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Preface

Typical antenna arrays are designed such that the active element pattern is symmetric around
the broadside direction. However, applications exist, for example in satellite communication,
where a symmetric pattern is not needed or even unwanted. This angular selectivity can be
achieved using asymmetric elements. However, it is known that for well sampled in�nite arrays
the asymmetry of the active element pattern disappears. Although designs of under-sampled
antenna arrays achieving an asymmetric active element pattern have been presented in literature,
the fundamental properties of this type of arrays in terms of radiation characteristics have not
been investigated in detail. This thesis studies the asymmetry in the active element pattern of
a �nite linear array of asymmetric elements. To this end an in-house method of moments code
is developed in Matlab to simulate tilted dipoles in free space and in the proximity of a ground
plane. The dependency of the asymmetry of the active element pattern on the inter-element
distance, the skew angle of the elements and the number of elements in the array is analyzed
and design rules are derived. Using entire domain basis functions, closed form expressions for
spectral integrals and the periodicity of the array the implemented code enables the simulation of
large arrays in a much shorter time compared to commercially available software, such as CST.

Regarding the choice of antenna element, a dipole bent into a Z-shape is proposed as an
alternative for a tilted dipole. This type of dipole can be de�ned to have an equivalent radiation
pattern to that of a tilted dipole. This shape of dipole can be implemented using standard PCB
technology using horizontal metal strips and vertical vias. The Z-shaped dipoles are analyzed
using a method of moments code based on horizontal and vertical dipoles. The spectral Green's
function of strati�ed media can be included in the spectral domain expressions to account for
the presence of dielectric slabs in realistic designs.

This thesis is submitted in partial ful�llment of the requirements for the degree of Master of
Science in Electrical Engineering at Delft University of Technology.

Ralph van Schelven
Delft, September 20, 2017
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Chapter 1

Introduction

1.1 Background

In the world of today it is more and more desired to be connected every time, everywhere. We
want to be able to connect to the internet with our mobile phones and laptops on the train
and while �ying. Our cars download tra�c information in order to plan the fastest route from
the internet while driving. In order to facilitate the satellite communication for these vehicles, a
demand arises for lightweight, low-pro�le steerable-beam antennas [1], [2], [3]. It is desirable that
these antennas can be integrated on cars and planes, without signi�cantly a�ect the aerodynamics
and the aesthetics of the vehicle.

A relevant recent application, considered in [4], is in-�ight entertainment. For such applica-
tion, antenna arrays located on airplanes for satellite communication applications, are typically
required to be able to scan to very large scan angles (close to hemispherical). However, planar
antenna arrays typically experience scan loss, i.e. a reduction of gain when the main beam is
pointed away from broadside. To increase the scan range, multi-panel con�gurations have been
proposed in [4] or conformal arrays in [5], but the height of the structure a�ects the aerodynamics
of the airplanes to a too large extent. To obtain wide-scan capability while still maintaining a
low antenna pro�le, hybrid scanning mechanism have been proposed in [1], [3], [6] and [7]. The
beam is scanned electronically from broadside to a positive, as high as possible, angle and by
rotation of the array along the azimuth full coverage is achieved.

New technologies, such as 3D-printing and additive manufacturing, enable new possibilities
in the design of antenna arrays. Figure 1.1a shows a preliminary design of the antenna proposed
in [1]. The array elements are placed at a skew angle to maximize the radiation to high elevation
angles in one direction, as shown in �gure 1.1b. The array is designed to shape the active
element pattern to be asymmetric. Also at TNO, an array consisting of skewed patches is
currently being developed. Although some designs employing skewed antenna elements have
been presented in the literature, the fundamental properties of this type of arrays in terms of
radiation characteristics have not been investigated in detail.

Achieving asymmetric patterns with large antenna arrays is not an easy task. That is because,
as shown in [8], the active element pattern for in�nite arrays is always symmetric (equal for
scanning to +θscan or −θscan) when the array is dimensioned such that no grating lobes occur.
This property is valid for any generic current distribution on the antenna element, thus also
in the case of asymmetric or tilted elements. However, outside of the grating lobe free region
asymmetry can be achieved. Therefore, for a large array, the inter-element distance must be
increased in order to achieve higher asymmetry in the active element pattern. Also, the theory
described in [8] considers only in�nite arrays. Thus a certain degree of asymmetry can be still
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1.1. BACKGROUND

(a)
(b)

Figure 1.1: A preliminary design of a low-pro�le steerable beam antenna as proposed in [1]. The
elements are placed under a skew angle to provide the asymmetry. a) Model of the antenna. b)
Simulated radiation pattern of the antenna.

Figure 1.2: An alternative to implement skewed dipoles using bent dipoles shaped like a Z. It
can be seen that the radiation patterns of the two dipoles show a good agreement.

achieved for �nite arrays. The dependence of the asymmetry properties on the size of the array
can be studied.

Regarding the choice of the antenna element, skewed dipoles can be considered. An alternative
to tilted dipoles can be a dipole that is bent into a Z-shape, partly horizontally and partly
vertically oriented. It is shown in �gure 1.2 that a Z-shaped dipole can be de�ned to have
an equivalent radiation pattern as that of a skewed dipole. Such a Z-shaped dipole can be
implemented using standard PCB technology, using horizontal metal patches and vertical vias.

2



CHAPTER 1. INTRODUCTION

Figure 1.3: Linear array of skewed stacked dipoles above an in�nite ground plane and their
images. The displacement in x-direction between the dipoles is dx and the distance between the
centers of the excited dipoles and the ground plane is h. The skew angle between the dipoles
and the ground plane is θelev.

1.2 Objectives of this thesis

This work aims to �nd design rules for a linear array with an asymmetric active element pattern.
Speci�cally the dependency of the asymmetry on the number of elements, the periodicity of the
array and the skew angle of the elements is investigated. To this end, a theoretical analysis
of simple asymmetric structures can constitute a relevant tool to derive trade-o�s that will
represent the basis for practical designs and implementations of asymmetric arrays. A method of
moments (MoM) code is developed to �nd the radiation pattern and the active element pattern
of a linear array of skewed dipoles. An example of such a linear array, located above an in�nite
ground plane, is shown in �gure 1.3. The method of moments code is implemented in Matlab
and validated using CST studio suite. The thesis gives the expressions of the impedance and the
forcing terms of the method of moments both in the spatial and the spectral domain. However, all
results shown in the thesis are made using the spectral domain calculations. Using the method of
moments code the dependence of the asymmetry of the active element pattern on the number of
array elements, periodicity and skew angle is evaluated and discussed.The implemented method
of moments code enables the simulation of large arrays in a much shorter time compared to
commercially available software, such as CST.

As an alternative for skewed dipoles, dipoles bent into a Z-shape are proposed. The method of
moments code to analyze these elements is then based on expressions to simulate dipoles oriented
along x and z. Because the Z-shaped dipoles consist of horizontal and vertical parts, the spectral
Green's function of strati�ed media can be included in the spectral domain expressions, which is
necessary to account for the presence of dielectric slabs in realistic designs.

A spectral method of moments to simulate dipoles and slots bent in the xy-plane was previ-
ously presented in [9]. However, z-oriented currents where not considered in that work, while this
thesis addresses the problem of generalizing the spectral coupling integral to include structures
along z.

1.3 Thesis outline

This thesis is organized as follows:

The method of moments for horizontal dipoles is explained in chapter 2. The expressions for
the impedances and the forcing terms are derived in the spatial domain, before being rewritten
in the spectral domain. Two types of basis functions are considered: an entire domain basis
function and piecewise linear basis functions.

Chapter 3 deals with the analysis of non-parallel dipoles. The expressions for the method

3



1.3. THESIS OUTLINE

of moments for dipoles oriented along x and z are derived. Subsequently, dipoles skewed under
arbitrary angle with respect to each other are considered.

Using the method described in the previous chapters to simulate the active element pattern
of skewed dipoles above a ground plane, chapter 4 describes the analysis on the asymmetry of
the active element pattern while varying the number of elements in the array, the inter-element
spacing and the skew angle of the elements. The asymmetry for linear arrays of both dipoles and
directive elements is analyzed. Design rules are derived for the asymmetry of the active element
pattern.

An alternative for skewed dipoles using Z-shaped dipoles is considered in chapter 5. A method
of moments code is developed to calculate the radiation patterns of this Z-shaped dipole. Such
structure is somewhat more complicated to analyze because of non-convergent spectral integrals
arising from the electrical connection between z- and x-oriented strips. A possible solution to
solve this issue is suggested.

A conclusion on the performed work can be found in chapter 6, as well as potential future
developments.

4



Chapter 2

MoM for �nite arrays of horizontal

dipoles

This chapter focuses on the backbone of the work performed for this thesis: the method of
moments. First the method of moments for a �nite number of horizontal dipoles made of a
perfect electric conductor (PEC) is presented in section 2.1. The expressions of the mutual and
self impedance and the forcing terms are derived in the spatial domain and rewritten to the
spectral domain. The electric far �eld radiated by the dipoles is calculated and the radiation
pattern is found. Two di�erent types of basis functions are then considered in the following
sections to solve the problem. In particular, entire domain basis functions are used in section 2.2
and piecewise linear basis functions in section 2.3.

2.1 MoM for dipoles made of a PEC

The starting point of the method of moments is to impose the boundary conditions for the
problem at hand.

Let us consider a single planar dipole made of perfect electric conductor and located in the
xy-plane, fed by an in�nite transmission line as shown in �gure 2.1a. The dipole is centered in
the origin of the Cartesian reference system. The transmission line feeding the dipole can be
represented as a Thévenin network consisting of a voltage source and a generator impedance as
shown in �gure 2.1b. The source voltage is equal to the open-circuit voltage at the terminals of
the dipole and is therefore equal to v0 = v+(1 + Γ) = 2v+. Considering a semi-in�nite feeding
transmission line, the Thévenin impedance is equal to the characteristic impedance of line z0.

For a dipole made of perfect electric conductor, the condition to be satis�ed on the dipole is:

n̂× etot = zsurfj (2.1)

where n̂ is the unit vector normal to the dipole and etot is the total electric �eld at the surface
of the dipole. zsurf is the surface impedance on the dipole and j is the current along the dipole.
Since the dipole is made of perfect electric conductor zsurf = 0 on the dipole arms and zsurf = z0
on the gap.

zsurf (x, y) =
z0
δ

rectw,δ(x, y) . (2.2)

The total electric �eld can be decomposed in the incident �eld, einc, and the scattered �eld,
escat, such that:

n̂× (einc + escat) = zsurfj

−n̂× escat + zsurfj = n̂× einc .
(2.3)

5



2.1. MOM FOR DIPOLES MADE OF A PEC

(a) (b)
(c)

Figure 2.1: The dipole under consideration. a) A dipole fed by a transmission line. b) The
transmission line can be represented by a Thévenin equivalent circuit. c) The incident �eld and
the scattered �eld.

The incident electric �eld is the �eld induced due to the voltage in the gap and is assumed
constant:

n̂× einc(x, y) =
v0
δ

rectw,δ(x, y)x̂ (2.4)

where δ is the length of the port, w is the width of the dipole. The scattered �eld is the �eld
radiated from the dipole, as shown in �gure 2.1c.

By using the equivalence theorem, the original problem of a dipole made of perfect electric
conductor can be expressed as equivalent currents in free space. A surface S enclosing a volume
V is de�ned just around the dipole, as shown in �gure 2.2a. The �elds inside S, e1 and h1, are
chosen to be 0. The equivalent currents need to satisfy the boundary conditions:

j′eq = n̂× (h2 − h1) (2.5)

m′eq = −n̂× (e2 − e1) (2.6)

where h1, e1 and h2, e2 are the magnetic and electric �elds just inside and outside S, respectively.
Since the �elds outside the surface S must be equal to the original problem, we know from
equation (2.1) that n̂ × e2 = 0 on the dipole arms. Therefore, the equivalent magnetic current
m′eq vanishes on the metal leaving only an equivalent electric current j′eq as can be seen in �gure

2.2b. Due to the continuity of the �eld, i.e. the electric �eld below the gap e−2 and the electric
�eld above the gap e+2 are equal, the magnetic current vanishes also in the gap. The dipole is
oriented along x, such that n̂ = ẑ on top of the dipole and n̂ = −ẑ on the bottom. Assuming
the dipoles to be very thin and since the magnetic �eld just above the dipole, h+

2 , is equal but
opposite to the magnetic �eld just below the dipole, h−2 , the total equivalent current can be
expressed as:

jeq = ẑ × h+
2 − ẑ × h

−
2 = 2j′eq (2.7)

in free space which is shown in �gure 2.2c.
The scattered �eld can be rewritten as a convolution between the dyadic Green's function

describing the electric �eld due to electric currents, gej , and the equivalent electric current:

escat =

∞̂

−∞

∞̂

−∞

∞̂

−∞

jeq(r
′)gej(r, r′)dr′ (2.8)

where r′ ≡ (x′, y′, z′) and r ≡ (x, y, z) are the source and observation points respectively.
The equivalent current is written as an unknown coe�cient in′ multiplied by a known basis

function bn′ . Once the weighting term in′ is calculated the current distribution over the dipoles is

6



CHAPTER 2. MOM FOR FINITE ARRAYS OF HORIZONTAL DIPOLES

(a)

(b)

(c)

Figure 2.2: Visual representation of the equivalence theorem considering a thin dipole made of
perfect electric conductor. a) De�ning a surface S around the dipole and the equivalent currents
j′eq and m

′
eq. b) Satisfying the boundary conditions the magnetic currents vanish everywhere

except on the gap. c) Due to the continuity of the �elds, the magnetic current in the gap vanishes
and, assuming a thin dipole, an equivalent electric current jeq = 2j′eq remains.

known. Both sides of the integral equation are projected on the same known current distribution.
This current distribution is called the test function tn. Projecting both sides of the electric �eld
integral equation on the test function gives:

〈−n̂× escat(r) + zsurfj(r), tn(r)〉 = 〈n̂× einc(r), tn(r)〉

−
N∑

n′=1

in′〈n̂× (gej(r) ∗ bn′(r)), tn(r)〉+ 〈zsurfj(r), tn(r)〉 = 〈n̂× einc(r), tn(r)〉
(2.9)

where 〈f1,f2〉 =
∞́

−∞

∞́

−∞

∞́

−∞
f1(r) · f∗2(r)dr and N is the number of basis functions. De�ning

the impedance terms as

Znn′ = 〈n̂× (gej(r) ∗ bn′(r)), tn(r)〉 (2.10)

and assuming that the current is constant in the gap:

〈zsurfj(r), tn(r)〉 = z0i0〈
1

δ
rectw,δ(x, y)x̂, tn(r)〉 = z0i0pn . (2.11)

The forcing terms are de�ned as

vn = 〈n̂× einc(r), tn(r)〉 =
v0
δ
〈rectw,δ(x, y)x̂, tn(r)〉 = v0pn . (2.12)

Thus equation (2.9) can be written in a more compact form as

N∑
n′=1

Znn′in′ + z0i0pn = v0pn ∀ n (2.13)

or in matrix notation:
(Z + z0P ) · i = P · v

i = (Z + z0P )
−1 · (P · v)

(2.14)

7



2.1. MOM FOR DIPOLES MADE OF A PEC

Figure 2.3: Two identical dipoles with lenght l and width w oriented along x, centered at y = 0
displaced in x and z. The excitation port has a lenght δ.

where P is a diagonal matrix P = diag(pn), whose terms are zero if the nth basis function is
de�ned on the metal, and di�erent from zero if the basis function overlaps with the feeding gap
region.

2.1.1 MoM in the spatial domain

Let us consider a �nite number M of in�nitely thin dipoles oriented along x. The elements can
be displaced in x and z. Figure 2.3 shows an example of such an array consisting of two elements.

We de�ne xn, zn to be the x- and z-coordinates of the center of the nth basis function.
Assuming that the dipole width is small compared to the wavelength, the equivalent current can
be considered as oriented along the dipole. The transverse current distribution is assumed to be
edge-singular. The basis function can thus be written as:

bn(r′) = bn,x(x′ − xn)jt(y
′)δ(z′ − zn)x̂ (2.15)

where

jt(y
′) =

2

wπ

rectw(y′)√
1−

(
2y′

w

)2 (2.16)

and w is the width of the dipole. The test function along x is chosen to be the same as the basis
function. The observation domain is chosen to be along the dipole axis y = 0. Therefore the test
function can be written as:

tn(r) = bn,x(x− xn)δ(y)δ(z − zn)x̂ . (2.17)

The projection terms pn can be written explicitly as spatial domain integrals as follows:

pn =
1

δ
〈rectw,δ(x, y)x̂, tn(r)〉 =

1

δ

∞̂

−∞

rectδ(x− xm)b∗n,x(x− xn)dx . (2.18)

where the property of the δ-function,
∞́

−∞
f(ξ)δ(ξ − ξ0)dξ = f(ξ0) is used and xm is the x-

coordinate of the center of the mth dipole. The elements of the impedance matrix de�ned in
equation (2.10) can be written as

Zxnxn′ = −

xn′+
lb
2ˆ

xn′−
lb
2

w
2ˆ

−w
2

xn+
lb
2ˆ

xn−
lb
2

bn′,x(x′−xn′)jt(y′)gejxx(x−x′, y′, zn−zn′)b∗n,x(x−xn)dxdy′dx′ (2.19)
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CHAPTER 2. MOM FOR FINITE ARRAYS OF HORIZONTAL DIPOLES

where lb is the length of the basis function in the x-direction and gejxx is the xx-component of
the Green's function. The forcing terms, as de�ned in equation (2.12) can be written as:

vxn =
vm
δ

∞̂

−∞

rectδ(x− xm)b∗n,x(x− xn)dx . (2.20)

where vm are the complex excitation voltages .

2.1.2 MoM in the spectral domain

Another way to calculate the unknown coe�cients i is to rewrite the equations in the spectral
domain. It will be shown that the amount of integrals needed to be calculated is reduced from
three to two or even one for most cases.

Using the spectral representation of the xx-component of the free-space Green's function it
is known that:

gejxx(r − r′) = j
ζ

k0

1

(2π)3

∞̂

−∞

∞̂

−∞

∞̂

−∞

(
k20 − k2x

) e−jkx(x−x′)e−jky(y−y′)e−jkz(z−z′)
k20 − k2x − k2y − k2z

dkxdkydkz .

(2.21)
In appendix C it is shown that, applying the Residue theorem:

∞̂

−∞

e−jkz(z−z
′)

k20 − k2x − k2y − k2z
dkz = πj

e−j
√
k20−k2x−k2y|z−z

′|√
k20 − k2x − k2y

. (2.22)

Substituting equations (2.21) and (2.22) into equation (2.19) gives the following expression for
the mutual impedance:

Zxnxn′ =

xn′+
lb
2ˆ

xn′−
lb
2

w
2ˆ

−w
2

xn+
lb
2ˆ

xn−
lb
2

bn′,x(x′ − xn′)b∗n,x(x− xn)jt(y
′)
ζ

k0

1

8π2

∞̂

−∞

∞̂

−∞

(
k20 − k2x

)
e−jkx(x−x

′)ejky(y
′)e−j

√
k20−k2x−k2y|zn−zn′ |√

k20 − k2x − k2y
dkxdkydxdy

′dx′ .

