
we use (2.27) as a motivation to take 𝜇 = 0. Hence we will try to show that

𝑊 + 𝑆𝑛
√𝑛

→ 𝑁(0, 𝜎2) as 𝑛 → ∞,

for some 𝜎 > 0, using the known expression for the left-hand side of this equation, which is given by
(2.12).

Similarly to the derivation of the limit (2.26) in Section 2.2, we will use point convergence of the
density function in (2.12). To achieve this we use that 𝐺 has the following Taylor expansion around
𝑠 = 0

𝐺(𝑠) = 𝑠2
2 − 𝛽

𝑠2
2 + 𝛽

2 𝑠4
12 + 𝒪(𝑠

6). (2.29)
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So whenever 𝛽 ∈ (0, 1) we have

−𝑛𝐺(𝑠/𝑛𝛾) = −𝑛[(1 − 𝛽)(𝑠/𝑛
𝛾)2
2 + 𝒪((𝑠/𝑛𝛾)4)]

= −(1 − 𝛽) 𝑠2
2𝑛2𝛾−1 + 𝒪(

𝑠4
𝑛4𝛾−1),

which implies that for 𝛾 = 1
2 we obtain the pointwise convergence

exp(−𝑛𝐺(𝑠/𝑛1/2))ℎ(𝑠) → exp(− 𝑠2
2(1 − 𝛽)−1)ℎ(𝑠) as 𝑛 → ∞, (2.30)

for any bounded, continuous function ℎ. Observe that when 𝛽 = 1 we lose the quadratic term in (2.29).
This will lead to a limiting distribution which is not normal but gives

−𝑛𝐺(𝑠/𝑛𝛾) = −𝑛[(𝑠/𝑛
𝛾)4

12 + 𝒪((𝑠/𝑛𝛾)6)]

= − 𝑠4
12𝑛4𝛾−1 + 𝒪(

𝑠6
𝑛6𝛾−1).

By the same reasoning as for 𝛽 ∈ (0, 1) we will choose 𝛾 = 1
4 and obtain

exp(−𝑛𝐺(𝑠/𝑛1/4))ℎ(𝑠) → exp(− 𝑠
4

12)ℎ(𝑠) as 𝑛 → ∞. (2.31)

Now we can apply Theorem 18.1 from [2] again to obtain the limiting distribution. First observe that we
can bound cosh(𝑠√𝛽) ≤ 𝑒|𝑠|√𝛽 and find that

𝐺(𝑠) = 𝑠2
2 − ln cosh(𝑠√𝛽) ≥ 𝑠2

2 − ln(𝑒|𝑠|√𝛽)

≥ 𝑠2
2 − |𝑠|√𝛽.

(2.32)

Then by (2.32) we have

exp(−𝑛𝐺(𝑠/𝑛𝛾))ℎ(𝑠)
𝛾∈(0,1)
≤ exp(−𝑠

2

2 + |𝑠|√𝛽)max{|ℎ(𝑠)| ∶ 𝑠 ∈ ℝ}, (2.33)

thus we can apply dominated convergence with (2.30) and (2.33) to prove that for 𝛽 ∈ (0, 1) we have

∫ exp(−𝑛𝐺(𝑠/𝑛1/2))ℎ(𝑠)d𝑠
∫ exp(−𝑛𝐺(𝑠/𝑛1/2))d𝑠

→ ∫ 1
√2𝜋𝜎2

exp(− 𝑠2
2𝜎2)ℎ(𝑠)d𝑠 as 𝑛 → ∞,

where 𝜎2 = (1 − 𝛽)−1. The same goes for 𝛽 = 1 where (2.31) and (2.33) give

∫ exp(−𝑛𝐺(𝑠/𝑛1/4))ℎ(𝑠)d𝑠
∫ exp(−𝑛𝐺(𝑠/𝑛1/4))d𝑠

→
∫ exp(− 𝑠4

12)ℎ(𝑠)d𝑠

∫ exp(− 𝑠4
12)d𝑠

as 𝑛 → ∞.

What we have shown is that for 𝛽 ∈ (0, 1) we obtain the limiting distribution

𝑊 + 𝑆𝑛
√𝑛

→ 𝑁(0, (1 − 𝛽)−1) as 𝑛 → ∞, (2.34)

where𝑊 ∼ 𝑁(0, 1). We can apply Lemma 2.1.2 together with Theorem 16.3 from [2] and conclude

𝑆𝑛
√𝑛

→ 𝑁(0, (1 − 𝛽)−1 − 1) as 𝑛 → ∞, (2.35)
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for 𝛽 ∈ (0, 1). We could not arrive at a normal distribution in the limit for 𝛽 = 1 using the same scaling
as in (2.34), but we can divide 𝑆𝑛 by a different order of 𝑛 and obtain the following expression

𝑊
𝑛1/4 +

𝑆𝑛
𝑛3/4 → exp(− 𝑠

4

12)d𝑠 as 𝑛 → ∞,

where the normalization constant is left out. Because the term 𝑊
𝑛1/4 converges to 𝛿(𝑠) we can apply

Lemma 2.1.2 again to obtain
𝑆𝑛
𝑛3/4 → exp(− 𝑠

4

12)d𝑠 as 𝑛 → ∞. (2.36)

Thus a certain change happens at 𝛽 = 1. For smaller values of 𝛽 we have a normal distribution in
the limit where 𝑆𝑛 is scaled by the same term √𝑛 as in the Central Limit Theorem. But the limiting
distribution takes another form when 𝛽 = 1 and 𝑆𝑛 requires a different scaling to obtain this.

What we observe is that by changing the physical properties of the model, in this case the param-
eter 𝛽 which is proportional to inverse temperature, the behaviour of 𝑆𝑛 changes drastically when 𝛽
approaches 1 from below. In the next chapter we will generalize the methods that we used through-
out this chapter and see why we could not find a limiting distribution for 𝛽 > 1 as well. Using one of
these methods it becomes possible to prove the claim at the end of section 2.2, where we stated that
𝑆𝑛/𝑛 converges to two different points with equal probability. In this case it is unreasonable to find an
expression as in (2.28) without additional assumptions, as we do not have converge to the mean.





3
General

In Chapter 2 we have shown that for a specific case of dependent random variables, we can still apply
the known limit theorems and obtain satisfactory results. We also saw that there exists a type of
boundary for the Curie-Weiss model at 𝛽 = 1. We know that the limit behaviour changes at this point
but are unable to prove the actual existence of a phase change. In this chapter we will state and prove
two theorems which will agree to the already obtained results and also lead to additional conclusions
that we could not make in Section 2.2. In order to do this we must impose a condition on 𝜌, hence
throughout the chapter we always assume that our measure 𝜌 satisfies the condition

∫ exp(𝑥
2

2 )d𝜌(𝑥) < ∞. (3.1)

This excludes the case where 𝜌 has a normal distribution for example, but is necessary to ensure we
can apply the lemmas stated in this chapter.

3.1. Lemmas
The function 𝐺 in (2.13) was not introduced without purpose, and the term cosh (𝑠√𝛽) appeared to be
derived from (2.20). For this reason we will define the general form of 𝐺 together with some properties
in the following Lemma.

Lemma 3.1.1. Suppose that 𝜌 satisfies (3.1) and define 𝐺 ∶ ℝ → ℝ by

𝐺(𝑠) = 𝑠2
2 − ln∫ exp(𝑠𝑥)d𝜌(𝑥). (3.2)

Then G is real analytic and 𝐺(𝑠) → ∞ as |𝑠| → ∞. Thus, G has only a finite number of global minima.
Also,

∫ exp(−𝑛𝐺(𝑠))d𝑠 < ∞ for any 𝑛 ∈ {1, 2, …}. (3.3)

Proof. We will prove that 𝐺(𝑠) → ∞ as |𝑠| → ∞ by showing that the term 𝑠2/2 goes much faster to
infinity than ln∫ exp(𝑠𝑥)d𝜌(𝑥). For the integral we have for some 𝐿 > 0 and 𝑠 ∈ ℝ

∫ exp(𝑠𝑥)d𝜌(𝑥) ≤ ∫ exp(|𝑠𝑥|)d𝜌(𝑥)

≤ ∫
|𝑥|≤𝐿

exp(|𝑠𝑥|)d𝜌(𝑥) + ∫
|𝑥|>𝐿

exp(|𝑠𝑥|)d𝜌(𝑥)

≤ 𝜌([−𝐿, 𝐿]) exp(𝐿|𝑠|) + ∫
|𝑥|>𝐿

exp(|𝑠𝑥|)d𝜌(𝑥),

and if we use the identity
1
2(|𝑠| − |𝑥|)

2 = 𝑠2
2 − |𝑠𝑥| +

𝑥2
2 ≥ 0, (3.4)

13
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and 𝜌([−𝐿, 𝐿]) ≤ 1 we obtain

∫ exp(𝑠𝑥)d𝜌(𝑥)
(3.4)
≤ exp(𝐿|𝑠|) + ∫

|𝑥|>𝐿
exp(𝑠

2

2 +
𝑥2
2 )d𝜌(𝑥).

