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Abstract
The Dutch infrastructure counts many bridges, the majority of which are built in concrete. These bridges
have been designed and constructed according to safety codes. A lot of these bridges date from the
previous century and have been designed conform outdated safety codes. Therefore, themain problem
of these bridges is the uncertainty with regard to their structural health as well as their performance
under the current loading conditions.

The application of ‘smart aggregates’ could potentially solve these issues. Smart aggregates refer
to a network of sensors that emit and receive wave signals inside the concrete structure. These sensor
are embedded within the concrete and can be implemented in both new and existing structures. The
changes in the medium with regard to the stresses are reflected by the phase changes of the wave
signal measured by the smart aggregates. This information allows for the monitoring of the conditions
of the bridge during its lifespan. The magnitude of the stress in certain parts of the structure could then
indicate the need for maintenance at an early stage, thus preventing unnecessary maintenance while
preserving the safety of the bridge. This method, however, requires a thorough understanding of the
wave propagation inside a concrete medium subjected to a stress state. This thesis investigates how
the relative wave-velocity change of a concrete-like medium is influenced by the stresses to which it is
subjected. Throughout the report this relation is referred to as the acoustoelastic effect.

The first part of the thesis is centered around the theoretical formulation of the acoustoelastic effect.
During this study, themodels of Murnaghan and Biot have been studied. Subsequently, their differences
with respect to the fundamental assumptions have been indicated. Here, it has been found that the
main difference between the two models is demonstrated by the way they regard the second-order
deformation terms. Murnaghan assumed that these terms are significant and has included them in the
constitutive relation. From the latter, Hughes and Kelly have derived expression for wave velocities
of a stressed medium, which have been verified with experimental results. On the other hand, Biot
adopted the theory of infinitesimal deformations which omits the second-order deformation terms. In
addition he based his theory around the wave propagation of a bending rod and extended this model
to a three-dimensional medium subjected to initial stresses. This generalisation of an approximated
model has led to analytical expressions for the wave velocity of a stressed solid which are contradicted
by experiments. From this comparison, it has been concluded that Murnaghan’s model results in the
most accurate representation of the acoustoelastic effect.

The second part of the thesis focuses on the verification of the theoretical acoustoelastic effect
through experimental research. For the purpose of verifying the acoustoelastic effect as well as deter-
mining the third-order elastic coefficients of a concrete-like medium, four specimens have been tested.
In order to investigate the influence of the inhomogeneity of the material on the changes in the wave
velocity, two different material compositions have been investigated. The first type consists of a ho-
mogeneous cement paste, whereas the second type represents heterogeneous concrete including
aggregates. During the experiment, the different waveforms have been repeatedly emitted through
a specimen subjected to an uniaxial compression. The relative wave-velocity change has then been
obtained by post-processing the acquired data, which has been compared with Murnaghan’s model.

The conclusion of this research is that Murnaghan’s theory can be used to accurately predict the
relative wave-velocity changes of the cement-paste specimens, and in particular the relative P-wave
velocity changes. The results have shown that the radial recordings yield inconsistencies which can be
attributed to the small dimensions of the specimens. Furthermore, the influence of the inhomogeneity of
the material on the relative wave-velocity changes manifests itself through a discrepancy in the acous-
toelasticity. Here, it is found that the ratio between the aggregate size, the specimen dimensions and
the wavelength of the signal determines the sensitivity to the acoustoelastic effect. Therefore, before
the data from the smart aggregates embedded in a real structure can be interpreted, the experiments
need to be improved and expanded. It is important to investigate the acoustoelasticity of waves with
non-orthogonal propagation and particle-oscillation direction, while applying various stress states to
the medium. This is because the smart aggregates are arranged in a network, where the signals are
emitted signals are propagating through the structure via arbitrary paths between various transducers.

v
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1
Introduction

This chapter gives a general introduction to the subject of interest to provide a solid base for the reader.
Limitations of the current assessment methods for structural health monitoring (SHM) and the desire to
better understand the structural behaviour of existing structures, are detailed in the problem statement.
Subsequently, a method is provided which could improve the conventional assessment for SHM as well
as allow for an interpretation of the internal forces in existing structures. The scope and the objectives
of this research are then captured by posing a number of research questions. Finally, the chosen
research methodology is explained.

1.1. Problem statement
Due to the increase of traffic through the years, the structural safety of a large amount of existing in-
frastructure has to be assessed. Caused by a lack of information with respect to the design of aged
concrete slab bridges, conventional assessment approaches cannot always provide an accurate eval-
uation of the current bearing capacity. Moreover, the absence of an appropriate measurement system
makes that the stresses and strains within the concrete structure are unknown. These bridges are
sometimes assessed through the application of a proof loading, depicted in Figure 1.1.

Figure 1.1: Proof loading on a bridge executed by Lantsoght et al. [16].
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The proof loading is a force-controlled method in which a bridge is repeatedly loaded and unloaded
at its midspan. This cyclic loading is realised by a truck which travels over a seesaw construction posi-
tioned on the bridge deck [14]. As the truck travels across the bridge while being charged piece-wise,
the deflection of the bridge deck is measured with external sensors. To prevent unwanted damage to
the structure, a set of stop criteria must be defined based on these measurements. The conventional
assessment approaches to define the stop criteria are mainly focused on the deformation on the sur-
face of the structure. The limitations of this method are the traffic hindrance on the bridge during the
execution and the fact that proof loading cannot cover larger volumes.

The application of ‘smart aggregates’ is an interesting alternative to the conventional assessment
approaches since it allows to also monitor the stresses and strains within the structure. Therefore, this
application may help the monitoring the health condition of the structure in general. Smart aggregates
are piezoelectric-based sensors that are embedded in the concrete structures and which can emit and
receive wave signals. The implementation of these smart aggregates can be realised either through drill
cores, in case of existing structures, or by casting them in concrete a priori, in case of new structures.
Figure 1.2 (Yang 2021) displays the inclusion of smart aggregates within the formwork of a cast in-situ
bridge under construction.

Figure 1.2: Positioning of smart aggregates in the formwork of a cast in-situ bridge under construction (Yang 2021).

The changes of the concrete medium in terms of either stresses or strains are reflected by the
phase changes or decoherence of the wave signal, which travels between the smart aggregate source-
receiver pairs. Based on the measurement of these changes it would be possible to create a digital twin
of the structure, which would allow for a better understanding of the structural behaviour under normal
traffic. Since the smart aggregates are embedded in the concrete structure, they are protected against
potential damage from outside and provide a more accurate interpretation of the concrete medium,
in comparison to external sensors. Smart aggregates could also be used to provide a more accurate
stop criteria for the proof loading, based on the stresses. Therefore, a much better understanding of
the structural response under high loads can be obtained. The installation of smart aggregates is also
easier, which makes the proof loading method cheaper as well.
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1.2. Acoustoelastic effect
To relate the relative change in the wave velocity, as waves propagate through the concrete medium, to
a change in the initial-stress conditions it is important to understand the link between the two. This link,
referred to as the acoustoelastic effect, has been a subject of research within other fields of application
in the first half of the 20th century. The acoustoelastic effect states that the change in the wave velocity
of a material as a function of stress is caused by the higher order terms in the constitutive relation. This
effect has been theoretically established as early as 1925 in the article “Sur les tensions de radiation”
by Brillouin [7]. In this article, the influence of a hydrostatic pressure 𝑝 on the wave propagation in
an elastic solid has been investigated. Brillouin has found that the longitudinal- and transverse-wave
velocity of an elastic solid, subjected to an exterior hydrostatic pressure, can be described with [7,
Eq. 43]:

𝑐ፏ = √
𝜆 + 2𝜇 − 𝑝

𝜌

𝑐ፒ = √
𝜇 − 𝑝
𝜌 ,

(1.1)

respectively. This result implies that the waves would stop to propagate, i.e. the wave velocity would
reduce to zero, if the pressure is sufficient. This contradiction in Brillouin’s theory is caused by the
incorrect assumption that the wave propagation is only influenced by a difference in the equation of
motion, generated by the applied pressure. This led to the argument that the change in the wave
velocity of a solid as a function of an applied pressure is due to the stress-dependency of the elastic
coefficients as well as the difference in the equation of motion. Murnaghan [21] and Biot [4] have both
introduced their theories which also take into account this stress-dependency of the elastic coefficients.
In this thesis, these two theoretical models will be investigated and compared.

1.3. Coda Wave Interferometry
A wave signal, emitted by a source and recorded by a receiver, contains information of the medium
through which it propagates. If it is assumed that the waves have undergone scattering through the
medium, its time signature develops into a diffuse field, like depicted in Figure 1.3.
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Figure 1.3: Time signature of a wave signal which has propagated through a concrete-like medium.
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Within diffuse fields, a distinction can be made between the first arrival, consisting of direct waves
that travel along the shortest path from source to receiver, and the diffuse part which includes the coda
waves. The coda waves are the late part of the wave signal and are composed of waves which have
travelled much longer paths than the source-receiver distance. Because of this larger travel distance,
coda waves are much more sensitive to weak perturbations in the medium as opposed to direct or
singly reflected waves.

The changes in the wave velocity of the medium can be monitored with two distinguished tech-
niques, namely the Time of Flight (ToF) and Coda Wave Interferometry (CWI). The ToF is an old
straightforward technique which focuses on the first arrival of the wave signal, whereas CWI is a re-
cently developed technique which exploits the later part of the wave signal. Within CWI a distinction can
be made between the Doublet Technique and the Stretching Technique. The latter has been applied
in this thesis.

1.3.1. Time of Flight
The change of the wave velocity of the medium can be easily monitored with the ToF method. Through
this monitoring technique the wave velocity of the medium can be extracted simply by dividing the
source-receiver distance by the time of the first arrival. From this output, it possible to observe the
increase or decrease of the wave velocity of the medium and to investigate the cause of these changes.

However, this monitoring technique comes with some limitations and uncertainties. The application
of this method is limited to the first arrival of the wave signal, which contains far less information of the
surrounding medium in comparison to the diffuse part. Therefore, the observations from this technique
don’t accurately represent the entire medium but rather a small portion of the medium. Furthermore,
this technique is not applicable in strongly heterogeneous media. This is due to lack of direct waves,
caused by the large amount of scattering. Therefore, the first arrival will have scattered within the
medium before being recorded, making it impossible to identify the small variations in the wave velocity
with the ToF. For these cases it is more convenient to utilise the CWI technique.

1.3.2. Stretching Technique
The small variations in the wave velocity of a medium result in a variation of the arrival time. Here, a
shift towards earlier time implies an increase of the wave velocity, whereas a shift towards later time
implies a decrease in the wave velocity. If a reference signal is assumed, then this time shift can also
be reproduced by stretching said reference signal in time, like displayed in Figure 1.4.
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Figure 1.4: Visual representation of the Stretching Technique.
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In order to realise this stretching, the original time axis 𝑡 must be multiplied with a factor such that
the stretched time axis

𝑡ᖣ = 𝑡 + 𝑑𝑡 = 𝑡(1 + 𝜏), (1.2)
where 𝜏 denotes the amount of the stretching or compression of the original time axis:

𝜏 = 𝑑𝑡
𝑡 . (1.3)

It should be noted that a small stretch in time can be interpreted as a small decrease in the wave
velocity, i.e. the wave signal takes longer to arrive. Since both the reference and the stretched signal
have travelled the same distance within the medium, the following holds:

𝑑𝑡
𝑡 = −𝑑𝑐𝑐 , (1.4)

which yields:

𝑡ᖣ = 𝑡(1 − 𝜖). (1.5)
Here, 𝜖 denotes the relative wave-velocity change:

𝜖 = 𝑑𝑐
𝑐 , (1.6)

or simply the stretching factor. The relative wave-velocity change between the reference signal and
the stretched signal can be determined by comparing both signals within a specified time window. This
comparison is realised through the calculation of the cross-correlation as a function of the stretching
factor [15, Eq. 1]:

𝐶𝐶(𝜖) =
∫፭Ꮄ፭Ꮃ {ℎ

(፬፭፫) [𝑡(1 − 𝜖)] ℎ(፫፞፟)(𝑡)} 𝑑𝑡

√∫፭Ꮄ፭Ꮃ (ℎ
(፬፭፫))ኼ [𝑡(1 − 𝜖)] 𝑑𝑡√∫፭Ꮄ፭Ꮃ (ℎ

(፫፞፟))ኼ (𝑡)𝑑𝑡
, (1.7)

where ℎ(፫፞፟) and ℎ(፬፭፫) denote the reference and stretched signal, respectively. The intervals of the
time window in which the cross-correlation is performed are denoted with 𝑡ኻ and 𝑡ኼ. Figure 1.5 displays
how the cross-correlation changes as a function of the stretching factor.
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6 1. Introduction

The cross-correlation coefficient 𝐶𝐶 represents the ‘degree of similarity’ between the reference sig-
nal and the stretched signal, where 𝐶𝐶 = 1 denotes a perfect correlation and 𝐶𝐶 = −1 – a perfect
anti-correlation. The relative wave-velocity change is then obtained by searching the stretching factor
for which a maximum 𝐶𝐶-value is attained.

1.4. Research objective and scope
It is important to clearly define the objective and the scope of the research. Together, they determine
the direction and breath of this research.

1.4.1. Objective and research questions
The research presented in this thesis encompasses the behaviour of elastic wave propagation, and
the wave velocity in particular, in a concrete medium subjected to a stress field. The objective of this
thesis is to establish a relation between the relative wave-velocity change within a concrete medium
and the applied stress on said medium. This objective can be reached by finding the following research
question:

“How are the stresses related to the relative wave-velocity change of a concrete-like medium?”

In order to formulate an answer to this research question the following sub-questions have been stated:

- How is the wave velocity related to the stresses and strains?

- What are the differences in the fundamental assumptions underlying Murnaghan’s and Biot’s
theory, which lead to the changes of a wave velocity under a certain stress level?

- To what extent can the theoretic acoustoelastic effect be verified with the experimental results?

- What is the influence of the orientation of the stress with respect to the propagation and polarisa-
tion direction of the wave?

- What is the influence of the inclusion of aggregates in a concrete specimen on the wave velocity?

These sub-questions will be answered throughout the chapters of this report. Once the answers to
these sub-questions and the research question have been formulated, the conclusions together with
the recommendations regarding the continuation of this research will be summarised in the final chapter.

1.4.2. Scope of research
In order to accomplish the completion of the thesis within a realistic time frame it is of importance to set
the scope for the research. This scope defines the boundaries and the depth within which the topic of
interest will be investigated. Narrowing down the field of research allows for a in-depth study, focused
on the important details which will result in a clear answer to the research question. The main focus
of this thesis is on the study of the behaviour the velocity of body waves propagating within concrete
subjected to applied stresses. Both the propagation and polarisation directions of the waves as well
as the loading direction will be limited to orthogonal directions. That is, the propagation direction and
the particle oscillation will be either in the 𝑥, 𝑦 or 𝑧-direction, whereas the stresses will be uniaxial along
either of these three directions. The acoustoelastic effect is only valid in the linear-elastic regime,
therefore the range of the stress level is maintained small. Due to the complexity of interpreting the
coda waves, the study of the time signatures of the wave signals will be focused on the first arrivals.
However, taking into account the heterogeneity of the concrete medium, the ToF will not be applicable
to monitor the wave velocity. Therefore, CWI will be applied in order to determine the relative wave-
velocity change of the scattered arrivals.
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1.5. Research methodology
The research starts with a theoretical study, during which previous research will be examined regard-
ing the relation between the wave velocity and the stresses and strains. This phase is mainly focused
on two theoretical models which are the result of the work of Murnaghan and Biot. Subsequently,
the fundamental differences between these two distinctive formulations of the acoustoelastic effect
will be discussed. The result of this theoretical study is the acoustoelastic effect, which will be ver-
ified through scaled laboratory experiments. Finally, the data acquired from the experiments will be
interpreted through CWI and compared to the theoretical established link between the relative wave-
velocity change and the stresses in the concrete. This research methodology can be summarised with
the flowchart depicted in Figure 1.6.

Theoretical study: Ch. 2, 3 & 4 Experiments: Ch. 5

Data processing and conclusions: Ch. 6 & 7

Theoretical
model

MurnaghanBiot

Acoustoelastic effect

Conclusions and
recommendations

Preliminary
experiments

Final
experiment

Material
parameters

Interpretation of results

Figure 1.6: Flowchart describing the research presented in this thesis.





2
Theoretical study: F.D. Murnaghan

This chapter covers the first approach to the acoustoelastic effect. The paper “Second-Order Elastic
Deformation of Solids” by Hughes and Kelly [13] describes how expressions for the velocities of elastic
waves in stressed solids are derived. These expressions are based on Murnaghan’s theory of finite
deformations and third-order terms in the strain energy. This is covered in Murnaghan’s paper and later
on in his eponymous book “Finite Deformation of an Elastic Solid” [21] [22].

The aforementioned literature is used to rederive the relation between the stress and the strain
in a consistent notation system. This rederivation is necessary because the original derivation and its
corresponding notation can be regarded as unfit for modern standards. Intermediate steps, which have
been left out by Murnaghan, are provided here as well. For the purpose of simplifying Murnaghan’s
expressions, the index notation as well as the alternative description of the strain energy from the thesis
“Measurement of non-linear acoustoelastic effect in steel using acoustic resonance” [11, Eq. 2.50] have
been adopted. With these simplified notations, expressions for wave velocities of a stressed medium
[13, Eq. 12] have been derived.

2.1. Elastic deformation
This section describes the elastic deformation of a continuous solid, causing it to transform from its initial
configuration to its final configuration. Surface forces, mass forces or temperature changes within this
solid generate a stress field which may cause a deformation. This deformation can be represented as
a relative displacement between the particles within the solid, otherwise referred to as the strain field.
The connection between the applied stress field and the resulting strain field is established through
the constitutive relations. It should be noted that isothermal conditions are assumed, meaning that
the influences from temperature changes are neglected. A deformation is categorised as an elastic
deformation if the deformation process is reversible, i.e. if the initial configuration can be restored by
removing the stress field.

2.1.1. Deformation and strain
A three-dimensional, deformable medium is considered in its initial or unstrained state 𝐵ፚ. Within this
medium, a variable point 𝑃ፚ, with initial coordinates (𝑎, 𝑏, 𝑐), traces a curve 𝐶ፚ. A collection of particles
within this medium is assumed to be situated on 𝐶ፚ. The final or strained state of the medium 𝐵፱
is obtained by displacing point 𝑃ፚ to the variable point 𝑃፱ with final coordinates (𝑥, 𝑦, 𝑧). This can be
realised by introducing the displacement vector,

𝑢𝑢𝑢 = (
𝑢
𝑣
𝑤
) = (

𝑥 − 𝑎
𝑦 − 𝑏
𝑧 − 𝑐

) , (2.1)

or in vector notation,

𝑢𝑢𝑢 = 𝑥𝑥𝑥 −𝑎𝑎𝑎. (2.2)

9
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The collection of particles is now situated on the curve 𝐶፱, traced by 𝑃፱. The relative displacement
between the particles within the medium, i.e. the strain, is be defined as the difference in arc length
between the initial curve 𝐶ፚ and final curve 𝐶፱. The medium is in compression if the particles have
moved closer to each other, whereas if they’ve moved away from each other, the medium is in tension.
Figure 2.1 displays the relative displacements of the particles.

𝐵ፚ
𝑃ፚ(𝑎, 𝑏, 𝑐)

𝐶ፚ
𝐵፱

𝑃፱(𝑥, 𝑦, 𝑧)

𝐶፱

𝐽፱𝐽፱𝐽፱(𝑎, 𝑏, 𝑐)

Figure 2.1: Visualisation of the relative displacement between the particles within the medium during a deformation.

The initial scalar element of arc 𝑑𝑠ፚ and final scalar element of arc 𝑑𝑠፱ describe an infinitesimal
portion of the arc length of 𝐶ፚ and 𝐶፱, respectively. They are defined as:

𝑑𝑠ፚ = √(𝑑𝑎𝑑𝑎𝑑𝑎)ፓ(𝑑𝑎𝑑𝑎𝑑𝑎)
𝑑𝑠፱ = √(𝑑𝑥𝑑𝑥𝑑𝑥)ፓ(𝑑𝑥𝑑𝑥𝑑𝑥),

(2.3)

where 𝑑𝑎𝑑𝑎𝑑𝑎 denotes the initial matrix element of arc,

𝑑𝑎𝑑𝑎𝑑𝑎 = (
𝑑𝑎
𝑑𝑏
𝑑𝑐
) , (2.4)

and 𝑑𝑥𝑑𝑥𝑑𝑥 – the final matrix element of arc:

𝑑𝑥𝑑𝑥𝑑𝑥 = (
𝑑𝑥
𝑑𝑦
𝑑𝑧
) . (2.5)

The matrix elements of arc describe the distance between the begin and end point of an arc segment
in the three orthogonal directions.

Upon introducing the definition of the Jacobian matrix, the initial and final matrix element of arc can
be related to each other. The Jacobian matrix contains first-order partial derivatives and can be used to
describe a linear transformation within the vicinity of a specified point. The transformation of the body
within the vicinity of the initial coordinates is then described by the Jacobian matrix,

𝐽፱𝐽፱𝐽፱(𝑎, 𝑏, 𝑐) ≡ (
𝑥ፚ 𝑥 𝑥
𝑦ፚ 𝑦 𝑦
𝑧ፚ 𝑧 𝑧

) , (2.6)

whereas the transformation of the body within the proximity of the final coordinates is described by the
Jacobian matrix,

𝐽ፚ𝐽ፚ𝐽ፚ(𝑥, 𝑦, 𝑧) ≡ (
𝑎፱ 𝑎፲ 𝑎፳
𝑏፱ 𝑏፲ 𝑏፳
𝑐፱ 𝑐፲ 𝑐፳

) . (2.7)
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Here, 𝑥ፚ , 𝑦ፚ , 𝑧ፚ , etc. are short notations for derivatives of the final coordinates with respect to the
initial coordinates,

𝑥ፚ =
𝜕𝑥
𝜕𝑎 ; 𝑦ፚ =

𝜕𝑦
𝜕𝑎 ; 𝑧ፚ =

𝜕𝑧
𝜕𝑎 , (2.8)

while 𝑎፱ , 𝑎፲ , 𝑎፳ , etc. are short notations for derivatives of the initial coordinates with respect to the final
coordinates:

𝑎፱ =
𝜕𝑎
𝜕𝑥 ; 𝑎፲ =

𝜕𝑎
𝜕𝑦 ; 𝑎፳ =

𝜕𝑎
𝜕𝑧 . (2.9)

By elaborating the difference of the squared scalar elements of arc, two equivalent expressions are
obtained1:

(𝑑𝑠፱)ኼ − (𝑑𝑠ፚ)ኼ = (𝑑𝑎𝑑𝑎𝑑𝑎)ፓ2𝜂𝜂𝜂 (𝑑𝑎𝑑𝑎𝑑𝑎) = (𝑑𝑥𝑑𝑥𝑑𝑥)ፓ2𝜖𝜖𝜖 (𝑑𝑥𝑑𝑥𝑑𝑥), (2.10)

where 𝜂𝜂𝜂 and 𝜖𝜖𝜖 denote the Lagrangian and Eulerian description of the strain,

𝜂𝜂𝜂 ≡ ኻ
ኼ( 𝐽፱𝐽፱𝐽፱(𝑎, 𝑏, 𝑐)

ፓ𝐽፱𝐽፱𝐽፱(𝑎, 𝑏, 𝑐) −𝐸ኽ𝐸ኽ𝐸ኽ)

𝜖𝜖𝜖 ≡ ኻ
ኼ(𝐸ኽ𝐸ኽ𝐸ኽ − 𝐽ፚ𝐽ፚ𝐽ፚ(𝑥, 𝑦, 𝑧)

ፓ𝐽ፚ𝐽ፚ𝐽ፚ(𝑥, 𝑦, 𝑧)),
(2.11)

respectively, and 𝐸ኽ𝐸ኽ𝐸ኽ – the 3 x 3 identity matrix. From relation (2.10) it can be concluded that equal
squared elements of arc result in zero strain. This is the case for rigid displacements for which the
Jacobian matrices are orthogonal2. If there is no displacement at all, i.e. the initial coordinates are
equal to the final coordinates, the Jacobian matrices in definition (2.11) reduce to identity matrices,
resulting in zero strain as well.

The Lagrangian description of the strain 𝜂𝜂𝜂 is expressed in terms of the initial coordinates and de-
scribes the strain field over the body before the deformation has occurred, i.e. in its initial configuration
𝐵ፚ. The Eulerian description of the strain 𝜖𝜖𝜖 is expressed in terms of the final coordinates and describes
the strain field over the body after the deformation has occurred, i.e. in its final configuration 𝐵፱. Both
sets of strain components can be assembled in the following matrices:

𝜂𝜂𝜂(𝑎, 𝑏, 𝑐) = (
𝜂ፚፚ 𝜂ፚ 𝜂ፚ
𝜂ፚ 𝜂 𝜂
𝜂ፚ 𝜂 𝜂

) ; 𝜖𝜖𝜖(𝑥, 𝑦, 𝑧) = (
𝜖፱፱ 𝜖፱፲ 𝜖፱፳
𝜖፲፱ 𝜖፲፲ 𝜖፲፳
𝜖፳፱ 𝜖፳፲ 𝜖፳፳

) . (2.12)

Through definition (2.11), the strain components can be elaborated3. The uniaxial strain components
𝜂ፚፚ , 𝜂 , 𝜂 and 𝜖፱፱ , 𝜖፲፲ , 𝜖፳፳ are then of the form:

𝜂ፚፚ =
𝜕𝑢
𝜕𝑎 +

1
2[(

𝜕𝑢
𝜕𝑎)

ኼ
+ (𝜕𝑣𝜕𝑎)

ኼ
+ (𝜕𝑤𝜕𝑎 )

ኼ
]

𝜖፱፱ =
𝜕𝑢
𝜕𝑥 −

1
2[(

𝜕𝑢
𝜕𝑥 )

ኼ
+ (𝜕𝑣𝜕𝑥)

ኼ
+ (𝜕𝑤𝜕𝑥 )

ኼ
],

(2.13)

whereas the symmetric shear strain components 𝜂ፚ , 𝜂ፚ , 𝜂 and 𝜖፱፲ , 𝜖፱፳ , 𝜖፲፳ are of the form:

𝜂ፚ =
1
2(
𝜕𝑢
𝜕𝑏 +

𝜕𝑣
𝜕𝑎) +

1
2(
𝜕𝑢
𝜕𝑎
𝜕𝑢
𝜕𝑏 +

𝜕𝑣
𝜕𝑎
𝜕𝑣
𝜕𝑏 +

𝜕𝑤
𝜕𝑎

𝜕𝑤
𝜕𝑏 )

𝜖፱፲ =
1
2(
𝜕𝑢
𝜕𝑦 +

𝜕𝑣
𝜕𝑥) −

1
2(
𝜕𝑢
𝜕𝑥
𝜕𝑢
𝜕𝑦 +

𝜕𝑣
𝜕𝑥
𝜕𝑣
𝜕𝑦 +

𝜕𝑤
𝜕𝑥
𝜕𝑤
𝜕𝑦 ).

(2.14)

When the initial and final coordinates are approximately the same, the displacements become infinitesi-
mal. In this theory of infinitesimal deformations, the higher-order terms can be neglected such that there
is no distinction between the Lagrangian and Eulerian strain description.
1The detailed derivation of these two expressions is covered in App. A.3.1.
2That is, ፉᑩፉᑩፉᑩ(ፚ, , )ᑋፉᑩፉᑩፉᑩ(ፚ, , )  ፉᑒፉᑒፉᑒ(፱, ፲, ፳)ᑋፉᑒፉᑒፉᑒ(፱, ፲, ፳)  ፄᎵፄᎵፄᎵ.
3The derivation of the strain components is elaborated in App. A.3.2.
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2.1.2. Stress description
An arbitrary portion of the deformable medium is considered in its final configuration 𝐵፱. This portion
has a final element of area 𝑑𝑉፱ and is subjected to two types of forces which have to be in equilibrium
with each other. The first type are the mass forces 𝑋፱𝑋፱𝑋፱ which act on the portion through its element of
𝑑𝑚 = 𝜌፱𝑑𝑉፱. Here, 𝜌፱ denotes the final mass density. The second type are the traction forces 𝑡፱𝑡፱𝑡፱ which
act on the portion across its bounding surface, the final scalar element of area 𝑑𝑆፱. The mass forces
have the dimensions of a force per unit mass, i.e. of acceleration, whereas the traction forces have the
dimensions of a force per unit area, i.e. of stress. The mass forces and traction forces are defined as:

𝑋፱𝑋፱𝑋፱ = (
𝑋፱
𝑌፱
𝑍፱
) ; 𝑡፱𝑡፱𝑡፱ = (

𝑡፱
𝑡፲
𝑡፳
) , (2.15)

respectively.
The traction acting on the final scalar element of area 𝑑𝑆፱ can be elaborated through the use of

Cauchy’s tetrahedron [2, Sec. 1.2]. This tetrahedron is obtained by cutting an infinitesimal cube in
half. The final scalar element of area defines the base plane of the tetrahedron whereas its projections
onto the coordinate planes, 𝑑𝑆፱ , 𝑑𝑆፲ and 𝑑𝑆፳, define the other planes. Here, the superscripts 𝑥, 𝑦, 𝑧
specify the direction of the outward normal vectors to these planes,𝑛፱𝑛፱𝑛፱ , 𝑛፲𝑛፲𝑛፲ , 𝑛፳𝑛፳𝑛፳, respectively. The outward
normal to the base plane 𝑑𝑆፱ is denoted with 𝑛፱𝑛፱𝑛፱. Figure 2.2 displays the planes of the tetrahedron with
its traction vectors and outward normals.

𝑦

𝑧

𝑥

𝑑𝑆፱

𝑑𝑆፲

𝑑𝑆፳

−𝑛፲𝑛፲𝑛፲

−𝑡፲𝑡፲𝑡፲
−𝑛፱𝑛፱𝑛፱
−𝑡፱𝑡፱𝑡፱

−𝑛፳𝑛፳𝑛፳ −𝑡፳𝑡፳𝑡፳

𝑂
ℎ

𝑑𝑆፱

𝑛፱𝑛፱𝑛፱

𝑡፱𝑡፱𝑡፱

Figure 2.2: Visualisation of the traction acting on the planes of a tetrahedron with height ፡ and base plane ፝ፒᑩ.

The traction forces acting on the planes of the tetrahedron must be in equilibrium with each other.
Through Newton’s second law of motion the traction vector 𝑡፱𝑡፱𝑡፱ can be written as4:

𝑡፱𝑡፱𝑡፱ = (
𝑡፱
𝑡፲
𝑡፳
) = (

𝑇፱፱ 𝑇፲፱ 𝑇፳፱
𝑇፱፲ 𝑇፲፲ 𝑇፳፲
𝑇፱፳ 𝑇፲፳ 𝑇፳፳

)(
�̂�፱
�̂�፲
�̂�፳
) , (2.16)

where 𝑇።፣ denotes a stress acting in the 𝑗-direction across a plane which has its outward normal in the
𝑖-direction.

4The derivation of the Cauchy stress equation is elaborated in App. A.4.1.
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Relation (2.16) can be written in the vector notation such that the Cauchy stress equation reads:

𝑡፱𝑡፱𝑡፱ = 𝑇𝑇𝑇ፓ�̂�፱�̂�፱�̂�፱ , (2.17)
where 𝑇𝑇𝑇 denotes the Cauchy stress tensor,

𝑇𝑇𝑇 = (
𝑇፱፱ 𝑇፱፲ 𝑇፱፳
𝑇፲፱ 𝑇፲፲ 𝑇፲፳
𝑇፳፱ 𝑇፳፲ 𝑇፳፳

) , (2.18)

and �̂�፱�̂�፱�̂�፱ – the unit normal vector to the final scalar element of area. Figure 2.3 displays how the tractions
and the stresses are acting on a cube.

𝑥
𝑦

𝑧

፝ፒᑩ�̂�ᑩ�̂�ᑩ�̂�ᑩ

𝑡ᑩ𝑡ᑩ𝑡ᑩ
፝ፒᑪ

�̂�ᑪ�̂�ᑪ�̂�ᑪ

𝑡ᑪ𝑡ᑪ𝑡ᑪ፝ፒᑫ

�̂�ᑫ�̂�ᑫ�̂�ᑫ
𝑡ᑫ𝑡ᑫ𝑡ᑫ

̂። ̂። ̂።

ፓᑩᑩ
ፓᑩᑪ

ፓᑩᑫ ̂፣ ̂፣ ̂፣ፓᑪᑪ
ፓᑪᑩ

ፓᑪᑫ

፤̂̂፤̂፤
ፓᑫᑫ

ፓᑫᑩ
ፓᑫᑪ

Figure 2.3: The positive definitions of the tractions and the Cauchy stresses acting on the coordinate planes of a cube.

2.1.3. Constitutive relation
The condition of equilibrium of the mass and traction forces can be formulated through the principle
of virtual work. The concept of virtual work is defined as the energy needed to move a body with a
virtual deformation. Unlike real deformations which require a finite time to develop, virtual deformations
are considered to be instantaneous, imaginary deformations, causing an infinitesimal variation in the
coordinates.

If it is assumed that the body in its final configuration undergoes an arbitrary virtual deformation,

𝛿𝑥𝛿𝑥𝛿𝑥 = (
𝛿𝑥
𝛿𝑦
𝛿𝑧
) , (2.19)

the total virtual work 𝛿𝑉 in any virtual deformation, exerted on the deformable body by the mass forces
and the tractions, is defined as:

𝛿𝑉 =∭
ፕᑩ
𝜌፱(𝛿𝑥𝛿𝑥𝛿𝑥)ፓ𝑋፱𝑋፱𝑋፱𝑑𝑉፱ +∬

ፒᑩ
(𝛿𝑥𝛿𝑥𝛿𝑥)ፓ𝑡፱𝑡፱𝑡፱𝑑𝑆፱ . (2.20)

Upon further elaborating5, the above can be written as a single volume integral:

𝛿𝑉 =∭
ፕᑩ
{(𝛿𝑥𝛿𝑥𝛿𝑥)ፓ[𝜌፱𝑋፱𝑋፱𝑋፱ + (∇፱∇፱∇፱ 𝑇𝑇𝑇)

ፓ] + Tr(𝑇𝑇𝑇(𝛿𝑥𝛿𝑥𝛿𝑥)፱፱፱)}𝑑𝑉፱ , (2.21)

where (∇፱∇፱∇፱ 𝑇𝑇𝑇)
ፓ
denotes the divergence of the stress tensor with respect to the final coordinates,

(∇፱∇፱∇፱ 𝑇𝑇𝑇)
ፓ =

⎛
⎜
⎜
⎜

⎝

𝜕𝑇፱፱
𝜕𝑥 +

𝜕𝑇፲፱
𝜕𝑦 + 𝜕𝑇፳፱𝜕𝑧

𝜕𝑇፱፲
𝜕𝑥 +

𝜕𝑇፲፲
𝜕𝑦 +

𝜕𝑇፳፲
𝜕𝑧

𝜕𝑇፱፳
𝜕𝑥 +

𝜕𝑇፲፳
𝜕𝑦 + 𝜕𝑇፳፳𝜕𝑧

⎞
⎟
⎟
⎟

⎠

, (2.22)

5The extensive derivation of the expression for the virtual work are elaborated in App. A.4.2.
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and Tr(𝑇𝑇𝑇(𝛿𝑥𝛿𝑥𝛿𝑥)፱፱፱) – the trace of the matrix product of the stress tensor and the Jacobian matrix of the
virtual deformations with respect to the final coordinates:

Tr(𝑇𝑇𝑇(𝛿𝑥𝛿𝑥𝛿𝑥)፱፱፱) = Tr [(
𝑇፱፱ 𝑇፱፲ 𝑇፱፳
𝑇፲፱ 𝑇፲፲ 𝑇፲፳
𝑇፳፱ 𝑇፳፲ 𝑇፳፳

)(
(𝛿𝑥)፱ (𝛿𝑥)፲ (𝛿𝑥)፳
(𝛿𝑦)፱ (𝛿𝑦)፲ (𝛿𝑦)፳
(𝛿𝑧)፱ (𝛿𝑧)፲ (𝛿𝑧)፳

)] . (2.23)

From now on the Jacobian matrix of the final coordinates with respect to the initial coordinates will
be written in the compact form:

𝐽𝐽𝐽 = 𝐽፱𝐽፱𝐽፱(𝑎, 𝑏, 𝑐). (2.24)

If the left-multiplication with its transpose is denoted with𝑀𝑀𝑀 = 𝐽𝐽𝐽ፓ𝐽𝐽𝐽, then from relation (2.11) follows:

𝑀𝑀𝑀 = 2𝜂𝜂𝜂 +𝐸ኽ𝐸ኽ𝐸ኽ. (2.25)

The variation 𝛿𝑀𝛿𝑀𝛿𝑀 can then be written in two equivalent expressions as (see App. A.4.2 for details):

𝛿𝑀𝛿𝑀𝛿𝑀 = 2𝐽𝐽𝐽ፓ𝐷𝐷𝐷𝐽𝐽𝐽 = 2𝛿𝜂𝛿𝜂𝛿𝜂, (2.26)

where 𝐷𝐷𝐷 denotes the symmetric matrix:

𝐷𝐷𝐷 = ኻ
ኼ{[(𝛿𝑥𝛿𝑥𝛿𝑥)፱፱፱]

ፓ + (𝛿𝑥𝛿𝑥𝛿𝑥)፱፱፱}, (2.27)

and 𝛿𝜂𝛿𝜂𝛿𝜂 – the variation of the Lagrangian strain matrix. By combining these two expressions, the varia-
tion 𝛿𝜂𝛿𝜂𝛿𝜂 can be expressed as:

𝛿𝜂𝛿𝜂𝛿𝜂 = 𝐽𝐽𝐽ፓ𝐷𝐷𝐷𝐽𝐽𝐽. (2.28)

The virtual deformation causes an infinitesimal variation in the squared final scalar element of arc,

𝛿(𝑑𝑠፱)ኼ = 2(𝑑𝑥𝑑𝑥𝑑𝑥)ፓ𝐷𝐷𝐷 (𝑑𝑥𝑑𝑥𝑑𝑥), (2.29)

According to the virtual work principle, the total virtual work of all the forces on the body is zero if the
virtual deformation is a virtual rigid displacement. The term virtual rigid displacement can refer to both
a virtual translation and a virtual rotation. For these virtual deformations the 3 x 1 vector 𝛿𝑥𝛿𝑥𝛿𝑥 is such that
the variation 𝛿(𝑑𝑠፱)ኼ = 0, i.e. 𝐷𝐷𝐷 is a zero matrix. For a constant virtual translation of the form,

𝛿𝑥𝛿𝑥𝛿𝑥 = (
𝛿𝑥
𝛿𝑦
𝛿𝑧
) = (

𝑓
𝑔
ℎ
) , (2.30)

it holds that the Jacobian matrix (𝛿𝑥𝛿𝑥𝛿𝑥)፱፱፱ is a zero matrix. For this type of virtual deformation, the following
volume integral must be zero:

𝛿𝑉 =∭
ፕᑩ
{(𝛿𝑥𝛿𝑥𝛿𝑥)ፓ[𝜌፱𝑋፱𝑋፱𝑋፱ + (∇፱∇፱∇፱ 𝑇𝑇𝑇)

ፓ]}𝑑𝑉፱ = 0. (2.31)

Granted that 𝛿𝑥𝛿𝑥𝛿𝑥 is non-zero, the above yields a system of equations of equilibrium:

𝜌፱𝑋፱𝑋፱𝑋፱ + (∇፱∇፱∇፱ 𝑇𝑇𝑇)
ፓ = 000. (2.32)

Therefore, the virtual work for any arbitrary virtual deformation is obtained by reducing relation (2.21)
to:

𝛿𝑉 =∭
ፕᑩ

Tr(𝑇𝑇𝑇(𝛿𝑥𝛿𝑥𝛿𝑥)፱፱፱)𝑑𝑉፱ . (2.33)

From relation (2.27) follows, by definition, that Tr((𝛿𝑥𝛿𝑥𝛿𝑥)፱፱፱) = Tr(𝐷𝐷𝐷), resulting in:

𝛿𝑉 =∭
ፕᑩ

Tr(𝑇𝐷𝑇𝐷𝑇𝐷)𝑑𝑉፱ . (2.34)
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The symmetric matrix 𝐷𝐷𝐷 can be isolated in relation (2.28) such that

𝐷𝐷𝐷 = ( 𝐽𝐽𝐽ፓ)ዅኻ𝛿𝜂𝛿𝜂𝛿𝜂 𝐽𝐽𝐽ዅኻ. (2.35)

By substituting the above in relation (2.34), the virtual work can be expressed in terms of the stress
tensor and the variation of the strain. Since the order of the trace is not of importance, i.e. Tr(𝐴𝐵𝐴𝐵𝐴𝐵) =
Tr(𝐵𝐴𝐵𝐴𝐵𝐴), the following holds:

𝛿𝑉 =∭
ፕᑩ

Tr( 𝐽𝐽𝐽ዅኻ𝑇𝑇𝑇( 𝐽𝐽𝐽ፓ)ዅኻ𝛿𝜂𝛿𝜂𝛿𝜂)𝑑𝑉፱ . (2.36)

The total work exerted by all the forces on the volume of the deformable body in any deformation
is assumed to be stored in the volume as strain energy. This strain energy is distributed throughout 𝑉፱
with a mass density:

𝑈 =∭
ፕᑩ
𝜌፱𝜓𝑑𝑉፱ , (2.37)

where 𝜓(𝜂𝜂𝜂) denotes the strain-energy density per unit mass. The constitutive relations are obtained by
implementing the law of conservation of energy. In compliance with this law, the exerted virtual work
on any portion of the volume of the deformable body in any virtual deformation should be equal to the
variation of the strain energy 𝛿𝑈. By elaborating this equality, the Cauchy stress tensor can eventually
be expressed in terms of the Lagrangian strain matrix (see App. A.4.3 for details):

𝑇𝑇𝑇 = 1
det( 𝐽𝐽𝐽) 𝐽𝐽𝐽

𝜕𝜙
𝜕𝜂𝜂𝜂 𝐽𝐽𝐽

ፓ , (2.38)

where det( 𝐽𝐽𝐽) denotes the determinant of the Jacobian matrix (see App. A.2.3 for details),

det( 𝐽𝐽𝐽) = (𝜌ፚ𝜌፱
) = |

𝑥ፚ 𝑥 𝑥
𝑦ፚ 𝑦 𝑦
𝑧ፚ 𝑧 𝑧

| > 0, (2.39)

and 𝜙 – the strain-energy density per unit initial element of volume. The absolute value of the Jacobian
determinant at a specified point defines the factor by which the volume of the body has been scaled
after the deformation.

For an isotropic material, the strain-energy density 𝜙(𝜂𝜂𝜂) only depends on the three strain invariants
𝐼ኻ, 𝐼ኼ and 𝐼ኽ [22, Ch. 4.1][8, Eq. 1.46]. These strain invariants are defined as Tr(𝜂𝜂𝜂), Tr(co 𝜂𝜂𝜂) and
det(𝜂𝜂𝜂), respectively6. The representation of the strain-energy density 𝜙 as a power series in these
strain invariants is written as:

𝜙 = 𝜙ኺ + 𝜙ኻ + 𝜙ኼ + 𝜙ኽ + ... (2.40)

where the terms are defined as7:

𝜙ኻ = 𝑝𝐼ኻ

𝜙ኼ =
𝜆 + 2𝜇
2 𝐼ኼኻ − 2𝜇𝐼ኼ

𝜙ኽ =
𝑙 + 2𝑚
3 𝐼ኽኻ − 2𝑚𝐼ኻ𝐼ኼ + 𝑛𝐼ኽ.

