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Abstract

The realisation of a quantum network in the near future has been made possible
by the developments in qubit systems. Links between quantum nodes in major
cities in The Netherlands are scheduled to be demonstrated by 2020. There
are many things that need to be considered in the development of a quantum
network, in this thesis a few of these will be examined. The �rst topic is en-
tanglement generation using the EPL (Extreme Photon Loss) protocol in the
presence of dephasing noise, which is an existing protocol. Novel contributions
include the maximum achievable �delities and entanglement generation rates,
which are obtained using theoretical analysis and numerical simulations. Also
for elementary states generated by the EPL protocol it is shown that doing
distillation �rst and then an entanglement swap results in a roughly two times
higher rate than the other way around.

A new protocol called entanglement tracking is proposed to keep track of the
classical information about entanglement in a quantum network. The entangle-
ment tracker is a protocol that runs locally on every node in a quantum network
and can communicate with the entanglement trackers of other nodes. The goal
of the entanglement tracker is to keep a database with entanglement identi�ers
that is continuously updated after entanglement is modi�ed. Performance met-
rics of an entanglement tracking protocol and a command interface with higher
layer protocols are de�ned. We propose a format for entanglement identi�ers
and show how to update entanglement identi�ers after an arbitrary number of
entanglement swaps. The entanglement tracker is implemented in the discrete
event simulator QNetSquid, which is under development by QuTech. It is ap-
plied by simulating a repeater chain using the entanglement tracking protocol,
resulting in a completion time as a function of the number of repeaters. Future
applications of the entanglement tracker are to assist routing of entanglement
in a (large) quantum network, in which the tracker can take care of the classical
communication.
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Chapter 1

Introduction to quantum

networks

In this chapter some of the main tools that can be used to realise a quantum net-
work will be discussed. A quantum network has not been realised yet, but there
are many proposals and ideas. The main challenges are to construct quantum
nodes and be able to run quantum protocols between the nodes in the network.
In section 1.2 we will look at possible realisations of a quantum node. The
quantum nodes should have access to at least a few quantum bits (qubits) that
they have control over. Operations on these qubits and storage of the qubits
should be good enough, which means that the quantum properties are preserved.

For a quantum computer to outperform a classical computer it needs to have
a lot of qubits. The time it takes to do certain computations may scale better
with the number of qubits for a quantum computer, but if the classical computer
has millions of bits, we still need a lot of qubits to overcome that. The advan-
tage of a quantum network is that there are protocols that can outperform any
classical protocol, even when using just one or two qubits. This is due to the
inherent quantum properties, which allows us to make cryptographic guarantees
that would not be possible classically. Examples of these protocols are quantum
key distribution [1], anonymous transfer [2] and position veri�cation [3].

There are di�erent ways the quantum nodes can communicate with each
other. The easiest way is to simply have a cable running from one quantum
node to the other and send photons carrying the quantum information. There
are also proposals to send photons to satellites, which can then orbit the earth
and emit photons again to establish a quantum connection. Here the focus will
be on a network of quantum nodes connected by �bres.

One of the most important tasks of a quantum network is to establish quan-
tum entanglement between two nodes in the network. This can be seen as a
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goal in itself, as there are many quantum protocols already designed to run be-
tween two quantum nodes that need entanglement. Establishing entanglement
between two quantum nodes connected with �bres has already been done over
more than a kilometer [4] and there are plans to extend this to longer distances.

The generation of elementary entanglement can only be done between two
nodes that are directly connected. Sometimes nodes do not have a direct con-
nection, but instead are connected only via a middle node. It is then possible
to make entangled links from both end nodes to the middle node and actually
make entanglement using an entanglement swap [11]. The entanglement swap
protocol, which is directly linked to quantum teleportation will be covered in
section 1.5. In general this can be used to establish entanglement between any
two nodes in a network, using a number of entanglement swaps.

Entanglement distillation consumes multiple weakly entangled pairs between
two nodes to generate a better entangled pair. Weakly entangled means that
there is noise in the system that destroys some of the entanglement. To look at
a realistic model of a quantum network, basic noise models can be used to model
the noise on the system. One of the main challenges of designing a quantum
network is to limit this noise and enable multiple parties to run quantum pro-
tocols. More detail will be given in section 1.6 about entanglement distillation
and section 1.4 about noise models and decoherence.

Ultimately the goal of designing a quantum internet can be compared to the
internet as it is now. Any computer on earth that is connected to the internet
is be able to communicate with any other computer that is connected to the
internet. For a quantum network any quantum computer could then establish
entanglement with any other quantum computer. There may of course be more
requirements than just to establish entanglement, but this would be an impor-
tant underlying protocol that will enable many applications.

1.1 Thesis outline

The thesis is divided into four chapters, of which this one is the �rst and serves
the purpose of introducing the necessary background. No new results are in-
troduced, but the material will be used throughout the rest of the thesis. The
remaining three chapters are mostly separately readable, with some references
between them. Each chapter has a separate conclusion and recommendations
for future research.

The second chapter is about EPL [24] (Extreme Photon Loss) entanglement
generation, which is an existing protocol to establish entanglement on an ele-
mentary link in the network. This protocol generates two noisy states that do
not contain any useful entanglement and performs entanglement distillation to
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obtain useful entanglement. The EPL protocol has also been realised experi-
mentally [20]. The following contributions are made within this thesis: The EPL
protocol is �rst analysed in a noisy scenario in section 2.1. After that our goal
is to �nd the maximum rate at which entangled states can be generated given a
speci�c number of available quantum memories in section 2.2. Then we analyse
the di�erence between �rst doing entanglement swaps and then entanglement
distillation, or the other way around, using the noisy states in section 2.3. The
chapter concludes with numerical experiments in MATLAB in section 2.4, illus-
trating the results obtained in the previous sections.

The third chapter starts by introducing the discrete-event simulator QNet-
Squid, which is a Python package for simulating quantum networks, currently
under development by QuTech. The rest of the chapter is about writing snip-
pets, that each have a speci�c purpose of simulating a (small) part of a quantum
network and doing simulations using these snippets. First an entanglement gen-
eration protocol in QNetSquid is obtained in section 3.2 by sampling from distri-
butions from a previous result [17]. Using this the EPL entanglement generation
can be simulated in a more realistic manner and the relation between swaps and
distillation is again analysed in section 3.3. Then we develop an entanglement
generation protocol that models every physical component in QNetSquid in-
stead of sampling from a distribution in section 3.4. For this we look at photon
detectors and how to model these in QNetSquid. The total model then consists
of quantum memories, �bres and photon detectors that are combined into an
entanglement generation protocol. Finally section 3.6 is about comparing the
entanglement generation protocols and running simulations to obtain the aver-
age rate and �delity of these protocols.

The �nal chapter is about the entanglement tracker, which is a new protocol
that is in charge of handling the classical information about entanglement in a
quantum network. The development of the entanglement tracker was inspired
by the routing models discussed in [18] for a grid network and in [19] for a ring
or sphere network. First we discuss the concept of entanglement identi�ers that
are given to every entangled link in the network in section 4.1. These identi-
�ers can be used by nodes to run protocols and should be consistent such that
both parties involved in the entanglement hold the same identi�er. Then the
entanglement tracker itself is discussed, which is a local protocol that runs on
every node in the network in section 4.2. The entanglement tracker is in charge
of updating the local databases containing entanglement identi�ers. A higher
layer protocol should give commands to the tracker whenever entanglement is
generated, consumed, swapped or distilled. The tracker can then update its
database and send messages to other nodes to update their databases accord-
ingly. We then de�ne some performance metrics that can be used to investigate
the performance of an entanglement tracking protocol. In section 4.3 and sec-
tion 4.4 we look at how to update entanglement identi�ers after entanglement
swaps, including the goodness parameter which gives a heuristic guess of the
�delity of the entangled pair. Finally section 4.5 is about numerical testing of
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the entanglement tracker using an implementation of the entanglement tracker
in QNetSquid. The test case is a repeater chain, which is a series of nodes that
can be used to generate long distance entanglement using many entanglement
swaps. The goal of this simulation is to compare the time it takes to establish
long distance entanglement for two di�erent entanglement tracking protocols.

1.2 Quantum hardware and entanglement gener-

ation

There are many experimental groups working on building a quantum computer
or quantum node. A lot of di�erent implementations use solid state materials
as the basis, for example qubits in a superconductor [5]. There are also groups
that trap ions using electric �elds [6], or use a superconductor coupled to a cav-
ity �lled with photons [7] to realise qubits. The most important property of all
these realisations is that they can make an e�ective two level quantum system.

All these di�erent realisations can be used to make a quantum node in a
quantum network, as long as they can establish entanglement between so-called
memory qubits and �ying qubits. They have to be able to store the memory
qubits for a reasonable amount of time and transfer the �ying qubits, mostly
photons, onto a �bre to reach other nodes. The coupling from the quantum
system onto the �bre is an experimental challenge. If the qubit system is well-
isolated from environmental noise, it is often also hard for photons to leave the
system. In general, there is a trade-o� between fast operations and coherence
time of quantum memories. This can be understood by considering that opera-
tions on these qubits are nothing more than an external interaction. The same
principles that allow this interaction to e�ect the qubits also makes it more ex-
posed to decoherence. This can be prevented by making sure that only a very
controlled external �eld is able to reach the qubit and it is shielded from other
interactions, but experimentally this is one of the big challenges. In section 1.4
noise and decoherence will be examined in more detail.

In this thesis nitrogen-vacancy centers (NV-centres) [8] will mostly be dis-
cussed. These will be used to attempt to establish the �rst quantum network in
the Netherlands between multiple cities. These NV-centres exist in a diamond
lattice, as a single nitrogen atom and a free electron. The free electron and an
electron from the nitrogen atom form a boson with three spin levels, of which
two can be used as an e�ective qubit. This qubit can be used as an interface
with the NV-centre, for example to emit photons. The surrounding carbon
atoms and the nitrogen atom can be used for long-term storage of qubits. In
these systems multiple promising results have been obtained in the last years,
such as a loophole-free Bell-test [4] and entanglement distillation [9].
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Figure 1.1: Physical set-up for entanglement generation. Both sides have access
to a single NV-centre in diamond and can output photons towards the midpoint.
By coordinating their timings, the photons from each side reach the detectors
at the same time. The photons then interfere at the beamsplitter resulting in an
entangled state between the NV-centres. Image courtesy: the authors of [10].

The ability to generate and share entanglement is one of the things that
makes a quantum network special. We will brie�y explain how entanglement
can be generated between NV-centres.

The protocol requires two nodes to be connected with �bres, either directly
or using a midpoint station. The most intuitive entanglement generation proto-
col is for one of the nodes to make an entangled state locally between a memory
qubit and a photon. The photon then gets put on the �bre and gets picked
up by the other side. The receiving node then transfers the state of the pho-
ton onto one of its memory qubits. There are a few problems with this scheme,
for example catching a photon and transferring it to a memory state is very hard.

The entanglement generation protocol that will be looked at during this
thesis requires both nodes to make local entanglement between a memory qubit
and a photon. The photons then get put on a �bre towards the midpoint
station where the photons are detected after a beamsplitter. E�ectively this
beamsplitter carries out an entanglement swap, resulting in an entangled state
between the memory qubits of the nodes. In the chapter about the discrete
event simulator QNetSquid, the whole entanglement generation protocol will be
examined in more detail starting from section 3.2. This includes the source that
can make locally entangled pairs and modelling of the beamsplitter detection,
this is the QDetector as explained there.

1.3 Basic quantum mechanics

It is important to establish a mathematical framework for the rest of this thesis.
For that we need density matrices, a general way to represent the state of a
quantum system. In the following sections we will use these density matrices to
examine quantum protocols.
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Pure quantum states can be de�ned by a wave function, which is a 'ket' |φ〉
in Dirac notation. There is also a 'bra' 〈φ|, which is the complex conjugate of
the ket. Every state should be normalized, which is similar to how a classical
probability distribution should add up to one. Mathematically it can can be
formulated using the criterion: 〈φ|φ〉 = 1. Transformations from pure states to
other pure states can then be done using a unitary U :

|ψ〉 = U |φ〉 (1.1)

Because U is unitary, applying it to the normalised state |φ〉, results in a
new normalised state |ψ〉. In section 1.5 speci�c unitary operations like the
Hadamard and CNOT gate will be considered.

A density matrix ρ can in general be a classical mixture of pure quantum
states. Mixed states occur due to a lack of knowledge about the state of the
system. For example, the system could be in a few di�erent pure states, but
we do not know in which one it actually is. We can then assign classical prob-
abilities to each pure state and write the total state as a mixture of these pure
states. This can be made formal by de�ning ρ as:

ρ =
∑
i

pi|φi〉〈φi|, (1.2)

where 0 ≤ pi ≤ 1 and
∑
i pi = 1. The way to operate on density matrices is

similar to wave vectors. Here we restrict ourself to unitary operations on the
density matrices. In section 1.4 a few speci�c non-unitary noise operations will
be discussed, like depolarising and dephasing operations. To perform a unitary
operation on a density matrix we have to apply the unitary on both sides of the
density matrix:

σ = UρU† =
∑
i

piU |φi〉〈φi|U† =
∑
i

pi|ψi〉〈ψi|, (1.3)

where U† is the hermitian conjugate of U and |ψi〉 = U |φi〉. This can be seen
using the identity 〈φi|U† = (U |φi〉)†.

In general performing unitary operations on density matrices is simple, we
can analyse the way the unitary acts on the separate parts of the mixture U |φi〉
for all i. After that the contributions can be summed up to construct the re-
sulting density matrix, σ in this case.

There are four maximally entangled states that are commonly used, called
Bell-states. They form a basis for the two qubit space and are equivalent to
each other up to local operations on either qubit. They are pure states and can
be de�ned as follows:
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|φ+〉 = |00〉+ |11〉√
2

|φ−〉 = |00〉 − |11〉√
2

|ψ+〉 = |01〉+ |10〉√
2

|ψ−〉 = |01〉 − |10〉√
2

An important property of entanglement is that it is non-local. This means
that even when particles are moved very far apart, they can still be entangled
and maintain those correlations.

Consider the �delity of a density matrix ρ to a pure state |ψ〉. It gives a
measure of how close the two states are and is de�ned as follows:

F = 〈ψ|ρ|ψ〉 (1.4)

In general this is a number between 0 and 1, where 1 means that the states
are equivalent. In this thesis the �delity to a maximally entangled state will
often be used. We will sometimes talk about the �delity of a state, meaning the
�delity to a maximally entangled state. When establishing entanglement the
goal is to obtain a �delity that is as high as possible.

The most simple measurements of a quantum state collapse the state to
one of the eigenstates of a basis {|φi〉}. The probability pi of collapsing to the
eigenstate |φi〉 for a quantum state described by a density matrix ρ is given by
pi = 〈φi|ρ|φi〉. One of the most often used measurements is in the standard ba-
sis, which uses the two eigenstates |0〉 and |1〉. Another important measurement
uses the four Bell-states as the eigenstates and is called a Bell-state measure-
ment or measurement in the Bell-basis. Measuring in the standard basis is a
single qubit measurement, resulting in two possible outcomes. Measuring in
the Bell-basis is a two qubit measurement, resulting in four possible outcomes.
Bell-state measurements are the basis for the quantum teleportation protocol
and for the entanglement swap.

The most general quantum measurements can be de�ned using a set of Kraus
operators {Ax}, resulting in a positive-operator valued measure (POVM). The
POVM-elements Mx are then given by Mx = A†xAx and are required to sum
up to identity

∑
xMx = I. The POVM-elements can be used to calculate the

probability to obtain a certain measurement outcome when measuring a state
ρ, using the trace:
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px = Tr(Mxρ). (1.5)

The post measurement state can be found using the Kraus operators and is
given by:

ρx =
AxρA

†
x

Tr(Mxρ)
. (1.6)

General quantum measurements will be used in the construction of the QDe-
tector, as will be discussed in section 3.4.

1.4 Noise and decoherence

Understanding exactly which kind of noise has an in�uence on a quantum system
can help to �nd a solution and get rid of the noise. In this section dephasing
and depolarising noise will be discussed, as well as amplitude damping, which
are general ways to represent noise in a quantum system. We will also look at
the T1 and T2 times that are often mentioned in experiments to indicate the
coherence time of a quantum system.

Depolarising noise is given by the following noise map on a density matrix
ρ:

Np(ρ) = pρ+ (1− p)I
d
, (1.7)

where d is the dimension of the system and I
d is the maximally mixed state,

given by the normalized identity matrix. The noise coe�cient 0 ≤ p ≤ 1 deter-
mines the amount of noise. In the extreme case of p = 0, all the information
about the initial density matrix is lost.

If the original state ρ is a Bell-state, this means that the noisy version of the
state loses entanglement. The parameter p can also be a function of time, for
example when this noise channel is applied to a qubit in a quantum memory.
In this case there would be an interaction with the environment that slowly
degrades the state to a maximally mixed state.

Depolarising noise is often used as a worst case scenario in theory, but in
experiments noise is often indicated by T1 and T2 times. These times indicate
the coherence time of a quantum system. In general when doing experiments on
quantum systems, the experimenters try to make these coherence times as long
as possible. There are di�erent mathematical de�nitions and interpretations of
the T1 and T2 times. Here we will assume that T1 is the time it takes to lose all
information about the state of the system, whereas T2 is about the time it takes
to lose its quantum phase. To understand the idea of these T1 and T2 times, it
is useful to look at a qubit.
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A qubit is a quantum system with two eigenstates, which are often separated
in energy. We can then talk about the ground state, which is the state with
the lowest energy and the excited state, which has (slightly) more energy. The
di�erence in energy between the excited state and the ground state, is often
called the (energy) gap. The qubit can in general also be in a superposition of
the ground state and the excited state, which means it can be represented as:

|ψ〉 = α|g〉+ β|e〉, (1.8)

where |g〉 is the ground state and |e〉 is the excited state, α and β are complex
numbers such that |α|2 + |β2| = 1.

We know that when left alone, any system decays back to the ground state.
For example by releasing a photon with the energy of the energy gap between
ground and excited state. The time constant with which the excited state nat-
urally decays to the ground state is the T1 time.

The T1 decay process can also be seen as amplitude damping, which is de�ned
using the Kraus operators E0 = |g〉〈g|+

√
1− γ|e〉〈e| and E1 =

√
γ|g〉〈e|. Here

γ is the amplitude damping coe�cient, indicating the strength of the amplitude
damping channel acting on a density matrix ρ:

Nγ(ρ) = E0ρE
†
0 + E1ρE

†
1. (1.9)

This is also the process that happens in �bres when photons get lost, as will
be discussed in section 3.4.

The decay process indicated by T2 does not change the energy of the qubit;
the amplitudes |α|2 and |β|2 are constant over time. It is rather the phase
between ground and excited state that changes. In general the T1 time is longer
than the T2 time, which means that the phase of the qubit drifts faster than the
decay process to the ground state. As a result, in some cases the T1 process can
be disregarded, because by the time it decays to the ground state it will already
have lost all coherence due to dephasing. In that case we can model the noise
on the qubit purely by dephasing:

Np(ρ) = pρ+ (1− p)ZρZ, (1.10)

where Z is the pauli matrix given by Z = |g〉〈g| − |e〉〈e|.

To see that this noise map implements dephasing we can apply it to the pure
state |ψ〉 from 1.8, which means that ρ = |ψ〉〈ψ|. Then the e�ect of applying Z
to the state ψ is:

Z|ψ〉 = (|g〉〈g| − |e〉〈e|)(α|g〉+ β|e〉) (1.11)

= α|g〉〈g||g〉 − β|e〉〈e||e〉 (1.12)

= α|g〉 − β|e〉, (1.13)
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where the orthogonality of |g〉 and |e〉 is used. This means that the noise map
for dephasing noise leaves the state as it is with propability p, and applies a
phase �ip with probability (1− p).