Since we can let 𝐿 = √|𝑠| as we’re letting |𝑠| → ∞, we find that

∫ exp(𝑠𝑥)d𝜌(𝑥) ≤ exp(|𝑠|3/2) + exp(𝑠2/2)∫
|𝑥|>√|𝑠|

exp(𝑥2/2)d𝜌(𝑥)

= 𝑜(exp(𝑠2/2)), |𝑠| → ∞,
(3.5)

because of the assumption (3.1) on 𝜌. Hence we obtain

lim
|𝑠|→∞

𝐺(𝑠) = lim
|𝑠|→∞

𝑠2
2 − ln∫ exp(𝑠𝑥)d𝜌(𝑥)

= lim
|𝑠|→∞

ln exp(𝑠
2

2 ) − ln∫ exp(𝑠𝑥)d𝜌(𝑥)

= lim
|𝑠|→∞

− ln(∫ exp
(𝑠𝑥)d𝜌(𝑥)

exp(𝑠2/2) ) (3.5)= ∞.

In order to prove (3.3) we start with 𝑛 = 1, and use 𝑎 = exp(ln𝑎) for 𝑎 > 0 together the same expansion
as in (2.17) (but we take 𝑛 = 1). We also use Tonelli-Fubini’s Theorem before we apply the expansion,
this will help us to separate the terms only dependent on 𝑥. This gives

∫𝑒−𝐺(𝑠)d𝑠 = 𝑒−𝑠2/2+ln∫ exp(𝑠𝑥)d𝜌(𝑥)d𝑠 = ∫𝑒−𝑠2/2∫𝑒𝑠𝑥d𝜌(𝑥)d𝑠

= ∫∫𝑒−𝑠2/2+𝑠𝑥d𝑠d𝜌(𝑥) (2.17)= ∫∫𝑒−(𝑠−𝑥)2/2d𝑠𝑒𝑥2/2d𝜌(𝑥).
(3.6)

We now have the term 𝑒−(𝑠−𝑥)2/2 inside as the integrand with respect to d𝑠, which is the density of a
normal distribution with mean 𝑥 without the normalization constant. Since we assumed (3.1) we obtain
from (3.6)

∫∫𝑒−(𝑠−𝑥)2/2d𝑠𝑒𝑥2/2d𝜌(𝑥) = ∫√2𝜋𝑒𝑥2/2d𝜌(𝑥)
(3.1)
< ∞. (3.7)

Now for 𝑛 ≥ 2, we want to bound the integral in (3.3) by using that it converges for 𝑛 = 1. We know
that 𝐺 tends to infinity and can therefore find an 𝑀 > 0 such that 𝐺(𝑠) > 0 for all |𝑠| > 𝑀. This gives
the following upperbound

∫
|𝑥|>𝑀

𝑒−𝑛𝐺(𝑠)d𝑠 = ∫
|𝑥|>𝑀

(𝑒−𝐺(𝑠))𝑛d𝑠 ≤ ∫
|𝑥|>𝑀

𝑒−𝐺(𝑠)d𝑠
(3.7)
< ∞. (3.8)

We also know that 𝐺 is continuous because it is analytic, hence 𝐺 attains a global minimum on the
compact set [−𝑀,𝑀]. Thus for |𝑠| ≤ 𝑀 we can also find an upperbound on this domain

∫
|𝑥|≤𝑀

𝑒−𝑛𝐺(𝑠)d𝑠 ≤ ∫
|𝑥|≤𝑀

exp(−𝑛min{𝐺(𝑠) ∶ 𝑠 ≤ 𝑀})d𝑠

≤ 2𝑀 exp(−𝑛min{𝐺(𝑠) ∶ 𝑠 ≤ 𝑀}) < ∞.
(3.9)

Now (3.8) and (3.9) give us

∫𝑒−𝑛𝐺(𝑠)d𝑠 = ∫
|𝑥|≤𝑀

𝑒−𝑛𝐺(𝑠)d𝑠 + ∫
|𝑥|>𝑀

𝑒−𝑛𝐺(𝑠)d𝑠 < ∞

as desired.

In Section 2.1 we proved several claims about the distribution of 𝑆𝑛, which will appear to be the foun-
dation of the proofs in this section. Especially Lemma 2.1.1, which does not assume anything on 𝜌 and
makes it applicable in any case. Moreover, Claim 2.1.3 showed the importance of the function 𝐺 which
we defined in a more general way in Lemma 3.1.1. We will state and prove the following lemma which
is a generalization of the claim. Because of this the proof will be analogous to that of Claim 2.1.3 and
we will often refer to it.
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Lemma 3.1.2. Suppose𝑊 ∼ 𝑁(0, 1) is independent of 𝑆𝑛 for all 𝑛 ≥ 1. Then given 𝛾 and 𝑚 real,

𝑊
𝑛
1
2−𝛾

+ 𝑆𝑛 − 𝑛𝑚𝑛1−𝛾 ∼ exp(−𝑛𝐺(𝑠/𝑛𝛾 +𝑚))d𝑠
∫ exp(−𝑛𝐺(𝑠/𝑛𝛾 +𝑚))d𝑠 (3.10)

Proof. Because of the the term 𝑛𝑚 in (3.10) we will define the interval 𝐼 such that we arrive at the same
expression as (2.14), but now 𝐼 ∶= (−∞, 𝑛1−𝛾𝜃 + 𝑛𝑚] and we obtain

ℙ( 𝑊
𝑛
1
2−𝛾

+ 𝑆𝑛 − 𝑛𝑚𝑛1−𝛾 ≤ 𝜃) = ℙ(√𝑛𝑊 + 𝑆𝑛 ∈ 𝐼). (3.11)

Because the distribution of 𝑆𝑛 is known by Lemma 2.1.1, equations (2.15)-(2.18) follow by the same
reasoning. Hence we can continue (3.11) to arrive at

ℙ(√𝑛𝑊 + 𝑆𝑛 ∈ 𝐼) =
1
𝑍𝑛

1
√2𝜋𝑛

∫
𝐼
exp(− 𝑠

2

2𝑛)∫ exp(𝑠𝑥𝑛 )d𝜌
∗𝑛(𝑥)d𝑠. (3.12)

By (2.19) and 𝑎𝑛 = exp(𝑛 ln𝑎) for any 𝑎 > 0, we have for an random variable 𝑌 with distribution 𝜌

∫ exp(𝑠𝑥𝑛 )d𝜌
∗𝑛(𝑥) = 𝔼[exp(𝑠𝑌𝑛 )]

𝑛
= exp(𝑛 ln∫ exp(𝑠𝑥𝑛 )d𝜌(𝑥)).

Hence similar to (2.21), we have that (3.12) becomes

1
𝑍𝑛

1
√2𝜋𝑛

∫
𝐼
exp(− 𝑠

2

2𝑛)∫ exp(𝑠𝑥𝑛 )d𝜌
∗𝑛(𝑥)d𝑠

= 1
𝑍𝑛

1
√2𝜋𝑛

∫
𝐼
exp(− 𝑠

2

2𝑛) exp(𝑛 ln∫ exp(𝑠𝑥𝑛 )d𝜌(𝑥))d𝑠.
(3.13)

From here we can again follow the proof of Claim 2.1.3 and just as in (2.22) we obtain

− 𝑠
2

2𝑛 + 𝑛 ln∫ exp(𝑠𝑥𝑛 )d𝜌(𝑥) = −𝑛(
(𝑠/𝑛)2
2 − ln∫ exp( 𝑠𝑛𝑥)d𝜌(𝑥))

= −𝑛𝐺( 𝑠𝑛),
(3.14)

where 𝐺 is given by (3.2). Now (3.13) leads to

1
𝑍𝑛

1
√2𝜋𝑛

∫
𝐼
exp(− 𝑠

2

2𝑛) exp(𝑛 ln∫ exp(𝑠𝑥𝑛 )d𝜌(𝑥))d𝑠

(3.14)= 1
𝑍𝑛

1
√2𝜋𝑛

∫
𝑛1−𝛾𝜃+𝑛𝑚

−∞
exp(−𝑛𝐺( 𝑠𝑛))d𝑠,

(3.15)

where we want the upperbound to depend on 𝜃 only. This can be obtained by means substitution of
𝑡 = 𝑠𝑛𝛾−1 −𝑚𝑛𝛾 and gives

= 1
𝑍𝑛

1
√2𝜋𝑛

∫
𝑛1−𝛾𝜃+𝑛𝑚

−∞
exp(−𝑛𝐺( 𝑠𝑛))d𝑠

𝑡=𝑠𝑛𝛾−1−𝑚𝑛𝛾= 1
𝑍𝑛

𝑛1−𝛾

√2𝜋𝑛
∫
𝜃

−∞
exp(−𝑛𝐺( 𝑡𝑛𝛾 +𝑚))d𝑡.

(3.16)

Now the normalization constant can be obtained using the same technique as in (2.24) and leads to
(3.10) as required.