(2.23)

From equation (2.23) the integral in x′ can be extracted and evaluated:

xn′+
lb
2ˆ

xn′−
lb
2

bn′,x(x′ − xn′)ejkxx
′
dx′

=

lb
2ˆ

− lb
2

bn′,x(u)ejkxudu ejkxxn′

= Bn′,x(kx)ejkxxn′

(2.24)

where the change of variables u = x′−xn′ is used to center the basis function around the origin.
Bn′(kx) can be recognized to be the Fourier transform of the basis function. The exponential,
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ejkxxn′ , represents the phase shift due to the displacement of the basis function from the origin.
Similar steps can be performed for the integrals in y′ and in x to obtain:

Jt(ky) =

w
2ˆ

−w
2

jt(y
′)ejkyy

′
dy′ = J0

(
kyw

2

)
(2.25)

and

B∗n,x(−kx)e−jkxxn =

xn+
lb
2ˆ

xn−
lb
2

b∗n,x(x− xn)e−jkxxdx (2.26)

where Jt(ky) is the Fourier transforms of jt(y
′) and J0 is the zeroth order Bessel function.

Substituting the Fourier transforms of the basis functions found in equations (2.24), (2.25) and
(2.26) into equation (2.23) the expression for the active impedance in the spectral domain is
found.

Zxnxn′ = − 1

2π

∞̂

−∞

Bn′,x(kx)B∗n,x(−kx)Dnn′(kx)e−jkx(xn−xn′ )dkx (2.27)

where Dnn′(kx) = 1
2π

∞́

−∞
Jt(ky)Gejxx(kx, ky)e−j

√
k20−k2x−k2y|zn−zn′ |dky and

Gejxx(kx, ky) = − ζ
2k0

(k20−k
2
x)√

k20−k2x−k2y
. It is shown in appendix C that the integral in ky can be solved

analytically when |zn − zn′ | = 0 or when |zn − zn′ | � w, resulting in only one integral to be
calculated:
If |zn − zn′ | = 0

Dnn′(kx) = − ζ

4k0

(
k20 − k2x

)
J0

(√
k20 − k2x

w

4

)
H

(2)
0

(√
k20 − k2x

w

4

)
(2.28)

If |zn − zn′ | � w

Dnn′(kx) ≈ − ζ

4k0

(
k20 − k2x

)
H

(2)
0

(√
k20 − k2x|zn − zn′ |

)
. (2.29)

Besides the active impedance, also the forcing terms, as found in equation (2.20), can be
expressed in the spectral domain:

vxn =

xn+
lb
2ˆ

xn−
lb
2

vm
δ

rectδ(x− xm)b∗n(x− xn)dx

=

xn+
lb
2ˆ

xn−
lb
2

vm
δ

 1

2π

∞̂

−∞

δ sinc

(
kxδ

2

)
e−jkx(x−xm)dkx

 b∗n(x− xn)dx .

(2.30)

An expression similar to equation (2.26) can be recognized. Therefore the voltage can be written
in the spectral domain as:

vxn =
vm
2π

∞̂

−∞

sinc

(
kxδ

2

)
B∗n,x(−kx)e−jkx(xn−xm)dkx (2.31)
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CHAPTER 2. MOM FOR FINITE ARRAYS OF HORIZONTAL DIPOLES

The results presented throughout this thesis are calculated using the spectral representation of
the method of moments, because of the closed-form solutions in (2.28) and (2.29), and because
this representation, for planar dipoles, can be easily generalized to strati�ed media.

2.1.3 Radiation pattern

This section will describe how the far �eld pattern can be found once the current vector i has
been calculated. One can imagine a sphere with radius r centered in the origin. Every point
on the surface of this sphere can be expressed in terms of two angles: the elevation angle θ and
the azimuthal angle φ, where θ = 0 is along the positive z-axis and φ = 0 is along the positive
x-axis. Every point on the surface of this sphere can be expressed in Cartesian coordinates as:

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ .

(2.32)

The electric �eld due to an electric current source can be found in any point r by calculating the
convolution between the equivalent current, jeq, and the dyadic Green's function, gej , evaluated
in the point (x, y, z). Since convolution in the spatial domain is equivalent to multiplication in
the spectral domain the electric �eld can be found as:

E(x, y, z) =
1

(2πr)2

∞̂

−∞

∞̂

−∞

Jeq(kx, ky)Gej(kx, ky, z, z
′)e−jkxxe−jkyydkxdky . (2.33)

As shown in section 2.1.2 the equivalent current distribution of dipoles oriented along x, can be
expressed as:

Jeq(kx, ky) = in′Bn′(kx)Jt(ky)x̂ . (2.34)

The total electric �eld due to all basis functions can be expressed as the sum of the individual
contributions from every basis function. The total electric �eld in (x0, y0, z0) due to a current
centered in (zn′ , yn′ , zn′) can be found, by applying the stationary phase point approximation,
as:

E(x0, y0, z0) ≈ jkz0
1

2πr

N∑
n′=1

in′Bn′(kx0)Jt(ky0)x̂Gej(kx0, ky0)

e−jkx0(x0−xn′ )e−jky0(y0−yn′ )e−jkz0(z0−zn′ ) .

(2.35)

From the electric �eld strength the radiation intensity can be found as:

U(θ, φ) = r2
1

2ζ

(
|Eθ|2 + |Eφ|2

)
(2.36)

where Eθ = Ex cos θ cosφ+Ey cos θ sinφ−Ez sin θ and Eφ = −Ex sinφ+Ey cosφ are the θ- and
φ-components of the electric �eld, and ζ is the free-space impedance. The directivity is de�ned
as the ratio of the radiation intensity in a direction (θ, φ) to the radiation intensity of an isotropic
antenna radiating the same amount of power. The radiation intensity of an isotropic antenna
is U0 = Prad/4π, where Prad is the total radiated power and can be found by integrating the
radiation intensity over the entire sphere:

Prad =

2πˆ

0

π̂

0

U(θ, φ) sin θdθdφ . (2.37)

The directivity in every direction θ, φ is therefore:

D(θ, φ) =
U(θ, φ)

U0
= 4π

U(θ, φ)

Prad
(2.38)
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2.2. ENTIRE DOMAIN BASIS FUNCTIONS

(a) (b) (c)

Figure 2.4: Current distribution on dipoles with �nite length. a) l = λ
4 . b) l = λ

2 . c) l = λ
.

2.2 Entire domain basis functions

In the calculations of the previous sections a certain basis function, bn′,x(x − xn′), is used to
describe the equivalent current distribution over the dipole. The basis function is chosen in such
a way that it resembles the current distribution over a dipole. Since the shape of the equivalent
current distribution is known to be triangular for electrically short dipoles and sinusoidal for
resonant dipoles, it is possible to de�ne only one basis function on the entire dipole (entire
domain basis function).

Figure 2.4 shows three dipoles with di�erent length oriented along x and the expected current
distribution [10]. The current distribution can be written as i(x−xn′) = in′bn′,x(x−xn′), where
in′ is a certain weighting factor, l is the length of the dipole and xn′ is the x-coordinate of the
center of the dipole. The basis function is chosen to be piecewise sinusoidal, thus de�ned as:

bn′,x(x− xn′) =
sin
(
k0
(
l
2 − |x− xn′ |

))
sin
(
k0

l
2

) rectl(x− xn′) (2.39)

or in the spectral domain:

Bn′,x(kx) =

∞̂

−∞

sin
(
k0
(
l
2 − |x− xn′ |

))
sin
(
k0

l
2

) rectl(x− xn′)ejkxxdx

=
2k0

(
cos
(
kxl
2

)
− cos

(
k0l
2

))
(k20 − k2x) sin

(
k0

l
2

) .

(2.40)

The projection of the electric �eld in the gap on the basis function can be expressed as

pn =
1

δ

∞̂

−∞

rectδ(x− xm)b∗n,x(x− xn)dx ≈
{

0 if xn 6= xm
1 if xn = xm

(2.41)

where it is assumed that the gap size is small compared to the total length of the dipole.
Therefore, the matrix P in equation (2.14) becomes the identity matrix.

2.2.1 Validation of impedances and current

As described in section 2.1 the method of moments is based on the calculation of the impedances
of the dipoles and the mutual impedance between dipoles. These impedances are stored in
a matrix which must be inverted and multiplied by the forcing term v, in order to �nd the
current weighting vector i. If an entire domain basis function is used to approximate the current

12
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(a) (b)

(c)

(d)

Figure 2.5: Comparison of the calculated mutual impedance between two dipoles. a) Two half-
wavelength dipoles centered around x = 0 and displaced in the z-direction by a distance d. b)
Mutual impedance between the two dipoles as a function of distance d. c) Two half-wavelength
dipoles displaced in the x-direction by a distance of λ2 and in the z-direction by a distance d. d)
Mutual impedance between the two dipoles as a function of distance d.

distribution on the dipoles, this matrix will consist of M ×M elements, where M is the number
of dipoles.

In order to verify the values calculated for the mutual impedances, the results from the Matlab
code of the method of moments is compared to the results found by the analytical expression for
parallel dipoles in free space given in [11]. Two examples are presented in �gure 2.5, comparing
both methods. Figure 2.5a shows two dipoles with length l = λ

2 and width w = λ
10 . Both dipoles

are centered around the line x = 0 and the distance between them in the z-directions is varied
from z = λ

10 to z = λ. The real part of the impedance R and the imaginary part X are shown in
�gure 2.5b. It can be seen that the values calculated using the two methods perfectly overlap.
Figure 2.5c shows the same two dipoles however displaced in the x-direction by a distance of λ2 .
As shown in �gure 2.5d, again a perfect agreement is found.

Let us now consider a �nite number of dipoles oriented along x as shown in �gure 2.6.
The �gure shows four dipoles, however any �nite amount of dipoles oriented along x can be
considered. Let us consider four identical dipoles with length l1 = l2 = l3 = l4 = λ

2 , width
w = 0.1λ, port length δ = 0.1λ and port impedance z0 = 50 Ω. The �rst dipole is located in the
origin, x1 = 0, z1 = 0. The other dipoles are displaced in x and z such that x2 = λ

2 , z2 = λ
2 ,

x3 = λ, z3 = λ
4 and x4 = 3λ

2 , z4 = −λ2 . Calculating the impedances gives the following impedance

13



2.2. ENTIRE DOMAIN BASIS FUNCTIONS

Figure 2.6: Four dipoles with lengths l1, l2, l3 and l4 and width w oriented along x, centered at
y = 0 displaced in x and z. The excitation ports have a length δ.

matrix:

Z =


72.7 + 30.9j −11.9− 7.9j −3.8 + 1.1j 1.1− 1.4j
−11.9− 7.9j 72.7 + 30.9j 10.6− 12.5j 4.1− 4.2j
−3.8 + 1.1j 10.6− 12.5j 72.7 + 30.9j −8.4 + 10.8j
1.1− 1.4j 4.1− 4.2j −8.4 + 10.8j 72.7 + 30.9j

Ω

It can be seen that all four of the self impedances are the same, since the four dipoles are
identical. Also the matrix is symmetrical around the diagonal due to the reciprocity as explained
in appendix A. Comparing the values of the mutual impedances to the values found using the
analytical expressions from [11] one �nds that they are equal. However, the values for the
impedances are di�erent from the values found in CST. This can be explained by noting that
the impedances calculated using an entire domain basis function are calculated over the entire
dipole, while CST calculates the active impedance by integrating the current only over the port
of the dipole. Therefore the sinusoidal approximation for the current distribution fails to describe
the real current, especially the reactive energy associated with the feeding gap. However, the
radiation patterns can be still calculated accurately with this approximation.

The current distribution on the dipoles are of the same shape as the sinusoidal expression of
equation (2.39) multiplied by a complex weight factor in′ . The real and imaginary parts of the
normalized current on the dipole located in the origin are shown in �gure 2.7.

2.2.2 Validation of radiation patterns

Once the current vector i is calculated the radiation pattern of the dipoles can be calculated
using the method described in section 2.1.3. In this section the same four dipoles are considered
as in section 2.2.1, which are shown in �gure 2.6. Figure 2.8a shows the radiation pattern in the
plane φ = 0 of the four dipoles without a phase di�erence in the excitation between the dipoles.
A good match with CST is found. Figure 2.8b shows the radiation pattern for the case where
only the �rst and the third dipole are excited while the second and the fourth dipole are passive
(v2 = v4 = 0). Again a good agreement is found between CST and the Matlab simulation.

14
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Figure 2.7: The normalized current calculated using an entire domain basis function on the half
wavelength dipole located in the origin.

(a) (b)

Figure 2.8: Radiation patterns in the φ = 0-plane of the four dipoles as shown in �gure 2.6
calculated using the Method of Moments using entire domain basis functions compared to CST
for four di�erent cases: a) all four dipoles are active and there is no phase di�erence between the
dipoles. b) only the �rst and the third dipole are active and there is no phase di�erence between
the dipoles.

.

2.3 Subdomain basis functions

In the previous section a sinusoidal entire domain basis function was used. Although this basis
function describes well the real part of current distribution, for more generic current distributions
and to account for the reactance of the feed, a larger number of basis functions de�ned on smaller
domains can be employed. This section focuses on piecewise linear sub-domain basis functions.
On every subdomain with a length lt, a triangular basis function is placed, as is shown in �gure
2.9. The weighted sum of all triangles will describe the current distribution over the dipole:

i(x) =

N∑
n′=1

in′bn′,x(x− xn′) (2.42)
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2.3. SUBDOMAIN BASIS FUNCTIONS

Figure 2.9: Piecewise sinusoidal subdomain basis functions.

where N is the total number of triangles, in′ is a weighting factor and xn′ is the x-coordinate of
the center of the subdomain. The basis functions bn′,x are triangular, i.e.:

bn′,x(x− xn′) =

(
1− |x− xn′ |

2

lt

)
rectlt(x− xn′) (2.43)

or in the spectral domain:

Bn′,x(kx) =

∞̂

−∞

(
1− |x− xn′ |

2

lt

)
rectlt(x− xn′)ejkxxdx

=
lt
2

sinc2
(
kxlt

4

)
.

(2.44)

For small domain basis functions, the terms pn can be expressed as:

pn =
1

δ

∞̂

−∞

rectδ(x−xm)b∗n,x(x−xn)dx =

{
0 if nth basis function and mth gap do not overlap
cn if nth basis function and mth gap do overlap

(2.45)
where it is assumed that the gap size is small compared to the total length of the dipole and

cn is a constant indicating the fraction of the area of the triangular basis function that overlaps
with the gap.

2.3.1 Validation of impedances and current

The impedance matrix calculated using a subdomain basis function will consist ofN×N elements.
The voltage vector v and the port impedance matrix z0P are di�erent from 0, only for the
subdomains which lie in the dipole feed region. The sum of the elements of z0P corresponding
to the same port is equal to the port impedance z0. Let us consider a single dipole located in the
origin. The dipole is identical to the dipoles described in section 2.2.1, with length l = λ

2 , width
w = 0.1λ, port length δ = 0.1λ and port impedance z0 = 50 Ω. The number of subdomains on
the dipole is chosen to be 37. The input impedance of the dipole is found as:

Zin =

N∑
n=1

vn
in
− z0 (2.46)

where vn and in are the weights of the voltage and the current for the nth-triangle. Since v
is 0 everywhere, except for the triangles which lie in the port, the active impedance is in this
case calculated only on the port which is similar to the way CST calculates the impedance. The
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Figure 2.10: The normalized current along a dipole on the half wavelength dipole located in the
origin exported from CST compared to the current calculated using a piece wise linear subdomain
basis function in Matlab.

impedances calculated with the developed code and CST are:

Zin,MoM = (105.2 + 30.5j) Ω

Zin,CST = (106.9 + 35.1j) Ω

As expected, their values are very similar.
Figure 2.10 shows the normalized current on the dipole exported from CST and calculated

using Matlab. It can be seen that the real part of the current shows a sinusoidal behaviour
while the imaginary part of the current behaves di�erently in the port of the dipole. The current
calculated in Matlab is very similar to the current exported from CST.

2.3.2 Validation of radiation patterns

Let us consider the same four dipoles as in section 2.2.1, with length l1 = l2 = l3 = l4 = λ
2 , width

w = 0.1λ, port length δ = 0.1λ and port impedance z0 = 50 Ω. The �rst dipole is located in the
origin, x1 = 0, z1 = 0. The other dipoles are displaced in x and z such that x2 = λ

2 , z2 = λ
2 ,

x3 = λ, z3 = λ
4 and x4 = 3λ

2 , z4 = −λ2 . The number of subdomains on every dipole is chosen to
be 37. Figure 2.11a shows the radiation pattern in the plane φ = 0 of the four dipoles without
a phase di�erence between the dipoles. A good match with CST is found. Figure 2.11b shows
the radiation pattern for the case where only the �rst and the third dipole are excited while
the second and the fourth dipole are passive (v2 = v4 = 0). Again a good agreement is found
between CST and the Matlab simulation.

2.4 Conclusion

A method of moments code is implemented in order to calculate the radiation pattern of a �nite
number of dipoles in free space, oriented along x. The expressions for the mutual impedance
and the forcing terms are found both in the spatial and the spectral domain. Two types of basis
functions, an entire domain basis function and piecewise linear basis functions, are considered
and implemented. The impedances calculated with the entire domain basis function correspond
to the impedances found in [11]. The current distribution on the dipole consists of a complex
current weighting factor multiplied by a sinusoidal basis function. The radiation patterns of

17



2.4. CONCLUSION

(a) (b)

Figure 2.11: Radiation patterns in the plane φ = 0 of the four dipoles as shown in �gure 2.6
calculated using the method of moments using subdomain basis functions compared to CST for
two di�erent cases: a) all four dipoles are active. b) only the �rst and the third dipole are active.

.

multiple dipoles while all are active or when some are passive are calculated. Both patterns show
a good agreement with CST.

When the piecewise linear basis function is used the self impedance calculated in Matlab
is similar to the impedance found using CST. The current distribution along x shows a good
agreement with CST and the radiation patterns for the same two cases of excitation are again a
good match.
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Chapter 3

MoM for arrays of non-parallel

dipoles

This chapter describes the implementation of a method of moments code for non-parallel dipoles.
First dipoles oriented along x and z will be discussed. Hereafter the dipoles will be skewed with
respect to each other by an arbitrary angle. The ability to simulate dipoles which are placed
under a skew angle with respect to each other allows to investigate the radiation properties of
tilted elements above a ground plane. From the image theorem it is known that an electric
current source in the vicinity of an in�nite ground plane may be represented as the original
current and its image. The image is equal in amplitude to the original current. The orientation
of the image is such that the component normal to the ground plane is the same, while the
tangential component changes sign. The distance between the image and the ground plane is
equal to the distance between the original current and the ground plane. An electric current
above an in�nite ground plane and the equivalent model found using the image theorem are
shown in �gure 3.1.