(2.41)

Here, 𝑝 is an arbitrary constant and the second-order coefficients, 𝜆 and 𝜇, are defined as the first and
second Lamé parameter, respectively. The third-order coefficients 𝑙, 𝑚, 𝑛 are the Murnaghan constants.

6The derivation of the strain invariants is elaborated in App. A.3.3.
7The derivation of the expression for the strain energy is given in App. A.4.3.
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The stress matrix 𝑇𝑇𝑇 can be expressed in terms of the Lamé parameters and the Murnaghan con-
stants by substituting relation (2.40) into (2.38):

𝑇𝑇𝑇 = 1
det( 𝐽𝐽𝐽) 𝐽𝐽𝐽(𝑝𝐸ኽ𝐸ኽ𝐸ኽ + (𝜆𝐼ኻ𝐸ኽ𝐸ኽ𝐸ኽ + 2𝜇𝜂𝜂𝜂) + (𝑙𝐼

ኼ
ኻ − 2𝑚𝐼ኼ)𝐸ኽ𝐸ኽ𝐸ኽ + 2𝑚𝐼ኻ𝜂𝜂𝜂 + 𝑛 co 𝜂𝜂𝜂) 𝐽𝐽𝐽ፓ . (2.42)

If the strain is set to zero, the above reduces to:

𝑇ኺ𝑇ኺ𝑇ኺ = 𝑝𝐸ኽ𝐸ኽ𝐸ኽ = (
𝑝 0 0
0 𝑝 0
0 0 𝑝

) , (2.43)

where 𝑇ኺ𝑇ኺ𝑇ኺ denotes a initial-stress matrix and 𝑝 – the strain-independent hydrostatic stress.

2.2. Dynamic deformation
This section covers the derivation of the wave equation and serves as a bridge between Murnaghan’s
theory and the formulations of the wave velocities of a stressed solid [13, Eq. 12]. After being subjected
to the large elastic deformation, the medium subsequently undergoes a superposed small dynamic de-
formation, resulting in the new position with coordinates (𝑥ᖣ, 𝑦ᖣ, 𝑧ᖣ). The wave equation is then obtained
through the Lagrangian form of Cauchy’s first law of motion in this new position.

2.2.1. Cauchy’s first law of motion
From the principle of virtual work, the system of equations of equilibrium is obtained:

(∇፱∇፱∇፱ 𝑇𝑇𝑇)
ፓ + 𝜌፱𝑋፱𝑋፱𝑋፱ = 000, (2.32)

which, upon introducing an inertia term, yields Cauchy’s first law of motion [1, Eq. 2.13]:

(∇፱∇፱∇፱ 𝑇𝑇𝑇)
ፓ + 𝜌፱𝑋፱𝑋፱𝑋፱ = 𝜌፱�̈̈��̈�𝑥. (2.44)

Here, �̈̈��̈�𝑥 denotes the 3 x 1 vector containing the accelerations of the final coordinates.
It should be noted that the Cauchy stress tensor, and by extension also Cauchy’s first law of motion,

is an Eulerian description. Therefore, the matrix 𝑇𝑇𝑇 describes the stress field over the body in its final
configuration 𝐵፱. However, for the purpose of deriving the formulations of the wave velocity, it is more
convenient to use a Lagrangian description of the stress. This stress description describes the stress
field in the initial configuration 𝐵ፚ for which the element definitions are assumed to be known. By
comparing a portion of a force 𝑑𝑓𝑑𝑓𝑑𝑓 acting on both the initial and final scalar element of area, it is possible
to relate both stress descriptions to each other. Figure 2.4 displays the transformation of the scalar
element of area and its traction vector.

𝐵ፚ
𝑑𝑆ፚ

𝑑𝑓𝑑𝑓𝑑𝑓
�̂�ፚ�̂�ፚ�̂�ፚ𝑡ፚ𝑡ፚ𝑡ፚ

𝑃ፚ(𝑎, 𝑏, 𝑐)
𝐵፱

𝑑𝑆፱

𝑑𝑓𝑑𝑓𝑑𝑓
�̂�፱�̂�፱�̂�፱𝑡፱𝑡፱𝑡፱

𝑃፱(𝑥, 𝑦, 𝑧)

𝐽፱𝐽፱𝐽፱(𝑎, 𝑏, 𝑐)

Figure 2.4: Visualisation of the initial and final scalar elements of area and their respective force vectors.
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The portion of the force can be written as two equivalent expressions:

𝑡ፚ𝑡ፚ𝑡ፚ𝑑𝑆ፚ = 𝑑𝑓𝑑𝑓𝑑𝑓 = 𝑡፱𝑡፱𝑡፱𝑑𝑆፱ , (2.45)
where 𝑡ፚ𝑡ፚ𝑡ፚ denotes the traction vector acting on the initial scalar element of area 𝑑𝑆ፚ. A Lagrangian
stress description can be introduced through the first Piola-Kirchoff stress tensor, 𝑃𝑃𝑃 = 𝜎𝜎𝜎ፓ. By using the
Cauchy stress equation (2.16) and its Lagrangian counterpart, it is possible to rewrite the above to:

𝜎𝜎𝜎ፓ�̂�ፚ�̂�ፚ�̂�ፚ𝑑𝑆ፚ = 𝑑𝑓𝑑𝑓𝑑𝑓 = 𝑇𝑇𝑇ፓ�̂�፱�̂�፱�̂�፱𝑑𝑆፱ . (2.46)
After elaborating further, the nominal stress tensor 𝜎𝜎𝜎 can be expressed in terms of the strain-energy
density with8:

𝜎𝜎𝜎 = 𝜕𝜙
𝜕𝜂𝜂𝜂 𝐽𝐽𝐽

ፓ . (2.47)

Contrary to the Cauchy stress tensor, both the nominal stress tensor and the first Piola-Kirchoff stress
tensor are asymmetric in general, i.e. 𝑃𝑃𝑃 ≠ 𝜎𝜎𝜎. They are symmetric only and only if the Jacobian matrix
𝐽𝐽𝐽 is symmetric as well.

The Lagrangian form of Cauchy’s first law of motion (2.44) is then defined as:

(∇ፚ∇ፚ∇ፚ 𝜎𝜎𝜎)
ፓ + 𝜌ፚ𝑋ፚ𝑋ፚ𝑋ፚ = 𝜌ፚ�̈̈��̈�𝑥, (2.48)

where (∇ፚ∇ፚ∇ፚ 𝜎𝜎𝜎)
ፓ
denotes the divergence of the nominal stress tensor with respect to the initial coordinates

and 𝑋ፚ𝑋ፚ𝑋ፚ – the initial mass forces.

2.2.2. Wave equation
For the purpose of deriving the wave equation, it is convenient to introduce the index notation. In
accordance with this index notation, the indices are denoted with arbitrary letters which are part of the
set {1, 2, 3}. The nominal stress tensor (2.47) can then be written as:

𝜎ᎏ፪ =
𝜕𝜙
𝜕𝜂ᎎᎏ

𝐽ᎎ፪ , (2.49)

where 𝜙 denotes the strain-energy density9:

𝜙 = ኻ
ኼ!𝐶።፣፤፥𝜂።፣𝜂፤፥ +

ኻ
ኽ!𝐶።፣፤፥፦፧𝜂።፣𝜂፤፥𝜂፦፧ + ..., (2.50)

The above represents the strain-energy density as a power series of strain components (see App.
A.5.2) with the fourth-order tensor,

𝐶።፣፤፥ = 𝜆𝛿።፣𝛿፤፥ + 2𝜇𝐼።፣፤፥ , (2.51)
and the sixth-order tensor,

𝐶።፣፤፥፦፧ = 2(𝑙 − 𝑚 +
ኻ
ኼ𝑛)𝛿።፣𝛿፤፥𝛿፦፧ + 2(𝑚 −

ኻ
ኼ𝑛)(𝛿።፣𝐼፤፥፦፧ + 𝛿፤፥𝐼፦፧።፣ + 𝛿፦፧𝐼።፣፤፥)

+ ኻ
ኼ𝑛(𝛿።፤𝐼፣፥፦፧ + 𝛿።፥𝐼፣፤፦፧ + 𝛿፣፤𝐼።፥፦፧ + 𝛿፣፥𝐼።፤፦፧). (2.52)

In these expressions, 𝜆 and 𝜇 denote the first and second Lamé parameter, respectively, and 𝑙, 𝑚, 𝑛 –
the Murnaghan constants. The fourth order tensor 𝐼።፣፤፥ is defined as:

𝐼።፣፤፥ =
ኻ
ኼ(𝛿።፤𝛿፣፥ + 𝛿።፥𝛿፣፤), (2.53)

where 𝛿።፣ denotes the Kronecker delta:

𝛿።፣ = {
1 ; for 𝑖 = 𝑗
0 ; else . (2.54)

8The derivation of the nominal stress tensor is covered in App. A.5.1.
9Upon assuming that the strain energy is minimal when there’s zero strain, the linear term can be neglected.
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By generalising relations (2.13) and (2.14), the Lagrangian strain tensor is obtained:

𝜂፤፥ =
1
2 (

𝜕𝑢፥
𝜕𝑎፤

+ 𝜕𝑢፤𝜕𝑎፥
+ 𝜕𝑢።
𝜕𝑎፤

𝜕𝑢።
𝜕𝑎፥

) , (2.55)

whereas rewriting relation (2.6) yields the gradient tensor

𝐽።ᎎ =
𝜕𝑢።
𝜕𝑎ᎎ

+ 𝛿።ᎎ . (2.56)

With these new index notations, the nominal stress tensor (2.49) can be expanded with:

𝜎ᎏ፪ ≈ (
𝜕𝑢ᎎ
𝜕𝑎፪

+ 𝛿ᎎ፪) [
1
2 (𝐶።፣፤፥

𝜕𝜂።፣
𝜂ᎎᎏ

𝜂፤፥ + 𝐶።፣፤፥𝜂።፣
𝜕𝜂፤፥
𝜂ᎎᎏ

)

+ 1
3! (𝐶።፣፤፥፦፧

𝜕𝜂።፣
𝜂ᎎᎏ

𝜂፤፥𝜂፦፧ + 𝐶።፣፤፥፦፧𝜂።፣
𝜕𝜂፤፥
𝜂ᎎᎏ

𝜂፦፧ + 𝐶።፣፤፥፦፧𝜂።፣𝜂፤፥
𝜕𝜂፦፧
𝜂ᎎᎏ

) ]

= (𝜕𝑢ᎎ𝜕𝑎፪
+ 𝛿ᎎ፪) [

1
2(𝐶ᎎᎏ፤፥𝜂፤፥ + 𝐶።፣ᎎᎏ𝜂።፣)

+ 1
3!(𝐶ᎎᎏ፤፥፦፧𝜂፤፥𝜂፦፧ + 𝐶።፣ᎎᎏ፦፧𝜂።፣𝜂፦፧ + 𝐶።፣፤፥ᎎᎏ𝜂።፣𝜂፤፥)].

(2.57)

After further elaborating (see App. A.5.3 for details), the above becomes:

𝜎፣። = 𝐶።፣፤፥
𝜕𝑢፤
𝜕𝑎፥

+ 12𝑀።፣፤፥፦፧
𝜕𝑢፤
𝜕𝑎፥

𝜕𝑢፦
𝜕𝑎፧

+ ..., (2.58)

with the sixth-order tensor

𝑀።፣፤፥፦፧ = 𝐶።፣፤፥፦፧ + 𝐶።፣፥፧𝛿፤፦ + 𝐶፣፧፤፥𝛿።፦ + 𝐶፣፥፦፧𝛿።፤ . (2.59)

This expression of the nominal stress tensor can be linearised by using the theory of infinitesimal
deformations. In accordance with this theory, terms of an order higher than the first in the strains are
neglected, resulting in the linearised nominal stress tensor

𝜎፣። ≈ 𝐶።፣፤፥
𝜕𝑢፤
𝜕𝑥፥

. (2.60)

Upon neglecting themass forces in relation (2.48), the index notation of the Lagrangian form of Cauchy’s
first law of motion becomes:

𝜕𝜎፣።
𝜕𝑎፣

= 𝜌ፚ
𝜕𝑥።
𝜕𝑡ኼ . (2.61)

which now solely consists of a space-dependent part and a time-dependent part.
If it is assumed that a small dynamic deformation 𝑢𝑢𝑢(ኻ) is superposed on the large static deformation

𝑢𝑢𝑢(ኺ) such that |𝑢𝑢𝑢(ኻ)| ⋘ |𝑢𝑢𝑢(ኺ)|, then the total deformation is defined as:

𝑢𝑢𝑢 = 𝑢𝑢𝑢(ኺ) +𝑢𝑢𝑢(ኻ) = 𝑥𝑥𝑥ᖣ −𝑎𝑎𝑎. (2.62)

Here, 𝑥𝑥𝑥ᖣ denotes the new position after this dynamic deformation has occurred:

𝑥𝑥𝑥ᖣ = (
𝑥ᖣ
𝑦ᖣ
𝑧ᖣ
) = (

𝑢(ኻ) + 𝑥
𝑣(ኻ) + 𝑦
𝑤(ኻ) + 𝑧

) , (2.63)

or, equivalently, in index notation:

𝑥ᖣ። = 𝑢
(ኻ)
። + 𝑥። . (2.64)
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The Lagrangian form of Cauchy’s first law of motion in this new position then reads:

𝜕𝜎፣።
𝜕𝑎፣

= 𝜌ፚ
𝜕𝑥ᖣ።
𝜕𝑡ኼ , (2.65)

which, after substituting relation (2.64) and elaborating the time-dependent part, yields (see App. A.5.4
for details):

𝜌ፚ
𝜕𝑢(ኻ)።
𝜕𝑡ኼ −

𝜕𝜎፣።
𝜕𝑎፣

= 0. (2.66)

The space-dependent part can be expressed in terms of the final coordinates by rewriting the partial
derivative with respect to the initial coordinates:

𝜕
𝜕𝑎፣

= 𝜕
𝜕𝑥፣

+ 𝑢(ኺ)፤,፣
𝜕
𝜕𝑥፤

+ ... (2.67)

Here, 𝑢(ኺ)፤,፣ is a compact notation for the spatial derivative of the static deformation 𝑢
(ኺ)
፤ with respect to

the final coordinate 𝑥፣:

𝑢(ኺ)፤,፣ =
𝜕𝑢(ኺ)፤
𝜕𝑥፣

= { 𝑒፣፤ ; for 𝑗 = 𝑘
0 ; else , (2.68)

where 𝑒፣፤ denotes the first-order approximation of the strain. The spatial derivative of the nominal
stress tensor then becomes:

𝜕𝜎፣።
𝜕𝑎፣

≈
𝜕𝜎፣።
𝜕𝑥፣

+ 𝑢(ኺ)፩,፣
𝜕𝜎፣።
𝜕𝑥፩

≈ 𝐶።፣፤፥
𝜕
𝜕𝑥፣

(𝜕𝑢፤𝜕𝑥፥
+ 𝑢(ኺ)፪,፥

𝜕𝑢፤
𝜕𝑥፪

) + 𝑢(ኺ)፩,፣𝐶።፣፤፥
𝜕
𝜕𝑥፣

(𝜕𝑢፤𝜕𝑥፥
+ 𝑢(ኺ)፪,፥

𝜕𝑢፤
𝜕𝑥፪

)

+ 12𝑀።፣፤፥፦፧
𝜕
𝜕𝑥፣

[(𝜕𝑢፤𝜕𝑥፥
+ 𝑢(ኺ)፪,፥

𝜕𝑢፤
𝜕𝑥፪

)(𝜕𝑢፦𝜕𝑥፧
+ 𝑢(ኺ)፫,፧

𝜕𝑢፦
𝜕𝑥፫

)] + 𝑢(ኺ)፩,፣
1
2𝑀።፣፤፥፦፧

𝜕
𝜕𝑥፣

[...]

+ ...

(2.69)

which, after elaborating further10, eventually yields:

𝜕𝜎፣።
𝜕𝑎፣

≈ (𝐶።፣፤፥+𝐶።፣፤፪𝑢(ኺ)፥,፪ +𝐶።፩፤፥𝑢
(ኺ)
፣,፩+𝐶።፣፤፥፦፧𝑢

(ኺ)
፦,፧+𝐶።፣፥፧𝑢(ኺ)፤,፧+𝐶፣፧፤፥𝑢

(ኺ)
።,፧ +𝐶፣፥፦፧𝛿።፤𝑢

(ኺ)
፦,፧)

𝜕ኼ𝑢(ኻ)፤
𝜕𝑥፣𝜕𝑥፥

. (2.70)

By substituting the above in (2.66), the wave equation is obtained:

𝜌ፚ
𝜕ኼ𝑢(ኻ)።
𝜕𝑡ኼ − 𝐵።፣፤፥

𝜕ኼ𝑢(ኻ)፤
𝜕𝑥፣𝜕𝑥፥

= 0, (2.71)

where the fourth-order tensor

𝐵።፣፤፥ = 𝐶።፣፤፥ + 𝛿።፤𝐶፣፥፪፫𝑢(ኺ)፪,፫ + 𝐶፫፣፤፥𝑢(ኺ)።,፫ + 𝐶።፫፤፥𝑢
(ኺ)
፣,፫ + 𝐶።፣፫፥𝑢

(ኺ)
፤,፫ + 𝐶።፣፤፫𝑢

(ኺ)
፥,፫ + 𝐶።፣፤፥፦፧𝑢

(ኺ)
፦,፧ , (2.72)

denotes the effective elastic moduli.

10The expansion of the spatial derivative of the nominal stress tensor is covered in App. A.5.4.
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2.2.3. Wave velocity
The formulation of the wave velocity is obtained upon division of both sides of the wave equation (2.71)
by the initial mass density 𝜌ፚ:

𝜕ኼ𝑢(ኻ)።
𝜕𝑡ኼ − 𝑐ኼ፣።

𝜕ኼ𝑢(ኻ)፤
𝜕𝑥፣𝜕𝑥፥

= 0, (2.73)

where the second-order tensor

𝑐፣። = √
𝐵።፣፤፥
𝜌ፚ

, (2.74)

describes the velocity of a wave which polarises in the 𝑖-direction while propagating in the 𝑗-direction.
For a longitudinal wave, which propagates along the 𝑥-direction, relation (2.73) becomes:

𝜕ኼ𝑢(ኻ)
𝜕𝑡ኼ − 𝑐ኼ፱፱

𝜕ኼ𝑢(ኻ)
𝜕𝑥ኼ = 0. (2.75)

The wave velocity 𝑐፱፱ is then defined as11:

𝑐፱፱ = √
𝜆 + 2𝜇 + (2𝑙 + 𝜆)𝑒 + (4𝜆 + 4𝑚 + 10𝜇)𝑒፱፱

𝜌ፚ
, (2.76)

where 𝑒 denotes volumetric strain:

𝑒 = 𝑒፱፱ + 𝑒፲፲ + 𝑒፳፳ . (2.77)

This relation expresses the wave velocity in terms of the Murnaghans constants and the uniaxial strains.
By using the definition of the linearised nominal stress (2.60), the uniaxial strains can be written in terms
of the uniaxial stress (see App. A.5.5 for details):

𝜎።። = (3𝜆 + 2𝜇)𝑒. (2.78)

By using the above, the description of the longitudinal-wave velocity of a medium which is stressed
parallel to its propagation direction is obtained:

𝑐 ᑩᑩ፱፱ =
√𝜆 + 2𝜇 ±

𝜎፱፱
3𝐾 [2𝑙 + 𝜆 +

𝜆 + 𝜇
𝜇 (4𝜆 + 4𝑚 + 10𝜇)]

𝜌ፚ
, (2.79)

where 𝐾 denotes the bulk modulus:

𝐾 = 𝜆 + ኼ
ኽ𝜇, (2.80)

whereas +𝜎፱፱ and −𝜎፱፱ – a tensile stress and a compressive stress, respectively. Through a similar
approach, the description of the longitudinal-wave velocity of a medium which is stressed perpendicular
to its propagation direction can be found:

𝑐 ᑪᑪ
፱፱ =

√𝜆 + 2𝜇 ±
𝜎፲፲
3𝐾 [2𝑙 + 𝜆 − 𝜆

2𝜇 (4𝜆 + 4𝑚 + 10𝜇)]

𝜌ፚ

𝑐 ᑫᑫ፱፱ =
√𝜆 + 2𝜇 ±

𝜎፳፳
3𝐾 [2𝑙 + 𝜆 −

𝜆
2𝜇 (4𝜆 + 4𝑚 + 10𝜇)]

𝜌ፚ
.

(2.81)

11The expansion of the wave velocities is elaborated in App. A.5.5.
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For transverse waves, which propagate along the 𝑥-direction and polarise in the 𝑦-direction or 𝑧-
direction, relation (2.73) becomes:

𝜕ኼ𝑣(ኻ)
𝜕𝑡ኼ − 𝑐ኼ፱፲

𝜕ኼ𝑣(ኻ)
𝜕𝑥ኼ = 0

𝜕ኼ𝑤(ኻ)
𝜕𝑡ኼ − 𝑐ኼ፱፳

𝜕ኼ𝑤(ኻ)
𝜕𝑥ኼ = 0,

(2.82)

respectively. The transverse-wave velocity of a medium which is subjected to a stress parallel to the
propagation direction is then defined as:

𝑐 ᑩᑩ፱፲ = 𝑐 ᑩᑩ፱፳ =
√𝜇 ±

𝜎፱፱
3𝐾 (𝑚 +

𝜆𝑛
4𝜇 + 4𝜆 + 4𝜇)

𝜌ፚ
, (2.83)

whereas the transverse-wave velocity of a medium which is subjected to a stress parallel to the polar-
isation direction is defined as:

𝑐 ᑪᑪ
፱፲ =

√𝜇 ±
𝜎፲፲
3𝐾 (𝑚 + 𝜆𝑛4𝜇 + 𝜆 + 2𝜇)

𝜌ፚ

𝑐 ᑫᑫ፱፳ =
√𝜇 ±

𝜎፳፳
3𝐾 (𝑚 +

𝜆𝑛
4𝜇 + 𝜆 + 2𝜇)

𝜌ፚ
.

(2.84)

When loading the medium with a stress perpendicular to both the propagation direction and polari-
sation direction, the transverse-wave velocity becomes:

𝑐 ᑫᑫ፱፲ =
√𝜇 ±

𝜎፳፳
3𝐾 [𝜆 + 𝑚 −

𝜆 + 𝜇
𝜇 ( 3𝜇𝜆𝜆 + 𝜇 +

1
2𝑛)]

𝜌ፚ

𝑐 ᑪᑪ
፱፳ =

√𝜇 ±
𝜎፲፲
3𝐾 [𝜆 + 𝑚 − 𝜆 + 𝜇𝜇 ( 3𝜇𝜆𝜆 + 𝜇 +

1
2𝑛)]

𝜌ፚ
.

(2.85)

From the several expressions of the wave velocities it can be observed that the wave velocity is
dependent on the orientation of the stress with respect to both the propagation and the polarisation
direction. It should be noted that the uniaxial stress 𝜎።። depends on the strain, which results in a second-
order term. When the infinitesimal theory is taken into account, the contribution of the stress can be
neglected, resulting in:

𝑐 ኺ
።፣ =

⎧
⎪

⎨
⎪
⎩

√𝜆 + 2𝜇𝜌ፚ
; for 𝑖 = 𝑗

√
𝜇
𝜌ፚ

; else
, (2.86)

which is defined as the initial wave velocity.
In this chapter, Murnaghan’s formulation of the wave velocities of a medium subjected to a stress

has been derived. It has been shown that influence of the stress differs according to the orientation
of the stress with respect to the propagation and polarisation directions of the wave. This influence is
regulated by the Murnaghan constants, which still need to be determined.





3
Theoretical study: M.A. Biot

The second approach to the acoustoelastic effect is covered in this chapter. In his paper “The Influence
of Initial Stress on Elastic Waves” Biot [4] describes how a relation between the initial stress and the
wave velocity of a medium can be established. Later on, he wrote the book “Mechanics of incremental
deformations” [5], in which he expanded upon this theory. This chapter contains Biot’s theory in the way
it has been presented in his aforementioned paper, as well as additional derivations and intermediate
steps which are necessary to obtain certain expressions. Afterwards, the index notation from Biot’s
book has been adopted for the purpose of extending the theory to the third dimension.

3.1. Two-dimensional medium
This section deals with the derivation of both the static and dynamic-equilibrium equations of a two-
dimensional medium as it is transformed from its initial to its final configuration. This transformation
is the result of a displacement which is accordance with the theory infinitesimal deformations. The
medium is assumed to be deformable and is, in its initial configuration, subjected to both initial-stress
components and mass forces. After the medium has deformed, it is subjected to strain-dependent
incremental-stress components as well.

3.1.1. Initial-stress field
A point 𝑃ፚ with initial coordinates (𝑎, 𝑏) is situated within an infinitesimal medium which is assumed to
be subjected to initial-stress components 𝑆ኻኻ, 𝑆ኼኼ, 𝑆ኻኼ, and mass forces, displayed in Figure 3.1.

𝑥

𝑦

+𝜔፳

𝑃ፚ(𝑎, 𝑏)
𝑆ኻኻ(𝑎, 𝑏)

𝑆ኻኼ(𝑎, 𝑏)

𝑆ኻኼ(𝑎, 𝑏)

𝑆ኼኼ(𝑎, 𝑏)

𝑆ኻኻ(𝑎 + Δ𝑎, 𝑏)

𝑆ኻኼ(𝑎 + Δ𝑎, 𝑏)

𝑆ኻኼ(𝑎, 𝑏 + Δ𝑏)

𝑆ኼኼ(𝑎, 𝑏 + Δ𝑏)

𝑋ፚ

𝑌ፚ

Figure 3.1: Initial-stresses acting on a square with dimensions ጂፚ, ጂ.
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Based on Figure 3.1, the following equilibrium conditions hold1:

𝜕𝑆ኻኻ
𝜕𝑎 + 𝜕𝑆ኻኼ𝜕𝑏 + 𝜌ፚ𝑋ፚ = 0
𝜕𝑆ኻኼ
𝜕𝑎 + 𝜕𝑆ኼኼ𝜕𝑏 + 𝜌ፚ𝑌ፚ = 0,

(3.1)

where 𝜌ፚ denotes initial mass density and 𝑋ፚ, 𝑌ፚ – the components of the mass force which have the
unit of acceleration.

3.1.2. Transformation of the medium
Through infinitesimal deformations 𝑢 and 𝑣, the medium is displaced to the point 𝑃፱ with final coordi-
nates (𝑥, 𝑦),

𝑥 = 𝑎 + 𝑢
𝑦 = 𝑏 + 𝑣, (3.2)

and subsequently undergoes a pure homogeneous deformation and a rotation:

𝜔፳ =
1
2(
𝜕𝑣
𝜕𝑎 −

𝜕𝑢
𝜕𝑏). (3.3)

As a result of this deformation, incremental-stress components 𝑠።፣ are generated which depend on the
strain. This deformation and the resulting stress state of the medium is displayed in Figure 3.2.

ᑇᑒ(ᑒ, ᑓ)ᑇᑒ(ᑒ, ᑓ)ᑇᑒ(ᑒ, ᑓ)
ᑕᑒᑕᑒᑕᑒ

ᑕᑓᑕᑓᑕᑓ

ᑇᑩ(ᑩ, ᑪ)ᑇᑩ(ᑩ, ᑪ)ᑇᑩ(ᑩ, ᑪ) ᑕᑩᑕᑩᑕᑩ

ᑕᑪᑕᑪᑕᑪ

ᒞᑫᒞᑫᒞᑫ

(a)

ፏᑒ(ፚ, )

ፏᑩ(፱, ፲)

ᑩᑩᑩᑩᑩᑩ

ᑩᑪᑩᑪᑩᑪ

ᑪᑪᑪᑪᑪᑪ

ᎦᑫᎦᑫᎦᑫ

(b)

Figure 3.2: Representation of the deformation and the stresses of the medium within the vicinity of point ፏᑩ(፱, ፲) [5] (edited). (a)
Deformation and rotation of the medium. (b) Initial-stresses and the incremental-stresses.

The stress components at this point 𝑃፱(𝑥, 𝑦), referred to the rotated axes, are defined as:

𝜎ኻኻ = 𝑆ኻኻ + 𝑠ኻኻ
𝜎ኼኼ = 𝑆ኼኼ + 𝑠ኼኼ
𝜎ኻኼ = 𝑆ኻኼ + 𝑠ኻኼ.

(3.4)

1The derivation of these equilibrium conditions are derived in App. B.1.1.
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The stress components 𝜎፱፱, 𝜎፲፲ and 𝜎፱፲, displayed in Figure 3.2b, refer to the unrotated axes, 𝑥
and 𝑦, and can be obtained by means of the tensor transformation relation2:

𝜎፱፱ = 𝑆ኻኻ + 𝑠ኻኻ − 2𝑆ኻኼ𝜔፳
𝜎፲፲ = 𝑆ኼኼ + 𝑠ኼኼ + 2𝑆ኻኼ𝜔፳
𝜎፱፲ = 𝑆ኻኼ + 𝑠ኻኼ + (𝑆ኻኻ − 𝑆ኼኼ)𝜔፳ .

(3.5)

3.1.3. Dynamic equilibrium after deformation
The dynamic equilibrium of the stresses at the point 𝑃፱(𝑥, 𝑦) is defined as:

𝜕𝜎፱፱
𝜕𝑥 +

𝜕𝜎፱፲
𝜕𝑦 + 𝜌፱𝑋፱ = 𝜌፱

𝜕ኼ𝑢
𝜕𝑡ኼ

𝜕𝜎፱፲
𝜕𝑥 +

𝜕𝜎፲፲
𝜕𝑦 + 𝜌፱𝑌፱ = 𝜌፱

𝜕ኼ𝑣
𝜕𝑡ኼ ,

(3.6)

where 𝜌፱ denotes the final mass density and 𝑋፱, 𝑌፱ – the components of the final mass force.
By making use of the chain rule of differentiation, it is possible to express the dynamic equilibrium

in terms of the initial coordinates:

𝜕𝜎፱፱
𝜕𝑎

𝜕𝑎
𝜕𝑥 +

𝜕𝜎፱፱
𝜕𝑏

𝜕𝑏
𝜕𝑥 +

𝜕𝜎፱፲
𝜕𝑎

𝜕𝑎
𝜕𝑦 +

𝜕𝜎፱፲
𝜕𝑏

𝜕𝑏
𝜕𝑦 + 𝜌፱𝑋፱ = 𝜌፱

𝜕ኼ𝑢
𝜕𝑡ኼ

𝜕𝜎፱፲
𝜕𝑎

𝜕𝑎
𝜕𝑥 +

𝜕𝜎፱፲
𝜕𝑏

𝜕𝑏
𝜕𝑥 +

𝜕𝜎፲፲
𝜕𝑎

𝜕𝑎
𝜕𝑦 +

𝜕𝜎፲፲
𝜕𝑏

𝜕𝑏
𝜕𝑦 + 𝜌፱𝑌፱ = 𝜌፱

𝜕ኼ𝑣
𝜕𝑡ኼ ,

(3.7)

where the partial derivatives of initial coordinates with respect to the final coordinates are defined as3:

𝜕𝑎
𝜕𝑥 =

1
det( 𝐽𝐽𝐽)(1 +

𝜕𝑣
𝜕𝑏) ; 𝜕𝑎

𝜕𝑦 = −
1

det( 𝐽𝐽𝐽)
𝜕𝑢
𝜕𝑏

𝜕𝑏
𝜕𝑥 = −

1
det( 𝐽𝐽𝐽)

𝜕𝑣
𝜕𝑎 ; 𝜕𝑏

𝜕𝑦 =
1

det( 𝐽𝐽𝐽)(1 +
𝜕𝑢
𝜕𝑎).

(3.8)

Here, 𝐽𝐽𝐽 denotes the 2 x 2 Jacobian matrix:

𝐽𝐽𝐽 = (
𝜕𝑥
𝜕𝑎

𝜕𝑥
𝜕𝑏

𝜕𝑦
𝜕𝑎

𝜕𝑦
𝜕𝑏

) . (3.9)

After substituting expressions (3.8) into relation (3.7) and using the definition of the Jacobian deter-
minant (2.39), the dynamic equilibrium becomes :

𝜕𝜎፱፱
𝜕𝑎 +

𝜕𝜎፱፲
𝜕𝑏 + 𝑒፲፲

𝜕𝜎፱፱
𝜕𝑎 + 𝑒፱፱

𝜕𝜎፱፲
𝜕𝑏 − (𝑒፱፲ − 𝜔፳)

𝜕𝜎፱፲
𝜕𝑎 − (𝑒፱፲ + 𝜔፳)

𝜕𝜎፱፱
𝜕𝑏 + 𝜌ፚ𝑋፱ = 𝜌ፚ

𝜕ኼ𝑢
𝜕𝑡ኼ

𝜕𝜎፱፲
𝜕𝑎 +

𝜕𝜎፲፲
𝜕𝑏 + 𝑒፲፲

𝜕𝜎፱፲
𝜕𝑎 + 𝑒፱፱

𝜕𝜎፲፲
𝜕𝑏 − (𝑒፱፲ − 𝜔፳)

𝜕𝜎፲፲
𝜕𝑎 − (𝑒፱፲ + 𝜔፳)

𝜕𝜎፱፲
𝜕𝑏 + 𝜌ፚ𝑌፱ = 𝜌ፚ

𝜕ኼ𝑣
𝜕𝑡ኼ ,

(3.10)

where the first-order approximations of the strain components are denoted with:

𝑒፱፱ =
𝜕𝑢
𝜕𝑎

𝑒፲፲ =
𝜕𝑣
𝜕𝑏

𝑒፱፲ =
1
2(
𝜕𝑣
𝜕𝑎 +

𝜕𝑢
𝜕𝑏).

(3.11)

2This tensor transformation relation is elaborated in App. B.1.2
3The partial derivatives are elaborated in App. B.1.3.



26 3. Theoretical study: M.A. Biot

Substituting the stress components (3.5) into relations (3.10), eventually results in4:

𝜕𝑠ኻኻ
𝜕𝑎 + 𝜕𝑠ኻኼ𝜕𝑏 + 𝜌ፚ𝑢

𝜕𝑋፱
𝜕𝑎 + 𝜌ፚ𝑣

𝜕𝑋፱
𝜕𝑏 + 𝜌ፚ𝜔፳𝑌ፚ − 2𝑆ኻኼ

𝜕𝜔፳
𝜕𝑎

+ (𝑆ኻኻ − 𝑆ኼኼ)
𝜕𝜔፳
𝜕𝑏 + 𝑒፲፲

𝜕𝑆ኻኻ
𝜕𝑎 + 𝑒፱፱

𝜕𝑆ኻኼ
𝜕𝑏 − 𝑒፱፲(

𝜕𝑆ኻኼ
𝜕𝑎 + 𝜕𝑆ኻኻ𝜕𝑏 ) = 𝜌ፚ

𝜕ኼ𝑢
𝜕𝑡ኼ

𝜕𝑠ኻኼ
𝜕𝑎 + 𝜕𝑠ኼኼ𝜕𝑏 + 𝜌ፚ𝑢

𝜕𝑌፱
𝜕𝑎 + 𝜌ፚ𝑣

𝜕𝑌፱
𝜕𝑏 − 𝜌ፚ𝜔፳𝑋ፚ + 2𝑆ኻኼ

𝜕𝜔፳
𝜕𝑏

+ (𝑆ኻኻ − 𝑆ኼኼ)
𝜕𝜔፳
𝜕𝑎 + 𝑒፲፲

𝜕𝑆ኻኼ
𝜕𝑎 + 𝑒፱፱

𝜕𝑆ኼኼ
𝜕𝑏 − 𝑒፱፲(

𝜕𝑆ኼኼ
𝜕𝑎 + 𝜕𝑆ኻኼ𝜕𝑏 ) = 𝜌ፚ

𝜕ኼ𝑣
𝜕𝑡ኼ .

(3.12)

Since it is known that the incremental-stress components only depend on the strain, they may be
written as linear functions of the strain components:

𝑠ኻኻ = 𝐵ኻኻኻኻ𝑒፱፱ + 𝐵ኻኻኼኼ𝑒፲፲ + 2𝐵ኻኻኻኼ𝑒፱፲
𝑠ኼኼ = 𝐵ኼኼኻኻ𝑒፱፱ + 𝐵ኼኼኼኼ𝑒፲፲ + 2𝐵ኼኼኻኼ𝑒፱፲
𝑠ኻኼ = 𝐵ኻኼኻኻ𝑒፱፱ + 𝐵ኻኼኼኼ𝑒፲፲ + 2𝐵ኻኼኻኼ𝑒፱፲ .

(3.13)

In Biot’s book “Mechanics of incremental deformation” [5, Ch. 2.3], it is explained how relations be-
tween the elastic coefficients 𝐵።፣፤፥ and the initial-stress components 𝑆።፣ can be established through the
principle of virtual work5 :

𝐵ኻኻኼኼ + 𝑆ኻኻ = 𝐵ኼኼኻኻ + 𝑆ኼኼ
𝐵ኻኻኻኼ −

ኻ
ኼ𝑆ኻኼ = 𝐵ኻኼኻኻ +

ኻ
ኼ𝑆ኻኼ

𝐵ኼኼኻኼ −
ኻ
ኼ𝑆ኻኼ = 𝐵ኻኼኼኼ +

ኻ
ኼ𝑆ኻኼ.

(3.14)

3.2. Three-dimensional medium
This section covers the derivation of the wave equation and, with it, the expressions of the wave ve-
locities, expressed in terms of the initial-stress components. By extending the two-dimensional stress
field of Figure 3.1 to a three-dimensional case, it is possible to observe the influence of the orientation
of the stress direction with the respect to the propagation and polarisation direction of a wave.

3.2.1. Index notation
For the purpose of expanding the two-dimensional dynamic equilibrium (3.12) to the third dimension,
it is convenient to adopt the index notation. In this notation system the indices have to abide to the
following:

𝑖, 𝑗, 𝑘, 𝑙 ∈ {1, 2, 3}. (3.15)
The three dynamic-equilibrium conditions can now be written in the compact form [5, Eq. 7.42]:

𝜕𝑠።፣
𝜕𝑎፣

+ 𝜌ፚΔ𝑋። − 𝜌ፚ𝜔።፤𝑋፤(𝑥፥) − 𝜌ፚ𝑒𝑋።(𝑥፥) + 𝑆፣፤
𝜕𝜔።፤
𝜕𝑎፣

+ 𝑆።፤
𝜕𝜔፣፤
𝜕𝑎፣

− 𝑒፣፤
𝜕𝑆።፤
𝜕𝑎፣

= 𝜌ፚ
𝜕ኼ𝑢።
𝜕𝑡ኼ , (3.16)

where 𝑒 = 𝑒፱፱+𝑒፲፲+𝑒፳፳ denotes the volumetric strain and the indices 𝑖, 𝑗, 𝑘 range over the set {1,2,3}.
The strain components and the rotations are defined as:

𝑒።፣ =
1
2(
𝜕𝑢።
𝜕𝑎፣

+
𝜕𝑢፣
𝜕𝑎።

)

𝜔።፣ =
1
2(
𝜕𝑢።
𝜕𝑎፣

−
𝜕𝑢፣
𝜕𝑎።

),
(3.17)

respectively.
4The derivation of the final expression of the dynamic equilibrium is covered in App. B.1.4.
5The proof of these relations is derived in App. B.2.1.
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The initial coordinates and the displacements are denoted with:

𝑎። = (𝑎ኻ, 𝑎ኼ, 𝑎ኽ) = (𝑎, 𝑏, 𝑐)
𝑢። = (𝑢ኻ, 𝑢ኼ, 𝑢ኽ) = (𝑢, 𝑣, 𝑤),

(3.18)

respectively. The notation for the rotation angles can be simplified by specifying the orthogonal axis
of rotation. It should be noted that the rotation angles are ant-symmetric, resulting in the following
definitions:

𝜔ኻኻ = 1 𝜔ኻኼ = −𝜔፳ 𝜔ኻኽ = 𝜔፲
𝜔ኼኻ = 𝜔፳ 𝜔ኼኼ = 1 𝜔ኼኽ = −𝜔፱
𝜔ኽኻ = −𝜔፲ 𝜔ኽኼ = 𝜔፱ 𝜔ኽኽ = 1.

(3.19)

The quantity Δ𝑋። denotes the increment in mass force from the initial location to the displaced loca-
tion and is defined as

Δ𝑋። = 𝑢፣
𝜕𝑋።(𝑎፥)
𝜕𝑎፣

, (3.20)

where the 𝑋።(𝑎፥) are the initial mass forces. The incremental-stress components 𝑠።፣ can be written as:

𝑠።፣ = 𝑍።፣፤፥𝑒፤፥ − 𝑆።፣𝑒. (3.21)

The fourth-order tensor 𝑍።፣፤፥ is defined as:

𝑍።፣፤፥ = 𝐵።፣፤፥ + 𝑆።፣𝛿፤፥ , (3.22)

where 𝛿፤፥ denotes the Kronecker delta. The relations between the initial-stress components and the
elastic coefficients, (3.14), then become:

𝐵።፣፤፥ + 𝑆።፣𝛿፤፥ = 𝐵፤፥።፣ + 𝑆፤፥𝛿።፣ . (3.23)

3.2.2. Wave equation
By setting the conditions for the initial-stress components, it is possible to examine the corresponding
behaviour of elastic waves. This can be done by elaborating the dynamic-equilibrium relations (3.16).
In order to study the influence of the initial-stress components on the wave velocity, a stressed cube is
considered. A uniform initial-stress state in the principal directions along the 𝑥, 𝑦, 𝑧 axes is assumed .
This results in the stress components depicted in Figure 3.3.

𝑥
𝑦

𝑧

𝑆ኻኻ

𝑆ኼኼ
𝑆ኽኽ

Figure 3.3: Initial tensile stresses acting on a cube, including the assumed sign conventions.

Following from the theory infinitesimal deformations, the initial and final coordinates are approxi-
mately the same. Therefore, the spatial derivatives with respect to the initial coordinates can be written
in terms of the final coordinates.
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Relation (3.16) then yields the following three dynamic-equilibrium conditions6:

𝜕𝑠ኻኻ
𝜕𝑥 + 𝜕𝑠ኻኼ𝜕𝑦 + 𝜕𝑠ኻኽ𝜕𝑧 + (𝑆ኻኻ − 𝑆ኼኼ)

𝜕𝜔፳
𝜕𝑦 + (𝑆ኽኽ − 𝑆ኻኻ)

𝜕𝜔፲
𝜕𝑧 = 𝜌ፚ

𝜕ኼ𝑢
𝜕𝑡ኼ

𝜕𝑠ኻኼ
𝜕𝑥 + 𝜕𝑠ኼኼ𝜕𝑦 + 𝜕𝑠ኼኽ𝜕𝑧 + (𝑆ኻኻ − 𝑆ኼኼ)

𝜕𝜔፳
𝜕𝑥 + (𝑆ኼኼ − 𝑆ኽኽ)

𝜕𝜔፱
𝜕𝑧 = 𝜌ፚ

𝜕ኼ𝑣
𝜕𝑡ኼ

𝜕𝑠ኻኽ
𝜕𝑥 + 𝜕𝑠ኼኽ𝜕𝑦 + 𝜕𝑠ኽኽ𝜕𝑧 + (𝑆ኽኽ − 𝑆ኻኻ)

𝜕𝜔፲
𝜕𝑥 + (𝑆ኼኼ − 𝑆ኽኽ)

𝜕𝜔፱
𝜕𝑦 = 𝜌ፚ

𝜕ኼ𝑤
𝜕𝑡ኼ .