The noise maps for depolarising noise (1.7) and dephasing noise (1.10) will
be used throughout the thesis as standard noise models.

1.5 Entanglement swaps

Entanglement swaps are one of the fundamental building blocks of a quantum
network. They are used in a quantum repeater [11] and make it possible to
generate entanglement over distances, which could not be reached using direct
transmission. Essentially it is a Bell-state measurement on one qubit of two
entangled pairs. This generates a new entangled state between the qubits that
were not measured. In this section the noiseless scenario is mathematically
derived for entanglement swaps on Bell-states. In general we can de�ne the
Bell-states as:

|ψa,b〉 = (X1)
a(Z1)

b |00〉+ |11〉√
2

, (1.14)

where a, b ∈ {0, 1} are two bits, and X1 and Z1 are the standard Pauli
operators, where the index 1 indicates that the operations are executed on the
�rst qubit:

X =

[
0 1
1 0

]
, Z =

[
1 0
0 −1

]
. (1.15)

Note that it does not matter whether X and Z are applied to the �rst qubit,
or to the second qubit. The resulting state will be the same (up to global phase).
This can easily be veri�ed by applying X or Z to either the �rst or the second
qubit of the four Bell-states and checking that the resulting state is always the
same up to global phase.

|ψ0,0〉 =
|00〉+ |11〉√

2

|ψ0,1〉 =
|00〉 − |11〉√

2

|ψ1,0〉 =
|01〉+ |10〉√

2

|ψ1,1〉 =
−|01〉+ |10〉√

2

If now the nodes A and B share one of these states as well as B and C,
then B can make an entanglement swap to make entanglement between A and
C. After B makes this measurement, there has to be communication from B to
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either A or C to communicate the outcome of the measurement.

Lemma 1. Let |ψa,b〉AB1
and |ψc,d〉CB2

be two entangled states of the form

(1.14) and let B perform an entanglement swap on its qubits B1 and B2. Then

the resulting state on AC is |ψa⊕c,b⊕d〉AC after correction for the outcome of

the measurement. The correction for the outcome applied by A to the state

|ψa⊕c,b⊕d〉AC is the following:

B measures |ψ0,0〉 then no correction

B measures |ψ0,1〉 then apply Z

B measures |ψ1,0〉 then apply X

B measures |ψ1,1〉 then apply XZ

Proof. Start from the de�nition of the initial states:

|ψa,b〉AB1
⊗ |ψc,d〉CB2

=
1

2
(XA)

a(ZA)
b(|00〉+ |11〉)⊗ (XC)

c(ZC)
d(|00〉+ |11〉).

(1.16)
Here the operators Xa and Zb act on A, whereas Xc and Zd act on C. Re-order
the terms such that the qubits of B are in the start:

|ψ〉B1B2AC =
1

2

[
|00〉B1B2 ⊗ (XA)

a(ZA)
b(XC)

c(ZC)
d|00〉AC+

|01〉B1B2
⊗ (XA)

a(ZA)
b(XC)

c(ZC)
d|01〉AC+

|10〉B1B2
⊗ (XA)

a(ZA)
b(XC)

c(ZC)
d|10〉AC+

|11〉B1B2 ⊗ (XA)
a(ZA)

b(XC)
c(ZC)

d|11〉AC
]
.

(1.17)

Now we can rewrite the qubits of B in the Bell-basis.

|ψ〉B1B2AC =
1

2

[
(|ψ0,0〉+ |ψ0,1〉)B1B2 ⊗ (XA)

a(ZA)
b(XC)

c(ZC)
d|00〉AC+

(|ψ1,0〉+ |ψ1,1〉)B1B2
⊗ (XA)

a(ZA)
b(XC)

c(ZC)
d|01〉AC+

(|ψ1,0〉 − |ψ1,1〉)B1B2
⊗ (XA)

a(ZA)
b(XC)

c(ZC)
d|10〉AC+

(|ψ0,0〉 − |ψ0,1〉)B1B2 ⊗ (XA)
a(ZA)

b(XC)
c(ZC)

d|11〉AC
]

=
1

2

[
|ψ0,0〉B1B2 ⊗ (XA)

a(ZA)
b(XC)

c(ZC)
d|ψ0,0〉AC+

|ψ0,1〉B1B2
⊗ (XA)

a(ZA)
b(XC)

c(ZC)
d|ψ0,1〉AC+

|ψ1,0〉B1B2
⊗ (XA)

a(ZA)
b(XC)

c(ZC)
d|ψ1,0〉AC+

|ψ1,1〉B1B2
⊗ (XA)

a(ZA)
b(XC)

c(ZC)
d|ψ1,1〉AC

]
+

(1.18)
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Now we can see what happens whenB makes the measurement. It will obtain
one of the four Bell-states with equal probability. The resulting state between
A and C is then also a Bell-state and after the correction of the required form
(up to global phase):

(XA)
a(ZA)

b(XC)
c(ZC)

d|ψ0,0〉AC = ±|ψa⊕c,b⊕d〉AC
ZA(XA)

a(ZA)
b(XC)

c(ZC)
d|ψ0,1〉AC = ±|ψa⊕c,b⊕d〉AC

XA(XA)
a(ZA)

b(XC)
c(ZC)

d|ψ1,0〉AC = ±|ψa⊕c,b⊕d〉AC
XAZA(XA)

a(ZA)
b(XC)

c(ZC)
d|ψ1,1〉AC = ±|ψa⊕c,b⊕d〉AC

(1.19)

This lemma has important implications for entanglement swaps in a quantum
network. It means that when doing an entanglement swap on two Bell-states,
the resulting state will also always be a Bell-state and we can predict which Bell-
state it will be. This means that if there are multiple quantum repeaters that
are doing entanglement swaps at the same time, the correction can be applied
at any point. For this the correction information of all the entanglement swaps
is needed to �nd the correct �nal Bell-state. Repeaters do not have to wait for
each other to make these entanglement swaps. This result will be used in the
chapter about the entanglement tracker, for example to e�ciently simulate a
repeater chain in section 4.5.

1.6 Entanglement distillation

Entanglement distillation or puri�cation is a protocol that takes a number of
weakly entangled states and converts it into a smaller number of strongly en-
tangled states. There are many ways to achieve this, but in this section we will
look at distilling two states into one. We will look at a very speci�c state, of
which A and B share two copies:

ρ = p|ψ+〉〈ψ+|+ (1− p)|11〉〈11|, (1.20)

with |ψ+〉 = 1√
2
(|01〉 + |10〉) being the maximally entangled state. This state

occurs in the EPL generation protocol as well, as will be discussed in the next
chapter in the case of more noise. For more information about the EPL-protocol
see [12].

A CNOT -operation can be de�ned using the following maps of the elements
of the standard basis:
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Algorithm 1 EPL distillation protocol

Let ρ1 and ρ2 from (1.20) be two entangled states shared between A and B.

1. Do a CNOT -operation with the qubits of ρ1 as control and the qubits of
ρ2 as target

2. Measure the qubits of ρ2 in the standard basis

3. If both A and B measure |1〉 on their qubits, call success, otherwise call
fail.

CNOT1→2|00〉 → |00〉
CNOT1→2|01〉 → |01〉
CNOT1→2|10〉 → |11〉
CNOT1→2|11〉 → |10〉

The �rst qubit is called the control qubit and the second one the target.
The operation can be understood by seeing that when the control qubit is in
the |1〉 state, the operation makes the target bit �ip and if the control bit is
in the |0〉 state it does nothing. The notation CNOT1→2 then means doing a
CNOT -operation with the �rst qubit as control and the second qubit as target.

Lemma 2. The EPL-distillation protocol succeeds with probability p2/2 and the

�nal state will always be |ψ+〉.

Proof. Analyse the e�ect of step 1 by looking at the di�erent components of the
mixture separately. The �rst component is when both states are in the |ψ+〉
state, this has a coe�cient in the mixture of p2.

1

2
CNOT1→3CNOT2→4(|01〉+ |10〉)(|01〉+ |10〉)

=
1

2

[
|01〉(|00〉+ |11〉) + |10〉(|11〉+ 00〉)

]
=

1

2

[
(|01〉+ |10〉)|00〉+ (|01〉+ |10〉)|11〉

] (1.21)

The |11〉|ψ+〉 component has coe�cient p(1− p):

1√
2
CNOT1→3CNOT2→4|11〉(|01〉+ |10〉) (1.22)

=
1√
2
(|11〉|10〉+ |11〉|01〉) (1.23)

13



The |ψ+〉|11〉 component also has coe�cient p(1− p):

1√
2
CNOT1→3CNOT2→4(|01〉+ |10〉)|11〉 (1.24)

=
1√
2
(|01〉|10〉+ |10〉|01〉) (1.25)

Finally the |11〉|11〉 has a coe�cient of (1− p)2:

CNOT1CNOT2|11〉|11〉 = |11〉|00〉 (1.26)

It can be seen that only the �rst component of the mixture allows for both
the third and the fourth qubit to be in the |1〉 state. This means that if we
measure |11〉, we know that the resulting state is 1√

2
(|01〉+ |10〉) = |ψ+〉. This

happens with the probability of the according component of the mixture times
the probability to measure |11〉 if we are in that component. The probability
of measuring |11〉 is 1/2 and the component in the mixture is p2, so the total
probability of measuring |11〉 is p2/2.

This lemma shows that if the noise in the state is of a very speci�c form,
in this case orthogonal to the Bell-state, distillation can reproduce a maximally
entangled state. In general this distillation protocol can also work for noise not
orthogonal to the Bell-state. In that case the EPL-distillation protocol will not
recover a maximally entangled state, but still a noisy state. Two copies of this
noisy state can then be distilled to obtain a state with more entanglement using
the DEJMPS protocol [13].

For more examples about distillation, including numerical values see section
4 of [15]. It is then possible to generate more noisy entangled states and keep
doing distillation, this is also referred to as entanglement pumping [16]. Doing
multiple rounds of distillation will also be analysed in section 2.4.

In the previously discussed protocols for entanglement swaps and distilla-
tion no noise was taken into account in the operations. However, this is one
of the main challenges of making a quantum network. Distillation can be used
to increase the entanglement, however performing this protocol introduces new
noise. If the noise the protocol adds is more than we gain from entanglement
distillation, this protocol is essentially useless. This also means that instead of
having perfect Bell-states, in reality we always have to deal with noisy entangled
states. Instead of performing perfect measurements and quantum operations,
we always have noisy measurements and operations.
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Algorithm 2 DEJMPS distillation protocol

Let ρ1 and ρ2 be two entangled states shared between A and B, with �delity to
a Bell-state of higher than 0.5 .

1. Perform local operations on both ρ1 and ρ2 so that the two states are of
the form:

ρi = p1,i|φ+〉〈φ+|+ p2,i|ψ+〉〈ψ+|+ p3,i|φ−〉〈φ−|+ p4,i|ψ−〉〈ψ−|,

with p1,i > 0.5 > p2,i ≥ p3,i ≥ p4,i and p1,i + p2,i + p3,i + p4,i = 1 for
i = 1, 2. Using this order of the Bell-states, the highest boost in �delity
to |φ+〉 can be achieved [14].

2. Rotate the two qubits of A around the X axis by π/2 and the two qubits
of B around the X axis by −π/2

3. Do a CNOT -operation with the qubits of ρ1 as control and the qubits of
ρ2 as target.

4. Measure the qubits of ρ2 in the standard basis and communicate the out-
comes.

5. If both A and B measure |1〉 on their qubits or both measure |0〉, call
success, otherwise call fail.
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Chapter 2

EPL entanglement generation

This chapter is about the EPL-scheme, which is a protocol to distill entangle-
ment from an imperfect state [12]. The most basic form of the states that are
generated before distillation is:

ρ = p|θφ〉〈θφ|+ (1− p)|11〉〈11|, (2.1)

with |θφ〉 = (|01〉+ eiφ|10〉)/
√
2.

The phase φ is unknown, which means that the entanglement in the state ρ
is useless. However, if we have two copies of the state ρ and they have the same
phase φ, the EPL-scheme can successfully get rid of the unknown phase.

For more background on how these states are produced experimentally, see
for example [20], where the whole process is realised in NV-centres. This in-
cludes generation of states ρ and distilling them to get rid of the unwanted phase
φ.

The new additions to the previously established theory start in the next sec-
tion by analysing the EPL-scheme in the case of dephasing noise. After that, the
maximum obtainable rates are examined as a function of the available memories
to store qubits. Finally the interaction between entanglement swaps and per-
forming this EPL-distillation will be investigated, for di�erent memory models.

2.1 EPL with dephasing noise

In this section we add an extra term indicating dephasing noise. We start by
de�ning the following state:

ρ = p
[
pd|θ+

φ 〉〈θ
+
φ |+ (1− pd)|θ−φ 〉〈θ

−
φ |
]
+ (1− p)|11〉〈11| (2.2)
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with |θ±φ 〉 = (|01〉 ± eiφ|10〉)/
√
2. The value of φ is introduced by the physical

channel during the generation process and unknown, but assumed the same for
every use. The values of p and pd are related to the amount of noise.

The goal is to use two of these states to make a state as close as possible to
the Bell-state |ψ+〉 = (|01〉+ |10〉)/

√
2.

Lemma 3. Take two states ρ1 and ρ2 from (2.2) and do CNOT gates using

the qubits of ρ1 as control qubits and the qubits of ρ2 as target qubits and mea-

sure both of the qubits of ρ2 in the standard basis. The resulting state after

getting measurement outcome |11〉 is ρ11 = (p2
d + (1− pd)2)|ψ+〉〈ψ+|+ 2pd(1−

pd)|ψ−〉〈ψ−| and the probability of getting measurement outcome |11〉 is p2/2.

Proof. Look at the e�ect of the CNOT operations by considering each pure state
component of ρ⊗ ρ. Working with unnormalized states, the result for the state
|θ−φ 〉|θ

−
φ 〉 is:

CNOT1CNOT2(|01〉 − eiφ|10〉)(|01〉 − eiφ|10〉)
= |01〉(|00〉 − eßφ|11〉)− eiφ|10〉(|11〉 − eiφ|00〉)
= (|01〉+ e2iφ|10〉)|00〉 − eiφ(|01〉+ |10〉)|11〉

(2.3)

for |θ+
φ 〉|θ

+
φ 〉:

CNOT1CNOT2(|01〉+ eiφ|10〉)(|01〉+ eiφ|10〉)
= (|01〉+ e2iφ|10〉)|00〉+ eiφ(|01〉+ |10〉)|11〉

(2.4)

for |θ+
φ 〉|θ

−
φ 〉 :

CNOT1CNOT2(|01〉+ eiφ|10〉)(|01〉 − eiφ|10〉)
= |01〉(|00〉 − eßφ|11〉) + eiφ|10〉(|11〉 − eiφ|00〉)
= (|01〉 − e2iφ|10〉)|00〉 − eiφ(|01〉 − |10〉)|11〉

(2.5)

for |θ−φ 〉|θ
+
φ 〉:

CNOT1CNOT2(|01〉 − eiφ|10〉)(|01〉+ eiφ|10〉)
= |01〉(|00〉+ eßφ|11〉)− eiφ|10〉(|11〉+ eiφ|00〉)
= (|01〉 − e2iφ|10〉)|00〉+ eiφ(|01〉 − |10〉)|11〉

(2.6)

for |11〉|11〉:
CNOT1CNOT2|11〉|11〉 = |11〉|00〉 (2.7)

for |θ±φ 〉|11〉:

CNOT1CNOT2(|01〉 ± eiφ|10〉)|11〉 = |01〉|10〉 ± eiφ|10〉|01〉 (2.8)

17



and for |11〉|θ±φ 〉:

CNOT1CNOT2|11〉(|01〉 ± eiφ|10〉) = |11〉|10〉 ± eiφ|11〉|01〉 (2.9)

Colecting all the terms for measurement outcome |11〉 on ρ2:

ρ11 = p2eiφe−iφ
[
(p2
d + (1− pd)2)(|01〉+ |10〉)(〈01|+ 〈10|)

+ 2pd(1− pd)(|01〉 − |10〉)(〈01| − 〈10|)
]

= (p2
d + (1− pd)2)|ψ+〉〈ψ+|+ 2pd(1− pd)|ψ−〉〈ψ−|

(2.10)

The only states with |11〉 on the last two qubits originate from |θ±φ 〉|θ
±
φ 〉 terms.

We get these kind of products with probability p2 as can be seen in (2.2). The
probablity of measuring |00〉 is exactly the same as measuring |11〉; this gives a
probability of p2/2 of measuring |11〉.

We can also take a look at what happens when measuring |00〉 on the right-
side qubits. Then the remaining unnormalized state on the left qubits is:

p2/2
[
(p2
d + (1− pd)2)|θ+

2φ〉〈θ
+
2φ|+ 2pd(1− pd)|θ−2φ〉〈θ

−
2φ|
]
+ (1− p)2|11〉〈11|

(2.11)

with |θ±2φ〉 = (|01〉 ± e2iφ|10〉)/
√
2

and normalized:

ρ00 =
p2/2

[
(p2
d + (1− pd)2)|θ+

2φ〉〈θ
+
2φ|+ 2pd(1− pd)|θ−2φ〉〈θ

−
2φ|
]
+ (1− p)2|11〉〈11|

p2/2 + (1− p)2
(2.12)

2.2 EPL-scheme: maximum achievable rates

We now set pd = 1,which means leaving out the dephasing term in (2.2). The
state then becomes:

ρ = p|θ+
φ 〉〈θ

+
φ |+ (1− p)|11〉〈11| (2.13)

with with |θ+
φ 〉 = (|01〉+ eiφ|10〉)/

√
2 and φ an unknown phase.

If we revisit the density matrix ρ00 in (2.12) and enter pd = 1, the density
matrix becomes

ρ00 =
p2/2|θ+

2φ〉〈θ
+
2φ|+ (1− p)2|11〉〈11|

p2/2 + (1− p)2
(2.14)

with �delity to the state |ψ+〉:

F00 =
p2/2

p2/2 + (1− p)2
(
1

2
+

1

2
cos 2φ). (2.15)
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The goal is now to use these states ρ00 to generate more |ψ+〉 states. Note
that the �delity F00 is below 0.5 if we do not know the value of φ and we average
uniformly over it. The idea is now to use two of the states with double the phase
to get |ψ+〉.

Introduce the new notation c1θ = p and c111 = 1 − p. Whenever a quantity
is squared in the rest of this section, it is always displayed between brackets to
distinguish from the superscripts. In this new notation:

ρ = c1θ|θ+
φ 〉〈θ

+
φ |+ c111|11〉〈11| (2.16)

and ρ00 becomes:

ρ00 =
(c1θ)

2/2|θ+
2φ〉〈θ

+
2φ|+ (c111)

2|11〉〈11|
(c1θ)

2/2 + (c111)
2

(2.17)

= c2θ|θ+
2φ〉〈θ

+
2φ|+ c211|11〉〈11| (2.18)

with the coe�cients:

c2θ :=
(c1θ)

2/2

(c1θ)
2/2 + (c111)

2
c211 :=

(c111)
2

(c1θ)
2/2 + (c111)

2
(2.19)

Using the result of the previous section, the probability of measuring |11〉 using
two states with twice the phase is p2

11 := (c2θ)
2/2. Similarly the probability of

measuring |00〉 is p2
00 := (c2θ)

2/2 + (c211)
2. If we get |00〉 we can continue in the

same way with a state with 4 times the phase. In general the coe�cients cnθ and
cn11 are:

cn+1
θ :=

(cnθ )
2/2

(cnθ )
2/2 + (cn11)

2
cn+1
11 :=

(cn11)
2

(cnθ )
2/2 + (cn11)

2
(2.20)

The state after measuring |00〉, n times is then:

ρn00 = cn+1
θ |θ+

2nφ〉〈θ
+
2nφ|+ cn+1

11 |11〉〈11| (2.21)

with the probabilities of obtaining the states:

pn11 = (cnθ )
2/2 pn00 = (cnθ )

2/2 + (cn11)
2 (2.22)

Now we can take a look at the rate at which maximally entangled states
can be generated. For this we need to de�ne the number of available memories.
In any case we need two memories to store two copies of ρ, to be able to per-
form the EPL scheme. In addition we may have memories to store the resulting
states after measuring |00〉, an overview of the possibilities given an amount of
memories can be found in Figure 2.1.