With the lemmas stated in this section up to this point, we are able to prove claims about the limit
behaviour of random variables with a distribution given by (2.6) for an arbitrary 𝜌 which satisfies (3.1).
Observe that in the previous chapter we obtained that the limit behaviour was determined by the value
of 𝐺(2𝑘)(0) for some positive integer 𝑘, and that we only had reasonable results whenever 𝐺(2𝑘)(0) > 0.
We also need this to be true in the same sense for the rest of the chapter, which is why we will introduce
the following definition for 𝐺 in (3.2).
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Definition 3.1.1. Given a positive integer 𝛼, we write

𝜌 ∼ (𝑚1, 𝑘1; … ;𝑚𝛼 , 𝑘𝛼)

if the set of global minima of G is {𝑚1, … ,𝑚𝛼} where the 𝑚𝑖 ’s are distinct and the 𝑘𝑖 ’s are positive
integers, and for each 𝑖 = 1,… , 𝛼

𝐺(𝑠) = 𝐺(𝑚𝑖) + 𝜆𝑖
(𝑠 − 𝑚𝑖)2𝑘𝑖
(2𝑘𝑖)!

+ 𝒪((𝑠 − 𝑚𝑖)2𝑘𝑖+1) as 𝑠 → 𝑚𝑖 , (3.17)

where 𝜆𝑖 is a positive number. We call 𝑘(𝑚𝑖) = 𝑘𝑖 the type and 𝜆(𝑚𝑖) = 𝜆𝑖 the strength and the maximal
type is defined as the largest of the 𝑘𝑖 ’s.
In the case of 𝛽 ∈ (0, 1) this led to the expression

𝐺(𝑠) = 1 − 𝛽
2 𝑠2 + 𝒪(𝑠4),

thus we have that the minimum at zero is of type 𝑘 = 1 and strength 𝜆 = 1− 𝛽. For 𝛽 = 1 we obtained

𝐺(𝑠) = 1
12𝑠

4 + 𝒪(𝑠6),

which means that 𝑘 = 2 and 𝜆 = 2.
Because we want to show weak converge of a sequence (𝑋𝑛)𝑛≥1 to 𝑋 in ℝ, for which we will use

Theorem 18.1 from [2] again, we have to prove that

lim
𝑛→∞

𝔼[ℎ(𝑋𝑛)] = 𝔼[ℎ(𝑋)], (3.18)

for any continuous, bounded function ℎ. Since these random variables are characterized by the density
function given in the right-hand side of (3.10), the Dominated Convergence Theorem is a convenient
tool to prove this limit. We will apply dominated convergence in the following way, if we want to deter-
mine the left-hand side of (3.18) where the 𝑋𝑛’s distribution is given by (3.10), then we can choose a
set 𝑉 which excludes the global minima. This can be done by taking small intervals of radius 𝛿 > 0
around the 𝑚𝑖 ’s out of ℝ. We will then apply Lemma 3.1.3 to show that the integral over 𝑉 goes to 0.
We have already applied Lemma 3.1.4 at this point since 𝛿 is determined by this lemma. Moreover, the
lemma provides for the use of dominated convergence on ℝ ⧵ 𝑉, as it gives expressions for pointwise
convergence and an integrable upperbound.

Lemma 3.1.3. Assume that 𝜌 ∼ (𝑚1, 𝑘1; … ;𝑚𝛼 , 𝑘𝛼) satisfies (3.1). We define

𝑓 =min{𝐺(𝑠)|𝑠 ∈ ℝ}

and let 𝑉 be any closed subset of ℝ which contains no global minima of 𝐺. Then there exists 𝜀 > 0
such that

𝑒𝑛𝑓∫
𝑉
𝑒−𝑛𝐺(𝑠)d𝑠 = 𝒪(𝑒−𝑛𝜀), 𝑛 → ∞. (3.19)

Proof. We will prove (3.19) by showing that on a closed set 𝑉 without global minima, there exists a
distance 𝜀 > 0 such that for every 𝑆 ∈ 𝑉 we have 𝐺(𝑠) − 𝑓 > 𝜀. Suppose that for 𝑚 ∈ ℝ we have
𝐺(𝑚) = 𝑓, then for every 𝑠 ∈ 𝑉 we must have 𝐺(𝑠)−𝐺(𝑚) > 0. If this was not true then either 𝑉 has to
be open or 𝐺(𝑠) = 𝑓 for some 𝑠 ∈ 𝑉 and 𝑉 contains a global minimum. Hence as there are only finitely
many global minima we can find an 𝜀 > 0 such that 𝐺(𝑠) − 𝑓 > 𝜀. Now let 𝜀 > 0 such that 𝐺(𝑠) > 𝑓 + 𝜀
on 𝑉 and 𝑛 ≥ 1, we find for every 𝑠 ∈ 𝑉 that

𝑒𝑛(𝑓−𝐺(𝑠)) = 𝑒𝑛𝑓−(𝑛−1)𝐺(𝑠)−𝐺(𝑠) < 𝑒𝑛𝑓−(𝑛−1)(𝑓+𝜀)𝑒−𝐺(𝑠) = 𝑒−𝑛𝜀𝑒𝑓+𝜀𝑒−𝐺(𝑠), (3.20)

where 𝑒−𝑛𝜀 is now the only term dependent on 𝑛. Since the left-hand side of this equation is the
integrand we want to bound and we know for the upperbound that

∫
𝑉
𝑒−𝐺(𝑠)d𝑠 ≤ ∫𝑒−𝐺(𝑠)d𝑠

(3.3)
< ∞. (3.21)
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Hence (3.19) follows from

𝑒𝑛𝑓∫
𝑉
𝑒−𝑛𝐺(𝑠)d𝑠

(3.20)
< 𝑒−𝑛𝜀𝑒𝑓+𝜀∫

𝑉
𝑒−𝐺(𝑠)d𝑠

< 𝑒−𝑛𝜀[𝑒𝑓+𝜀∫
𝑉
𝑒−𝐺(𝑠)d𝑠] (3.21)= 𝒪(𝑒−𝑛𝜀), 𝑛 → ∞.

Lemma 3.1.4. Define
𝐵(𝑠;𝑚) = 𝐺(𝑠 + 𝑚) − 𝐺(𝑚).

Then for each 𝑖 = 1,… , 𝛼 if we say 𝑘 = 𝑘𝑖 and 𝜆 = 𝜆𝑖, there exists 𝛿 > 0 sufficiently small so that as
𝑛 → ∞

𝑛𝐵( 𝑠
𝑛

1
2𝑘
; 𝑚𝑖) →

𝜆
(2𝑘)!𝑠

2𝑘 , (3.22)

and

𝑛𝐵( 𝑠
𝑛

1
2𝑘
; 𝑚𝑖) ≥

1
2

𝜆
(2𝑘)!𝑠

2𝑘 for |𝑠| < 𝛿𝑛
1
2𝑘 . (3.23)

Proof. In order to prove (3.22) and (3.23) we first clarify the following; since G is analytic we have that
if 𝑎 ∈ ℝ then

𝐺(𝑠) = 𝐺(𝑎) +
∞

∑
𝑗=1
𝐺(𝑗)(𝑎)(𝑠 − 𝑎)

𝑗

𝑗! .

Because of the assumption of 𝜌 we have 𝐺(1)(𝑚𝑖) = ⋯ = 𝐺(2𝑘𝑖−1)(𝑚𝑖) = 0 for every global minimum
𝑚𝑖 of type 𝑘 = 𝑘𝑖, where the strength is given by 𝜆 = 𝜆𝑖 = 𝐺(2𝑘𝑖)(𝑚𝑖) > 0. Hence if we write 𝐺(𝑠 + 𝑚𝑖)
using the expansion around 𝑚𝑖 we obtain

𝐵(𝑠;𝑚𝑖) = 𝐺(𝑠 + 𝑚𝑖) − 𝐺(𝑚𝑖) =
𝜆

(2𝑘)!𝑠
2𝑘 +

∞

∑
𝑗=2𝑘+1

𝐺(𝑗)(𝑚𝑖)
𝑠𝑗
𝑗! . (3.24)

Because every term in the summation has an exponent 𝑗 ≥ 2𝑘 + 1 ≥ 2𝑘, it will go to zero when we
substitute 𝑠

𝑛
1
2𝑘

for 𝑠, first we obtain from (3.24)

𝐵( 𝑠
𝑛

1
2𝑘
; 𝑚𝑖) = 𝜆

𝑠2𝑘
𝑛(2𝑘)! +

∞

∑
𝑗=2𝑘+1

𝐺(𝑗)(𝑚𝑖)
𝑠𝑗

𝑛𝑗/2𝑘𝑗! . (3.25)

Hence for 𝑗 ≥ 2𝑘 + 1 we then have

1
𝑛𝑗/2𝑘 ≥

1
𝑛(2𝑘+1)/2𝑘 =

1
𝑛

1
𝑛1/2𝑘 ,

which we can combine with (3.25) such that (3.22) follows from

𝑛𝐵( 𝑠
𝑛

1
2𝑘
; 𝑚𝑖) = 𝑛(𝜆

𝑠2𝑘
𝑛(2𝑘)! + 𝒪(

𝑠2𝑘+1
𝑛1+1/2𝑘 )) =

𝜆
(2𝑘)!𝑠

2𝑘 + 𝒪(𝑠
2𝑘+1

𝑛1/2𝑘 ), (3.26)

as 𝑛 → ∞. Now for (3.23) we need to bound 𝐵(𝑠,𝑚𝑖) from below. This can be done using the inequality

𝐵(𝑠;𝑚𝑖) =
𝜆

(2𝑘)!𝑠
2𝑘 − [ 𝜆

(2𝑘)!𝑠
2𝑘 − 𝐵(𝑠;𝑚𝑖)]

≥ 𝜆
(2𝑘)!𝑠

2𝑘 − |𝐵(𝑠;𝑚𝑖) −
𝜆

(2𝑘)!𝑠
2𝑘|,

(3.27)
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where we know that

|𝐵(𝑠;𝑚𝑖) −
𝜆

(2𝑘)!𝑠
2𝑘| = |

∞

∑
𝑗=2𝑘+1

𝐺(𝑗)(𝑚𝑖)
𝑠𝑗
𝑗! | = 𝒪(|𝑠|

2𝑘+1), 𝑠 → 0.