(3.24)

The wave equations are obtained by substituting relation (3.21) and using the definition of the rotation
angles 𝜔።፣. For each wave equation only one type of solution is assumed, as displayed in Figure 3.4.

𝑧

𝑦
𝑥 𝑢(𝑥, 𝑡)

𝑧

𝑦
𝑥 𝑣(𝑥, 𝑡)

𝑧

𝑦
𝑥 𝑤(𝑥, 𝑡)

Figure 3.4: Graphical representation of the assumed waveforms for each wave equation.

For these waveforms, the set of wave equations becomes:

𝜌ፚ
𝜕ኼ𝑢
𝜕𝑡ኼ − (𝑍ኻኻኻኻ − 𝑆ኻኻ)

𝜕ኼ𝑢
𝜕𝑥ኼ = 0

𝜌ፚ
𝜕ኼ𝑣
𝜕𝑡ኼ − (𝑍ኻኼኻኼ +

ኻ
ኼ𝑆ኻኻ −

ኻ
ኼ𝑆ኼኼ)

𝜕ኼ𝑣
𝜕𝑥ኼ = 0

𝜌ፚ
𝜕ኼ𝑤
𝜕𝑡ኼ − (𝑍ኻኽኻኽ +

ኻ
ኼ𝑆ኻኻ −

ኻ
ኼ𝑆ኽኽ)

𝜕ኼ𝑤
𝜕𝑥ኼ = 0.

(3.25)

3.2.3. Wave velocity
Upon division by the mass density 𝜌ፚ, relation (3.25) can be simplified to:

𝜕ኼ𝑢
𝜕𝑡ኼ − 𝑐

ኼ
፱፱

𝜕ኼ𝑢
𝜕𝑥ኼ = 0

𝜕ኼ𝑣
𝜕𝑡ኼ − 𝑐

ኼ
፱፲

𝜕ኼ𝑣
𝜕𝑥ኼ = 0

𝜕ኼ𝑤
𝜕𝑡ኼ − 𝑐

ኼ
፱፳

𝜕ኼ𝑤
𝜕𝑥ኼ = 0,

(3.26)

where 𝑐፱፱ , 𝑐፱፲ and 𝑐፱፳ denote the wave velocities of waves propagating in the 𝑥-direction while po-
larising in the 𝑥, 𝑦 and 𝑧-direction, respectively. By using relation (3.22), these wave velocities of the
stressed medium can be defined as7:

𝑐 ፒᎳᎳ፱፱ = √𝜆 + 2𝜇𝜌ፚ

𝑐 ፒᎳᎳ;ፒᎴᎴ፱፲ = √
𝜇 + ኻ

ኼ𝑆ኻኻ −
ኻ
ኼ𝑆ኼኼ

𝜌ፚ

𝑐 ፒᎳᎳ;ፒᎵᎵ፱፳ = √
𝜇 + ኻ

ኼ𝑆ኻኻ −
ኻ
ኼ𝑆ኽኽ

𝜌ፚ
.

(3.27)

6The derivation is covered in App. B.2.2
7The intermediate steps are elaborated in App. B.2.3
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These relations show that only the expressions for transverse-wave velocities are directly influenced
by the initial-stress components. For a longitudinal wave, the expression of the wave velocity remains
equal to that of an unstressed medium. Due to the absence of initial-stress components in the formu-
lation of the longitudinal-wave velocity, it seems as if there is no influence from the initial-stress at first
sight. However, the expression is indirectly influenced through relation (3.23). Note that the definition
of the initial wave velocity, 𝑐 ኺ

።፣ , is obtained once the initial-stress components are identical or both
equal to zero:

𝑐 ኺ
።፣ =

⎧
⎪

⎨
⎪
⎩

√𝜆 + 2𝜇𝜌ፚ
; for 𝑖 = 𝑗

√
𝜇
𝜌ፚ

; else
, (2.86)

where 𝜆 and 𝜇 denote the first and second Lamé parameter, respectively.
The elaboration of Biot’s theoretical model has been covered in this chapter. It has been demon-

strated how the initial-stress component influences the wave velocities of themedium, according to Biot.
The next chapter contains a discussion of both Biot’s and Murnaghan’s model. Through a comparison,
their similarities as well as the differences in their fundamental assumptions are detailed.





4
Discussion: Murnaghan and Biot

In Chapters 2 and 3, theoretical review studies have been conducted on the behaviour of elastic waves,
propagating through a stressed medium. This chapter serves as a discussion in which a comparison
will be made between the two approaches with respect to the elastic wave propagation and the wave
velocity in particular. The similarities between Murnaghan’s and Biot’s theory as well as their funda-
mental differences, are elaborated here.

4.1. Fundamental assumptions
From the theoretical studies, it shows that both models are accompanied with different analytical ob-
servations with respect to the change of the wave velocity under certain stress conditions. These dif-
ferences stem from the fundamental assumptions made by the two authors, upon which their theories
are based. Therefore, the foundations of both models will be revised in this section.

4.1.1. F.D. Murnaghan
In his theory, Murnaghan describes how a three-dimensional deformable medium transforms under an
elastic deformation. He made the assumption that this deformation is of a sufficient magnitude such
that its second-order terms are of importance for the dynamic response of the medium. Therefore,
a distinction can be made between the initial and final configuration of the medium, expressed in the
coordinates (𝑎, 𝑏, 𝑐) and (𝑥, 𝑦, 𝑧), respectively. As a result, the strains, and consequently the stresses,
can be either presented with the Eulerian description, i.e. expressed in terms of the final coordinates:

𝜖፤፥ =
1
2 (

𝜕𝑢፥
𝜕𝑥፤

+ 𝜕𝑢፤𝜕𝑥፥
− 𝜕𝑢።
𝜕𝑥፤

𝜕𝑢።
𝜕𝑥፥

) , (4.1)

or with the Lagrangian description, i.e. expressed in terms of the initial coordinates:

𝜂፤፥ =
1
2 (

𝜕𝑢፥
𝜕𝑎፤

+ 𝜕𝑢፤𝜕𝑎፥
+ 𝜕𝑢።
𝜕𝑎፤

𝜕𝑢።
𝜕𝑎፥

) . (2.55)

Another assumption Murnaghan makes is that the medium is an isotropic material. Accordingly, the
strain-energy density only depends on the three strain invariants:

𝜙(𝜂𝜂𝜂) = 𝑝𝐼ኻ +
𝜆 + 2𝜇
2 𝐼ኼኻ − 2𝜇𝐼ኼ +

𝑙 + 2𝑚
3 𝐼ኽኻ − 2𝑚𝐼ኻ𝐼ኼ + 𝑛𝐼ኽ, (4.2)

where the introduction of theMurnaghan constants 𝑙, 𝑚, 𝑛 is a direct result of the inclusion of the second-
order terms with respect to the deformation. The constitutive relation links the strains to the stresses
through this formulation of the strain-energy density:

𝑇𝑇𝑇 = 1
det( 𝐽𝐽𝐽) 𝐽𝐽𝐽(𝑝𝐸ኽ𝐸ኽ𝐸ኽ + (𝜆𝐼ኻ𝐸ኽ𝐸ኽ𝐸ኽ + 2𝜇𝜂𝜂𝜂) + (𝑙𝐼

ኼ
ኻ − 2𝑚𝐼ኼ)𝐸ኽ𝐸ኽ𝐸ኽ + 2𝑚𝐼ኻ𝜂𝜂𝜂 + 𝑛 co 𝜂𝜂𝜂) 𝐽𝐽𝐽ፓ . (2.42)
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Here, the arbitrary constant 𝑝 denotes the initial-stress state of the medium, which, in line with the
assumption that the material is isotropic, has to be a hydrostatic stress [22, Ch. 4.2].

The downside of this ideal assumption is that the applicability of Murnaghan’s theory is limited to
isotropic materials. Since it is the link between the stresses and strains in the constitutive relation,
the formulation of the strain-energy density is a core element of Murnaghan’s theory. For anisotropic
materials there is a large variety of formulations for the strain-energy density. Implementing these
formulations in Murnaghan’s theory could therefore yield results which differ from the current outcome.

4.1.2. M.A. Biot
Biot’s theory describes the transformation of a deformable medium caused by an elastic deformation
as well. Contrary to Murnaghan’s assumption, Biot implements the theory of infinitesimal deformations.
According this theory, the deformation is assumed to be sufficiently small such that its second-order
terms can be discarded. As a result of this infinitesimal deformation, there is no distinction between the
initial and final configuration of the medium. Therefore, the strain components can be approximated
such that both the Eulerian and Lagrangian description yield:

𝑒።፣ =
1
2 (

𝜕𝑢።
𝜕𝑎፣

+
𝜕𝑢፣
𝜕𝑎።

) = 1
2 (

𝜕𝑢።
𝜕𝑥፣

+
𝜕𝑢፣
𝜕𝑥።

) . (4.3)

Biot states that an initial-stress state acting on the deformable medium must influence its elastic
wave propagation. He assumes that this influence largely depends on the magnitude of the strain-
independent stress. Biot describes that the initial-stress components only satisfy the conditions of
internal equilibrium,

𝜕𝑆ኻኻ
𝜕𝑎 + 𝜕𝑆ኻኼ𝜕𝑏 + 𝜌ፚ𝑋ፚ = 0
𝜕𝑆ኻኼ
𝜕𝑎 + 𝜕𝑆ኼኼ𝜕𝑏 + 𝜌ፚ𝑌ፚ = 0,

(3.1)

where the positive stresses are denoted as tensile stresses. However, Biot has made no assumption
on how these stresses are generated.

Moreover, he attempts to demonstrate the influence of the initial stress on the elastic wave propa-
gation by considering the well-known equation of motion of a bending rod subjected to an axial com-
pression 𝑃 [4, Eq. 1]:

𝐸𝐼𝑑
ኾ𝑊(𝑥)
𝑑𝑥ኾ + 𝑃𝑑

ኼ𝑊(𝑥)
𝑑𝑥ኼ − 𝜌𝜔ኼ𝑊(𝑥) = 0, (4.4)

where𝑊 denotes the deflection of the rod and 𝐸𝐼 – its bending stiffness. The rod has a length 𝑙 and a
mass per unit length 𝜌. The elementary theory of wave propagation in simple structural elements such
as a rod approximates the real behaviour of a solid, based on assumptions on how this solid deforms
[26][25, Sec. 3.3]. Biot presumes that the phenomena following from this example are a particular
instance of a more general case of elastic wave propagation in three dimensions in a solid subjected
to initial stresses. Therefore, he generalised a limited model for his theory of three-dimensional wave
propagation in a solid. This troublesome assumption could be the reason why Biot’s final results seem
to be counter-intuitive with respect to the physics.

4.2. Influence of the stress on the equation of motion
The first aspect of the acoustoelastic effect manifests itself through the change in the equation of motion,
caused by the applied stress. This change results in formulations of the wave equation, and with it the
wave velocity, which are influenced by the stress.

4.2.1. Wave equation
Each approach results in a different derivation of the wave equation. Murnaghan’s derivation of the
wave equation is based on the principles of virtual work and conservation of energy. These two princi-
ples yield the Lagrangian form of Cauchy’s first law of motion after a small dynamic deformation,
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𝜌ፚ
𝜕𝑢(ኻ)።
𝜕𝑡ኼ −

𝜕𝜎፣።
𝜕𝑎፣

= 0, (2.66)

and the formulation of the nominal stress tensor, expressed in terms of the Lamé parameters and the
Murnaghan constants,

𝜎፣። = 𝐶።፣፤፥
𝜕𝑢፤
𝜕𝑎፥

+ 12𝑀።፣፤፥፦፧
𝜕𝑢፤
𝜕𝑎፥

𝜕𝑢፦
𝜕𝑎፧

+ ..., (2.58)

respectively. Here, the fourth-order tensor 𝐶።፣፤፥ is expressed in terms of the Lamé parameters:

𝐶።፣፤፥ = 𝜆𝛿።፣𝛿፤፥ + 2𝜇𝐼።፣፤፥ . (2.51)

The sixth-order tensor 𝑀።፣፤፥፦፧ is defined as:

𝑀።፣፤፥፦፧ = 𝐶።፣፤፥፦፧ + 𝐶።፣፥፧𝛿፤፦ + 𝐶፣፧፤፥𝛿።፦ + 𝐶፣፥፦፧𝛿።፤ , (2.59)

where the inclusion of the Murnaghan constants is established through the sixth-order tensor

𝐶።፣፤፥፦፧ = 2(𝑙 − 𝑚 +
ኻ
ኼ𝑛)𝛿።፣𝛿፤፥𝛿፦፧ + 2(𝑚 −

ኻ
ኼ𝑛)(𝛿።፣𝐼፤፥፦፧ + 𝛿፤፥𝐼፦፧።፣ + 𝛿፦፧𝐼።፣፤፥)

+ ኻ
ኼ𝑛(𝛿።፤𝐼፣፥፦፧ + 𝛿።፥𝐼፣፤፦፧ + 𝛿፣፤𝐼።፥፦፧ + 𝛿፣፥𝐼።፤፦፧). (2.52)

By observing relations (2.58) and (2.52) it can be concluded that the Murnaghan constants are only
present when the terms of the second order in the deformations are maintained.

Upon elaborating the space-dependent part of relation (2.66), Murnaghan’s formulation of the wave
equation is obtained:

𝜌ፚ
𝜕ኼ𝑢(ኻ)።
𝜕𝑡ኼ − 𝐵።፣፤፥

𝜕ኼ𝑢(ኻ)፤
𝜕𝑥፣𝜕𝑥፥

= 0, (2.71)

with

𝐵።፣፤፥ = 𝐶።፣፤፥ + 𝛿።፤𝐶፣፥፪፫𝑢(ኺ)፪,፫ + 𝐶፫፣፤፥𝑢(ኺ)።,፫ + 𝐶።፫፤፥𝑢
(ኺ)
፣,፫ + 𝐶።፣፫፥𝑢

(ኺ)
፤,፫ + 𝐶።፣፤፫𝑢

(ኺ)
፥,፫ + 𝐶።፣፤፥፦፧𝑢

(ኺ)
፦,፧ . (2.72)

At first sight, there seems to be no influence from the stress on the wave equation. However, the
fourth-order tensor 𝐵።፣፤፥ does contain the uniaxial strains,

𝑢(ኺ)፤,፣ =
𝜕𝑢(ኺ)፤
𝜕𝑥፣

= { 𝑒፣፤ ; for 𝑗 = 𝑘
0 ; else , (2.68)

which can be rewritten to any of the three uniaxial stresses through Poisson’s ratio and the formulation
of the linearised nominal stress:

𝜎፣። ≈ 𝐶።፣፤፥
𝜕𝑢፤
𝜕𝑥፥

. (2.60)

Note that if the second-order deformations are discarded, the uniaxial stress will be discarded as well
since it then holds, by definition, that 𝐵።፣፤፥ = 𝐶።፣፤፥. Thus, it can be concluded that the influence of the
stress on the wave equation is generated by the deformations of the second order.

The derivation of the wave equation according to Biot’s theory is based on the dynamic equilibrium of
both the initial-stress components 𝑆።፣ and the incremental-stress components 𝑠።፣ acting on the medium
after it has been deformed:

𝜕𝑠።፣
𝜕𝑎፣

+ 𝜌ፚΔ𝑋። − 𝜌ፚ𝜔።፤𝑋፤(𝑥፥) − 𝜌ፚ𝑒𝑋።(𝑥፥) + 𝑆፣፤
𝜕𝜔።፤
𝜕𝑎፣

+ 𝑆።፤
𝜕𝜔፣፤
𝜕𝑎፣

− 𝑒፣፤
𝜕𝑆።፤
𝜕𝑎፣

= 𝜌ፚ
𝜕ኼ𝑢።
𝜕𝑡ኼ . (3.16)

Upon assuming that the medium is subjected to an initial-stress field acting in the principal directions,
the above reduces to:
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𝜕𝑠ኻኻ
𝜕𝑥 + 𝜕𝑠ኻኼ𝜕𝑦 + 𝜕𝑠ኻኽ𝜕𝑧 + (𝑆ኻኻ − 𝑆ኼኼ)

𝜕𝜔፳
𝜕𝑦 + (𝑆ኽኽ − 𝑆ኻኻ)

𝜕𝜔፲
𝜕𝑧 = 𝜌ፚ

𝜕ኼ𝑢
𝜕𝑡ኼ

𝜕𝑠ኻኼ
𝜕𝑥 + 𝜕𝑠ኼኼ𝜕𝑦 + 𝜕𝑠ኼኽ𝜕𝑧 + (𝑆ኻኻ − 𝑆ኼኼ)

𝜕𝜔፳
𝜕𝑥 + (𝑆ኼኼ − 𝑆ኽኽ)

𝜕𝜔፱
𝜕𝑧 = 𝜌ፚ

𝜕ኼ𝑣
𝜕𝑡ኼ

𝜕𝑠ኻኽ
𝜕𝑥 + 𝜕𝑠ኼኽ𝜕𝑦 + 𝜕𝑠ኽኽ𝜕𝑧 + (𝑆ኽኽ − 𝑆ኻኻ)

𝜕𝜔፲
𝜕𝑥 + (𝑆ኼኼ − 𝑆ኽኽ)

𝜕𝜔፱
𝜕𝑦 = 𝜌ፚ

𝜕ኼ𝑤
𝜕𝑡ኼ .

(3.24)

From the above it can be seen that the initial-stress components are already introduced. Upon look-
ing closer, it can be observed that the initial-stress components are arranged in a particular manner.
They are always present in a set of two with opposing signs and are multiplied with the derivatives of
the rotations of the plane across which they are acting. After elaborating these dynamic-equilibrium
equations, the following three wave equations are obtained:

𝜌ፚ
𝜕ኼ𝑢
𝜕𝑡ኼ − (𝑍ኻኻኻኻ − 𝑆ኻኻ)

𝜕ኼ𝑢
𝜕𝑥ኼ = 0

𝜌ፚ
𝜕ኼ𝑣
𝜕𝑡ኼ − (𝑍ኻኼኻኼ +

ኻ
ኼ𝑆ኻኻ −

ኻ
ኼ𝑆ኼኼ)

𝜕ኼ𝑣
𝜕𝑥ኼ = 0

𝜌ፚ
𝜕ኼ𝑤
𝜕𝑡ኼ − (𝑍ኻኽኻኽ +

ኻ
ኼ𝑆ኻኻ −

ኻ
ኼ𝑆ኽኽ)

𝜕ኼ𝑤
𝜕𝑥ኼ = 0.

(3.25)

From these three wave equations it is observed how a stress is denoted positive, i.e. a tensile stress,
when acting in the direction of the wave propagation and negative, i.e. a compressive stress, when
acting in the direction of the particle oscillation. Furthermore, it can be concluded that there are some
limitations in Biot’s theory with regard to the orientation of the initial-stress components. Here, it is
witnessed how the initial-stress components are orientated in the directions defined by the propagation
and particle-oscillation directions of the wave. This particular arrangement is a result of the dynamic-
equilibrium equations which dictate the multipliers of the initial-stress components. This constraint
makes it impossible to investigate a change in the wave velocity caused by an initial-stress component
which is not present in the wave equation. For instance, the influence of a stress acting in the 𝑧-direction,
i.e. 𝑆ኽኽ, on a transverse wave propagating in the 𝑥-direction while polarising in the 𝑦-direction, is not
accounted for by Biot’s model.

4.2.2. Wave velocity
The expressions for the wave velocities are obtained upon dividing both sides of the wave equation
by the initial mass density 𝜌ፚ. Based on Murnaghan’s theory, Hughes and Kelly [13, Eq. 12] intro-
duced expressions for wave velocities of a medium subjected to both a hydrostatic stress and uniaxial
stresses. From these expressions it is shown that the longitudinal-wave velocity of a medium subjected
to a stress parallel to the propagation direction is of the form:

𝑐 ᑩᑩ፱፱ =
√𝜆 + 2𝜇 ±

𝜎፱፱
3𝐾 [2𝑙 + 𝜆 +

𝜆 + 𝜇
𝜇 (4𝜆 + 4𝑚 + 10𝜇)]

𝜌ፚ
, (2.79)

whereas Biot’s equivalent formulation reads:

𝑐 ፒᎳᎳ፱፱ = √𝜆 + 2𝜇𝜌ፚ
. (4.5)

From the above, another limitation of Biot’s theory is presented. It can be observed that Biot’s formu-
lation of the longitudinal-wave velocity of a medium stressed parallel to the propagation direction is
not different from the initial wave velocity. This is a shortcoming he admits as he states that only the
behaviour of transverse waves are affected by the principal stress.
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Murnaghan’s formulation for a transverse-wave velocity of a medium stressed in the propagation
direction reads

𝑐 ᑩᑩ፱፲ =
√𝜇 ±

𝜎፱፱
3𝐾 (𝑚 +

𝜆𝑛
4𝜇 + 4𝜆 + 4𝜇)

𝜌ፚ
, (2.83)

whereas the transverse-wave velocity of a medium stressed parallel to the particle oscillation becomes

𝑐 ᑪᑪ
፱፲ =

√𝜇 ±
𝜎፲፲
3𝐾 (𝑚 + 𝜆𝑛4𝜇 + 𝜆 + 2𝜇)

𝜌ፚ
. (4.6)

Meanwhile, Biot’s theory yields an expression of a transverse-wave velocity of a medium subjected to
a stress parallel to the propagation direction as well as a stress parallel to the polarisation direction:

𝑐 ፒᎳᎳ;ፒᎴᎴ፱፲ = √
𝜇 + ኻ

ኼ𝑆ኻኻ −
ኻ
ኼ𝑆ኼኼ

𝜌ፚ
. (4.7)

By comparing these formulations it can be observed that Murnaghan’s theory only allows for the influ-
ence of one stress component on the wave velocity at a time whereas with Biot’s theory the influence of
two stress components on the wave velocity can be investigated. As concluded from Biot’s wave equa-
tion, the orientation and the sign of the initial-stress components are constraint by the plane defined
by the propagation and polarisation directions of the wave. This restriction with respect to the stress
orientation makes it impossible to observe the influence of a stress acting perpendicular to both the
propagation and polarisation direction of the wave. Murnaghan’s theory does not show any of these
restrictions as the orientation of the uniaxial stress can be chosen freely through the implementation of
Poison’s ratio of an isotropic medium. This can be shown by formulating the transverse-wave velocity
of a medium stressed perpendicular to both the propagation direction and the polarisation direction:

𝑐 ᑫᑫ፱፲ =
√𝜇 ±

𝜎፳፳
3𝐾 [𝜆 + 𝑚 −

𝜆 + 𝜇
𝜇 ( 3𝜇𝜆𝜆 + 𝜇 +

1
2𝑛)]

𝜌ፚ
. (4.8)

By observing relation (4.7) some conclusions can be made with respect to Biot’s interpretation of
the influence of stress on the wave velocity. Supposedly, the wave velocity increases when the medium
is subjected to a tensile stress in the propagation direction and a compressive stress in the polarisation
direction of the wave. Conversely, the wave velocity decreases when the medium is subjected to a
compressive stress in the propagation direction and a tensile stress in the polarisation direction of the
wave. When both stress components are equal in magnitude and are either tensile or compressive
stresses, there is no influence of the initial-stress components on the wave velocity.

These results are incoherent with the observationsmade from laboratory tests. Both Larose andHall
[17] and Lillamand et al. [18] conducted experiments through which the relative wave-velocity change
of a concrete specimen has been monitored while being subjected to a uniaxial compression. Their
findings demonstrate that the relative wave-velocity change increases when the medium is compressed
along the propagation direction. Therefore, Biot’s conclusions with respect to the influence of stress on
the wave velocity is incorrect.

The observations made by Biot are reminiscent of the wave propagation within a bending rod under
an axial load (see App. C.1 for details). Upon substituting the first mode shape,

𝑊(𝑥) = 𝐴 sin (𝜋𝑥𝑙 ) , (4.9)

the influence of the compression on the frequency, and thus the wave velocity, can be observed [4,
Eq. 4]:
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𝜔
2𝜋 =

𝑐
𝜆 =

𝜋
2𝑙ኼ√

𝐸𝐼
𝜌 (1 −

𝑃
𝑃
), (4.10)

where 𝜆 denotes the wavelength and 𝑃 – the buckling load:

𝑃 =
𝐸𝐼𝜋ኼ
𝑙ኼ . (4.11)

As the axial compression increases, the frequency and wave velocity decrease. When the axial com-
pression reaches the buckling load 𝑃, the frequency and wave velocity reduce to zero. If the axial force
is a tensile force 𝑇, the wave velocity will increase. Moreover, from this model it is possible to obtain
the expression for the frequency of a string under tension, by neglecting the bending stiffness of the
rod [4, Eq. 5][19, Sec. 1.2]:

𝜔
2𝜋 =

𝑐
𝜆 =

1
2𝑙√

𝑇
𝜌 . (4.12)

It is likely that Biot’s conclusions are a result of his assumptions with respect to the initial-stress com-
ponents and the elastic wave propagation in a medium. Similar to the axial force in the bending-rod
model, the initial-stress components are introduced in the wave equation solely through force equilib-
rium. Since Biot generalised the bending-rod model, it is not surprising his theory yields similar results
with respect to the increase and decrease of the wave velocity.

When examining Murnaghan’s formulations of the wave velocities it is clear that no concrete con-
clusions can be made with respect to the influence of the stress on the wave velocity. This is due to the
Murnaghan constants which still need to be determined. If it is assumed that the Murnaghan constants
are positive, it could appear as if the wave velocity increases with tensile stresses in the propagation
direction and decreases with compressive stresses in the propagation direction. However, Hughes
and Kelly [13, Tab. II] have shown through experiments that the Murnaghan constants appear to be in
general negative and an order of magnitude larger than the Lamé parameters. This would imply that
compressive stresses along the propagation direction of a wave increase its velocity.

4.3. Influence of the stress on the elastic coefficients
The second aspect of the acoustoelastic effect is expressed through the stress-dependency of the
elastic coefficients of the medium. In order to prevent Brillouin’s paradoxical result (1.1), the stress
must influence the formulation of the wave velocity while also generating small changes to the second-
order elastic coefficients. Based on Murnaghan’s theory and through experiments, Hughes and Kelly
[13] have shown that a linear change in the second-order elastic coefficients, 𝜆 and 𝜇, caused by
an applied hydrostatic pressure can be expressed by the Murnaghan constants. Similarly, a linear
change in the second-order elastic coefficients due to an applied uniaxial compressive stress 𝜎፱፱ can
be demonstrated by rewriting relations (2.79) and (2.83) to the equivalent expressions,

𝑐 ᑩᑩ፱፱ = √Λ(𝜎፱፱) + 2Μ(𝜎፱፱)𝜌ፚ

𝑐 ᑩᑩ፱፲ = √Μ(𝜎፱፱)𝜌ፚ
,

(4.13)

respectively. Here, the stress-dependent elastic coefficients Λ and Μ are defined as:

Λ(𝜎፱፱) = 𝜆 −
𝜆 + 2𝜇 + 2𝑙 + 2𝑚 + 𝜆𝜇 (4𝜆 + 4𝑚 + 6𝜇 −

1
2𝑛)

3𝐾 𝜎፱፱

Μ(𝜎፱፱) = 𝜇 −
𝑚 + 𝜆𝑛4𝜇 + 4𝜆 + 4𝑚𝑢

3𝐾 𝜎፱፱ ,

(4.14)
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respectively. From the above, it is clear that the expressions for the initial wave velocities are obtained
if 𝜎፱፱ reduces to zero.

In Biot’s theory, a relation is established between the initial-stress components and the material
coefficients through the principle of virtual work:

𝐵።፣፤፥ + 𝑆።፣𝛿፤፥ = 𝐵፤፥።፣ + 𝑆፤፥𝛿።፣ , (3.23)

which can be rewritten to:

𝐵።፣፤፥ − 𝐵፤፥።፣ = 𝑆፤፥𝛿።፣ − 𝑆።፣𝛿፤፥ . (4.15)

This relation shows that the isotropy of a material, i.e. 𝐵።፣፤፥ = 𝐵፤፥።፣, is only maintained through a
state of zero stress or a hydrostatic stress state. Analogous to relation (4.7), an increase in tensile
stresses increases the material coefficients whereas an increase in compressive stresses decreases
the material coefficients. Moreover, for the material coefficients of the form 𝐵ኻኻኻኻ and 𝐵ኻኼኻኼ, i.e. for
longitudinal waves and transverse waves, relation (3.23) becomes:

𝐵ኻኻኻኻ + 𝑆ኻኻ𝛿ኻኻ = 𝐵ኻኻኻኻ + 𝑆ኻኻ𝛿ኻኻ
𝐵ኻኼኻኼ + 𝑆ኻኼ𝛿ኻኼ = 𝐵ኻኼኻኼ + 𝑆ኻኼ𝛿ኻኼ,

(4.16)

respectively. These redundant expressions do not add to the influence of the stress on the elastic
coefficients. Only for waves propagating along non-orthogonal directions, relation (3.23) becomes
non-trivial. These wave types, however, are not considered within the research scope of this thesis.

4.4. Acoustoelastic effect
The acoustoelastic effect serves as a linear relation between the relative wave-velocity change and
the applied stress on a medium. The paper “Acoustoelastic effect in concrete material under uni-axial
compressive loading” by Lillamand et al. [18] contains a study on the acoustoelasticity of a concrete
material. In this study, Murnaghan’s theory has been used as a foundation to interpret the relative
wave-velocity change of a concrete medium subjected to a uniaxial stress. Through the linearisation
of the first order1 of the formulations of the wave velocities [13, Eq. 12] the following is obtained [18,
Eq. 2]:

𝑐 ᑜᑝ
።፣ = 𝑐 ኺ

።፣ (1 + 𝐴።፣፤፥𝜎፤፥), (4.17)

where the acoustoelastic constant is denoted by the fourth-order tensor 𝐴።፣፤፥. This acoustoelastic
constant depends on the directions of the wave propagation, the particle oscillation and the uniaxial
stress. Relation (4.17) can be further elaborated such that a linear relation between the relative wave-
velocity change and the uniaxial stress is obtained:

Δ𝑐።፣ (𝜎፤፥) = 𝐴።፣፤፥𝜎፤፥ , (4.18)

where Δ𝑐።፣ denotes the relative wave-velocity change:

Δ𝑐።፣ =
𝑐 ᑜᑝ
።፣ − 𝑐 ኺ

።፣
𝑐 ኺ
።፣

. (4.19)

As mentioned above, the acoustoelastic constants differ according to the reciprocal orientation of
the wave and the uniaxial stress. All the different values for the acoustoelastic constants, following
from all possible combinations of wave orientation with respect to stress orientation can be assembled
in the matrix

1The derivation of this formulation is covered in App. C.2.2.
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𝐴𝐴𝐴 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜

⎝

𝐴፱፱፱፱ 𝐴፱፱፲፲ 𝐴፱፱፳፳ 𝐴፱፱፱፲ 𝐴፱፱፱፳ 𝐴፱፱፲፱ 𝐴፱፱፲፳ 𝐴፱፱፳፱ 𝐴፱፱፳፲
𝐴፲፲፱፱ 𝐴፲፲፲፲ 𝐴፲፲፳፳ 𝐴፲፲፱፲ 𝐴፲፲፱፳ 𝐴፲፲፲፱ 𝐴፲፲፲፳ 𝐴፲፲፳፱ 𝐴፲፲፳፲
𝐴፳፳፱፱ 𝐴፳፳፲፲ 𝐴፳፳፳፳ 𝐴፳፳፱፲ 𝐴፳፳፱፳ 𝐴፳፳፲፱ 𝐴፳፳፲፳ 𝐴፳፳፳፱ 𝐴፳፳፳፲
𝐴፱፲፱፱ 𝐴፱፲፲፲ 𝐴፱፲፳፳ 𝐴፱፲፱፲ 𝐴፱፲፱፳ 𝐴፱፲፲፱ 𝐴፱፲፲፳ 𝐴፱፲፳፱ 𝐴፱፲፳፲
𝐴፱፳፱፱ 𝐴፱፳፲፲ 𝐴፱፳፳፳ 𝐴፱፳፱፲ 𝐴፱፳፱፳ 𝐴፱፳፲፱ 𝐴፱፳፲፳ 𝐴፱፳፳፱ 𝐴፱፳፳፲
𝐴፲፱፱፱ 𝐴፲፱፲፲ 𝐴፲፱፳፳ 𝐴፲፱፱፲ 𝐴፲፱፱፳ 𝐴፲፱፲፱ 𝐴፲፱፲፳ 𝐴፲፱፳፱ 𝐴፲፱፳፲
𝐴፲፳፱፱ 𝐴፲፳፲፲ 𝐴፲፳፳፳ 𝐴፲፳፱፲ 𝐴፲፳፱፳ 𝐴፲፳፲፱ 𝐴፲፳፲፳ 𝐴፲፳፳፱ 𝐴፲፳፳፲
𝐴፳፱፱፱ 𝐴፳፱፲፲ 𝐴፳፱፳፳ 𝐴፳፱፱፲ 𝐴፳፱፱፳ 𝐴፳፱፲፱ 𝐴፳፱፲፳ 𝐴፳፱፳፱ 𝐴፳፱፳፲
𝐴፳፲፱፱ 𝐴፳፲፲፲ 𝐴፳፲፳፳ 𝐴፳፲፱፲ 𝐴፳፲፱፳ 𝐴፳፲፲፱ 𝐴፳፲፲፳ 𝐴፳፲፳፱ 𝐴፳፲፳፲

⎞
⎟
⎟
⎟
⎟
⎟
⎟

⎠

. (4.20)

Since relation (4.18) has not been evaluated for shear stresses, only the entries on the first three
columns of the matrix𝐴𝐴𝐴 have been defined. If for the sake of argument, the same relation is established
based on Biot’s theory, it is possible to have two different interpretations of the acoustoelastic constants.
For Murnaghan’s theory, the matrix 𝐴𝐴𝐴 then becomes:

𝐴ፌ፮፫፧ፚ፠፡ፚ፧𝐴ፌ፮፫፧ፚ፠፡ፚ፧𝐴ፌ፮፫፧ፚ፠፡ፚ፧ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜

⎝

Υ Φ Φ
Φ Υ Φ
Φ Φ Υ
Χ Ψ Ω
Χ Ω Ψ
Ψ Χ Ω
Ω Χ Ψ
Ψ Ψ Χ
Ω Ψ Χ

⎞
⎟
⎟
⎟
⎟
⎟
⎟

⎠

, (4.21)

where the entries, expressed in terms of the Lamé parameters and the Murnaghan constants, are
defined as:

Υ =
2𝑙 + 𝜆 + 𝜆 + 𝜇𝜇 (4𝜆 + 4𝑚 + 10𝜇)

6𝐾(𝜆 + 2𝜇)

Φ =
2𝑙 + 𝜆 − 𝜆

2𝜇 (4𝜆 + 4𝑚 + 10𝜇)

6𝐾(𝜆 + 2𝜇)

Χ =
𝑚 + 𝜆𝑛4𝜇 + 4𝜆 + 4𝜇

6𝐾𝜇

Ψ =
𝑚 + 𝜆𝑛4𝜇 + 𝜆 + 2𝜇

6𝐾𝜇

Ω =
𝜆 +𝑚 − 𝜆 + 𝜇𝜇 ( 3𝜇𝜆

𝜆 + 2𝜇 +
1
2𝑛)

6𝐾𝜇 .

(4.22)

From the above it can be concluded that the magnitude of the acoustoelastic effect depends on the
orientation of the stress with respect to the propagation and polarisation directions of the wave. This
phenomenon has been observed by Lillamand et al. [18, Ch. 5] who described that waves that polarise
in the loading direction are the most sensitive to the stress level. As has been shown in their study, the
values of these acoustoelastic constants, and with them the Murnaghan constants, can be determined
through scaled laboratory experiments.
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For Biot’s theory, the matrix is defined as:

𝐴ፁ።፨፭𝐴ፁ።፨፭𝐴ፁ።፨፭ =
1
4𝜇

⎛
⎜
⎜
⎜
⎜
⎜
⎜

⎝

0 0 0
0 0 0
0 0 0
1 −1 0
1 0 −1

−1 1 0
0 1 −1

−1 −1 1
0 −1 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟

⎠

. (4.23)

The additional zero entries of this matrix reflect the limitation of Biot’s theory with respect to the influence
of the initial stress on the longitudinal-wave velocity and the influence of the out-of-plane initial stress on
the transverse-wave velocity. Furthermore, it can be observed that the magnitude of the acoustoelastic
constants are all equal. This implies that the orientation of the stress with respect to the direction of
the wave propagation and particle oscillation has no influence on the acoustoelastic constants, which
opposes the conclusions made by Lillamand et al. [18, Ch. 5], proving once more that Biot’s theory is
not applicable for the purpose of this research.

4.5. Murnaghan constants
According to Murnaghan’s model, the influence of the orientation of the stress with respect to the prop-
agation and particle-oscillation directions of the wave are dictated by the Murnaghan constants. Since
they are non-conventional material parameters, the Murnaghan constants are less renowned within the
field of Engineering. From the linearised acoustoelastic constants (4.22) it can be observed that the
three Murnaghan constants are distributed among the different waveforms in pairs of two. The param-
eter 𝑚 influences all wave velocities whereas 𝑙 and 𝑛 only affect the longitudinal- and transverse-wave
velocity, respectively.

Hughes and Kelly [13] have demonstrated how the Murnaghan constants can be found through
experiments. By monitoring the wave signals at increasing compressive stress levels, it is possible
to determine the relative wave-velocity changes (4.18). The Murnaghan constants are then obtained
by fitting the data with linear regressions and equating their slopes to the corresponding linearised
acoustoelastic constants. Assuming a uniaxial compression 𝜎፱፱, the following relative wave-velocity
changes can be measured:

Δ𝑐፱፱ = 𝐴፱፱፱፱𝜎፱፱ ⟹ Υ
Δ𝑐፲፲ = 𝐴፲፲፱፱𝜎፱፱ ⟹Φ
Δ𝑐፱፲ = 𝐴፱፲፱፱𝜎፱፱ ⟹ Χ
Δ𝑐፲፱ = 𝐴፲፱፱፱𝜎፱፱ ⟹Ψ
Δ𝑐፲፳ = 𝐴፲፳፱፱𝜎፱፱ ⟹Ω.

(4.24)

Since the Murnaghan constants involve three parameters, three equation are needed in order to solve
the unknowns. Therefore, only three of the five linearised acoustoelastic constants are necessary for
the determination of 𝑙, 𝑚 and 𝑛. By measuring all five waveforms it is possible to select a set of three
linearised acoustoelastic constants to determine the Murnaghan constants. The found parameters can
then be validated by using the remnant linearised acoustoelastic constants.

4.6. Conclusions
In this chapter, the differences in the fundamental assumptions between Murnaghan’s and Biot’s the-
ory regarding the acoustoelastic effect have been presented. It has been demonstrated that the core
differences in the description of the influence of the stress stems from the inclusion of the second-order
deformations, or lack thereof.

Murnaghan’s description of the stress is generated by these second-order deformations and is linked
to the Murnaghan constants through the constitutive relation. Therefore, this stress description not only
abides to the condition of internal equilibrium but is also related to the strains. On the other hand, the
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origin of Biot’s stress description is not specified and solely abides to the internal equilibrium, much
like the axial compression or tension acting on a bending rod. Due to the constraint of the directions
of the initial-stress components and the inability to express the initial-stress component in terms each
other, Biot’s model does not allow for the investigation of the influence of the stress on the longitudinal-
wave velocity. In addition, it is also not possible to study the influence of all possible orientations of the
uniaxial stresses on the wave velocity with Biot’s model.

No solid conclusions can be drawn with respect to the influence of the stress on the wave prop-
agation in a medium according to Murnaghan’s theory. In order to elaborate on this influence, the
Murnaghan constants need to be determined. Despite the unknown Murnaghan constants, it has been
found through experiments [13][18] that they are negative in general, eluding to the fact that compres-
sion along the propagation direction increases the wave velocity. These findings are directly opposed
to Biot’s description of the influence of the stress on the wave velocity, which states that tension along
the propagation direction increases the wave velocity. His results can be attributed to the erroneous
generalisation of the bending-rod model.

The differences in themagnitude of Murnaghan’s formulation of the acoustoelastic constants implies
that the orientation of the stress with respect to the wave influences the acoustoelastic effect. This
observation is confirmed by the experiments conducted by Lillamand et al. [18] which concluded that
the acoustoelasticity in concrete is the highest for waves that polarise along the loading direction. Biot’s
formulation, however, shows no difference in the magnitude of the acoustoelastic constants, implying
that the stress orientation is of no influence on the acoustoelasticity.

From the comparison in this chapter can be concluded that Biot’s theory is not fit to describe the
influence of the stress on the wave velocity in a concrete medium. Therefore, only Murnaghan’s theory
will be verified with scaled laboratory experiments. The main purpose of these experiments will be to
determine the acoustoelastic constants and with them, the Murnaghan constants for a concrete-like
medium. This will be realised by equating Murnaghan’s linearised theory with the linearised data.
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Experimental setup

The theoretic formulation of the acoustoelastic effect has been established in the previous chapters. In
order to study the influence of stress changes on the relative wave-velocity change within the concrete
medium, several experiments have been performed. The objectives of these experiments are to verify
the occurrence of acoustoelasticity in concrete-like materials and subsequently to determine the un-
known Murnaghan constants. This chapter covers the description of the experimental procedure and
the test specimens as well as the quantities used for the measurements. The data acquired from these
experiments is processed and analysed as described in Chapter 6.

5.1. Instrumentation and specimens
Within the experimental setup, a distinction can be made between two types of instrumentation. The
first type is related to the uniaxial compression, applied by the triaxial stress vessel. The second type
deals with the wave signals, which are emitted and measured by the ultrasonic monitoring system.
Multiple cylindrical specimens have been tested by using these instruments. The specification of both
the instrumentation and the test specimens are described in this section.

5.1.1. Triaxial stress vessel
During the experiment, a triaxial stress vessel is used to perform a Unconfined Compressive Strength
(UCS) test on the cylindrical specimens. This UCS test enables a displacement-controlled uniaxial
compression of cylindrical specimens, making it suitable to observe the stress dependency of the wave
velocity of a specimen.

The measurement of the displacements within the triaxial stress vessel is performed through the
use of Linear Variable Differential Transformers (LVDT). A distinction between two types of LVDT is
made. The first type is orientated along the vertical direction and measures the axial displacement.
The second type is mounted around the circumference of the specimen with a chain and measures
the transverse contraction/expansion. The setup of the triaxial stress vessel can be altered such that
it is most fitting for the intended experiment. For instance, the bottom plate can be equipped with a
range of pedestals with a varying height which accommodates for specimens of different lengths. It is
also possible to adjust the positioning of the vertical LVDT, so different locations can be investigated.
For this experiment, the bottom plate (A) is equipped with a pedestal (E) which houses a set of two
vertical LVDT (G), such that they are positioned in between the top and bottom plate. An incremental
displacement is generated through the bottom plate, which translates vertically with respect to the top
plate (H). The set of vertical LVDT then measures the relative displacement between the two plates.
The specimen (B) is placed between the top and bottom plate and is equipped with the chain around
its circumference (F), which measures the radial strain. The force that is present under the applied
displacement is measured by a loading cell (D). The spherical bearing (C) connects the top plate to the
loading cell and corrects any imperfections in the flat sides of the specimen, ensuring a uniform load
application. Figure 5.1 displays the various components which make up the triaxial stress vessel.
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(a) (b)

Figure 5.1: Photos taken of the triaxial stress vessel setup. (a) Overview; (A) bottom plate, (B) specimen, (C) spherical bearing,
(D) loading cell. (b) Close-up; (E) pedestal, (F) circumferential LVDT, (G) vertical LVDT, (H) top plate.