For example, if we have four memories in total, we can use two to perform
the basic step of the EPL scheme. The other two memories can then be used
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A1 First undistilled state B1

A2 Second undistilled state B2

A3 Possibility to store ρ1
00 state B3

A4 Possibility to store ρ2
00 state B4

AN Possibility to store ρN−2
00 state BN

Figure 2.1: Overview of the quantum memories for A and B, numbered by
A1, .., AN and B1, .., B4. The minimum amount of memories required, to be
able to generate two new states and perform distillation, is two. If there are N
memories available, the states up to ρN−2

00 can be stored and still have enough
memories to generate another ρN−2

00 state for distillation. Whenever an entan-
gled pair is successfully generated, it is stored in one of the memories, in which
case the protocol continues with one less memory. This means that now the
states up to ρN−3

00 can be stored. It is also possible to directly consume the
distilled state, for example by using it to run quantum key distribution. In that
case the protocol runs with a �xed amount of memories even after successful
distillation.

20



to store the ρ1
00 and ρ2

00 states in (2.21).

The memories also have to be used to store the maximally entangled states
we obtain after measuring |11〉 at any point. This means that each time we have
a success in the protocol, one less memory is available to store ρn00 states.

In order to �nd the maximum achievable rates using the EPL scheme, we
de�ne a rate as follows, within this section:

R =
#|ψ+〉
#ρ

. (2.23)

The rate is thus given by the number of Bell-pairs that are obtained divided
by the amount of initial states ρ from (2.13) that were consumed in the process.

As a �rst step we look at the rate R∗M that can be obtained using M avail-
able memories and whenever success is obtained the resulting state is consumed.
For example, when we have M = 2, we can not store anything and we have to
measure |11〉 on the initial states. The rate then becomes R∗2 = p1

11/2 = p2/4.
The factor 1/2 indicates that we used two ρ states to get one |ψ+〉 state.

What happens for M = 3 can be seen when we consider N rounds of per-
forming the EPL scheme. On average we get Np1

00 times the state ρ1
00. Using

two ρ1
00 states we get |ψ+〉 with probability p2

11. The rate R
∗
3 becomes:

R∗3 = R∗2 +
Np1

00p
2
11/2

2N
= R∗2 +

p1
00p

2
11

4
(2.24)

= p2/4 +
(
p2/2 + (1− p)2

)( p4/8

(p2/2 + (1− p)2)2
)
/4 (2.25)

The factor 2N indicates that 2N initial copies from (2.13) were used and the
factor 1/2 that two ρ1

00 states are needed to get one success.

Continuing for M = 4 we have the same terms as for M = 3 but this time
we can also store ρ2

00. Then we need four times the ρ1
00 state to make two ρ2

00

states and measure |11〉.

R∗4 = R∗3 +
Np1

00p
2
00p

3
11/4

2N
= R∗3 +

p1
00p

2
00p

3
11

8
(2.26)

This result can be generalised, as for R∗M the extra term is measuring |00〉 the
�rst M − 2 times and then measuring |11〉.

R∗M+1 = R∗M +
pM11

2M

M−1∏
i=1

pi00 (2.27)

If we start with R∗1 = 0 then the previous results follow from (2.27).
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We can now look at the case where we start withM memories, but now each
time we generate a |ψ+〉 state, we store it and so we lose one available memory.
Then in the start the rate is R∗M , but once we get one success, the rate drops
to R∗M−1. We can continue this way until there are two available memories left
and the rate has dropped to R∗2. Then when we measure |11〉 our memory is
�lled up with M − 1 states |ψ+〉. On average the number of elementary states
needed to get one success using M memories is 1/R∗M , so the total amount of
elementary states NM needed to �ll up M − 1 memories is:

NM = 1/R∗M + 1/R∗M−1 + ...+ 1/R∗2 =

M∑
m=2

1/R∗m (2.28)

Using those NM elementary states, the number of successful output states was
M − 1 which means that the rate RM becomes:

RM =
M − 1

NM
=

M − 1∑M
m=2

1
R∗

m

(2.29)

2.3 Entanglement swapping and distillation

We now look at repeater schemes, where we want to use multiple repeaters to
create long distance entanglement. For example A and C1 have an entangled
state and B and C2 also have an entangled state, where C1 and C2 are in the
same location. It is now possible to use these two entangled states to create
entanglement between A and B. We assume that both the entangled states are
created by the EPL scheme, discussed in previous sections:

ρAC1
= p|θ+

φ1
〉〈θ+

φ1
|+ (1− p)|11〉〈11| (2.30)

and
ρC2B = p|θ+

φ2
〉〈θ+

φ2
|+ (1− p)|11〉〈11|, (2.31)

where |θ±φj
〉 = (|01〉+eiφj |10〉)/

√
2. Note that in general φ1 6= φ2, because these

phases are determined by the �bre. We assume for simplicity that the proba-
bility p is the same for both connections.

Lemma 4. Measuring |ψ+〉 or |ψ−〉 in a Bell-state measurement on C1 and

C2 as de�ned in (2.30) and (2.31) happens with probability 1
2 (2p− p

2) and will

result in ρAB = p′|θ+
φ1+φ2

〉〈θ+
φ1+φ2

| + (1 − p′)|11〉〈11| after a correction for the

measurement outcome and where p′ = p2

2p−p2 .

Proof. The total state of the system is ρAC1
⊗ ρC2B . We will look at this

mixed state term by term, starting with the part |θ+
φ1
〉〈θ+

φ1
| ⊗ |θ+

φ2
〉〈θ+

φ2
|. This

unnormalized state is:
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φAC1C2B = (|01〉+ eiφ1 |10〉)⊗ (|01〉+ eiφ2 |10〉)
= |01〉|01〉+ eiφ1 |10〉|01〉+ eiφ2 |01〉|10〉) + ei(φ1+φ2)|10〉|10〉

(2.32)

Reorder the qubits as C1C2AB and rewrite in the Bell-basis for C1C2.

φC1C2AB = |10〉|01〉+ eiφ1 |00〉|11〉+ eiφ2 |11〉|00〉) + ei(φ1+φ2)|01〉|10〉
= (|ψ+〉 − |ψ−〉)|01〉+ eiφ1(|φ+〉+ |φ−〉)11〉
+ eiφ2(|φ+〉 − |φ−〉)|00〉) + ei(φ1+φ2)(|ψ+〉+ |ψ−〉)|10〉
= |ψ+〉(|01〉+ ei(φ1+φ2)|10〉) + |ψ−〉(−|01〉+ ei(φ1+φ2)|10〉)
+ |φ+〉(eiφ1 |11〉+ eiφ2 |00〉) + |φ−〉(eiφ1 |11〉 − eiφ2 |00〉)

(2.33)

With |φ±〉 = |00〉 ± |11〉 and |ψ±〉 = |01〉 ± |10〉.

The next term is |θ+
1 〉〈θ

+
1 | ⊗ |11〉〈11|, for which the state is:

φC1C2AB = |11〉|01〉+ eiφ1 |01〉|11〉 = (|φ+〉 − |φ−〉)|01〉+ eiφ1(|ψ+〉+ |ψ−〉)|11〉.
(2.34)

Similarly for |11〉〈11| ⊗ |θ+
1 〉〈θ

+
1 |, the state becomes:

φC1C2AB = |10〉|11〉+ eiφ2 |11〉|10〉 = (|ψ+〉 − |ψ−〉)|11〉+ eiφ2(|φ+〉 − |φ−〉)|10〉.
(2.35)

And �nally for |11〉〈11| ⊗ ||11〉〈11|:

φC1C2AB = |11〉|11〉 = (|φ+〉 − |φ−〉)|11〉 (2.36)

Now collect all the terms and order them based on the outcome of the Bell-
measurement. The �nal states between A and B are then:

ρAB,ψ+ =
1

4

p2|θ+
φ1+φ2

〉〈θ+
φ1+φ2

|+ 2p(1− p)|11〉〈11|
1
4 (2p− p2)

, (2.37)

ρAB,ψ− =
1

4

p2|θ−φ1+φ2
〉〈θ−φ1+φ2

|+ 2p(1− p)|11〉〈11|
1
4 (2p− p2)

, (2.38)

ρAB,φ+ =
1

4

[
p2/2(eiφ1 |11〉+ eiφ2 |00〉)(e−iφ1〈11|+ e−iφ2〈00|)

+ p(1− p)|01〉〈01|+ p(1− p)|10〉〈10|+ 2(1− p)2|11〉〈11|
]
/
[1
4
((p− 1)2 + 1)

]
,

(2.39)
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ρAB,φ− =
1

4

[
p2/2(eiφ1 |11〉 − eiφ2 |00〉)(e−iφ1〈11| − e−iφ2〈00|)

+ p(1− p)|01〉〈01|+ p(1− p)|10〉〈10|+ 2(1− p)2|11〉〈11|
]
/
[1
4
((p− 1)2 + 1)

]
.

(2.40)

Here ρAB,x is the state A and B share after a measurement outcome x on C.
Applying a Z-gate to either of the qubits of ρψ+ transforms ρψ− to ρψ+ . The
probability of obtaining ρψ− or ρψ+ is given by the denominator in the density
matrix: psucc =

1
4 (2p− p

2) + 1
4 (2p− p

2) = 1
2 (2p− p

2)

Afterwards we still have to get rid of the unknown phase by performing dis-
tillation on two entangled pairs between A and B. We can not do this if one
of the pairs comes from measuring ρψ± and the other one ρφ± . The reason for
this is that for ρψ± the phases φ1 and φ2 are added, whereas for ρφ± the phases
are subtracted. This di�erence between eφ1+φ2 and eφ1−φ2 can not be solved by
distillation any more. This means that we have to pick either two pairs of ρψ±

or two pairs of ρφ± .

Note that in this case a Z-gate also transforms the state ρφ− to ρφ+ . Then,
however, the noise is not orthogonal to the Bell-state and therefore we will not
be able to get rid of it by performing the EPL-scheme. For high values of p it
is still possible to get a good entangled state between A and B. In general the
states ρψ± are less noisy so would be preferred.

We can now analyse the di�erence between doing distillation �rst and doing
the entanglement swapping �rst. The two possible protocols to establish en-
tanglement between A and B are displayed in Figure 2.2. For this we assume
a memory which is only coherent for one time step. This models a network in
which nodes do not have time to communicate the results of their operations.
This reduces the probability of successfully obtaining entanglement over large
distances, but increases the �delity if creating this entanglement succeeds.

In the most simple case the time step starts with two states ρAC1 and two
states ρC2B in (2.30) and (2.31). Here we assume that these states are already
generated, in section section 3.3 we will look at how to include entanglement
generation in this process. Then either we perform distillation �rst or we start by
doing the entanglement swap. After that either entanglement swapping is done
on a Bell-state, or distillation is attempted on the two states that were swapped.

Lemma 5. Two states ρAC1
and two states ρC2B in (2.30) and (2.31) can be

used to probabilistically obtain a perfect Bell-state between A and B. However

doing distillation �rst has twice the success probability of doing the swap �rst,

pdist,swap = 2pswap,dist.
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A C1C2 B

A C1 C2 B

A B

A C1 C2 B

A B

A B

Figure 2.2: Schematic overview of the two di�erent options to obtain one dis-
tilled link between A and B. Shaded areas indicate the next step of the protocol,
horizontal being an entanglement swap and vertical entanglement distillation.
The �rst option is to do distillation �rst between A and C1 as well as between
B and C2 and then a single entanglement swap at C, which is displayed on the
left. The second option is to do two entanglement swaps at C and then perform
distillation between A and B, as displayed on the right.

Proof. Doing distillation �rst results in a Bell-state with success probability
p2/2 as proven in lemma (3). We need a successful outcome at the link A to
C1 as well as C2 to B, after that the entanglement swap can be done determin-
istically. Thus the total probability of success when doing distillation �rst is
pdist,swap = p4/4.

In the case of doing the swap �rst, we can use lemma (4) to get the proba-
bility of measuring ψ+ or ψ− at C, which is 1

2 (2p− p
2). We need the entangle-

ment swap to succeed on both the initial pairs, which happens with probability
1
4 (2p − p2)2. After that the distillation is successful with probability p′2/2,

where p′ = p2

2p−p2 as in equation (2.37). This means that the total probability

is pswap,dist =
1
8 (2p− p

2)2 p4

(2p−p2)2 = p4/8.

We do not use the states ρAB,φ± from lemma 4 because they will never result
in a Bell-state after distillation. We see that doing distillation �rst is always
optimal and will have twice the success probability, pdist,swap = 2pswap,dist.

2.4 Numerical experiments

In this section some of the previously discussed cases are simulated using MAT-
LAB. For the �rst few results the simulation data can be compared to the an-
alytical results from section 2.2. Both the simulation and the analytical result
assume perfect memories and operations. The rest of the simulations include
some noise and looks at the possibility to pump the entanglement to a high
�delity state. Entanglement pumping means doing an entanglement distillation
process repeatedly, by keeping one entangled state in memory and generating
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new entangled state to distil. Every time the newly generated entanglement is
distilled into the stored state, another entangled pair can be generated. This
process can be repeated, but competes against decoherence. Based on the noise
parameters there is a maximum �delity that can be achieved using entanglement
pumping, after which additional pumping will not increase the entanglement.

As a �rst result we will look at the rate of successful distillation as a function
of the number of available memories for di�erent values of p in the state:

ρ = p|θ+〉〈θ+|+ (1− p)|11〉〈11|, (2.41)

with |θ+〉 = 1√
2
(|01〉 + eiφ|10〉 as de�ned in section 2.2. Each time there

is a success, we put the resulting maximally entangled state in a memory and
therefore continue the protocol with one less memory. The protocol ends once
there is only one memory left that is not �lled, because then there can be no
distillation any more. The rate goes up as a function of the amount of memories,
because if we have more free memories we can use the measurement result |00〉
and not just |11〉.

In Figure 2.3 there is a slight di�erence between the analytical and simula-
tion result. The analytical result calculates the rate that you would get if for
every number of memories you would generate a large number of Bell-pairs. The
�rst Bell-pair takes longer to generate than the following ones, because for the
later ones we can use the |00〉 outcomes that were left over from generating the
previous copies. In the simulation there is only one Bell-pair that is generated
for each number of memories, which is the �rst and slowest one.

For example, in the analytical calculation when we have four memories we
assume that we will keep generating a large number of new copies and removing
the distilled states after success. Then we do the same for three memories and
for two memories, in the end we add all the contributions up to get the rate for
�lling four memories. E�ectively this means that for each number of memories
we generate a large number of distilled states and not just one, as would be the
case in the simulation.

Another example, in the case of running the simulation: we start with three
memories and after one round we get a |00〉 outcome, resulting in a state with
twice the phase. This state can then be stored in one of the memories and we
generate two new states for distillation. If the result of this distillation is then
a Bell-state, this should be stored in a memory. Then if we want to continue
the protocol we have to throw out the state resulting from |00〉 to generate two
new states for distillation. In the analytical case we would have been able to
use this |00〉 outcome, because we remove the Bell-state from our memory after
success.

This also explains why the rates using the simulation and analytical result
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Figure 2.3: Simulation of the EPL scheme. The x-axis is the amount of memories
that are available, where 2 is the minimum to perform distillation. The y-axis
shows the rate at which maximally entangled states can be generated and is
calculated by dividing the number of successfully distilled states by the amount
of initial states used. Comparison of simulation (top 10 lines in legend) with
analytical solution (bottom 10 lines in legend) of the rate in the model where
the memories start �lling up.
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are equal when using two memories, because in that case we can never use the
|00〉 outcome states. When using two memories, the rates are given by lemma
(3), the rate of success is then p2/2. Each attempt consumes two copies, so that
means that when p = 1 the rate becomes 1/4.

The above analysis considered the case without noise and decoherence. Now
we can include some noisy operations and storage. The goal of the simulation
is to achieve an entangled state with at least a speci�ed �delity to Bell-state.
Decoherence then happens in every round, where a round can be de�ned by two
phases:

1. Generating: Generate two new noisy entangled states of the form (2.41)
and put them in two free memories. If there are not enough free memories,
throw away a |00〉 outcome state with the maximum phase.

2. Distilling: Distil the two noisy states. Depending on the outcome of the
distillation, we may throw away the resulting state, store the state or do
further distillation. Further EPL-distillation happens when we measure
|00〉 and there is a state of the same phase in one of the other memories.
DEJMPS-distillation happens when we measure |11〉 and there is already
an EPL-distilled state in one of the memories. The new EPL-distilled
state can then be used to pump up the �delity of this stored state using
DEJMPS.

This de�nition of a round makes sense when generation of entanglement
takes a lot longer than performing distillation. This may be the case when the
two nodes performing EPL are far apart, resulting in slow entanglement gener-
ation compared to local operations and classical communication.

The �rst comparison that can be made is about the �delity of the distilled
state, which is done in Figure 2.4. The depolarising parameter in equation (1.7)
for doing a distillation step is 0.99. Decoherence in the quantum memories
happens with a dephasing parameter in equation (1.10) of 0.99 per round. The
initial state is dephased with pd = 0.95, as in equation (2.2). In the case of
getting a success in the �rst round of EPL-distillation, the �delity will always
be highest. In that case the state has not been in memory and only minimal
operations have been done. In the case of getting a |00〉 outcome and eventually
distilling it to get a success, the distillation steps have been done twice and one
of the states has also been in memory for a while.

It is clear that for these parameters storing the state ρ2
00 from equation

(2.21) would not be useful. This would introduce a lot more noise and the �-
delity would be below a usable level. Therefore we will only look at storing the
state ρ1

00 in the remainder of this section.

Now let's look at entanglement pumping, which is the protocol where we
keep using the EPL-distilled states to get a higher �delity. The goal of repeat-
ing DEJPMS-distillation is to end up with a higher �delity than 0.9, which is
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Figure 2.4: Fidelity of the state after performing distillation as a function of
the initial p parameter. The depolarising parameter in equation (1.7) for doing
a distillation step is 0.99. Decoherence of the quantum memories happens with
a dephasing parameter in equation (1.10) of 0.99 per round. The initial state
is dephased with pd = 0.95, as in equation (2.2). The blue line means immedi-
ately getting a success, whereas the orange line means getting a |00〉 outcome
and successfully performing distillation of two of those states. The orange line
increases as a function of p due to having to store states only for a shorter time
on average, before getting the second |00〉 outcome. The blue line is constant,
because no storage is necessary and p only e�ects the success rate, but not the
resulting �delity.
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A1 Distilled state for pumping B1

A2 First undistilled state B2

A3 Second undistilled state B3

A4 Possibility to store ρ00 state B4

Figure 2.5: Overview of the quantum memories for A and B, numbered by
A1, .., A4 and B1, .., B4. The minimum amount of memories required is three,
to store an EPL-distilled state and to be able to generate two new states. The
idea is to continuously generate entanglement between A2 and B2 as well as
between A3 and B3. When both of these links are established, EPL-distillation
is performed between them. Successfully EPL-distilled states can then be stored
in memories A1 and B1, or if there is already an EPL-distilled state there,
DEJMPS-distillation is performed again between them and the resulting state
stored in A1 and B1. If A4 and B4 are also available, the ρ00 state can also be
stored and used for EPL-distillation. Whenever an EPL-distillation between a
new ρ00 state and one stored between A4 and B4 succeeds, it can be used to
DEJMPS-distil with the state stored between A1 and B1.

what we end up with after doing just EPL-distillation on the initial states in
Figure 2.4. We can compare the situations of having three or four memories
available. Three memories indicates that we can store the resulting state after
measuring |11〉 in the EPL scheme and try to pump that state using the same
post-measurement states. With four memories we can also store the state after
measuring |00〉 in the EPL scheme and use two of these states to decrease the
number of rounds required. A schematic overview of the available memories is
given in Figure 2.5 We can now analyse if having this additional memory actu-
ally boosts the rate, the result is displayed in Figure 2.6.