Hence we can find an 𝛿 > 0 such that

|𝐵(𝑠;𝑚𝑖) −
𝜆

(2𝑘)!𝑠
2𝑘| ≤ 1

2
𝜆

(2𝑘)!𝑠
2𝑘 , |𝑠| < 𝛿, (3.28)

and with (3.27) arrive at

𝐵(𝑠;𝑚𝑖)
(3.28)
≥ 1

2
𝜆

(2𝑘)!𝑠
2𝑘 , |𝑠| < 𝛿.

At last we obtain (3.23) from substituting 𝑠

𝑛
1
2𝑘

for 𝑠 which gives

𝑛𝐵( 𝑠
𝑛

1
2𝑘
; 𝑚𝑖) ≥ 𝑛

1
2𝜆

𝑠2𝑘
𝑛(2𝑘)! =

1
2

𝜆
(2𝑘)!𝑠

2𝑘 , |𝑠| < 𝛿𝑛
1
2𝑘 ,

and concludes the proof of the lemma.

3.2. Law of Large Numbers
In the case 𝛽 ∈ (0, 1] of the Curie-Weiss model, we showed that (2.27) holds. But for 𝛽 > 1 we could
not prove such a claim, which was implied by the fact that 𝐺 had two distinct global minima ±𝑚 around
zero which is illustrated in Figure 2.2. We claimed that we will therefore have that 𝑆𝑛/𝑛 converges
to those two points and as 𝐺 is an even function, they should have the same probability mass in the
limit. The following theorem states that for an arbitrary 𝜌 which agrees with Definition 3.1.1, we will
have a linear combination of Dirac measures in the limit, which is exactly what we described for the
Curie-Weiss model when 𝛽 > 1.
Theorem 3.2.1. Assume that 𝜌 ∼ (𝑚1, 𝑘1; … ;𝑚𝛼 , 𝑘𝛼), then

𝑆𝑛
𝑛 →

∑𝛼𝑖=1 𝑏𝑖𝛿(𝑠 − 𝑚𝑖)
∑𝛼𝑖=1 𝑏𝑖

, (3.29)

where

𝑏𝑖 = {[𝜆(𝑚𝑖)]
− 1
2𝑘𝑖 , if 𝑘𝑖 is maximal.

0, otherwise.
(3.30)

Proof. By Lemmas 2.1.2 and 3.1.2 with 𝛾 = 0 and by definition of the weak convergence of measures
we have to show that

∫ 𝑒−𝑛𝐺(𝑠)ℎ(𝑠)d𝑠
∫ 𝑒−𝑛𝐺(𝑠)d𝑠 →

∑𝛼𝑖=1 ℎ(𝑚𝑖)𝑏𝑖
∑𝛼𝑖=1 𝑏𝑖

, (3.31)

for each bounded continuous function ℎ. Because we have 𝑊/√𝑛 → 𝛿(𝑠) = 𝜈 and for some measure
𝜇 that

𝜈 ∗ 𝜇(𝐴) = ∫1𝐴(𝑥 + 𝑦)d𝜇(𝑥)d𝜈(𝑦) = ∫1𝐴(𝑥)d𝜇(𝑥) = 𝜇(𝐴), (3.32)

we can apply Lemma 2.1.2 in the following way; if𝑊/√𝑛+𝑆𝑛/𝑛 → 𝜇, then wemust have 𝑆𝑛/𝑛 → 𝜇. Now
for the left-hand side of (3.31), we want to split the integrals into two integrals over different domains,
where one integral will have no contribution in the limit. Choose 𝛿 > 0 such that (3.23) holds and that
we have 𝛿 <min{|𝑚𝑖 −𝑚𝑗| ∶ 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝛼}. With this condition we can define the closed set 𝑉 by

𝑉 = ℝ ⧵
𝛼

⋃
𝑖=1
(𝑚𝑖 − 𝛿,𝑚𝑖 + 𝛿),
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which will contain no global minima of 𝐺. For the first integral which we will consider, we will put the
factor 𝑒𝑛𝑓 in front such that we can apply (3.19). Since we have that ℎ is bounded we can indeed apply
(3.19) to

𝑒𝑛𝑓∫
𝑉
𝑒−𝑛𝐺(𝑠)ℎ(𝑠)d𝑠 ≤ sup{|ℎ(𝑠)| ∶ 𝑠 ∈ ℝ}𝑒𝑛𝑓∫

𝑉
𝑒−𝑛𝐺(𝑠)d𝑠

= 𝒪(𝑒−𝑛𝜀), 𝑛 → ∞,
(3.33)

for some 𝜀 > 0. The factor 𝑒𝑛𝑓 in front of the integral is also necessary for the integral over the rest
of the domain ℝ ⧵ 𝑉, which contains the global minima of 𝐺. We will also put a factor 𝑛1/2𝑘 in front of
the following integral, this will have no influence on the convergence of (3.33) as it is of order 𝒪(𝑒−𝑛𝜀).
For each 𝑖 = 1,… , 𝛼 we have that 𝑚𝑖 is a global minimum of 𝐺 thus 𝑓 = 𝐺(𝑚𝑖). Then if 𝑘 = 𝑘(𝑚𝑖) and
𝜆 = 𝜆(𝑚𝑖) and we substitute 𝑠 + 𝑚𝑖 for 𝑠 we obtain

𝑛
1
2𝑘 𝑒𝑛𝑓∫

𝑚𝑖+𝛿

𝑚𝑖−𝛿
𝑒−𝑛𝐺(𝑠)ℎ(𝑠)d𝑠 = 𝑛

1
2𝑘 ∫

𝛿

−𝛿
𝑒−𝑛𝐺(𝑠+𝑚𝑖)𝑒𝑛𝑓ℎ(𝑠 + 𝑚𝑖)d𝑠

𝑓=𝐺(𝑚𝑖)= 𝑛
1
2𝑘 ∫

𝛿

−𝛿
exp(−𝑛(𝐺(𝑠 + 𝑚𝑖) − 𝐺(𝑚𝑖)))ℎ(𝑠 + 𝑚𝑖)d𝑠.

(3.34)

We now recognize 𝑛𝐵(𝑠;𝑚𝑖) in the last equality and together with the substitution of 𝑠/𝑛1/2𝑘 for 𝑠 we
obtain

𝑛
1
2𝑘 ∫

𝛿

−𝛿
exp(−𝑛𝐵(𝑠;𝑚𝑖))ℎ(𝑠 + 𝑚𝑖)d𝑠

= ∫
|𝑠|<𝛿𝑛

1
2𝑘
exp(−𝑛𝐵( 𝑠

𝑛
1
2𝑘
; 𝑚𝑖))ℎ(

𝑠
𝑛

1
2𝑘
+𝑚𝑖)d𝑠,

(3.35)

where 𝑛𝐵( 𝑠

𝑛
1
2𝑘
; 𝑚𝑖) is in the form of (3.22) and (3.23). Because we chose 𝛿 > 0 as in Lemma 3.1.4

we obtain an integrable function as upperbound

exp(−𝑛𝐵( 𝑠
𝑛

1
2𝑘
; 𝑚𝑖))ℎ(

𝑠
𝑛

1
2𝑘
+𝑚𝑖)

≤ exp(−12
𝜆

(2𝑘)!𝑠
2𝑘) sup{|ℎ(𝑠)| ∶ 𝑠 ∈ ℝ}, for |𝑠| < 𝛿𝑛

1
2𝑘 ,

since 𝑘 ≥ 1. Now by (3.22) we have pointwise convergence for

exp(−𝑛𝐵( 𝑠
𝑛

1
2𝑘
; 𝑚𝑖))ℎ(

𝑠
𝑛

1
2𝑘
+𝑚𝑖)1|𝑠|<𝛿𝑛 1

2𝑘

→ exp(− 𝜆
(2𝑘)!𝑠

2𝑘)ℎ(𝑚𝑖) as 𝑛 → ∞.