Appendix B describes an example showing that the equivalent model of �gure 3.1 satis�es
the boundary condition at the ground plane.

3.1 Dipoles oriented along x and z

3.1.1 Spatial domain expressions

Chapter 2 describes the derivation of the method of moments expressions for dipoles oriented
along x. When dipoles along z are added, the expressions become longer, but most of the
steps are very similar. A complete derivation of all expressions can be found in appendix C.
This sections describes the most important di�erences between the expressions found for dipoles
along x and the expressions for dipoles along both x and z.

First the boundary conditions for the electric �eld on a perfect electric conductor are written
separately for dipoles along x and z:

−ẑ × escat + z0jx = ẑ × einc
−x̂× escat + z0jz = x̂× einc (3.1)

The equivalent current along x and z are written as an unknown weighting terms in′x and
in′z multiplied by known basis functions bn′x and bn′z . Once the weighting terms in′x and in′z are
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3.1. DIPOLES ORIENTED ALONG X AND Z

Figure 3.1: Original problem consisting of an electric current above a ground plane and its
equivalent problem consisting of the current and its image.

Figure 3.2: Two identical dipoles with length l and width w oriented along x and z, centered at
y = 0 displaced in x and z. The excitation port has a length δ.

calculated the current distributions over the dipoles are known. Rewritting the scattered �eld
as the convolution between the Green's function and the equivalent current gives:

−ẑ ×
∞̂

−∞

∞̂

−∞

∞̂

−∞

 Nx∑
n′x=1

in′xbn′x(r′)x̂+

Nz∑
n′,z=1

in′zbn′z (r′)ẑ

 gej(r, r′)dr′ + z0jx(r) = ẑ × einc(r)

−x̂×
∞̂

−∞

∞̂

−∞

∞̂

−∞

 Nx∑
n′x=1

in′xbn′x(r′)x̂+

Nz∑
n′z=1

in′zbn′z (r′)ẑ

 gej(r, r′)dr′ + z0jz(r) = x̂× einc(r) .

(3.2)
Note that the equations are coupled via in′x and in′z , representing the coupling between basis
functions oriented along x and along z.

Let us consider a �nite number of in�nitely thin dipoles oriented along x and z. The elements
are placed along the y-axis and can be displaced in x and z. Figure 3.2 shows an example of such
an array consisting of two elements. We de�ne xnx

, znx
, xn′x , zn′x to be the x- and z-coordinates

of the center of the observation domain and the center of the source domain for dipoles along x.
In a similar way xnz

, znz
, xn′z , zn′z to be the x- and z-coordinates of the center of the observation

domain and the center of the source domain for dipoles along z.
The equivalent current will be oriented along the dipole. The basis functions can thus be

written as:
bn′x(r′) = bn′x(x′ − xn′x)jt(y

′)δ(z′ − zn′x)x̂

bn′z (r′) = bn′z (z′ − zn′z )jt(y
′)δ(x′ − xn′z )ẑ

(3.3)

where jt(y
′) is the same edge-singular distribution as found in equation (2.16). The test functions

are chosen to be equal to the basis function in the longitudinal direction. The observation domain
is chosen to be along the dipole axes, y = 0.

Substituting the expressions for the basis functions in equation (3.2), projecting both sides

20
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on the test function and performing similar steps as in the case of the dipoles along x, four
expressions for the active impedance are de�ned:

Zxn′x
,xnx

=

xn′x
+

lb
2ˆ

xn′x
− lb

2

w
2ˆ

−w
2

xnx+
lb
2ˆ

xnx−
lb
2

bn′x(x′ − xn′x)jt(y
′)b∗nx

(x− xnx
)gejxx(x− x′, y′, znx

− zn′x)dxdy′dx′

Zzn′z ,xnx
=

zn′z
+

lb
2ˆ

zn′z
− lb

2

w
2ˆ

−w
2

xnx+
lb
2ˆ

xnx−
lb
2

bn′z (z′ − zn′z )jt(y
′)b∗nx

(x− xnx
)gejxz(x− xn′z , y

′, znx
− z′)dxdy′dz′

Zxn′x
,znz

=

xn′x
+

lb
2ˆ

xn′x
− lb

2

w
2ˆ

−w
2

znz+
lb
2ˆ

znz−
lb
2

bn′x(x′ − xn′x)jt(y
′)b∗nz

(z − znz
)gejzx(xnz

− x′, y′, z − zn′x)dzdy′dx′

Zzn′z ,znz
=

zn′z
+

lb
2ˆ

zn′z
− lb

2

w
2ˆ

−w
2

znz+
lb
2ˆ

znz−
lb
2

bn′z (z′ − zn′z )jt(y
′)b∗nz

(z − znz
)gejzz(xnz

− xn′z , y
′, z − z′)dzdy′dz′ .

(3.4)
The forcing terms on dipoles along x and z are de�ned as:

vxn =
vmx

δ

xnx+
lb
2ˆ

xnx−
lb
2

rectδ(x− xnx
)b∗nx

(x− xnx
)dx

vzn =
vmz

δ

znz+
lb
2ˆ

znz−
lb
2

rectδ(z − znz
)b∗nz

(z − znz
)dz

(3.5)

such that:
Nx∑
n′x=1

in′xZxn′x
,xnx

+

Nz∑
n′z=1

in′zZzn′z ,xnx
+ z0pnxinx

= vxn

Nz∑
n′z=1

in′zZzn′z ,znz
+

Nx∑
n′x=1

in′xZxn′x
,znz

+ z0pnzinz
= vzn .

(3.6)

Equation (3.6) can be written in matrix notation as:([
Zx′x Zz′x
Zx′z Zz′z

]
+ z0

[
P x 0
0 P z

])[
ix
iz

]
=

[
vx
vz

]
(3.7)

where Zx′x is a matrix containing the terms Zxn′x
,xnx

, Zz′x is a matrix containing the terms

Zzn′z ,xnx
, et cetera. P x and P z are diagonal matrices P x = diag(pnx) and P z = diag(pnz),

whose terms are zero if if the nth basis function is de�ned on the metal and di�erent from zero
if the basis function overlaps with the feeding gap region of a dipole along x or a dipole along z
respectively.
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Figure 3.3: Three cases of for |xnx
− xn′z |.

3.1.2 Spectral domain expressions

The spectral expressions for Zxn′x
,xnx

and Zzn′z ,znz
can be found following the steps described

in section 2.1.2. The derivations for Zzn′z ,znz
are very similar to that of Zxn′x

,xnx
because the

dipoles are assumed to be in free space. The expressions for the mutual impedance between a
dipole along x and a dipole along z require more attention.

Let us �rst consider Zzn′z ,xnx
. Substituting the spectral expression for the xz-component of

the Green's function:

gejxz(r − r′) = j
ζ

k0

1

(2π)3

∞̂

−∞

∞̂

−∞

∞̂

−∞

(−kxkz)
e−jkx(x−x

′)e−jky(y−y
′)e−jkz(z−z

′)

k20 − k2x − k2y − k2z
dkxdkydkz (3.8)

in the expression for Zzn′z ,xnx
found in equation (3.4) and evaluating the integrals along z′ and

y′ as the integrals in x′ and y′ in chapter 2 gives:

Zzn′z ,xnx
= j

ζ

k0

1

(2π)3

xnx+
lb
2ˆ

xnx−
lb
2

b∗nx
(x− xnx)

∞̂

−∞

∞̂

−∞

∞̂

−∞

(−kxkz)

Bn′z (kz)Jt(ky)
e−jkx(x−xn′z

)e−jkz(znx−zn′z )

k20 − k2x − k2y − k2z
dkxdkydkzdx .

(3.9)

Three cases must be considered, as is shown in �gure 3.3:

1. xn′z < xnx
− lb

2

2. xn′z > xnx
+ lb

2

3. xnx − lb
2 < xn′z < xnx

+ lb
2
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Case I (xn′z < xnx − lb
2 )

Since x − xn′z > 0 for all x, the integration contour for the integration along kx can be closed

counter clockwise around kx =
√
k20 − k2y − k2z .

∞̂

−∞

kx
e−jkx(x−xn′z

)

k20 − k2x − k2y − k2z
dkx

= −
∞̂

−∞

kx
e−jkx(x−xn′z

)(
kx −

√
k20 − k2y − k2z

)(
kx +

√
k20 − k2y − k2x

)dkx
= −2πj

√
k20 − k2y − k2z

e−j
√
k20−k2y−k2z(x−xn′z

)

2
√
k20 − k2y − k2z

= −πje−j
√
k20−k2y−k2z|x−xn′z

| .

(3.10)

The integral along x can now be solved to be:

xnx+
lb
2ˆ

xnx−
lb
2

b∗nx
(x− xnx

)e−j
√
k20−k2y−k2zxdx = B∗nx

(
−
√
k20 − k2y − k2z

)
e−j
√
k20−k2y−k2zxnx . (3.11)

Substituting equations (3.10) and (3.11) into (3.9):

Zzn′z ,xnx
= − ζ

k0

1

8π2

∞̂

−∞

∞̂

−∞

kz

Bn′z (kz)Jt(ky)B∗nx

(
−
√
k20 − k2y − k2z

) e−j√k20−k2y−k2z|xnx−xn′z
|e−jkz(znx−zn′z )

k20 − k2y − k2z
dkydkz .

(3.12)

Case II (xn′z > xnx + lb
2 )

Since x − xn′z < 0 for all x the integration contour for the integration along kx can be closed

clockwise around kx = −
√
k20 − k2y − k2z .

∞̂

−∞

kx
e−jkx(x−xn′z

)

k20 − k2x − k2y − k2z
dkx

= −
∞̂

−∞

kx
e−jkx(x−xn′z

)(
kx −

√
k20 − k2y − k2z

)(
kx +

√
k20 − k2y − k2x

)dkx
= −2πj

√
k20 − k2y − k2z

ej
√
k20−k2y−k2z(x−xn′z

)

−2
√
k20 − k2y − k2z

= πje−j
√
k20−k2y−k2z|x−xn′z

| .

(3.13)
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The integral along x can now be solved to be:

xnx+
lb
2ˆ

xnx−
lb
2

b∗nx
(x− xnx

)e−j
√
k20−k2y−k2zxdx = B∗nx

(−
√
k20 − k2y − k2z)e−j

√
k20−k2y−k2zxnx . (3.14)

Substituting equations (3.13) and (3.14) into (3.9):

Zzn′z ,xnx
=

ζ

k0

1

8π2

∞̂

−∞

∞̂

−∞

kz

Bn′z (kz)Jt(ky)B∗nx
(−
√
k20 − k2y − k2z)

e−j
√
k20−k2y−k2z|xnx−xn′z

|e−jkz(znx−zn′z )

k20 − k2y − k2z
dkydkz .

(3.15)

Case III (xnx
− lb

2 < xn′z < xnx
+ lb

2 )

The integration domain along x is split in two: x− xn′z > 0 and x− xn′z < 0. The integral along
kx is closed counter clockwise for the values for x corresponding to x − xn′z > 0 and clockwise
for the values of x corresponding to x − xn′z < 0 in the same way as shown for cases I and II.
The integral along x is calculated in two parts:

xnzˆ

xnx−
lb
2

b∗nx
(x− xnx

)e−j
√
k20−k2y−k2zxdx (3.16)

and
xnx+

lb
2ˆ

xnz

b∗nx
(x− xnx

)e−j
√
k20−k2y−k2zxdx . (3.17)

The expression for the active impedance Zzn′z ,xnx
can now be found to be:

Zzn′z ,xnx
=

ζ

k0

1

8π2

∞̂

−∞

∞̂

−∞

Bn′z (kz)Jt(ky)

(
− kz

xnzˆ

xnx−
lb
2

b∗nx
(x− xnx)e−j

√
k20−k2y−k2z|x−xn′z

|dx

+ kz

xnx+
lb
2ˆ

xnz

b∗nx
(x− xnx)e−j

√
k20−k2y−k2z|x−xn′z

|dx

)
e−jkz(znx−zn′z )

k20 − k2y − k2z
dkydkz .

(3.18)
The expressions for Zxn′x

,znz
are derived in a similar manner.

3.1.3 Validation of radiation patterns

Let us consider the four dipoles as shown in �gure 3.4a. The dipoles are identical with l = 0.5λ,
w = 0.1λ, port length δ = 0.1λ and port impedance z0 = 50 Ω. Figures 3.4b and 3.4c show the
radiation patterns calculated using the method of moments code compared to CST for the cases
when all dipoles are active and when only the �rst and the fourth are active (v2 = v3 = 0). An
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(a)

(b) (c)

Figure 3.4: Radiation patterns in the φ = 0-plane of four dipoles calculated using the Method
of Moments using entire domain basis functions compared to CST. a) Geometry of the dipoles.
b) Pattern when all four dipoles are active. c) Pattern when only the �rst and the fourth dipole
are active.

entire domain basis function is used to approximate the current distribution along the dipoles.
A good agreement is found.

Figure 3.5a shows two dipoles, one along x and one along z. It can be seen that the dipole
along z is above the dipole along x, i.e. xnx

− l
2 < xn′z < xnx

+ l
2 . The mutual impedance,

Zzn′z ,xnx
, between the dipoles is calculated using the equations from the third case as described

in the previous section. Figure 3.5b shows the pattern calculated in Matlab compared to CST.
A good agreement is found.

3.2 Dipoles with arbitrary skew angle

3.2.1 Mutual impedance

Let us consider dipoles skewed by an arbitrary angle above a ground plane. It is shown above
that the dipoles above a ground plane can be represented using the image theorem as real dipoles
and virtual dipoles or images. In order to be able to use the method of moments, the mutual
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(a)
(b)

Figure 3.5: Two dipoles above each other. a) Geometry under consideration. b) Radiation
pattern in the φ = 0-plane.

(a)
(b)

Figure 3.6: Two dipoles above a ground plane. a) Original system. b) Equivalent system with
images.

impedance between dipoles and their images must be calculated. Since the dipoles and their
images are skewed with respect to each other, the numerical method described in chapter 2
cannot be used. The mutual impedance between two dipoles of arbitrary length placed at an
angle can be calculated analytically using the method described in [12]. Note that in [12] the
reference system is de�ned in terms of z and t. In order to avoid confusion with the original
xz-reference system in which the dipoles will be placed, the name of the z-axis in [12] will be
changed to the u-axis.

Consider two dipoles above a ground plane as shown in �gure 3.6a. The original problem is
expressed as the equivalent problem shown in �gure 3.6b. We decide the location of the dipoles
in the xz-reference system, where the ground plane is in the xy-plane and z is oriented normal
to the ground plane, as shown in �gure 3.6a. Therefore h1, h2, θelev and dx are known. From
�gure 3.6a it can be seen that dz = h2 − h1. The distance between the dipoles, d, can be
found using the Pythagorean theorem, d =

√
d2x + d2z. d

′
z is found to be d′z = cos(θ1)d, where

θ1 = 90− θelev − arctan( dzdx ).

The u- and t-coordinates can be found from �gure 3.6b. First the length r is found as r =
d′z

sin θelev
. Using the law of sines the lengths of p and q can be found to be p = q = r sin θelev

sin(180−2θelev) .

From here it can be seen that u = h
sin θelev

+ p and t = h2

sin θelev
− q. The angle between the u-

and t-axes ψ = −2θelev. Performing all these steps leads to the �nal expressions for the u- and
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(a) (b)

Figure 3.7: Two dipoles, both split into two monopoles, placed at an angle ψ. a) The mutual
impedances Z1, Z2, Z3 and Z4. b) ut-coordinates and monopole dimensions.

t-coordinates and the angle ψ as functions of known terms:

u =
h

sin θelev
+

cos(90− θelev − arctan(h2−h1

dx
)
√
d2x + (h2 − h1)2

sin θelev

sin θelev
sin(180− 2θelev)

(3.19)

t =
h2

sin θelev
−

cos(90− θelev − arctan(h2−h1

dx
)
√
d2x + (h2 − h1)2

sin θelev

sin θelev
sin(180− 2θelev)

(3.20)

ψ = −2θelev (3.21)

To calculate the mutual impedance between two dipoles, they are divided in two monopoles,
as shown in �gure 3.7. The mutual impedance between the two dipoles is the sum of the mutual
impedance between the monopoles:

Zmutual = Z1 + Z2 + Z3 + Z4 (3.22)

where Z1, Z2, Z3 and Z4 are the mutual impedances between the monopoles, de�ned as shown
in �gure 3.7a.

The mutual impedance between two monopoles can be calculated as [12]:

Zij = (−1)i+jB
(
eγtn

(
Fi1 − e−γumG12 + eγumG22

)
− e−γtn

(
Fi2 − e−γumG11 + eγumG21

))
(3.23)

B =
η

16π sinh(γd1) sinh(γd2)
(3.24)

where γ = jk0, m = 2/i and n = 2/j. The functions Fik and Gkl are de�ned as:

Fik = 2 sinh(γd1)e(−1)
kui cos(ψ)E(Ri + (−1)k cos(ψ)− (−1)kt) (3.25)

Gkl = 2E(R2 + (−1)ku2 + (−1)lt) + 2E(R1 + (−1)ku1 + (−1)lt) (3.26)

Ri is de�ned as the distance between ui and the point along d2 under consideration. The functions
E are de�ned as:

E(α) =

ˆ α2

α1

e−γwdw

w
(3.27)
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(a)

(b)

Figure 3.8: Zmutual between a dipole oriented along x and a dipole oriented along z. a) The two
dipoles under consideration. b) Comparison of Zmutual as function of dz calculated using the
method described in [12] (Skew) and using the MoM from appendix C.

where α is a function of t, α1 = α(t1) and α2 = α(t2). For example, if F11 is considered it can be
seen that the argument of the E-function is equal to R1 − cos(ψ) + t. α1 and α2 from equation
(3.27) are then:

α1 =
√

(u1 − t1 cos(ψ))2 + (t1 sin(ψ))2 − cos(ψ) + t1 (3.28a)

α2 =
√

(u1 − t2 cos(ψ))2 + (t2 sin(ψ))2 − cos(ψ) + t2 (3.28b)

Figure 3.8 shows a comparison between the real part, R, and the imaginary part, X, of the
calculated mutual impedance between two half-wavelength dipoles using the theory described
above and the method of moments for dipoles along x and z as discussed in section 3.1. In order
to use the method of moments code, the angle between the elements is ψ = 90◦ so that the
dipoles can be represented by a dipole along x and a dipole along z. The displacement along
x equals dx = 0.5λ and the displacement along z, dz, is varied. The width of the dipoles is
w = 0.12λ. A perfect agreement is found.

3.2.2 Electric �eld in original reference system

As the impedances between the dipoles and the images can now be calculated, it is possible to
calculate the electric far �eld and the directivity. The calculation of the electric far �eld is split
in three steps:

1. The �eld while only the original dipoles are excited, Er.

2. The �eld while only the virtual dipoles are excited, Ei .

3. The total electric �eld by superimposing these results, Etot.

The calculation of the electric �eld while only the original dipoles or only the virtual dipoles are
excited is similar to that described in section 2.1.3. However, care must be taken to rotate the
reference system to line up with the dipoles under consideration. As shown in �gure 3.9 three
reference systems can be distinguished:

1. x′z′-reference system. This reference system lines up with the real dipoles above the ground
plane.
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Figure 3.9: The original reference system xz, a reference system lined up with the real dipoles
x′z′, and a reference system lined up with the virtual dipoles x′′z′′

Figure 3.10: Vector a to be rotated around k̂ by an angle β

2. x′′z′′-reference system. This reference system lines up with the virtual dipoles beneath the
ground plane.