In general doing DEJMPS-distillation is not always better than throwing
away a state. Further investigation could be done to see in which cases keeping
the |00〉 outcome states is better than simply throwing them away. In the pre-
vious simulations we only threw states away from the memories if the �delity
became lower than 0.5. This threshold should in general depend on the target
�delity of pumping and can be optimized to let distillation always have a posi-
tive e�ect. This would prevent a scenario like in Figure 2.6 where having more
memories results in having to do more rounds.

Summarizing the results of this chapter, we looked at various rates and re-
sulting �delities for the EPL entanglement generation protocol. Using not just
the success case, where both parties measure |1〉, but also the case where both
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Figure 2.6: Number of rounds required to make a state with di�erent target
�delities, using three or four memories. A round indicates the use of the EPL
scheme on a new pair of states, as de�ned before. The DEJMPS protocol is used
to pump the entanglement to the required �delity. The same noise parameters
are used as in Figure 2.4. Note that keeping the ρ00 states actually increases
the number of rounds that is necessary, when trying to pump the �delity to
0.98. This is because the states resulting from that EPL-distillation have lower
�delity, which together with the noise have a negative e�ect on the pumped
state. The distillation of the pumped state and a state of lower �delity does
not increase the �delity of the pumped state as much and also has a chance of
failure, losing the pumped state completely. For the lower target �delities it is
bene�cial to keep the ρ00 states as it gives a slight decrease in number of rounds.
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parties measure |0〉, the rates can be boosted. This requires extra quantummem-
ories and gives a rise in the rate, mainly for high values of p in the EPL starting
state (2.41). The analysis of entanglement swaps and distillation resulted in the
conclusion that doing distillation �rst has a higher success probability. In the
next chapter there will be some more discussion about this protocol, comparing
the distillation �rst and swap �rst protocols, also in the case of noise. This will
be done using the discrete-event simulator QNetSquid.

In the case of noisy operations and storage, the usefulness of the ρ00 states
decreases. This is due to the extra time the resulting states have to be in stor-
age, before they can be distilled and the higher number of operations that have
to be done to end up with a distilled state. As a result of this, in a realistic
scenario it seems only useful to store the state with twice the phase, which is the
state ρ00 in (2.12). The noise parameters that were taken to show the increase
in rates by using the ρ00 states, have not been demonstrated in experiments.
This means that before it could be useful to actually run this improved scheme,
the noise in physical implementations will have to decrease. In the noisy sce-
nario an entanglement pumping protocol has been analysed, in which you keep
generating new EPL-states and distilling them. At some point the decoherence
in quantum memories and noisy operations in the distillation process balance
the increase in �delity due to distillation, which means that there is a limit to
which the �delity can be pumped.
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Chapter 3

Applications of QNetSquid

3.1 Introduction

In this chapter we look at applications of QNetSquid (Quantum Network Simula-
tor for Quantum Information using Discrete-events), which is a Python package
currently under development by QuTech. First we will shortly discuss what
a discrete event simulator is and how it can be used for quantum information
simulations. Then in the next sections some concrete applications that I have
worked on for my project will be discussed. We model well known entanglement
generation protocols using previously established distributions [17] in section 3.2
and using a full simulation in QNetSquid starting from section 3.4. These en-
tanglement generation protocols are then used to obtain rates and resulting
�delities for speci�c noise models. We extend the analysis of doing distillation
�rst or entanglement swap �rst in the EPL protocol in section section 3.3, which
was �rst analysed in section 2.3.

The main idea of a discrete event simulation is that there is a timeline of
events that happen within the simulation. These events happen at speci�c
points in time and the assumption is that there are no changes in the system
between these events. Every event has the ability to schedule future events at
any future point in the timeline. The simulation ends when there are no further
events scheduled.

As a small example we can take a table tennis game, which is also the ex-
ample in QNetSquid for introducing the discrete event simulator. We now want
to simulate this game between two parties, Ping and Pong. To start the game
one of the parties has to serve, so we schedule an event in which Ping serves at
time t = 0. Now Ping makes the serve and schedules an event at t = 10 that
Pong will receive the ball. Pong is listening to this speci�c event and reacts
exactly at t = 10 by hitting the ball back. Then Pong schedules an event at
t = 20, at which it is Ping's turn to hit the ball again. The game could continue
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like this forever if every time they hit the ball they schedule a new event. This
means that we could either force the conclusion of the simulation at a �xed time
or add a probability that the players will not return the ball. In that case the
simulation will end after one of the players will not schedule a new event, which
would be after some probabilistic amount of time.

In general the units of time of the simulation are not �xed, which means
it could be seconds, hours, days, etc. We are not limited to integer points in
time, but we can also schedule events at t = 0.1 or t = 0.0001. However, it
is important that the units are consistent within the simulation, for example
to avoid one component scheduling a delay in seconds and the other one in
microseconds. There could also be multiple events scheduled at any point in
time, in which case they would be executed in a random order. To formalise
the example, we can say that Ping and Pong are two Entities. Entities are able
to schedule events on the timeline and listen to speci�c events on the timeline.
For example when there are two table tennis games going on at the same time,
we do not want players to react to the wrong game.

In a lot of cases the events may be scheduled at probabilistic times, e.g. the
time it takes to generate entanglement. When there is a lot of those probabilis-
tic events that have to react to each other, it is very hard to obtain analytic
results. This is the strength of the discrete event simulator; we can just run the
whole simulation a few times and obtain information about the average time for
the protocol to complete.

Now we can have a look at the quantum side of the simulator. Using the
discrete event simulator we can simulate all kinds of quantum protocols. One
example of a protocol is the entanglement generation protocol EntangleNodes.
To understand this protocol we must �rst have a look at physical components.
The �rst relevant component is the QSource, which is able to generate qubits
with speci�ed �delity locally. After some delay in which the source prepares
the qubits, the qubits can be retrieved from the source and used in a protocol.
The second component is a QMemory, where we can put qubits and after some
time get them from the memory again. During this time decoherence happens
based on the speci�ed noise parameter of the memory. The third component is
a QChannel, which can be used to transmit qubits with noise speci�ed in the
noise model and a delay indicating the time it takes for qubits to travel over the
�bre. The EntangleNodes protocol uses these components to generate entangle-
ment between two nodes A and B, which is displayed schematically in Figure 3.1.

The goal of QNetSquid itself is to support a wide variety of protocols, for
which it should stay as general as possible. For snippets we model a speci�c
component or protocol to see how QNetSquid performs and to obtain new re-
sults. One example is the quantum four-node network that is currently under
development in the Netherlands. In this network there would be four main nodes
and likely intermediate stations which can be used as quantum repeaters. QNet-
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Figure 3.1: The EntangleNodes protocol starts to generate entanglement be-
tween A and B after being triggered by an external protocol. First the QSource
generates a pair of maximally entangled qubits locally in A, after which one of
the qubits is put on the QMemory of A. The other qubit is put on the QChannel
towards B. Once the qubit reaches the other side of the �bre, B will pick it
up and put it in its memory. When node A puts the qubit in his memory, the
output event signalling that the qubit of A is ready will be given and when the
photon reaches B the same will happen for B. Image courtesy: Rob Knegjens.

Squid can be used to simulate this network in as much detail as required. Every
snippet has a very speci�c functionality and could be part of a bigger protocol.
One snippet could be the QSource that generates qubits locally, then a snippet
that simulates the optical system and �bres, a snippet for the detector that is
used at the middle station, etc. It should be modular, such that the QSource
could easily be replaced by a di�erent QSource that has other properties, but
the same in- and outputs. Then there is a snippet for the overlying entangle-
ment generation protocol that uses all these snippets to simulate the generation
of entanglement. Finally, there could be a snippet that uses this entanglement
to run quantum key distribution, or some other application using entanglement.

During my project I have also written some snippets that are not mentioned
in the rest of this thesis, a few of those are brie�y discussed in Appendix B.

3.2 QSourceMid for abstract entanglement gen-

eration

One example of a snippet is the QSourceMid, that refers to the use of a mid-point
to generate entanglement. In general the QSourceMid takes a timing distribu-
tion function, instead of the �xed preparation delay of the standard QSource.
Next to this you can specify noise operations that should be applied to a Bell-
state. This noise model can consist of any operation on the qubits. This is a very
general model of a source that outputs entangled qubit pairs. In this section
we will look at a few concrete applications in entanglement generation protocols.
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The QSourceMid can be used to model some of the most used entanglement
generation protocols like the Barrett and Kok [21], single click [22, 23] and EPL
[24, 12] protocols. The general idea is that two nodes A and B both create en-
tanglement between their stationary memory and a photon locally. Both A and
B then put the photon on a �bre towards a mid-point C where both photons are
detected. This detection event, referred to as a click, is essentially a Bell-state
measurement and provides entanglement between A and B. For the Barrett
and Kok, which is also called the double click protocol, both photons need to
reach the detector in the same round. For the single click and EPL protocol
only one photon should be detected at one time. Then if the channels from A
to C and B to C have transmissivity η, for the single click and EPL protocol
the probability of successful entanglement generation is proportional to η. The
probability of success for the Barrett and Kok protocol, is proportional to η2.
The drawback of the single click protocol is that it is more sensitive to photon
loss in the �bre and phase drift in the �bre. This can be solved by performing
distillation, using two pairs generated by the single click protocol. Doing single
click twice and then distillation is called the EPL protocol. The single click
protocol can therefore only work by itself if we can stabilise the phase in the
�bre.

The time it takes to generate entanglement for the di�erent entanglement
generation protocols is calculated in [17], for NV-centres. This time includes the
entire entanglement generation process, starting from photon-memory entangle-
ment to communication back from the mid-point signalling success. A simple
way to model this in QNetSquid is to take the underlying probability distribu-
tion and use it e�ectively to model both the QChannel and the QSource in the
EntangleNodes protocol. This means that after a random time sampled from
the distribution we directly put the qubits on the QMemory of both A and B.
They then both output the ready event of the entanglement generation protocol
at the same time; this protocol in QNetSquid is called MidEntangleNodes.

The QSourceBK is an instance of this QSourceMid and is speci�c for the
Barrett and Kok protocol. It takes as input the distance between A and B
and some hardware properties like the NV-outcoupling e�ciency, the frequency
conversion frequency and the expected �delity of the output state. It then
constructs the time distribution and noise operations for this protocol. This
QSourceBK can then directly be used in the MidEntangleNodes protocol.

The QSourceSC for the single click protocol is similar to the QSourceBK,
but uses slightly di�erent hardware parameters and generates a di�erent timing
distribution and noise operation model. The most important source of noise is
the emission of a photon by both A and B, but due to photon loss only one of
them getting to the detector. The detector then registers a single click and A
and B think they have entanglement, but in fact they just have a classical state.
This is also the process leading to the |11〉 component in the EPL protocol, as
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discussed in the previous chapter. This noise can be reduced by emitting less
photons from the NV-centres. The probability of two photons being released in
the same round then becomes smaller. Both A and B can generate entanglement
between the electron spin and a photon locally:

|NV, photon〉 = sin(θ)| ↓ 0〉+ cos(θ)| ↑ 1〉. (3.1)

| ↓〉 and | ↑〉 refer to the dark and bright state of the electron spin, whereas
|0〉 and |1〉 to the absence and presence of a photon. The angle θ is a parameter
that can be chosen. In the limit of low transmissivity η → 0, this leads to the
entanglement between A and B of the form:

ρNV,NV = sin2(θ)|ψ+〉〈ψ+|+ cos2(θ)| ↑↑〉〈↑↑ |. (3.2)

In the section about the QDetector we will look more closely at the modelling
of the photon detector in the middle. For more details about the experimental
realisation of this process see [22]. Practically, this means a trade-o� between
�delity of the entanglement and the rate at which it can be achieved. If θ is π/2,
the output state is a perfect Bell-state, but no photons are released from the
NV-centre. This means that the rate at which these states can be produced is 0.

For the QSourceEPL, obtaining the EPL distribution is a bit more involved.
First we generate the single click timing distribution. We then take two samples
from this distribution and try to perform distillation on these two. If distillation
succeeds, the protocol is �nished and we have our sample. If distillation fails
two new timing samples are taken from the single click distribution, this keeps
going until successful distillation. There is also the option to either generate the
two entangled pairs for distillation in parallel or in sequence, which depends on
the hardware.

The goal of these instances of QSourceMid is to run an entanglement gen-
eration protocol without expensive calculations. There is a lot of errors and
noise sources that are not taken into account. In a separate project, that will be
discussed starting from section 3.4, we try to model all the components using
QNetSquid. This includes an accurate model of the QChannels, a QDetector in
the middle and a model of the QSources that generate local entanglement.

3.3 EPL

In this section we compare the performance of swapping �rst and distilling �rst
from section 2.3 using QNetSquid. The idea is to model all the events happen-
ing and run a discrete event simulation. After that we can look at some results
of the simulation.

Both the distillation �rst protocol EPLdist,swap and the swap �rst protocol
EPLswap,dist protocols are initialised by calling the class using a few parame-
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ters. These include the communication time between nodes, the length of the
quantum �bres between nodes, the time it takes for the QSource to generate
entangled qubit pairs, the �delity of these qubits and the decoherence rate of
the quantum memories. These are then used to initialise the EntangleNodes
protocol on four links in parallel, two between A and R and two between B and
R.

For EPLdist,swap the ready events of the EntangleNodes protocol are linked
to the distillation step. Once the two entangled pairs are ready on a link, these
pairs are distilled to remove the phase and obtain better entanglement. The out-
put of the distillation step is then linked to the swap protocol. This checks the
outcome of the distillation step; if it failed we start the EntangleNodes protocol
again and keep trying until both distillations have succeeded. After distillation
has succeeded on both links, the entanglement swap is executed. Then �nally a
correction is made for the outcome of the Bell-state measurement and we look
at the resulting state. If the �nal state between A and B is the Bell-state we
expected, we call it a success and otherwise a failure. We also record the total
time it took to run this round.

For EPLswap,dist the ready events of the EntangleNodes protocol are linked
to the swap step. Whenever one of the four EntangleNodes protocols gives an
output event, we check whether there is an entangled pair ready on the other
link. If this is the case then the entanglement swap between these pairs is exe-
cuted. If the swap is successful, we apply the correction for the swap and wait
for the other swap to succeed to perform distillation. Finally we check the re-
sulting state again and compare it to the Bell-state we expect.

In the case of no noise in the system, this means perfect memories and no loss
in the �bres, we will always be able to predict the resulting Bell-state. We can
then run the protocol a number of times to obtain the average simulation time.
This can then be compared to the result of section 2.3, where the probability of
success of the distillation �rst protocol was twice that of the swap �rst protocol.
For both protocols entanglement pops into the system on all four links every
time unit using the EntangleNodes protocol. After that either distillation or the
entanglement swap can be done �rst. The nodes can communicate with each
other instantaneously throughout the protocol, similar to how in section 2.3
classical communication between nodes was completely disregarded.

As we can see in Figure 3.2 the EPLdist,swap protocol completes roughly
twice as fast. In this �gure, there is no noise included, which means that the
output pairs are perfect maximally entangled states. These results are consis-
tent with lemma 5 from section 2.3.

The rest of this section is about the realistic entanglement generation pro-
tocol. The single click entanglement generation can be used to generate the
four elementary links. We assume that the phase can not be stabilised, which
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Figure 3.2: Comparison between EPLdist,swap and EPLswap,dist protocols; the
rate of entangled states per number of input states for di�erent values of p in the
EPL-mixed state from equation (2.13). For both simulations entanglement pops
into the system on all four links every time unit, after which either distillation or
the entanglement swap can be done �rst. For the analytical solutions, resulting
from lemma 5 in section 2.3, everything has to succeed in one time step. In
the simulation it can be spread out over multiple time steps, giving a slightly
higher rate. For example, in the case of doing distillation �rst, in the simulation
the distillation can succeed independently on both links in di�erent rounds,
after which the entanglement swap can be made. In the analytical solution
distillation has to succeed on both links in the same round. It can be seen that
doing distillation �rst is also optimal in this model.
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means that distillation is necessary. We also introduce dephasing over time to
the quantum memories, which will mean that the output states are no longer
maximally entangled. This is the only source of noise; operations on qubits are
still assumed to be perfect. The distillation �rst and swap �rst protocols can
then be run for di�erent angles of θ, as discussed in the previous section. The
goal is to �nd the optimal value of θ and compare the di�erence in rate and
�delity between the two protocols.

Comparing Figure 3.3 and Figure 3.4 it seems that the value of θ that op-
timises the rate is also close to optimal for the output �delity. This can be
explained by looking at the time the states have to be in memory. If the rate
is low, there is a long waiting time before generating all four entangled links.
Then states will be in memory for a while and therefore dephase more. This can
also be seen in the resulting �delity, which drops drastically due to dephasing
as θ goes to π/2. In the limit of small θ the single click entanglement generation
rate is high, but the resulting state has a low p parameter. This means that
distillation succeeds rarely and the total rate will be low.

To �nd the optimal value of θ more precisely and �nd out whether there is a
di�erence in �delity of output states between the two protocols, a higher average
number has to be taken. It would also be interesting to include more sources of
noise, not just dephasing to the memories. The operations and measurements
are in general noisy too and this could shift the distributions and reduce the
output �delity.

3.4 QDetector and multi-qubit measurements

Photon detectors have been used in a lot of entanglement generation proto-
cols to measure photons that are entangled to a stationary qubit at a node.
This concept has been discussed before, for example in the section about the
QSourceMid. In that section QNetSquid was used for only a small part of
the entanglement generation protocol, in this section we want a more detailed
model. The most important missing component in QNetSquid to simulate this
is a detector component, which is used in all entanglement generation protocols
discussed before. A schematic overview of the system that the QDetector mod-
els can be found in Figure 3.5.

The idea of the QDetector is to measure photons that have just arrived over
a quantum channel. There are di�erent encodings that can be used to use a
photon as a qubit. One of the most common ones is polarization encoding,
which means that a detector should be able to distinguish di�erent polarization
states of the photon. Another one is presence-absence encoding, which means
that the qubit is encoded in the presence or absence of a photon. In that case,
presence could be the |1〉 state and absence the |0〉 state, forming a qubit. The
last one that should be mentioned is time-bin encoding, which means that the
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Figure 3.3: Comparison between EPLdist,swap and EPLswap,dist protocols; the
rate of generated entangled pairs per second as a function of the angle θ giving
the bright state population of the NV-centre. Similar to the previous cases, the
distillation �rst protocol has a roughly two times higher rate. The optimal angle
of θ is around 0.9, which means that the bright state is slightly less probable than
the dark state. The generation time is averaged over 2000 generated entangled
pairs.