Hence by the Dominated Convergence Theorem we know that the limit of the integral in (3.34) is

𝑛
1
2𝑘 𝑒𝑛𝑓∫

𝑚𝑖+𝛿

𝑚𝑖−𝛿
𝑒−𝑛𝐺(𝑠)ℎ(𝑠)d𝑠 → ∫ exp(− 𝜆

(2𝑘)!𝑠
2𝑘)ℎ(𝑚𝑖)d𝑠 as 𝑛 → ∞,

→ ℎ(𝑚𝑖)𝜆−1∫ exp(− 𝑠2𝑘
(2𝑘)!)d𝑠 as 𝑛 → ∞.
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Now we can apply (3.33) and (3.35) to the numerator of (3.31) and obtain

𝑛
1
2𝑘 𝑒𝑛𝑓∫𝑒−𝑛𝐺(𝑠)ℎ(𝑠)d𝑠

= 𝑛
1
2𝑘 𝑒𝑛𝑓∫

𝑉
𝑒−𝑛𝐺(𝑠)ℎ(𝑠)d𝑠 +

𝛼

∑
𝑖=1
𝑛

1
2𝑘 𝑒𝑛𝑓∫

𝑚𝑖+𝛿

𝑚𝑖−𝛿
𝑒−𝑛𝐺(𝑠)ℎ(𝑠)d𝑠

→ 𝒪(𝑛
1
2𝑘 𝑒−𝑛𝜀) +

𝛼

∑
𝑖=1
ℎ(𝑚𝑖)𝑏𝑖∫ exp(− 𝑠2𝑘

(2𝑘)!)d𝑠 as 𝑛 → ∞,

(3.36)

where 𝑏𝑖 is only nonzero if 𝑘𝑖 is of maximal type. This is because if one substitutes a 𝑘 larger than the

type 𝑘𝑖 of 𝑚𝑖 in (3.26), 𝑛𝐵( 𝑠

𝑛
1
2𝑘
; 𝑚𝑖) = 𝒪(𝑛𝛼) as 𝑛 → ∞ for some 𝛼 > 0, hence the integral will not

contribute in that case. At last we have to choose ℎ ≡ 1 in (3.36) such that the denominator gives

∫ 𝑒−𝑛𝐺(𝑠)ℎ(𝑠)d𝑠
∫ 𝑒−𝑛𝐺(𝑠)d𝑠 = 𝑛

1
2𝑘 𝑒𝑛𝑓 ∫ 𝑒−𝑛𝐺(𝑠)ℎ(𝑠)d𝑠
𝑛

1
2𝑘 𝑒𝑛𝑓 ∫ 𝑒−𝑛𝐺(𝑠)d𝑠

→
∑𝛼𝑖=1 ℎ(𝑚𝑖)𝑏𝑖
∑𝛼𝑖=1 𝑏𝑖

∫ exp(− 𝑠2𝑘
(2𝑘)!)d𝑠

∫ exp(− 𝑠2𝑘
(2𝑘)!)d𝑠

=
∑𝛼𝑖=1 ℎ(𝑚𝑖)𝑏𝑖
∑𝛼𝑖=1 𝑏𝑖

as 𝑛 → ∞,

with (3.29) and (3.30) as desired.

3.3. Central Limit Theorem
When we have that 𝜌 ∼ (𝑚, 𝑘), 𝐺 has an unique global minimum of type 𝑘 where Theorem 3.2.1 implies
that 𝑆𝑛/𝑛 → 𝛿(𝑠 − 𝑚). Because we now have convergence to a single point in distribution, we might
have a result analogous with the Central Limit Theorem. The following theorem states whenever this
is the case.

Theorem 3.3.1. Assume that 𝜌 ∼ (𝑚, 𝑘) is nondegenerate and satisfies (3.1) and 𝑚 has strength
𝜆 = 𝜆(𝑚). Then

𝑆𝑛 − 𝑛𝑚
𝑛1−

1
2𝑘

→ {
𝑁(0, 𝜆−1 − 1), for 𝑘 = 1,
𝑐 exp(− 𝜆

(2𝑘)!𝑠
2𝑘), for 𝑘 ≥ 2, (3.37)

where 𝑐 is a normalization constant and 𝜆−1 − 1 > 0 for 𝑘 = 1.

Proof. We will prove this in a similar way as we proved Theorem 3.2.1, but now we need to show by
Lemmas 2.1.2 and 3.1.2 with 𝛾 = 1

2𝑘 that

∫ exp(−𝑛𝐺(𝑠/𝑛1/2𝑘 +𝑚))ℎ(𝑠)d𝑠
∫ exp(−𝑛𝐺(𝑠/𝑛1/2𝑘 +𝑚))d𝑠

→
∫ exp(− 𝜆

(2𝑘)!𝑠
2𝑘)ℎ(𝑠)d𝑠

∫ exp(− 𝜆
(2𝑘)!𝑠

2𝑘)d𝑠
, (3.38)

for any bounded, continuous function ℎ. If 𝑘 ≥ 2, then using the same reasoning as in (3.32), we can
immediately conclude (3.37). For 𝑘 = 1 we will obtain that

𝑊 + 𝑆𝑛
√𝑛

→ 𝑁(0, 𝜆−1),

but since 𝑊 ∼ 𝑁(0, 1) is chosen independently of 𝑆𝑛, Lemma 2.1.2 and Theorem 16.3 from [2] imply
that (3.37) follows. Now that we have an unique global maximum we will define the closed set 𝑉 as
follows

𝑉 = ℝ ⧵ (𝑚 − 𝛿,𝑚 + 𝛿),
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with 𝛿 > 0 from Lemma 3.1.4. Thus we obtain by substituting for 𝑠/𝑛1/2𝑘 +𝑚 for 𝑠 and using that ℎ is
bounded

∫
|𝑠|≥𝛿𝑛1/2𝑘

exp(−𝑛𝐺( 𝑠
𝑛1/2𝑘 +𝑚))ℎ(𝑠)d𝑠

= 𝑛1/2𝑘∫
𝑉
exp(−𝑛𝐺(𝑠))ℎ( 𝑠

𝑛1/2𝑘 +𝑚)d𝑠

≤ sup{|ℎ(𝑠)| ∶ 𝑠 ∈ ℝ}𝑛1/2𝑘∫
𝑉
exp(−𝑛𝐺(𝑠))d𝑠.

(3.39)

We can now apply (3.19) to (3.39) such that for some 𝜀 > 0 we have

𝑒𝑛𝑓∫
|𝑠|≥𝛿𝑛1/2𝑘

exp(−𝑛𝐺( 𝑠
𝑛1/2𝑘 +𝑚))ℎ(𝑠)d𝑠 = 𝒪(𝑛

1/2𝑘𝑒−𝑛𝜀), 𝑛 → ∞. (3.40)

On the rest of the domain |𝑠| < 𝛿𝑛1/2𝑘 we see that since 𝑓 = 𝐺(𝑚) recognize 𝐵( 𝑠
𝑛1/2𝑘 ; 𝑚)

𝑒𝑛𝑓∫
|𝑠|<𝛿𝑛1/2𝑘

exp(−𝑛𝐺( 𝑠
𝑛1/2𝑘 +𝑚))ℎ(𝑠)d𝑠

= ∫
|𝑠|<𝛿𝑛1/2𝑘

exp(−𝑛(𝐺( 𝑠
𝑛1/2𝑘 +𝑚) − 𝐺(𝑚)))ℎ(𝑠)d𝑠

= ∫
|𝑠|<𝛿𝑛1/2𝑘

exp(−𝑛𝐵( 𝑠
𝑛1/2𝑘 ; 𝑚))ℎ(𝑠)d𝑠,

where we can use dominated convergence since

exp(−𝑛𝐵( 𝑠
𝑛

1
2𝑘
; 𝑚))ℎ(𝑠)

≤ exp(−12
𝜆

(2𝑘)!𝑠
2𝑘) sup{|ℎ(𝑠)| ∶ 𝑠 ∈ ℝ}, for |𝑠| < 𝛿𝑛

1
2𝑘 ,

gives us an integrable upperbound by (3.23). And (3.22) implies that

exp(−𝑛𝐵( 𝑠
𝑛

1
2𝑘
; 𝑚))ℎ(𝑠)1

|𝑠|<𝛿𝑛
1
2𝑘
→ exp(− 𝜆

(2𝑘)!𝑠
2𝑘)ℎ(𝑠) as 𝑛 → ∞.

Hence for the numerator and the denominator in (3.38) with ℎ ≡ 1 we now have

𝑒𝑛𝑓∫ exp(−𝑛𝐺(𝑠/𝑛1/2𝑘 +𝑚))ℎ(𝑠)d𝑠

= 𝑒𝑛𝑓∫
|𝑠|≥𝛿𝑛1/2𝑘

exp(−𝑛𝐺(𝑠/𝑛1/2𝑘 +𝑚))ℎ(𝑠)d𝑠

+ 𝑒𝑛𝑓∫
|𝑠|<𝛿𝑛1/2𝑘

exp(−𝑛𝐺(𝑠/𝑛1/2𝑘 +𝑚))ℎ(𝑠)d𝑠

→ 𝒪(𝑛1/2𝑘𝑒−𝑛𝜀) + ∫ exp(− 𝜆
(2𝑘)!𝑠

2𝑘)ℎ(𝑠)d𝑠 as 𝑛 → ∞,

which concludes the following

𝑊
𝑛
1
2−

1
2𝑘
+ 𝑆𝑛 − 𝑛𝑚

𝑛1−
1
2𝑘

→ {
𝑁(0, 𝜆−1), for 𝑘 = 1,
𝑐 exp(− 𝜆

(2𝑘)!𝑠
2𝑘), for 𝑘 ≥ 2. (3.41)