3. xz-reference system. This is the original reference system which lines up with the ground
plane and the given positions of the dipoles.

The electric far �elds will be calculated on a unit sphere, S′, described by θ′ and φ′ for the
x′z′-reference system, and S”, described by θ′′ and φ′′ for the x′′z′′-reference system. These
spheres are co-centered with the unit sphere S, described by the angles θ and φ from the original
xz-reference system. To be able to sum the �elds calculated on the surface of the spheres S′ and
S” these spheres should be mapped on the original sphere S.

In order to understand the mapping of these rotated spheres on the original sphere one can
imagine every point on the surface of this sphere to be found as a vector a = (sin θ cosφ, sin θ sinφ, cos θ)
where 0 < θ < π and −π < φ < π. The change from the xz- to x′z′-reference system can be
described as a rotation of these vectors around the y-axis. The rotation of a vector around an
arbitrary axis can be performed using Rodrigues' formula. Figure 3.10 shows a vector a and a
rotation axis k̂. Let us say we would like to rotate a around k̂ by an angle β. First the vector
a can be decomposed in a component parallel to k̂ and a component perpendicular to k̂, a‖ and
a⊥ respectively:

a = a‖ + a⊥ (3.29)

where

a‖ =
(
a · k̂

)
k̂

a⊥ = a− a‖ = a−
(
a · k̂

)
k̂

(3.30)
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Rotating the vector a around k̂ by an angle β results in a new vector arot = arot‖ + arot⊥.
As can be seen from �gure 3.10 the component parallel to the rotation axis does not change:

arot‖ = a‖. The perpendicular component can be found as: arot⊥ = cosβa⊥ + sinβ
(
k̂× a⊥

)
.

Substituting a⊥ = a − a‖ this results into arot⊥ = cosβa⊥ + sinβ
(
k̂× a

)
, since k̂ × a‖ = 0 .

The rotated vector arot can therefore be written as:

arot = arot‖ + arot⊥

= a‖ + cosβa⊥ + sinβ
(
k̂× a

)
=
(
a · k̂

)
k̂ + cosβ

(
a−

(
a · k̂

)
k̂
)

+ sinβ
(
k̂× a

)
= (1− cosβ)

(
a · k̂

)
k̂ + cosβa + sinβ

(
k̂× a

)
(3.31)

The �nal expression for the rotated vector arot is known as Rodrigues' rotation formula. The
angles in the rotated reference system, θ′ and φ′ can be found as:

θ′ = arctan

(
arot,y
arot,x

)

φ′ = arctan


√
a2rot,x + a2rot,y

arot,z

 (3.32)

Figure 3.11 shows values for θ and φ on the original sphere and the values for θ′ and φ′ mapped
on the original sphere for a skew angle β = 20◦. It can be seen that the sphere is correctly
rotated by 20◦ around the y-axis.

Besides mapping the rotated spheres on the original sphere the electric �eld components
should also be mapped in the original reference system before they can be summed together.
Since the axis of rotation is the y-axis the y-components of the �elds do not change. The x′- and
z′-components of the electric �eld however should be mapped into the xz-components de�ned in
the original system. This can be done by multiplying the electric �eld vector with the rotation
matrix: ExEy

Ez

 =

cos−β 0 − sin−β
0 1 0

sin−β 0 cos−β

Ex′Ey′

Ez′

 (3.33)

From �gure 3.9 it can be seen that, in case the real dipoles are considered to be active (x′z′-
reference system), β is equal to the elevation angle of the dipoles θelev. When the virtual dipoles
are considered to be excited (x′′z′′-reference system), β is equal to π − θelev.

3.2.3 Validation of radiation patterns

Let us consider two skewed dipoles above a ground plane as shown in �gure 3.12. The lengths
of the two dipoles is l = λ

2 , the width w = 0.12λ and the length of the port is δ = 0.1λ. The
�rst dipole is centered in the point x = 0, z = z1 and the second dipole is centered around
x = x2, z = z2. The ground plane is in�nite in x- and y-direction and located in the plane z = 0.
The two dipoles are skewed by an angle of θelev = 20◦.

Figure 3.13a shows the radiation pattern (φ = 0◦) for z1 = z2 = 0.7λ and x2 = 0.75λ. Both
an entire domain basis function and a piecewise linear basis function are used. The number
of triangles per dipole for the sub domain basis function is chosen to be 11, since that is the
smallest number of triangles for which the radiation patterns did not change when the number of
triangles is increased. Figure 3.13b shows the radiation pattern (φ = 0◦) for z1 = 0.7λ, z2 = 0.9λ

30



CHAPTER 3. MOM FOR ARRAYS OF NON-PARALLEL DIPOLES

(a) (b)

(c) (d)

Figure 3.11: Visual representation of angular values mapped on a unit sphere. a) Values of θ of
the original sphere. b) Values of θ′ of a sphere, rotated by 20◦ around the y-axis, mapped on the
original sphere. c) Values of φ of the original sphere. b) Values of φ′ of a sphere, rotated by 20◦

around the y-axis, mapped on the original sphere.

Figure 3.12: Two identical dipoles, skewed by and angle of θelev around the y-axis, above an
in�nite ground plane.

and x2 = 0.75λ. Both the patterns shown in �gure 3.13 show a good agreement with the results
from CST.
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(a) (b)

Figure 3.13: Radiation patterns (φ = 0◦) of two skewed halfwavelength dipoles above an in�nite
ground plane. The dipoles have a width of w = 0.12λ, a port length of δ = 0.1λ and the port
impedance z0 = 50 Ω. The dipoles are skewed by an angle of θelev = 20◦. The ground plane lies
in the plane z = 0 and the dipoles are centered at x1 = 0 and x2 = 0.75λ and: a) z1 = z2 = 0.7λ.
b) z1 = 0.7λ and z2 = 0.9λ.

3.3 Conclusion

The method of moments code is extended to simulate dipoles oriented along x and z. The
expressions are shown to be very similar to that of dipoles only oriented along x. This is
because the dipoles are assumed to be located in free space. Special care is taken for the cases
when perpendicularly oriented dipoles are in line with each other. The method is validated by
comparing the calculated radiation patterns to CST, in which a good agreement is found.

Another method is implemented to simulate dipoles skewed by an arbitrary angle above a
ground plane. The original dipoles above a ground plane are represented dipoles and their images.
The original dipoles and their images are under a skew angle with respect to each other. The
locations of the dipoles are rewritten in a ut-reference system and the mutual impedances are
calculated using the method described in [12].

The electric �elds due to the original dipoles and due to the images are calculated separately in
their own reference systems. The reference systems are rotated to align with the original reference
system and the �elds are summed together, after which the radiation pattern is calculated. The
radiation patterns show a good comparison with CST.
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Chapter 4

Study on asymmetry

This chapter will focus on the analysis of the active element patterns of di�erent con�gurations
of arrays of skewed dipoles. First a linear array of skewed dipoles above a ground plane is
considered. Subsequently a directive element consisting of two dipoles, one excited and one
passive, is introduced, referred to as stacked dipole. The asymmetry of linear arrays of both
skewed dipoles and skewed stacked dipoles above a ground plane is studied.

4.1 Linear array of skewed dipoles

Let us consider a linear array of dipoles skewed by an angle θelev above a ground plane. The
distance between adjacent elements in the x-direction is dx. All elements are centered in y = 0,
and the distance to the ground plane is h. Figure 4.1 shows such an array of dipoles above a
ground plane and the equivalent array of dipoles and their images. The dipoles are excited with
a phase di�erence between adjacent dipoles:

vm = vm−1e
−jkxdx (4.1)

where kx = k0 sin θscan and the main lobe of the radiation pattern will be pointing towards
θscan. From �gures 4.2a and 4.2b a symmetry about the ground plane can be seen, considering
the dipoles and their images while scanning towards θscan and −θscan. Because of this symmetry
the radiation pattern while scanning to θscan will be a mirror of the pattern while scanning
towards −θscan. Therefore the active element pattern of a periodic linear array of dipoles above
a ground plane will always be symmetric. Figure 4.3 shows the active element pattern of a linear
array of dipoles for di�erent skew angles. The dipoles are located at a distance h = λ

4 from the
ground plane and the distance between adjacent dipoles in the x-direction is dx = 0.6λ. The
width of the dipoles equals w = 0.12λ, the length of the port is δ = 0.1λ and the port impedance
is z0 = 50 Ω. It can be seen from the �gure that the active element pattern for di�erent numbers
of dipoles is indeed symmetric.

4.2 Linear array of skewed directive elements

4.2.1 Stacked dipoles

In order to increase the symmetry between the real dipoles and the images, directive element
can be used. The directive element considered in this thesis is a stacked dipole structure. This
con�guration is chosen since it could be implemented in Matlab by making relatively small
adjustments from the original code with single dipoles. The, non-tilted, structure consists of two
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(a)

(b)

Figure 4.1: Linear array of skewed dipoles above an in�nite ground plane. The displacement in
x-direction between the dipoles is dx and the distance between the center of the dipoles and the
ground plane is h. a) The real geometry. b) The equivalent geometry using the image theorem.

(a) (b)

Figure 4.2: Symmetry of angles between scanning direction and the dipoles and the images. a)
scanning towards θscan. b) scanning towards −θscan.

dipoles of di�erent length oriented along x and displaced by a small distance in the z-direction,
as shown in �gure 4.4. If the structure is dimensioned correctly the active dipole will induce a
large current on the metal strip in such a way that the majority of the power is radiated upwards.
This type of two element array is considered to be a superdirective structure [10].

Let us consider the two dipoles as shown in �gure 4.4, with l1 = 0.5λ, l2 = 0.42λ and
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(a) (b)

Figure 4.3: Average active element pattern of a linear array of M skewed dipoles above a ground
plane. a) θelev = 20◦. b) θelev = 40◦.

Figure 4.4: Stacked dipole element. Two dipoles with di�erent length oriented along x, centered
around the same x-coordinate and displaced in z. The short dipole is a metal strip without a
port.

dz = z2 − z1 = 0.07λ. The width w = 0.12λ, the length of the port δ = 0.1λ and the port
impedance z0 = 50 Ω. These numbers follow from an optimization using CST, in order to get
a su�cient front-to-back ratio. By using the spectral expressions for the method of moments,
as explained in section 2.1.2, a problem arises. In section 2.1.2 two expressions were given for
approximations for the integral in ky which hold when |zn−zn′ | = 0 or |zn−zn′ | � w. However,
the distance between the two dipoles comprising the stacked dipole pair is small compared to the
width. Therefore, while calculating the mutual impedances in the spectral domain, the integrals
in both kx and ky need to be calculated resulting in a slow code.

Figure 4.5a shows the radiation pattern calculated using an entire domain basis function for
the above mentioned structure. It is clear that the entire domain basis function does not represent
the current distribution on the dipoles in an accurate manner, because of the reactive coupling
between the dipoles and the reactance of the feed. Using the piecewise linear subdomain basis
functions more accurate results are found, as is shown in �gure 4.5b. It can be seen a su�cient
amount of triangles need to be chosen on each dipole in order to get accurate results.

The large amount of triangles needed on each dipole in combination with the need for calcu-
lating the integrals in both kx and ky results in a very slow code. In order to increase the speed
of the code it is noted that the integral in ky only depends on the distance between the dipoles
in the z-direction:

A(kx) =

∞̂

−∞

J0

(
kyw

2

)
e−j
√
k20−k2x−k2y|zn−zn′ |√
k20 − k2x − k2y

dky (4.2)
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(a) (b)

Figure 4.5: Radiation pattern of a stacked dipole structure, with l1 = 0.5λ, l2 = 0.42λ and
dz = 0.07λ. The width w = 0.12λ, the length of the port δ = 0.1λ and the port impedance
z0 = 50 Ω. a) An entire domain basis function is used. b) Piecewise linear subdomain basis
functions are used. N is the number of triangles on each of the dipoles.

Figure 4.6: Radiation pattern of the stacked dipole structure, using 37 piecewise linear basis
functions per dipole. The integral in ky considering the mutual impedance between the two
dipoles is calculated once, and approximated using a �tted function.

Therefore the function A(kx) will be the same for every combination of triangles on the two
di�erent dipoles. This makes it possible to calculated the integral only once, as a function of kx,
and use this function for further calculations. The function is found by calculating the integral
for a set number of values for kx and using a cubic interpolation to �t the function through these
points. This �tted function is used in the calculation of the impedance matrix. Figure 4.6 shows
the radiation pattern calculated using this �tted function. 37 triangles are used per dipole. A
good agreement with CST is shown.

4.2.2 Linear array of skewed stacked dipoles

A linear array, as described in section 4.1, is again considered. The skewed dipoles are replaced
by skewed stacked dipole structures, which were introduced in the previous section. Such an
array, and the equivalent array of the dipoles and their images, are shown in �gure 4.7.

The impedance matrix for such an array will consist of 4 ·M ·N × 4 ·M ·N elements, where
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(a)

(b)

Figure 4.7: Linear array of skewed stacked dipoles above an in�nite ground plane and their
images. The displacement in x-direction between the dipoles is dx and the distance between
the center of the dipoles and the ground plane is h. a) The real geometry. b) The equivalent
geometry using the image theorem.

M is the number of stacked dipole pairs and N is the number of triangles per dipole. The
factor 4 comes from the two dipoles per stacked dipole pair and the images. Therefore an array
of 2 elements with, for example, 37 triangles per dipole will consist of 2962 = 87616 elements.
However, since the elements are identical and placed periodically along a line, the number of
elements which need to be calculated can be reduced drastically using the periodicity of the
array.

Let us consider the array with three elements as shown in �gure 4.7. The entire impedance
matrix is divided in smaller matrices such that:

ZMoM =


Z1,1 Z1,2 Z1,3 Z1,1im Z1,2im Z1,3im

Z2,1 Z2,2 Z2,3 Z2,1im Z2,2im Z2,3im

Z3,1 Z3,2 Z3,3 Z3,1im Z3,2im Z3,3im

Z1im,1 Z1im,2 Z1im,3 Z1im,1im Z1im,2im Z1im,3im

Z2im,1 Z2im,2 Z2im,3 Z2im,1im Z2im,2im Z2im,3im

Z3im,1 Z3im,2 Z3im,3 Z3im,1im Z3im,2im Z3im,3im

 (4.3)

where the subscript `im' indicates the image dipoles and each element is also a matrix given by

Zi,j =

[
Zexi,exj

Zexi,pasj

Zpasi,exj
Zpasi,pasj

]
(4.4)

The subscripts `ex' and `pas' refer to the excited dipole and the passive dipole of a stacked dipole
pair respectively. Due to the reciprocity, as explained in appendix A, it is known that Zi,j = ZTj,i
where the superscript T represents the transpose of the matrix. Because the antenna elements
are identical and using the periodicity of the array the impedance matrix from equation (4.3) can
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(a) (b)

Figure 4.8: Radiation pattern of an array of stacked dipoles, with l1 = 0.5λ, l2 = 0.42λ and
dz′ = 0.07λ. The width w = 0.12λ, the length of the port δ = 0.1λ and the port impedance
z0 = 50 Ω. The periodicity in the x-direction is dx = 0.6λ and the distance between the center of
the excited dipoles and the ground plane is h = 0.25λ. The scan angle of the array is θscan = 0◦.
a) Array of two elements above a ground plane. b) Array of �ve elements above a ground plane.

be simpli�ed to a block matrix consisting of four Toeplitz matrices of which the two non-diagonal
blocks are symmetric:

ZMoM =



Z1,1 Z1,2 Z1,3 Z1,1im Z1,2im Z1,3im

ZT1,2 Z1,1 Z1,2 Z1,2im Z1,1im Z1,2im

ZT1,3 ZT1,2 Z1,1 Z1,3im Z1,2im Z1,1im

ZT1,1im ZT1,2im ZT1,3im Z1,1 Z1,2 Z1,3

ZT1,2im ZT1,1im ZT1,2im ZT1,2 Z1,1 Z1,2

ZT1,3im ZT1,2im ZT1,1im ZT1,3 ZT1,2 Z1,1


(4.5)

From equation (4.5) it can be seen that only the impedances from the �rst stacked dipole pair to
all other stacked dipole pairs need to be calculated. The rest of the matrix can be �lled reusing
these parameters. Therefore, adding one element to the array will result in the calculation of
two extra matrices: Z1,m and Z1,mim

.

4.2.3 Validation of radiation patterns

Figures 4.8a and 4.8b show the radiation patterns of an array of stacked dipoles with two and
�ve elements respectively. The stacked dipole structures are the same as introduced in section
4.2.1, with l1 = 0.5λ, l2 = 0.42λ and dz′ = 0.07λ. The width w = 0.12λ, the length of the port
δ = 0.1λ and the port impedance z0 = 50 Ω. The periodicity in the x-direction is dx = 0.6λ and
the distance between the center of the excited dipoles and the ground plane is h = 0.25λ. The
stacked dipoles are rotated around the y-axis by an angle of θelev = 20◦. The pattern calculation
is validated by comparison with CST, showing good agreement.

4.2.4 Analysis on asymmetry of a linear array of skewed stacked dipoles

All examples in this section will consider an array as shown in �gure 4.9. Because the stacked
dipole structure is highly resonant, the operational bandwidth of the stacked dipole structure
is narrow (5% around 10 GHz). The geometrical parameters of the stacked dipoles are slightly
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Figure 4.9: Linear array of M skewed stacked dipoles above an in�nite ground plane and their
images. The displacement in x-direction between the dipoles is dx and the skew angle is θelev.

di�erent from the structure introduced in the previous section, so that the array is matched
while scanning from −60◦ to 60◦ at 10 GHz. The geometrical parameters of the stacked dipole
structures will not be changed throughout this section:

• l1 = 0.5λ

• l2 = 0.4λ

• dz′ = 0.07λ

• h = 0.25λ

• w = 0.12λ

• δ = 0.1λ

• z0 = 25 Ω

The variables under consideration are:

• number of elements in the array: M

• spacing between the elements in x-direction: dx

• skew angle of the stacked dipoles: θelev

Figure 4.10a shows the radiation patterns for di�erent scanning angles of an array of �ve
elements with a spacing between the elements of dx = 0.6λ. The skew angle of the array is
θelev = 20◦. The grating lobe free region, for dx = 0.6λ, can be found as:

|θscan| ≤ arcsin

(
1− 2π

dxk0

)
= 41.8◦ (4.6)

Figure 4.10b shows the active element pattern for this array of stacked dipoles. A clear asymmetry
can be seen for large scanning angles. Since the comparison with CST shows a good agreement,
the code is considered to be validated. It can be seen that, by introducing the grating lobes the
directivity decreases 7 dB while scanning to −60◦ and only 1.5 dB while scanning to 60◦. By
using fewer elements and creating more space between the elements, the loss in directivity while
scanning between −20◦ and 50◦ is less than 0.5 dB. The asymmetry is de�ned as the di�erence
in directivity while scanning towards θscan and −θscan. The asymmetry shown in �gure 4.10b is
for example for θscan = ±60◦ equal to D(60)−D(−60) = 10.4− 1.9 = 8.5 dB.