41



Figure 3.4: Comparison between EPLdist,swap and EPLswap,dist protocols; �-
delity to the maximally entangled state of the generated entangled pairs. The
�delity in the ideal case would be 1; the di�erence is due to dephasing of the
memory qubits. It is hard to see the di�erence in �delity between the two pro-
tocols, but the highest �delity is achieved for values of θ where the rate is also
high. In the limit of θ close to π/2 the �delity drops due to dephasing in the
quantum memories. In this limit the generation rate of the single click protocol
is low, which means that we have to store states for a long time while trying to
generate the other states.
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Figure 3.5: Schematic overview of the photon detection system for performing a
Bell-state measurement on single photons. The photons enter the beam splitter
from di�erent sides. If the photons arrive at the same time, they interfere
and the information from which side the photon came is erased. The photons
are then measured by the detectors. This whole process is modelled by the
QDetector. Image courtesy: the authors of [10].

photon can either reach the detector in the early time slot or in the late time
slot. As the wave function of a photon is spread out in space and so also in
time, we can have a superposition of early and late photons, which is also a qubit.

The functionality and measurement operators of the QDetector can be dif-
ferent based on the encoding of the photons that it should detect. For the QDe-
tector that we developed, we assume presence/absence encoding, which will be
used for the rest of this chapter. Now this QDetector can be used to perform a
Bell-state measurement on two photons reaching it from di�erent channels. If
node A and B are generating entanglement, they coordinate to let the photons
that are entangled to their stationary qubit reach the detector at the same time.
If this is done in the right way, the information whether a photon came from A
or from B is erased in the detector.

Now it is useful to have a closer look at the photon detectors. In our system,
we assume that a maximum of one photon can be emitted from each NV-centre.
The maximum number of photons that can reach the middle station is two, one
coming from the right and one from the left. This puts a restriction on the
detection events that can happen at the detector. We can look at the three
cases, either the left detector clicks, or the right detector clicks or neither of
them. In terms of POVM-elements, as de�ned in section 1.4:

PL = |2, 0〉〈2, 0|out + |1, 0〉〈1, 0|out,
PR = |0, 2〉〈0, 2|out + |0, 1〉〈0, 1|out,
P0 = |0, 0〉〈0, 0|out.

The �rst projector PL happens if one photon reaches the left detector, or two
photons reach the left detector and the same for PR. Notice that it is not
possible to have both the left and the right detector click at the same time, as
will be shown later. Now these projectors can be inverted to see which input
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states before the beam splitter result in these detection events. For this we need
some quantum optics, in terms of creation and annihilation operators.

ĉL =
1√
2
(â+ b̂) ĉR =

1√
2
(â− b̂) (3.3)

Where ĉL and ĉR are the operators on the output of the beam splitter and â
and b̂ are the operators on the input of the beam splitter. This can be used to
rewrite the operators PL,PR and P0 in terms of input states of the beam splitter.

First calculate the input state for two photons reaching the left detector:

|2, 0〉out =
1√
2
ĉ†Lĉ
†
L|0, 0〉out

=
1

2
√
2
(â† + b̂†)(â† + b̂†)|0, 0〉in

=
1

2
(|2, 0〉in + |0, 2〉in) +

1√
2
|1, 1〉in

In the case of one photon reaching the left detector:

|1, 0〉out = ĉ†L|0, 0〉out

=
1√
2
(â† + b̂†)|0, 0〉in

=
1√
2
(|1, 0〉in + |0, 1〉in)

Similarly in the case of two photons reaching the right detector:

|0, 2〉out =
1√
2
ĉ†Rĉ
†
R|0, 0〉out

=
1

2
√
2
(â† − b̂†)(â† − b̂†)|0, 0〉in

=
1

2
(|0, 2〉in + |2, 0〉in)−

1√
2
|1, 1〉in

�nally for one photon reaching the right detector:

|0, 1〉out = ĉ†R|0, 0〉out

=
1√
2
(â† − b̂†)|0, 0〉in

=
1√
2
(|0, 1〉in − |1, 0〉in)
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Now it is possible to transform the POVM-elements PL, PR and P0 from the
output basis to the input basis. This results in the new POVM-elements NL,
NR and N0. Note that from our set-up it is not possible for two photons to reach
the beam splitter from the left or from the right. This is because both nodes
release a maximum of one photon each, so we can exclude the states |2, 0〉in and
|0, 2〉in.

NL = |ψ+〉〈ψ+|in +
1

2
|1, 1〉〈1, 1|in

NR = |ψ−〉〈ψ−|in +
1

2
|1, 1〉〈1, 1|in

N0 = |0, 0〉〈0, 0|in

Note that P0 and N0 are trivially the same. The sum of the POVM-elements
NL+NR+N0 = I, as required, on the reduced space. This measurement is not
projective, because the element |1, 1〉in occurs in two measurement operators.
In this case we do not have to care about Kraus operators, because the post
measurement state of the photons is not important. The photons are detected
and measured away, the important part is the resulting states on the stationary
qubits of A and B.

It is now also easy to verify that the state |1, 1〉out can not occur, because it
leads to an input state outside our basis.

|1, 1〉out =
1√
2
ĉ†Lĉ
†
R|0, 0〉out

=
1

2
√
2
(â† + b̂†)(â† − b̂†)|0, 0〉in

=
1

2
(|0, 2〉in + |2, 0〉in)

At the time the QDetector was being developed, QNetSquid did not have
a function to do general measurements on multiple qubits. This is something
that I implemented before continuing with the detector.

The detector component, as implemented in QNetSquid, can be broken down
in a few di�erent steps. The �rst step is to open the time window, which means
that the detector will start detecting photons. In discrete-event simulator terms
this means that photons, represented by a qubit, can be put on the detector.
The detector then waits till the end of the time window and only then carries
out the measurement with POVM-elements NL, NR and N0. The output of the
detector component will then be a number 0, 1 or 2 according to which of the
detection events happened. Only the measurement outcomes NL and NR lead
to the desired entangled state between A and B. When we measure N0 the
resulting state will not be entangled and A and B have to throw away their
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qubits and restart the generation process.

There is an important source of noise in photon detectors called dark counts.
These dark counts are unwanted photons that the detector picks up from the
environment. This may trigger the detector, even though no photons from A
or B reached the detector. We can assume that these photons are uncorrelated
from the rest of our set-up, which means that the analysis of dark counts can
be done purely classically. For a simple model of these dark counts, we can
look what happens for the di�erent detection events under the in�uence of dark
counts. The probability of a dark count pd is assumed the same for the right
and the left detector. The probability pd can be calculated using the length of
the time window tw and the dark count rate Rdc.

pd = 1− exp(−tw ·Rdc) (3.4)

The �rst scenario is that there are no photons from A or B, but there is a
dark count on one of the detectors. This happens with probability 2p0pd(1−pd)
and lets us accept a classical state as the output. This process will reduce the
�delity of the output state.

The second scenario is that the left (right) detector clicks, but there is also
a dark count in the right (left) detector, which happens with probability pLpd
(pRpd). In that case we notice that both detectors triggered, but this is only
possible in case of a dark count, so we have to reject an entangled state. This
process leads to the reduction of the rate at which entangled states can be gen-
erated.

The dark count rate is an experimental parameter and the lower it is, the
better the photon detector. In the loophole-free Bell-test [4], a photon detector
with a dark count rate of 10s−1 was used. In the next section the e�ect of these
dark counts on the output �delity will be examined.

3.5 Entanglement generation protocol using QDe-

tector

The detector component can now be used to make a full entanglement generation
protocol using NV-centres between nodes A and B using the midpoint photon
detector M . For this a few physical components are necessary:

• QSource that can generate a local entangled state between electron spin
and photon. The time at which the photon is released from the NV-
centre (QSource) is important because it will determine whether the pho-
ton reached the detector inside the time window.

• QFibre that can be used to let the photons travel from A to M and from
B to M . In the case of loss of number encoded photons the qubits should
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not be thrown away but amplitude damped. This is because photon loss
should not a�ect the absence of a photon, but does impact the presence of a
photon. This is the amplitude damping channel as discussed in section 1.4.

• QDetector that can detect the photons at the midpoint source, function-
ality as discussed in the previous section.

• CFibres from M to A and from M to B to communicate the classical
output of the detector back to the nodes A and B.

Finally the timings of the entanglement generation should be coordinated,
such that both photons arrive at the detector at the same time and the detection
window is actually open at this point in time. Therefore when the entanglement
generation protocol is triggered by some external protocol, the �rst step to take
is to coordinate the timings. For example when A is closer to the midpoint than
B, B should start its QSource before A does, because the QFibre from B to M
takes longer than the QFibre from A to M .

One additional issue is the arrival of a photon outside the time window at
the detector, in the case of presence/absence encoding. If we want to carry out
the detector measurement de�ned in the previous section, we actually need two
photonic qubits at the detector to measure. If the photon gets lost on the �bre,
or arrives outside the time window, this means that we should have the absence
of a photon within the time window. If the delay times of both the QSource
and the QFibre are deterministic, this gives no problems, because we can always
make sure that the photon arrives within the time window by coordinating the
timings. However, in an experiment the QSource is not deterministic as the
emission of the photon is caused by a decay process. The decay time can then
determine whether or not the photon arrives within the time window of the
detector.

In the discrete event simulation this can be �xed in a few di�erent ways. The
main point is to apply amplitude damping to the photon at some point within
the simulation to map it from the presence state to the absence state, if it would
arrive outside of the time window. The QSource would then emit photons at a
deterministic time, but additional amplitude damping with damping parameter
1−η would be applied. Here η is the probability that the photon arrives within
the time window.

3.6 Comparison of entanglement generation pro-

tocols

The di�erence between the two previously discussed models of entanglement
generation can now be examined. First we will give an overview of the physical
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Table 3.1: Summary of physical processes included in both simulations
Process MidEntangleNodes EntangleNodesDetect
Bright state population of NV-centre Yes Yes
Accurate spin-photon entanglement No Yes
Frequency conversion for transmission over �bre Yes Yes
NV-outcouping e�ciency Yes Yes
Photon loss in �bre Yes Yes
Multiplexing Yes No
Dark counts at the detector No Yes

processes that both of them take into account. The MidEntangleNodes proto-
col, that samples from a distribution does not use the full functionality of the
discrete event simulator. It uses a previously established result, which can now
be compared to a full simulation of all processes in QNetSquid, which is called
EntangleNodesDetect.

A lot of the physical processes happening in NV-centres are included in both
simulations. The advantages of using MidEntangleNodes is that it can give a
quick estimate of the time it takes to generate entanglement. The simulation is
very fast, because most of the process is included in the distribution and we just
have to take a sample. The drawback is that it does not really give an estimate of
the output �delity and that it is hard to include more general noise/loss models.

The advantage of the EntangleNodesDetect protocol is that the output �-
delity is realistic, because all physical processes are actually simulated. The
component-wise implementation makes it very easy to include more general
noise/loss models. It makes it also easy to use a di�erent �bre or a di�erent de-
tector but keep the rest of the entanglement generation protocol the same. The
disadvantage is that the simulation takes a lot longer. For realistic parameters
the photon number is very often zero at the detector, resulting in a failure case.
To just generate one entangled pair may take a lot of time.

For the next simulations the following experimental parameters are used:

• Probability of frequency conversion of photons to telecom frequency pfc =
0.3

• NV-outcoupling e�ciency including emission into zero phonon line pout =
0.3.

• The angle determining the bright state population of the NV-centre θ =
2π/5.

• Photon loss on the �bre 0.2dB/km.

• Initialising time of NV-centre before every run τi = 6.6µs.
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Figure 3.6: Average generation time as a function of the distance between end-
nodes. The blue line is the MidEntangleNodes protocol without dark counts,
whereas the green and the red lines are the EntangleNodesDetect protocol for
di�erent values of the dark count rate. It can be seen that at these distances 10
dark counts per second do not e�ect the generation time. Increasing the dark
count rate lowers the generation time at high distances.

• Characteristic emission time of the NV-centre τem = 12ns.

• Detector time window tw = 30ns.

The dark counts have a higher impact for longer distances. This is because
the photon loss in the �bre increases exponentially with distance, so the proba-
bility of a photon reaching the other side decreases rapidly. Therefore the rate
at which dark counts occur relative to the probability of a photon from the end
nodes being detected increases with distance. In Figure 3.6 and Figure 3.7 the
e�ect of 10 dark counts per second is not visible, which means it has an negligi-
ble e�ect at distances of under 300 kilometers. At some distance the di�erence
would become noticeable.

For a higher dark count rate the relative occurrence of dark counts is sig-
ni�cant also for shorter distances. This reduces the average time it takes to
generate entanglement, because the dark counts make us accept classical states.
However, the �delity of these states decreases to the point where there is no
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Figure 3.7: Average output �delity to |ψ+〉 as a function of the distance between
end-nodes. The �delity stays roughly constant as a function of distance, in
the case of low dark counts. The lines are not smooth because the number
of successful runs used to average is only 200 for the EntangleNodesDetect
protocol.
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useful entanglement left. This means that the dark count rate de�nes the max-
imum distance over which the entanglement generation protocol can be run.

Concluding this chapter, we have looked at the discrete-event simulator
QNetSquid and applications on entanglement generation. The simulations about
the EPL-protocol were extensions from the previous chapter. Now a realistic
entanglement generation protocol was used, instead of assuming entanglement
to pop into existence. This can be used to compare di�erent entanglement
generation protocols and see how they perform combined with distillation and
entanglement swaps. The results are consistent with lemma 5 and doing distil-
lation �rst is optimal in all analysed cases.

In the last sections a full simulation in QNetSquid was discussed. The �rst
part of the simulation is modelling of the NV-centre with respect to emission of
photons entangled to a memory qubit. The next steps are modelling of photon
loss from the NV-centre to the detector and the modelling of the detector itself.
The resulting rates and �delities were very similar for the EntangleNodesDetect
and MidEntangleNodes models, except for the regime of high dark counts. All
of the physical components can be modelled in more detail in future projects,
for example by including more sources of noise.

Another important point is the time it takes to run the simulations. In all
the simulations of this chapter, only two or three nodes were involved. In a re-
alistic quantum network this number may be a lot higher, making it even more
important to simulate e�ciently. The �rst step could then be to establish the
distribution of entanglement generation time as a function of distance between
nodes and other experimental parameters using QNetSquid. This distribution
could then be used on all links of a large quantum network and entanglement
generation times could be obtained by sampling from this distribution. This
would use the power of the discrete-event simulator to both obtain distributions
and sample from them, instead of using pre-established results.
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Chapter 4

Entanglement tracking in a

quantum network

4.1 Introduction and entanglement identi�ers

The entanglement tracker is a protocol that runs locally on every node in a
network and is in charge of keeping track of classical information about entan-
glement. This is useful in a larger quantum network, for example to comple-
ment an entanglement routing protocol. Every node will have an entanglement
tracker that maintains a database of current entanglement between this node
and any other node in the network. Entanglement IDs are the objects that are
stored in the database and hold information about the entanglement between
two nodes, including some estimate of the goodness of the entanglement. For
example, whenever entanglement is generated, swapped, distilled or consumed,
the entanglement tracker should be updated. Every node has an entanglement
tracker and the entanglement trackers of di�erent nodes can message each other
with information to update their databases.

De�ne the network with nodes (repeater stations or end stations) and con-
nections between neighbouring nodes (possible links to generate entanglement).
Every node and connection has some quantum capabilities, which distinguishes
it from the elements of a classical network. It is possible to generate elementary
entanglement between neighbouring nodes, which may not be there at any time
step. The entangled state could also already have been in storage for a while
and so has decohered to a noisy state.

The entanglement tracker acts on two databases, one for current entangle-
ment information and one for past entanglement information. When we say
that the entanglement tracker deletes an identi�er, this means that it will be
moved to the past entanglement information. As a results, information about
past entanglement is still accessible if it is needed to update other nodes. The
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past entanglement information will be kept for some amount of time speci�ed
by the network, for example the maximum life-time of qubits/entangled pairs
in the network. After this time a node can assume that it will not need this
information any more. This prevents information from being kept inde�nitely
and overloading the memories of the node.

We now have a quick look at how entanglement identi�ers are made for a
general entanglement generation protocol. Each entanglement generation pro-
tocol has a source, which assigns a sequence number to the entanglement it
creates. If A and B are trying to generate entanglement, this source can be at
node A or at node B or at any place on the connection from A to B. Every time
the source creates an entangled pair, it assigns a sequence number to the pair,
which should be unique between A and B. The sequence number gets commu-
nicated to A and B and they both store this information locally. The sequence
number combined with the node identi�ers of A and B should be unique within
the whole network and form the basis of the entanglement identi�er. In general
an entanglement identi�er (EntID) holds the following information:

Own node ID ID of node at which the entanglement identi�er is stored
Other node ID ID of node with which the entanglement is shared
Sequence number Sequence number that is unique between the two nodes

generating entanglement and globally unique combined
with the two node IDs

Goodness Heuristic estimate of the �delity of the entangled pair
tgoodness Time at which the goodness parameter was last calcu-

lated
corr Correction information resulting from an entanglement

swap that should still be used

The goodness parameter is stored to keep track of the �delity of the entan-
gled pair. If the state has decohered in storage for a while, or has undergone a
lot of operations, the entanglement may have been lost. Note that the goodness
parameter is based on the physical properties of the quantum hardware. The
means of updating the goodness parameter may be highly hardware-dependent.
The goodness parameter and the time of goodness may not hold too much in-
formation, without also knowing at least something about the physical set-up.
This means that whenever the entanglement tracker is used, it may need to
know something about the physical hardware in order to perform operations on
these entanglement identi�ers. This information about the quantum hardware
may just be a T1 and a T2 time for the quantum memories. How to update
goodness parameters will be discussed in more detail in section 4.4.

We now want to obtain entanglement between two nodes A and B, where
A and B are any two nodes in the network. We can use entanglement swaps
(Bell-state measurements) along some path from A to B in the network. For
example: there exists a node R such that there are entangled pairs shared be-
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A

B

Figure 4.1: Possible structure of a quantum network, the nodes are evenly spaced
and entanglement can be generated between neighboring nodes. To establish
entanglement between A and B multiple entanglement swaps will have to be
executed. It is possible to reserve the red path and only generate entanglement
on these links, after which entanglement swaps can connect A and B. There
are many other paths from A to B, which means that this is a routing problem.
The routing algorithm may be in charge of determining which nodes generate
entanglement and when they make entanglement swaps. The entanglement
tracker assists the routing protocol by handling the classical communication
between the nodes.

tween A and R and between B and R. In that case R could make a Bell-state
measurement on both of its qubits and in that way entangle A and B. After
that R would communicate to A and B that they are now entangled and send
some correction information for the swap to one of the sides. Sending these
update messages is an important part of the entanglement tracking protocol.

The tracker uses the standard communication lines between nodes, which
can be prone to delays and messages getting lost. It is therefore important to
specify on which kind of hardware the tracker is running. In the extreme case of
the wires being very noisy, no message will ever reach the other side and there
can be no expectations from the tracker to update other nodes. There may be
a separate protocol in place that re-emits messages if they have not reached the
other side after some amount of time, which means a delay on the delivery. In
this project we will assume that messages can be delayed, but not completely
lost.

In a big quantum network there may not be one repeater that can directly
connect two end nodes, but we might need multiple nodes to make entanglement
swaps to connect A and B. In Figure 4.1 a possible structure of a quantum net-
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work is shown; routing for this grid structure is analysed in [18] and for a ring
and sphere structure in [19] in a very idealized scenario. It is possible to �nd a
path between A and B and reserve all the connections and nodes on this path to
generate this speci�c entanglement. However, this would not be ideal as there
may be a lot of other nodes in the network that also want to generate entangle-
ment and use these connections. A more dynamical approach can therefore be
chosen, where every node decides based only on local knowledge, which entan-
glement swaps it will make. Local knowledge also has the advantage that nodes
do not have to communicate before making their decisions, but only to inform
others about which actions they have taken. What would the communication
look like in such a network? How do we make sure that everyone knows which
entangled states they have and who they are connected to? The goal of the
entanglement tracker is to answer these questions and come up with a concrete
protocol to handle this communication. The entanglement tracker can then be
used to investigate routing in more realistic models of a quantum network.