5.1.2. Ultrasonic monitoring system
The emission and recording of wave signals propagating through a medium is realised with a four-
channel ultrasonic monitoring system. This system consists of a generator, an amplifier, ultrasonic
transducers and an oscilloscope, displayed in Figure 5.2.

The generator enables the regulation of an input (wave) signal by specifying the shape, the ampli-
tude, the duration and the frequency of the signal. Once the electric signal has been generated, its am-
plitude is increased by the amplifier, upon which it relays the signal to a transducer. This piezoelectric-
based transducer acts as a source which converts the electric signal into a mechanical deformation.
By attaching this source to a specimen with a highly viscous polymer gel, the converted signal is trans-
ferred to and then propagates through the medium as a seismic wave. Another piezoelectric-based
transducer is then attached to the other side of the specimen, acting as a receiver which converts the
deformation back to an electric signal. Upon conversion, the receiver relays the signal to the oscillo-
scope where it is recorded on one of the available channels. The recorded signal is then stored by a
PC as binary data, which can be read with a MATLAB script. The specifications of the recording pa-
rameters such as the sampling frequency, the recording time and the vertical and horizontal stepsizes
are enabled by the oscilloscope. The recorded data may contain a certain amount of unwanted noise,
which is quantified by the signal-to-noise ratio (SNR). The reduction of the noise content in the data
can be achieved through the method of ‘stacking’. This technique refers to the repeated emission of
the same signal by the transducer source. Consequently, the receiver collects an amount of similar
signals, with a different noise content. By averaging these signals, the SNR is increased. This process
of stacking occurs in the oscilloscope, in which the stacking amount is configured. This amount should
not be too large as the averaging could distort the original signal.
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(a) (b)

(c) (d)

Figure 5.2: Components of the ultrasonic monitoring system; (a) Generator, (b) Amplifier, (c) Ultrasonic transducer in aluminum
piston, (d) Oscilloscope with four channels.

The wave signals emitted by the transducer source can be categorised by the direction of the par-
ticle oscillation of the wave with respect to the propagation direction. A particle oscillation along the
propagation direction results in waves which compress/elongate the medium, i.e. longitudinal waves,
also called compressional or primary (P-)waves. When the particle-oscillation direction is perpendicular
to the propagation direction, the wave shears the medium. These waves are called transverse waves,
also known as shear or secondary (S-)waves. P-waves arrive earlier than S-waves, since their wave
velocity is higher. Hence their names primary waves and secondary waves, respectively. Within the
latter, a distinction is made with respect to a horizontally propagating P-wave. One could use a pair
of S-wave transducers aligned perpendicularly to the loading direction and either polarised along the
loading direction, i.e. SV-waves, or perpendicular to the loading direction, i.e. SH-waves. Through the
measurement of these waveforms it is possible to observe how the wave velocity is influenced by the
orientation of the loading with respect to the particle-oscillation direction. The direction of the particle
oscillation is determined by the piezoelectric crystal within the transducer. By subjecting this crystal to
an electric field, caused by the electric signal, the crystal undergoes a mechanical deformation resulting
in an elastic wave. Inversely, when the crystal is subjected to a deformation, it generates an electric
field. The piezoelectric effect is visually displayed in Figure 5.3.

Figure 5.3: Visual representation of the piezoelectric effect of the piezoelectric crystal LZT [9].

In theory, the orientation of the piezoelectric crystal defines whether a transducer generates P-
waves or S-waves. The transducers used for the experiments house crystals that expand/contract
transversely, i.e. S-wave transducers. Due to the round shaped housing of these transducers, bound-
ary effects occur. Consequently, in addition to the intended S-wave energy, low P-wave energy is
generated as well. This effect of coupled P- and S-wave content increases the complexity of interpret-
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ing the time signature, especially within the diffuse part.

5.1.3. Specimens
During the experiment, four concrete-like cylindrical specimens have been used for measurements with
the triaxial stress vessel. The dimensions of these specimens are constraint by the chosen configu-
ration of the triaxial stress vessel. Considering the size of the aluminum pistons, it follows that the
specimens need to have a height and diameter of approximately 70 mm and 30 mm, respectively.

In order to investigate the influence of the inhomogeneity of the material on the changes in the
wave velocity, two different material compositions have been investigated. The first type of specimen
consists of a homogeneous cement paste made of Cugla HSM mortar which is cast in a PVC tube.
The shrinkage of this cement paste has been limited by adding 50% fine sand (diameter smaller than
0.25 mm) to the mixture. The second type of specimen represents heterogeneous concrete including
aggregates. Due to the constraint of the diameter of the specimen it is not possible to cast a mixture with
aggregates in a mold. Therefore, a C55/67 concrete cube was cast from which cores of the specified
diameter were drilled. Afterwards, these cores were cut to the required length. Figure 5.4 displays the
different types of specimen and a drawing displaying the dimensions.

(a)

ℎ
≈
70

m
m

𝑑 ≈ 30 mm

(b)

Figure 5.4: Display of the different types of specimen and the dimensions. (a) Cement-paste specimen (left) and concrete core
specimen (right). (b) Drawing of the dimensions of the specimen.

For the purpose of providing more reliable results, two specimens of each type have been tested.
The exact dimensions of the specimens have been measured and are summarized in Table 5.1.

Table 5.1: Measured dimensions of the test specimens.

Specimen Type Height ℎ [mm] Diameter 𝑑 [mm] Mass 𝑚 [g]

CP-1 Cement paste 71.78 32.66 123.05
CC-2 Concrete 70.53 29.82 111.92
CP-3 Cement paste 70.02 32.20 116.17
CC-4 Concrete 64.48 29.79 101.80

5.2. Experimental procedure
As a means to observe the changes in the wave velocity of the test specimen at various stress levels,
the triaxial stress vessel and the ultrasonic monitoring system have been used simultaneously. The
preparation of the specimens for the experiment as well as the description of the used experimental
setup together with the chosen procedure of the experiment is covered in this section.
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5.2.1. Preliminary experiments
To ensure that the specimens are representative and provide reliable results, some preliminary experi-
ments have been performed. These experiments are initiated with elementary measurements and are
piecewise increased in complexity. The first objective of these preliminary experiments is to inspect
whether the transducers are working properly. This has been carried out by looking for the centre fre-
quency of the transducer and by altering the amplitude of the signal such that a clear time signature
is obtained. The second objective is to validate the specimens by comparing the identified initial wave
velocities with the expected values for a concrete-like material. The third objective is to observe any
stress-dependent changes within the time signature of the recorded signal. This has been accom-
plished by using the ultrasonic monitoring system in tandem with the triaxial stress vessel.

During the first step, the initial wave velocities of the specimens are identified. This has been
realised by placing the transducers directly on the flat sides of a specimen, emitting a wave signal
along its height. The initial wave velocities are then estimated by using the ToF method on the time
signature of the wave signal (see App. D.1 for details). The identification of the arrival times is visually
represented in Figure 5.5.
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Figure 5.5: Identification of the arrival times for specimen CP-3 along the axial direction through handpicking with the ToFmethod.

Table 5.2 displays both the identified arrival times and the wave velocities of the specimens as well
as the theoretically estimated values (see App. D.1.1 for details).

Table 5.2: Identified arrival times and initial wave velocities of the specimens along the axial direction.

Specimen Arrival 𝑡ፏ [µs] Arrival 𝑡ፒ [µs] P-wave velocity 𝑐ፏ [m/s] S-wave velocity 𝑐ፒ [m/s]
CP-1 17.50 29.60 4102 2425
CC-2 15.70 26.40 4492 2672
CP-3 17.20 30.00 4071 2334
CC-4 14.00 24.90 4606 2590

Theoretically estimated values 4000 2500

From this summary, it can be observed that the values of the wave velocities are within the proximity
of the theoretically estimated values for a concrete-like material. Therefore, it can be concluded that
all specimens are deemed representative. Another observation that can be made is that the wave
velocities of the concrete specimens are higher than those of the cement-paste specimens. These
differences can be attributed to the inclusion of the aggregates, which contribute to the stiffness, and
thus to the wave velocity, of the concrete specimens.
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Due to the large size of the transducer (Figure 5.6a) with respect to the dimensions of the specimen,
it is impossible to use them in the radial direction. Therefore, a second type of ultrasonic transducer
with a smaller size has been used, displayed in Figure 5.6b.

(a) (b)

Figure 5.6: Side-by-side comparison of the transducers within the aluminum piston; (a) Large transducer, diameter = 15 mm, (b)
Small transducer, diameter = 5 mm.

These smaller transducers are mountable in both the axial and radial direction of the specimen.
However, the amplitude of the signal they generate is significantly lower than that of the larger trans-
ducer. Therefore, the usability of these smaller transducers with respect to the signal strength must be
verified (see App. D.1.2 for details). Besides the verification of their amplitude, the centre frequency of
the smaller transducers must be found as well. This has been achieved by repeatedly emitting signals
through the specimen while changing the amplitude and frequency of the signal. From these mea-
surements it is found that a frequency of 400 kHz results in a recorded time signature which still has a
significant amplitude, displayed in Figure 5.7.
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Figure 5.7: Time signature of signals emitted through CP-1 by the small transducers at a frequency of 400 kHz. (a) Signal along
the axial direction of the specimen. (b) Signal along the radial direction of the specimen.
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By comparing the amplitudes from Figures 5.7a and 5.7b it can be concluded that the signal along
the axial direction has undergone more damping than the signal along the radial direction. This dis-
crepancy is a result of the difference of the source-receiver distance of the two signals which is also
reflected by their respective first arrivals. The signal along the radial direction has a much smaller travel
path and thus experiences less damping. Based on these results, it can be concluded that the small
transducers are suitable for the monitoring of the signal propagation through the specimens.

The relation of the wavelength of a signal with respect to size of the medium through which it prop-
agates determines the behaviour of the waves. In order to ensure that the measured vibrations still
behave as propagating waves, instead of normal modes, the wavelength should be small compared to
the size of the medium. A requirement with regard to the wavelength has been set up through a rule
of thumb which states that the wavelength should be at least three times smaller than the dimensions
of a specimen. Upon assuming a frequency of 𝑓 = 400 kHz and by using the theoretically estimated
wave velocities, the wavelengths for the P- and S-waves become

𝜆ፏ ≈
𝑐ፏ
𝑓 = 4000 m/s

400 kHz = 10.00 mm

𝜆ፒ ≈
𝑐ፒ
𝑓 = 2500 m/s

400 kHz = 6.25 mm,
(5.1)

respectively. Since both values are at least three times smaller than both the height and diameter of
the specimens, the requirement is met. Therefore, during the main experiment the wave signals have
been emitted at a frequency of 400 kHz.

Next, these measurements are repeated several times while the specimen is being subjected to
a cyclic axial compression ranging from 0 to 20 MPa. Since the compression is applied on the flat
sides of the specimen, the transducers need to be embedded in aluminum pistons. The inclusion of
these aluminum pistons prevents the transducers from being damaged while also ensuring a uniform
pressure on the flat sides of the specimen. As a result, the wave signal emitted by the source has
to propagate twice through an aluminum medium before being recorded, causing additional scattering
and reflections which generates a more complex time signature. Therefore, the focus has been on the
stress-induced changes on a larger part of the time signature instead of the first arrivals. Figure 5.8
displays how a part of the signal is shifting towards the left as the stress level increases, indicating an
increase in the wave velocity.
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Figure 5.8: Zoom-in on a collection of time signatures that are recorded along the axial direction of CP-1 at various stress levels.

Based on these observations, it can be concluded that the stress has an observable influence on
the wave velocity of the specimen, proving the proper functionality of the transducers.
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It should be noted that specimens CC-2 and CC-4 have been slightly damaged during the cyclic
uniaxial compression. In these specimens, the weakest link is the bond between the cement matrix and
the aggregates. This is especially the case at the edges of the cylinders which show signs of damage
caused by aggregate spalling, displayed in Figure 5.9.

(a) (b)

Figure 5.9: (a) Damaged concrete core specimens CC-2 and CC-4. (b) Concrete cube from which the concrete cores are drilled.

Considering this damage and the inconsistent dimensions of specimens CC-2 and CC-4, new cores
have been drilled from the same concrete cube, displayed in Figure 5.10.

(a) (b)

Figure 5.10: (a) Close-up of the new concrete core specimens. (b) New concrete core specimens with consistent dimensions.

The damaged specimens are replaced by specimens CC-2B and CC-4B. Since these specimens
are extracted from the same concrete cube, they are assumed to be valid as well. Therefore, they
have not been subjected to the aforementioned preliminary experiments. Instead, they have been
used in the main experiment, during which wave signals with various orientations are emitted through
the specimens. Table 5.3 displays the dimensions of these new specimens.
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Table 5.3: Measured dimensions of the new concrete specimens.

Specimen Type Height ℎ [mm] Diameter 𝑑 [mm] Mass 𝑚 [g]

CC-2B Concrete 69.86 31.66 124.02
CC-4B Concrete 69.96 31.72 125.71

5.2.2. Experimental configuration and measurements
During the main experiment, waveforms of different orientations are emitted by the source transduc-
ers which propagate through the specimen subjected to a compressive stress level and recorded by
the receiver transducers. The objective of this experiment is to observe how the propagation time is
influenced by the increasing stress. Due to symmetry, the amount of different combinations of the load-
ing direction with respect to the propagation and polarisation directions of the wave can be narrowed
down to five different combinations. As a result of the coupling effect of the transducers, the applica-
tion of three transducer pairs is sufficient for this experiment. One pair has been aligned in the axial
direction of the specimen, whereas the other two pairs has been mounted along the radial direction,
orientated perpendicular with respect to each other. Figure 5.11 displays the numbered transducers
and the waveforms they are emitting.

(a)

S3

S4

S5

S6

S2

S1

S3

S4

S5

S6

S2

S1

(b)

S3

S4

S5

S6

S2

S1

S3

S4

S5

S6

S2

S1

(c)

Figure 5.11: Visualisation of how the transducer pairs are arranged on the specimen during the experiment. (a) Photo taken
of the experimental configuration of specimen CC-2B. (b) Wave propagation between the axial transducer pair S1-S2, P-wave
content (top) and S-wave content (bottom). (c) Wave propagation between the radial transducer pairs, P-wave content (top) and
S-wave content (bottom); SH-wave between pair S3-S4 and SV-wave between pair S5-S6.

The axial transducers are placed within the aluminum pistons. Due to their smaller size and the lack
of a built-in acoustic insulation, a piece of rubber has been used to seal off the open end of the piston
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which keeps the transducer in place. The specimen and the aluminum pistons are coupled through a
small layer of shear gel, ensuring that the setup remains aligned throughout the uniaxial compression.
The radial transducers are attached to the circumference of the specimens with shear gel and kept in
place with tape. Due to the chain around the middle of the specimen, the radial transducers have been
positioned at approximately 10 mm away from the flat sides.

Each specimen has been subjected to a cyclic loading which is repeated three times. The loading
and unloading rate are based on a displacement rate of 0.0005 mm/s and 0.0015 mm/s, respectively.
Figure 5.12 displays a graph of one typical load cycle.
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Figure 5.12: (a) Axial displacement over time, measured by the vertical LVDT. (b) Uniaxial compression from 0 to 20 MPa,
including a partial unloading for the purpose of condensing the specimens. The non-linear behaviour at low stress levels is
caused by the shear gel.

During each of these load cycles only one transducer is acting as a source whereas all the other
transducers are acting as receivers. A sinusoidal signal is emitted repeatedly over an interval of 20
seconds during each load cycle. Each of these signals is emitted at frequency of 400 kHz and is
subsequently recorded for a duration of 500 µs. The signals have been discretized with a sampling
frequency of 𝑓፬ = 250 MHz and each time signature is obtained by stacking 1024 waveforms before
being recorded. Once a load cycle has been completed, the source is changed. This process is
repeated for all specimens until all the possible waveforms have been emitted. Table 5.4 shows the
schedule which has been used for every specimen during the experiment.

Table 5.4: Order of signal emission during the cyclic loading of the specimens.

Load cycle Waveform Source Receiver CH1 Receiver CH2 Receiver CH3

1 S-wave S1 S2 S3 S5
2 SH-wave S3 S4 S1 S5
3 SV-wave S5 S6 S1 S4

By using three channels to record the waveforms, a total of three traces per measurement are
obtained, like depicted on Figure 5.13. Among these traces are the waveformswhich have been emitted
by a source of one transducer pair while being recorded by the receiver of another transducer pair.
Therefore, some of these traces contain waveforms with non-orthogonal propagation and polarisation
directions. From Figures 5.13a - 5.13c it is witnessed how the source-receiver distance influences
the time signature of the signals. It is observed that the further the source is from the receiver, the
lower the amplitude of the signal and the later its first arrival. The signal with the lowest amplitude and
the latest first arrival is displayed in Figure 5.13a. This wave has propagated from S1 to S2, which
is the largest source-receiver distance within the specimen. Therefore, the wave signal undergoes
significant damping, which is reflected by its low amplitude. On the other hand, the highest amplitude
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and the earliest first arrival are witnessed in the wave that has propagated through the specimen from
S1 to S3 (Figure 5.13c). This wave signal has the smallest source-receiver distance, and therefore
experiences less damping.
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Figure 5.13: Time signature of signals emitted through CP-1 by source S1. (a) Signal recorded on channel 1 by receiver S2. (b)
Signal recorded on channel 3 by receiver S5. (c) Signal recorded on channel 2 by receiver S3.

As has been stated earlier, thesewaveforms are not within the scope of this research. Consequently,
the receivers have been connected to the oscilloscope in such a manner that channel 1 always yields
the trace of a waveform which has been transmitted and recorded within the same transducer pair. So,
of all the data acquired through the main experiment, only those yielded by channel 1 are considered.
The data from channels 2 and 3 could potentially be used in future work that investigates the behaviour
of these waveforms.

Adding to the acquired data are the stress-strain diagrams which allow for the determination of both
the Young’s modulus and Poisson’s ratio of the specimens (see App. D.2 for details). Through these
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two parameters, it is possible to determine the Lamé parameters 𝜆 and 𝜇:

𝜆 = 𝐸𝜈
(1 + 𝜈)(1 − 2𝜈)

𝜇 = 𝐸
2(1 + 𝜈) .

(5.2)

The second-order elastic parameters of the specimens are of importance for the determination of the
third-order Murnaghan constants of the specimens. Table 5.5 displays a summary of the final test
specimens and their respective elastic parameters.

Table 5.5: Overview of the final test specimens and their second-order elastic parameters.

Specimen Young’s modulus 𝐸 [GPa] Poisson’s ratio 𝜈 [−] 𝜆 [GPa] 𝜇 [GPa]
CP-1 20.30 0.20 5.64 8.46
CC-2B 37.25 0.35 32.19 13.80
CP-3 25.80 0.21 7.72 10.66
CC-4B 51.10 0.28 25.40 19.96
Expected values 20-40 0.20

From the values in Table 5.5, it can be concluded that the Young’s modulus and Poisson’s ratio of
the cement-paste specimens are within the range of the expected values and consistent. However,
the concrete core specimens display some inconsistencies with respect to these values. The outlier
of Poisson’s ratio of specimen CC-2B may be attributed to an inaccuracy of the measurements of the
radial strain. The large difference in the Young’s modulus, however, does not seem to be the result
of a faulty device. Instead, this difference can be linked to the heterogeneity of the concrete core
specimens. Figure 5.14 shows a side-by-side comparison of specimens CC-2B and CC-4B. From this
comparison, it can be observed that specimen CC-4B contains larger aggregates. This results in a
stiffer mixture, which explains the higher Young’s modulus.

(a) (b)

Figure 5.14: (a) Front view of specimens CC-2B (left) and CC-4B (right). (b) Back view of specimens CC-2B (left) and CC-4B
(right).

In this chapter, the procedure of the experiments has been described in detail. The results from
these experiments are stored as discretized data signals of a sample size 𝑁 = 125000 each. The next
chapter covers the processing and analysis of this data.
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Results and data processing

In Chapter 5, the configuration and the procedure of the main experiment have been elaborated upon
in detail. The results of this experiment are expressed in binary data-files. The processing of this data
has been performed through the use of various scripts written in MATLAB. For the purpose of removing
any undesired content such as noise, the data has been filtered in this chapter. The data was then post-
processed through the implementation of CWI [20, Ch. 2][24]. The outcome of these analyses and the
ensuing observations with respect to the acoustoelasticity of the test specimens (from Table 5.5) are
covered in this chapter as well. Finally, these findings have been validated through the determination
of the Murnaghan constants and their comparison with the literature.

6.1. Data filtering
The raw data obtained from the experiment can be either interpreted in the time domain or the frequency
domain. The time domain contains the information of the excitations of the wave as a function of the
time. The frequency domain displays at what frequencies the wave is excited. The combination of
both allows for a thorough analysis of the wave signal and is necessary for the data filtering. The first
objective of the filtering is to suppress the noise in the signal of both high and low frequencies. The
second objective is to attempt to decouple the P-wave and S-wave content such that the stress-induced
changes for each waveform can be examined separately.

6.1.1. Time domain and frequency domain
Within the field of signal processing, the analysis of data is performed in both the time domain and the
frequency domain. The time domain of a signal, which is excited at various frequencies, displays the
development of its amplitudes as time passes. The same data can also be observed in the frequency
domain which displays at which frequencies these amplitudes are excited. Figure 6.1 depicts a visual
representation of a signal in both the time domain and the frequency domain.
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Figure 6.1: Graphical representation of the time domain and frequency domain. The total time signature is obtained through the
summation of the several signals, excited at different frequencies.
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For continuous signals, the Fourier transform (FT) and the Inverse Fourier transform (IFT) are used
to alternate between the time domain and the frequency domain. If a continuous function of time ℎ(𝑡)
is considered, then a continuous function of frequency 𝐻(𝑓) is obtained through the FT [6, Sec. 2.7]:

𝐻(𝑓) = ℱ{ℎ(𝑡)} = ∫
ዄጼ

ዅጼ
ℎ(𝑡)𝑒ዅ።ኼ፟፭𝑑𝑡. (6.1)

The original time signature is then again retrieved through the IFT of the frequency-dependent function:

ℎ(𝑡) = ℱዅኻ{𝐻(𝑓)} = ∫
ዄጼ

ዅጼ
𝐻(𝑓)𝑒።ኼ፟፭𝑑𝑓. (6.2)

For example, the FT of a rectangular pulse becomes a cardinal sine function:

Π (𝑡)
ℱ
=⇒ sinc (𝑓) = sin(𝜋𝑓)

𝜋𝑓 , (6.3)

where Π (𝑡) denotes a rectangular pulse function and sinc(𝑓) – the cardinal sine function in the fre-
quency domain. The rectangular pulse is an important function for its use in ‘windowing’ of the data,
which is frequently required in digital signal processing. Figure 6.2 displays the graphs of both of these
functions.
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Figure 6.2: Example of a Fourier transform pair. (a) Rectangular pulse function in the time domain. (b) Double-sided amplitude
spectrum of a rectangular pulse function.

The discretization of the continuous data has been performed through the use of a sampling fre-
quency 𝑓፬ = 250 MHz, resulting in a discrete signal of 𝑁 = 125000 samples [6, Sec. 3.1]. The stepsize
between the samples in the time domain is defined as the time resolution

Δ𝑡 = 1
𝑓፬
= 1
250 MHz = 0.004 µs, (6.4)

whereas the stepsize between the samples in the frequency domain is defined as the frequency reso-
lution

Δ𝑓 = 𝑓፬
𝑁 = 250 MHz

125000 = 2 kHz. (6.5)

For discrete signals, altering between the time and frequency domain is achieved through the Dis-
crete Fourier transform (DFT) and the Inverse Discrete Fourier transform (IDFT) [6, Sec. 9.3]. A dis-
cretized signal in the time domain ℎ(𝑛) is then transformed to the frequency domain with
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ℎ(𝑛)
ፃፅፓ
===⇒ 𝐻(𝑘) =

ፍዅኻ

∑
፧ኺ

ℎ(𝑛)𝑒ዅ
ᑚᎴᒕᑜᑟ
ᑅ for 𝑘 = 0, 1, 2..., 𝑁 − 1, (6.6)

and is retrieved again with the IDFT of the discretized frequency signal:

𝐻(𝑘)
ፈፃፅፓ
===⇒ ℎ(𝑛) = 1

𝑁

ፍዅኻ

∑
፤ኺ

𝐻(𝑘)𝑒
ᑚᎴᒕᑜᑟ
ᑅ for 𝑛 = 0, 1, 2..., 𝑁 − 1. (6.7)

MATLAB handles these transformations numerically through the Fast Fourier transform (FFT) and In-
verse Fast Fourier transform (IFFT), respectively. These two algorithms have been used in order to
analyse the acquired data. Figure 6.3 displays the frequency spectrum of the time data which has been
obtained trough the FFT in MATLAB.
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Figure 6.3: Representation of the discretized data signal, emitted along the axial direction of specimen CC-2B. (a) Discretized
time signature. (b) Single-sided amplitude spectrum, obtained through the FFT of the discrete time data. The significant energy
manifests itself within the range of 0-800 kHz.

Figure 6.3b displays how the implementation of the FFT reveals the range of frequencies at which
the total time signature is excited. In order to differentiate between the different types of frequency
content that make up the total spectrum, both the time and frequency data need to be analysed. This
has been done by means of a time-frequency analysis as well as a frequency filter analysis.

6.1.2. Time-frequency analysis
For the purpose of filtering the unwanted portions of the data, it is necessary to identify the different
frequency contents. This can be achieved through the windowing of data. Windowing refers to the
isolation of portions of the data in either the time domain or the frequency domain. These portions
or windows are then transformed with the (I)FFT such that they can be analysed in both domains.
The desired data is isolated by multiplying the total data with a specified window, which tapers data
which are outside of its boundaries. One typical example of such a window is a rectangular window
(Figure 6.2a). Since this window discards all data outside its boundaries without a gradient, it is ideal for
isolating the desired data. However, a disadvantage of this window is the distortion of the signal which
is obtained after the FT. This phenomenon is caused by the multiplication and convolution properties
of the FT [6, Sec. 2.7]:

ℎ(𝑡)𝑤(𝑡)
ℱ
⇐⇒ 𝐻(𝑓) ∗ 𝑊(𝑓)

ℎ(𝑡) ∗ 𝑤(𝑡)
ℱ
⇐⇒ 𝐻(𝑓)𝑊(𝑓),

(6.8)
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respectively. These properties state that the multiplication of two functions in the time domain result in a
convolution in the frequency domain and vice versa. Depending on the type of window, this convolution
can distort the signal such that it is beyond recognition. This is especially the case for a rectangular
window, for which the FT is a cardinal sine (Figure 6.2b). The convolution of a signal with this cardinal
sine function is referred to as the Gibbs phenomenon or ‘ringing’ and is to be avoided when the preser-
vation of the signal is desired [10, Sec. 6.9]. This can be accomplished by ensuring that the window
gradually tapers the unwanted data. The downside of this taper is that a portion of the unwanted data
is included within the window. When choosing the window type, a trade-off has to be made between
the data preservation and the data isolation.

The time-frequency analysis provides an insight in the frequency spectrum and serves as a prelim-
inary observation to the data filtering. With the time-frequency analysis, multiple windows are taken
from different parts of the time signature and are subsequently transformed to the frequency domain
with the FFT. The frequency spectrum of each of these windows is then analysed. During this analysis,
the frequencies are observed at which the different parts of time signature are excited. These frequen-
cies are indicated by the peaks in the amplitude spectrum. Here, the effect of ringing is inconsequential
since only the amplitudes of the peaks are of importance. Therefore, the portions of the time signa-
ture are isolated by using rectangular windows. The frequency content can be divided in four groups;
low-frequency noise, high-frequency noise, P-wave content and S-wave content. The noise content
is found before the first arrival, indicated by the mix of slow and fast oscillations in the time domain.
Figure 6.4 displays the windowing of this noise content its frequency spectrum.
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Figure 6.4: Time-frequency analysis of the noise in the discretized data signal, emitted along the axial direction of specimen
CC-2B. (a) Windowing of the time signature before the first arrival. (b) Single-sided amplitude spectrum: large peak around 200
kHz and small peaks above 700 kHz possibly indicating the low-frequency and high-frequency noise, respectively. The wobbly
spectrum is caused by the ringing effect.

From these graphs, it can be argued that the larger periods are a result of the low-frequency noise
which is most likely within the range of 0-200 kHz, whereas the shorter periods indicate the high-
frequency noise which is excited at frequencies above 700 kHz. Based on these findings, both the low-
and high-frequency content have been identified. Table 6.1 displays a summary of the frequency range
of the noise content for both the axial and radial recordings.

Table 6.1: Summary of the noise content for all specimens.

Propagation direction Low-frequency noise content [kHz] High-frequency noise content [kHz]

Axial 0-200 >700
Radial 0-200 >800
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After the frequencies of the noise content have been identified, it is possible to locate the P- and
S-wave frequency content. This is accomplished by centering the time windows around their arrival
times and subsequently analysing their amplitude spectra. The analysis is performed in a chronological
order, i.e. the frequency content of the P-wave arrival are analysed first. By doing this, it is possible to
monitor how the amplitude spectrum changes piece-wise as time advances. The occurrence of new
peaks in the amplitude spectrum then indicates the frequencies at which the content within the adjacent
window is excited. Figure 6.5 displays the windowing of the time signature, focused around the two
arrivals, and the corresponding frequency spectrum.
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Figure 6.5: Time-frequency analysis of the discretized data signal, emitted along the axial direction of specimen CC-2B. (a)
Windowing of the time signature centered around the P-wave arrival. (b) Single-sided amplitude spectrum: peak around 500-
700 kHz indicating the P-wave content. (c) Windowing of the time signature centered around the S-wave arrival. (d) Single-sided
amplitude spectrum: large peak around 300-400 kHz indicating the S-wave content.

Figures 6.5a and 6.5b display the time window centered around the P-wave arrival and its amplitude
spectrum. From the amplitude spectrum, two significant peaks are observed. In addition to the peak
centered around 200 kHz, a second peak is observed within the range of 500-700 kHz, indicating the
frequencies at which the P-wave content is excited. The windowing of part of the time signature after
the S-wave arrival and its amplitude spectrum are displayed in Figures 6.5c and 6.5d. Roughly three
significant peaks can be distinguished in the amplitude spectrum. It can be observed that the two
previous peaks are almost overshadowed by the third peak, which is focused around 300-400 kHz.
This peak is most likely related to the S-wave content within the time window, indicated by the typical
larger amplitude with respect to the P-wave content.
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This procedure has been repeated for all the recordings of the four specimens. Through this time-
frequency analysis, the frequency content of all the data has been analysed. A summary of the P- and
S-wave content and the range of frequency at which they are excited is displayed in Table 6.2.

Table 6.2: Summary of the frequency content for each measurement.

Propagation direction Waveform P-wave content [kHz] S-wave content [kHz]

Specimen CP-1

Axial S-wave 500-700 300-500
Radial SH-wave 400-500 500-700
Radial SV-wave 400-500 500-700

Specimen CC-2B

Axial S-wave 500-700 300-400
Radial SH-wave 500-700 300-500
Radial SV-wave 200-400 500-700

Specimen CP-3

Axial S-wave 300-400 400-600
Radial SH-wave 600-800 400-600
Radial SV-wave 600-800 300-500

Specimen CC-4B

Axial S-wave 400-600 300-400
Radial SH-wave 500-700 300-400
Radial SV-wave 300-400 500-700

These observations indicate that the P- and S-wave content are close to each other, which is re-
flected by their overlapping bandwidths. It can also be observed that in most cases the content is
excited at frequencies which are close to the centre frequency of 400 kHz. This especially the case
for the S-wave content. This can be attributed to the fact that S-wave transducers have been used for
all sources and receivers. The accuracy of the indications of these frequency bandwidths are to be
checked through the application of a frequency filter.

6.1.3. Frequency filter analysis
Following from the time-frequency analysis, the frequency content of the measurements has been iden-
tified. These indications form the basis for the frequency filtering. By filtering particular content in the
frequency domain it is possible to observe the influences in the time domain. During this process, the
frequency spectrum of a signal is filtered through the application of a window. Subsequently, the iso-
lated frequency data is transformed to the time domain with the IFFT. From the obtained time signature
it is possible to observe the changes caused by the filtering.

Unlike with the time-frequency analysis, the preservation of the data is of importance. Therefore,
band-pass filters with sinusoidal tapers have been constructed. In order to prevent the effect of ringing,
the bandwidth of these tapers has been set at one octave [6, Sec. 3.3]. This means that the high end of
each taper is at least twice the frequency of the low end of the taper. The downside of these band-pass
filters is that it becomes nearly impossible to completely decouple the P-wave content from the S-wave
content. From the time-frequency analysis it has been estimated that the P- and S-wave content are
close-ranged, demonstrated by their identified frequency bandwidths in Table 6.2. The separation of P-
and S-wave content has an important role in the analysis of the stress-dependency of their respective
velocities. Since the focus of the analysis is on the arrival times, the coupled content is no issue for
the P-wave velocity. This is because the unwanted coupling effect only occurs after the S-wave arrival.
Therefore, the mixed signal only arises when observing the stress-dependence of the S-wave velocity.

The noise content, however, is present throughout the entire time signature. Therefore, the noise
must be filtered first. In Figure 6.6 it is shown how the application of a noise filter influences the time
signature of a signal.
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Figure 6.6: Noise filtering of the discretized data signal, emitted along the axial direction of specimen CC-2B. (a) Filtering of the
amplitude spectrum, realised by a band-pass of 200-700 kHz with sinusoidal tapers. (b) Time signature, reflecting the results of
the frequency filtering.

The impact of the noise filter can be observed by comparing the time signature from Figure 6.4a with
the one displayed in Figure 6.6b. From this comparison it is witnessed how the low-amplitude spikes
are no longer present after the filtering. This indicates that the filtering of the high-frequency noise has
been successful. The large-amplitude oscillations at the start of the recording, however, still remain.
Therefore, it is likely that these large periods are not a result of the low-frequency noise. Instead, it’s
probable that they are a result of crosstalk, caused by the electromagnetic interference of the amplifier.
These oscillations decay rapidly and are completely diminished before the first arrival. Therefore, the
influence of the crosstalk does not affect the wave content.

In an attempt to decouple the P- and S-wave content, another band-pass filter has been constructed.
This filter aims to suppress the P-wave content of the time signature. During the construction of the
band-pass filter, the S-wave content has been monitored carefully. This ensures that the S-wave con-
tent itself is not influenced by the band-pass filter. Figure 6.7 displays the outcome of the P-wave
content filter on the time signature.
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Figure 6.7: P-wave filtering of the discretized data signal, emitted along the axial direction of specimen CC-2B. (a) Filtering of
the amplitude spectrum, realised by a band-pass of 400-500 kHz with sinusoidal tapers. (b) Time signature centered around the
arrival times, reflecting the results of the frequency filtering.
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From Figure 6.7b it is observed that the oscillations around the first arrival are distorted, whereas
the large S-wave amplitudes remain unchanged. The procedure of constructing both type of band-pass
filters has been repeated for all measurements. The frequency boundaries of the applied band-pass
filters are summarised in Table 6.3.

Table 6.3: Summary of the applied band-pass filters for each measurement.

Propagation direction Waveform Low taper [kHz] Band-pass [kHz] High taper [kHz]

Specimen CP-1

Axial S-wave 0-300 300-500 500-1000
Radial SH-wave 0-500 500-700 700-1400
Radial SV-wave 0-500 500-700 700-1400

Specimen CC-2B

Axial S-wave 0-400 400-500 500-1000
Radial SH-wave 0-300 300-500 500-1000
Radial SV-wave 0-300 300-500 500-1000

Specimen CP-3

Axial S-wave 0-300 300-400 500-800
Radial SH-wave 0-500 500-700 700-1400
Radial SV-wave 0-600 600-800 800-1600

Specimen CC-4B

Axial S-wave 0-250 250-350 350-700
Radial SH-wave 0-300 300-500 500-1000
Radial SV-wave 0-500 500-700 700-1400

Based on this frequency filter analysis, the original data set has been partitioned in two groups.
The first group is focused on the P-wave content and is only subjected to the noise filters. The second
group is centered around the S-wave content and is filtered from both noise and P-wave content.

6.2. Post-processing: Stretching Technique algorithm
As has been determined in the introductory chapter, the relative wave-velocity changes within the con-
crete medium have been monitored with CWI. For this post-processing of the data, an algorithm in
MATLAB has been used, which emulates the Stretching Technique (see App. E for details). By means
of a cross-correlation, this algorithm compares a reference signal with a stretched signal within a time
window. The acquired data is arranged in a sets of time signatures per measurement. Each time signa-
ture has been recorded at a different stress level. The first time signature of a set has been chosen as
the reference signal for the other time signatures. In the algorithm, the cross-correlation is interpreted
so that the reference signal is stretched or compressed in such a way that it matches the other signals
within the set. This match is quantified with the maximum cross-correlation coefficient, which indicates
the stretching factor 𝜖 or the relative wave-velocity change Δ𝑐. This section elaborates on the various
parameters of the algorithm, as well as the protocol used for determining the relative wave-velocity
changes.

6.2.1. Peak amplitude threshold
The cross-correlation is centered around the first P- and S-wave arrivals. This has been achieved
through the implementation of a time window which starts at their respective first breaks. Within the
boundaries of this time window, the cross-correlation is performed. Due to the large amount of data
as well as the interference from reflections, it is not efficient to determine the arrival times with the
ToF method. Instead, the arrival times have been determined through the Peak amplitude threshold
method.

This method uses the exceedance of an amplitude threshold to identify the arrival time of a signal.
This amplitude threshold is based on the analytical representation of the signal, which comprises of the
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original signal and its Hilbert transform:

ℎፀ(𝑡) = ℎ(𝑡) + 𝑖H{ℎ(𝑡)}, (6.9)

where ℎፀ(𝑡) denotes the analytical signal andH{ℎ(𝑡)} – the Hilbert transform of the original signal. The
Hilbert transform of a signal is a linear operator which convolutes the signal with the Cauchy Kernel [6,
Sec. 16.2]:

H{ℎ(𝑡)} = ℎ(𝑡) ∗ 1𝜋𝑡 . (6.10)

In doing so, the Hilbert transform conveys a phase shift of ±ኼ in the frequency domain.
By taking the absolute value of the analytical representation of the signal, the Hilbert envelope is

obtained. The threshold is expressed as a percentage of the maximum peak amplitude of the Hilbert
envelope. The position on the time axis at which this threshold is exceeded indicates the arrival time
of the wavelet. The partition caused by the inclusion of a P-wave content filter, makes this method
suitable for the P-wave arrival as well as the S-wave arrival. The graph in Figure 6.8 displays a visual
representation of the identification of the arrival time.
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Figure 6.8: Graphical representation of the Peak amplitude threshold method: threshold chosen to identify the P-wave arrival.

6.2.2. Cross-correlation: Protocol
Even though the algorithm is efficient, it does have its flaws. The algorithm does not feature the ability
to track a specific wavelet as it translates along the time axis. Its main objective is to find a wavelet
for which the cross-correlation is maximum. Due to the stress-induced changes, it frequently occurs
that the target wavelet changes in such a manner that it resembles the reference wavelet less. Con-
sequently, the algorithm chooses a completely different wavelet which displays a higher resemblance
with the reference. Therefore, it might occur that the corresponding stretching factor does not display
a correct representation of the relative wave-velocity change.

In order to prevent this from happening, the input parameters of the algorithm need to be regulated
through a protocol. The two most prominent input parameters are the boundaries of time window
and the range of stretching. The boundaries of the time window dictate what wavelets are included
in the cross-correlation, whereas the range of stretching determines the boundaries between which
the reference signal can be stretched. The time window is the most sensitive parameter and must be
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regulated such that at least one full period of the pulse is included. As has been determined earlier,
the time window starts at the first break of the wavelet. The end of the time window has been decided
through iterations. During these iterations, the time window has been tweaked slightly for the purpose
of ensuring that only the targeted wavelet is present within its boundaries. If the range is too large,
the algorithm might find a distant period which yields a better match than the targeted pulse. This
phenomenon has been displayed in Figure 6.9.
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Figure 6.9: Initial cross-correlation of the S-wave content along the axial direction of CP-3. (a) The relative S-wave velocity
change at various stress levels; displays a distorted trend. (b) The maximum cross-correlation coefficient at various stress
levels. (c) The cross-correlation coefficient for a stretching from -10% to 10%. (d) The time window centered around the S-wave
arrival; includes approximately one and a half period.

Figures 6.9a and 6.9b display the course of the relative S-wave velocity change and the maximum
cross-correlation coefficient, respectively, as the stress ranges from 0 to 20 MPa. From these graphs,
it is observed how the relative wave-velocity change develops in a discontinued manner, whereas the
maximum cross-correlation coefficient demonstrates a continuous decline. This confirms that the al-
gorithm’s sole objective is to find the highest possible cross-correlation coefficient it can find within the
set range of stretch and the boundaries of the time window. This manifestation can be witnessed in
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Figures 6.9c and 6.9d which display the most prominent input parameters of the algorithm. Here, it can
be observed that the two distortions in Figure 6.9a are caused by the wide range of both the stretch-
ing factor and the time window. At stress levels around 3 MPa and 16 MPa, the algorithm finds the
largest cross-correlation coefficient if the reference signal is compressed. That is, the reference wavelet
matches best with the first oscillation of the adjacent period. Therefore, the cross-correlation can be
fine-tuned by narrowing the range of these input parameters through various iterations. Throughout
these iterations, the cross-correlation coefficient has been monitored such that it does not fall below
60%. The results of this fine-tuning are displayed in Figure 6.10.
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Figure 6.10: Fine-tuning of the cross-correlation of the S-wave content along the axial direction of CP-3. (a) The relative S-wave
velocity change at various stress levels; displays a continuous trend. (b) The maximum cross-correlation coefficient at various
stress levels. (c) The cross-correlation coefficient for a stretching from -1% to 5%. (d) The time window centered around the
S-wave arrival; includes approximately one period.

The narrowing of both the range of stretching and the time window is demonstrated in Figures 6.10c
and 6.10d. Here, it is witnessed that the stretching factor is centered around 0% and slightly increases
as the stress increases, which is reflected by the continuous increase of the relative S-wave velocity
change (Figure 6.10a). Furthermore, the fine-tuning has had no negative impact on the maximum
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cross-correlation coefficient. This protocol has been applied to all the other measurements.

6.3. Relative wave-velocity change
Resulting from the Stretching Technique are the various graphs, displaying the acoustoelasticity of
the four test specimens. The relation between the relative wave-velocity changes and the applied
uniaxial compression for all waveforms are presented in this section. In order to relate the results to
Murnaghan’s theory, a hypothesis with regard to the expected behaviour of the relative wave velocity
has been formed. Subsequently, the observations following from the measurements are discussed and
compared to the hypothesis.