Figure 4.11 shows the asymmetry for di�erent θscan of the active element pattern as a function
of the number of elements in the array. The distance between the elements in the x-direction,
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(a) (b)

Figure 4.10: Simulation results of an array consisting of �ve elements with a periodicity of
dx = 0.6λ and a skew angle equal to θelev = 20◦. a) Radiation patterns while scanning towards
di�erent angles θscan. b) Comparison of the average active element pattern calculated in Matlab
and CST. Also compared to an array of six elements with an inter-element distance of 0.5λ.

dx, is changed ranging from 0.5λ to 0.75λ and the skew angle θskew is equal to 20◦. It can be
seen that for smaller inter-element spacing the asymmetry in the active element pattern is lower
than for larger inter-element spacing. If the array is large (at least ten elements), the asymmetry
of the scan angles outside of the grating lobe free region does not depend on the number of
elements.

Figure 4.12 shows the asymmetry of the active element pattern as a function of the number
of elements in the array for a skew angle θelev = 40◦. The same behaviour of the asymmetry can
be seen when the number of elements is increased both inside and outside the grating lobe free
region. Figure 4.12b shows a much higher asymmetry while scanning towards the larger angles
outside the grating lobe free region. If the inter-element spacing is increased to dx = 0.75λ, as
shown in �gure 4.12c, it can be seen that the asymmetry while scanning to ±60◦ is lower than the
asymmetry for smaller scan angles. The asymmetry while scanning towards ±40◦ is increased
signi�cantly.
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(a) (b)

(c)

Figure 4.11: Asymmetry as a function of the number of element for a linear array of skewed
stacked dipole elements above a ground plan. The skew angle θelev = 20◦ and the distance
between the elements is: a) dx = 0.5λ (no grating lobes). b) dx = 0.6λ (θGL = 41.8◦). c)
dx = 0.75λ (θGL = 19.6◦).
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(a) (b)

(c)

Figure 4.12: Asymmetry as a function of the number of element for a linear array of skewed
stacked dipole elements above a ground plan. The skew angle θelev = 40◦ and the distance
between the elements is: a) dx = 0.5λ (no grating lobes). b) dx = 0.6λ (θGL = 41.8◦). c)
dx = 0.75λ (θGL = 19.6◦).
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(a) (b)

Figure 4.13: Asymmetry as a function of the skew angle for a linear array of skewed stacked
dipole elements above a ground plan. The number of elements is ten and the distance between
the elements is: a) dx = 0.6λ (θGL = 41.8◦). b) dx = 0.75λ (θGL = 19.6◦).

Figure 4.13 shows the asymmetry of the active element pattern for di�erent scan angles, as
a function of the skew angle θelev for di�erent inter-element distances. The number of elements
is ten. It can be seen that the asymmetry increases for increasing skew angle until a certain
maximum, after which it starts decreasing. The maximum is found to be at lower skew angles
for higher scan angles. The maxima occur at smaller skew angles for a larger inter-element
distance.

Figure 4.14 shows the asymmetry of the active element pattern in dB for di�erent scan angles,
as a function of both the skew angle θelev and the inter-element distances dx. The number of
elements is ten. The skew angle is increased in steps of 5◦ and the inter-element distance in steps
of 0.05λ. The results are interpolated to increase the readability of the images. The maxima
in the asymmetry are clearly visible and it can be seen that the maxima indeed move to lower
inter-element distance and skew angles for larger scan angles. Using these �gures one can �nd
the optimal inter-element distance and skew angle to achieve the desired asymmetry for di�erent
scan angles. Figure 4.15 shows a comparison of the active element pattern calculated in Matlab
and CST of the case with the highest asymmetry while scanning to ±60◦ as found in �gure
4.14d. A good comparison can be seen, except for the point while scanning towards −60◦. The
asymmetry is still very high (22 dB), but not as high as calculated in Matlab (33 dB).
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(a) (b)

(c) (d)

Figure 4.14: Asymmetry of the active element pattern in dB of an array of ten elements as a
function of inter-element distance and skew angle. The results are interpolated to improve the
readability of the images. The asymmetry is shown for: a) θscan = ±30◦. b) θscan = ±40◦. c)
θscan = ±50◦. d) θscan = ±60◦.

Figure 4.15: Comparison of the active element pattern for an array of ten elements skewed by
35◦. The inter-element distance dx = 0.6λ.
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4.3 Conclusion

It is found that the active element pattern of skewed dipoles above a ground plane is highly
symmetric. This is because of the symmetry between the real dipoles and the images about
the ground plane. This symmetry is broken by introducing a directive element. Most power is
directed in the upper half space and only a small portion is radiated backward and is re�ected
specularly by the ground plane. The directive element is implemented as a stacked dipole pair.
If the stacked dipoles are dimensioned correctly, the element will radiate most power upwards,
away from the ground plane. Asymmetry in the active element pattern can be achieved, for scan
angles outside of the grating lobe free region. The asymmetry does not depend on the number
of elements for arrays larger than ten elements. It is found that, by varying the inter-element
distance and the skew angle of the elements, maxima in the asymmetry occur. The maxima
occur at lower skew angle for larger scan angles. Also, for larger inter-element distance the skew
angle at which a maximum in the asymmetry is found is smaller. Given the requirements on the
asymmetry of the active element pattern, an optimum geometry exists.
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Chapter 5

MoM for Z-shaped dipoles

In the previous chapters skewed dipoles were considered. Such elements are not convenient
for fabrication purposes. A more convenient angular directive structure would be a Z-shaped
dipole. An example of such a Z-shaped dipole can be found in �gure 5.1. Such a structure can
be implemented in planar PCB technology by printing the two horizontal metallizations and
connect them with a via. The total length of the dipole is l = lx + lz and the width is w. It can
be seen that the dipole is oriented partly along x and partly along z. The dipole is fed in the
center of the vertical part of the dipole. The Z-shaped dipole is proposed as an alternative for
the skewed dipole and it is shown that the radiation pattern of a Z-shaped dipole is similar to a
skewed dipole.

The Z-shaped dipole is analyzed using the expression for the method of moments to analyse
dipoles oriented along x and z, which can be found in section 3.1.

5.1 Truncated sinusoidal basis functions

Let us consider a single Z-shaped dipole. The total length of the dipole is chosen to be l = 0.5λ
and the current is assumed to be sinusoidal over the whole dipole. The sinusoidal shape is
truncated at the junctions, as is shown in �gure 5.2.

The basis functions, similar to the entire domain basis function for dipoles along x as found
in equation (2.39), are chosen to be:

bup,n′(x− xn′) =
sin
(
k0
(
l
2 −

lz
2 − |x− xn′ |

))
sin
(
k0

l
2

) rectlx/2(x− xn′ + lx/4)δ(z − zn′ − lz/2)

bmid,n′(z − zn′) =
sin
(
k0
(
l
2 − |z − zn′ |

))
sin
(
k0

l
2

) rectlz (z − zn′)δ(x− xn′)

bdown,n′(x− xn′) =
sin
(
k0
(
l
2 −

lz
2 − |x− xn′ |

))
sin
(
k0

l
2

) rectlx/2(x− xn′ − lx/4)δ(z − zn′ + lz/2)

(5.1)

where xn′ and zn′ are the x- and z-coordinates of the center of the part of the dipole along z.
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Figure 5.1: Z-shaped dipole with length l = lx + lz, width w. The length of the port is δ and the
port impedance is z0.

Figure 5.2: Truncated sinusoidal basis function on the Z-shaped dipole. The sinusoidal basis
function is cut in three parts: bup, bmid and bdown.

Transforming the basis functions from equation (5.1) to the spectral domain gives:

Bup,n′(kx) =
−ejkx

lx
4

2 sin
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k0

l
2

) (ejk0( l
2−
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2 ) 1− e−j
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2 ) 1− ej
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2 (k0−kx)
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)
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cos(k0
l
2 )− cos(k0
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2 (k0 + kz))

k0 + kz

)

Bdown,n′(kx) =
−e−jkx
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4

2 sin
(
k0
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) (ejk0( l
2−

lz
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2 (k0−kx)

k0 − kx
+ e−jk0(

l
2−

lz
2 ) 1− ej

lx
2 (k0+kx)

k0 + kx

)
(5.2)

Care must be taken to ensure the continuity of the current at the junctions. Therefore the
unknown weight factor i will be the same for the three parts of the dipole along x and z. This
is done by calculating the input impedance of the dipole as a whole by summing the individual
components of the impedance:

Zin = Zx1,x1
+ Zx1,z + Zx1,x2

+ Zz,x1
+ Zz,z + Zz,x2

+ Zx2,x1
+ Zx2,z + Zx2,x2

(5.3)

where Zx1,x1 is the impedance from the top part of the dipole to itself, Zx1,z is the impedance
from the top part of the dipole to the part along z, et cetera. The weight factor of the current i
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Figure 5.3: Truncated sinusoidal basis function on a planar dipole. The sinusoidal basis function
is cut in three parts: bup, bmid and bdown.

is now calculated as:
i =

v

(Zin + z0)
(5.4)

Once the weighting factor i is calculated, the electric �eld radiated by the di�erent parts of the
dipole is calculated as described in appendix C and summed together to calculate the radiation
pattern.

5.1.1 Validation using planar dipole

In order to check whether or not the truncated basis function from equation (5.1) can be used
to approximate the current, a planar half wavelength dipole as shown in �gure 5.3 is considered.
The three basis functions for a planar dipole become:

bup,n′(x− xn′) =
sin
(
k0
(
l
2 − |x− xn′ |

))
sin
(
k0

l
2

) rectlx/2(x− xn′ + lmid/2 + lx/4)δ(z − zn′)
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l
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))
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(
k0

l
2

) rectlmid
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k0

l
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) rectlx/2(x− xn′ − lmid/2− lx/4)δ(z − zn′)

(5.5)

where l = lx + lmid is the total length of the dipole. Transforming these basis functions to the
spectral domain gives:
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(5.6)

The transverse basis function is chosen to be edge-singular, as described in chapter 2. Calculating
the impedance matrix using the method described in section 2.1.2 the imaginary parts of the
individual elements in the impedance matrix do not converge. Let us consider a dipole oriented
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along x with total length l = 0.5λ, lmid = 0.15λ and a width equal to w = 0.12λ. The integration
limits for the numerical calculation of the integral in Matlab are −klim and klim. The impedance
matrix calculated with integration limits equal to klim = 300k0 gives:

ZMoM =

5.8− 229j 9.0 + 236j 4.3 + 6.4j
9.0 + 236j 16.0− 472j 9.0 + 236j
4.3 + 6.4j 9.0 + 236j 5.8− 229j

Ω

while the impedance matrix with integration limits equal to klim = 500k0 gives:

ZMoM =

5.8− 249j 9.0 + 257j 4.3 + 6.4j
9.0 + 257j 16.0− 513j 9.0 + 257j
4.3 + 6.4j 9.0 + 257j 5.8− 249j

Ω

Increasing the integration limits further gives higher values of the absolute values of the imaginary
part of the elements of the impedance matrix. Appendix D gives a step by step calculation to �nd
the asymtotic expression for the impedance in the limit |kx| � k0 and shows that the integral
indeed does not converge.

Calculating the total input impedance of the dipole by summing the elements of the matrix,
as found in equation (5.3), does give a constant value in both cases: Zin = (72.1 + 28.6j) Ω.
This input impedance is the same as the impedance found using a single entire domain basis
function as described in chapter 2. Therefore it can be concluded that the imaginary parts of
the impedance of the individual dipole parts do not converge, but compensate each other and
summing them together gives the correct result.

5.1.2 Results on Z-shaped dipole

In order to see whether or not the same compensating behaviour happens for the Z-shaped
dipole, the basis functions found in equation (5.2) are used in a method of moments code. The
dimensions of the dipole are similar to the planar dipole of the previous section. The total length
is l = 0.5λ and lz = 0.15λ. The width of the dipole is w = 0.12λ. The length of the port is
δ = 0.1λ and the port impedance is z0 = 50 Ω.

Because, for the mutual impedances between a dipole along x and a dipole along z, the
integral in ky cannot be closed analytically, as described in section 3.1, the mutual impedance
between the dipole parts along x and the dipole part along z are calculated in Matlab using
a double integral function. The integration limits for the integral in kx and the integral in ky
are kx,lim and ky,lim respectively. It is found that, similar to the case of the planar dipole, the
imaginary parts of the individual components of the impedance matrix do not converge. The
impedance matrix calculated with integration limits equal to kx,lim = 300k0 and ky,lim = 300k0
gives:

ZMoM =

 5.8− 229j 0.17 + 227j 4.8− 2.6j
0.17 + 227j 16.0− 472j 0.17 + 227j
4.8− 2.6j 0.17 + 227j 5.8− 229j

Ω

while the impedance matrix with integration limits equal to kx,lim = 500k0 and ky,lim = 300k0
gives:

ZMoM =

 5.8− 249j 0.17 + 247j 4.8− 2.6j
0.17 + 247j 16.0− 513j 0.17 + 247j
4.8− 2.6j 0.17 + 247j 5.8− 249j

Ω

It can be seen that the self impedances of the dipole parts are equal for the Z-shaped dipole as
for the planar dipole. This is as expected since the dipoles are in free space and the location
and orientation of the dipole parts should not in�uence the self impedance. It can also be
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Figure 5.4: Radiation pattern of a Z-shaped dipole. l = 0.5λ and lz = 0.15λ. The width of the
dipole is w = 0.12λ. The length of the port is δ = 0.1λ and the port impedance is z0 = 50 Ω.

found that, as opposed to the case of the planar dipole, the total input impedances of the Z-
shaped dipole are very similar, but not completely converged: Zin,300k0 = (37.9− 24.4j) Ω and
Zin,500k0 = (37.9− 28.0j) Ω. Due to numerical limitations in Matlab the integration limits cannot
be increased further.

Figure 5.4 shows the radiation pattern for this Z-shaped dipole calculated using the method
of moments code compared to CST. A good agreement is found.

Let us now consider three identical Z-shaped dipoles, located at x1 = z1 = 0, x2 = λ, z2 = 0
and x3 = 2λ, z3 = λ, as shown in �gure 5.5a. The radiation pattern (φ = 0◦) calculated using
the matlab code for these three dipoles is calculated and compared to CST. It can be seen from
�gure 5.5b that, when all the dipoles are active, a good agreement is found. Also when one or
more of the dipoles are passive the comparison between Matlab and CST is good, as shown in
�gures 5.5c (v2 = 0) and 5.5d (v1 = v3 = 0).

Although the calculations show good agreement with CST for the considered cases, problems
arise as the width of the dipole is decreased. Changing the width of the dipoles to w = 0.025λ
shows the dependency on the integration limits in ky. For a single Z-shaped dipole the impedance
calculated using ky,lim = 250k0 is found to be Zin = (38.3− 31.4j) Ω, while the impedance of
the same dipole using ky,lim = 300k0 is found to be Zin = (38.3− 95.7j) Ω. Figure 5.6 shows
the imaginary part of the input impedance as a function of the integration limits in ky. The
integration limit in kx, kx,lim = 400k0. It can be seen that for the dipole with a width equal
to w = 0.12λ the imaginary part of the impedance is not converged, but the amplitude of the
oscillations is low and does not signi�cantly a�ect the results. When the width is decreased, the
amplitude of the oscilations increases and the results become inaccurate.
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(a)

(b) (c)

(d)

Figure 5.5: Simulation results of three identical Z-shaped dipoles. The total length of the dipoles
is l = 0.5λ, lz = 0.15λ, w = 0.12λ. The length of the port is 0.1λ and the port impedance is
z0 = 50 Ω. a) The geometry of the entire structure under consideration. b) Radiation patterns
when all three dipoles are active. c) Radiation pattern when the second dipole is passive. d)
Radiation pattern when the �rst and the third dipoles are passive.
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Figure 5.6: Imaginary part of the input impedance of a Z-shaped dipole as a function of the
integration limits in ky, calculated using truncated sinusoidal basis functions. The width of the
dipole is decreased from w = 0.12λ to w = 0.025λ. The integration limits in kx = 400k0. The
total lenght of the dipole is l = 0.5λ and lz = 0.15λ.

5.2 Conclusion

A Z-shaped dipole is analized, as it is more convenient for fabrication purposes than skewed
dipoles. A method of moments code is written to calculate the input impedance and the radiation
patterns of these dipoles. It is found that the imaginary parts of the elements of the impedance
matrix do not converge if a truncated sinusoidal basis function is used. However, when the
width of the dipole is su�ciently large, the total input impedance does converge. The radiation
patterns calculated using the truncated sinusoidal are in good agreement with CST.
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Chapter 6

Conclusions and future work

6.1 Summary and conclusions

In this thesis we aimed to �nd design rules to shape the active element pattern of a linear array
of dipoles above a ground plane to be asymmetric. An asymmetric active element pattern can
be advantageous for the design of a low-pro�le steerable beam antenna. The radiation to high
elevation angles can be increased, reducing the radiation for low elevation. A method of moments
solution is implemented in Matlab to �nd the active element pattern of such linear arrays.

The mathematical expressions for the method of moments for horizontal dipoles are derived in
both the spatial and the spectral domain. Since the spectral domain representation requires fewer
integrals to solve, the spectral domain expressions are used throughout the thesis to calculate
the radiation patterns. Two types of basis functions are implemented to describe the current
distribution along the dipoles: an entire domain basis function and piecewise linear sub domain
basis functions. Both basis functions are found to provide accurate radiation patterns. Piecewise
linear basis functions are more accurate to �nd the input impedance of the dipoles as they
describe the reactance of the feed better.

Similar expressions are derived for the case of dipoles both along x and z. Care is taken for
the mutual impedance between a dipole along x and a dipole along z. The sign of the mutual
impedance depends on the relative location of these dipoles. A special case exists when the
dipoles are in line with each other. For this case the observation domain is split in two and the
integrals are evaluated separately with their own respective signs.

The method of moments code is extended to be able to simulate skewed dipoles. The method
described in [12] is implemented to calculate the mutual impedance between dipoles under an
arbitrary skew angle with respect to each other. This method is used to simulate skewed dipoles
above a ground plane. Using the image theorem the real dipoles above a ground plane are
represented as an equivalent problem of the real dipoles and virtual dipoles. The electric �eld
contributions due to the real dipoles and the virtual dipoles are calculated in separate reference
systems and mapped onto the original reference system. It is found that a periodic array of
skewed dipoles above a ground plane will result in a highly symmetric active element pattern.
This is due to the symmetry of these dipoles about the ground plane.