We also consider imperfect quantum memories and operations, which means
that the �delity will decrease over time when we try to entangle far away nodes.
For this reason we also have to consider entanglement distillation, a way to use
two low-�delity entangled pairs between A and B to make one pair of higher
�delity between A and B.

4.2 The entanglement tracking protocol

We can start by formulating the overall goal of the entanglement tracker by
de�ning the Current and Past databases:

De�nition 1 (Current). For all nodes: for all EntID ∈ Current, EntID either
describes an entangled pair in the network or the entanglement has been mod-
i�ed at most time Tupdate ago. For all entangled pairs in the network, either
EntID is in Current for both nodes involved or the entangled pair has been
modi�ed at most Tupdate ago.

De�nition 2 (Past). For all nodes: for all EntID ∈ Past, EntID describes an
entangled pair in the network that was deleted at most Tlifetime ago. For all
entangled pairs in the network that were deleted at most Tlifetime ago, either
EntID is in Past for both nodes involved or the entangled pair has been deleted
at most Tupdate ago.

The entanglement tracker should make sure that these requirements are met,
assuming the modi�cations of entanglement made in the network are correctly
passed on to the tracker. The relevant times Tupdate and Tlifetime may depend
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on the network, but the goal of the tracker is to update the Current and Past
databases as soon as possible.

4.2.1 Commands from higher layer

The entanglement tracker can be used by a higher layer protocol that makes
decisions about the entanglement within the network. The entanglement tracker
is not in charge of making such decisions, only to process the resulting changes
to the identi�ers. A routing protocol may decide that in order to generate long-
distance entanglement, an entanglement swap should happen. This routing
protocol may then �rst ask the hardware layer to perform the physical steps
required to realise the entanglement swap. After these steps have been executed,
the entanglement tracker gets updated and is expected to communicate to the
relevant nodes about the changes in entanglement. The entanglement tracker
supports the following commands: ADD, DELETE, SWAP, DISTIL, LOOK-
UP.

1. ADD(EntID)
Adds the EntID to the tracker, should happen after generation of entan-
glement by both nodes individually. No update message will be send to
the other node.

Result: returns msg with:
msg ∈ {ok, already in Current, already in Past, list of IDs full}
if msg = ok:

EntID ∈ Current
if msg = already in Current:

EntID ∈ Current
if msg = already in Past:

EntID ∈ Past

2. DELETE(EntID)
Deletes an EntID from the tracker and noti�es the other side of the en-
tangled pair to do the same.

Result: returns message msg with:
msg ∈ {ok, already in Past, unknown ID}
if msg = ok:

EntID ∈ Past
if msg = already in Past:

EntID ∈ Past

3. SWAP(EntID1,EntID2)
Deletes the two entanglement IDs from the tracker and sends a message
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to the other node involved in EntID1 and the other node in EntID2.

Result: returns message msg with:
msg ∈ {ok, ID(s) unknown or Past }
if msg = ok:

EntID1 ∈ Past
EntID2 ∈ Past

if msg = ID(s) unknown or Past:
No change to the IDs

4. DISTILL(Old EntIDs, New EntIDs)
Deletes the entanglement IDs in the list of Old EntIDs and adds the IDs
in the list of New EntIDs.

Result: returns message msg with:
msg ∈ {ok, Old ID(s) not in Current, New ID(s) already in Current}
if msg = ok:

for all EntID in Old EntIDs:
EntID ∈ Past

for all EntID in New EntIDs:
EntID ∈ Current

if msg = Old ID(s) not in Current:
No change to the IDs

if msg = New ID(s) already in Current:
No change to the IDs

5. LOOK-UP(node B, k)
Searches Current for entangled pairs with node B and returns either a list
of k EntIDs or a list of all EntIDs with B if there are less than k EntIDs.

Result: returns list of EntIDs such that:
for all EntIDs in ID-list:

other(EntID)=B

The python implementation of the entanglement tracker can be found in
Appendix A. This uses the discrete event simulator QNetSquid, as discussed in
the previous chapter.

4.2.2 Performance metrics

In this section the performance metric of the entanglement tracker will be de-
�ned. The �rst thing to check is that the commands discussed in the previous
section are handled correctly and that the requirements of the Current and

57



Past databases are ful�lled. After that it is also important to keep track of the
entanglement in the network in a fast and e�cient way. To make this more
concrete we can de�ne performance metrics. Note that these metrics are just
some parameters that may be useful to evaluate the tracker, but not all of them
have to be relevant in all cases.

Time to completion: Time it takes for the Current and Past databases of
all nodes in the network to be in the correct state after a number of operations.
This time should never exceed Tupdate as discussed previously.
Goodness evaluation: Compare the heuristic guess of the �delity to the ac-
tual �delity of the entangled pair. Can there be any guarantee on the di�erence
ε between goodness parameter and actual �delity, |Goodness− Freal| < ε?
Entanglement quality: This quantity is closely related to the time to comple-
tion, as the quality of �nal entanglement decreases with time. Depending on the
entanglement tracker update protocol the messages may reach other trackers at
di�erent timings, thus in�uencing their decisions to make further operations.
This then has an e�ect on the quality of the �nal entanglement.
Number of messages: Total number of messages needed throughout the net-
work to update all the nodes after a set of commands. How does this scale with
the number of input commands?
Length of messages: Average length of messages sent from tracker to tracker.
How does this scale with the number of input commands?
Computation time: How long do nodes need (on average) to process a mes-
sage send by the tracker?
Classical memory: How much classical memory do the nodes require?

Looking at the input commands to the tracker, the SWAP command is the
most involved one. This is because the node making the entanglement swap
can not rely on any information from the nodes it is trying to connect. Every
node can decide at any point to make an entanglement swap and no matter the
order of these swaps, the �nal entanglement identi�ers should be correct. For
the other commands, not as many messages have to be send and forwarded. It
is therefore natural to look at a test-case where a lot of entanglement swaps
happen. Before doing some numerical experiments to see how the entanglement
tracker is performing in section 4.5, the next sections will be about how to up-
date entanglement identi�ers after an entanglement swap.

4.3 Identi�ers after entanglement swap

In this section, the part of the entanglement identi�er that is used for identi-
fying the entangled pair will be examined. The goal of the identi�er part is to
give every entangled pair a unique ID within the network, such that nodes can
e�ectively communicate about the qubits they will use to execute a quantum
protocol. The goal of this section is not to prove the correctness of swap update
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messages, but just to give some examples about what entanglement identi�ers
look like and how they can be updated after an entanglement swap. For a more
detailed description see Appendix A about the internal protocol of the entan-
glement tracker.

As discussed in the start of this chapter, the identi�er part of an elementary
link consists of a few elements:

Own node ID ID of node at which the entanglement identi�er is stored
Other node ID ID of node with which the entanglement is shared
Sequence number Sequence number that is unique between the two nodes

generating entanglement and globally unique combined
with the two node IDs.

Disregarding the goodness parameters within this section, we will denote
entanglement identi�ers by a vector. For example, the entanglement ID in the
storage of A of an entangled pair between A and B would look like:

EAB = [A,B, seqAB ] (4.1)

Note that the sequence number seqAB can simply be a counter, which counts
the number of entangled pairs that have been created between A and B. It does
not depend on A and B, but the indices are just an indication that it is a se-
quence number between A and B, which means that seqAB = seqBA. If there
are multiple connections between A and B, over which entanglement is gener-
ated, it could be a combination of the connection ID and the sequence number.
For now we will just assume that it is a unique number between A and B.

We now take two entanglement identi�ers EBA = [B,A, seqAB ] and EBC =
[B,C, seqBC ], which means that node B shares an entangled pair with A and
with C. Now B can make an entanglement swap and send an update message
to A and C informing them that they are now entangled. This message would
consist of the two identi�ers EAB and ECB , where B �ipped the order of the
nodes because this is the form A and C have in their tracker. When A then
receives the message, it looks in its entanglement tracker and updates the en-
tanglement ID to entanglement with C. What would this new EAC look like?

One natural option is EAC = [A,C, seqAC ], but this is hard because A and
C never communicated and they have no way to make a unique sequence num-
ber, that they agree on. Simply counting is not possible, because they may
obtain two entangled pairs by entanglement swap and update messages from
these swaps may reach A and C in di�erent orders. They would then confuse
the two entangled pairs and entanglement would become useless.

Another option is to make the new entanglement ID EAC = [A,C, seqABseqBC ].
Now the length of the entanglement ID scales with the number of swaps, but
this is not the most important problem. Notice that these seqAB and seqBC
are just sequence numbers. There could be an entanglement swap carried out
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by a node D on EDA and EDC that also connects A and C with the ID EID =
[A,C, seqADseqDC ]. It could now be the case that seqADseqDC = seqABseqBC
and then we lose the uniqueness of the entanglement identi�er.

The entanglement identi�ers EAB = [A,B, seqAB ] and ECB = [C,B, seqBC ]
were already unique, so why not keep them exactly as they are? The new
entanglement ID EAC can then be given by a combination of the two:

EAC = [[A,B, seqAB ], [C,B, seqBC ]] (4.2)

After receiving the update message from B, then C would end up with the
following entanglement identi�er:

ECA = [[C,B, seqBC ], [A,B, seqAB ]] (4.3)

Note that the structure of the entanglement identi�er has not changed that
much. The �rst entry of the �rst vector is still the own node, the �rst entry of the
second vector is now the node holding the other side of the entanglement. The
rest of the identi�er simply exists to make the entanglement identi�er unique.

To keep the form of the identi�ers �xed, it is possible to also give the identi-
�ers of elementary links two components. For example a freshly generated link
between A and B in the entanglement tracker of A would look like:

EAB = [[A,B, seqAB ], [B,A, seqAB ]] (4.4)

The nice property of these entanglement identi�er is that A can just update
the second entry of the identi�er in case a node makes a swap. When B made
the swap, the identi�er of B then simply gets replaced by the identi�er of C.
What happens now when C decides to make an entanglement swap on ECA and
ECF ? It will send and update message to A and F , including EAC and EFC .
Then A knows that it is now entangled to F and it can update the entanglement
ID to:

EAF = [[A,B, seqAB ], [F,C, seqFC ]], (4.5)

where the second entry of the entanglement identi�er is replaced to indicate
entanglement with node F . This entanglement ID is unique and agreed upon
by A and F after the update message from C.

However, there is still a question using this way of updating entanglement
IDs. What happens when multiple nodes make a swap at the same time? In the
above example, A and F were connected using two entanglement swaps, one by
B and one by C. Would it also have worked if B and C made an entanglement
swap at the same time? It could also be the case that the message from B was
delayed to A, so the message from C to A was delivered �rst. In general we
want the entanglement tracking protocol to be consistent for any sequence of
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commands, including an arbitrary number of entanglement swaps.

In the case of multiple swaps happening at the same time, nodes also need
to be able to forward update messages resulting from swaps, even if they do
not hold the entanglement themselves anymore. In the last example if B and C
swap at the same time, B will send an update message to C and C will send an
update message to B. It is than the receiving node's responsibility to forward
the messages, B forwards it to A and C should forward it to F . This is the
purpose of the past entanglement database that every node holds for at least
some time after they swapped it away.

These scenarios are often easier to analyse using a simulation. It turns out
that there are examples, especially when the length of the repeater chain is
longer, where the �xed length of the entanglement identi�ers leads to serious
problems. When the identi�er is of �xed length, we are throwing away part of
the history of the entanglement swaps that happened to establish the current
identi�er. However, other repeaters making entanglement swaps may still send
update messages using these old versions of the entanglement identi�er, because
their information is outdated. In that case the node receiving the messages can
not process the incoming message and the entanglement tracker does not suc-
ceed in keeping track of the entanglement.

It is therefore possible to have a more robust identi�er, that scales with
the number of swaps. The way to update entanglement identi�ers would then
be to simply add them to the list. For example when A receives the up-
date message from B about EAB = [[A,B, seqAB ], [B,A, seqAB ] and EBC =
[[B,C, seqBC ], [C,B, seqBC ]] being connected, he would update:

EAC = [[A,B, seqAB ], [B,A, seqAB ], [B,C, seqBC ], [C,B, seqBC ]] (4.6)

Then when he gets the message from F , he can update it again to

EAF = [[A,B, seqAB ], [B,A, seqAB ], [B,C, seqBC ], (4.7)

[C,B, seqBC ], [C,F, seqFC ], [F,C, seqFC ]] (4.8)

The advantage of this is that nothing gets deleted from the entanglement
ID, because A may receive a new update message which uses its old identi�er
EAC . If A deleted the information about its entanglement with C, it does not
recognize this EAC and can not process the message.

4.4 Goodness parameter after entanglement swap

The goodness parameter has been mentioned before as part of the entanglement
identi�er. The goal of keeping this goodness parameter is not to have an exact
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estimation of the state or �delity of the entangled pair. The qubit can experi-
ence many di�erent forms of decoherence and it is impossible to keep track of
all of them. The goal is to have a heuristic guess of the �delity, but of course
it would be great if this guess is actually close to the real �delity. There may
be protocols in a quantum network that do not really need an estimation of
the goodness at any point, in this case the goodness parameter can simply be
disregarded. It is not necessary to keep it updated for the entanglement tracker,
but just for a user that wants to use the entangled state for an application.

When generating entanglement over long distances within the network, the
goodness paramter can be used as an indication of when to perform entangle-
ment distillation. In that case it is necessary that the goodness parameter is
tracker well, because otherwise the state may decohere beyond recovery before
it is distilled.

There are often many sources of decoherence in a quantum system and many
of them may be minor compared to the main sources of noise. It is therefore
also important to know which sources to include and how often to update the
goodness parameter. For example, the entanglement tracker of a node has an
entanglement identi�er in its database with some other node. Every time a gate
is performed on the relevant qubit, there could be an update to the goodness
parameter indicating the noise this operation has introduced. There can even
be an update message to the other node after this single operation, because the
entanglement has decohered and the other node may want to know this. It is
clear that there is a trade-o� between the quality of the goodness estimate and
the amount of e�ort required to update it.

The rest of this section will examine a noisy entanglement swap and the
e�ect it has on the �delity of the entangled state. This can then be used to
update the goodness parameter after a single entanglement swap.

First de�ne the density matrices of the entangled pair between A and R and
the pair between B and R:

ρAR1 = F1φ
+ + (1− F1)/3(φ

− + ψ+ + ψ−), (4.9)

ρR2B = F2φ
+ + (1− F2)/3(φ

− + ψ+ + ψ−), (4.10)

where φ± = |φ±〉〈φ±| and ψ± = |ψ±〉〈ψ±|.

Lemma 6. Let F1 = 〈φ+|ρAR1
|φ+〉 be the �delity of ρAR1

and F2 = 〈φ+|ρBR2
|φ+〉

of ρBR2 . If R makes a noisy Bell-state measurement on R1, R2, de�ned by the

following POVM-elements:
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Mφ+ = Fmφ
+ +

1− Fm
3

(φ− + ψ+ + ψ−),

Mφ− = Fmφ
− +

1− Fm
3

(φ+ + ψ+ + ψ−),

Mψ+ = Fmψ
+ +

1− Fm
3

(φ+ + φ− + ψ−),

Mψ− = Fmψ
− +

1− Fm
3

(φ+ + φ− + ψ+).

Then the �delity F of the entangled state between A and B to |φ+〉 after
correction for the outcome is at least:

F = Fm(F1F2 + (1− F1)(1− F2)/3) +
1− Fm

3
(1− F1F2 + (1− F1)(1− F2)/3).

Proof. Now look at the di�erent unnormalised parts of the mixture ρAR1⊗ρR2B ,
starting with the φ+ ⊗ φ+ component:

|φ〉AR1R2B = |00〉|00〉+ |00〉|11〉+ |11〉|00〉+ |11〉|11〉,

and reorder the qubits:

|φ〉R1R2AB = |00〉|00〉+ |01〉|01〉+ |10〉|10〉+ |11〉|11〉
= (|φ+〉+ |φ−〉)|00〉+ (|ψ+〉+ |ψ−〉)|01〉+ (|ψ+〉+ |ψ−〉)|10〉+ (|φ+〉 − |φ−〉)|11〉
= |φ+〉|φ+〉+ |ψ+〉|ψ+〉+ |ψ−〉|ψ−〉+ |φ−〉|φ−〉

If R measures |φ+〉, no correction by A or B is needed, if R measures φ−

then A or B should apply Z etc. This correction then de�nes which other parts
of the mixture also give a |φ+〉AB contribution.

Without calculating everything explicitly, it can be seen that for the Fm
part of the measurement, the only terms that give |φ+〉AB after the correction
are when we select the part of the mixture where the Bell-states are the same
in ρAR1 and ρR2B . The probability of A and B having the same Bell-state is
pright = F1F2 + (1− F1)(1− F2)/3. The �rst contribution is thus Fmpright.

For the (1 − Fm) part the state ends up in a wrong Bell-state, but if the
Bell-states ρAR1 and ρR2B are also not the same, there is a chance to still end
up with |φ+〉AB . The probability that ρAR1 and ρR2B are not the same is
1 − pright = 1 − (F1F2 + (1 − F1)(1 − F2)/3). Whenever the two Bell-states
are not the same, there is exactly one component in the measurement that
results in |φ+〉AB , which happens with probability (1− Fm)/3. E�ectively this
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means that there were two errors that cancelled each other: one of the states
was depolarised, but also the measurement was depolarised. This results in a
contribution (1 − Fm)/3 · (1 − pright), summing up the two contributions the
�nal �delity is thus:

F = Fm(F1∗F2+(1−F1)∗(1−F2)/3)+
1− Fm

3
(1−F1∗F2−(1−F1)∗(1−F2)/3)

(4.11)

Note that as discussed in section 3.2.1 of [13] any state that is not Bell-
diagonal can be depolarised by doing random, correlated local unitary opera-
tions to a state of the form discussed in the lemma, without a�ecting the �delity
to a maximally entangled state.

The depolarising parameter p, as de�ned in equation (1.7) and the �delity,
as used in lemma 6, are directly related in the following way:

F1 =
3p1 + 1

4
, F2 =

3p2 + 1

4
, Fm =

3pm + 1

4
. (4.12)

Substituting this into equation (4.11), the �nal �delity can be expressed as:

F =
3p1p2pm + 1

4
. (4.13)

Note that this is exactly the �delity we would get if we applied depolarising
noise once with p = p1p2pm.

This can then be used to update the goodness parameter after an entangle-
ment swap. Before making the update for the entanglement swap, the goodness
of the individual links can be updated to account for any previous noise. For
example, if this node has kept the qubit in storage for a while, the goodness esti-
mate of the �delities F1 and F2 in lemma (6) should be updated before carrying
out goodness update for the entanglement swap. After the goodness has been
updated, the new entanglement ID can be sent to the other two nodes involved
in the entanglement. They can then update their entanglement identi�ers, in-
cluding the goodness parameters.

A more di�cult case for updating goodness parameters is when the nodes
receiving updates about entanglement swaps have already swapped away their
entanglement, especially when a lot of swaps are happening at the same time
to make a long connection. All kinds of orders of updating entanglement IDs
may happen. One of the ways to solve this is just to keep track of the number
of entanglement swaps that have been made to establish an entangled link.
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For example when there were N entanglement swaps made, the goodness pa-
rameter, estimating the �delity of the �nal entangled pair, could look something
like:

goodness =
3(pcreate)

N+1(pmeas)
N (pstorage)

2N+2 + 1

4
, (4.14)

where pcreate is an estimate for the depolarising parameter of a newly generated
elementary link and pmeas is the average depolarising parameter of the Bell-
state measurement. The depolarising factor pstorage, due to qubits decohering
in memories is a function of time. This could be estimated using the average
time a repeater stores a quantum state before executing the entanglement swap.
The nodes executing the entanglement swaps may have di�erent quantum mem-
ories, resulting in a di�erent T1 and T2 time as discussed in section 1.4. There
could be a guarantee of a minimal T1 and T2 time for all nodes in the network,
so that other nodes can use these times to calculate the goodness parameter.