6.3.1. Hypotheses
In Chapter 4 it has been stated that the influence of the stress on the wave velocity according to Mur-
naghan’s theory strongly depends on the unknown third-order coefficients 𝑙, 𝑚 and 𝑛. However, a
hypothesis can be formed if some assumptions are made with regard to these Murnaghan constants.
Based on the results of their experiments, Hughes and Kelly [13] found that the Murnaghan constants
are generally negative and of an order higher than the second-order coefficients. The hypotheses
concerning the influence of the stress on the wave velocity follow from these findings. The P-wave
velocities of a medium subjected to compression are described by the following expressions:

𝑐 ᑩᑩ፱፱ =
√𝜆 + 2𝜇 −

𝜎፱፱
3𝐾 [2𝑙 + 𝜆 +

𝜆 + 𝜇
𝜇 (4𝜆 + 4𝑚 + 10𝜇)]

𝜌ፚ

𝑐 ᑩᑩ፲፲ =
√𝜆 + 2𝜇 −

𝜎፱፱
3𝐾 [2𝑙 + 𝜆 −

𝜆
2𝜇 (4𝜆 + 4𝑚 + 10𝜇)]

𝜌ፚ
.

(6.11)

Here, 𝑐 ᑩᑩ፱፱ denotes the velocity of a P-wave propagating along the loading direction and 𝑐 ᑩᑩ፲፲ – the
velocity of a P-wave propagating perpendicular to the loading direction. Their relative wave-velocity
changes are then denoted with Δ𝑐፱፱ and Δ𝑐፲፲, respectively. Based on the assumptions made with
regard to the Murnaghan constants and the expressions (6.11), it can be deducted that the relative P-
wave velocity change Δ𝑐፱፱ increases as the compression increases. The influence of the compression
on the relative P-wave velocity Δ𝑐፲፲ is less in comparison to Δ𝑐፱፱. Whether Δ𝑐፲፲ increases or decreases
as the compression increases, depends on the magnitude of the Murnaghan constants with 𝑚 having
a significant influence.

For the S-wave velocities, the following expressions hold:

𝑐 ᑩᑩ፱፲ =
√𝜇 −

𝜎፱፱
3𝐾 (𝑚 +

𝜆𝑛
4𝜇 + 4𝜆 + 4𝜇)

𝜌ፚ

𝑐 ᑩᑩ፲፱ =
√𝜇 −

𝜎፱፱
3𝐾 (𝑚 +

𝜆𝑛
4𝜇 + 𝜆 + 2𝜇)

𝜌ፚ

𝑐 ᑩᑩ፲፳ =
√𝜇 −

𝜎፱፱
3𝐾 [𝜆 + 𝑚 −

𝜆 + 𝜇
𝜇 ( 3𝜇𝜆𝜆 + 𝜇 +

1
2𝑛)]

𝜌ፚ
,

(6.12)

Here, 𝑐 ᑩᑩ፱፲ denotes the velocity of a S-wave propagating along the loading direction. Its relative
wave-velocity change is then denoted with Δ𝑐፱፲. The S-waves propagating perpendicular to the loading
direction while polarising along to and perpendicular to the loading direction are represented with 𝑐 ᑩᑩ፲፱
and 𝑐 ᑩᑩ፲፳ , respectively. Their respective relative wave-velocity changes are denoted with Δ𝑐፲፱ and
Δ𝑐፲፳. By using the same argumentation as before, it can be deducted that the relative S-wave velocity
changes Δ𝑐፱፲ and Δ𝑐፲፱ should increase the most under the compression, with the latter being slightly
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more sensitive to the acoustoelastic effect. On the other hand, 𝑐 ᑩᑩ፲፳ should increase the least or even
decrease as compression increases, mainly depending on the magnitude of 𝑛. Figure 6.11 displays a
visual representation of the predicted behaviour of the relative wave-velocity changes for different sets
of Murnaghan constants.
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Figure 6.11: Prediction of the relative wave-velocity changes for different sets of Murnaghan constants: (a and b) ፥  ፦  ፧ 
-300 GPa; (c and d) ፥  -100 GPa, ፦  -500 GPa, ፧  -700 GPa. (a and c) Relative P-wave velocity changes. (b and d)
Relative S-wave velocity changes.

6.3.2. Cement-paste specimens
Following from the experiment and the data processing, three relative P-wave velocity changes and
three relative S-wave velocity changes have been obtained. Corresponding to Figures 5.11b and 5.11c,
Table 6.4 displays a summary of the transducer pairs and the measured relative wave-velocity changes.

Table 6.4: Summary of the measured relative wave-velocity changes.

Transducer pair Relative P-wave velocity change Δ𝑐ፏ Relative S-wave velocity change Δ𝑐ፒ
S1-S2 Δ𝑐፱፱ Δ𝑐፱፲
S3-S4 Δ𝑐፲፲ Δ𝑐፲፳
S5-S6 Δ𝑐፲፲ Δ𝑐፲፱
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The relative wave-velocity changes of the cement-paste specimens are displayed in Figure 6.12.
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Figure 6.12: Relative wave-velocity changes of the cement-paste specimens. (a) Relative P-wave velocity change of specimen
CP-1. (b) Relative P-wave velocity change of specimen CP-3. (c) Relative S-wave velocity change of specimen CP-1. (d)
Relative S-wave velocity change of specimen CP-3.

From the comparison of Figures 6.12a and 6.12b it can be observed that the relative P-wave velocity
change Δ𝑐፱፱ is quite consistent for both specimens. As the uniaxial compression increases, Δ𝑐፱፱
increases as well, within the range of approximately 0 to 2%. The trend of both graphs displays an
increase of Δ𝑐፱፱ at the low stress levels which drops gradually as the compression increases. This
curved trend could be a result of the flawed cross-correlation. Due to a possible attenuation of the
target wavelet, it is likely that the stretching algorithm picks another wavelet for the cross-correlation.
This new wavelet is then monitored as the compression increases, until a better wavelet has been
detected by the algorithm. This procedure would manifest itself in the relative wave-velocity change
consisting of multiple linear parts. Each of these linear parts would then denote another wavelet which
has been cross-correlated with the reference wavelet. This phenomenon is witnessed more clearly
in Figure 6.12b, displaying an almost bi-linear trend which suggests the monitoring of two different
wavelets in the cross-correlation.
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The differences between the results of the specimens is noticed when observing the behaviour of
Δ𝑐፲፲. Since two transducer pairs have been applied along the circumference of the specimens, two
radial P-waves have been measured. According to Murnaghan’s theory, these P-waves should yield
the same results. This is the case for specimen CP-3, which displays that Δ𝑐፲፲ is almost identical for
both measurements, like depicted in Figure 6.12b. However, this phenomenon is not observed in the
results for specimen CP-1. This inconsistency could be attributed to the waves being emitted at two
different locations. Another reason could be that the radial transducers do not make full contact on
the rounded surface of the cylinder, resulting in inconsistent measurements. Overall, it is witnessed
that Δ𝑐፲፲ slightly decreases as the uniaxial compression increases. Therefore, it can be concluded
that the observations of the relative P-wave velocity changes of the cement-paste specimens are quite
coherent with the hypothesis in Figure 6.11c.

From the graphs in Figures 6.12c and 6.12d it can be observed that the measurements of the S-
waves propagating along the loading direction yield conflicting results. This is manifested through the
inconsistency in the range of the magnitude of Δ𝑐፱፲ as well as the difference in the shape of its trend.
It is found that the magnitude of Δ𝑐፱፲ for specimen CP-3 is twice as large as for specimen CP-1. Also,
for CP-1 the relation between Δ𝑐፱፲ and 𝜎፱፱ seems to be linear whereas for CP-3 this is more bi-linear.
This could indicate that the cross-correlation for this waveform has been performed more accurately
for CP-1. Furthermore, all the relative S-wave velocity changes of specimen CP-3 (Figure 6.12d) show
great resemblances to their P-wave counterparts from Figure 6.12b. This could elude to the possibility
that the attempt to decouple the P- and S-wave content has not been successful. Another reason
for the incoherence of the relative S-wave velocity changes could be the potential interference from
a P-wave which has been converted to an S-wave after reflecting of a boundary, i.e. a PS-wave. In
terms of acoustoelasticity, Δ𝑐፲፳ yields the highest magnitude for CP-1, while the largest magnitude for
CP-3 is witnessed with Δ𝑐፱፲. This manifestation is contradicting the hypothesis displayed in Figures
6.11b and 6.11d. Moreover, it is observed in Figure 6.12c that, after 10 MPa, Δ𝑐፲፱ surpasses Δ𝑐፱፲ in
terms of magnitude. This particular behaviour seems to be in accordance with the hypothesis (Figures
6.11b and 6.11d). However, considering the non-monotonic trend of Δ𝑐፲፱, this behaviour could also be
caused by the inaccurate measurement of the radial transducers.

Due to the large curvature of the specimens, the radially applied transducers have a small contact
surface. This could result in some limitations with respect to the transmission of the transverse motion
of the transducers, depicted in Figure 6.13.
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Figure 6.13: Particle-oscillation direction of the radially applied transducer pairs. (a) Transducer pair S3-S4: SH-wave. (b)
Transducer pair S5-S6: SV-wave.

From Figure 6.13, it can be argued that the radially applied transducers only make contact with
the specimen in a single point. From this, it could be possible that, due to the large curvature, the
transverse motion of transducer pair S3-S4, i.e. of the SH-wave, is not transferred properly. As a
result, only the additional P-wave motion would have propagated through the specimen. This does
not hold for transducer pair S5-S6 which has its particle-oscillation direction along the single point of
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contact. Therefore, the non-monotonic trend of Δ𝑐፲፱ from CP-1 (Figure 6.12c) could have been a result
of some PS-wave interference.

6.3.3. Concrete core specimens
The relative wave-velocity changes of the concrete core specimens are presented in Figure 6.14.
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Figure 6.14: Relative wave-velocity changes of the concrete core specimens. (a) Relative P-wave velocity change of specimen
CC-2B. (b) Relative P-wave velocity change of specimen CC-4B. (c) Relative S-wave velocity change of specimen CC-2B. (d)
Relative S-wave velocity change of specimen CC-4B.

From Figures 6.14a and 6.14b it is observed that for the concrete core specimens all relative P-
wave velocity changes increases as compression increases. Like with Δ𝑐፱፱ from the cement-paste
specimens, the increase of these relative P-wave velocities is the highest at low stress levels and drops
gradually at higher compressive stress levels. Another similarity with the results from the cement-paste
specimens is the discrepancy in the measurements of Δ𝑐፲፲. However, when comparing the results from
CC-2B with CC-4B, some inconsistencies are witnessed. Beginning with the relative P-wave velocity
change in the axial direction, it can be observed that the magnitude of Δ𝑐፱፱ for CC-2B is approximately
seven times larger than for CC-4B. In addition, no consistent ranking between the Δ𝑐፱፱ and Δ𝑐፲፲ in
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terms of magnitude has been observed. This especially the case for specimen CC-4B where it is
witnessed that the magnitude of Δ𝑐፱፱ lies in between those of the two measurements of Δ𝑐፲፲, which is
contradicting the hypotheses (Figures 6.11a and 6.11c).

Unlike with the relative P-wave velocity changes, the graphs from Figures 6.14c and 6.14d display
moderately consistent results between the two concrete core specimens. The range of the magnitude
for these relative S-wave velocity changes is much closer for both specimens than for their P-wave
counterparts. It is also striking that for both specimens the largest changes with respect to the wave
velocity are observed in Δ𝑐፲፳, whereas the smallest changes are found in Δ𝑐፲፱. These findings are
contradicting the hypotheses from Figures 6.11b and 6.11d. Furthermore, it is observed that the mag-
nitude of Δ𝑐፲፱ stops increasing after approximately 10 MPa. This phenomenon is even more prominent
with specimen CC-2B, where Δ𝑐፱፲ even decreases.

The influence of the inclusion of aggregates in the concrete medium has been observed from the
results for specimens CC-2B and CC-4B. Contrary to the cement-paste specimens, the concrete core
specimens display less coherence with each other in terms of the relative wave-velocity changes. This
is especially prominent with the relative P-wave velocity changes. These inconsistencies are mani-
fested through both the large differences in magnitude of the relative wave-velocity changes as well
as their random sensitivity to the acoustoelastic effect. The discrepancy in the aggregate size is highly
associated with the frequency of the emitted signals. According to Planès and Larose [24], the ultra-
sonic monitoring of signals can be categorised based on the frequency band. The behaviour of the
signal in terms of interaction with the aggregates depends on the wavelength with respect to both the
aggregate size and the specimen size. If the wavelength is of the same order as the specimen size, the
signal is within the stationary-wave regime. Since the wavelength is also much larger than the aggre-
gate size, the interaction between aggregates and the waves is insignificant. Therefore, the sensitivity
to the acoustoelastic effect is limited. A wave signal is within the simple-scattering regime when the
wavelength is larger than the aggregates but smaller than the specimen size. Here, there is a weak
interaction between the wave signal and the aggregates, manifested through scattering. When the
wavelength is shorter than the aggregate size, the wave signal is in the multiple-scattering regime. The
wave signal in this regime is strongly affected by the aggregates, making the signal more sensitive to
the acoustoelastic effect. However, in this regime the wave signal is also strongly attenuated [12].

The used centre frequency of 400 kHz has resulted in a wavelength of 𝜆ፏ ≈ 10.00 mm for the
P-wave and 𝜆ፒ ≈ 6.25 mm for the S-wave. From Figure 5.14 it can be estimated that the average
aggregate size is approximately 10 mm. Following from this, it can be argued that the P-waves in
specimen CC-2B are within the simple-scattering regime. This can be elaborated by comparing the
magnitudes in Figure 6.14a with those of the relative P-wave velocity changes of the cement-past
specimens, which do not include aggregates. By taking into account the larger aggregate size in CC-4B
it can be deducted that the P-waves in this specimen could be within themultiple-scattering regime. This
argument might explain the lower magnitudes of Δ𝑐ፏ, which could be a result of the strong attenuation.
With the same reasoning, it can be argued that the S-waves in both concrete core specimens are most
likely within the multiple-scattering regime as well.

6.4. Validation
The last step of the data processing is the validation of the results. This validation has been carried
out in twofold. The first part concerns the determination of the Murnaghan constants of the specimens.
The veracity of these parameters are then verified according to the expectations with regard to their
characteristics. The second part involves a comparison with the findings in the paper “Acoustoelas-
tic Response of Concrete under Uniaxial Compression” by Nogueira and Rens [23], following from a
similar experiment. This has been accomplished by using the Murnaghan constants from this paper in
order to match the relative wave-velocity changes.

6.4.1. Murnaghan constants
Based on the findings of the relative wave-velocity changes, it has been concluded that the concrete
cores specimens do not yield consistent results. Therefore, the validation has been centered around
the cement-paste specimens. The Murnaghan constants of these specimens have been determined by
creating linear fits to the data and subsequently equating them with the expressions for the linearised
acoustoelastic constants (4.22). Since the Murnaghan constants consist of three parameters, three
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equations are sufficient to determine them. Therefore, only three of the six measurements are consid-
ered when solving this system of equations. For the purpose of yielding reliable results, the three most
consistent measurements have been chosen and subsequently fitted with a linear regression. These
are the relative wave-velocity changes Δ𝑐፱፱, Δ𝑐፱፲ and Δ𝑐፲፲ (from transducer pair S3-S4), which have
been equated with their theoretical counterparts,

𝐴፱፱፱፱ ⟹ Υ =
2𝑙 + 𝜆 + 𝜆 + 𝜇𝜇 (4𝜆 + 4𝑚 + 10𝜇)

6𝐾(𝜆 + 2𝜇)

𝐴፱፲፱፱ ⟹ Χ =
𝑚 + 𝜆𝑛4𝜇 + 4𝜆 + 4𝜇

6𝐾𝜇

𝐴፲፲፱፱ ⟹Φ =
2𝑙 + 𝜆 − 𝜆

2𝜇 (4𝜆 + 4𝑚 + 10𝜇)

6𝐾(𝜆 + 2𝜇) ,

(6.13)

respectively. Figure 6.15 displays the chosen measurements and their acoustoelastic constants.
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Figure 6.15: The linearised acoustoelastic constants of the cement-paste specimens. (a) Specimen CP-1: ፀᑩᑩᑩᑩ  -1.22 GPaᎽᎳ,
ፀᑩᑪᑩᑩ  -0.25 GPaᎽᎳ, ፀᑪᑪᑩᑩ  0.50 GPaᎽᎳ. (b) Specimen CP-3: ፀᑩᑩᑩᑩ  -0.89 GPaᎽᎳ, ፀᑩᑪᑩᑩ  -0.85 GPaᎽᎳ, ፀᑪᑪᑩᑩ 
0.15 GPaᎽᎳ.

The Murnaghan constants have been determined by equating the acoustoelastic constants (Fig-
ure6.15) to the expressions (6.13) and solving this system. Table 6.5 displays both the Murnaghan
constants and the Lamé parameters of the cement-paste specimens. For comparison, Table 6.5 dis-
plays the Murnaghan constants of a mortar specimen [23] as well.

Table 6.5: Summary of the second- and third-order material parameters of the cement-paste specimens.

Specimen Lamé parameters [GPa] Murnaghan constants [GPa]

𝜆 𝜇 𝑙 𝑚 𝑛
CP-1 5.64 8.46 160.10 −355.98 938.51
CP-3 7.72 10.66 −43.40 −356.33 −2890.00
Mortar specimen [23] −170.70 −235.80 −280.00

The hypotheses regarding the Murnaghan constants involved that they should be negative and of a
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larger order of magnitude than the Lamé parameters. From the found parameters in Table 6.5 it can be
observed that the Murnaghan constants of both specimens are indeed much larger than the second-
order coefficients. Besides, it is observed that for both specimens 𝑛 has a magnitude of an order higher
than 𝑙 and𝑚. This parameter is only present in the expression for the linearised S-wave velocity, which
is the least consistent of the three measurements. Therefore, the remarkable difference in magnitude
of 𝑛 with respect to the other Murnaghan constants could be attributed to the inaccurate measurement
of Δ𝑐፱፲. Furthermore, for specimen CP-1 holds that only one of the three constants is negative. This
phenomenon is not witnessed in specimen CP-3, which meets both of the set expectations. From the
observation of the Murnaghan constants, it can be concluded that CP-3 is the only specimen which can
be deemed representative. Therefore, the Murnaghan constants from CP-3 have been used in order
to validate the data from CP-1, like depicted in Figure 6.16.
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Figure 6.16: Validation of the results from CP-1 with the Murnaghan constants of CP-3: ፥  -43.40 GPa, ፦  -356.33 GPa,
፧  -2890.00 GPa. (a) Relative P-wave velocity change ጂᑇ. (b) Relative S-wave velocity change ጂᑊ.

From this validation in Figure 6.16a it can be observed that the linear fits, formed by the Murnaghan
constants of CP-3, are in accordance with the trend of the relative P-wave velocity changes. This
is especially the case at low stress levels. It is also witnessed that the linear fit of Δ𝑐፲፲ lies within
the boundaries set by the two measurements. This indicates that the inconsistency between the two
measurements of Δ𝑐፲፲ are caused by the inaccuracy of the radial recordings. When investigating the
relative S-wave velocity changes, no accordance between the linear fits and the data from CP-1 is
found. Again, this can be attributed to the inaccuracy of the radial recordings as well as the coupled P-
and S-wave content.

6.4.2. Comparison with literature
In the paper by Nogueira and Rens [23], it is described how experiments have been conducted during
which wave signals have been emitted through various specimens subjected to a uniaxial compression.
Resulting from these experiments are the Murnaghan constants of the tested specimens, among which
a mortar specimen. The Murnaghan constants of these specimens have been determined in a similar
way as explained in the previous section. Following from the results is that the relation between the
applied stress and the relative wave-velocity is indeed linear, confirming the hypotheses from Figure
6.11. The measurements of the relative wave-velocity changes of both CP-1 and CP-3 have been
validated by using the Murnaghan constants of the mortar specimen [23], displayed in Table 6.5. This
has been realised by substituting the Murnaghan constants from mortar specimens in the expressions
(6.13). Figure 6.17 displays the relative wave-velocity changes of the cement-paste specimens together
with the linear fit from the mortar specimen.
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Figure 6.17: Validation of the results from CP-1 with the Murnaghan constants of the mortar specimen: ፥  -170.70 GPa,
፦  -235.80 GPa, ፧  -280.00 GPa. (a) Relative P-wave velocity change ጂᑇ. (b) Relative S-wave velocity change ጂᑊ.

The graphs in Figures 6.17a and 6.17c show that for the relative P-wave velocity change Δ𝑐፱፱,
the mortar specimen accurately approximates the data of specimen CP-1 and CP-3. This consistency
is not observed in Δ𝑐፲፲, where it is unclear whether the data from the mortar specimen increases or
decreases. When investigating the relative S-wave velocity changes it is witnessed that the data of
the mortar specimen precisely matches Δ𝑐፱፲ from CP-1, especially for the first 5 MPa (Figure 6.17b).
In addition, the mortar specimen approximates the last 10 MPa of Δ𝑐፲፱ as well. The relative S-wave
velocity Δ𝑐፲፳ from CP-1 does not coincide with the fit from the mortar specimen. Again, this can be
attributed to the inaccurate measurement of the radial transducers. Overall, no clear relations can be
observed from the comparison between the relative S-wave velocity changes of CP-3 and the mortar
specimen (Figure 6.17d).

6.5. Conclusions
From the results of the data processing, it has been found that the acoustoelastic effect has been
confirmed for all four specimens. That is, it has been concluded that the increase of the uniaxial com-
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pression results in an increase or decrease of the relative wave-velocity change. For the cement-paste
specimens, and CP-3 in particular, the relative P-wave velocity changes seem to yield consistent re-
sults. This has been validated quantitatively by comparing the specimens with each other as well as
with the mortar specimen from the literature [23]. From these findings, it can be concluded that the
P-waves propagating along the loading direction display higher sensitivity to the acoustoelasticity than
P-waves propagating perpendicular to the loading direction. Furthermore, it is found that the velocity
of a P-wave propagating along the loading direction increases if the compression is increased. These
findings confirm again that Biot’s model does not work for the analysis of elastic wave propagation in
a solid. For P-waves propagating perpendicular to the loading direction, it has been observed that
the wave velocity slightly decreases under an increasing uniaxial compression. The results in [18][23]
show that the velocity of these P-waves increases moderately under an increasing uniaxial compres-
sion. Both of these trends have been predicted in the hypothesis, which concludes that the magnitude
of the Murnaghan constants determines whether the wave velocity of P-waves propagating perpendicu-
lar to the loading direction increases or decreases. On the other hand, no consistent results have been
found for the relative S-wave velocity changes. This observation can be attributed to a combination of
the discussed issues concerning both the coupled wave content and the radial recordings.

Throughout the data processing several difficulties have arisen. The first issue which has been
experienced involves the characteristics of the ultrasonic transducers. The coupling and close range
of the P- and S-wave content is most likely the reason why the relative S-wave velocity changes are
inaccurate. It seems that even after applying a P-wave filter, there is still some interference present
from remnant P-wave content. Another issue is met when observing the relative wave velocities of the
radial wave recordings. The inconsistencies within these measurements seem to stem from the small
diameter of the specimens. This causes inconveniences on both a practical level and an analytic level.
Due to the larger curvature of the cylindrical specimens, it is harder to ensure that the transducers
make full contact with the curved surface of the specimens. Therefore, this could result in inaccurate
data being recorded. Another issue is related to the constraint on the time window caused by the close
arrival times of the first P- and S-waves. This leaves almost no margin to vary the boundaries of the
time window in order to fine-tune the results of the stretching algorithm.

The discrepancies in the results of the relative P-wave velocity changes of the concrete core spec-
imens can be attributed to the difference in aggregate size. The sensitivity of the P-waves to the
acoustoelastic effect are determined by the amount of interaction with the aggregates through scatter-
ing. The ratio between the wavelength and the size of both the specimen and the aggregate dictate
the wave regime, for which the amount of scattering and attenuation is specified. Therefore, it has
been concluded that the aggregates influence the wave regime and thus the acoustoelasticity. Here, it
has been found that the P-waves of the concrete core specimens are most likely within different wave
regimes. With the same reasoning, it has been argued that the S-waves are probably within the same
wave regime.





7
Conclusions and recommendations

The final chapter of this thesis is centered around the conclusions that can be drawn from the research.
The sub-questions which have been stated in the introductory chapter are treated here. Subsequently,
an answer to the research question is formulated. Finally, some recommendations with regard to future
works are elaborated as well.

7.1. Conclusions
The structure of the thesis can be divided in two segments. The first segment encompasses the the-
oretical part of the research, during which the acoustoelastic effect is investigated theoretically. The
second segment is centered around the conduction of experiments and processing of the acquired
data for the purpose of determining the relative wave-velocity changes. The conclusions following
from these segments, as well as an answer to the research question, are covered in this section.

7.1.1. Theoretical conclusions
In Chapters 2 and 3, both Murnaghan and Biot’s theoretical models regarding the elastic wave prop-
agation under a stress state have been elaborated and critically reviewed. As a result, two distinct
formulations of the relation between the wave velocity and the stress have been discussed. In Chapter
2, expressions for the wave velocities of a medium subjected to a stress have been elaborated, based
on Murnaghan’s theory. From this, it is concluded that the influence of the stress in the expression for
the wave velocity stems from the second-order deformation terms in the constitutive relations. Chapter
3 has covered Biot’s theory with regard to the stress influence on the wave velocity. Here, it is found
that he assumed an initial strain-independent stress, which enters the expression for the wave velocity
through the dynamic-equilibrium equation.

The comparison between the fundamental assumptions, made by both Murnaghan and Biot, has
been discussed in Chapter 4. The most significant difference between the two models is the way they
consider the higher-order deformation terms. Murnaghan established the constitutive relations through
the introduction of a deformation energy function including the second-order deformation terms. The
form of this deformation energy function is based on his assumption that thematerial is isotropic. There-
fore, Murnaghan’s theory is not suitable when studying anisotropic materials. Through the constitutive
relation, the second-order stress terms enter the wave equation, resulting in stress-dependent ex-
pressions of the wave velocity. In these expressions, the increase/decrease of the wave velocities
is regulated by the unknown Murnaghan constants which have to be determined. Biot assumed the
infinitesimal theory and therefore discards all deformation terms of an order higher than the first. As a
result, he assumes that the initial-stress components enter the wave equation, and thus the expression
for the wave velocity, through force equilibrium. This phenomenon is reminiscent of the equation of mo-
tion of a bending rod subjected to an axial force. Biot also assumes that the elastic wave propagation in
a three-dimensional medium, subjected to initial stresses, is a general case of the bending-rod model.
However, the implications with respect to the increase/decrease of the wave velocity following from
these assumptions clearly contradict the results which are attained through experiments. Therefore, it
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has been concluded that Biot’s model is not an accurate depiction of the elastic wave propagation in a
solid. Consequently, the thesis has progressed by focussing on Murnaghan’s theory only. In order to
determine the Murnaghan constants, an experiment has been designed during which the influence of
the stress on the velocity of different waveforms is monitored.

7.1.2. Experimental conclusions
The second part of the research has been dedicated to experiments and the data processing of the
acquired data. In an attempt to verify the acoustoelastic effect in a concrete-like material, experiments
have been designed and performed. During these tests, various wave signals have been emitted
through four specimens, which have been subjected to a uniaxial compression. The specifications
of the emitted wave signals and the uniaxial loading have been elaborated in Chapter 5. The data
acquired from these experiments has been evaluated in Chapter 6.

The verification of the theoretic acoustoelastic effect has been considered in two steps. The first
step concerns a qualification of the acoustoelastic effect. During this step, it has been investigated
whether the applied stress has an influence on the wave velocity. The second step involves a quantifi-
cation of the acoustoelastic effect. Here, it has been attempted to examine the specific characteristics
of the relation between the applied uniaxial compressive stress and the relative wave-velocity change.
The results of the data processing show that all of the specimens display some degree of acoustoe-
lasticity. The data from the homogeneous cement-paste specimens display quite consistent results.
This is especially the case for the waves propagating along the loading direction. Here, it is found
that the measurements of the relative P-wave velocity Δ𝑐፱፱ are coherent. Both specimens display a
proportionate relation between Δ𝑐፱፱ and the applied compression, where the range of the magnitude
of Δ𝑐፱፱ is almost identical. Furthermore, the increase of Δ𝑐፱፱ is the highest at low stress levels and
drops gradually as compression increases. The coherence in results is not observed for the relative S-
wave velocity Δ𝑐፱፲, which yields inconsistencies between the specimens with regard to the magnitude
and the shape of the function. This is most likely caused by the unsuccessful attempt to decouple the
close-ranged P- and S-wave content. Apart from the P-waves, the recordings following from the radially
applied transducers are incoherent between the specimens. The inaccuracy of these measurements
could be attributed to a combination of the coupled frequency content and the small specimen size.

The challenges caused by the small diameter of the cylindrical specimens are in twofold. The first
challenge is related to the contact between the transducers and the curved surface of the specimen.
Due to the large curvature, it is possible that the transducers only make contact with the specimen
in a single point. As a result, the intended transverse motion might not be transferred properly to the
specimen. The second challenge is with regard to the data processing. Due to the small diameter,
the P- and S-arrivals are close in time. Consequently, this constraints the time window in which the
cross-correlation in the radial direction is performed. Therefore, it is nearly impossible to improve the
cross-correlation by fine-tuning the boundaries of the time window.

For the purpose of assessing the veracity of the results, a validation of the data has been performed.
This has been done by using the Murnaghan constants to recreate the data. The Murnaghan constants
of one specimen have been determined and used to fit the data of the other specimen. From this, it has
been concluded that the relative P-wave velocity changes are consistent among the specimens. From
the literature [23], another set of Murnaghan constants has been used to validate both cement-paste
specimens. Here, it has been found that these Murnaghan constants match the data of Δ𝑐፱፱ for both
specimens and the data of Δ𝑐፱፲ for only one of the two specimens.

When observing the waves propagating perpendicular to the loading direction, it is found that only
the P-waves display consistent results. Since two P-waves have been emitted perpendicular to the
loading direction, it has been possible to validate the results from these waves with each other. From
this it is found that the relative P-wave velocity Δ𝑐፲፲ is much less sensitive to the acoustoelasticity in
comparison with Δ𝑐፱፱. This particular behaviour is in accordance with the formed hypothesis and the
literature [18][23], from which follows that the acoustoelastic effect is the strongest for waves with a
particle-oscillation direction which is parallel to the loading direction. However, due to the inconsistent
results from the relative S-wave velocity changes, it has not been possible to draw the same conclu-
sions.



7.2. Recommendations for future works 77

In addition to the cement-paste specimens, two concrete core specimens have been examined as
well. From these results, it has been possible to observe the influence of the aggregates on the wave
velocity. Even though stress-induced changes have been observed, the measurements of the concrete
core specimens do not seem to be consistent. This is especially the case for the relative P-wave
velocity changes which display incoherent results with regard to the sensitivity of different waveforms
to the acoustoelastic effect. These inconsistencies in the measurements of the concrete core specimen
can be attributed to a discrepancy in the heterogeneity of the material. This difference is a result of
the varying ratio between the aggregate and specimen size, caused by the random distribution and
dimensions of the aggregates. Therefore, based on these measurements, it has not been possible to
establish the shape of the relation between the applied compression and the wave velocities of the
concrete core specimens.

7.1.3. Final conclusion
From the research conducted in this thesis, it has been concluded that Murnaghan’s theory yields
the most accurate representation of the stress-induced changes in the wave velocity. In his theory, it is
displayed how the wave velocity of a solid is influenced by the stress through the inclusion of the second-
order deformations. The performed experiments and the subsequent data processing have displayed
that the concrete-like medium demonstrates acoustoelastic behaviour. From the measurements, it
has been possible to conclude that the relative P-wave velocity changes exhibit consistent results
between the cement-paste specimens. From this, it is witnessed that the P-waves propagating along
the loading direction increase in velocity with an increasing compression. On the other hand, P-waves
propagating perpendicular to the loading direction decrease in velocity with an increasing compression.
Besides, the data shows that the relative wave-velocity change is linked to the applied stress following
an approximate linear relation. Furthermore, it has been found that P-waves with a particle oscillation
along the loading direction are more sensitive to the acoustoelastic effect, which is also in accordance
with Murnaghan’s theory.

The inclusion of the aggregates in the specimens has been shown to cause incoherent results with
respect to the acoustoelastic behaviour between the specimens. These inconsistencies are a result
of the random size and distribution of the aggregates within the concrete cores. The sensitivity to the
acoustoelastic effect is heavily dependent on the relation between the wavelength, the aggregate size
and the specimen size. The magnitude of the wavelength of a signal with respect to both the aggre-
gate size and the specimen size regulates the occurrence of scattering and attenuation, or lack thereof.
Therefore, due to the discrepancies within the aggregate size of the concrete core specimens, different
acoustoelastic behaviour has been witnessed. This has been mainly the case for the relative P-wave
velocity changes. A wave with a wavelength of a magnitude in between the specimen size and the
aggregate size scatters between the aggregates. This yields a higher sensitivity to the acoustoelas-
tic effect in comparison to a wave which does not interact with the aggregates, like the cement-paste
specimens. When the wavelength is shorter than the aggregate size, the amount of scattering is even
larger which would increase the acoustoelasticity. However, the additional strong attenuation nega-
tively impacts the acoustoelasticity which could outweigh the influence of the scattering. Due to these
varieties between the concrete core samples, it has not been possible to quantify the acoustoelastic
effect for the concrete core specimens.

7.2. Recommendations for future works
Throughout the research of the thesis, various lessons have been learnt. This section covers the
recommendations following directly from the difficulties which have been experienced during the thesis
work. The challenges are mainly related to the practical aspect of the experiments. In general, there are
two major difficulties which have been experienced. The first one is related to the inability to separate
the P- and S-wave pulses. This originates from the used ultrasonic transducers which emit wave signals
with coupled P- and S-wave content. For the experiments solely S-wave transducers have been used
to emit and record both P- and S-waves. Therefore, it is advised to use P-wave transducers to monitor
P-waves and S-wave transducers to monitor S-waves. Doing this could yield more accurate results.

The second difficulty regards the inconsistencies of the radial measurements. The uncertain at-
tachment of the transducers and the small difference between the arrival times are all results from the
small diameter of the specimens. This issue of the small dimensions of the specimens also leads to the
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large density of the aggregates within the concrete cores, causing inconsistent results as well. Consid-
ering these inconveniences and the specimen dimensions used in the literature, it would be advised to
test larger specimens. By doing this, it would be possible to achieve a better attachment of the radial
transducers as well as to vary more within the boundaries of the time windows. Another benefit could
be that the distribution of the aggregates in the concrete core specimens would be more constant. This
would result in both specimens being in the same wave regime within the same frequency band.

In order to use wave signals to monitor the stress changes of a concrete structure, the following
research steps are advised. First, it is of essence to analyse and quantify the acoustoelasticity of all
waveforms considered in this thesis. The outcome should be a theoretical model which predicts the
relative wave-velocity changes in a concrete-like material, based on the Murnaghan constants. These
experiments should be conductedmultiple timeswhile up-scaling the dimensions of the specimens. The
next step would be to investigate the acoustoelasticity of waves with non-orthogonal propagation and
particle-oscillation direction, while applying various stress states. This step is of great importance and
could be the first step towards stress measurement through smart aggregates in concrete structures.



A
Side notes F.D. Murnaghan

The expressions and derivations which Murnaghan made in his theory are elaborated here with ad-
ditional intermediate steps. Based on Murnaghan’s theory, Hughes and Kelly introduced their own
expressions for wave velocities of a solid subjected to various stress states. The derivation of these
expressions will be elaborated here as well.

A.1. Vectors and matrices
The implementations of vectors and matrices is a convenient method to present the theory of finite
deformations of an elastic solid. The description of the strain and the stress as well as their relation
can be derived by using the element definitions of an elastic solid.

A.1.1. Matrix element of arc
Assume a variable point 𝑃(𝑥, 𝑦, 𝑧) in a plane of which the coordinates are functions of a single indepen-
dent parameter 𝛼. As 𝛼 varies, the point 𝑃 traces a curve 𝐶፱. If the coordinates are constant functions
of 𝛼, then this curve reduces to a single point. The matrix element of arc of the curve that is traced by
𝑃 is then be defined as:

𝑑𝑥𝑑𝑥𝑑𝑥 = (
𝑑𝑥
𝑑𝑦
𝑑𝑧
) = (

𝑥ᎎ𝑑𝛼
𝑦ᎎ𝑑𝛼
𝑧ᎎ𝑑𝛼

) , (A.1)

where 𝑥ᎎ , 𝑦ᎎ and 𝑧ᎎ are short notations for the derivatives of 𝑥, 𝑦 and 𝑧 with respect to the variable 𝛼:

𝑥ᎎ =
𝜕𝑥
𝜕𝛼

𝑦ᎎ =
𝜕𝑦
𝜕𝛼

𝑧ᎎ =
𝜕𝑧
𝜕𝛼

. (A.2)

The scalar element of arc 𝑑𝑠፱ of the curve 𝐶፱ is then defined as:

𝑑𝑠፱ = √(𝑑𝑥𝑑𝑥𝑑𝑥)ፓ(𝑑𝑥𝑑𝑥𝑑𝑥) = √(𝑑𝑥)ኼ + (𝑑𝑦)ኼ + (𝑑𝑧)ኼ. (A.3)

A.1.2. Element of area
Now assume a point 𝑃(𝑥, 𝑦, 𝑧) of which the coordinates are functions of two independent variables 𝛼
and 𝛽. This results in two matrix elements of arc 𝑑ᎎ𝑥𝑑ᎎ𝑥𝑑ᎎ𝑥 and 𝑑ᎏ𝑥𝑑ᎏ𝑥𝑑ᎏ𝑥:

𝑑ᎎ𝑥𝑑ᎎ𝑥𝑑ᎎ𝑥 = (
𝑥ᎎ𝑑𝛼
𝑦ᎎ𝑑𝛼
𝑧ᎎ𝑑𝛼

) ; 𝑑ᎏ𝑥𝑑ᎏ𝑥𝑑ᎏ𝑥 = (
𝑥ᎏ𝑑𝛽
𝑦ᎏ𝑑𝛽
𝑧ᎏ𝑑𝛽

) , (A.4)
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which can be used to define the column vectors of the 3 x 2 matrix:

(
𝑥ᎎ𝑑𝛼 𝑥ᎏ𝑑𝛽
𝑦ᎎ𝑑𝛼 𝑦ᎏ𝑑𝛽
𝑧ᎎ𝑑𝛼 𝑧ᎏ𝑑𝛽

) . (A.5)

If it is assumed that this 3 x 2 matrix is obtained by removing the first column of a 3 x 3 matrix, the first
column of the cofactor matrix of this original 3 x 3 matrix denotes the matrix element of area 𝑑𝑆፱𝑑𝑆፱𝑑𝑆፱ of the
surface traced out by the point 𝑃:

𝑑𝑆፱𝑑𝑆፱𝑑𝑆፱ = (
𝑑𝑆፱
𝑑𝑆፲
𝑑𝑆፳

) =

⎛
⎜
⎜
⎜
⎜
⎜

⎝

|𝑦ᎎ 𝑦ᎏ
𝑧ᎎ 𝑧ᎏ| 𝑑𝛼𝑑𝛽

|𝑧ᎎ 𝑧ᎏ
𝑥ᎎ 𝑥ᎏ| 𝑑𝛼𝑑𝛽

|𝑥ᎎ 𝑥ᎏ
𝑦ᎎ 𝑦ᎏ| 𝑑𝛼𝑑𝛽

⎞
⎟
⎟
⎟
⎟
⎟

⎠

, (A.6)

where 𝑑𝑆፱, 𝑑𝑆፲ and 𝑑𝑆፳ denote surface areas which have their outward normals in the 𝑥, 𝑦 and 𝑧-
direction, respectively.

According to the definitions of linear algebra, the same expression can be obtained through the
calculation of the normal vector to the plane defined by the two matrix elements of arc, 𝑑ᎎ𝑥𝑑ᎎ𝑥𝑑ᎎ𝑥 and 𝑑ᎏ𝑥𝑑ᎏ𝑥𝑑ᎏ𝑥,
in 𝑃. This normal vector 𝑛፱𝑛፱𝑛፱ is defined as:

𝑛፱𝑛፱𝑛፱ = (
𝑑𝑆፱
𝑑𝑆፲
𝑑𝑆፳

) = (
𝑥ᎎ𝑑𝛼
𝑦ᎎ𝑑𝛼
𝑧ᎎ𝑑𝛼

) × (
𝑥ᎏ𝑑𝛽
𝑦ᎏ𝑑𝛽
𝑧ᎏ𝑑𝛽

) = (
𝑦ᎎ𝑧ᎏ𝑑𝛼𝑑𝛽 − 𝑧ᎎ𝑦ᎏ𝑑𝛼𝑑𝛽
𝑧ᎎ𝑥ᎏ𝑑𝛼𝑑𝛽 − 𝑥ᎎ𝑧ᎏ𝑑𝛼𝑑𝛽
𝑥ᎎ𝑦ᎏ𝑑𝛼𝑑𝛽 − 𝑦ᎎ𝑥ᎏ𝑑𝛼𝑑𝛽

) =

⎛
⎜
⎜
⎜
⎜
⎜

⎝

|𝑦ᎎ 𝑦ᎏ
𝑧ᎎ 𝑧ᎏ| 𝑑𝛼𝑑𝛽

|𝑧ᎎ 𝑧ᎏ
𝑥ᎎ 𝑥ᎏ| 𝑑𝛼𝑑𝛽

|𝑥ᎎ 𝑥ᎏ
𝑦ᎎ 𝑦ᎏ| 𝑑𝛼𝑑𝛽

⎞
⎟
⎟
⎟
⎟
⎟

⎠

. (A.7)

This confirms that the matrix element of area 𝑑𝑆፱𝑑𝑆፱𝑑𝑆፱ has the direction of the normal to the surface. By
using the definition of the differentials, the entries of the matrix element of area can be written in a
compact form:

𝑑𝑥 = 𝑥ᎎ𝑑𝛼 + 𝑥ᎏ𝑑𝛽
𝑑𝑦 = 𝑦ᎎ𝑑𝛼 + 𝑦ᎏ𝑑𝛽
𝑑𝑧 = 𝑧ᎎ𝑑𝛼 + 𝑧ᎏ𝑑𝛽.