To break the symmetry, a directive structure is introduced, in the form of stacked dipoles.
It is found that the entire domain basis function does not give accurate results for this type of
directive element. Therefore the piecewise linear basis functions are used. Using the periodicity
of the array, the number of calculations necessary to �nd the mutual impedance between all the
dipoles is reduced drastically. Only the mutual impedance between the �rst stacked dipole pair
and the other stacked dipole pairs needs to be calculated. These numbers can be reused as the
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mutual impedance between the other elements. The time needed to calculated the radiation
pattern of a linear array of 30 skewed stacked dipole pairs above a ground plane is found to
be 1189 seconds (≈ 20 minutes) using the Matlab code, while CST needs 4229 seconds (≈ 70
minutes) to simulate the same array.

A second method of moments code is implemented to simulate a dipole bent into a Z-shape.
The radiation pattern of such a dipole is shown to be similar to the radiation pattern of a skewed
dipole. Using standard PCB technology a Z-shaped dipole can be implemented by printing
horizontal metalizations and connecting them using vias. A truncated sinusoidal basis function
is implemented to approximate the current on the dipole. Mathematical expressions are derived
for the method of moments of horizontal and vertical dipoles.

The asymmetry in the active element pattern for a linear array of skewed dipoles and directive
elements is investigated and design rules are derived. Asymmetry in the active element pattern
can be achieved by an under-sampled array of skewed directive element. It is found that for arrays
larger than ten elements the asymmetry does not depend on the number of array elements. The
asymmetry for di�erent scan angles depends on the inter-element distance and the skew angle of
the elements. Maxima exist for the asymmetry for varying skew angles and a �xed inter-element
distance. These maxima occur at lower skew angles for larger scan angles. Also for larger inter-
element distances the maxima are found to be at lower skew angles than for smaller inter-element
distances.

It can be concluded that the truncated sinusoidal basis functions can be used to calculate
radiation pattern of a Z-shaped dipole, however the dipole must have a su�cient width in order
for the input impedance to converge within the numerical limitations of Matlab.

6.2 Future work

The Z-shaped dipole can be analyzed to a certain extend using the truncated sinusoidal basis
function. However, when the width of the dipoles is reduced, the impedance does not converge
before Matlab reaches a numerical limitation. It can be looked into to rewrite the expressions in
such a way that the numerical limitation is avoided. Also one can consider another basis function
to make the impedances converge.

We have derived the expressions for a �nite linear array of skewed dipoles above a ground
plane. The work done in this thesis was a theoretical study in order to �nd design rules for
shaping the active element pattern to be asymmetric. The array used in this work consisted on
in�nitely thin skewed dipoles fed by a delta gap excitation. The design rules proposed in this
thesis can be used to make a realistic design, for example using Z-shaped dipoles, for an array
with an asymmetric active element pattern.

Although this thesis considered periodic arrays, where all the dipoles were tilted by the same
skew angle, this does not have to be the case. One can imagine a linear array where the skew
angle of the elements is reduced until the dipole is planar in the center of the array after which
the skew of the dipoles would be reversed. The radiation characteristics of such arrays, or other
con�gurations of skewed dipoles can be analyzed using the theory described in this thesis.
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Appendix A

Reciprocity theorem

While calculating the impedance matrix Z one can reduce the number of calculations necessary
by using the property of the Z-matrix that it must be symetric around the diagonal. This can
be explained using the reciprocity theorem.

If one considers two sets of sources: J1,Jm1 and J2,Jm2, where J is an electric current
and Jm is a magnetic current. If both sets of sources operate at the same frequency they will
generate two sets of �elds: E1,H1 and E2, H2. Using Ampères law and Faradays law from the
Maxwell's equations,

∇×H = jωεE + J (A.1)

and
∇×E = −jωµH − Jm (A.2)

respectively, it can be shown that:

−∇ · (E1 ×H2 −E2 ×H1) = E1 · J2 +H2 · Jm1 −E2 · J1 −H1 · Jm2

If both sides are integrated over a volume V and the divergence theorem is applied to the left
hand side the general form of the reciprocity theorem is found:

−
‹
S

(E1 ×H2 −E2 ×H1) ds =

˚

V

E1 · J2 +H2 · Jm1 −E2 · J1 −H1 · Jm2dV (A.3)

For S and V going to in�nity the integrand of left hand side of equation(A.3) becomes:

E1 ×H2 −E2 ×H1 =

E1 × r̂ ×
E2

ζ
−E2 × r̂ ×

E1

ζ
=

r̂ (E1 ·E2)
1

ζ
− r̂ (E2 ·E1)

1

ζ
= 0

Therefore ˚

V

E1 · J2 −H1 · Jm2dV =

˚

V

E2 · J1 −H2 · Jm1dV (A.4)

Since in this case there are no magnetic currents equation (A.4) simply�es to:

˚

V

E1 · J2dV =

˚

V

E2 · J1dV (A.5)
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One can rewrite E1 as the convolution integral between the equivalent current J1 and the
Green's function gej(r, r′) and E2 as the convolution integral between the equivalent current J2

and the Green's function gej(r, r′). Substituting the basis function and the test function for the
equivalent currents, one recognises equation (2.19) and �nds:

Zxn′,xn = Zxn,xn′ (A.6)
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Appendix B

Image theorem

The image theorem states that a source in the vicinity of an in�nite ground plane can be respre-
sented by the source itself and a virtual source beneath the ground plane. The electromagnetic
�elds calculated by this equivalent problem are equal in the region above the ground plane as
those of the original problem. From the boundary conditions it is known that the electric �eld
tangential to a perfect electric conductor equals 0:

n̂×E = 0 (B.1)

In case of electric currents this is achieved when the virtual source is located at the same distance
from the ground plane and its perpendicular orientation remains the same while its tangential
orientation is reversed. According to the uniqueness theorem this solution is unique. The original
problem and the equivalent problem from the image theorem is shown in �gure B.1.

Let us consider an elementary electric current source above an in�nite plane of perfect electric
conductor. The electric �eld at any point in freespace due to an elementary electric current source
can be found as:

E(r) = ζ0
e−jkr

4πr

(
cos θ

(
2

r2
− 2j

kr3

)
r̂ + sin θ

(
jk

r
+

1

r2
− j

kr3

)
θ̂

)
(B.2)

This equation can be rewritten to a Cartesian reference system using:

r̂ = sin θ cosφx̂+ sin θ sinφŷ + cos θẑ

θ̂ = cos θ cosφx̂+ cos θ sinφŷ − sin θẑ

φ̂ = − sinφx̂+ cosφŷ

(B.3)

Equation (B.2) now becomes:

E(r) = ζ0
e−jkr

4πr

((
cos θ sin θ cosφ

(
2

r2
− 2j

kr3

)
+ sin θ cos θ cosφ

(
jk

r
+

1

r2
− j

kr3

))
x̂+(

cos θ sin θ sinφ

(
2

r2
− 2j

kr3

)
+ sin θ cos θ sinφ

(
jk

r
+

1

r2
− j

kr3

))
ŷ+(

cos2 θ

(
2

r2
− 2j

kr3

)
− sin2 θ

(
jk

r
+

1

r2
− j

kr3

))
ẑ

)
(B.4)

We can now use equation (B.4) to determine the electric �eld on every point on the ground
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Figure B.1: Real system consisting of an electric current above a ground plane and its equivelent
system consisting of the current and its image.

plane given the electric current source shown in �gure B.1 and its image. It can be seen that
rim = rs = r, θim = π − θs and φim = φs = φ. The �eld due to the original current equals:

E1(r) = ζ0
e−jkr

4πr

((
cos θs sin θs cosφ

(
2

r2
− 2j

kr3

)
+ sin θs cos θs cosφ

(
jk

r
+

1

r2
− j

kr3

))
x̂+(

cos θs sin θs sinφ

(
2

r2
− 2j

kr3

)
+ sin θs cos θs sinφ

(
jk

r
+

1

r2
− j

kr3

))
ŷ+(

cos2 θs

(
2

r2
− 2j

kr3

)
− sin2 θs

(
jk

r
+

1

r2
− j

kr3

))
ẑ

)
(B.5)

and since cos(π − θ) = − cos θ the �eld due to the image of the source is simply:

E2(r) = ζ0
e−jkr

4πr

(
−
(

cos θs sin θs cosφ

(
2

r2
− 2j

kr3

)
+ sin θs cos θs cosφ

(
jk

r
+

1

r2
− j

kr3

))
x̂+

−
(

cos θs sin θs sinφ

(
2

r2
− 2j

kr3

)
+ sin θs cos θs sinφ

(
jk

r
+

1

r2
− j

kr3

))
ŷ+(

cos2 θs

(
2

r2
− 2j

kr3

)
− sin2 θs

(
jk

r
+

1

r2
− j

kr3

))
ẑ

)
(B.6)

Summing these two �elds using superposition gives:

Etot(r) = E1(r) +E2(r) = ζ0
e−jkr

4πr

(
cos2 θs

(
2

r2
− 2j

kr3

)
− sin2 θs

(
jk

r
+

1

r2
− j

kr3

))
ẑ

(B.7)
As the perfect electric conductor is in the xy-plane and the electric �eld only has a normal
component, this solution indeeed satis�es the boundary condition stated in equation (B.1).

Since the dipoles above a ground plane can be represented by an equivalent electric current
along the dipoles, the same equivalent system can be used to represent dipoles above a ground
plane.
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Appendix C

MoM for dipoles oriented along x
and z

Chapter 2 describes the method om moments for dipoles made of PEC oriented along x. In this
appendix the expressions will be generalized to include elements along z.

n̂× etot = zsurfj (C.1)

where zsurf is the surface impedance on the dipoles, which is zero on the dipole arms and di�erent
from zero on the gap.

The total electric �eld can be decomposed in the incident �eld, einc, and the scattered �eld,
escat, such that:

n̂× (einc + escat) = zsurfj

−n̂× escat + zsurfj = n̂× einc
(C.2)

The incident �eld is the �eld induced due to the voltage in the gap and is assumed constant:

n̂× einc =
vmx

δ
rectw,δ(x, y)

n̂× einc =
vmz

δ
rectw,δ(y, z)

(C.3)

where vm is the complex excitation voltage of the mth dipole.
By using the equivalence theorem, the original problem of a dipole made of perfect electric

conductor can be expressed as equivalent currents in free space. A surface S enclosing a volume
V is de�ned just around the dipole, as shown in �gure C.1a. The �elds inside S, e1 and h1, are
chosen to be 0. The equivalent currents need to satisfy the boundary conditions:

j′eq = n̂× (h2 − h1) (C.4)

m′eq = −n̂× (e2 − e1) (C.5)

where h1, e1 and h2, e2 are the magnetic and electric �elds just inside and outside S, respectively.
Since the �elds outside the surface S must be equal to the original problem, we know from
equation (2.1) that n̂ × e2 = 0 on the dipole arms. Therefore, the equivalent magnetic current
m′eq vanishes on the metal leaving only an equivalent electric current j′eq as can be seen in �gure

C.1b. Due to the continuity of the �eld, i.e. the electric �eld below the gap e−2 and the electric
�eld above the gap e+2 are equal, the magnetic current vanishes also in the gaps. For the dipole
oriented along x, n̂ = ẑ on top of the dipole and n̂ = −ẑ on the bottom, while for the dipole
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(a)

(b)

(c)

Figure C.1: Visual representation of the equivalence theorem considering a thin dipole made of
perfect electric conductor. a) De�ning a surface S around the dipole and the equivalent currents
j′eq and m

′
eq. b) Satisfying the boundary conditions the magnetic currents vanish everywhere

except on the gap. c) Due to the continuity of the �elds, the magnetic current in the gap vanishes
and, assuming a thin dipole, an equivalent electric current jeq = 2j′eq remains.

oriented along z, n̂ = x̂ on right of the dipole and n̂ = −x̂ on the left. Assuming the dipoles
to be very thin and since the magnetic �eld on one side of the dipole, h+

2 , is equal but opposite
to the magnetic �eld on the other side of the dipole, h−2 , the total equivalent current can be
expressed as:

jeq = ẑ × h+
2 − ẑ × h

−
2 = 2j′eq (C.6)

in free space which is shown in �gure C.1c.

The scattered �eld can be rewritten as a convolution between the Green's function and the
equivalent electric current:

escat =

∞̂

−∞

∞̂

−∞

∞̂

−∞

jeq(r
′)gej(r, r′)dr′ (C.7)

where r′ ≡ (x′, y′, z′) and r ≡ (x, y, z) are the source and observation points respectively. Writing
the integral equations seperatly for the dipoles oriented along x and z results in:

−ẑ × escat + zsurf,xjx = ẑ × einc
−x̂× escat + zsurf,zjz = x̂× einc (C.8)

where

zsurf,x(x, y) =
z0
δ

rectw,δ(x, y)

zsurf,z(y, z) =
z0
δ

rectw,δ(y, z) .
(C.9)
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APPENDIX C. MOM FOR DIPOLES ORIENTED ALONG X AND Z

Substituting equation (C.7) in (C.8):

−ẑ ×
∞̂

−∞

∞̂

−∞

∞̂

−∞

jeq(r
′)gej(r, r′)dr′ + zsurf,xjx = ẑ × einc(r)

−x̂×
∞̂

−∞

∞̂

−∞

∞̂

−∞

jeq(r
′)gej(r, r′)dr′ + zsurf,zjz = x̂× einc(r)

(C.10)

The equivalent current along x and z are written as an unknown weighting terms inx and
inz multiplied by known basis functions bn′x and bn′z . Once the weighting terms inx and inz are
calculated the current distributions over the dipoles are known. Substituting the expressions for
the equivalent current in equation (C.10) gives:

−ẑ ×
∞̂

−∞

∞̂

−∞

∞̂

−∞

 Nx∑
n′x=1

in′xbn′x(r′)x̂+

Nz∑
n′,z=1

in′zbn′z (r′)ẑ

 gej(r, r′)dr′ + zsurf,xjx = ẑ × einc(r)

−x̂×
∞̂

−∞

∞̂

−∞

∞̂

−∞

 Nx∑
n′x=1

in′xbn′x(r′)x̂+

Nz∑
n′z=1

in′zbn′z (r′)ẑ

 gej(r, r′)dr′ + zsurf,zjx = x̂× einc(r)

(C.11)
Both sides of the integral equations are projected on the same known current distributions along
x and z. These current distributiosn are called the test functions tnx and tnz . Projecting both
sides of the electric �eld integral equations on the test functions gives:

〈−ẑ ×
∞̂

−∞

∞̂

−∞

∞̂

−∞

 Nx∑
n′x=1

in′xbn′x(r′)x̂+

Nz∑
n′z=1

in′zbn′z (r′)ẑ

 gej(r, r′)dr′, tnx(r)〉

+〈zsurf,xjx, tnx
〉 = 〈ẑ × einc(r), tnx

(r)〉

〈−x̂×
∞̂

−∞

∞̂

−∞

∞̂

−∞

 Nx∑
n′x=1

in′xbn′x(r′)x̂+

Nz∑
n′z=1

in′zbn′z (r′)ẑ

 gej(r, r′)dr′, tnz (r)〉

+〈zsurf,zjz, tnz 〉 = 〈x̂× einc(r), tnz (r)〉

(C.12)

where 〈f1,f2〉 =
∞́

−∞

∞́

−∞

∞́

−∞
f1(r) ·f∗2(r)dr, Nx and Nz are the number of basis functions along

x and z respectively.

C.1 Spatial domain

Let us consider a �nite number Mx of in�nitely thin dipoles oriented along x and Mz along z.
The elements are placed along the y-axis and can be displaced in x and z. Figure C.2 shows an
example of such an array consisting of two elements. We de�ne xnx

, znx
, xn′x , zn′x to be the x-

and z-coordinates of the center of the observation domain and the center of the source domain
for dipoles along x. In a similar way xnz

, znz
, xn′z , zn′z to be the x- and z-coordinates of the

center of the observation domain and the center of the source domain for dipoles along z.
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C.1. SPATIAL DOMAIN

Figure C.2: Two identical dipoles with lenght l and width w oriented along x and z, centered at
y = 0 displaced in x and z. The excitation port has a lenght δ

.

The equivalent current will be oriented along the dipole. For dipoles the transverse current
distribution can be approximated to be edge-singular. The basis functions can thus be written
as:

bn′x(r′) = bn′x(x′ − xn′x)jt(y
′)δ(z′ − zn′x)x̂

bn′z (r′) = bn′z (z′ − zn′z )jt(y
′)δ(x′ − xn′z )ẑ

(C.13)

where

jt(y
′) =

2

wπ

rectw(y′)√
1−

(
2y′

w

)2 (C.14)

The test function along x is chosen to be the same as the basis function. The observation domain
is chosen to be along the line y = 0. Therefore the test functions can be written as:

tnx
(r) = bnx

(x− xnx
)δ(y)δ(z − zn)x̂

tnz
(r) = bnz

(z − znz
)δ(y)δ(x− xn)ẑ

(C.15)

Let us de�ne projection terms pnx and pnz as:

pnx
=

1

δ
〈rectw,δ(x, y)x̂, tnx

(r)〉

pnz
=

1

δ
〈rectw,δ(y, z)ẑ, tnz

(r)〉
(C.16)

such that
〈zsurf,xjx, tnx

〉 = z0inx
pnx

〈zsurf,zjz, tnz
〉 = z0inz

pnz
.

(C.17)

The projection of the electric �eld in the gap on an entire domain basis function can be
expressed as:

pnx
=

1

δ

∞̂

−∞

rectδ(x− xm)b∗n,x(x− xnx
)dx ≈

{
0 if xnx 6= xm
1 if xnx

= xm

pnz
=

1

δ

∞̂

−∞

rectδ(z − zm)b∗n,z(z − znz
)dz ≈

{
0 if znz 6= zm
1 if znz = zm

(C.18)

where it is assumed that the gap size is small compared to the total length of the dipole. For
small domain basis functions, the terms pnx and pnz can be expressed, using the property of the
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APPENDIX C. MOM FOR DIPOLES ORIENTED ALONG X AND Z

δ-function,
∞́

−∞
f(x)δ(x− x0)dx = f(x0), as:

pnx
=

1

δ

∞̂

−∞

rectδ(x− xm)b∗n,x(x− xnx
)dx =

{
0 if nthx basis function and mth

x gap do not overlap
cn if nthx basis function and mth

x gap do overlap

pnz =
1

δ

∞̂

−∞

rectδ(z − zm)b∗n,z(z − znz )dz =

{
0 if nthz basis function and mth

z gap do not overlap
cn if nthz basis function and mth

z gap do overlap

(C.19)
where it is assumed that the gap size is small compared to the total length of the dipole and
cn is a constant indicating the fraction of the area of the triangular basis function that overlaps
with the gap.