Of course this estimate is not very exact, as it assumes all the noise to be
depolarising, such that we can simply multiply the depolarising parameters. It
also assumes all links to be identical, whereas in a real network all nodes may
have di�erent distances and hardware. In the case of just depolarising noise it
would make sense to store the depolarising parameter rather than the �delity as
a goodness parameter. Otherwise we are continuously converting depolarising
parameter to �delity and back to depolarising parameter. However, the noise
may not always be just depolarising noise and then �delity to a maximally en-
tangled state may be a more intuitive goodness parameter.

4.5 Numerical testing

We look at a well-known example of a repeater chain. There are two end nodes
A and B that want to generate entanglement, but they are far away from each
other. They then use a series of quantum repeaters R1, R2, ..., RN to establish
entanglement. Because the tracker is in charge of the classical communication
in such a set-up we can look only at the classical information. In the model,
at random times entanglement pops into the system separately on all links in
the chain. Instead of running an actual simulation of the quantum processes in
the background, the only information that is used are entanglement identi�ers.
These are the only objects the tracker needs and for now the quantum hardware
is not taken into account. For example, when entanglement is generated on the
connection between R1 and R2, this means that an entanglement ID will be
added to the trackers of R1 and R2. Whenever a repeater holds two entangle-
ment identi�ers, which means that it is connected to both its neighbour on the
left and the right side, it is ready to make the entanglement swap. Now there
are two options to send update messages after performing such a swap:
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R1 R2 R3 R4A B

Local knowledge protocol

R1 R2 R3 R4A B

Global knowledge protocol

Figure 4.2: Schematic display of local knowledge and global knowledge protocols
for a repeater chain consisting of four repeaters. In the local knowledge model
messages are sent only to neighbors and then passed on through the chain to
A and B. In the global knowledge protocol the messages are sent directly to A
and B.

Global knowledge: In this model all repeaters know which nodes are the
end nodes and how to send a message to the end nodes. Instead of sending
update messages to the nodes they are are entangled to, update messages can
directly be sent to the end nodes. This protocol requires the minimum amount
of communication: just one message to node A and one message to node B for
every swap.

Local knowledge: In this model the entanglement tracking protocol will
be used to send update messages. The only information nodes have is the entan-
glement identi�ers they hold and the messages they send go to the node holding
the other side of the entanglement. The number of messages in this case is not
�xed and messages have to be forwarded and processed all the time.

The two communication models are also displayed in Figure 4.2. The goal of
the simulation is to compare these two cases regarding one of the performance
metrics de�ned in section 4.2. There are a few parameters in this simulation,
that will be the same for the local knowledge and global knowledge protocol.

N Number of repeaters R1, R2, ..., RN connecting A and B.

Generation model Distribution according to which entanglement pops into the system, as-
sumed to be the same for all connections. As entanglement generation is
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normally probabilistic, samples from this distribution will be taken.

Communication model The model that is used for sending classical messages in the network. To
keep things simple, every node (including the repeaters) will be connected
with a classical connection to any other node in the chain. The time it
takes to communicate is proportional to the distance between the nodes
and represents the time it takes for photons to travel over a �bre to another
node.

Processing model This parameter is about the processing of messages in a node. Whenever
a node receives a message, it will need some time to process it, for example
by looking in its local entanglement databases. This processing time will
depend on the processing power of the node, on the size of the entangle-
ment database, etc. In this simulation it will be assumed �xed, but in
general it is an interesting question how this processing time behaves as a
function of the network size, for example the length of the repeater chain.

In the following simulations the repeaters will all be separated by the same
distance to their neighbours. We set A = R0 and B = RN+1 and de�ne the
distance in the chain for nodes Ra and Rb as |a− b|; to get the actual distance
between nodes this has to be multiplied by the elementary separation.

The entanglement tracking protocol starts immediately at the start of the
simulation. This means that whenever entangled links are generated, they can
be put into the entanglement tracker and can be processed and reacted to. For
example, in the case of global information, the end node A can always receive
update messages from entanglement swaps that have happened somewhere in
the chain, even if it hasn't generated entanglement with R1 yet. It then stores
these update messages until they can be processed and combined with the in-
formation in its Current entanglement database.

As a �rst example we can assume very simple models for all of the time distri-
butions. After one time step entanglement pops into the system on all links and
at that point all the entanglement swaps happen at the same time. The results
are then either communicated directly to the end-nodes using global knowledge,
or passed through the chain using the (local knowledge) entanglement tracker.
The time units are arbitrary, entanglement generation always takes 1 unit, data
processing takes 1 unit, communication takes 1 unit times the distance in the
chain.

In Figure 4.3, it can be seen that there is a factor di�erence between the
global and local knowledge model. This is due to the processing time. For
example, when sending a message directly from R4 to R1, the total time is the
sum of the distance between R4 and R1 and processing time of R1, which is
3+1 = 4. In the case of passing it through the chain, the total time is 3+3 = 6,
because R2 and R3 also have to process it. This may not be a very realistic
model, but it shows that when processing of messages takes time, it is important
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Figure 4.3: Time to completion of the entanglement tracker, as a function of the
length of the repeater chain. The repeaters are always separated by the same
distance, which means that the total distance scales linearly with the number
of repeaters. Either the updates are sent directly to the end nodes (global
information), or the information is passed through the chain (local information).
The time units are arbitrary, entanglement generation always takes 1 unit, data
processing takes 1 unit, communication takes 1 unit times the distance in the
chain.
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to send messages e�ciently.

The total time to completion can be calculated exactly too, using the fact
that the message that takes the longest time is always sent from RN to A and
from R1 to B. The distance is in this case N and the processing time 1 in the
case of global knowledge, which means only processing by A and B. In the
case of local knowledge, all the intermediate repeaters have to process, which
means a total processing time of N . Adding one for the time it takes to generate
entanglement, this results in a total time for the global knowledge protocol of
N + 2 and for local knowledge of 2N + 1.

Now it is possible to look at a more realistic entanglement generation proto-
col. The time it takes to generate entanglement is now given by the single click
distribution, as discussed in the QNetSquid section. For every link in the chain,
a sample is taken from this distribution. The communication and processing
models are the same as in the previous example, but now an actual distance
between the repeaters is set to 10km. The speed at which messages can be send
is set to 2 · 105km/s. This means that the communication time is 5 · 10−5s
times the distance in the chain and the processing time is chosen to be the same
as elementary link communication 5·10−5s. The result is displayed in Figure 4.4.

In Figure 4.4 it can be seen that the local information and global information
protocols are much closer for realistic entanglement generation. This is because
entanglement generation takes most of the time to completion and the classical
communication protocol has only a minor in�uence. The communication and
processing model is still not very realistic, but it demonstrates the di�erence
between local and global information.

Concluding this chapter, we have investigated the properties of an entangle-
ment tracker. It is important to de�ne entanglement identi�ers that are assigned
to every entangled pair in the network. These can be used by the entanglement
trackers to keep their databases about current and past entanglement informa-
tion up-to-date. The entanglement identi�ers can also give a heuristic guess of
the quality of the entanglement, called the goodness parameter. How exactly
to update these goodness parameters after entanglement swaps depends on the
details of the network and application by the user. For some applications it
may be enough to keep track of only the major factors of noise, where in other
applications we may need a precise calculation of all the noise sources to have
a good estimate for the goodness.

The main function of the entanglement tracker is to be a tool that can be
used by higher layer protocols, such that they do not have to worry about how
to handle classical communication. Instead they can focus on the routing deci-
sions that have to be taken, for example which entanglement swaps to make in
the network. Here the entanglement tracker has also been used to directly sim-
ulate the time it takes to generate a repeater chain using a number of repeaters.

69



Figure 4.4: Time to completion of the entanglement tracker, as a function of
the length of the repeater chain. Either the updates are sent directly to the end
nodes (global information), or the information is passed through the chain (local
information). The communication time is 5·10−5s times the distance in the chain
and the processing time is the same as elementary link communication 5 ·10−5s.
The entanglement generation time is taken from the single click distribution - as
discussed in section 3.2 - and a separate sample from this distribution is taken
for every link in the chain. Because the entanglement generation is probabilistic,
an average over a large number of runs has to be taken, which is 1000 for this
plot.
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Using a model for the entanglement generation time, the entanglement tracker
can do all the classical communication required.

For further development, it would be interesting to look at the interaction
between the entanglement tracker and the physical layer where the quantum
processes happen. The decisions taken by the entanglement tracker could then
e�ect the �delity of entangled states provided by the quantum hardware. The
properties of the physical set-up can then also be used to give a more realistic
model for classical communication and classical processing of the messages sent
by the entanglement tracker. The performance of the tracker can then be tested
in a more detailed case.

The entanglement tracker can also be used to investigate a more complicated
network than the �xed repeater chain. For example, the problem of generating
long distance entanglement within the network in the most e�cient way, where
multiple paths between parties are possible. The combination of entanglement
tracking and routing may lead to new insights about how to distribute entan-
glement in a quantum network.
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Appendix A

Internal protocols of the

entanglement tracker

This is the python code for the implementation of the entanglement tracker in
QNetSquid. EasySquid is a repository extending QNetSquid from which the
implementation of quantum nodes, classical connections and protocols using
these nodes and connections are used. The �rst functions of the class are the
input commands ADD, DELETE, SWAP and DISTILL and LOOK-UP. The
remainder of the class is about processing information from other nodes and
sub-protocols that should be executed whenever one of the commands is given.
The full code consists of three classes: the entanglement tracker, and two classes
that make an entanglement identi�er in a di�erent way.

from easysqu id . ea syp ro to co l import EasyProtocol
from netsqu id import pydynaa
from netsqu id . pydynaa import EventHandler
from netsqu id . s imu t i l import sim_time
import numpy as np
import copy

class EntanglementTracker ( EasyProtocol ) :
"""
Entanglement t r a c k i n g p ro t o co l to run l o c a l l y on a node . The entanglement t r a c k e r
w i l l keep t rack o f a l l c l a s s i c a l in format ion about entanglement t ha t t h i s node i s
i n vo l v ed in . I t w i l l i n t e r a c t wi th the EntanglmentTracker p r o t o c o l s o f d i f f e r e n t
nodes to keep in format ion up−to−date .
Every time t h i s node genera t e s entanglement wi th some remote node ,
an entanglement ID (EntID) shou ld be put in t o the t r a c k e r us ing the add () f unc t i on .

Every time entanglement i s consumed , i t shou ld be removed us ing the d e l e t e ( ) f unc t i on .

I f t h i s node made an entanglement swap us ing i t s q u b i t s o f two en tang l ed pairs , the
swap () f unc t i on shou ld be c a l l e d . This w i l l update the o ther nodes about t h e i r new
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entanglement and d e l e t e the pa i r s from our database .
The d i s t i l ( ) f unc t i on i s f o r updat ing the entanglement IDs a f t e r entanglement
d i s t i l l a t i o n , removing the o ld ID( s ) and adding the new ID( s ) .
To be a b l e to handle messages a r r i v i n g to t h i s node out o f order , t h e r e are two
databases , curren t and pas t . Messages are assumed to be a b l e to be de layed ,
but shou ld e v e n t u a l l y reach the t a r g e t f o r the t r a c k e r to s tay c on s i s t e n t .
Parameters
−−−−−−−−−−
node : : ob j : ` ea sy squ id . qnode .QuantumNode `

Node at which the entanglement t r a c k e r w i l l be run
conns : l i s t o f : ob j : ` ea sy squ id . connect ion . C lass i ca lConnec t ion `

C l a s s i c a l connec t ions o f t h i s node t ha t shou ld be used by the entanglement t r a c k e r
.

Note t ha t a l l messages from the s e connec t ions w i l l be taken by the t r a c k e r .
da tabase_s i ze : i n t

Number o f entanglement IDs t ha t can be s t o r ed in the curren t database o f the
t racker ,

q u b i t_ l i f e t ime : f l o a t , o p t i ona l
Time a f t e r which the t r a c k e r shou ld throw away entanglement
i d e n t i f i e r s from the pas t l i s t .
NOTE: when the q u b i t_ l i f e t ime i s not the d e f a u l t s e t t i n g None , the t r a c k e r
w i l l keep check ing the pas t da tabase every q u b i t_ l i f e t ime time un i t s . This
w i l l not terminate , so the s imu la t i on shou ld be run f o r a f i x e d amount o f
time , or terminated by a d i f f e r e n t p r o t o co l .

A t t r i b u t e s
−−−−−−−−−−
node : : ob j : ` ea sy squ id . qnode .QuantumNode `

Node at which the entanglement t r a c k e r w i l l be run
s i z e : i n t

Number o f entanglement IDs t ha t can be s t o r ed in the t racker ,
assumed the same f o r the current , pas t and update database .

curren t : l i s t
L i s t o f a l l t he entanglement IDs o f en tang l ed pa i r s t h i s node
cu r r en t l y ho l d s . This l i s t g e t s updated con t inuous l y by updates
from other nodes and f o r example the entanglement genera t ion p ro t o co l
o f t h i s node .

pas t : l i s t o f two l i s t s
L i s t o f a l l entanglement IDs t ha t were r e c en t l y d e l e t e d from curren t .
This database i s used to forward swap−update messages a f t e r entanglement
has a l r eady been swapped away to another node .
The f i r s t l i s t i s used f o r entanglment IDs t ha t were d e l e t e d .
Second l i s t i s used to s t o r e entanglement IDs t ha t
were consumed in an entanglement swap .

"""
# Pos s i b l e messages in the entanglement t r a c k i n g p ro t o co l :
CMD_SWAP_UPDATE = 0
CMD_DELETE_UPDATE = 1

def __init__( s e l f , node , conns , database_size , qub i t_ l i f e t ime=None ) :
super ( ) . __init__( node=node )
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s e l f . node = node
s e l f . conns = conns
s e l f . s i z e = database_size
s e l f . qub i t_ l i f e t ime = qub i t_ l i f e t ime

# se t up empty da tabase s f o r curren t and pas t
s e l f . cu r r ent = [ ]
s e l f . past = [ [ ] , [ ] ]

# Lis t en to connec t ions o f s e l f . node f o r update messages from other t r a c k e r s
s e l f . _listen_to_conns ( )

# Set up a check o f the pas t da tabase f o r outdated in format ion
s e l f . _remove_outdated_past ( )

# Set up command hand l e r s f o r update messages
s e l f . commandHandlers = {

s e l f .CMD_SWAP_UPDATE: s e l f .cmd_SWAP_UPDATE,
s e l f .CMD_DELETE_UPDATE: s e l f .cmd_DELETE_UPDATE,

}

def add ( s e l f , EntID ) :
"""
Adds EntID to the t r a c k e r . No update messages w i l l be send to o ther nodes ,
the o ther s i d e o f the entanglement shou ld input the ID to i t s own t r a c k e r .

r e tu rns :
"ok" −> EntID s u c c e s s f u l l y added to s e l f . curren t
" a l r eady in Current" −> EntID was a l r eady in s e l f . curren t
" a l r eady in Past " −> EntID was a l r eady in s e l f . pas t
" l i s t o f IDs f u l l " −> s e l f . curren t i s f u l l

"""
return s e l f . _enter (EntID )

def de l e t e ( s e l f , EntID , noti fy_remote=True ) :
"""
De l e t e s an EntID from the t r a c k e r and n o t i f i e s the o ther s i d e o f the
en tang l ed pa i r to do the same .
Parameters
−−−−−−−−−−
EntID : l i s t

Entanglement ID to d e l e t e
not i fy_remote : bool , o p t i ona l

I f False , does not n o t i f y remote node o f EntID o f d e l e t i o n o f entanglement .
In t h i s case both nodes shou ld know tha t t h i s entanglement has been d e l e t e d .

r e tu rns :
"ok" −> EntID s u c c e s f u l l y removed from s e l f . current , added to

s e l f . pas t
" a l r eady in Past " −> EntID was a l r eady in s e l f . pas t
"unknown ID" −> EntID unknown to the t racker , no f u r t h e r ac t i on s w i l l
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be taken .
"""
i f ( s e l f . _in_current (EntID ) and noti fy_remote ) :

# The f i r s t entry o f the l a s t e lement o f the l i s t o f i d e n t i f i e r s i s a lways the
o ther

# s i d e o f the entanglement
node_A = EntID . ID [ −1 ] [ 0 ]

# Inve r t the i d e n t i f i e r s o f the entanglement ID so t ha t node_A can recogn i s e
i t

EntID . inv_entID ( )

# Prepare the message f o r node_A and put i t on the connect ion
msg = [ s e l f .CMD_DELETE_UPDATE, EntID ]
s e l f . node . nodes [ node_A ] . connect ion . put_from ( s e l f . node . nodeID , msg)

return s e l f . _remove (EntID )

def swap ( s e l f , EntID1 , EntID2 , co r r=np . array ( [ 0 , 0 ] ) ) :
"""
De le te the two entanglement IDs from the t r a c k e r and sends a swap−update message
to the two o ther nodes to update t h e i r entanglement IDs .
corr i s c l a s s i c a l in format ion about the outcome o f the Be l l−s t a t e measurement
t ha t was used to perform the entanglement swap . This i s normal ly two b i t s
corr = [ a , b ] and one o f the s i d e s o f the en tang l ed pa i r shou ld app ly the
co r r e c t i on C = X∗∗a ∗ Z∗∗b . This commutes wi th more entanglement swaps , which
means t ha t the co r r e c t i on can be app l i e d on ly at the very end o f the p ro t o co l .
r e tu rns :

"ok" −> moved IDs from s e l f . curren t to s e l f . pas t
"ID( s ) unknown or Past " −> one o f the IDs was not in s e l f . curren t

"""
# Check i f both o f the entanglement IDs are in s e l f . curren t
i f ( s e l f . _in_current (EntID1 ) and s e l f . _in_current (EntID2 ) ) :

# Find the o ther nodes in the entanglement IDs
node_A = EntID1 . ID [ −1 ] [ 0 ]
node_B = EntID2 . ID [ −1 ] [ 0 ]

# Add the IDs o f the two entanglement IDs t o g e t h e r
ID = EntID1 . ID [ : : − 1 ] + EntID2 . ID

# Prepare entanglement IDs f o r node_A and node_B , use TravelID to communicate
# Al l the co r r e c t i on in format ion goes in t o the message to node_A
ID_to_A = TravelID ( ID=ID , goodness=EntID1 . goodness ∗ EntID2 . goodness , c o r r=

EntID1 . co r r + EntID2 . co r r )
ID_to_B = TravelID ( ID=ID [ : : − 1 ] , goodness=EntID1 . goodness ∗ EntID2 . goodness ,

co r r=0)

# Add the co r r e c t i on in format ion in the entanglement ID fo r node_A
ID_to_A . co r r += cor r

# Prepare the messages f o r node_A and node_B and put them on the connect ion
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msg_A = [ s e l f .CMD_SWAP_UPDATE, ID_to_A]
msg_B = [ s e l f .CMD_SWAP_UPDATE, ID_to_B ]
s e l f . node . nodes [ node_A ] . connect ion . put_from ( s e l f . node . nodeID , msg_A)
s e l f . node . nodes [ node_B ] . connect ion . put_from ( s e l f . node . nodeID , msg_B)

# Remove the entanglement IDs from our current database
s e l f . cu r r ent . remove (EntID1 )
s e l f . cu r r ent . remove (EntID2 )