And since we have that 𝑊

𝑛
1
2−

1
2𝑘
→ 𝛿(𝑠) for 𝑘 ≥ 2 we can apply the same reasoning from the proof of

Theorem 3.2.1 and particularly (3.32) to conclude that

𝑆𝑛 − 𝑛𝑚
𝑛1−

1
2𝑘

→ 𝑐 exp(− 𝜆
(2𝑘)!𝑠

2𝑘) for 𝑘 ≥ 2.
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In Section 2.3 we applied Lemma 2.1.2 together with Theorem 16.3 from [2] to show that (2.35) follows
from (2.34). We can use the same argument for the case 𝑘 = 1 in (3.41) provided that 𝜆−1 − 1 > 0. In
order to show that 𝜆−1 − 1 > 0 whenever 𝑘 = 1, we will write 𝜆−1 − 1 = 1−𝜆

𝜆 and conclude that both
the numerator and denominator are strictly positive. Let 𝜙(𝑠) = ∫ exp(𝑠𝑥)d𝜌(𝑥) such that the first and
second derivatives of 𝐺 are

d𝐺(𝑠)
d𝑠 = 𝑠 − 𝜙

′(𝑠)
𝜙(𝑠) ,

d2𝐺(𝑠)
d𝑠2 = 1 − 𝜙(𝑠)𝜙

″(𝑠) − (𝜙′(𝑠))2

𝜙2(𝑠) ≡ 1 − 𝜃(𝑠),

where the derivatives of 𝜙 are given by

d
d𝑠𝜙(𝑠) = ∫𝑥 exp(𝑠𝑥)d𝜌(𝑥),

d2

d𝑠2𝜙(𝑠) = ∫𝑥
2 exp(𝑠𝑥)d𝜌(𝑥).

Wewill rewrite 𝜃 such that we can gather the sum of three integrals into one and recognize the quadratic
form 𝑎2 − 2𝑎𝑏 + 𝑏2 = (𝑎 − 𝑏)2, which will contribute to the argument that 𝜃 > 0. We first write

𝜃(𝑠) = 𝜙(𝑠)𝜙″(𝑠) − (𝜙′(𝑠))2

𝜙2(𝑠) = 𝜙″(𝑠)
𝜙(𝑠) − 2

(𝜙′(𝑠))2

𝜙2(𝑠) +
(𝜙′(𝑠))2

𝜙2(𝑠)

= 1
𝜙(𝑠)[𝜙

″(𝑠) − 2(𝜙
′(𝑠)
𝜙(𝑠) )𝜙

′(𝑠) + (𝜙
′(𝑠)
𝜙(𝑠) )

2
𝜙(𝑠)],

(3.42)

where the quadratic form becomes clear when we expand the following integrals

𝜙″(𝑠) − 2(𝜙
′(𝑠)
𝜙(𝑠) )𝜙

′(𝑠) + (𝜙
′(𝑠)
𝜙(𝑠) )

2
𝜙(𝑠)

= ∫𝑥2𝑒𝑠𝑥d𝜌(𝑥) − 2(𝜙
′(𝑠)
𝜙(𝑠) )∫𝑥𝑒

𝑠𝑥d𝜌(𝑥) + (𝜙
′(𝑠)
𝜙(𝑠) )

2
∫𝑒𝑠𝑥d𝜌(𝑥)

= ∫ [𝑥2 − 2𝑥(𝜙
′(𝑠)
𝜙(𝑠) ) + (

𝜙′(𝑠)
𝜙(𝑠) )

2
]𝑒𝑠𝑥d𝜌(𝑥)

= ∫ [𝑥 − (𝜙
′(𝑠)
𝜙(𝑠) )]

2
𝑒𝑠𝑥d𝜌(𝑥).

Thus (3.42) becomes

𝜃(𝑠) = 1
𝜙(𝑠) ∫ [𝑥 − (

𝜙′(𝑠)
𝜙(𝑠) )]

2
𝑒𝑠𝑥d𝜌(𝑥), (3.43)

which is strictly positive for all 𝑠. To see that we can’t have 𝑥 − (𝜙
′(𝑠)
𝜙(𝑠) ) = 0 for all 𝑥 ∈ supp(𝜌),

we will derive a contradiction. Assume that we have 𝑥 − (𝜙
′(𝑠)
𝜙(𝑠) ) = 0 for all 𝑥 ∈ supp(𝜌). Then for

𝑥1, 𝑥2 ∈ supp(𝜌) we obtain

𝑥1 = (
𝜙′(𝑠)
𝜙(𝑠) ) = 𝑥2,

which implies that supp(𝜌) = {𝑥1} and is in contradiction with the assumption that 𝜌 is nondegenerate.
Hence 𝜃(𝑠) > 0, and with the assumption that 𝐺″(𝑚) = 𝜆 > 0 is the type 𝑘 = 1, this leads to

𝜆−1 − 1 = 1 − 𝜆
𝜆 = 1 − 𝐺″(𝑚)

𝐺″(𝑚) = 𝜃(𝑚)
𝐺″(𝑚) > 0.

Thus we can conclude (3.37) for all 𝑘 ≥ 1.
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3.4. Agreement of the Curie-Weiss model with the theorems
Let us briefly return to the Curie-Weiss model that was treated in Chapter 2 where 𝜌𝛽 was given by
(2.4). We observe that in the case of 𝛽 ∈ (0, 1) we can use the the expansion given by (2.29) to express
𝐺𝛽 as

𝐺𝛽(𝑠) = (1 − 𝛽)
𝑠2
2 + 𝒪(𝑠

4) as 𝑠 → 0,

with an unique global minimum at 𝑠 = 0 and 𝐺𝛽(0) = 0. Now by Definition 3.1.1 we may write 𝜌𝛽 ∼
(𝑚 = 0, 𝑘 = 1) with strength 𝜆 = 1 − 𝛽. Theorem 3.2.1 applies here and gives

𝑆𝑛
𝑛 → 𝛿(𝑠), (3.44)

with 𝑏 = 𝜆−1/2 being the only weight as there is one distinct global minimum. We can also apply
Theorem 3.3.1 here and immediately come to the result

𝑆𝑛
√𝑛

→ 𝑁(0, 𝜆−1 − 1),

which is identical to (2.35). For 𝛽 = 1 we can apply the same expansion of 𝐺𝛽=1 for 𝑠 close to zero, but
now we obtain

𝐺𝛽(𝑠) =
𝑠4
12 + 𝒪(𝑠

6).

By definition we have therefore 𝜌𝛽 ∼ (𝑚 = 0, 𝑘 = 2) with strength 𝜆 = 2, Theorem 3.2.1 now implies
that we again have (3.44) as there still is a unique global minimum located at zero. Now that we have
a minimum of type 𝑘 = 2, we obtain a limiting distribution which is given by Theorem 3.3.1 as

𝑆𝑛
𝑛3/4 → 𝑐 exp(−

𝑠4
12),

and one easily verifies that this is the same result as in (2.36). For 𝛽 > 1 we can only derive an implicit
expression where the global minima of 𝐺𝛽 occur. The first derivative of 𝐺𝛽 is given by

d𝐺𝛽(𝑠)
d𝑠 = 𝑠 − √𝛽

sinh(𝑠√𝛽)

cosh(𝑠√𝛽)

= 𝑠 − √𝛽 tanh(𝑠√𝛽),

which implies that the global minima satisfy the condition

𝑚 = √𝛽 tanh(𝑚√𝛽). (3.45)

If 𝛽 > 1 we indeed find that (3.45) has three solutions which is made visible in Figure 3.1. Note that
apart from zero, the global minima occur at 𝑚 and −𝑚 for some 𝑚 ∈ ℝ. This can be explained by the
fact that 𝐺𝛽 is an even function for all 𝛽 ≥ 0. Now as we have that 𝐺″𝛽(𝑠) = 1 − 𝜃(𝑠) where 𝜃 is given
by (3.42) we find

d2𝐺𝛽(𝑠)
d𝑠2 = 1 − 𝛽cosh

2(𝑠√𝛽) − sinh2(𝑠√𝛽)
cosh2(𝑠√𝛽)

= 1 − 𝛽
cosh2(𝑠√𝛽)

. (3.46)

If we want to use the limit theorems from this chapter we have to show that 𝐺𝛽 has an expansion around
𝑚 and −𝑚 of the form in (3.17). Because 𝐺𝛽 is even, the following argument is symmetric for 𝑚 and
−𝑚, which is why we only focus on 𝑚 > 0. We’ll show that 𝐺″𝛽(𝑚) > 0 for 𝛽 > 1 using the following
claim.

Claim 3.4.1. Suppose that 𝐺𝛽 is defined as in (2.13) and assume 𝛽 > 1. Then for a global minimum
𝑚 > 0 of 𝐺𝛽 we have

d2𝐺𝛽(𝑚)
d𝑠2 > 0.
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Figure 3.1: Minima of G when 𝛽 = 2.

Proof. Because the second derivative of 𝐺𝛽 is given by (3.46), we have to show that

√𝛽
cosh(𝑚√𝛽)

< 1 ⟺ √𝛽 tanh(𝑚√𝛽) < sinh(𝑚√𝛽), (3.47)

in order to prove the claim. We know that if 𝑚 is a global minimum of 𝐺𝛽, it satisfies (3.45). And since

the series of sinh is given by sinh(𝑥) = ∑𝑘≥0
𝑥2𝑘+1
(2𝑘+1)! , we have an upperbound for 𝑥 > 0

𝑥 < 𝑥 + 𝑥
3

3! +
𝑥5
5! + ⋯ = sinh(𝑥). (3.48)

This gives the following sequence of inequalities

√𝛽 tanh(𝑚√𝛽) (3.45)= 𝑚
𝛽>1
< 𝑚√𝛽

(3.48)
< sinh(𝑚√𝛽),

proving (3.47) and hence the claim.