The left hand side of the integral equation (C.12) can now be written as:

−ẑ ×
∞̂

−∞

∞̂

−∞

∞̂

−∞

( ∞̂

−∞

∞̂

−∞

∞̂

−∞

(
Nx∑
n′x=1

in′xbn′x(x′ − xn′x)jt(y
′)δ(z′ − zn′x)b∗nx

(x− xnx
)δ(y)δ(z − zn)x̂+

Nz∑
n′z=1

in′zbn′z (z′ − zn′z )jt(y
′)δ(x′ − xn′z )b∗nx

(x− xnx
)δ(y)δ(z − zn)ẑ

)
gej(r, r′)dr′

)
dr + z0inx

pnx

−x̂×
∞̂

−∞

∞̂

−∞

∞̂

−∞

( ∞̂

−∞

∞̂

−∞

∞̂

−∞

(
Nx∑
n′x=1

in′xbn′x(x′ − xn′x)jt(y
′)δ(z′ − zn′x)b∗nz

(z − znz )δ(y)δ(x− xx)x̂+

Nz∑
n′z=1

in′zbn′z (z′ − zn′z )jt(y
′)δ(x′ − xn′z )b∗nz

(z − znz
)δ(y)δ(x− xx)ẑ

)
gej(r, r′)dr′

)
dr + z0inz

pnz
.

(C.20)

The right hand side of the integral equation (C.12) can be written as:

Nx∑
nx′=1

vmx

δ

∞̂

−∞

∞̂

−∞

∞̂

−∞

rectδ(x− xmx
)δ(znz

− zn′z ) rectw(y)x̂b∗nx
(x− xnx

)δ(y)δ(z − zn)dr

Nz∑
nz′=1

vmz

δ

∞̂

−∞

∞̂

−∞

∞̂

−∞

rectδ(z − zmz
)δ(xnx

− xnx
) rectw(y)ẑb∗nz

(z − znz
)δ(y)δ(x− xn)dr

(C.21)
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C.1. SPATIAL DOMAIN

We de�ne the mutual impedances as:

Zxn′x
,xnx

=

xn′x
+

lb
2ˆ

xn′x
− lb

2

w
2ˆ

−w
2

xnx+
lb
2ˆ

xnx−
lb
2

bn′x(x′ − xn′x)jt(y
′)b∗nx

(x− xnx)gejxx(x− x′, y′, znx − zn′x)dxdy′dx′

Zzn′z ,xnx
=

zn′z
+

lb
2ˆ

zn′z
− lb

2

w
2ˆ

−w
2

xnx+
lb
2ˆ

xnx−
lb
2

bn′z (z′ − zn′z )jt(y
′)b∗nx

(x− xnx)gejxz(x− xn′z , y
′, znx − z′)dxdy′dz′

Zxn′x
,znz

=

xn′x
+

lb
2ˆ

xn′x
− lb

2

w
2ˆ

−w
2

znz+
lb
2ˆ

znz−
lb
2

bn′x(x′ − xn′x)jt(y
′)b∗nz

(z − znz )gejzx(xnz − x′, y′, z − zn′x)dzdy′dx′

Zzn′z ,znz
=

zn′z
+

lb
2ˆ

zn′z
− lb

2

w
2ˆ

−w
2

znz+
lb
2ˆ

znz−
lb
2

bn′z (z′ − zn′z )jt(y
′)b∗nz

(z − znz )gejzz(xnz − xn′z , y
′, z − z′)dzdy′dz′

(C.22)
and the forcing terms as:

vnx =
vmx

δ

xnx+
lb
2ˆ

xnx−
lb
2

rectδ(x− xmx)b∗nx
(x− xnx)dx

vnz =
vmz

δ

znz+
lb
2ˆ

znz−
lb
2

rectδ(z − zmz )b∗nz
(z − znz )dz

(C.23)

such that:
Nx∑
n′x=1

in′xZxn′x
,xnx

+

Nz∑
n′z=1

in′zZzn′z ,xnx
+ z0inxpnx = vnx

Nz∑
n′z=1

in′zZzn′z ,znz
+

Nx∑
n′x=1

in′xZxn′x
,znz

+ z0inz
pnz

= vnz

(C.24)

or matrix notation as: ([
Zx′x Zz′x
Zx′z Zz′z

]
+ z0

[
P x 0
0 P z

])[
ix
iz

]
=

[
vx
vz

]
(C.25)

where Zx′x is a matrix containing the terms Zxn′x
,xnx

, Zz′x is a matrix containing the terms

Zzn′z ,xnx
, et cetera. P x and P z are diagonal matrices P x = diag(pnx) and P z = diag(pnz ),

whose terms are zero if the nth basis function is de�ned on the metal and di�erent from zero if
the basis function overlaps with the feeding gap region of a dipole along x or a dipole along z
respectively.
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C.2 Spectral domain

The spatial expressions from the previous section can be rewritten in the spectral domain. Using
the spectral represenation of the Green's function:

gejxx(r − r′) = j
ζ

k0

1

(2π)3

∞̂

−∞

∞̂

−∞

∞̂

−∞

(
k20 − k2x

) e−jkx(x−x′)e−jky(y−y′)e−jkz(z−z′)
k20 − k2x − k2y − k2z

dkxdkydkz

gejxz(r − r′) = j
ζ

k0

1

(2π)3

∞̂

−∞

∞̂

−∞

∞̂

−∞

(−kxkz)
e−jkx(x−x

′)e−jky(y−y
′)e−jkz(z−z

′)

k20 − k2x − k2y − k2z
dkxdkydkz

gejzx(r − r′) = j
ζ

k0

1

(2π)3

∞̂

−∞

∞̂

−∞

∞̂

−∞

(−kxkz)
e−jkx(x−x

′)e−jky(y−y
′)e−jkz(z−z

′)

k20 − k2x − k2y − k2z
dkxdkydkz

gejzz(r − r′) = j
ζ

k0

1

(2π)3

∞̂

−∞

∞̂

−∞

∞̂

−∞

(
k20 − k2z

) e−jkx(x−x′)e−jky(y−y′)e−jkz(z−z′)
k20 − k2x − k2y − k2z

dkxdkydkz

(C.26)
Let us consider the four expressions for the active impedance seperately.

C.2.1 Zxn′
x
,xnx

in the spectral domain

Substituting the spectral expression for the xx-component of the Green's function in the expres-
sion for Zxn′x

,xnx
found in equation (C.22) gives:

Zxn′x
,xnx

=

xn′x
+

lb
2ˆ

xn′x
− lb

2

w
2ˆ

−w
2

xnx+
lb
2ˆ

xnx−
lb
2

bn′x(x′ − xn′x)jt(y
′)b∗nx

(x− xnx)

(
j
ζ

k0

1

(2π)3

∞̂

−∞

∞̂

−∞

∞̂

−∞

(
k20 − k2x

) e−jkx(x−x′)ejkyy′e−jkz(znx−zn′x )

k20 − k2x − k2y − k2z
dkxdkydkz

)
dxdy′dx′

(C.27)
Let us consider the integral in kz �rst. For (znx − zn′x) > 0 the integration contour can be closed

counter clockwise around the pole kz =
√
k20 − k2x − k2y and the integral can be solved using the

residue theorem:

∞̂

−∞

e−jkz(znx−zn′x )

k20 − k2x − k2y − k2z
dkz

= −
∞̂

−∞

e−jkz(znx−zn′x )(
kz −

√
k20 − k2x − k2y

)(
kz +

√
k20 − k2x − k2y

)dkz
= −2πj

e−j
√
k20−k2x−k2y(znx−zn′x )

2
√
k20 − k2x − k2y

= −πj e
−j
√
k20−k2x−k2y(znx−zn′x )

2
√
k20 − k2x − k2y

(C.28)
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For (znx − zn′x) < 0 the integration contour can be closed clockwise around the pole kz =

−
√
k20 − k2x − k2y and the integral can be solved using the residue theorem:

∞̂

−∞

e−jkz(znx−zn′x )

k20 − k2x − k2y − k2z
dkz

= −
∞̂

−∞

e−jkz(znx−zn′x )(
kz −

√
k20 − k2x − k2y

)(
kz +

√
k20 − k2x − k2y

)dkz
= 2πj

ej
√
k20−k2x−k2y(znx−zn′x )

−2
√
k20 − k2x − k2y

= −πj e
j
√
k20−k2x−k2y(znx−zn′x )

2
√
k20 − k2x − k2y

(C.29)

Combining equations (C.28) and (C.29) one �nds that:

∞̂

−∞

e−jkz(znx−zn′x )

k20 − k2x − k2y − k2z
dkz = −πj e

−j
√
k20−k2x−k2y|znx−zn′x |

2
√
k20 − k2x − k2y

(C.30)

Extracting the integral along x′ from equation (C.27) gives:

xn′x
+

lb
2ˆ

xn′x
− lb

2

bn′x(x′ − xn′x)ejkxx
′
dx′

=

lb
2ˆ

− lb
2

bn′x(u)ejkxuduejkxxn′x

= Bn′x(kx)ejkxxn′x

(C.31)

where the change of variables u = x′−xn′ is used to center the basis function around the origin.
Bn′(kx) can be recognised to be the Fourier transform of the basis function. The exponential,
ejkxxn′ , represents the phaseshift due to the displacement of the basis function from the origin.
Similar steps can be performed for the integrals in y′ and in x to obtain:

Jt(ky) =

w
2ˆ

−w
2

jt(y
′)ejkyy

′
dy′ = J0

(
kyw

2

)
(C.32)

and

B∗nx
(−kx)e−jkxxnx =

xnx+
lb
2ˆ

xnx−
lb
2

b∗nx
(x− xnx)e−jkxxdx (C.33)
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where Jt(ky) and Bnx(kx) are the Fourier transforms of jt(y
′) and bnx respectively. Substituting

equations (C.30), (C.31), (C.32) and (C.33) into (C.27) gives:

Zxn′x
,xnx

= − 1

2π

∞̂

−∞

Bn′x(kx)B∗nx
(−kx)Dnx,n′x

(kx)e−jkx(xnx−xn′x
)dkx (C.34)

where

Dn,n′(kx) =
1

2π

∞̂

−∞

Jt(ky)Gejxx(kx, ky)e−j
√
k20−k2x−k2y|znx−zn′x |dky (C.35)

and

Gejxx(kx, ky) = − ζ

2k0

(
k20 − k2x

)√
k20 − k2x − k2y

(C.36)

In the case when |znx − zn′x | = 0 equation (C.35) reduces to:

Dn,n′(kx) = − 1

2π

ζ

2k0

(
k20 − k2x

) ∞̂
−∞

J0

(
kyw
2

)
√
k20 − k2x − k2y

dky

= − ζ

4k0

(
k20 − k2x

)
J0

(√
k20 − k2x

w

4

)
H

(2)
0

(√
k20 − k2x

w

4

) (C.37)

In the case when |znx
− zn′x | � w equation (C.35) reduces to:

Dn,n′(kx) = − 1

2π

ζ

2k0

(
k20 − k2x

) ∞̂
−∞

J0

(
kyw
2

)
e−j
√
k20−k2x−k2y|znx−zn′x |√

k20 − k2x − k2y
dky

≈ − ζ

4k0

(
k20 − k2x

)
H

(2)
0

(√
k20 − k2x|znx

− zn′x |
) (C.38)

C.2.2 Zzn′
z
,xnx

in the spectral domain

Substituting the spectral expression for the xz-component of the Green's function in the expres-
sion for Zzn′z ,xnx

found in equation (C.22) gives:

Zzn′z ,xnx
=

zn′z
+

lb
2ˆ

zn′z
− lb

2

w
2ˆ

−w
2

xnx+
lb
2ˆ

xnx−
lb
2

bn′z (z′ − zn′z )jt(y
′)b∗nx

(x− xnx
)

(
j
ζ

k0

1

(2π)3

∞̂

−∞

∞̂

−∞

∞̂

−∞

(−kxkz)
e−jkx(x−xn′z

)ejkyy
′
e−jkz(znx−z

′)

k20 − k2x − k2y − k2z
dkxdkydkz

)
dxdy′dz′

(C.39)
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Extracting the integral along z′ from equation (C.39) gives:

zn′z
+

lb
2ˆ

zn′z
− lb

2

bn′z (z′ − zn′z )ejkzz
′
dz′

=

lb
2ˆ

− lb
2

bn′z (u)ejkzuduejkzzn′z

= Bn′z (kz)e
jkzzn′z

(C.40)

where the change of variables u = z′− zn′ is used to center the basis function around the origin.
Bn′z (kz) can be recognised to be the Fourier transform of the basis function. The exponential,

ejkzzn′z , represents the phaseshift due to the displacement of the basis function from the origin.
Similar steps can be performed for the integrals in y′ to obtain:

Jt(ky) =

w
2ˆ

−w
2

jt(y
′)ejkyy

′
dy′ = J0

(
kyw

2

)
(C.41)

where Jt(ky) is the Fourier transform of jt(y
′). Subtituting equations (C.40) and (C.41) into

equation (C.39) gives:

Zzn′z ,xnx
= j

ζ

k0

1

(2π)3

xnx+
lb
2ˆ

xnx−
lb
2

b∗nx
(x− xnx

)

∞̂

−∞

∞̂

−∞

∞̂

−∞

(−kxkz)

Bn′z (kz)Jt(ky)
e−jkx(x−xn′z

)e−jkz(znx−zn′z )

k20 − k2x − k2y − k2z
dkxdkydkzdx

(C.42)

Three cases must be considered, as is shown in �gure C.3:

1. xn′z < xnx − lb
2

2. xn′z > xnx
+ lb

2

3. xnx
− lb

2 < xn′z < xnx
+ lb

2
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Figure C.3: Three cases of for |xnx
− xn′z |.

Case I (xn′z < xnx
− lb

2 )

Since x − xn′z > 0∀x the integration contour for the integration along kx can be closed counter

clockwise around kx =
√
k20 − k2y − k2z :

∞̂

−∞

kx
e−jkx(x−xn′z

)

k20 − k2x − k2y − k2z
dkx

= −
∞̂

−∞

kx
e−jkx(x−xn′z

)(
kx −

√
k20 − k2y − k2z

)(
kx +

√
k20 − k2y − k2x

)dkx
= −2πj

√
k20 − k2y − k2z

e−j
√
k20−k2y−k2z(x−xn′z

)

2
√
k20 − k2y − k2z

= −πje−j
√
k20−k2y−k2z|x−xn′z

|

(C.43)

The integral along x can now be solved to be:

B∗nx

(
−
√
k20 − k2y − k2z

)
e−j
√
k20−k2y−k2zxnx =

xnx+
lb
2ˆ

xnx−
lb
2

b∗nx
(x− xnx)e−j

√
k20−k2y−k2zxdx (C.44)

Substituting equations (C.43) and (C.44) into (C.42):

Zzn′z ,xnx
= − ζ

k0

1

8π2

∞̂

−∞

∞̂

−∞

kz

Bn′z (kz)Jt(ky)B∗nx

(
−
√
k20 − k2y − k2z

) e−j√k20−k2y−k2z|xnx−xn′z
|e−jkz(znx−zn′z )

k20 − k2y − k2z
dkydkz

(C.45)

71



C.2. SPECTRAL DOMAIN

Case II (xn′z > xnx + lb
2 )

Since x− xn′z < 0∀x the integration contour for the integration along kx can be closed clockwise

around kx = −
√
k20 − k2y − k2z :

∞̂

−∞

kx
e−jkx(x−xn′z

)

k20 − k2x − k2y − k2z
dkx

= −
∞̂

−∞

kx
e−jkx(x−xn′z

)(
kx −

√
k20 − k2y − k2z

)(
kx +

√
k20 − k2y − k2x

)dkx
= −2πj

√
k20 − k2y − k2z

ej
√
k20−k2y−k2z(x−xn′z

)

−2
√
k20 − k2y − k2z

= πje−j
√
k20−k2y−k2z|x−xn′z

|

(C.46)

The integral along x can now be solved to be:

B∗nx

(
−
√
k20 − k2y − k2z

)
e−j
√
k20−k2y−k2zxnx =

xnx+
lb
2ˆ

xnx−
lb
2

b∗nx
(x− xnx

)e−j
√
k20−k2y−k2zxdx (C.47)

Substituting equations (C.46) and (C.47) into (C.42):

Zzn′z ,xnx
=

ζ

k0

1

8π2

∞̂

−∞

∞̂

−∞

kz

Bn′z (kz)Jt(ky)B∗nx

(
−
√
k20 − k2y − k2z

) e−j√k20−k2y−k2z|xnx−xn′z
|e−jkz(znx−zn′z )

k20 − k2y − k2z
dkydkz

(C.48)

Case III (xnx − lb
2 < xn′z < xnx + lb

2 )

The integration domain along x is split in two: x− xn′z > 0 and x− xn′z < 0. The integral along
kx is closed counter clockwise for the values for x corresponding to x − xn′z > 0 and clockwise
for the values of x corresponding to x − xn′z < 0 in the same way as shown for cases I and II.
The integral along x is calculated in two parts:

xnzˆ

xnx−
lb
2

b∗nx
(x− xnx

)e−j
√
k20−k2y−k2zxdx (C.49)

and

xnx+
lb
2ˆ

xnz

b∗nx
(x− xnx

)e−j
√
k20−k2y−k2zxdx (C.50)
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The expression for the active impedance Zzn′z ,xnx
can now be found to be:

Zzn′z ,xnx
=

ζ

k0

1

8π2

∞̂

−∞

∞̂

−∞

Bn′z (kz)Jt(ky)

(
− kz

xnzˆ

xnx−
lb
2

b∗nx
(x− xnx)e−j

√
k20−k2y−k2zxdx

+ kz

xnx+
lb
2ˆ

xnz

b∗nx
(x− xnx)e−j

√
k20−k2y−k2zxdx

)
e−j
√
k20−k2y−k2z|xnx−xn′z

|e−jkz(znx−zn′z )

k20 − k2y − k2z
dkydkz

(C.51)

C.2.3 Zxn′
x
,znz

in the spectral domain

Substituting the spectral expression for the zx-component of the Green's function in the expres-
sion for Zxn′x

,znz
found in equation (C.22) gives:

Zxn′x
,znz

=

xn′x
+

lb
2ˆ

xn′x
− lb

2

w
2ˆ

−w
2

znz+
lb
2ˆ

znz−
lb
2

bn′x(x′ − xn′x)jt(y
′)b∗nz

(z − znz )

(
j
ζ

k0

1

(2π)3

∞̂

−∞

∞̂

−∞

∞̂

−∞

(−kxkz)
e−jkx(xnz−x

′)ejkyy
′
e−jkz(z−zn′x )

k20 − k2x − k2y − k2z
dkxdkydkz

)
dzdy′dx′

(C.52)

Extracting the integral along x′ from equation (C.52) gives:

xn′x
+

lb
2ˆ

xn′x
− lb

2

bn′x(x′ − xn′x)ejkxx
′
dx′

=

lb
2ˆ

− lb
2

bn′x(u)ejkxuduejkxxn′x

= Bn′x(kx)ejkxxn′x

(C.53)

where the change of variables u = x− xn′ is used to center the basis function around the origin.
Bn′x(kx) can be recognised to be the Fourier transform of the basis function. The exponential,

ejkxxn′x , represents the phaseshift due to the displacement of the basis function from the origin.
Similar steps can be performed for the integrals in y′ to obtain:

Jt(ky) =

w
2ˆ

−w
2

jt(y
′)ejkyy

′
dy′ = J0

(
kyw

2

)
(C.54)

where Jt(ky) is the Fourier transform of jt(y
′). Subtituting equations (C.40) and (C.41) into
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Figure C.4: Three cases of for |znz
− zn′x |.

equation (C.52) gives:

Zxn′x
,znz

= j
ζ

k0

1

(2π)3

znz+
lb
2ˆ

znz−
lb
2

b∗nz
(z − znz )

∞̂

−∞

∞̂

−∞

∞̂

−∞

(−kxkz)

Bn′x(kx)Jt(ky)
e−jkx(xn−xn′z

)e−jkz(z−zn′z )

k20 − k2x − k2y − k2z
dkxdkydkzdz

(C.55)

Three cases must be considered, as is shown in �gure C.4:

1. zn′x < znz
− lb

2

2. zn′x > znz
+ lb

2

3. znz − lb
2 < zn′x < znz

+ lb
2

Case I (zn′x < znz − lb
2 )

Since z − zn′x > 0∀z the integration contour for the integration along kz can be closed counter

clockwise around kz =
√
k20 − k2x − k2y:

∞̂

−∞

kz
e−jkz(z−zn′x )

k20 − k2x − k2y − k2z
dkz

= −
∞̂

−∞

kz
e−jkz(z−zn′x )(

kz −
√
k20 − k2x − k2y

)(
kz +

√
k20 − k2x − k2y

)dkz
= −2πj

√
k20 − k2x − k2y

e−j
√
k20−k2x−k2y(z−zn′x )

2
√
k20 − k2x − k2y

= −πje−j
√
k20−k2x−k2y|z−zn′x |

(C.56)

The integral along z can now be solved to be:

B∗nz

(
−
√
k20 − k2x − k2y

)
e−j
√
k20−k2x−k2yznz =

znz+
lb
2ˆ

znz−
lb
2

b∗nz
(z − znz )e−j

√
k20−k2x−k2yzdz (C.57)
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Substituting equations (C.56) and (C.57) into (C.55):

Zxn′x
,znz

= − ζ

k0

1

8π2

∞̂

−∞

∞̂

−∞

kx

Bn′x(kx)Jt(ky)B∗nz

(
−
√
k20 − k2x − k2y

) e−j√k20−k2x−k2y|znz−zn′x |e−jkx(xnz−xn′x
)

k20 − k2x − k2y
dkxdky

(C.58)

Case II (zn′x > znz
+ lb

2 )

Since z − zn′x < 0∀z the integration contour for the integration along kz can be closed clockwise

around kz = −
√
k20 − k2x − k2y:

∞̂

−∞

kz
e−jkz(z−zn′x )

k20 − k2x − k2y − k2z
dkz

= −
∞̂

−∞

kz
e−jkz(z−zn′x )(

kz −
√
k20 − k2x − k2y

)(
kz +

√
k20 − k2x − k2y

)dkz
= −2πj

√
k20 − k2x − k2y

ej
√
k20−k2x−k2y(z−zn′x )

−2
√
k20 − k2x − k2y

= πje−j
√
k20−k2x−k2y|z−zn′x |

(C.59)

The integral along z can now be solved to be:

B∗nz

(
−
√
k20 − k2x − k2y

)
e−j
√
k20−k2x−k2yznz =

znz+
lb
2ˆ

znz−
lb
2

b∗nz
(z − znz )e−j

√
k20−k2x−k2yzdz (C.60)

Substituting equations (C.59) and (C.60) into (C.55):

Zxn′x
,znz

=
ζ

k0

1

8π2

∞̂

−∞

∞̂

−∞

kx

Bn′x(kx)Jt(ky)B∗nz

(
−
√
k20 − k2x − k2y

) e−j√k20−k2x−k2y|znz−zn′x |e−jkx(xnz−xn′x
)

k20 − k2x − k2y
dkxdky

(C.61)

Case III (znz
− lb

2 < zn′x < znz
+ lb

2 )

The integration domain along z is split in two: z − zn′x > 0 and z − zn′x < 0. The integral along
kz is closed counter clockwise for the values for z corresponding to z− zn′x > 0 and clockwise for
the values of z corresponding to z − zn′x < 0 in the same way as shown for cases I and II. The
integral along z is calculated in two parts:

znxˆ

znz−
lb
2

b∗nz
(z − znz )e−j

√
k20−k2x−k2yzdz (C.62)
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and

znz+
lb
2ˆ

znx

b∗nz
(z − znz

)e−j
√
k20−k2x−k2yzdz (C.63)

The expression for the active impedance Zxn′x
,znz

can now be found to be:

Zxn′x
,znz

=
ζ

k0

1

8π2

∞̂

−∞

∞̂

−∞

Bn′x(kx)Jt(ky)

(
− kx

znxˆ

znz−
lb
2

b∗nz
(z − znz )e−j

√
k20−k2x−k2yzdz

+ kx

znz+
lb
2ˆ

znx

b∗nz
(z − znz )e−j

√
k20−k2x−k2yzdz

)
e−j
√
k20−k2x−k2y|znz−zn′x |e−jkx(xnz−xn′x

)

k20 − k2x − k2y
dkxdky

(C.64)

C.2.4 Zzn′
z
,znz

in the spectral domain

Substituting the spectral expression for the zz-component of the Green's function in the expres-
sion for Zzn′z ,znz

found in equation (C.22) gives:

Zzn′z ,znz
=

zn′z
+

lb
2ˆ

zn′z
− lb

2

w
2ˆ

−w
2

znz+
lb
2ˆ

znz−
lb
2

bn′z (z′ − zn′z )jt(y
′)b∗nz

(z − znz )

(
j
ζ

k0

1

(2π)3

∞̂

−∞

∞̂

−∞

∞̂

−∞

(
k20 − k2z

) e−jkx(xnz−xn′z ejkyy
′
e−jkz(z−z

′)

k20 − k2x − k2y − k2z
dkxdkydkz

)
dzdy′dz′

(C.65)
Let us consider the integral in kx �rst. For (xnz

−xn′z ) > 0 the integration contour can be closed

counter clockwise around the pole kx =
√
k20 − k2y − k2z and the integral can be solved using the

residue theorem:

∞̂

−∞

e−jkx(xnz−xn′z
)

k20 − k2x − k2y − k2z
dkx

= −
∞̂

−∞

e−jkx(xnz−xn′z
)(

kx −
√
k20 − k2y − k2z

)(
kx +

√
k20 − k2y − k2z

)dkx
= −2πj

e−j
√
k20−k2y−k2z(xnz−xn′z

)

2
√
k20 − k2y − k2z

= −πj e
−j
√
k20−k2y−k2z(xnz−xn′z

)

2
√
k20 − k2y − k2z

(C.66)
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For (xnz − xn′z ) < 0 the integration contour can be closed clockwise around the pole kx =

−
√
k20 − k2z − k2z and the integral can be solved using the residue theorem:

∞̂

−∞

e−jkx(xnz−xn′z
)

k20 − k2x − k2y − k2z
dkx

= −
∞̂

−∞

e−jkx(xnz−xn′z
)(

kx −
√
k20 − k2y − k2z

)(
kx +

√
k20 − k2y − k2z

)dkx
= 2πj

ej
√
k20−k2y−k2z(xnz−xn′z

)

−2
√
k20 − k2y − k2z

= −πj e
j
√
k20−k2y−k2z(xnz−xn′z

)

2
√
k20 − k2y − k2z

(C.67)

Combining equations (C.66) and (C.67) one �nds that:

∞̂

−∞

e−jkx(xnz−xn′z
)

k20 − k2x − k2y − k2z
dkx = −πj e

−j
√
k20−k2y−k2z|xnz−xn′z

|

2
√
k20 − k2y − k2z

(C.68)

Extracting the integral along z′ from equation (C.65) gives:

zn′z
+

lb
2ˆ

zn′z
− lb

2

bn′z (z′ − zn′z )ejkzz
′
dz′

=

lb
2ˆ

− lb
2

bn′z (u)ejkzuduejkzzn′z

= Bn′z (kz)e
jkzzn′z

(C.69)

where the change of variables u = z′− zn′ is used to center the basis function around the origin.
Bn′(kz) can be recognised to be the Fourier transform of the basis function. The exponential,
ejkzzn′ , represents the phaseshift due to the displacement of the basis function from the origin.
Similar steps can be performed for the integrals in y′ and in z to obtain:

Jt(ky) =

w
2ˆ

−w
2

jt(y
′)ejkyy

′
dy′ = J0

(
kyw

2

)
(C.70)

and

B∗nz
(−kz)e−jkzznz =

znz+
lb
2ˆ

znz−
lb
2

b∗nz
(z − znz )e−jkzzdz (C.71)
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where Jt(ky) and Bnz (kz) are the Fourier transforms of jt(y
′) and bnz respectively. Substituting

equations (C.68), (C.69), (C.70) and (C.71) into (C.65) gives:

Zzn′z ,znz
= − 1

2π

∞̂

−∞

Bn′z (kz)B
∗
nz

(−kz)Dnz,n′z
(kz)e

−jkz(znz−zn′z )dkz (C.72)

where

Dnz,n′z
(kz) =

1

2π

∞̂

−∞

Jt(ky)Gejzz(ky, kz)e
−j
√
k20−k2y−k2z|xnz−xn′z

|dky (C.73)

and

Gejzz(ky, kz) = − ζ

2k0

(
k20 − k2z

)√
k20 − k2y − k2z

(C.74)

In the case when |xnz − xn′z | = 0 equation (C.73) reduces to:

Dn,n′(kz) = − 1

2π

ζ

2k0

(
k20 − k2z

) ∞̂
−∞

J0

(
kyw
2

)
√
k20 − k2y − k2z

dky

= − ζ

4k0

(
k20 − k2z

)
J0

(√
k20 − k2z

w

4

)
H

(2)
0

(√
k20 − k2z

w

4

) (C.75)

In the case when |xnz
− xn′z | � w equation (C.73) reduces to:

Dn,n′(kz) = − 1

2π

ζ

2k0

(
k20 − k2z

) ∞̂
−∞

J0

(
kyw
2

)
e−j
√
k20−k2y−k2z|xnz−xn′z

|√
k20 − k2y − k2z

dky

≈ − ζ

4k0

(
k20 − k2z

)
H

(2)
0

(√
k20 − k2z |xnz − xn′z |

) (C.76)

C.2.5 Voltages in spectral domain

Besides the active impedance also the voltages, as found in equation (C.23), can be expressed in
the spectral domain:
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vnx
=
vmx

δ

xnx+
lb
2ˆ

xnx−
lb
2

rectδ(x− xmx
)b∗nx

(x− xnx
)dx

=
vmx

δ

xnx+
lb
2ˆ

xnx−
lb
2

 1

2π

∞̂

−∞

δ sinc

(
kxδ

2

)
e−jkx(x−xmx )dkx

 b∗nx
(x− xnx

)dx

=
vmx

2π

∞̂

−∞

sinc

(
kxδ

2

)
B∗nx

(−kx)e−jkx(xnx−xmx )dkx

vnz
=
vmz

δ

znz+
lb
2ˆ

znz−
lb
2

rectδ(z − znz
)b∗nz

(z − znz
)dz

=
vmz

δ

znz+
lb
2ˆ

znz−
lb
2

 1

2π

∞̂

−∞

δ sinc

(
kzδ

2

)
e−jkz(z−zmz )dkz

 b∗nz
(z − znz

)dz

=
vmz

2π

∞̂

−∞

sinc

(
kzδ

2

)
B∗nz

(−kz)e−jkz(znz−zmz )dkz

(C.77)

C.3 Calculation of radiation pattern

This section will describe how the far �eld pattern can be found once the current vector i has
been found. One can imagine a sphere with radius r centered in the origin. Every point on the
surface of this sphere can be expressed in terms of two angles: the elevation angle θ and the
azimuthal angle φ, where θ = 0 is along the z-axis and φ = 0 is along the x-axis. Every point on
the surface of this sphere can be expressed in Cartesian coordinates as:

x0 = r sin θ cosφ

y0 = r sin θ sinφ

z0 = r cos θ

(C.78)

The electric �eld due to an electric current source can be found in any point r by calculating the
convolution between the equivalent current, jeq, and the dyadic Green's function, gej , evaluated
in the point (x0, y0, z0). Since convolution in the spatial domain is equivalent to multiplication
in the spectral domain, the electric �eld can be found as:

E(x, y, z) =
1

(2πr)2

∞̂

−∞

∞̂

−∞

Jeq(kx, ky)Gej(kx, ky, z, z
′)e−jkxxe−jkyydkxdky . (C.79)

where kx0 = k0 sin θ cosφ, ky0 = k0 sin θ sinφ and kz0 = k0 cos θ. The equivalent current distri-
butions of dipoles oriented along x and z, can be expressed as:

Jeq,x(kx, ky) = in′xBn′x(kx)Jt(ky)x̂

Jeq,z(ky, kz) = in′zBn′z (kz)Jt(ky)ẑ
(C.80)

79



C.3. CALCULATION OF RADIATION PATTERN

The total electric �eld due to all basis functions can be expressed as the sum of the individual
contributions from every basis function. The total electric �eld in (x0, y0, z0) can thus be found,
by applying the stationary phase point approximation.

E(x0, y0, z0) = jkz0
1

2πr

(
Nx∑
n′x=1

in′xBn′x(kx)Jt(ky)x̂Gej(kx0, ky0)e−jkx0(x0−xn′x
)e−jky0(y0−yn′x )

e−jkz0(z0−zn′x ) +

Nz∑
n′z=1

in′zBn′z (kz)Jt(ky)ẑGej(ky0, kz0)e−jkx0(x0−xn′z
)e−jky0(y0−yn′z )e−jkz0(z0−zn′z )

)
(C.81)

From the electric �eld strength the radiation intensity can be found as:

U(θ, φ) = r2
1

2ζ

(
|Eθ|2 + |Eφ|2

)
(C.82)

where Eθ = Ex cos θ cosφ+Ey cos θ sinφ−Ez sin θ and Eφ = −Ex sinφ+Ey cosφ are the θ- and
φ-components of the electric �eld, and ζ is the free-space impedance. The directivity is de�ned
as the ratio of the radiation intensity in a direction (θ, φ) to the radiation intensity of an isotropic
antenna radiating the same amount of power. The radiation intensity of an isotropic antenna
is U0 = Prad/4π, where Prad is the total radiated power and can be found by integrating the
radiation intensity over the entire sphere:

Prad =

2πˆ

0

π̂

0

U(θ, φ) sin θdθdφ (C.83)

The directivity in every direction θ, φ is therefore:

D(θ, φ) =
U(θ, φ)

U0
= 4π

U(θ, φ)

Prad
(C.84)
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Appendix D

Convergence of a truncated

sinusoidal basis function

It is stated in section 5.1 that the truncated sinusoidal basis function does not converge. The
validity of the basis function is checked using a planar dipole with lenght l = 0.5λ. Let us
consider such a planar dipole, as shown in �gure D.1.

The basis functions in the spectral domain are:

Bup(kx) =
−e−jkx b+a

2

2 sin
(
k0

l
2

) (e−jk0 l
2
e−jb(k0−kx) − e−ja(k0−kx)

k0 − kx
+ ejk0

l
2
ejb(k0+kx) − eja(k0+kx)

k0 + kx

)
∀(a < 0, b < 0)

Bmid(kx) =
−e−jkx b+a

2

2 sin
(
k0

l
2

)(2 cos
(
k0

l
2

)
k0 + kx

+
2 cos

(
k0

l
2

)
k0 − kx

− e−jk0 l
2
e−ja(k0−kx)

k0 − kx

− ejk0 l
2
e−jb(k0−kx)

k0 − kx
− ejk0 l

2
eja(k0+kx)

k0 + kx
− e−jk0 l

2
ejb(k0+kx)

k0 + kx

)
∀(a < 0, b > 0)

Bdown(kx) =
e−jkx

b+a
2

2 sin
(
k0

l
2

) (ejk0 l
2
e−jb(k0−kx) − e−ja(k0−kx)

k0 − kx
+ e−jk0

l
2
ejb(k0+kx) − eja(k0+kx)

k0 + kx

)
∀(a > 0, b > 0)

(D.1)
where a is the x-coordinate of the left end point of the dipole part and b is the x-coordinate of
the right end point with respect to the center of the dipole. The self impedance of a dipole part
or the mutual impedance between two parts of the dipole is found to be:

Zxn′xn = − 1

2π

∞̂

−∞

Bn′,x(kx)B∗n,x(−kx)Dn,n′(kx)e−jkx(xn−xn′ )dkx (D.2)

where Dn,n′(kx) = 1
2π

∞́

−∞
Jt(ky)Gejxx(kx, ky)e−j

√
k20−k2x−k2y|zn−zn′ |dky and

Gejxx(kx, ky) = − ζ
2k0

(k20−k
2
x)√

k20−k2x−k2y
. Since for a planar dipole |zn − zn′ | = 0:

Dn,n′(kx) = − ζ

4k0

(
k20 − k2x

)
J0

(√
k20 − k2x

w

4

)
H

(2)
0

(√
k20 − k2x

w

4

)
(D.3)

As an example of the asymptotic expressions, and to show that the integrals do not converge,
two of the individual components of the impedance matrix are considered: Zup,up and Zup,mid.
The remaining elements can be found in a similar way.
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D.1. ZUP,UP

Figure D.1: Truncated sinusoidal basis function on a planar dipole. The sinusoidal basis function
is cut in three parts: bup, bmid and bdown.

D.1 Zup,up

Let us consider the basis function in the limit where |kx| � k0:

B(kx) =
−e−jkx b+a

2

2 sin
(
k0

l
2

)(e−jk0 l
2
e−jb(k0−kx) − e−ja(k0−kx)
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)
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l
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l
2
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)

=
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(
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l
2
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l
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(D.4)
Substituting a = −l/2 and b = −lmid/2:

B(kx) =

(
j sin

(
k0
(
l
2 −

l
2

))
sin
(
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l
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)
kx
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l
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(
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2

))
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l
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(
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2
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l
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(D.5)

From equation (D.5) it is clear that:

B∗(−kx) = B(kx) (D.6)
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The function D(kx) for |kx| � k0 reduces to:

D(kx) = − ζ0
4k0
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=
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=
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(D.7)

The asymptotic expressions for the impedance Zup,up can now be found for kx � k0:
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(D.8)

and for kx � k0
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(D.9)

The integrals found in equations (D.8) and (D.9) do not converge.

D.2 Zup,mid

It is shown in equation (D.4) that:
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The asymptotic expression for middle basis function is:
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(D.11)

The asymptotic expressions for the impedance Zup,mid can now be found for kx � k0:

Zup,mid,pos = − 1

2π

ˆ ∞
u

Bn′x (kx)B∗nx
(−kx)Dn,n′ (kx) e−jkx(xn−xn′ )dkx

=
1

2π

ˆ ∞
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(D.12)
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and for kx � k0:

Zup,mid,neg = − 1

2π

ˆ −u
−∞
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(D.13)
The integrals found in equations (D.12) and (D.13) do not converge.
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