# Make a copy o f the ID send to A and B to add to our pas t da tabase
ID_past_A = copy . deepcopy (ID_to_A)
ID_past_B = copy . deepcopy (ID_to_B)

# Set co r r e c t i on in format ion to 0 because i t i s now in the entanglement ID to
A

ID_past_A . co r r = np . array ( [ 0 , 0 ] )
ID_past_B . co r r = np . array ( [ 0 , 0 ] )

# Add the entanglement IDs to our pas t database
s e l f . past [ 1 ] . append (ID_past_A)
s e l f . past [ 1 ] . append (ID_past_B)
return "ok"

else :
return "ID( s )  unknown or  Past"

def d i s t i l ( s e l f , old_entIDs , new_entIDs ) :
"""
De l e t e s the s e t o f old_entIDs and r e p l a c e s them by the new_entIDs . There are
no r e s t r i c t i o n s on the s i z e o f the l i s t s , but normal ly d i s t i l l a t i o n consumes
more pa i r s than i t produces , but wi th a h i ghe r f i d e l i t y .
Parameters
−−−−−−−−−−
old_entIDs : l i s t o f EntID

IDs to be d e l e t e d from s e l f . curren t
new_entIDs : l i s t o f EntID

IDs to be added to s e l f . curren t

r e tu rns :
"ok" −> added and removed the EntIDs from s e l f .

curren t
"Old ID( s ) not in Current" −> one o f the old_entIDs was not in s e l f .

curren t
"New ID( s ) not unknown" −> one o f the new_entIDs was a l r eady in s e l f .

curren t
"""
# Check i f a l l consumed EntIDs are in curren t
for entID in old_entIDs :

i f not s e l f . _in_current ( entID ) :
return "Old ID( s )  not in  Current "
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# Check i f a l l new EntIDs are unknown to s e l f . pas t and s e l f . curren t
for entID in new_entIDs :

i f ( s e l f . _in_current ( entID ) or s e l f . _in_past ( entID ) [ 0 ] ) :
return "New ID( s )  not unknown"

# Remove the old_entIDs from s e l f . curren t and add them to s e l f . pas t
for entID in old_entIDs :

s e l f . _remove ( entID )

# Add the new_entIDs to s e l f . curren t
for entID in new_entIDs :

s e l f . _enter ( entID )

def look_up ( s e l f , remote_ID , num_pairs=1) :
"""
Returns at most num_pairs entanglement IDs corresponding to
entanglement between t h i s node and node remote_ID .
"""
# Make empty l i s t to f i l l w i th EntanglementIDs
i d_ l i s t = [ ]
counter = 0
for x in s e l f . cu r r ent :

# Check i f o ther s i d e o f the entanglement i s remote_ID
i f x . ID [ −1 ] [ 0 ] == remote_ID :

i d_ l i s t . append (x )
counter += 1

# Return i f we have found num_pairs o f entanglement IDs wi th remote_ID
i f counter == num_pairs :

return i d_ l i s t

# Return a l l the entanglement IDs wi th remote_ID we cou ld f i nd
return i d_ l i s t

def _listen_to_conns ( s e l f ) :
# Loop over a l l incoming connec t ions o f s e l f . node
for conn in s e l f . conns :

# Check which s i d e o f the connect ion s e l f . node i s and s e t remoteID to the
o ther s i d e

i f s e l f . node . nodeID == conn . idA :
channel_in = conn . channel_from_B
remoteID = conn . idB

i f s e l f . node . nodeID == conn . idB :
channel_in = conn . channel_from_A
remoteID = conn . idA

# Set up event hand l e r s us ing the proces s f unc t i on
update_handler = EventHandler (lambda e , remoteID=remoteID : s e l f . p roc e s s (

remoteID ) )
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s e l f . _wait ( update_handler , e n t i t y=channel_in , event_type=channel_in .
_EVT_MESSAGE_READY)

def _remove_outdated_past ( s e l f ) :
"""Check o f pas t database f o r o l d in format ion and remove i t """
# Only run t h i s f unc t i on i f s e l f . q u b i t_ l i f e t ime i s not None
i f s e l f . qub i t_ l i f e t ime i s not None :

# Find the curren t s imu la t i on time
time = sim_time ( )

# Loop over the d e l e t e d entanglement IDs
for EntID in s e l f . past [ 0 ] :

# Check i f the l a s t time the goodness was updated was more than
qu b i t_ l i f e t ime ago

i f time − EntID . t_goodness > s e l f . qub i t_ l i f e t ime :
# Remove the EntID from pas t
s e l f . past [ 0 ] . remove (EntID )

# Do the same f o r the swapped away Entanglement IDs
for EntID in s e l f . past [ 1 ] :

i f time − EntID . t_goodness > s e l f . qub i t_ l i f e t ime :
s e l f . past [ 1 ] . remove (EntID )

# Set up the next check o f the pas t da tabase f o r o ld in format ion
ev_check_past = pydynaa . EventType ( "CLEAN_PAST" , "Check past  f o r  o ld  

in fo rmat ion " )

# Schedu le t h i s event every s e l f . q u b i t_ l i f e t ime time un i t s
event = s e l f . _schedule_after ( s e l f . qub i t_l i f e t ime , ev_check_past )

# React to the ev_check_past event by c a l l i n g the remove_outdated_past
f unc t i on again

handler = EventHandler (lambda event : s e l f . _remove_outdated_past ( ) )

# Wait f o r the event to happen
s e l f . _wait_once ( handler , e n t i t y=s e l f , event=event )

def proce s s ( s e l f , remoteID ) :
"""
Handle incoming messages from the EntanglementTracker o f o ther nodes .
Supported messages :

− swap−update
− de l e t e−update

"""

# Get the message o f the connect ion
[ ( cmd , data ) , t ] = s e l f . node . nodes [ remoteID ] . connect ion . get_as ( s e l f . node . nodeID )

# Process the message based on the command
s e l f . commandHandlers [ cmd ] ( data )
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def cmd_SWAP_UPDATE( s e l f , data ) :
# Obtain the entanglement ID from the data
EntID = data

# Check i f EntID ove r l ap s wi th any entanglement ID in s e l f . curren t
for x in s e l f . cu r r ent :

# Automat ica l l y updates x i f t h e r e i s ove r l ap between x and EntID
i f s e l f . combine_if_overlap (x , EntID ) :

# We can re turn because the in format ion o f EntID has been added to x
return

# Check i f the EntID ove r l ap s wi th any entanglementID tha t was swapped away
for x in s e l f . past [ 1 ] :

# Updates x i f t h e r e i s ove r l ap between x and EntID
i f s e l f . combine_if_overlap (x , EntID ) :

# Check i f we are not swapping entanglement in a c i r c l e , r e s u l t i n g in a
loop o f messages

i f not x . check_ids_unique ( ) :
return

# Find node t ha t entanglement was swapped away to
node_A = x . ID [ 0 ] [ 0 ]

# Forward the update message to node_A using the element o f s e l f . pas t
msg = [ s e l f .CMD_SWAP_UPDATE, x ]
s e l f . node . nodes [ node_A ] . connect ion . put_from ( s e l f . node . nodeID , msg)

# Make a copy o f the ID sent to node_A and rep l a c e i t in s e l f . pas t
ID_past = copy . deepcopy (x )
ID_past . co r r = np . array ( [ 0 , 0 ] )
s e l f . past [ 1 ] . remove (x )
s e l f . past [ 1 ] . append ( ID_past )
return

# Check i f EntID ove r l ap s wi th any entanglementID tha t was d e l e t e d
for x in s e l f . past [ 0 ] :

i f s e l f . combine_if_overlap (x , EntID ) :
# No f u r t h e r ac t i on needed
return

def cmd_DELETE_UPDATE( s e l f , data ) :
EntID = data
for x in s e l f . cu r r ent :

# Check i f the f i r s t i d e n t i f i e r matches , t h i s i s enough to d e l e t e i t
i f (EntID . ID [ 0 ] == x . ID [ 0 ] ) :

s e l f . _remove (x )

def _in_current ( s e l f , EntID ) :
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"""
Checks i f EntID i s in the curren t database .
"""
for x in s e l f . cu r r ent :

i f EntID . equal_ID (x ) :
return True

return False

def _in_past ( s e l f , EntID ) :
"""
Checks i f EntID i s in the pas t da tabase and a l s o re turns whether EntID i s s t o r ed
in s e l f . pas t as a pa i r or a lone .
"""
# EntID in s e l f . pas t due to d e l e t i o n
for x in s e l f . past [ 0 ] :

i f EntID . equal_ID (x ) :
return [ True , 1 ]

# EntID in Past due to an entanglement swap
for x in s e l f . past [ 1 ] :

i f EntID . equal_ID (x ) :
return [ True , 2 ]

return [ False , 0 ]

def _enter ( s e l f , EntID ) :
"""
Try to add an EntID to s e l f . curren t
"""
i f s e l f . _in_current (EntID ) :

return " a l r eady  in  Current "
i f s e l f . _in_past (EntID ) [ 0 ] :

return " a l r eady  in  Past"
i f len ( s e l f . cu r r ent ) >= s e l f . s i z e :

return " l i s t  o f  IDs f u l l "
else :

s e l f . cu r r ent . append (EntID )
return "ok"

def _remove ( s e l f , EntID ) :
"""
Try to remove an EntID from s e l f . curren t and add to s e l f . pas t
"""
i f s e l f . _in_past (EntID ) [ 0 ] :

return " a l r eady  in  Past"
i f s e l f . _in_current (EntID ) :

s e l f . cu r r ent . remove (EntID )
s e l f . past [ 0 ] . append (EntID)
return "ok"

else :
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return "unknown ID"

def combine_if_overlap ( s e l f , EntID1 , EntID2 ) :
"""
Combine EntID1 with EntID2 a f t e r an entanglement swap .

r e tu rns boo l : True i f t h e r e i s ove r l ap in the i d e n t i f i e r s , o the rw i s e Fa lse

Parameters
−−−−−−−−−−
EntID1 : : py : c l a s s : `~ easy squ id . examples . en tang l ement t racker . EntanglementID `

Entanglement ID tha t w i l l be updated us ing t h i s f unc t i on
EntID2 : : py : c l a s s : `~ easy squ id . examples . en tang l ement t racker . EntanglementID `

Entanglement ID tha t EntID1 shou ld be compared to , in the case
o f s u c c e s s f u l combination EntID2 can be thrown away .

"""
# Make a l i s t f o r the i n d i c e s o f EntID2 . ID tha t occur in EntID1 . ID
ind = [ ]

# The number o f i d e n t i f i e r s t h a t match between EntID2 . ID and EntID1 . ID
over lap = 0

# Loop over e lements o f EntID1 . ID and check i f they are in EntID2 . ID
for i d s in EntID1 . ID :

i f i d s in EntID2 . ID :
i f over lap == 0 :

# Fi r s t o ve r l app ing element , add the index o f EntID2 . ID
ind . append (EntID2 . ID . index ( i d s ) )
over lap = 1

e l i f (EntID2 . ID . index ( i d s ) == ind [−1] + 1) :
# Over lapping e lements have the same order in EntID1 . ID and EntID2 . ID
ind . append (EntID2 . ID . index ( i d s ) )
over lap += 1

else :
# This e lement o f EntID1 . ID does not ove r l ap wi th EntID2 . ID anymore ,

break .
break

# For s u c c e s s f u l match the ove r l ap shou ld at l e a s t be two , the l e n g t h o f a newly
c rea t ed EntanglementID . ID

i f over lap < 2 :
return False

# Ca l cu l a t e the f a c t o r t h a t shou ld be added to EntID1 . goodness based on l e n g h t s o f
EntID1 . ID and EntID2 . ID

goodness_factor = EntID2 . goodness ∗∗ ( ( len (EntID2 . ID) − over lap ) / len (EntID2 . ID) )
EntID1 . goodness = EntID1 . goodness ∗ goodness_factor

# Set the time o f goodness by check ing the s imu la t i on time
EntID1 . t_goodness = sim_time ( )
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# Add the co r r e c t i on in format ion o f EntID2 to EntID1
EntID1 . co r r += EntID2 . co r r

# The index o f the f i r s t e lement o f the ove r l ap in EntID1 . ID
my_ind0 = EntID1 . ID . index (EntID2 . ID [ ind [ 0 ] ] )

# True i f EntID2 . ID has more e lements a f t e r the ove r l ap than EntID1 . ID
i f len (EntID2 . ID) − ind [ 0 ] > len (EntID1 . ID) − my_ind0 :

# Add the ex t ra e lements o f EntID2 . ID to EntID1 . ID at the end
EntID1 . ID += EntID2 . ID [ ind [ 0 ] + over lap : ]

# True i f EntID2 . ID has more e lements b e f o r e the ove r l ap than EntID1 . ID
i f ind [ 0 ] > my_ind0 :

# Add the ex t ra e lements o f EntID2 . ID to EntID1 . ID at the beg in
EntID1 . ID = EntID2 . ID [ : EntID1 . ID . index (EntID2 . ID [ ind [ 0 ] ] ) − ind [ 0 ] ] + EntID1 .

ID
return True

class EntanglementID ( ) :
"""
Construct an entanglement ID

Parameters
−−−−−−−−−−
nodeID1 : i n t

ID o f the node t ha t w i l l s t o r e t h i s entanglement ID
nodeID2 : i n t

ID o f the node t ha t ho l d s the o ther s i d e o f the en tang l ed pa i r
pair_ID : i n t ( f l o a t ?)

ID o f the en tang l ed pa i r
goodness : f l o a t , o p t i ona l

Heu r i s t i c e s t imate o f the f i d e l i t y o f the en tang l ed pa i r .
ToG : f l o a t , o p t i ona l

S imulat ion time at which the goodness parameter was c a l c u l a t e d
ToC : f l o a t , o p t i ona l

S imulat ion time at which the en tang l ed pa i r was crea t ed
A t t r i b u t e s
−−−−−−−−−−
ID : l i s t

ID o f the en tang l ed pa i r
goodness : f l o a t

Heu r i s t i c e s t imate o f the f i d e l i t y o f the en tang l ed pa i r .
t_goodness : f l o a t

S imulat ion time at which the goodness parameter was c a l c u l a t e d
t_creat ion : f l o a t

S imulat ion time at which the en tang l ed pa i r was crea t ed
corr : numpy . array o f i n t ( l e n g t h 2)

corr i s c l a s s i c a l in format ion about the outcome o f the Be l l−s t a t e measurement
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t h a t was used to perform the entanglement swap . This i s normal ly two b i t s
corr = [ a , b ] and one o f the s i d e s o f the en tang l ed pa i r shou ld app ly the
co r r e c t i on C = X∗∗a ∗ Z∗∗b . This commutes wi th more entanglement swaps , which
means t ha t the co r r e c t i on can be app l i e d on ly at the very end o f the p ro t o co l .

For the entanglement ID to be unique the f o l l ow i n g cond i t i on s shou ld ho ld :
− nodeID1 , nodeID2 i s unique w i th in the network
− pair_ID i s unique f o r any en tang l ed pa i r between nodes nodeID1 and nodeID2
Note t ha t the entanglement ID tha t nodeID1 s t o r e s i s d i f f e r e n t from the
entanglement ID tha t nodeID2 s t o r e s . This makes updat ing changes to entanglement
eas i e r , f o r example because our node i s a lways s e l f . ID [ 0 ] [ 0 ] .
"""
def __init__( s e l f , nodeID1 , nodeID2 , pair_ID , goodness=1, t_goodness=0, t_creat ion=0) :

s e l f . goodness = goodness
s e l f . t_goodness = t_goodness
s e l f . t_creat ion = t_creat ion
s e l f . ID = s e l f ._make_new_id( nodeID1 , nodeID2 , pair_ID )
s e l f . c o r r = np . array ( [ 0 , 0 ] )

def _make_new_id( s e l f , nodeID1 , nodeID2 , pair_ID ) :
"""
Make new ID between nodes nodeID1 and nodeID2 us ing pair_ID

Parameters
−−−−−−−−−−
nodeID1 : i n t

ID o f the node t ha t w i l l s t o r e t h i s entanglement ID
nodeID2 : i n t

ID o f the node t ha t ho l d s the o ther s i d e o f the en tang l ed pa i r
pair_ID : i n t ( f l o a t ?)

ID o f the en tang l ed pa i r

"""
# Construct the i d e n t i f i e r s t h a t make the ID
PI1 = [ nodeID1 , nodeID2 , pair_ID ]
PI2 = [ nodeID2 , nodeID1 , pair_ID ]

# Add them in a l i s t to make the ID
ID = [ PI1 , PI2 ]
return ID

def equal_ID ( s e l f , o ther ) :
"""
re turns boo l : True i f the i d e n t i f i e r s o f s e l f and o ther EntanglementID are the

same , o the rw i s e Fa lse

Parameters
−−−−−−−−−−
o ther : : py : c l a s s : `~ easy squ id . examples . en tang l ement t racker . EntanglementID `

Entanglement ID tha t s e l f shou ld be compared to
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"""
i f ( s e l f . ID == other . ID) :

return True
else :

return False

def inv_entID ( s e l f ) :
"""
Reverse the i d e n t i f i e r s o f EntID
"""
s e l f . ID . r e v e r s e ( )

def check_ids_unique ( s e l f ) :
"""
Checks i f no e lements occur tw ice in s e l f . ID

re turns boo l : True i f t h e r e are d u p l i c a t e s in s e l f . ID , o the rw i s e Fa lse
"""
ID = [ ]
for x in s e l f . ID :

i f x in ID :
return False

else :
ID . append (x )

return True

class TravelID ( EntanglementID ) :
"""
Class can be used to q u i c k l y make an EntanglementID ob j e c t , i f we a l r eady have
the r i g h t form of ID .
"""

def __init__( s e l f , ID , goodness=1, t_goodness=0, t_creat ion=0, co r r=np . array ( [ 0 , 0 ] ) ) :
s e l f . ID = ID
s e l f . goodness = goodness
s e l f . t_goodness = t_goodness
s e l f . t_creat ion = t_creat ion
s e l f . c o r r = co r r
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Appendix B

Lost Snippets

Here are some small projects that I started to work on, but did not go into a
lot of detail about in the main text.

B.1 Network

This is about entanglement generation in a larger network. Here we set up
the network using an adjacency matrix, where each non-zero entry indicates a
connection between two nodes. The protocol can then be initialised by supplying
this adjacency matrix and some other parameters of the network. For example
the generation time of qubits, the �delity of the qubits and the noise rates of
memories and �bres. We then make the physical components in the network;
QFibres on all connections and a QSource for each connection. All the nodes
also get a QMemory for all the connections they have. These components can
then be used to initialise the EntangleNodes protocol for every connection. This
can be the basis of a network where di�erent protocols wait for the result of the
EntangleNodes protocols to perform tasks like quantum teleportation or QKD.
The idea of this snippet was to test some routing protocols using this network.
Then we noticed that handling the classical communication in such a network
was hard, which resulted in the construction of the entanglement tracker.

B.2 Distillation

The topic of entanglement distillation has been mentioned a lot of times before.
This motivated us to generalise this distillation protocol and make it a separate
snippet. This snippet can then be inserted in any protocol to compare its per-
formance with or without distillation.

For the distillation protocol both nodes A and B require two qubits as input,
where the two qubits of A should be entangled to the two qubits of B. They
can then run di�erent distillation protocols, to obtain one entangled pair with

88



higher �delity. The distillation protocols from section 1.6 are implemented: the
EPL-distillation as in algorithm 1 and DEJMPS-distillation from algorithm 2.
In case the distillation results in failure, both nodes throw away their qubits
and schedule an event that two new pairs should be put into the distillation
protocol. The protocol continues like this until successful distillation, in which
case it schedules an output event indicating that the distilled state can be used
for an application.
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