We can now apply Claim 3.4.1 for the global minima satisfying (3.45) in the case of 𝛽 > 1 to obtain the
two expansions around ±𝑚

𝐺(𝑠) = 𝐺(𝑚) + 𝜆(𝑠 − 𝑚)
2𝑘

(2𝑘)! + 𝒪((𝑠 − 𝑚)2𝑘+1) as 𝑠 → 𝑚,

𝐺(𝑠) = 𝐺(−𝑚) + 𝜆(𝑠 + 𝑚)
2𝑘

(2𝑘)! + 𝒪((𝑠 + 𝑚)2𝑘+1) as 𝑠 → −𝑚,

where 𝜆 = 𝐺(𝑚) = 𝐺(−𝑚) and 𝜌𝛽 ∼ (𝑚, 𝑘 = 1;−𝑚, 𝑘 = 1). Since we do not have a unique global
minimum, we can not apply Theorem 3.3.1. But by Theorem 3.2.1 we get an interesting result, that is

𝑆𝑛
𝑛 → 𝜆𝛿(𝑠 − 𝑚) + 𝜆𝛿(𝑠 + 𝑚)

2𝜆 = 1
2[𝛿(𝑠 − 𝑚) + 𝛿(𝑠 + 𝑚)].

Hence as 𝑛 → ∞, 𝑆𝑛/𝑛 takes one of the two values 𝑚 or −𝑚, both with probability 1
2 .

We can now conclude that there occurs a phase transition at 𝛽 = 1, this is because for 𝛽 > 1
we have that 𝑆𝑛/𝑛 converges to two different points with equal probability but as soon as 𝛽 ≤ 1 this
convergence changes to a single point. For large values of 𝛽, the points 𝑚 and −𝑚 of the intersection
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in Figure 3.1 will tend to √𝛽. And since we made the transformation 𝑥𝑖 = √𝛽𝜎𝑖 at the beginning of
Chapter 2, the magnetization will tend to

𝑚𝑛 =
1
𝑛

𝑛

∑
𝑖=1
𝜎𝑖 =

1
√𝛽

𝑆𝑛
𝑛 → 1

√𝛽
1
2[𝛿(𝑠 − 𝑚) + 𝛿(𝑠 + 𝑚)],

hence lim𝑛→∞𝑚𝑛 will be very close to either 1 or −1.





4
Extension of the Curie-Weiss model

4.1. Limit theorems
In this chapter we will consider the model described in (1.5), which had a probability measure given by

ℙ𝛽ℎ({𝜎}) =
1
𝑍𝑛

exp( 𝛽2𝑛

𝑛

∑
𝑖=1

𝑛

∑
𝑗=1
𝜎𝑖𝜎𝑗 + ℎ√𝛽

𝑛

∑
𝑖=1
𝜎𝑖).

In Chapter 3 we generalized the results found in Chapter 2, thus given an 𝜌which satisfies the conditions
of Definition 3.1.1, we can immediately conclude the limit theorems (3.30) and (3.37). In order to work
with these statements we have to put (1.5) in the form of (2.6). This can be done by changing the
weights of the Dirac measures in (2.4), since we still have the dependence on 𝛽. If we use the following
measure

𝜌𝛽,ℎ =
𝑒ℎ

2 cosh ℎ𝛿√𝛽 +
𝑒−ℎ

2 cosh ℎ𝛿−√𝛽 , (4.1)

then (1.5) reduces to (2.6) where 𝜌 is given by (4.1). Thus if we compute 𝐺 from (3.2) we may be able
to conclude one of the limit theorems. Given 𝛽 > 0 and ℎ ∈ ℝ we have

∫𝑒𝑠𝑥d𝜌(𝑥) = 𝑒𝑠√𝛽𝑒ℎ + 𝑒−𝑠√𝛽𝑒−ℎ
2 cosh(ℎ) =

cosh(𝑠√𝛽 + ℎ)
cosh(ℎ) ,

Hence we define 𝐺𝛽,ℎ ∶ ℝ → ℝ as

𝐺𝛽,ℎ(𝑠) =
𝑠2
2 − ln(

cosh(𝑠√𝛽 + ℎ)
cosh(ℎ) ),

which we know is analytic by Lemma 3.1.1. Similarly to the derivation of the derivatives and global
minima of 𝐺𝛽 in Section 3.4, we obtain that the first derivative is given by

d𝐺𝛽,ℎ(𝑠)
d𝑠 = 𝑠 − √𝛽 tanh(𝑠√𝛽 + ℎ),

where a global minimum 𝑚 of 𝐺𝛽,ℎ satisfies the condition

𝑚 = √𝛽 tanh(𝑚√𝛽 + ℎ). (4.2)

By the same reasoning we find that the second derivative of 𝐺𝛽,ℎ is given by

d2𝐺𝛽,ℎ(𝑠)
d𝑠2 = 1 − 𝛽

cosh2 (𝑠√𝛽 + ℎ)
. (4.3)

27
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In Figure 4.1 we see that we have three points of intersection, but opposed to the case ℎ = 0 which
is illustrated in Figure 3.1, we have that the location of these points on the 𝑚 axis is different. This is
a result from the horizontal shift caused by ℎ. If we increase ℎ > 0 (or decrease for ℎ < 0), then the
graph is shifted up to a point where we only have one intersection 𝑚, which has the same sign as ℎ.
We will not observe this behaviour whenever 𝛽 ∈ (0, 1], since the tangent of √𝛽 tanh(𝑚√𝛽 + ℎ) will
not be steep enough such that the graph intersects at more then one point with 𝑚.
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Figure 4.1: Minima of G when 𝛽 = 1.5 and ℎ = 1
4 .

We will make a proposition which states the limiting distributions of this model in the case where
ℎ > 0. One can derive the same results for ℎ < 0 by changing signs. We already argued that we end
up with one global minimum for a sufficiently large ℎ. In the proposition we will show that this always is
the case and are therefore able to apply Theorem 3.3.1.

Proposition 4.1.1. Assume that 𝜌𝛽,ℎ is given by (4.1) and 𝛽 > 0 and ℎ > 0. If 𝑚 is the largest solution
to (4.2), then

𝑆𝑛
𝑛 → 𝛿(𝑠 − 𝑚), (4.4)

𝑆𝑛 − 𝑛𝑚
√𝑛

→ 𝑁(0, 𝜎2), (4.5)

where 𝜎2 = (𝐺″𝛽,ℎ(𝑚))−1 − 1.

Proof. If 𝑚 is the largest solution to (4.2), then we have to show that it is a unique global minimum of
𝐺𝛽,ℎ before we can apply Theorem 3.3.1. Now let 𝑚1 and 𝑚2 be solutions to (4.2), where 𝑚2 ≤ 𝑚1
and 𝑚1 is the largest possible solution. So both are extreme points of 𝐺𝛽,ℎ, but for 𝑚1 to be a global
minimum, we have to show that we indeed have 𝐺𝛽,ℎ(𝑚1) ≤ 𝐺𝛽,ℎ(𝑚2) and only have an equality if
𝑚1 = 𝑚2. To do this we define the function 𝑔𝛽 ∶ ℝ × (0,∞) → ℝ as

𝑔𝛽(𝑠, ℎ) = 𝐺𝛽,ℎ(𝑠).

The partial derivative with respect to ℎ is given by

𝜕𝑔𝛽(𝑠, ℎ)
𝜕ℎ = 𝜕

𝜕ℎ(
𝑠2
2 − ln(

cosh(𝑠√𝛽 + ℎ)
cosh(ℎ) ))

= 𝜕
𝜕ℎ(ln(cosh(ℎ)) − ln(cosh(𝑠√𝛽 + ℎ)))

= tanh(ℎ) − tanh(𝑠√𝛽 + ℎ),
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which implies that for any ℎ > 0 we have for the solutions 𝑚1 and 𝑚2
𝜕𝑔𝛽(𝑚2, ℎ)

𝜕ℎ = tanh(ℎ) − tanh(𝑚2√𝛽 + ℎ) = tanh(ℎ) − 𝑚2
√𝛽

≥ tanh(ℎ) − 𝑚1
√𝛽

=
𝜕𝑔𝛽(𝑚1, ℎ)

𝜕ℎ .

Hence if 𝑚1 is the largest solution to (4.2), then for any 𝑚2 which is a solution too but not the largest,
we have 𝐺𝛽,ℎ(𝑚1) < 𝐺𝛽,ℎ(𝑚2) and we conclude that 𝑚1 is an unique global minimum.