(A.8)

The surface areas are obtained upon multiplication of two differentials which define a plane. For ex-
ample, the area 𝑑𝑆፱ is defined by the plane which is constructed by the differentials 𝑑𝑦 and 𝑑𝑧 and has
its outward normal in the direction of the 𝑥-axis. Therefore, the following holds:

𝑑𝑦𝑑𝑧 = (𝑦ᎎ𝑑𝛼 + 𝑦ᎏ𝑑𝛽)(𝑧ᎎ𝑑𝛼 + 𝑧ᎏ𝑑𝛽) = 𝑦ᎎ𝑧ᎎ𝑑𝛼𝑑𝛼 + 𝑦ᎎ𝑧ᎏ𝑑𝛼𝑑𝛽 + 𝑦ᎏ𝑧ᎎ𝑑𝛽𝑑𝛼 + 𝑦ᎏ𝑧ᎏ𝑑𝛽𝑑𝛽. (A.9)

Here, the order of multiplication of the differentials determines the direction of the surface area, i.e. of
its outward normal. The permutations of the differentials are defined as: 𝑑𝛽𝑑𝛼 = −𝑑𝛼𝑑𝛽, 𝑑𝛼𝑑𝛼 = 0,
𝑑𝛽𝑑𝛽 = 0. By obeying this order of multiplication, the area 𝑑𝑦𝑑𝑧 becomes:

𝑑𝑦𝑑𝑧 = (𝑦ᎎ𝑧ᎏ − 𝑦ᎏ𝑧ᎎ)𝑑𝛼𝑑𝛽 = |
𝑦ᎎ 𝑦ᎏ
𝑧ᎎ 𝑧ᎏ| 𝑑𝛼𝑑𝛽 = 𝑑𝑆

፱ . (A.10)



A.1. Vectors and matrices 81

It can be shown that the outward normal to 𝑑𝑆፱ is indeed orientated in the 𝑥-direction with:

𝑛፱𝑛፱𝑛፱ = (
0
𝑑𝑦
0
) × (

0
0
𝑑𝑧
) = (

𝑑𝑦𝑑𝑧
0
0
) = (

𝑑𝑆፱
0
0
) . (A.11)

If the order of the cross-product is changed the following is obtained:

−𝑛፱−𝑛፱−𝑛፱ = (
0
0
𝑑𝑧
) × (

0
𝑑𝑦
0
) = (

−𝑑𝑦𝑑𝑧
0
0

) = (
−𝑑𝑆፱
0
0
) , (A.12)

confirming that the order of multiplication changes the direction of the surface area. By using the same
approach for the other surface areas, 𝑑𝑆፱𝑑𝑆፱𝑑𝑆፱ can be written in a more compact form:

𝑑𝑆፱𝑑𝑆፱𝑑𝑆፱ = (
𝑑𝑦𝑑𝑧
𝑑𝑧𝑑𝑥
𝑑𝑥𝑑𝑦

) . (A.13)

The scalar element of area 𝑑𝑆፱ is obtained by taking the norm of its normal vector 𝑛፱𝑛፱𝑛፱:

𝑑𝑆፱ = ‖𝑛፱𝑛፱𝑛፱‖ = √(𝑑𝑆፱)ኼ + (𝑑𝑆፲)ኼ + (𝑑𝑆፳)ኼ. (A.14)

Through the definition of the unit outward normal to 𝑑𝑆፱, it is possible to express the matrix element
of area in terms of the scalar element of area:

𝑑𝑆፱𝑑𝑆፱𝑑𝑆፱ = 𝑑𝑆፱�̂�፱�̂�፱�̂�፱ , (A.15)

where �̂�፱�̂�፱�̂�፱ denotes the normalised outward normal to 𝑑𝑆፱:

�̂�፱�̂�፱�̂�፱ = (
�̂�፱
�̂�፲
�̂�፳
) = 𝑛፱𝑛፱𝑛፱

‖𝑛፱𝑛፱𝑛፱‖
. (A.16)

The above can be further elaborated by substituting relation (A.7) and (A.14):

�̂�፱�̂�፱�̂�፱ =
1
𝑑𝑆፱

(
𝑑𝑆፱
𝑑𝑆፲
𝑑𝑆፳

) . (A.17)

Figure A.1 displays the scalar element of area 𝑑𝑆፱ with its positive outward normal, as well the projec-
tions on the coordinate planes and their respective negative outward normals.

𝑦

𝑧

𝑥

𝑑𝑆፱

𝑑𝑆፲

𝑑𝑆፳

−𝑛፲𝑛፲𝑛፲

−𝑛፱𝑛፱𝑛፱

−𝑛፳𝑛፳𝑛፳

𝑂
ℎ
𝑑𝑆፱

𝑛፱𝑛፱𝑛፱

Figure A.1: Visualisation of the scalar element of area ፝ፒᑩ and its projections on the coordinate planes.
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A.1.3. Element of volume
If now is assumed that the coordinates of point 𝑃(𝑥, 𝑦, 𝑧) are functions of three independent variables
𝛼, 𝛽 and 𝛾, three matrix elements of arc are obtained:

𝑑ᎎ𝑥𝑑ᎎ𝑥𝑑ᎎ𝑥 = (
𝑥ᎎ𝑑𝛼
𝑦ᎎ𝑑𝛼
𝑧ᎎ𝑑𝛼

) ; 𝑑ᎏ𝑥𝑑ᎏ𝑥𝑑ᎏ𝑥 = (
𝑥ᎏ𝑑𝛽
𝑦ᎏ𝑑𝛽
𝑧ᎏ𝑑𝛽

) ; 𝑑᎐𝑥𝑑᎐𝑥𝑑᎐𝑥 = (
𝑥᎐𝑑𝛾
𝑦᎐𝑑𝛾
𝑧᎐𝑑𝛾

) , (A.18)

which can be used to define the column vectors of the 3 x 3 matrix:

(
𝑥ᎎ𝑑𝛼 𝑥ᎏ𝑑𝛽 𝑥᎐𝑑𝛾
𝑦ᎎ𝑑𝛼 𝑦ᎏ𝑑𝛽 𝑦᎐𝑑𝛾
𝑧ᎎ𝑑𝛼 𝑧ᎏ𝑑𝛽 𝑧᎐𝑑𝛾

) . (A.19)

The absolute value of the determinant of this matrix, granted that the matrix is non-singular, is defined
as the element of volume in space 𝑑𝑉፱. The cofactor expansion of the first column of this 3 x 3 matrix
yields:

𝑑𝑉፱ = 𝑥ᎎ𝑑𝛼 |
𝑦ᎏ𝑑𝛽 𝑦᎐𝑑𝛾
𝑧ᎏ𝑑𝛽 𝑧᎐𝑑𝛾| − 𝑦ᎎ𝑑𝛼 |

𝑥ᎏ𝑑𝛽 𝑥᎐𝑑𝛾
𝑧ᎏ𝑑𝛽 𝑧᎐𝑑𝛾| + 𝑧ᎎ𝑑𝛼 |

𝑥ᎏ𝑑𝛽 𝑥᎐𝑑𝛾
𝑦ᎏ𝑑𝛽 𝑦᎐𝑑𝛾| . (A.20)

This expression can be elaborated to:

𝑑𝑉፱ = (𝑥ᎎ |
𝑦ᎏ 𝑦᎐
𝑧ᎏ 𝑧᎐| − 𝑦ᎎ |

𝑥ᎏ 𝑥᎐
𝑧ᎏ 𝑧᎐ | + 𝑧ᎎ |

𝑥ᎏ 𝑥᎐
𝑦ᎏ 𝑦᎐| )𝑑𝛼𝑑𝛽𝑑𝛾, (A.21)

in which the cofactor expansion of the first column of the 3 x 3 matrix,

𝐽፱𝐽፱𝐽፱(𝛼, 𝛽, 𝛾) = (
𝑥ᎎ 𝑥ᎏ 𝑥᎐
𝑦ᎎ 𝑦ᎏ 𝑦᎐
𝑧ᎎ 𝑧ᎏ 𝑧᎐

) , (A.22)

can be recognised. This 3 x 3 matrix is defined as a Jacobian matrix, containing the derivatives of the
coordinates (𝑥, 𝑦, 𝑧) with respect to the variables 𝛼, 𝛽 and 𝛾. Therefore, the following holds:

𝑑𝑉፱ = det( 𝐽፱𝐽፱𝐽፱(𝛼, 𝛽, 𝛾))𝑑𝛼𝑑𝛽𝑑𝛾. (A.23)

The same expression can be found by making use of the definitions of the differentials:

𝑑𝑥𝑑𝑦𝑑𝑧 = (𝑥ᎎ𝑑𝛼 + 𝑥ᎏ𝑑𝛽 + 𝑥᎐𝑑𝛾)(𝑦ᎎ𝑑𝛼 + 𝑦ᎏ𝑑𝛽 + 𝑦᎐𝑑𝛾)(𝑧ᎎ𝑑𝛼 + 𝑧ᎏ𝑑𝛽 + 𝑧᎐𝑑𝛾). (A.24)

The permutations of the differentials 𝑑𝛼, 𝑑𝛽 and 𝑑𝛾 are defined as:

𝑑𝛾𝑑𝛼𝑑𝛽 = 𝑑𝛽𝑑𝛾𝑑𝛼 = 𝑑𝛼𝑑𝛽𝑑𝛾 = +𝑑𝛼𝑑𝛽𝑑𝛾
𝑑𝛾𝑑𝛽𝑑𝛼 = 𝑑𝛽𝑑𝛼𝑑𝛾 = 𝑑𝛼𝑑𝛾𝑑𝛽 = −𝑑𝛼𝑑𝛽𝑑𝛾, (A.25)

whereas all the other combinations of the differentials are zero. By respecting the order of multiplication
of the differentials in relation (A.24), expression (A.21) is obtained:

𝑑𝑥𝑑𝑦𝑑𝑧 = (𝑥ᎎ |
𝑦ᎏ 𝑦᎐
𝑧ᎏ 𝑧᎐| − 𝑦ᎎ |

𝑥ᎏ 𝑥᎐
𝑧ᎏ 𝑧᎐ | + 𝑧ᎎ |

𝑥ᎏ 𝑥᎐
𝑦ᎏ 𝑦᎐| )𝑑𝛼𝑑𝛽𝑑𝛾. (A.26)

Therefore, the element of volume 𝑑𝑉፱ can be rewritten in the short notation:

𝑑𝑉፱ = 𝑑𝑥𝑑𝑦𝑑𝑧. (A.27)
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A.2. Initial and final configurations
In the definition of the matrix elements of arc, 𝑑ᎎ𝑥𝑑ᎎ𝑥𝑑ᎎ𝑥, 𝑑ᎏ𝑥𝑑ᎏ𝑥𝑑ᎏ𝑥 and 𝑑᎐𝑥𝑑᎐𝑥𝑑᎐𝑥, the coordinates (𝑥, 𝑦, 𝑧) are assumed
to be direct functions of variables 𝛼, 𝛽 and 𝛾. However, it is more common that these coordinates are
functions of another set of coordinates (𝑎, 𝑏, 𝑐), which in turn are functions of 𝛼, 𝛽 and 𝛾. This is the
case for a point 𝑃ፚ with initial coordinates (𝑎, 𝑏, 𝑐) which is transformed to point 𝑃፱ with final coordinates
(𝑥, 𝑦, 𝑧) due to a displacement (𝑢, 𝑣, 𝑤):

𝑥𝑥𝑥 = (
𝑥
𝑦
𝑧
) = (

𝑎
𝑏
𝑐
) + (

𝑢
𝑣
𝑤
) . (A.28)

Now a distinction can be made between the initial and final configuration of the previously established
elements (A.3), (A.14) and (A.27). By using the definition of the differentials, the initial and final config-
urations can be expressed into each other.

A.2.1. Matrix element of arc
A variable point 𝑃ፚ(𝑎, 𝑏, 𝑐) traces a curve 𝐶ፚ as the parameter 𝛼 varies. After a displacement, 𝑃ፚ(𝑎, 𝑏, 𝑐)
and 𝐶ፚ are transformed to 𝑃፱(𝑥, 𝑦, 𝑧) and 𝐶፱, respectively. The final matrix element of arc is then defined
as:

𝑑𝑥𝑑𝑥𝑑𝑥 = (
𝑑𝑥
𝑑𝑦
𝑑𝑧
) = (

𝑥ፚ𝑑𝑎 + 𝑥𝑑𝑏 + 𝑥𝑑𝑐
𝑦ፚ𝑑𝑎 + 𝑦𝑑𝑏 + 𝑦𝑑𝑐
𝑧ፚ𝑑𝑎 + 𝑧𝑑𝑏 + 𝑧𝑑𝑐

) . (A.29)

The above can be expressed in terms of the initial element of arc with:

𝑑𝑥𝑑𝑥𝑑𝑥 = 𝐽፱𝐽፱𝐽፱(𝑎, 𝑏, 𝑐) 𝑑𝑎𝑑𝑎𝑑𝑎, (A.30)

where 𝐽፱𝐽፱𝐽፱(𝑎, 𝑏, 𝑐) denotes the Jacobian matrix containing the partial derivatives of the final coordinates
with respect to the initial coordinates,

𝐽፱𝐽፱𝐽፱(𝑎, 𝑏, 𝑐) ≡ (
𝑥ፚ 𝑥 𝑥
𝑦ፚ 𝑦 𝑦
𝑧ፚ 𝑧 𝑧

) , (2.6)

and 𝑑𝑎𝑑𝑎𝑑𝑎 – the initial matrix element of arc. Similarly, the initial matrix element of arc can be expressed
in terms of the final element of arc:

𝑑𝑎𝑑𝑎𝑑𝑎 = 𝐽ፚ𝐽ፚ𝐽ፚ(𝑥, 𝑦, 𝑧) 𝑑𝑥𝑑𝑥𝑑𝑥, (A.31)

where 𝐽ፚ𝐽ፚ𝐽ፚ(𝑥, 𝑦, 𝑧) denotes the Jacobian matrix containing the partial derivatives of the initial coordinates
with respect to the final coordinates,

𝐽ፚ𝐽ፚ𝐽ፚ(𝑥, 𝑦, 𝑧) ≡ (
𝑎፱ 𝑎፲ 𝑎፳
𝑏፱ 𝑏፲ 𝑏፳
𝑐፱ 𝑐፲ 𝑐፳

) . (2.7)

Therefore, the initial and final scalar element of arc can be written as:

𝑑𝑠ፚ = √(𝑑𝑎𝑑𝑎𝑑𝑎)ፓ(𝑑𝑎𝑑𝑎𝑑𝑎) = √(𝑑𝑥𝑑𝑥𝑑𝑥)ፓ𝐽ፚ𝐽ፚ𝐽ፚ(𝑥, 𝑦, 𝑧)ፓ𝐽ፚ𝐽ፚ𝐽ፚ(𝑥, 𝑦, 𝑧) (𝑑𝑥𝑑𝑥𝑑𝑥)
𝑑𝑠፱ = √(𝑑𝑥𝑑𝑥𝑑𝑥)ፓ(𝑑𝑥𝑑𝑥𝑑𝑥) = √(𝑑𝑎𝑑𝑎𝑑𝑎)ፓ𝐽፱𝐽፱𝐽፱(𝑎, 𝑏, 𝑐)ፓ𝐽፱𝐽፱𝐽፱(𝑎, 𝑏, 𝑐) (𝑑𝑎𝑑𝑎𝑑𝑎),

(A.32)

respectively.
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A.2.2. Matrix element of area
The initial matrix element of area 𝑑𝑆ፚ𝑑𝑆ፚ𝑑𝑆ፚ, defined by the the initial matrix elements of arc 𝑑ᎎ𝑎𝑑ᎎ𝑎𝑑ᎎ𝑎 and 𝑑ᎏ𝑎𝑑ᎏ𝑎𝑑ᎏ𝑎, is
described as:

𝑑𝑆ፚ𝑑𝑆ፚ𝑑𝑆ፚ = (
𝑑𝑆ፚ
𝑑𝑆
𝑑𝑆

) =

⎛
⎜
⎜
⎜
⎜
⎜

⎝

|𝑏ᎎ 𝑏ᎏ
𝑐ᎎ 𝑐ᎏ | 𝑑𝛼𝑑𝛽

|𝑐ᎎ 𝑐ᎏ
𝑎ᎎ 𝑎ᎏ| 𝑑𝛼𝑑𝛽

|𝑎ᎎ 𝑎ᎏ
𝑏ᎎ 𝑏ᎏ| 𝑑𝛼𝑑𝛽

⎞
⎟
⎟
⎟
⎟
⎟

⎠

= (
𝑑𝑏𝑑𝑐
𝑑𝑐𝑑𝑎
𝑑𝑎𝑑𝑏

) , (A.33)

whereas the final matrix element of area 𝑑𝑆፱𝑑𝑆፱𝑑𝑆፱, defined by the the final matrix elements of arc 𝑑ᎎ𝑥𝑑ᎎ𝑥𝑑ᎎ𝑥 and
𝑑ᎏ𝑥𝑑ᎏ𝑥𝑑ᎏ𝑥, is described as:

𝑑𝑆፱𝑑𝑆፱𝑑𝑆፱ = (
𝑑𝑆፱
𝑑𝑆፲
𝑑𝑆፳

) =

⎛
⎜
⎜
⎜
⎜
⎜

⎝

|𝑦ᎎ 𝑦ᎏ
𝑧ᎎ 𝑧ᎏ| 𝑑𝛼𝑑𝛽

|𝑧ᎎ 𝑧ᎏ
𝑥ᎎ 𝑥ᎏ| 𝑑𝛼𝑑𝛽

|𝑥ᎎ 𝑥ᎏ
𝑦ᎎ 𝑦ᎏ| 𝑑𝛼𝑑𝛽

⎞
⎟
⎟
⎟
⎟
⎟

⎠

= (
𝑑𝑦𝑑𝑧
𝑑𝑧𝑑𝑥
𝑑𝑥𝑑𝑦

) . (A.34)

The 2 x 2 determinants of these two expressions can be related to each other through the chain rule of
differentiation: 𝑦ᎎ = 𝑦ፚ𝑎ᎎ + 𝑦𝑏ᎎ + 𝑦𝑐ᎎ, 𝑦ᎏ = 𝑦ፚ𝑎ᎏ + 𝑦𝑏ᎏ + 𝑦𝑐ᎏ, etc. Therefore, the following holds:

|𝑦ᎎ 𝑦ᎏ
𝑧ᎎ 𝑧ᎏ| = (𝑦ፚ𝑎ᎎ+𝑦𝑏ᎎ+𝑦𝑐ᎎ)(𝑧ፚ𝑎ᎏ+𝑧𝑏ᎏ+𝑧𝑐ᎏ)−(𝑧ፚ𝑎ᎎ+𝑧𝑏ᎎ+𝑧𝑐ᎎ)(𝑦ፚ𝑎ᎏ+𝑦𝑏ᎏ+𝑦𝑐ᎏ), (A.35)

which, upon elaborating and rearranging, can be written as:

|𝑦ᎎ 𝑦ᎏ
𝑧ᎎ 𝑧ᎏ| = |

𝑦 𝑦
𝑧 𝑧| |

𝑏ᎎ 𝑏ᎏ
𝑐ᎎ 𝑐ᎏ | + |

𝑦 𝑦ፚ
𝑧 𝑧ፚ| |

𝑐ᎎ 𝑐ᎏ
𝑎ᎎ 𝑎ᎏ| + |

𝑦ፚ 𝑦
𝑧ፚ 𝑧| |

𝑎ᎎ 𝑎ᎏ
𝑏ᎎ 𝑏ᎏ| . (A.36)

By using this chain rule of differentiation for determinants, the final matrix element of area can be
rewritten to:

𝑑𝑆፱𝑑𝑆፱𝑑𝑆፱ = (
𝑑𝑆፱
𝑑𝑆፲
𝑑𝑆፳

) =

⎛
⎜
⎜
⎜
⎜
⎜

⎝

|𝑦 𝑦
𝑧 𝑧| |

𝑏ᎎ 𝑏ᎏ
𝑐ᎎ 𝑐ᎏ | + |

𝑦 𝑦ፚ
𝑧 𝑧ፚ| |

𝑐ᎎ 𝑐ᎏ
𝑎ᎎ 𝑎ᎏ| + |

𝑦ፚ 𝑦
𝑧ፚ 𝑧| |

𝑎ᎎ 𝑎ᎏ
𝑏ᎎ 𝑏ᎏ|

|𝑧 𝑧
𝑥 𝑥| |

𝑏ᎎ 𝑏ᎏ
𝑐ᎎ 𝑐ᎏ | + |

𝑧 𝑧ፚ
𝑥 𝑥ፚ| |

𝑐ᎎ 𝑐ᎏ
𝑎ᎎ 𝑎ᎏ| + |

𝑧ፚ 𝑧
𝑥ፚ 𝑥| |

𝑎ᎎ 𝑎ᎏ
𝑏ᎎ 𝑏ᎏ|

|𝑥 𝑥
𝑦 𝑦| |

𝑏ᎎ 𝑏ᎏ
𝑐ᎎ 𝑐ᎏ | + |

𝑥 𝑥ፚ
𝑦 𝑦ፚ| |

𝑐ᎎ 𝑐ᎏ
𝑎ᎎ 𝑎ᎏ| + |

𝑥ፚ 𝑥
𝑦ፚ 𝑦| |

𝑎ᎎ 𝑎ᎏ
𝑏ᎎ 𝑏ᎏ|

⎞
⎟
⎟
⎟
⎟
⎟

⎠

𝑑𝛼𝑑𝛽, (A.37)

which, upon substitution of relation (A.33), can be elaborated to:

𝑑𝑆፱𝑑𝑆፱𝑑𝑆፱ = (
𝑑𝑆፱
𝑑𝑆፲
𝑑𝑆፳

) =

⎛
⎜
⎜
⎜
⎜
⎜

⎝

|𝑦 𝑦
𝑧 𝑧| 𝑑𝑆

ፚ + |𝑦 𝑦ፚ
𝑧 𝑧ፚ| 𝑑𝑆

 + |𝑦ፚ 𝑦
𝑧ፚ 𝑧| 𝑑𝑆



|𝑧 𝑧
𝑥 𝑥| 𝑑𝑆

ፚ + |𝑧 𝑧ፚ
𝑥 𝑥ፚ| 𝑑𝑆

 + |𝑧ፚ 𝑧
𝑥ፚ 𝑥| 𝑑𝑆



|𝑥 𝑥
𝑦 𝑦| 𝑑𝑆

ፚ + |𝑥 𝑥ፚ
𝑦 𝑦ፚ| 𝑑𝑆

 + |𝑥ፚ 𝑥
𝑦ፚ 𝑦| 𝑑𝑆



⎞
⎟
⎟
⎟
⎟
⎟

⎠

. (A.38)
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From this it can be found that the final matrix element of area 𝑑𝑆፱𝑑𝑆፱𝑑𝑆፱ can be expressed in terms of the
initial matrix element of area 𝑑𝑆ፚ𝑑𝑆ፚ𝑑𝑆ፚ with:

𝑑𝑆፱𝑑𝑆፱𝑑𝑆፱ = (co 𝐽፱𝐽፱𝐽፱(𝑎, 𝑏, 𝑐)) 𝑑𝑆ፚ𝑑𝑆ፚ𝑑𝑆ፚ , (A.39)
where co 𝐽፱𝐽፱𝐽፱(𝑎, 𝑏, 𝑐) denotes the 3 x 3 cofactor matrix of the Jacobian matrix 𝐽፱𝐽፱𝐽፱(𝑎, 𝑏, 𝑐):

co 𝐽፱𝐽፱𝐽፱(𝑎, 𝑏, 𝑐) =

⎛
⎜
⎜
⎜
⎜
⎜

⎝

|𝑦 𝑦
𝑧 𝑧| |𝑧ፚ 𝑧

𝑦ፚ 𝑦| |𝑦ፚ 𝑦
𝑧ፚ 𝑧|

|𝑧 𝑧
𝑥 𝑥| |𝑥ፚ 𝑥

𝑧ፚ 𝑧 | |𝑧ፚ 𝑧
𝑥ፚ 𝑥|

|𝑥 𝑥
𝑦 𝑦| |𝑦ፚ 𝑦

𝑥ፚ 𝑥| |𝑥ፚ 𝑥
𝑦ፚ 𝑦|

⎞
⎟
⎟
⎟
⎟
⎟

⎠

. (A.40)

Through the definition of the inverse of a non-singular matrix 𝐴𝐴𝐴,

𝐴𝐴𝐴ዅኻ = 1
det(𝐴𝐴𝐴) co 𝐴𝐴𝐴ፓ , (A.41)

the cofactor matrix of its transpose is defined as:

co 𝐴𝐴𝐴ፓ = det(𝐴𝐴𝐴)𝐴𝐴𝐴ዅኻ. (A.42)
By using this definition and det 𝐴𝐴𝐴ፓ = det 𝐴𝐴𝐴 in relation (A.39), Nanson’s formula is obtained:

𝑑𝑆፱𝑑𝑆፱𝑑𝑆፱ = det( 𝐽፱𝐽፱𝐽፱(𝑎, 𝑏, 𝑐)) 𝐽፱𝐽፱𝐽፱(𝑎, 𝑏, 𝑐)ዅፓ𝑑𝑆ፚ𝑑𝑆ፚ𝑑𝑆ፚ . (A.43)

A.2.3. Element of volume
The initial element of volume 𝑑𝑉ፚ is defined as:

𝑑𝑉ፚ = det( 𝐽ፚ𝐽ፚ𝐽ፚ(𝛼, 𝛽, 𝛾)) 𝑑𝛼𝑑𝛽𝑑𝛾 = 𝑑𝑎𝑑𝑏𝑑𝑐, (A.44)
whereas the final element of volume 𝑑𝑉፱ is defined as:

𝑑𝑉፱ = det( 𝐽፱𝐽፱𝐽፱(𝛼, 𝛽, 𝛾)) 𝑑𝛼𝑑𝛽𝑑𝛾 = 𝑑𝑥𝑑𝑦𝑑𝑧. (A.45)
The final element of volume can be expressed in terms of the initial element of volume by making

use of the chain rule of differentiation for determinants (A.36):

𝑑𝑉፱ = [𝑥ᎎ( |
𝑦 𝑦
𝑧 𝑧| |

𝑏ᎏ 𝑏᎐
𝑐ᎏ 𝑐᎐ | + |

𝑦 𝑦ፚ
𝑧 𝑧ፚ| |

𝑐ᎏ 𝑐᎐
𝑎ᎏ 𝑎᎐| + |

𝑦ፚ 𝑦
𝑧ፚ 𝑧| |

𝑎ᎏ 𝑎᎐
𝑏ᎏ 𝑏᎐| )

− 𝑦ᎎ( |
𝑥 𝑥
𝑧 𝑧 | |

𝑏ᎏ 𝑏᎐
𝑐ᎏ 𝑐᎐ | + |

𝑥 𝑥ፚ
𝑧 𝑧ፚ | |

𝑐ᎏ 𝑐᎐
𝑎ᎏ 𝑎᎐| + |

𝑥ፚ 𝑥
𝑧ፚ 𝑧 | |

𝑎ᎏ 𝑎᎐
𝑏ᎏ 𝑏᎐| )

+ 𝑧ᎎ( |
𝑥 𝑥
𝑦 𝑦| |

𝑏ᎏ 𝑏᎐
𝑐ᎏ 𝑐᎐ | + |

𝑥 𝑥ፚ
𝑦 𝑦ፚ| |

𝑐ᎏ 𝑐᎐
𝑎ᎏ 𝑎᎐| + |

𝑥ፚ 𝑥
𝑦ፚ 𝑦| |

𝑎ᎏ 𝑎᎐
𝑏ᎏ 𝑏᎐| )]𝑑𝛼𝑑𝛽𝑑𝛾. (A.46)

After applying the chain rule of differentiation: 𝑥ᎎ = 𝑥ፚ𝑎ᎎ + 𝑥𝑏ᎎ + 𝑥𝑐ᎎ, 𝑦ᎎ = 𝑦ፚ𝑎ᎎ + 𝑦𝑏ᎎ + 𝑦𝑐ᎎ, etc.
and elaborating further, the following terms remain:

𝑑𝑉፱ = [(𝑥ፚ |
𝑦 𝑦
𝑧 𝑧| − 𝑦ፚ |

𝑥 𝑥
𝑧 𝑧 | + 𝑧ፚ |

𝑥 𝑥
𝑦 𝑦| )𝑎ᎎ |

𝑏ᎏ 𝑏᎐
𝑐ᎏ 𝑐᎐ |

− ( − 𝑥 |
𝑧 𝑧ፚ
𝑦 𝑦ፚ| + 𝑦 |

𝑧 𝑧ፚ
𝑥 𝑥ፚ| − 𝑧 |

𝑦 𝑦ፚ
𝑥 𝑥ፚ| )𝑏ᎎ |

𝑎ᎏ 𝑎᎐
𝑐ᎏ 𝑐᎐ |

+ (𝑥 |
𝑦ፚ 𝑦
𝑧ፚ 𝑧| − 𝑦 |

𝑥ፚ 𝑥
𝑧ፚ 𝑧 | + 𝑧 |

𝑥ፚ 𝑥
𝑦ፚ 𝑦| )𝑐ᎎ |

𝑎ᎏ 𝑎᎐
𝑏ᎏ 𝑏᎐| ]𝑑𝛼𝑑𝛽𝑑𝛾, (A.47)
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from which the cofactor expansion of the first, second and third column of the Jacobian matrix 𝐽፱𝐽፱𝐽፱(𝑎, 𝑏, 𝑐)
can be recognised. Therefore, the above can be simplified to:

𝑑𝑉፱ = det( 𝐽፱𝐽፱𝐽፱(𝑎, 𝑏, 𝑐))(𝑎ᎎ |
𝑏ᎏ 𝑏᎐
𝑐ᎏ 𝑐᎐ | − 𝑏ᎎ |

𝑎ᎏ 𝑎᎐
𝑐ᎏ 𝑐᎐ | + 𝑐ᎎ |

𝑎ᎏ 𝑎᎐
𝑏ᎏ 𝑏᎐| )𝑑𝛼𝑑𝛽𝑑𝛾, (A.48)

from which the cofactor expansion of the first column of the Jacobian matrix 𝐽ፚ𝐽ፚ𝐽ፚ(𝛼, 𝛽, 𝛾) can be identified:

𝑑𝑉፱ = det( 𝐽፱𝐽፱𝐽፱(𝑎, 𝑏, 𝑐)) det( 𝐽ፚ𝐽ፚ𝐽ፚ(𝛼, 𝛽, 𝛾)) 𝑑𝛼𝑑𝛽𝑑𝛾. (A.49)

Upon substitution of relation (initial element of volume), the final element of volume can be expressed
in terms of the initial element of volume:

𝑑𝑉፱ = det( 𝐽፱𝐽፱𝐽፱(𝑎, 𝑏, 𝑐)) 𝑑𝑉ፚ . (A.50)

According to the law of conservation of mass, the mass 𝑑𝑚must remain the same after the deformation
has occurred:

𝜌ፚ𝑑𝑉ፚ = 𝑑𝑚 = 𝜌፱𝑑𝑉፱ , (A.51)

where 𝜌ፚ and 𝜌፱ denote the initial and final mass densities, respectively. After substituting relation
(A.50), the determinant of the Jacobian matrix 𝐽፱𝐽፱𝐽፱(𝑎, 𝑏, 𝑐) can be expressed as a ratio of mass densities:

det( 𝐽፱𝐽፱𝐽፱(𝑎, 𝑏, 𝑐)) = (
𝜌ፚ
𝜌፱
). (A.52)

A.3. Specification of the strain
A deformable three-dimensional medium is considered. Particles in the initial or unstrained state of this
medium are denoted by the coordinates (𝑎, 𝑏, 𝑐). After the medium has been subjected to a deformation
(𝑢, 𝑣, 𝑤), the particles are set in their final or strained state, denoted by the coordinates (𝑥, 𝑦, 𝑧).

A.3.1. Squared scalar element of arc
A collection of particles of a deformable medium is assumed to be initially situated on the curve 𝐶ፚ. After
a deformation these particles lie on the final curve 𝐶፱. Figure A.2 displays the relative displacement
between the particles after the deformation has occurred.

𝐵ፚ
𝑃ፚ(𝑎, 𝑏, 𝑐)

𝐶ፚ
𝐵፱

𝑃፱(𝑥, 𝑦, 𝑧)

𝐶፱

𝐽፱𝐽፱𝐽፱(𝑎, 𝑏, 𝑐)

Figure A.2: Visualisation of the relative displacement between the particles within the medium during a deformation.

The initial and final squared scalar elements of arc of these particles within the deformable medium
are then defined as:

(𝑑𝑠ፚ)ኼ = (𝑑𝑎𝑑𝑎𝑑𝑎)ፓ(𝑑𝑎𝑑𝑎𝑑𝑎) = (𝑑𝑥𝑑𝑥𝑑𝑥)ፓ𝐽ፚ𝐽ፚ𝐽ፚ(𝑥, 𝑦, 𝑧)ፓ𝐽ፚ𝐽ፚ𝐽ፚ(𝑥, 𝑦, 𝑧) (𝑑𝑥𝑑𝑥𝑑𝑥)
(𝑑𝑠፱)ኼ = (𝑑𝑥𝑑𝑥𝑑𝑥)ፓ(𝑑𝑥𝑑𝑥𝑑𝑥) = (𝑑𝑎𝑑𝑎𝑑𝑎)ፓ𝐽፱𝐽፱𝐽፱(𝑎, 𝑏, 𝑐)ፓ𝐽፱𝐽፱𝐽፱(𝑎, 𝑏, 𝑐) (𝑑𝑎𝑑𝑎𝑑𝑎),

(A.53)

respectively. Their difference can be expressed in either of the two matrix elements of arc. For the
initial matrix element of arc the difference reads:
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(𝑑𝑠፱)ኼ − (𝑑𝑠ፚ)ኼ = (𝑑𝑥𝑑𝑥𝑑𝑥)ፓ(𝑑𝑥𝑑𝑥𝑑𝑥) − (𝑑𝑎𝑑𝑎𝑑𝑎)ፓ(𝑑𝑎𝑑𝑎𝑑𝑎)
= (𝑑𝑎𝑑𝑎𝑑𝑎)ፓ𝐽፱𝐽፱𝐽፱(𝑎, 𝑏, 𝑐)ፓ𝐽፱𝐽፱𝐽፱(𝑎, 𝑏, 𝑐) (𝑑𝑎𝑑𝑎𝑑𝑎) − (𝑑𝑎𝑑𝑎𝑑𝑎)ፓ(𝑑𝑎𝑑𝑎𝑑𝑎)
= (𝑑𝑎𝑑𝑎𝑑𝑎)ፓ( 𝐽፱𝐽፱𝐽፱(𝑎, 𝑏, 𝑐)ፓ𝐽፱𝐽፱𝐽፱(𝑎, 𝑏, 𝑐) −𝐸ኽ𝐸ኽ𝐸ኽ)(𝑑𝑎𝑑𝑎𝑑𝑎)
= (𝑑𝑎𝑑𝑎𝑑𝑎)ፓ2𝜂𝜂𝜂 (𝑑𝑎𝑑𝑎𝑑𝑎).

(A.54)

Upon writing the squared scalar elements of arc in terms of the final matrix element of arc, two equiv-
alent expressions are obtained:

(𝑑𝑠፱)ኼ − (𝑑𝑠ፚ)ኼ = (𝑑𝑎𝑑𝑎𝑑𝑎)ፓ2𝜂𝜂𝜂 (𝑑𝑎𝑑𝑎𝑑𝑎) = (𝑑𝑥𝑑𝑥𝑑𝑥)ፓ2𝜖𝜖𝜖 (𝑑𝑥𝑑𝑥𝑑𝑥), (2.10)

where 𝜂𝜂𝜂 and 𝜖𝜖𝜖 denote the Lagrangian and Eulerian description of the strain,

𝜂𝜂𝜂 ≡ ኻ
ኼ( 𝐽፱𝐽፱𝐽፱(𝑎, 𝑏, 𝑐)

ፓ𝐽፱𝐽፱𝐽፱(𝑎, 𝑏, 𝑐) −𝐸ኽ𝐸ኽ𝐸ኽ)

𝜖𝜖𝜖 ≡ ኻ
ኼ(𝐸ኽ𝐸ኽ𝐸ኽ − 𝐽ፚ𝐽ፚ𝐽ፚ(𝑥, 𝑦, 𝑧)

ፓ𝐽ፚ𝐽ፚ𝐽ፚ(𝑥, 𝑦, 𝑧)),
(2.11)

respectively, and 𝐸ኽ𝐸ኽ𝐸ኽ – the 3 x 3 identity matrix. These expressions describe the strain of a medium
after being displaced from its initial to its final coordinates. Note that if the initial and final coordinates
are equal, the Jacobian matrices reduce to identity matrices, resulting in zero strain. From definition
(2.10) it follows that a zero difference of the squared elements of arc also results in zero strain, which
is the case for rigid displacements.

A.3.2. Lagrangian and Eulerian strain description
The Lagrangian strain components 𝜂።፣ are expressed in the initial coordinates (𝑎, 𝑏, 𝑐) and describe
the strain field over the undeformed medium, i.e. before the deformation. The Eulerian strain compo-
nents 𝜖።፣ are expressed in the final coordinates (𝑥, 𝑦, 𝑧) and describe the strain field over the deformed
medium, i.e. after the deformation. Both sets of strain components can be assembled in the following
matrices:

𝜂𝜂𝜂(𝑎, 𝑏, 𝑐) = (
𝜂ፚፚ 𝜂ፚ 𝜂ፚ
𝜂ፚ 𝜂 𝜂
𝜂ፚ 𝜂 𝜂

) ; 𝜖𝜖𝜖(𝑥, 𝑦, 𝑧) = (
𝜖፱፱ 𝜖፱፲ 𝜖፱፳
𝜖፲፱ 𝜖፲፲ 𝜖፲፳
𝜖፳፱ 𝜖፳፲ 𝜖፳፳

) , (2.12)

where the quantities 𝜂።፣ and 𝜖።፣ can be derived by introducing the displacement vector,

𝑢𝑢𝑢 = (
𝑢
𝑣
𝑤
) = (

𝑥 − 𝑎
𝑦 − 𝑏
𝑧 − 𝑐

) , (2.1)

or more compact:

𝑢𝑢𝑢 = 𝑥𝑥𝑥 −𝑎𝑎𝑎. (2.2)

For a Cartesian coordinate system, the Jacobian matrix 𝐽፮𝐽፮𝐽፮(𝑎, 𝑏, 𝑐) containing the derivatives of the
displacements with respect to the initial coordinates is defined as:

𝐽፮𝐽፮𝐽፮(𝑎, 𝑏, 𝑐) = (
𝑢ፚ 𝑢 𝑢
𝑣ፚ 𝑣 𝑣
𝑤ፚ 𝑤 𝑤

) = (
𝑥ፚ − 1 𝑥 𝑥
𝑦ፚ 𝑦 − 1 𝑦
𝑧ፚ 𝑧 𝑧 − 1

) . (A.55)

This definition can be used to rewrite the Jacobian matrix 𝐽፱𝐽፱𝐽፱(𝑎, 𝑏, 𝑐) to:

𝐽፱𝐽፱𝐽፱(𝑎, 𝑏, 𝑐) = 𝐽፮𝐽፮𝐽፮(𝑎, 𝑏, 𝑐) +𝐸ኽ𝐸ኽ𝐸ኽ. (A.56)

The left-multiplication with its transpose then becomes:

𝐽፱𝐽፱𝐽፱(𝑎, 𝑏, 𝑐)ፓ𝐽፱𝐽፱𝐽፱(𝑎, 𝑏, 𝑐) = ( 𝐽፮𝐽፮𝐽፮(𝑎, 𝑏, 𝑐) +𝐸ኽ𝐸ኽ𝐸ኽ)
ፓ( 𝐽፮𝐽፮𝐽፮(𝑎, 𝑏, 𝑐) +𝐸ኽ𝐸ኽ𝐸ኽ)

= 𝐽፮𝐽፮𝐽፮(𝑎, 𝑏, 𝑐) + 𝐽፮𝐽፮𝐽፮(𝑎, 𝑏, 𝑐)ፓ +𝐸ኽ𝐸ኽ𝐸ኽ + 𝐽፮𝐽፮𝐽፮(𝑎, 𝑏, 𝑐)ፓ𝐽፮𝐽፮𝐽፮(𝑎, 𝑏, 𝑐),
(A.57)
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which can then be substituted in 𝜂𝜂𝜂 from expression (2.11):

𝜂𝜂𝜂 = ኻ
ኼ( 𝐽፮𝐽፮𝐽፮(𝑎, 𝑏, 𝑐) + 𝐽፮𝐽፮𝐽፮(𝑎, 𝑏, 𝑐)

ፓ +𝐸ኽ𝐸ኽ𝐸ኽ + 𝐽፮𝐽፮𝐽፮(𝑎, 𝑏, 𝑐)ፓ𝐽፮𝐽፮𝐽፮(𝑎, 𝑏, 𝑐) −𝐸ኽ𝐸ኽ𝐸ኽ)

= ኻ
ኼ( 𝐽፮𝐽፮𝐽፮(𝑎, 𝑏, 𝑐) + 𝐽፮𝐽፮𝐽፮(𝑎, 𝑏, 𝑐)

ፓ) + ኻ
ኼ 𝐽፮𝐽፮𝐽፮(𝑎, 𝑏, 𝑐)

ፓ𝐽፮𝐽፮𝐽፮(𝑎, 𝑏, 𝑐).
(A.58)

With a similar approach, 𝜖𝜖𝜖 can be rewritten to:

𝜖𝜖𝜖 = ኻ
ኼ( 𝐽፮𝐽፮𝐽፮(𝑥, 𝑦, 𝑧) + 𝐽፮𝐽፮𝐽፮(𝑥, 𝑦, 𝑧)

ፓ) − ኻ
ኼ 𝐽፮𝐽፮𝐽፮(𝑥, 𝑦, 𝑧)

ፓ𝐽፮𝐽፮𝐽፮(𝑥, 𝑦, 𝑧), (A.59)

where 𝐽፮𝐽፮𝐽፮(𝑥, 𝑦, 𝑧) is the Jacobian matrix containing the derivatives of the displacements with respect to
the final coordinates:

𝐽፮𝐽፮𝐽፮(𝑥, 𝑦, 𝑧) = (
𝑢፱ 𝑢፲ 𝑢፳
𝑣፱ 𝑣፲ 𝑣፳
𝑤፱ 𝑤፲ 𝑤፳

) = (
1 − 𝑥ፚ 𝑥 𝑥
𝑦ፚ 1 − 𝑦 𝑦
𝑧ፚ 𝑧 1 − 𝑧

) . (A.60)

The Lagrangian strain components can be derived by substituting relation (A.55) in expression (A.58).
The terms 𝜂ፚፚ , 𝜂 and 𝜂 are defined as uniaxial strains and are of the form:

𝜂ፚፚ =
𝜕𝑢
𝜕𝑎 +

1
2[(

𝜕𝑢
𝜕𝑎)

ኼ
+ (𝜕𝑣𝜕𝑎)

ኼ
+ (𝜕𝑤𝜕𝑎 )

ኼ
], (A.61)

whereas the off-diagonal terms, defined as shear strains, are of the form:

𝜂ፚ =
1
2(
𝜕𝑢
𝜕𝑏 +

𝜕𝑣
𝜕𝑎) +

1
2(
𝜕𝑢
𝜕𝑎
𝜕𝑢
𝜕𝑏 +

𝜕𝑣
𝜕𝑎
𝜕𝑣
𝜕𝑏 +

𝜕𝑤
𝜕𝑎

𝜕𝑤
𝜕𝑏 )

𝜂ፚ =
1
2(
𝜕𝑣
𝜕𝑎 +

𝜕𝑢
𝜕𝑏) +

1
2(
𝜕𝑢
𝜕𝑏
𝜕𝑢
𝜕𝑎 +

𝜕𝑣
𝜕𝑏
𝜕𝑣
𝜕𝑎 +

𝜕𝑤
𝜕𝑏
𝜕𝑤
𝜕𝑎 ),

(A.62)

proving that 𝜂𝜂𝜂(𝑎, 𝑏, 𝑐) is a symmetric matrix. The same holds for the Eulerian strain components, which
are derived by substituting relation (A.60) in expression (A.59). The uniaxial strains and shear strains
of the Eulerian strain description are of the form:

𝜖፱፱ =
𝜕𝑢
𝜕𝑥 −

1
2[(

𝜕𝑢
𝜕𝑥 )

ኼ
+ (𝜕𝑣𝜕𝑥)

ኼ
+ (𝜕𝑤𝜕𝑥 )

ኼ
]

𝜖፱፲ =
1
2(
𝜕𝑢
𝜕𝑦 +

𝜕𝑣
𝜕𝑥) −

1
2(
𝜕𝑢
𝜕𝑥
𝜕𝑢
𝜕𝑦 +

𝜕𝑣
𝜕𝑥
𝜕𝑣
𝜕𝑦 +

𝜕𝑤
𝜕𝑥
𝜕𝑤
𝜕𝑦 ),

(A.63)

respectively. According to the theory of infinitesimal deformations, the higher order terms in the dis-
placements can be neglected. From the expressions above it can be observed that for this theory the
Lagrangian strain components and Eulerian strain components are equal to each other.