Because we claim that we have a normal distribution in the limit around 𝑚, we have to show that
𝐺″𝛽,ℎ(𝑚) > 0 such that we have 𝜌𝛽,ℎ ∼ (𝑚, 𝑘 = 1) and can therefore apply Theorems 3.2.1 and 3.3.1.
Similar to the proof of Claim 3.4.1, we are required to prove

√𝛽 tanh(𝑚√𝛽 + ℎ) < sinh(𝑚√𝛽 + ℎ),

where we refer to the expression for 𝐺″𝛽,ℎ in (4.3). For 𝛽 < 1, this inequality holds since tanh(𝑥) ≤
sinh(𝑥) for all 𝑥 ≥ 0. For 𝛽 ≥ 1, we have

√𝛽 tanh(𝑚√𝛽 + ℎ) (4.2)= 𝑚
𝛽≥1
< 𝑚√𝛽 + ℎ

(3.48)
< sinh(𝑚√𝛽 + ℎ),

hence whenever ℎ > 0, we have that 𝐺″𝛽,ℎ(𝑚) > 0. To see that 𝜌𝛽,ℎ ∼ (𝑚, 𝑘 = 1) with strength
𝜆(𝑚) = 𝐺″𝛽,ℎ(𝑚), we give the expansion of 𝐺𝛽,ℎ around 𝑚

𝐺𝛽,ℎ(𝑠) = 𝐺𝛽,ℎ(𝑚) +
d2𝐺𝛽,ℎ(𝑚)

d𝑠2
(𝑠 − 𝑚)2

2! + 𝒪((𝑠 − 𝑚)3) as 𝑠 → 𝑚.

At last we can apply Theorems 3.2.1 and 3.3.1 to obtain (4.4) and (4.5).

In the model that was treated in Chapter 2, there occurred a phase transition at 𝛽 = 1 and we also
observed that the limiting distribution was not normal at this point. When we try to find such a point in
the current model, we will see that this is only possible in the case where ℎ = 0, which is exactly the
model of Chapter 2.

A limiting distribution which is not normal has to have a global minimum of type 𝑘 ≥ 2, which requires
𝐺″𝛽,ℎ(𝑚) = 0. Since we can find an expression for the second derivative in terms of the first

d2𝐺𝛽,ℎ(𝑠)
d𝑠2 = 1 − 𝛽 + (√𝛽 tanh(𝑠√𝛽 + ℎ))

2

= 1 − 𝛽 + (𝑠 −
d𝐺𝛽,ℎ(𝑠)

d𝑠 )
2
,

(4.6)

it follows that the third derivative is given by

d3𝐺𝛽,ℎ(𝑠)
d𝑠3 = 2(𝑠 −

d𝐺𝛽,ℎ(𝑠)
d𝑠 )(1 −

d2𝐺𝛽,ℎ(𝑠)
d𝑠2 ).

We search for a minimum 𝑚 of type 𝑘 ≥ 2, thus under the assumption 𝐺′𝛽,ℎ(𝑚) = 𝐺″𝛽,ℎ(𝑚) = 0 we
obtain that

d3𝐺𝛽,ℎ(𝑚)
d𝑠3 = 2𝑚.

Where 𝐺(3)𝛽,ℎ(𝑚) is only zero if 𝑚 = 0, but from (4.6) we can conclude that as 𝑚2 = 1−𝛽 we must have
𝛽 = 1. Up to this point we have that if a global minimum 𝑚 has type 𝑘 ≥ 2, then we must have 𝑚 = 0.
But if a global minimum occurs at 𝑚 = 0, (4.2) implies that we must have ℎ = 0. Hence this is the
model we described in Chapter 2 for which we know that a phase transition happens at 𝛽 = 1.

We conclude this section with the following results. Given a measure (4.1) for 𝛽 > 0 and ℎ ∈ ℝ ⧵ 0,
there exists a unique global minimum 𝑚 which is of type 𝑘(𝑚) = 1 and strength 𝜆(𝑚) = 1 − 𝛽 + 𝑚2.
This results in the limiting distributions given by (4.4) and (4.5). Thus if a piece of metal is under the
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influence of a magnetic field, there appears to be no phase transition. But what we see is that when
𝛽 approaches zero, 𝐺 has a global minimum 𝑚 = 0. When we increase 𝛽 again, the minimum shifts
to the right if ℎ > 0 and vice-versa. This effect is illustrated in Figure 4.2, which can be compared to
Figure 2.1 where we have the same values for 𝛽 but ℎ = 0. Note that for 𝛽 < 1, the minimum forced to
the right when ℎ > 0. For 𝛽 > 1 we see that the minimum with the same sign as ℎ is favored over the
other minimum we had in the case where ℎ = 0. This is physically explained by the fact that the spins
tend to align with the direction of the magnetic field.
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𝛽 = 1
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Figure 4.2: Plot of 𝐺𝛽,ℎ for 𝛽 = 1
2 and 𝛽 = 1.5 and in both cases ℎ = 1

4 .

4.2. Worked example of an extreme case
If a metal is under the influence of a very weak magnetic field and temperatures are very low, thus ℎ
is several orders of magnitude smaller than 𝛽, then we must have that (4.4) and (4.5) hold. We will
consider a few cases where we take 𝛽 = 5 ⋅ 102 and ℎ ranges from 10−5 to 10−10. Since we have a
global minimum 𝑚, and a local minimum at approximately −𝑚, we might find that the values 𝐺 attains
at these local minima are also very close to each other. We have computed these values and they are
given in Table 4.1. We see that 𝐺𝛽,ℎ(𝑚𝑔) and 𝐺𝛽,ℎ(𝑚ℎ) are equal up to a certain amount of decimal

ℎ 𝑚𝑔 𝐺𝛽,ℎ(𝑚𝑔) 𝑚𝑙 𝐺𝛽,ℎ(𝑚𝑙)
10−5 -22.36067977 -249.30686 22.36067978 -249.30684
10−7 -22.36067977 -249.3068529 22.36067978 -249.3068527
10−10 -22.36067977 -249.3068528195 22.36067978 -249.3068528193

Table 4.1: The global and local minima denoted by 𝑚𝑔 and 𝑚𝑙 respectively and the corresponding values 𝐺𝛽,ℎ attains for
𝛽 = 5 ⋅ 102 and different values of ℎ.

points, and this amount increases as we let ℎ becomes smaller. In the proof of Theorem 3.2.1 we used
that there is a difference between 𝑓 = 𝐺(𝑚𝑔) and 𝐺(𝑠) for any 𝑠 ∈ ℝ which is not a global minimum,
such that we could conclude (3.33). If we can find a combination of 𝛽 and ℎ where this difference is
of order 10−22, then we have that (4.4) holds, but is not physically relevant as there are approximately
𝑛 = 1022 atoms in a gram of iron.

What we have shown is that under the influence of a magnetic field, we do not observe a phase
transition since the atoms tend to align with the direction of the magnetic field. The limit in (4.4) agrees
with this as the value of 𝑚 increases monotonically with 𝛽. But whenever ℎ is small enough, the
convergence 𝑆𝑛/𝑛 → 𝛿(𝑠 − 𝑚) happens so slow in 𝑛 that it is not physically relevant anymore.



5
Conclusion

We started this research by analyzing the limit behaviour of the Curie-Weiss model where a vector
𝜎 = (𝜎𝑖)𝑖=1,…,𝑛 of spins has a joint distribution given by (1.2) and the distribution of the individual 𝜎𝑖 ’s is
assumed to be given by the measure in (2.1). The case where 𝛽 = 0 is ignored throughout the thesis
up to Chapter 4 since we have independence and the know limit theorems in (1.3) and (1.4) hold. In
Chapter 2 we concluded that for 𝛽 ∈ (0, 1] we had the following limiting distributions

𝑆𝑛
𝑛 → 𝛿(𝑠), if 𝛽 ≤ 1, (5.1)

𝑆𝑛
√𝑛

→ 𝑁(0, (1 − 𝛽)−1 − 1), if 𝛽 ∈ (0, 1), (5.2)

𝑆𝑛
𝑛1/4 → 𝑐 exp(−

𝑠4
12), if 𝛽 = 1. (5.3)

In Chapter 3 we generalized these results with respect to the measure 𝜌. After proving multiple
lemmas about the properties of 𝜌 and the function 𝐺 defined in (3.2), we stated the main results in
Theorems 3.2.1 and 3.3.1. We were able to extend the results (5.1)-(5.3) by the following statement

𝑆𝑛
𝑛 → 1

2[𝛿(𝑠 − 𝑚) + 𝛿(𝑠 + 𝑚)], if 𝛽 > 1, (5.4)

where 𝑚 is one of two global minima of 𝐺 for 𝛽 > 1. We concluded that there is a phase transition
happening at 𝛽 = 1, Since 𝛽 is a constant proportional to inverse temperature, there must exists a
temperature 𝑇𝑐 which gives 𝛽 = 1. Hence for temperatures 𝑇 < 𝑇𝑐 there occurs spontaneous magne-
tization with a uniformly random direction, and where the strength of the magnetic force is determined
by the value of 𝑚.

Chapter 4 extended the model that was treated in Chapter 3 by adding a magnetic field which
using a constant ℎ which is proportional to the strength of the magnetic field and it’s direction. As
expected we observed that the spins tend to align with the magnetic field and we did not observe a
phase transition. This resulted in the limits given in (4.4) and (4.5). We briefly showed that these results
may not be always reasonable from a physical point of view, as the influence of the magnetic field could
be negligible when ℎ is very small.
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