A.3.3. Strain invariants
The strain invariants can be derived by determining the eigenvalues of the strain matrix 𝜂𝜂𝜂. This can be
done by setting the determinant of the matrix 𝜂𝜂𝜂 − 𝜆𝐸ኽ𝐸ኽ𝐸ኽ to zero:

det(𝜂𝜂𝜂 − 𝜆𝐸ኽ𝐸ኽ𝐸ኽ) = |
𝜂ፚፚ − 𝜆 𝜂ፚ 𝜂ፚ
𝜂ፚ 𝜂 − 𝜆 𝜂
𝜂ፚ 𝜂 𝜂 − 𝜆

| = 0. (A.64)

By applying the cofactor expansion of the first row of the matrix, the determinant becomes:

det(𝜂𝜂𝜂 − 𝜆𝐸ኽ𝐸ኽ𝐸ኽ) = (𝜂ፚፚ − 𝜆) |
𝜂 − 𝜆 𝜂
𝜂 𝜂 − 𝜆| − 𝜂ፚ |

𝜂ፚ 𝜂
𝜂ፚ 𝜂 − 𝜆| + 𝜂ፚ |

𝜂ፚ 𝜂 − 𝜆
𝜂ፚ 𝜂 | , (A.65)

which, after writing out, can be formulated as a polynomial of 𝜆:

det(𝜂𝜂𝜂 − 𝜆𝐸ኽ𝐸ኽ𝐸ኽ) = −𝜆ኽ + 𝐼ኻ𝜆ኼ − 𝐼ኼ𝜆 + 𝐼ኽ. (A.66)
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The first strain invariant 𝐼ኻ is equal to the trace of the strain matrix 𝜂𝜂𝜂:

𝐼ኻ = Tr(𝜂𝜂𝜂) = 𝜂ፚፚ + 𝜂 + 𝜂 . (A.67)

The second strain invariant 𝐼ኼ consists of the following terms:

𝐼ኼ = (𝜂𝜂 − 𝜂𝜂) + (𝜂ፚፚ𝜂 − 𝜂ፚ𝜂ፚ) + (𝜂ፚፚ𝜂 − 𝜂ፚ𝜂ፚ), (A.68)

which can be recognised as a summation of 2 x 2 determinants. By using the definition of the cofactor
matrix of the strain matrix 𝜂𝜂𝜂,

co 𝜂𝜂𝜂 =

⎛
⎜
⎜
⎜
⎜
⎜

⎝

|𝜂 𝜂
𝜂 𝜂 | |𝜂ፚ 𝜂

𝜂ፚ 𝜂| |𝜂ፚ 𝜂
𝜂ፚ 𝜂 |

|𝜂 𝜂
𝜂ፚ 𝜂ፚ| |𝜂ፚፚ 𝜂ፚ

𝜂ፚ 𝜂 | |𝜂ፚ 𝜂
𝜂ፚፚ 𝜂ፚ|

|𝜂ፚ 𝜂ፚ
𝜂 𝜂| |𝜂ፚ 𝜂

𝜂ፚፚ 𝜂ፚ| |𝜂ፚፚ 𝜂ፚ
𝜂ፚ 𝜂|

⎞
⎟
⎟
⎟
⎟
⎟

⎠

, (A.69)

it is clear that the second strain invariant 𝐼ኼ is equal to the trace of the cofactor matrix co 𝜂𝜂𝜂:

𝐼ኼ = Tr(co 𝜂𝜂𝜂) = |𝜂 𝜂
𝜂 𝜂 | + |

𝜂ፚፚ 𝜂ፚ
𝜂ፚ 𝜂 | + |

𝜂ፚፚ 𝜂ፚ
𝜂ፚ 𝜂| . (A.70)

The third strain invariant 𝐼ኽ contains the terms:

𝐼ኽ = 𝜂ፚፚ𝜂𝜂 − 𝜂ፚፚ𝜂𝜂 − 𝜂ፚ𝜂ፚ𝜂 + 𝜂ፚ𝜂ፚ𝜂 + 𝜂ፚ𝜂ፚ𝜂 − 𝜂ፚ𝜂ፚ𝜂 . (A.71)

Factorising the common terms results in:

𝐼ኽ = 𝜂ፚፚ(𝜂𝜂 − 𝜂𝜂) − 𝜂ፚ(𝜂ፚ𝜂 − 𝜂ፚ𝜂) + 𝜂ፚ(𝜂ፚ𝜂 − 𝜂ፚ𝜂), (A.72)

which can be recognised as the cofactor expansion of the first row of the strain matrix 𝜂𝜂𝜂. From this it
follows that the third strain invariant 𝐼ኽ is equal to the determinant of 𝜂𝜂𝜂:

𝐼ኽ = det(𝜂𝜂𝜂) = 𝜂ፚፚ |
𝜂 𝜂
𝜂 𝜂 | − 𝜂ፚ |

𝜂ፚ 𝜂
𝜂ፚ 𝜂 | + 𝜂ፚ |

𝜂ፚ 𝜂
𝜂ፚ 𝜂 | . (A.73)

A.4. Connection between stress and strain
The three-dimensional deformable medium is considered in its final or deformed state. It is supposed
that, while in this deformed state, the deformable medium is in equilibrium when subjected to various
forces. A distinction can be made between two types of forces. The first type are the mass forces 𝑋፱𝑋፱𝑋፱
acting on the element of mass 𝑑𝑚. The second type are the traction forces 𝑡፱𝑡፱𝑡፱ acting on 𝑑𝑉፱ across its
bounding surface 𝑑𝑆፱. The mass forces and the traction forces are defined as:

𝑋፱𝑋፱𝑋፱ = (
𝑋፱
𝑌፱
𝑍፱
) ; 𝑡፱𝑡፱𝑡፱ = (

𝑡፱
𝑡፲
𝑡፳
) , (2.15)

respectively.

A.4.1. Cauchy stress tensor
The traction describes the forces acting in the 𝑥,𝑦 and 𝑧-direction across a surface area. By presenting
the deformable medium as a tetrahedron, the traction forces acting on their respective planes can be
visualised like depicted in Figure A.3.
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𝑡፱𝑡፱𝑡፱

Figure A.3: Visualisation of the traction acting on the planes of a tetrahedron with height ፡ and base plane ፝ፒᑩ.

This tetrahedron must be in equilibrium, therefore Newton’s second law of motion yields:

𝑡፱𝑡፱𝑡፱𝑑𝑆፱ − 𝑡፱𝑡፱𝑡፱𝑑𝑆፱ − 𝑡፲𝑡፲𝑡፲𝑑𝑆፲ − 𝑡፳𝑡፳𝑡፳𝑑𝑆፳ = 𝑑𝑚�̈̈��̈�𝑥, (A.74)

where 𝑑𝑚 = 𝜌፱𝑑𝑉፱ denotes the element of mass of the tetrahedron and �̈̈��̈�𝑥 – its acceleration vector.
The vectors 𝑡፳𝑡፳𝑡፳ , 𝑡፲𝑡፲𝑡፲ and 𝑡፳𝑡፳𝑡፳ denote the traction forces acting on 𝑑𝑆፱, 𝑆፲ and 𝑆፳, respectively. Through the
definition of the unit vectors in the direction of the 𝑥, 𝑦 and 𝑧 axes of a Cartesian coordinate system,

̂𝑖 ̂𝑖 ̂𝑖 = (
1
0
0
) ; ̂𝑗 ̂𝑗 ̂𝑗 = (

0
1
0
) ; �̂̂��̂�𝑘 = (

0
0
1
) , (A.75)

these traction forces can be expressed as:

𝑡፱𝑡፱𝑡፱ = 𝑇፱፱ ̂𝑖 ̂𝑖 ̂𝑖 + 𝑇፱፲ ̂𝑗 ̂𝑗 ̂𝑗 + 𝑇፱፳�̂̂��̂�𝑘
𝑡፲𝑡፲𝑡፲ = 𝑇፲፱ ̂𝑖 ̂𝑖 ̂𝑖 + 𝑇፲፲ ̂𝑗 ̂𝑗 ̂𝑗 + 𝑇፲፳�̂̂��̂�𝑘
𝑡፳𝑡፳𝑡፳ = 𝑇፳፱ ̂𝑖 ̂𝑖 ̂𝑖 + 𝑇፳፲ ̂𝑗 ̂𝑗 ̂𝑗 + 𝑇፳፳�̂̂��̂�𝑘.

(A.76)

Here, 𝑇።፣ denotes a stress acting in the 𝑗-direction across a plane which has its outward normal in the
𝑖-direction.

The element of mass 𝑑𝑚 can be rewritten in terms of the base plane of the tetrahedron 𝑑𝑆፱ with:

𝑑𝑚 = 𝜌፱𝑑𝑉፱ = 𝜌፱(
ℎ
3𝑑𝑆፱). (A.77)

Upon substitution of this expression into Newton’s second law of motion and using relation (A.17) the
following is obtained:

𝑡፱𝑡፱𝑡፱𝑑𝑆፱ − 𝑡፱𝑡፱𝑡፱𝑑𝑆፱�̂�፱ − 𝑡፲𝑡፲𝑡፲𝑑𝑆፱�̂�፲ − 𝑡፳𝑡፳𝑡፳𝑑𝑆፱�̂�፳ = 𝜌፱(
ℎ
3𝑑𝑆፱)�̈̈��̈�𝑥, (A.78)

which can be simplified to:

𝑡፱𝑡፱𝑡፱ − 𝑡፱𝑡፱𝑡፱�̂�፱ − 𝑡፲𝑡፲𝑡፲�̂�፲ − 𝑡፳𝑡፳𝑡፳�̂�፳ = 𝜌፱(
ℎ
3)�̈̈��̈�𝑥. (A.79)

If it is assumed that the tetrahedron is infinitesimal, then the following holds for the limit case lim፡→ኺ:

𝑡፱𝑡፱𝑡፱ = 𝑡፱𝑡፱𝑡፱�̂�፱ + 𝑡፲𝑡፲𝑡፲�̂�፲ + 𝑡፳𝑡፳𝑡፳�̂�፳ . (A.80)
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Note that all the traction vectors in this expression are, by default, column vectors. However, it
is more convenient to write them as row vectors. By transposing both sides of the equation, relation
(A.80) becomes:

𝑡፱𝑡፱𝑡፱ፓ = (𝑡፱ 𝑡፲ 𝑡፳) = (�̂�፱ �̂�፲ �̂�፳)(
𝑡𝑡𝑡፱፱፱ᑋ

𝑡𝑡𝑡፲፲፲ᑋ

𝑡𝑡𝑡፳፳፳ᑋ
) , (A.81)

which after substituting relation (A.76), yields:

𝑡፱𝑡፱𝑡፱ፓ = (𝑡፱ 𝑡፲ 𝑡፳) = (�̂�፱ �̂�፲ �̂�፳)(
𝑇፱፱ 𝑇፱፲ 𝑇፱፳
𝑇፲፱ 𝑇፲፲ 𝑇፲፳
𝑇፳፱ 𝑇፳፲ 𝑇፳፳

) . (A.82)

Here, 𝑡። denotes the 𝑖-components of the stresses acting on the surfaces areas 𝑑𝑆፱, 𝑆፲ and 𝑆፳. By
transposing both sides of the equation again, the Cauchy stress equation is obtained:

𝑡፱𝑡፱𝑡፱ = 𝑇𝑇𝑇ፓ�̂�፱�̂�፱�̂�፱ , (2.17)
where 𝑇𝑇𝑇 denotes the Cauchy stress tensor:

𝑇𝑇𝑇 = (
𝑇፱፱ 𝑇፱፲ 𝑇፱፳
𝑇፲፱ 𝑇፲፲ 𝑇፲፳
𝑇፳፱ 𝑇፳፲ 𝑇፳፳

) . (2.18)

The tractions and the stresses, working on their respective planes, are graphically displayed in Figure
A.4.

𝑥
𝑦

𝑧

፝ፒᑩ�̂�ᑩ�̂�ᑩ�̂�ᑩ

𝑡ᑩ𝑡ᑩ𝑡ᑩ
፝ፒᑪ

�̂�ᑪ�̂�ᑪ�̂�ᑪ

𝑡ᑪ𝑡ᑪ𝑡ᑪ፝ፒᑫ

�̂�ᑫ�̂�ᑫ�̂�ᑫ
𝑡ᑫ𝑡ᑫ𝑡ᑫ

̂። ̂። ̂።

ፓᑩᑩ
ፓᑩᑪ

ፓᑩᑫ ̂፣ ̂፣ ̂፣ፓᑪᑪ
ፓᑪᑩ

ፓᑪᑫ

፤̂̂፤̂፤
ፓᑫᑫ

ፓᑫᑩ
ፓᑫᑪ

Figure A.4: The positive definitions of the tractions and the Cauchy stresses acting on the coordinate planes of a cube.

A.4.2. Virtual work principle
The principle of virtual work states that the virtual work, exerted by all forces acting on a body in equi-
librium, in any virtual rigid displacement is zero. The term ’virtual rigid displacement’ is a specific type
of virtual deformation. The latter can be defined by assuming that the final coordinates (𝑥, 𝑦, 𝑧) are not
only functions of the initial coordinates (𝑎, 𝑏, 𝑐) but also of an additional parameter 𝜃. The variables
𝑎, 𝑏, 𝑐 and 𝜃 are considered to be independent of each other. If there exists a continuous function 𝑓 of
these four variables, then its differential can be written in the form 𝑑𝑓 + 𝛿𝑓 with

𝑑𝑓 = 𝑓ፚ𝑑𝑎 + 𝑓𝑑𝑏 + 𝑓𝑑𝑐 ; 𝛿𝑓 = 𝑓᎕𝑑𝜃. (A.83)
The term 𝑑𝑓 is obtained by taking the differential of 𝑓 while assuming that 𝜃 is kept constant whereas
the term 𝛿𝑓 is obtained by taking the differential of 𝑓 while assuming that the initial coordinates (𝑎, 𝑏, 𝑐)
are kept constant.

A virtual deformation is established by the 3 x 1 vector,

𝛿𝑥𝛿𝑥𝛿𝑥 = (
𝛿𝑥
𝛿𝑦
𝛿𝑧
) , (2.19)
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which is a function of the final coordinates. A virtual rigid displacement implies that no deformation
occurs, i.e., the variation of the squared final scalar element of arc in 𝜃 is zero:

𝛿(𝑑𝑠፱)ኼ = 0. (A.84)

By assuming that the variables 𝑎, 𝑏, 𝑐 and 𝜃 are independent of each other and that the second-order
derivatives with respect to these variables are continuous, it follows that the order in which these deriva-
tives are determined is irrelevant:

𝑥ፚ᎕ = 𝑥᎕ፚ , (A.85)

where 𝑥ፚ᎕ denotes the derivative of 𝑥ፚ with respect to 𝜃 and 𝑥᎕ፚ – the derivative of 𝑥᎕ with respect to
𝑎. Multiplying both sides of this equation with 𝑑𝜃 results in a property of the variation:

𝛿(𝑥ፚ) = (𝛿𝑥)ፚ . (A.86)

From now on the Jacobian matrix of the final coordinates with respect to initial coordinates will be
written in a shorter notation:

𝐽𝐽𝐽 = 𝐽፱𝐽፱𝐽፱(𝑎, 𝑏, 𝑐). (2.24)

The variation of this Jacobian matrix, 𝛿𝐽𝛿𝐽𝛿𝐽, is then defined as:

𝛿𝐽𝛿𝐽𝛿𝐽 = (
𝛿(𝑥ፚ) 𝛿(𝑥) 𝛿(𝑥)
𝛿(𝑦ፚ) 𝛿(𝑦) 𝛿(𝑦)
𝛿(𝑧ፚ) 𝛿(𝑧) 𝛿(𝑧)

) . (A.87)

By using the property (A.86) and the chain rule of differentiation:

(𝛿𝑥)ፚ = (𝛿𝑥)፱𝑥ፚ + (𝛿𝑥)፲𝑦ፚ + (𝛿𝑥)፳𝑧ፚ , (A.88)

expression (A.87) can be written as:

𝛿𝐽𝛿𝐽𝛿𝐽 = (𝛿𝑥𝛿𝑥𝛿𝑥)፱፱፱ 𝐽𝐽𝐽, (A.89)

where (𝛿𝑥𝛿𝑥𝛿𝑥)፱፱፱ denotes the Jacobian matrix of the virtual deformations with the respect to the final coor-
dinates:

(𝛿𝑥𝛿𝑥𝛿𝑥)፱፱፱ = (
(𝛿𝑥)፱ (𝛿𝑥)፲ (𝛿𝑥)፳
(𝛿𝑦)፱ (𝛿𝑦)፲ (𝛿𝑦)፳
(𝛿𝑧)፱ (𝛿𝑧)፲ (𝛿𝑧)፳

) . (A.90)

The variation of the transposed Jacobian matrix 𝐽𝐽𝐽, 𝛿𝐽𝛿𝐽𝛿𝐽ፓ = (𝛿𝐽𝛿𝐽𝛿𝐽)ፓ, then becomes

𝛿𝐽𝛿𝐽𝛿𝐽ፓ = 𝐽𝐽𝐽ፓ [(𝛿𝑥𝛿𝑥𝛿𝑥)፱፱፱]
ፓ . (A.91)

If a matrix𝑀𝑀𝑀 = 𝐽𝐽𝐽ፓ𝐽𝐽𝐽 is introduced, then its variation is defined as:

𝛿𝑀𝛿𝑀𝛿𝑀 = 𝛿𝛿𝛿( 𝐽𝐽𝐽ፓ𝐽𝐽𝐽)
= (𝛿𝐽𝛿𝐽𝛿𝐽ፓ) 𝐽𝐽𝐽 + 𝐽𝐽𝐽ፓ 𝛿𝐽𝛿𝐽𝛿𝐽

= 𝐽𝐽𝐽ፓ [(𝛿𝑥𝛿𝑥𝛿𝑥)፱፱፱]
ፓ𝐽𝐽𝐽 + 𝐽𝐽𝐽ፓ(𝛿𝑥𝛿𝑥𝛿𝑥)፱፱፱ 𝐽𝐽𝐽

= 𝐽𝐽𝐽ፓ{[(𝛿𝑥𝛿𝑥𝛿𝑥)፱፱፱]
ፓ + (𝛿𝑥𝛿𝑥𝛿𝑥)፱፱፱} 𝐽𝐽𝐽.

(A.92)

The variation 𝛿𝑀𝛿𝑀𝛿𝑀 can be written more compact by introducing a symmetric matrix,

𝐷𝐷𝐷 = ኻ
ኼ{[(𝛿𝑥𝛿𝑥𝛿𝑥)፱፱፱]

ፓ + (𝛿𝑥𝛿𝑥𝛿𝑥)፱፱፱}, (A.93)

which, upon substitution in expression (A.92) yields:

𝛿𝑀𝛿𝑀𝛿𝑀 = 2𝐽𝐽𝐽ፓ𝐷𝐷𝐷𝐽𝐽𝐽. (A.94)
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From the Lagrangian strain description (2.11) it holds that𝑀𝑀𝑀 = 2𝜂𝜂𝜂+𝐸ኽ𝐸ኽ𝐸ኽ and therefore, expression (A.92)
can also be written in terms of the strain:

𝛿𝑀𝛿𝑀𝛿𝑀 = 𝛿(2𝜂𝜂𝜂 +𝐸ኽ𝐸ኽ𝐸ኽ)
= 2𝛿𝜂𝛿𝜂𝛿𝜂 + 𝛿𝐸ኽ𝛿𝐸ኽ𝛿𝐸ኽ
= 2𝛿𝜂𝛿𝜂𝛿𝜂.

(A.95)

By combining expressions (A.94) and (A.95), the variation of the strain becomes:

𝛿𝜂𝛿𝜂𝛿𝜂 = 𝐽𝐽𝐽ፓ𝐷𝐷𝐷𝐽𝐽𝐽. (2.28)

The variation of the squared final scalar element of arc can be elaborated by using definition (A.53):

𝛿(𝑑𝑠፱)ኼ = 𝛿((𝑑𝑎𝑑𝑎𝑑𝑎)ፓ𝑀𝑀𝑀 (𝑑𝑎𝑑𝑎𝑑𝑎))
= 𝛿(𝑑𝑎𝑑𝑎𝑑𝑎)ፓ𝑀𝑀𝑀 (𝑑𝑎𝑑𝑎𝑑𝑎) + (𝑑𝑎𝑑𝑎𝑑𝑎)ፓ𝛿𝑀𝛿𝑀𝛿𝑀 (𝑑𝑎𝑑𝑎𝑑𝑎) + (𝑑𝑎𝑑𝑎𝑑𝑎)ፓ𝑀𝑀𝑀 𝛿(𝑑𝑎𝑑𝑎𝑑𝑎). (A.96)

Since the initial coordinates (𝑎, 𝑏, 𝑐) are independent of 𝜃, it holds by definition that 𝛿(𝑑𝑎𝑑𝑎𝑑𝑎)ፓ = 𝛿(𝑑𝑎𝑑𝑎𝑑𝑎) = 0.
The above can then be further elaborated by substituting expressions (A.94) and (A.30):

𝛿(𝑑𝑠፱)ኼ = 2(𝑑𝑥𝑑𝑥𝑑𝑥)ፓ𝐷𝐷𝐷 (𝑑𝑥𝑑𝑥𝑑𝑥). (A.97)

If the virtual deformation is a virtual rigid displacement, then this expression has to be zero for any
arbitrary 𝑑𝑥𝑑𝑥𝑑𝑥. Therefore, a virtual deformation 𝛿𝑥𝛿𝑥𝛿𝑥 is defined as a virtual rigid displacement if, and only
if, 𝐷𝐷𝐷 is a zero matrix.

The total virtual work 𝛿𝑉 exerted by the mass forces, acting on the element of mass 𝑑𝑚 = 𝜌፱𝑑𝑉፱,
and the traction forces, acting on the final scalar element of area 𝑑𝑆፱, is defined as:

𝛿𝑉 =∭
ፕᑩ
𝜌፱(𝛿𝑥𝛿𝑥𝛿𝑥)ፓ𝑋፱𝑋፱𝑋፱𝑑𝑉፱ +∬

ፒᑩ
(𝛿𝑥𝛿𝑥𝛿𝑥)ፓ𝑡፱𝑡፱𝑡፱𝑑𝑆፱ , (2.20)

which, upon substitution of the Cauchy stress equation (2.17) and definition (A.15), yields:

𝛿𝑉 =∭
ፕᑩ
𝜌፱(𝛿𝑥𝛿𝑥𝛿𝑥)ፓ𝑋፱𝑋፱𝑋፱𝑑𝑉፱ +∬

ፒᑩ
(𝛿𝑥𝛿𝑥𝛿𝑥)ፓ𝑇𝑇𝑇ፓ𝑑𝑆፱𝑑𝑆፱𝑑𝑆፱ . (A.98)

By using the divergence theorem it is possible to express the virtual work as one single volume integral.
Assume an arbitrary 1 x 3 vector 𝜉𝜉𝜉 = (𝜉, 𝜂, 𝜁) such that its surface integral is defined as:

∬
ፒᑩ
𝜉𝑑𝑆፱𝜉𝑑𝑆፱𝜉𝑑𝑆፱ =∬

ፒᑩ
(𝜉𝑑𝑆፱ + 𝜂𝑑𝑆፲ + 𝜁𝑑𝑆፳) = ∬

ፒᑩ
(𝜉𝑑𝑦𝑑𝑧 + 𝜂𝑑𝑧𝑑𝑥 + 𝜁𝑑𝑥𝑑𝑦). (A.99)

This surface integral can be further elaborated by introducing a third integral

∬
ፒᑩ
𝜉𝑑𝑆፱𝜉𝑑𝑆፱𝜉𝑑𝑆፱ =∬

ፒᑩ
[(∫ 𝜕𝜉𝜕𝑥𝑑𝑥)𝑑𝑦𝑑𝑧 + (∫

𝜕𝜂
𝜕𝑦𝑑𝑦)𝑑𝑧𝑑𝑥 + (∫

𝜕𝜁
𝜕𝑧𝑑𝑧)𝑑𝑥𝑑𝑦], (A.100)

which, upon factorising the final element of volume, 𝑑𝑉፱ = 𝑑𝑥𝑑𝑦𝑑𝑧, yields the volume integral

∭
ፕᑩ
(𝜉፱ + 𝜂፲ + 𝜁፳)𝑑𝑉፱ =∭

ፕᑩ
(∇፱∇፱∇፱ 𝜉𝜉𝜉ፓ)𝑑𝑉፱ , (A.101)

where the divergence of any 3 x 𝑚 matrix is obtained by taking the gradient of each of its columns with
respect to the final coordinates:

∇፱∇፱∇፱ 𝜉𝜉𝜉ፓ = (
𝜕
𝜕𝑥

𝜕
𝜕𝑦

𝜕
𝜕𝑧)(

𝜉
𝜂
𝜁
) = 𝜉፱ + 𝜂፲ + 𝜁፳ . (A.102)

Using the same approach for relation (A.98) yields

𝛿𝑉 =∭
ፕᑩ
[𝜌፱(𝛿𝑥𝛿𝑥𝛿𝑥)ፓ𝑋፱𝑋፱𝑋፱ +∇፱∇፱∇፱ (𝑇𝑇𝑇𝛿𝑥𝛿𝑥𝛿𝑥)]𝑑𝑉፱ . (A.103)
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The divergence ∇፱∇፱∇፱ (𝑇𝑇𝑇𝛿𝑥𝛿𝑥𝛿𝑥) is defined as:

∇፱∇፱∇፱ (𝑇𝑇𝑇𝛿𝑥𝛿𝑥𝛿𝑥) = (
𝜕
𝜕𝑥

𝜕
𝜕𝑦

𝜕
𝜕𝑧) [(

𝑇፱፱ 𝑇፱፲ 𝑇፱፳
𝑇፲፱ 𝑇፲፲ 𝑇፲፳
𝑇፳፱ 𝑇፳፲ 𝑇፳፳

)(
𝛿𝑥
𝛿𝑦
𝛿𝑧
)] , (A.104)

which after using the chain rule of differentiation,

𝜕
𝜕𝑥(𝑇፱፱𝛿𝑥) =

𝜕𝑇፱፱
𝜕𝑥 𝛿𝑥 +

𝜕𝛿𝑥
𝜕𝑥 𝑇፱፱ ,

𝜕
𝜕𝑥(𝑇፱፲𝛿𝑦) =

𝜕𝑇፱፲
𝜕𝑥 𝛿𝑦 + 𝜕𝛿𝑦𝜕𝑥 𝑇፱፲ , etc., (A.105)

can be written as:

∇፱∇፱∇፱ (𝑇𝑇𝑇𝛿𝑥𝛿𝑥𝛿𝑥) =
𝜕𝑇፱፱
𝜕𝑥 𝛿𝑥 +

𝜕𝑇፱፲
𝜕𝑥 𝛿𝑦 + 𝜕𝑇፱፳𝜕𝑥 𝛿𝑧 +

𝜕𝑇፲፱
𝜕𝑦 𝛿𝑥 +

𝜕𝑇፲፲
𝜕𝑦 𝛿𝑦 +

𝜕𝑇፲፳
𝜕𝑦 𝛿𝑧

+ 𝜕𝑇፳፱𝜕𝑧 𝛿𝑥 +
𝜕𝑇፳፲
𝜕𝑧 𝛿𝑦 +

𝜕𝑇፳፳
𝜕𝑧 𝛿𝑧

+ 𝜕𝛿𝑥𝜕𝑥 𝑇፱፱ +
𝜕𝛿𝑦
𝜕𝑥 𝑇፱፲ +

𝜕𝛿𝑧
𝜕𝑥 𝑇፱፳ +

𝜕𝛿𝑥
𝜕𝑦 𝑇፲፱ +

𝜕𝛿𝑦
𝜕𝑦 𝑇፲፲ +

𝜕𝛿𝑧
𝜕𝑦 𝑇፲፳

+ 𝜕𝛿𝑥𝜕𝑧 𝑇፳፱ +
𝜕𝛿𝑦
𝜕𝑧 𝑇፳፲ +

𝜕𝛿𝑧
𝜕𝑧 𝑇፳፳ . (A.106)

In the expression above, the divergence,

(∇፱∇፱∇፱ 𝑇𝑇𝑇)𝛿𝑥𝛿𝑥𝛿𝑥 = (
𝜕𝑇፱፱
𝜕𝑥 +

𝜕𝑇፲፱
𝜕𝑦 + 𝜕𝑇፳፱𝜕𝑧

𝜕𝑇፱፲
𝜕𝑥 +

𝜕𝑇፲፲
𝜕𝑦 +

𝜕𝑇፳፲
𝜕𝑧

𝜕𝑇፱፳
𝜕𝑥 +

𝜕𝑇፲፳
𝜕𝑦 + 𝜕𝑇፳፳𝜕𝑧 )(

𝛿𝑥
𝛿𝑦
𝛿𝑧
) , (A.107)

and the trace,

Tr(𝑇𝑇𝑇(𝛿𝑥𝛿𝑥𝛿𝑥)፱፱፱) = Tr [(
𝑇፱፱ 𝑇፱፲ 𝑇፱፳
𝑇፲፱ 𝑇፲፲ 𝑇፲፳
𝑇፳፱ 𝑇፳፲ 𝑇፳፳

)(
(𝛿𝑥)፱ (𝛿𝑥)፲ (𝛿𝑥)፳
(𝛿𝑦)፱ (𝛿𝑦)፲ (𝛿𝑦)፳
(𝛿𝑧)፱ (𝛿𝑧)፲ (𝛿𝑧)፳

)] , (2.23)

can be recognised. Therefore, relation (A.104) can be written as:

∇፱∇፱∇፱ (𝑇𝑇𝑇𝛿𝑥𝛿𝑥𝛿𝑥) = (∇፱∇፱∇፱ 𝑇𝑇𝑇)𝛿𝑥𝛿𝑥𝛿𝑥 + Tr(𝑇𝑇𝑇(𝛿𝑥𝛿𝑥𝛿𝑥)፱፱፱). (A.108)

Note that the term (∇፱∇፱∇፱ 𝑇𝑇𝑇)𝛿𝑥𝛿𝑥𝛿𝑥 is a 1 x 1 matrix, i.e. a scalar, which makes it equal to its transpose
(𝛿𝑥𝛿𝑥𝛿𝑥)ፓ(∇፱∇፱∇፱ 𝑇𝑇𝑇)

ፓ
. Therefore, expression (A.103) can be rewritten to:

𝛿𝑉 =∭
ፕᑩ
{(𝛿𝑥𝛿𝑥𝛿𝑥)ፓ[𝜌፱𝑋፱𝑋፱𝑋፱ + (∇፱∇፱∇፱ 𝑇𝑇𝑇)

ፓ] + Tr(𝑇𝑇𝑇(𝛿𝑥𝛿𝑥𝛿𝑥)፱፱፱)}𝑑𝑉፱ . (2.21)

The virtual work must be zero if the virtual deformation is a virtual rigid displacement, or more
specific: a virtual translation. For such virtual deformations 𝛿𝑥𝛿𝑥𝛿𝑥 is an arbitrary constant 3 x 1 vector:

𝛿𝑥𝛿𝑥𝛿𝑥 = (
𝛿𝑥
𝛿𝑦
𝛿𝑧
) = (

𝑓
𝑔
ℎ
) , (2.30)

where 𝑓, 𝑔 and ℎ denote translations in the 𝑥, 𝑦 and 𝑧-direction, respectively. For this type of virtual
deformation, the Jacobian matrix (𝛿𝑥𝛿𝑥𝛿𝑥)፱፱፱ is a zero matrix. Therefore, the following volume integral must
be equal to zero for all virtual translations:

𝛿𝑉 =∭
ፕᑩ
{(𝛿𝑥𝛿𝑥𝛿𝑥)ፓ[𝜌፱𝑋፱𝑋፱𝑋፱ + (∇፱∇፱∇፱ 𝑇𝑇𝑇)

ፓ]}𝑑𝑉፱ = 0, (2.31)

which leads to a system of equations of equilibrium
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𝜌፱𝑋፱𝑋፱𝑋፱ + (∇፱∇፱∇፱ 𝑇𝑇𝑇)
ፓ = 000. (2.32)

This implies that the virtual work in any arbitrary virtual deformation (2.21) reduces to:

𝛿𝑉 =∭
ፕᑩ

Tr(𝑇𝑇𝑇(𝛿𝑥𝛿𝑥𝛿𝑥)፱፱፱)𝑑𝑉፱ . (2.33)

This integral must be zero for all virtual rigid displacements. This is the case for all virtual deformations
which are of the form:

𝛿𝑥𝛿𝑥𝛿𝑥 = (
𝛿𝑥
𝛿𝑦
𝛿𝑧
) = (

𝑓 − 𝑟𝑦 + 𝑞𝑧
𝑔 + 𝑟𝑥 − 𝑝𝑧
ℎ − 𝑞𝑥 + 𝑝𝑦

) , (A.109)

where 𝑝, 𝑞 and 𝑟 denote rotations around the 𝑥, 𝑦 and 𝑧-axis, respectively. For these virtual deformations
the Jacobian matrix (𝛿𝑥𝛿𝑥𝛿𝑥)፱፱፱ is of the form:

(𝛿𝑥𝛿𝑥𝛿𝑥)፱፱፱ = (
0 −𝑟 𝑞
𝑟 0 −𝑝

−𝑞 𝑝 0
) . (A.110)

Note that for these virtual rigid displacements, expression (A.93) becomes:

𝐷𝐷𝐷 = 1
2 [(

0 −𝑟 𝑞
𝑟 0 −𝑝

−𝑞 𝑝 0
) + (

0 𝑟 −𝑞
−𝑟 0 𝑝
𝑞 −𝑝 0

)] = 000, (A.111)

which confirms that 𝐷𝐷𝐷 must be a zero matrix for virtual rigid displacements. By stating that the virtual
work for these type of virtual deformations must be zero, it follows from expression (2.33) that the trace
Tr(𝑇𝑇𝑇(𝛿𝑥𝛿𝑥𝛿𝑥)፱፱፱) must be equal to zero:

Tr(𝑇𝑇𝑇(𝛿𝑥𝛿𝑥𝛿𝑥)፱፱፱) = Tr(
𝑇፱፲𝑟 − 𝑇፱፳𝑞 −𝑇፱፱𝑟 + 𝑇፱፳𝑝 𝑇፱፱𝑞 − 𝑇፱፲𝑝
𝑇፲፲𝑟 − 𝑇፲፳𝑞 −𝑇፲፱𝑟 + 𝑇፲፳𝑝 𝑇፲፱𝑞 − 𝑇፲፲𝑝
𝑇፳፲𝑟 − 𝑇፳፳𝑞 −𝑇፳፱𝑟 + 𝑇፳፳𝑝 𝑇፳፱𝑞 − 𝑇፳፲𝑝

) = 0. (A.112)

By factorising the common terms, expression (A.112) becomes:

Tr(𝑇𝑇𝑇(𝛿𝑥𝛿𝑥𝛿𝑥)፱፱፱) = (𝑇፲፳ − 𝑇፳፲)𝑝 + (𝑇፳፱ − 𝑇፱፳)𝑞 + (𝑇፱፲ − 𝑇፲፱)𝑟 = 0. (A.113)

Since the above must hold for any arbitrary choice of the parameters 𝑝, 𝑞, 𝑟, the off-diagonal terms of
the matrix 𝑇𝑇𝑇 have to be equal. Therefore, the Cauchy stress matrix 𝑇𝑇𝑇 must be symmetric, which makes
it equal to its transpose 𝑇𝑇𝑇ፓ.

According to definition (A.93), it holds, by definition, that Tr((𝛿𝑥𝛿𝑥𝛿𝑥)፱፱፱) = Tr(𝐷𝐷𝐷). Therefore, expression
(2.33) can be rewritten in the form:

𝛿𝑉 =∭
ፕᑩ

Tr(𝑇𝐷𝑇𝐷𝑇𝐷)𝑑𝑉፱ . (2.34)

The relation between the stress matrix 𝑇𝑇𝑇 and the strain matrix 𝜂𝜂𝜂 can be established by isolating the
symmetric matrix 𝐷𝐷𝐷 in relation (2.28):

𝐷𝐷𝐷 = ( 𝐽𝐽𝐽ፓ)ዅኻ𝛿𝜂𝛿𝜂𝛿𝜂 𝐽𝐽𝐽ዅኻ. (2.35)

Since the order of the quantities of the trace is not of importance, Tr(𝐴𝐵𝐴𝐵𝐴𝐵) = Tr(𝐵𝐴𝐵𝐴𝐵𝐴), the following is
found after substituting the above in definition (2.34):

𝛿𝑉 =∭
ፕᑩ

Tr( 𝐽𝐽𝐽ዅኻ𝑇𝑇𝑇( 𝐽𝐽𝐽ፓ)ዅኻ𝛿𝜂𝛿𝜂𝛿𝜂)𝑑𝑉፱ . (2.36)
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A.4.3. Strain energy
It is assumed that the work exerted by all the forces acting on 𝑉፱ of the deformable medium in any
deformation is stored up in 𝑉፱ as strain energy. This strain energy is distributed throughout 𝑉፱ with a
mass density:

𝑈 =∭
ፕᑩ
𝜌፱𝜓𝑑𝑉፱ , (2.37)

where 𝜓 denotes the strain energy per unit mass which is assumed to be a function of the strain matrix:

𝜓 = 𝜓(𝜂𝜂𝜂). (A.114)

According to the law of conservation of energy, the exerted virtual work on any portion of the volume
𝑉፱ of the deformable medium in any virtual deformation should be equal to the variation of the strain
energy 𝛿𝑈:

∭
ፕᑩ

Tr( 𝐽𝐽𝐽ዅኻ𝑇𝑇𝑇( 𝐽𝐽𝐽ፓ)ዅኻ𝛿𝜂𝛿𝜂𝛿𝜂)𝑑𝑉፱ =∭
ፕᑩ
𝜌፱𝛿𝜓𝑑𝑉፱ , (A.115)

from which follows that the integrands should be equal:

Tr( 𝐽𝐽𝐽ዅኻ𝑇𝑇𝑇( 𝐽𝐽𝐽ፓ)ዅኻ𝛿𝜂𝛿𝜂𝛿𝜂) = 𝜌፱𝛿𝜓. (A.116)

The variation of the strain-energy density 𝛿𝜓 can be elaborated by using relation (A.83):

𝛿𝜓 = 𝜓᎕𝑑𝜃, (A.117)

which, upon using the chain rule of differentiation, becomes:

𝛿𝜓 = 𝜕𝜓
𝜕𝜂𝜂𝜂
𝜕𝜂𝜂𝜂
𝜕𝜃𝑑𝜃 =

𝜕𝜓
𝜕𝜂𝜂𝜂 𝛿𝜂𝛿𝜂𝛿𝜂. (A.118)

By using the fact that the strain matrix 𝜂𝜂𝜂 is symmetric, the above can be expanded to:

𝛿𝜓 = ( 𝜕𝜓𝜕𝜂ፚፚ
𝜕𝜂ፚፚ
𝜕𝜃 + 𝜕𝜓

𝜕𝜂ፚ
𝜕𝜂ፚ
𝜕𝜃 + 𝜕𝜓

𝜕𝜂ፚ
𝜕𝜂ፚ
𝜕𝜃 + 𝜕𝜓

𝜕𝜂ፚ
𝜕𝜂ፚ
𝜕𝜃 + 𝜕𝜓

𝜕𝜂
𝜕𝜂
𝜕𝜃 + 𝜕𝜓

𝜕𝜂
𝜕𝜂
𝜕𝜃

+ 𝜕𝜓
𝜕𝜂ፚ

𝜕𝜂ፚ
𝜕𝜃 + 𝜕𝜓

𝜕𝜂
𝜕𝜂
𝜕𝜃 + 𝜕𝜓

𝜕𝜂
𝜕𝜂
𝜕𝜃 )𝑑𝜃 = 𝜓᎕𝑑𝜃, (A.119)

which can be recognised as the trace:

Tr(𝜕𝜓𝜕𝜂𝜂𝜂 𝛿𝜂𝛿𝜂𝛿𝜂) = Tr

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎜
⎜

⎝

𝜕𝜓
𝜕𝜂ፚፚ

𝜕𝜓
𝜕𝜂ፚ

𝜕𝜓
𝜕𝜂ፚ

𝜕𝜓
𝜕𝜂ፚ

𝜕𝜓
𝜕𝜂

𝜕𝜓
𝜕𝜂

𝜕𝜓
𝜕𝜂ፚ

𝜕𝜓
𝜕𝜂

𝜕𝜓
𝜕𝜂

⎞
⎟
⎟
⎟

⎠

⎛
⎜
⎜
⎜

⎝

𝜕𝜂ፚፚ
𝜕𝜃

𝜕𝜂ፚ
𝜕𝜃

𝜕𝜂ፚ
𝜕𝜃

𝜕𝜂ፚ
𝜕𝜃

𝜕𝜂
𝜕𝜃

𝜕𝜂
𝜕𝜃

𝜕𝜂ፚ
𝜕𝜃

𝜕𝜂
𝜕𝜃

𝜕𝜂
𝜕𝜃

⎞
⎟
⎟
⎟

⎠

𝑑𝜃

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (A.120)

Therefore, relation (A.116) becomes:

Tr( 𝐽𝐽𝐽ዅኻ𝑇𝑇𝑇( 𝐽𝐽𝐽ፓ)ዅኻ𝛿𝜂𝛿𝜂𝛿𝜂) = 𝜌፱Tr(
𝜕𝜓
𝜕𝜂𝜂𝜂 𝛿𝜂𝛿𝜂𝛿𝜂). (A.121)

This relation must hold for any arbitrary symmetric matrix 𝜂𝜂𝜂, which results in:

𝐽𝐽𝐽ዅኻ𝑇𝑇𝑇( 𝐽𝐽𝐽ፓ)ዅኻ = 𝜌፱
𝜕𝜓
𝜕𝜂𝜂𝜂 . (A.122)

The Cauchy stress matrix 𝑇𝑇𝑇 can be isolated by leftmulitplying with the Jacobian matrix 𝐽𝐽𝐽 and rightmulit-
plying with its transpose 𝐽𝐽𝐽ፓ:
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𝑇𝑇𝑇 = 𝜌፱ 𝐽𝐽𝐽
𝜕𝜓
𝜕𝜂𝜂𝜂 𝐽𝐽𝐽

ፓ . (A.123)

By introducing 𝜙 = 𝜌ፚ𝜓 as the strain energy per unit initial volume, the above becomes:

𝑇𝑇𝑇 = (𝜌፱𝜌ፚ
) 𝐽𝐽𝐽𝜕𝜙𝜕𝜂𝜂𝜂 𝐽𝐽𝐽

ፓ , (A.124)

which upon substituting definition (A.52) yields:

𝑇𝑇𝑇 = 1
det( 𝐽𝐽𝐽) 𝐽𝐽𝐽

𝜕𝜙
𝜕𝜂𝜂𝜂 𝐽𝐽𝐽

ፓ . (2.38)

According to the principle of material frame indifference, the strain-energy density𝜙(𝜂𝜂𝜂) of an isotropic
material depends on the three strain invariants only [22, Ch. 4.1] [8, Eq. 1.46]. From the definition of
these strain invariants follows that 𝐼ኻ is of the first order, 𝐼ኼ of the second order and 𝐼ኽ is of the third
order with respect to the strain. The strain-energy density function can be written as:

𝜙 = 𝜙ኺ + 𝜙ኻ + 𝜙ኼ + 𝜙ኽ + ... (2.40)

where 𝜙ኺ is independent of 𝜂𝜂𝜂. From (2.38) it follows that the strain energy enters the expression of the
stress matrix 𝑇𝑇𝑇 only through its derivative with respect to 𝜂𝜂𝜂. Therefore, the term 𝜙ኺ is irrelevant for the
stresses. The linear terms in the elements of 𝜂𝜂𝜂 are collected in 𝜙ኻ which are represented as a multiple
of 𝐼ኻ:

𝜙ኻ = 𝑝𝐼ኻ. (A.125)

The quadratic terms in the elements of 𝜂𝜂𝜂 are collected in 𝜙ኼ which are represented as a linear combi-
nation of 𝐼ኼኻ and 𝐼ኼ:

𝜙ኼ =
𝜆 + 2𝜇
2 𝐼ኼኻ − 2𝜇𝐼ኼ, (A.126)

where the second-order coefficients 𝜆 and 𝜇 are defined as the first and second Lamé parameter,
respectively. Similarly, 𝜙ኽ contains the cubic terms in the elements of 𝜂𝜂𝜂 which are represented as a
linear combination of 𝐼ኽኻ , 𝐼ኻ𝐼ኼ and 𝐼ኽ

𝜙ኽ =
𝑙 + 2𝑚
3 𝐼ኽኻ − 2𝑚𝐼ኻ𝐼ኼ + 𝑛𝐼ኽ, (A.127)

where the third-order coefficients 𝑙, 𝑚, 𝑛 are defined as the Murnaghan constants.
The derivatives of the terms of the power series with respect to the strain matrix 𝜂𝜂𝜂 can be determined

by making use of the chain rule of differentiation. For the first term 𝜙ኻ, this yields:

𝜕𝜙ኻ
𝜕𝜂𝜂𝜂 = 𝑝𝜕𝐼ኻ𝜕𝐼ኻ

𝜕𝐼ኻ
𝜕𝜂𝜂𝜂 , (A.128)

where the derivative of the first strain invariant,

𝐼ኻ = Tr(𝜂𝜂𝜂) = 𝜂ፚፚ + 𝜂 + 𝜂 , (A.129)

with respect to the strain matrix is defined as:

𝜕𝐼ኻ
𝜕𝜂𝜂𝜂 =

⎛
⎜
⎜
⎜

⎝

𝜕𝐼ኻ
𝜕𝜂ፚፚ

𝜕𝐼ኻ
𝜕𝜂ፚ

𝜕𝐼ኻ
𝜕𝜂ፚ

𝜕𝐼ኻ
𝜕𝜂ፚ

𝜕𝐼ኻ
𝜕𝜂

𝜕𝐼ኻ
𝜕𝜂

𝜕𝐼ኻ
𝜕𝜂ፚ

𝜕𝐼ኻ
𝜕𝜂

𝜕𝐼ኻ
𝜕𝜂

⎞
⎟
⎟
⎟

⎠

= (
1 0 0
0 1 0
0 0 1

) . (A.130)

Therefore, relation (A.128) becomes:
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𝜕𝜙ኻ
𝜕𝜂𝜂𝜂 = 𝑝𝐸ኽ𝐸ኽ𝐸ኽ. (A.131)

For the second term 𝜙ኼ, this yields:

𝜕𝜙ኼ
𝜕𝜂𝜂𝜂 = 𝜆 + 2𝜇

2
𝜕𝐼ኼኻ
𝜕𝐼ኻ

𝜕𝐼ኻ
𝜕𝜂𝜂𝜂 − 2𝜇

𝜕𝐼ኼ
𝜕𝐼ኼ

𝜕𝐼ኼ
𝜕𝜂𝜂𝜂 , (A.132)

where the derivative of the second strain invariant,

𝐼ኼ = Tr(co 𝜂𝜂𝜂) = (𝜂𝜂 − 𝜂𝜂) + (𝜂ፚፚ𝜂 − 𝜂ፚ𝜂ፚ) + (𝜂ፚፚ𝜂 − 𝜂ፚ𝜂ፚ), (A.133)

with respect to the strain matrix is defined as:

𝜕𝐼ኼ
𝜕𝜂𝜂𝜂 =

⎛
⎜
⎜
⎜

⎝

𝜕𝐼ኼ
𝜕𝜂ፚፚ

𝜕𝐼ኼ
𝜕𝜂ፚ

𝜕𝐼ኼ
𝜕𝜂ፚ

𝜕𝐼ኼ
𝜕𝜂ፚ

𝜕𝐼ኼ
𝜕𝜂

𝜕𝐼ኼ
𝜕𝜂

𝜕𝐼ኼ
𝜕𝜂ፚ

𝜕𝐼ኼ
𝜕𝜂

𝜕𝐼ኼ
𝜕𝜂

⎞
⎟
⎟
⎟

⎠

= (
𝜂 + 𝜂 −𝜂ፚ −𝜂ፚ

−𝜂ፚ 𝜂ፚፚ + 𝜂 −𝜂
−𝜂ፚ −𝜂 𝜂ፚፚ + 𝜂

) . (A.134)

The same expression, written in terms of the strain matrix, can be derived with:

𝐼ኻ𝐸ኽ𝐸ኽ𝐸ኽ −𝜂𝜂𝜂 = (
𝜂ፚፚ + 𝜂 + 𝜂 − 𝜂ፚፚ 0 − 𝜂ፚ 0 − 𝜂ፚ
0 − 𝜂ፚ 𝜂ፚፚ + 𝜂 + 𝜂 − 𝜂 0 − 𝜂
0 − 𝜂ፚ 0 − 𝜂 𝜂ፚፚ + 𝜂 + 𝜂 − 𝜂

)

= (
𝜂 + 𝜂 −𝜂ፚ −𝜂ፚ

−𝜂ፚ 𝜂ፚፚ + 𝜂 −𝜂
−𝜂ፚ −𝜂 𝜂ፚፚ + 𝜂

) = 𝜕𝐼ኼ
𝜕𝜂𝜂𝜂 .

(A.135)

Upon substitution of the above in relation (A.132), the following is obtained:

𝜕𝜙ኼ
𝜕𝜂𝜂𝜂 = (𝜆 + 2𝜇)𝐼ኻ𝐸ኽ𝐸ኽ𝐸ኽ − 2𝜇(𝐼ኻ𝐸ኽ𝐸ኽ𝐸ኽ −𝜂𝜂𝜂) = 𝜆𝐼ኻ𝐸ኽ𝐸ኽ𝐸ኽ + 2𝜇𝜂𝜂𝜂. (A.136)

The derivative of 𝜙ኽ with respect to 𝜂𝜂𝜂 equals:

𝜕𝜙ኽ
𝜕𝜂𝜂𝜂 = 𝑙 + 2𝑚

3
𝜕𝐼ኽኻ
𝜕𝐼ኻ

𝜕𝐼ኻ
𝜕𝜂𝜂𝜂 − 2𝑚(

𝜕𝐼ኻ
𝜕𝜂𝜂𝜂 𝐼ኼ +

𝜕𝐼ኼ
𝜕𝜂𝜂𝜂 𝐼ኻ) + 𝑛

𝜕𝐼ኽ
𝜕𝐼ኽ

𝜕𝐼ኽ
𝜕𝜂𝜂𝜂 , (A.137)

where the derivative of the third strain invariant,

𝐼ኽ = det(𝜂𝜂𝜂) = 𝜂ፚፚ(𝜂𝜂 − 𝜂𝜂) − 𝜂ፚ(𝜂ፚ𝜂 − 𝜂ፚ𝜂) + 𝜂ፚ(𝜂ፚ𝜂 − 𝜂ፚ𝜂), (A.138)

with respect to the strain matrix is defined as:

𝜕𝐼ኽ
𝜕𝜂𝜂𝜂 =

⎛
⎜
⎜
⎜

⎝

𝜕𝐼ኽ
𝜕𝜂ፚፚ

𝜕𝐼ኽ
𝜕𝜂ፚ

𝜕𝐼ኽ
𝜕𝜂ፚ

𝜕𝐼ኽ
𝜕𝜂ፚ

𝜕𝐼ኽ
𝜕𝜂

𝜕𝐼ኽ
𝜕𝜂

𝜕𝐼ኽ
𝜕𝜂ፚ

𝜕𝐼ኽ
𝜕𝜂

𝜕𝐼ኽ
𝜕𝜂

⎞
⎟
⎟
⎟

⎠

=

⎛
⎜
⎜
⎜
⎜
⎜

⎝

|𝜂 𝜂
𝜂 𝜂 | |𝜂ፚ 𝜂

𝜂ፚ 𝜂| |𝜂ፚ 𝜂
𝜂ፚ 𝜂 |

|𝜂 𝜂
𝜂ፚ 𝜂ፚ| |𝜂ፚፚ 𝜂ፚ

𝜂ፚ 𝜂 | |𝜂ፚ 𝜂
𝜂ፚፚ 𝜂ፚ|

|𝜂ፚ 𝜂ፚ
𝜂 𝜂| |𝜂ፚ 𝜂

𝜂ፚፚ 𝜂ፚ| |𝜂ፚፚ 𝜂ፚ
𝜂ፚ 𝜂|

⎞
⎟
⎟
⎟
⎟
⎟

⎠

= co 𝜂𝜂𝜂. (A.139)

Therefore, relation (A.137) can be formulated as:
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𝜕𝐼ኽ
𝜕𝜂𝜂𝜂 = (𝑙 + 2𝑚)𝐼

ኼ
ኻ𝐸ኽ𝐸ኽ𝐸ኽ − 2𝑚 [𝐼ኼ𝐸ኽ𝐸ኽ𝐸ኽ + 𝐼ኻ (𝐼ኻ𝐸ኽ𝐸ኽ𝐸ኽ −𝜂𝜂𝜂)] + 𝑛 co 𝜂𝜂𝜂 = (𝑙𝐼ኼኻ − 2𝑚𝐼ኼ)𝐸ኽ𝐸ኽ𝐸ኽ + 2𝑚𝐼ኻ𝜂𝜂𝜂 + 𝑛 co 𝜂𝜂𝜂. (A.140)

Upon substitution of the derivative of the strain energy into relation (2.38), the expression for the
Cauchy stress matrix 𝑇𝑇𝑇 becomes:

𝑇𝑇𝑇 = 1
det( 𝐽𝐽𝐽) 𝐽𝐽𝐽(𝑝𝐸ኽ𝐸ኽ𝐸ኽ + (𝜆𝐼ኻ𝐸ኽ𝐸ኽ𝐸ኽ + 2𝜇𝜂𝜂𝜂) + (𝑙𝐼

ኼ
ኻ − 2𝑚𝐼ኼ)𝐸ኽ𝐸ኽ𝐸ኽ + 2𝑚𝐼ኻ𝜂𝜂𝜂 + 𝑛 co 𝜂𝜂𝜂) 𝐽𝐽𝐽ፓ . (2.42)

For zero strain it holds that 𝜂𝜂𝜂 becomes a zero matrix, resulting in the strain invariants being zero and
the Jacobian matrix 𝐽𝐽𝐽 becoming orthogonal. In this case, the expression for the initial stress,

𝑇ኺ𝑇ኺ𝑇ኺ = 𝑝𝐸ኽ𝐸ኽ𝐸ኽ = (
𝑝 0 0
0 𝑝 0
0 0 𝑝

) , (2.43)

is obtained where 𝑝 denotes a strain-independent hydrostatic stress.

A.5. Connection between stress and wave velocity
This section acts as a link between Murnaghan’s description of the stress and Hughes and Kelly’s
formulations of the wave velocity of a stressed medium. By adopting the index notation and rewriting
the expression of the strain energy [11], the wave equation is obtained. The formulations of the wave
velocity, expressed in terms of the stress and theMurnaghan constants, follows from the wave equation.

A.5.1. Cauchy’s first law of motion
Through the principle of virtual work, a system of equations of equilibrium is obtained:

(∇፱∇፱∇፱ 𝑇𝑇𝑇)
ፓ + 𝜌፱𝑋፱𝑋፱𝑋፱ = 000, (2.32)

which, upon introducing an inertia term, yields Cauchy’s first law of motion:

(∇፱∇፱∇፱ 𝑇𝑇𝑇)
ፓ + 𝜌፱𝑋፱𝑋፱𝑋፱ = 𝜌፱�̈̈��̈�𝑥, (2.44)

where �̈̈��̈�𝑥 denotes the 3 x 1 vector containing the second time derivatives of the final coordinates, i.e.
their accelerations. Note that this expression is the Eulerian form of Cauchy’s first law of motion. The
Cauchy stress matrix 𝑇𝑇𝑇 is describes the stress, occurring after a deformation, acting on the deformed
medium. However, in some cases it is more convenient to use an alternative stress description which
is related to the initial configuration, of which the element definitions are assumed to be known. This
alternative stress description can be obtained by assuming a portion of a force 𝑑𝑓𝑑𝑓𝑑𝑓 acting on both the
initial and final scalar element of area, like depicted in Figure A.5.

𝐵ፚ
𝑑𝑆ፚ

𝑑𝑓𝑑𝑓𝑑𝑓
�̂�ፚ�̂�ፚ�̂�ፚ𝑡ፚ𝑡ፚ𝑡ፚ

𝑃ፚ(𝑎, 𝑏, 𝑐)
𝐵፱

𝑑𝑆፱

𝑑𝑓𝑑𝑓𝑑𝑓
�̂�፱�̂�፱�̂�፱𝑡፱𝑡፱𝑡፱

𝑃፱(𝑥, 𝑦, 𝑧)

𝐽፱𝐽፱𝐽፱(𝑎, 𝑏, 𝑐)

Figure A.5: Visualisation of the initial and final scalar elements of area and their respective force vectors.
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The portion of the force 𝑑𝑓𝑑𝑓𝑑𝑓 can be described with two equivalent expressions:

𝑡ፚ𝑡ፚ𝑡ፚ𝑑𝑆ፚ = 𝑑𝑓𝑑𝑓𝑑𝑓 = 𝑡፱𝑡፱𝑡፱𝑑𝑆፱ , (2.45)

where 𝑡ፚ𝑡ፚ𝑡ፚ denotes the traction vector acting on the initial scalar element of area 𝑑𝑆ፚ. The traction vector
𝑡፱𝑡፱𝑡፱ is related to the Cauchy stress matrix through the Cauchy stress equation. Similarly, the traction 𝑡ፚ𝑡ፚ𝑡ፚ
can be expressed in terms of a stress description such that equation (2.45) becomes:

𝜎𝜎𝜎ፓ�̂�ፚ�̂�ፚ�̂�ፚ𝑑𝑆ፚ = 𝑑𝑓𝑑𝑓𝑑𝑓 = 𝑇𝑇𝑇ፓ�̂�፱�̂�፱�̂�፱𝑑𝑆፱ , (2.46)

which, upon substitution of definition (A.15), can be simplified to:

𝜎𝜎𝜎ፓ𝑑𝑆ፚ𝑑𝑆ፚ𝑑𝑆ፚ = 𝑇𝑇𝑇ፓ𝑑𝑆፱𝑑𝑆፱𝑑𝑆፱ , (A.141)

where, 𝜎𝜎𝜎 denotes the nominal stress matrix which describes the stress, occurring after a deformation,
acting on the undeformed medium. Both matrix elements of area can be related to each other through
Nanson’s formula (A.43):

𝑑𝑆፱𝑑𝑆፱𝑑𝑆፱ = det( 𝐽𝐽𝐽) 𝐽𝐽𝐽ዅፓ𝑑𝑆ፚ𝑑𝑆ፚ𝑑𝑆ፚ . (A.142)

Therefore, relation (A.141) can be written as:

𝜎𝜎𝜎ፓ𝑑𝑆ፚ𝑑𝑆ፚ𝑑𝑆ፚ = 𝑇𝑇𝑇ፓdet( 𝐽𝐽𝐽) 𝐽𝐽𝐽ዅፓ𝑑𝑆ፚ𝑑𝑆ፚ𝑑𝑆ፚ . (A.143)

Upon substitution of definition (2.38), the above becomes:

𝜎𝜎𝜎ፓ = det( 𝐽𝐽𝐽) ( 1
det( 𝐽𝐽𝐽) 𝐽𝐽𝐽

𝜕𝜙
𝜕𝜂𝜂𝜂 𝐽𝐽𝐽

ፓ) 𝐽𝐽𝐽ዅፓ , (A.144)

which can be simplified to:

𝜎𝜎𝜎ፓ = 𝐽𝐽𝐽𝜕𝜙𝜕𝜂𝜂𝜂 . (A.145)

Here, 𝜎𝜎𝜎ፓ = 𝑃𝑃𝑃 is defined as the first Piola-Kirchoff stress tensor, which describes the stress acting on
the undeformed body. It should be noted that 𝜎𝜎𝜎 and 𝑃𝑃𝑃 are symmetric, only and only if, the Jacobian
matrix 𝐽𝐽𝐽 is symmetric as well. The nominal stress matrix 𝜎𝜎𝜎 is then defined as:

𝜎𝜎𝜎 = 𝜕𝜙
𝜕𝜂𝜂𝜂 𝐽𝐽𝐽

ፓ . (2.47)

By using the law of conservation of mass, 𝜌ፚ𝑑𝑉ፚ = 𝜌፱𝑑𝑉፱, expression (2.44) can be rewritten such
that the Lagrangian form of Cauchy’s first law of motion is obtained:

(∇ፚ∇ፚ∇ፚ 𝜎𝜎𝜎)
ፓ + 𝜌ፚ𝑋ፚ𝑋ፚ𝑋ፚ = 𝜌ፚ�̈̈��̈�𝑥, (2.48)

where (∇ፚ∇ፚ∇ፚ 𝜎𝜎𝜎)
ፓ
denotes the divergence of the nominal stress 𝜎𝜎𝜎 with respect to the initial coordinates

and 𝑋ፚ𝑋ፚ𝑋ፚ – the initial mass forces.

A.5.2. Elastic coefficients
In order to solve for this equation of motion, it is convenient to introduce the index notation. For the
purpose of this index notation it is necessary to rewrite the formulation of the strain energy,

𝜙 = 𝑝𝐼ኻ +
𝜆 + 2𝜇
2 𝐼ኼኻ − 2𝜇𝐼ኼ +

𝑙 + 2𝑚
3 𝐼ኽኻ − 2𝑚𝐼ኻ𝐼ኼ + 𝑛𝐼ኽ, (A.146)

as a power series of the traces of the strain matrix 𝜂𝜂𝜂. From relation (A.67) it is clear that the first strain
invariant 𝐼ኻ = Tr(𝜂𝜂𝜂). When writing out the expression (A.70) it is possible to express the second strain
invariant 𝐼ኼ as:

𝐼ኼ = Tr(co 𝜂𝜂𝜂) = ኻ
ኼ(Tr(𝜂𝜂𝜂)

ኼ − Tr(𝜂𝜂𝜂ኼ)). (A.147)



A.5. Connection between stress and wave velocity 101

By using a similar approach for expression (A.73), the third strain invariant 𝐼ኽ can be rewritten to:

𝐼ኽ = det(𝜂𝜂𝜂) = ኻ
ኽ(

ኻ
ኼTr(𝜂𝜂𝜂)

ኽ − ኽ
ኼTr(𝜂𝜂𝜂)Tr(𝜂𝜂𝜂

ኼ) + Tr(𝜂𝜂𝜂ኽ)). (A.148)

Upon substitution of these new found expressions in (A.146), the strain energy can be formulated
as:

𝜙(𝜂𝜂𝜂) = 𝑝Tr(𝜂𝜂𝜂) + 𝜆 + 2𝜇2 Tr(𝜂𝜂𝜂)ኼ − 2𝜇[ኻኼ(Tr(𝜂𝜂𝜂)
ኼ − Tr(𝜂𝜂𝜂ኼ))] + 𝑙 + 2𝑚3 Tr(𝜂𝜂𝜂)ኽ

− 2𝑚Tr(𝜂𝜂𝜂)[ኻኼ(Tr(𝜂𝜂𝜂)
ኼ − Tr(𝜂𝜂𝜂ኼ))] + ኻ

ኽ𝑛(
ኻ
ኼTr(𝜂𝜂𝜂)

ኽ − ኽ
ኼTr(𝜂𝜂𝜂)Tr(𝜂𝜂𝜂

ኼ) + Tr(𝜂𝜂𝜂ኽ)). (A.149)

Assuming that the strain energy is minimal when there is zero strain, the linear term can be neglected.
Elaborating further relation (A.149) then yields:

𝜙(𝜂𝜂𝜂) = 𝜆
2Tr(𝜂𝜂𝜂)

ኼ + 𝜇Tr(𝜂𝜂𝜂ኼ) + (𝑚 − ኻ
ኼ𝑛)Tr(𝜂𝜂𝜂)Tr(𝜂𝜂𝜂

ኼ) +
(𝑙 − 𝑚 + ኻ

ኼ𝑛)
3 Tr(𝜂𝜂𝜂)ኽ + 𝑛3Tr(𝜂𝜂𝜂

ኽ). (A.150)

From now on the index notation will be adopted. By writing out the powers of the trace Tr(𝜂𝜂𝜂), it can be
found that they can be represented with the following:

Tr(𝜂𝜂𝜂) = 𝛿።፣𝜂።፣
Tr(𝜂𝜂𝜂)ኼ = 𝛿።፣𝛿፤፥𝜂።፣𝜂፤፥
Tr(𝜂𝜂𝜂)ኽ = 𝛿።፣𝛿፤፥𝛿፦፧𝜂።፣𝜂፤፥𝜂፦፧ ,

(A.151)

where 𝛿።፣ denotes the Kronecker delta,

𝛿።፣ = {
1 ; for 𝑖 = 𝑗
0 ; else , (2.54)

and 𝑖, 𝑗, 𝑘, 𝑙, 𝑚, 𝑛 ∈ {1, 2, 3}. The index notation of the traces of the power of the strain matrix must include
all possible combinations of strain components 𝜂።፣. The trace of the squared strain matrix, Tr(𝜂𝜂𝜂ኼ), then
becomes:

Tr(𝜂𝜂𝜂ኼ) = 𝐼።፣፤፥𝜂።፣𝜂፤፥ , (A.152)
whereas the trace of the cubed strain matrix, Tr(𝜂𝜂𝜂ኽ), becomes:

Tr(𝜂𝜂𝜂ኽ) = ኻ
ኾ(𝛿።፤𝐼፣፥፦፧ + 𝛿።፥𝐼፣፤፦፧ + 𝛿፣፤𝐼።፥፦፧ + 𝛿፣፥𝐼።፤፦፧)𝜂።፣𝜂፤፥𝜂፦፧ , (A.153)

where 𝐼።፣፤፥ denotes the fourth-order tensor which is defined as:

𝐼።፣፤፥ =
ኻ
ኼ(𝛿።፤𝛿፣፥ + 𝛿።፥𝛿፣፤). (2.53)

The linear combination Tr(𝜂𝜂𝜂)Tr(𝜂𝜂𝜂ኼ) can then be written as:

Tr(𝜂𝜂𝜂)Tr(𝜂𝜂𝜂ኼ) = ኻ
ኽ(𝛿።፣𝐼፤፥፦፧ + 𝛿፤፥𝐼፦፧።፣ + 𝛿፦፧𝐼።፣፤፥)𝜂።፣𝜂፤፥𝜂፦፧ . (A.154)

By using these newfound expressions the strain energy (A.150) can be written as a power series of
elastic coefficients:

𝜙 = ኻ
ኼ!𝐶።፣፤፥𝜂።፣𝜂፤፥ +

ኻ
ኽ!𝐶።፣፤፥፦፧𝜂።፣𝜂፤፥𝜂፦፧ + ... (2.50)

where the fourth-order tensor 𝐶።፣፤፥ is defined as:

𝐶።፣፤፥ = 𝜆𝛿።፣𝛿፤፥ + 2𝜇𝐼።፣፤፥ (2.51)
and the sixth-order tensor 𝐶።፣፤፥፦፧ is defined as:

𝐶።፣፤፥፦፧ = 2(𝑙 − 𝑚 +
ኻ
ኼ𝑛)𝛿።፣𝛿፤፥𝛿፦፧ + 2(𝑚 −

ኻ
ኼ𝑛)(𝛿።፣𝐼፤፥፦፧ + 𝛿፤፥𝐼፦፧።፣ + 𝛿፦፧𝐼።፣፤፥)

+ ኻ
ኼ𝑛(𝛿።፤𝐼፣፥፦፧ + 𝛿።፥𝐼፣፤፦፧ + 𝛿፣፤𝐼።፥፦፧ + 𝛿፣፥𝐼።፤፦፧). (2.52)
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A.5.3. Expansion of the nominal stress tensor
By transposing relation (A.56), it possible to express the Jacobian matrix 𝐽𝐽𝐽ፓ as:

𝐽𝐽𝐽ፓ = (
𝑥ፚ 𝑦ፚ 𝑧ፚ
𝑥 𝑦 𝑧
𝑥 𝑦 𝑧

) = (
𝑢ፚ + 1 𝑣ፚ 𝑤ፚ
𝑢 𝑣 + 1 𝑤
𝑢 𝑣 𝑤 + 1

) , (A.155)

which, upon generalising, yields the gradient tensor

𝐽።ᎎ =
𝜕𝑢።
𝜕𝑎ᎎ

+ 𝛿።ᎎ . (2.56)

The nominal stress matrix 𝜎𝜎𝜎 can then be written into the simplified index notation with:

𝜎ᎏ፪ =
𝜕𝜙
𝜕𝜂ᎎᎏ

𝐽ᎎ፪ , (2.49)

where 𝜂፤፥ denotes the Lagrangian strain tensor which follows from relations (A.61) and (A.62):

𝜂፤፥ =
1
2 (

𝜕𝑢፥
𝜕𝑎፤

+ 𝜕𝑢፤𝜕𝑎፥
+ 𝜕𝑢።
𝜕𝑎፤

𝜕𝑢።
𝜕𝑎፥

) . (2.55)

Relation (2.49) can be expanded by substituting definitions (2.50) and (2.56):

𝜎ᎏ፪ = (
𝜕𝑢ᎎ
𝜕𝑎፪

+ 𝛿ᎎ፪)
𝜕

𝜕𝜂ᎎᎏ
( 12!𝐶።፣፤፥𝜂።፣𝜂፤፥ +

1
3!𝐶።፣፤፥፦፧𝜂።፣𝜂፤፥𝜂፦፧ + ...) , (A.156)

which, after applying the chain rule of differentiation, becomes:

𝜎ᎏ፪ ≈ (
𝜕𝑢ᎎ
𝜕𝑎፪

+ 𝛿ᎎ፪) [
1
2 (𝐶።፣፤፥

𝜕𝜂።፣
𝜂ᎎᎏ

𝜂፤፥ + 𝐶።፣፤፥𝜂።፣
𝜕𝜂፤፥
𝜂ᎎᎏ

)

+ 1
3! (𝐶።፣፤፥፦፧

𝜕𝜂።፣
𝜂ᎎᎏ

𝜂፤፥𝜂፦፧ + 𝐶።፣፤፥፦፧𝜂።፣
𝜕𝜂፤፥
𝜂ᎎᎏ

𝜂፦፧ + 𝐶።፣፤፥፦፧𝜂።፣𝜂፤፥
𝜕𝜂፦፧
𝜂ᎎᎏ

) ]

= (𝜕𝑢ᎎ𝜕𝑎፪
+ 𝛿ᎎ፪) [

1
2(𝐶ᎎᎏ፤፥𝜂፤፥ + 𝐶።፣ᎎᎏ𝜂።፣)

+ 1
3!(𝐶ᎎᎏ፤፥፦፧𝜂፤፥𝜂፦፧ + 𝐶።፣ᎎᎏ፦፧𝜂።፣𝜂፦፧ + 𝐶።፣፤፥ᎎᎏ𝜂።፣𝜂፤፥)].

(2.57)

Upon substitution of relation (2.55) and using the fact that the fourth-order elastic tensors are symmetric,
i.e. 𝐶።፣ᎎᎏ = 𝐶ᎎᎏ።፣, the nominal stress tensor becomes:

𝜎ᎏ፪ ≈ (
𝜕𝑢ᎎ
𝜕𝑎፪

+ 𝛿ᎎ፪) {
1
2𝐶ᎎᎏ፤፥ (

𝜕𝑢፥
𝜕𝑎፤

+ 𝜕𝑢፤𝜕𝑎፥
+ 𝜕𝑢፫𝜕𝑎፤

𝜕𝑢፫
𝜕𝑎፥

)

+ 1
3![
1
4𝐶ᎎᎏ፤፥፦፧ (

𝜕𝑢፥
𝜕𝑎፤

+ 𝜕𝑢፤𝜕𝑎፥
+ 𝜕𝑢፫𝜕𝑎፤

𝜕𝑢፫
𝜕𝑎፥

)( 𝜕𝑢፧𝜕𝑎፦
+ 𝜕𝑢፦𝜕𝑎፧

+ 𝜕𝑢፬
𝜕𝑎፦

𝜕𝑢፬
𝜕𝑎፧

)

+ 14𝐶።፣ᎎᎏ፦፧ (
𝜕𝑢፣
𝜕𝑎።

+ 𝜕𝑢።
𝜕𝑎፣

+ 𝜕𝑢፫𝜕𝑎።
𝜕𝑢፫
𝜕𝑎፣

)( 𝜕𝑢፧𝜕𝑎፦
+ 𝜕𝑢፦𝜕𝑎፧

+ 𝜕𝑢፬
𝜕𝑎፦

𝜕𝑢፬
𝜕𝑎፧

)

+ 14𝐶።፣፤፥ᎎᎏ (
𝜕𝑢፣
𝜕𝑎።

+ 𝜕𝑢።
𝜕𝑎፣

+ 𝜕𝑢፫𝜕𝑎።
𝜕𝑢፫
𝜕𝑎፣

)( 𝜕𝑢፥𝜕𝑎፤
+ 𝜕𝑢፤𝜕𝑎፥

+ 𝜕𝑢፫𝜕𝑎፤
𝜕𝑢፫
𝜕𝑎፥

) ]}.

(A.157)
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By neglecting the terms of the third order and higher in
𝜕𝑢።
𝜕𝑎፣

, relation (A.157) expands to:

𝜎ᎏ፪ ≈
1
2𝐶፪ᎏ፤፥ (

𝜕𝑢፥
𝜕𝑎፤

+ 𝜕𝑢፤𝜕𝑎፥
) + 12𝐶፪ᎏ፤፥

𝜕𝑢፫
𝜕𝑎፤

𝜕𝑢፫
𝜕𝑎፥

+ 12𝐶ᎎᎏ፤፥ (
𝜕𝑢፥
𝜕𝑎፤

𝜕𝑢ᎎ
𝜕𝑎፪

+ 𝜕𝑢፤𝜕𝑎፥
𝜕𝑢ᎎ
𝜕𝑎፪

)

+ 1
3![
1
4𝐶፪ᎏ፤፥፦፧ (

𝜕𝑢፥
𝜕𝑎፤

𝜕𝑢፧
𝜕𝑎፦

+ 𝜕𝑢፥
𝜕𝑎፤

𝜕𝑢፦
𝜕𝑎፧

+ 𝜕𝑢፤𝜕𝑎፥
𝜕𝑢፧
𝜕𝑎፦

+ 𝜕𝑢፤𝜕𝑎፥
𝜕𝑢፦
𝜕𝑎፧

)

+ 14𝐶።፣፪ᎏ፦፧ (
𝜕𝑢፣
𝜕𝑎።

𝜕𝑢፧
𝜕𝑎፦

+
𝜕𝑢፣
𝜕𝑎።

𝜕𝑢፦
𝜕𝑎፧

+ 𝜕𝑢።
𝜕𝑎፣

𝜕𝑢፧
𝜕𝑎፦

+ 𝜕𝑢።
𝜕𝑎፣

𝜕𝑢፦
𝜕𝑎፧

)

+ 14𝐶።፣፤፥፪ᎏ (
𝜕𝑢፣
𝜕𝑎።

𝜕𝑢፥
𝜕𝑎፤

+
𝜕𝑢፣
𝜕𝑎።

𝜕𝑢፤
𝜕𝑎፥

+ 𝜕𝑢።
𝜕𝑎፣

𝜕𝑢፥
𝜕𝑎፤

+ 𝜕𝑢።
𝜕𝑎፣

𝜕𝑢፤
𝜕𝑎፥

) ].

(A.158)

Through multiplications with the Kronecker delta in the expression above, the indices of the partial
derivatives of the displacements with respect to the initial coordinates can be manipulated. By doing
this, all terms can be rewritten in the same derivatives:

𝜎፣። ≈ 𝐶።፣፤፥
𝜕𝑢፤
𝜕𝑎፥

+ 12𝐶።፣፥፧𝛿፤፦
𝜕𝑢፤
𝜕𝑎፥

𝜕𝑢፦
𝜕𝑎፧

+ 12𝐶፣፧፤፥𝛿፧፦𝛿።፧
𝜕𝑢፤
𝜕𝑎፥

𝜕𝑢፦
𝜕𝑎፧

+ 12𝐶፣፥፦፧𝛿፥፤𝛿።፥
𝜕𝑢፤
𝜕𝑎፥

𝜕𝑢፦
𝜕𝑎፧

+ 12𝐶።፣፤፥፦፧
𝜕𝑢፤
𝜕𝑎፥

𝜕𝑢፦
𝜕𝑎፧

,
(A.159)

which after elaborating further can be simplified to:

𝜎፣። = 𝐶።፣፤፥
𝜕𝑢፤
𝜕𝑎፥

+ 12𝑀።፣፤፥፦፧
𝜕𝑢፤
𝜕𝑎፥

𝜕𝑢፦
𝜕𝑎፧

+ ..., (2.58)

where the sixth-order tensor 𝑀።፣፤፥፦፧ is defined as:

𝑀።፣፤፥፦፧ = 𝐶።፣፤፥፦፧ + 𝐶።፣፥፧𝛿፤፦ + 𝐶፣፧፤፥𝛿።፦ + 𝐶፣፥፦፧𝛿።፤ . (2.59)

According to the theory of infinitesimal deformations, the higher-order strains are much less than
the first-order strains. For these small deformations the initial and final coordinates are assumed to be
equal. Therefore, upon omitting the higher-order strain terms, the linearised nominal stress tensor is
obtained:

𝜎፣። ≈ 𝐶።፣፤፥
𝜕𝑢፤
𝜕𝑥፥

. (2.60)

A.5.4. Wave equation
Now that expression of the nominal stress tensor is obtained, it is possible to rewrite the Lagrangian form
of Cauchy’s first law of motion. First it is assumed there is small dynamic deformation 𝑢𝑢𝑢(ኻ) superposed
on the large static deformation 𝑢𝑢𝑢(ኺ). The total deformation is then defined as:

𝑢𝑢𝑢 = 𝑢𝑢𝑢(ኺ) +𝑢𝑢𝑢(ኻ) = 𝑥𝑥𝑥ᖣ −𝑎𝑎𝑎, (2.62)

where 𝑥𝑥𝑥ᖣ denotes the new position after this dynamic deformation has occurred:

𝑥𝑥𝑥ᖣ = (
𝑥ᖣ
𝑦ᖣ
𝑧ᖣ
) = (

𝑢(ኻ) + 𝑥
𝑣(ኻ) + 𝑦
𝑤(ኻ) + 𝑧

) , (2.63)

or, equivalently, in index notation:

𝑥ᖣ። = 𝑢
(ኻ)
። + 𝑥። . (2.64)
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After rewriting relation (2.48) with the index notation and neglecting the mass forces, the Lagrangian
form of Cauchy’s first law of motion in this new position reads:

𝜕𝜎፣።
𝜕𝑎፣

= 𝜌ፚ
𝜕𝑥ᖣ።
𝜕𝑡ኼ , (2.65)

which, upon substituting relation (2.64) and elaborating the time-dependent part, becomes:

𝜌ፚ
𝜕𝑢(ኻ)።
𝜕𝑡ኼ −

𝜕𝜎፣።
𝜕𝑎፣

= 0. (2.66)

The space-dependent part can be expressed in terms of the final coordinates 𝑥፤ by rewriting the
partial derivative with respect to the initial coordinates 𝑎፣. Through the application of the chain rule of
differentiation the following holds:

𝜕
𝜕𝑎፣

= 𝜕
𝜕𝑥፤

𝜕𝑥፤
𝜕𝑎፣

= 𝜕
𝜕𝑥፤

𝜕
𝜕𝑎፣

(𝑎፤ + 𝑢(ኺ)፤ )

= 𝜕
𝜕𝑥፤

(𝜕𝑎፤𝜕𝑎፣
+ 𝜕𝑢

(ኺ)
፤

𝜕𝑎፣
)

= 𝜕
𝜕𝑥፣

+ 𝜕𝑢
(ኺ)
፤

𝜕𝑎፣
𝜕
𝜕𝑥፤

.

(A.160)

After repeating the same elaboration for
𝜕𝑢(ኺ)፤
𝜕𝑎፣

, the above becomes:

𝜕
𝜕𝑎፣

= 𝜕
𝜕𝑥፣

+ 𝑢(ኺ)፤,፣
𝜕
𝜕𝑥፤

+ ..., (2.67)

where 𝑢(ኺ)፤,፣ denotes the short notation for the derivative of 𝑢
(ኺ)
፤ with respect to 𝑥፣.

Now, the space-dependent part of (2.66) can be expanded by substituting definition (2.58):

𝜕𝜎፣።
𝜕𝑎፣

≈
𝜕𝜎፣።
𝜕𝑥፣

+ 𝑢(ኺ)፩,፣
𝜕𝜎፣።
𝜕𝑥፩

≈ 𝐶።፣፤፥
𝜕
𝜕𝑥፣

(𝜕𝑢፤𝜕𝑥፥
+ 𝑢(ኺ)፪,፥

𝜕𝑢፤
𝜕𝑥፪

) + 𝑢(ኺ)፩,፣𝐶።፣፤፥
𝜕
𝜕𝑥፣

(𝜕𝑢፤𝜕𝑥፥
+ 𝑢(ኺ)፪,፥

𝜕𝑢፤
𝜕𝑥፪

)

+ 12𝑀።፣፤፥፦፧
𝜕
𝜕𝑥፣

[(𝜕𝑢፤𝜕𝑥፥
+ 𝑢(ኺ)፪,፥

𝜕𝑢፤
𝜕𝑥፪

)(𝜕𝑢፦𝜕𝑥፧
+ 𝑢(ኺ)፫,፧

𝜕𝑢፦
𝜕𝑥፫

)] + 𝑢(ኺ)፩,፣
1
2𝑀።፣፤፥፦፧

𝜕
𝜕𝑥፣

[...]

+ ...

(2.69)

which, upon using the chain rule of differentiation, becomes:

𝜕𝜎፣።
𝜕𝑎፣

≈ 𝐶።፣፤፥ (
𝜕ኼ𝑢፤
𝜕𝑥፣𝜕𝑥፥

+ 𝑢(ኺ)፪,፥
𝜕ኼ𝑢፤
𝜕𝑥፣𝜕𝑥፪

+ 𝑢(ኺ)፪,፥፣
𝜕𝑢፤
𝜕𝑥፪

)

+ 𝑢(ኺ)፩,፣𝐶።፣፤፥ (
𝜕ኼ𝑢፤
𝜕𝑥፩𝜕𝑥፥

+ 𝑢(ኺ)፪,፥
𝜕ኼ𝑢፤
𝜕𝑥፩𝜕𝑥፪

+ 𝑢(ኺ)፪,፥፩
𝜕𝑢፤
𝜕𝑥፪

)

+ 12𝑀።፣፤፥፦፧[ (
𝜕ኼ𝑢፤
𝜕𝑥፣𝜕𝑥፥

+ 𝑢(ኺ)፪,፥
𝜕ኼ𝑢፤
𝜕𝑥፣𝜕𝑥፪

+ 𝑢(ኺ)፪,፥፣
𝜕𝑢፤
𝜕𝑥፪

)(𝜕𝑢፦𝜕𝑥፧
+ 𝑢(ኺ)፫,፧

𝜕𝑢፦
𝜕𝑥፫

)

+ (𝜕𝑢፤𝜕𝑥፥
+ 𝑢(ኺ)፪,፥

𝜕𝑢፤
𝜕𝑥፪

)( 𝜕
ኼ𝑢፦

𝜕𝑥፣𝜕𝑥፧
+ 𝑢(ኺ)፫,፧

𝜕ኼ𝑢፦
𝜕𝑥፣𝜕𝑥፫

+ 𝑢(ኺ)፫,፧፣
𝜕𝑢፦
𝜕𝑥፫

) ]

+ 𝑢(ኺ)፩,፣
1
2𝑀።፣፤፥፦፧

𝜕
𝜕𝑥፣

[...] + ...

(A.161)
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If it is assumed that the total stress 𝜎፣። has contributions from both the static displacement, 𝜎(ኺ)፣። (𝑢
(ኺ)
፤ ),

and from the additional dynamic displacement, 𝜎(ኻ)፣። (𝑢
(ኻ)
፤ ), then it follows that:

𝜕𝜎፣።(𝑢፤)
𝜕𝑎፣

=
𝜕𝜎(ኺ)፣። (𝑢

(ኺ)
፤ )

𝜕𝑎፣
+
𝜕𝜎(ኻ)፣። (𝑢

(ኻ)
፤ )

𝜕𝑎፣
. (A.162)

Substituting the above in relation (2.66) yields:

𝜌ፚ
𝜕𝑢(ኻ)።
𝜕𝑡ኼ − (

𝜕𝜎(ኺ)፣። (𝑢
(ኺ)
፤ )

𝜕𝑎፣
+
𝜕𝜎(ኻ)፣። (𝑢

(ኻ)
፤ )

𝜕𝑎፣
) = 0, (A.163)

from which follows that if the medium is at rest, i.e. 𝑢𝑢𝑢(ኻ) = 000:

𝜕𝜎(ኺ)፣። (𝑢
(ኺ)
፤ )

𝜕𝑎፣
= 0. (A.164)

Therefore, relation (A.161) can be further elaborated by expanding the total displacement 𝑢፤ = 𝑢(ኺ)፤ +
𝑢(ኻ)፤ and omitting the terms that are solely depending on the static displacement 𝑢(ኺ)፤ .

By assuming that the second-order derivatives of the static displacements and the multiplications
between derivatives of the dynamic displacements are insignificant, relation (A.161) simplifies to:

𝜕𝜎፣።
𝜕𝑎፣

≈ 𝐶።፣፤፥ (
𝜕ኼ𝑢(ኻ)፤
𝜕𝑥፣𝜕𝑥፥

+ 𝑢(ኺ)፪,፥
𝜕ኼ𝑢(ኻ)፤
𝜕𝑥፣𝜕𝑥፪

) + 𝑢(ኺ)፩,፣𝐶።፣፤፥ (
𝜕ኼ𝑢(ኻ)፤
𝜕𝑥፩𝜕𝑥፥

)

+ 12𝑀።፣፤፥፦፧[ (
𝜕ኼ𝑢(ኻ)፤
𝜕𝑥፣𝜕𝑥፥

+ 𝑢(ኺ)፪,፥
𝜕ኼ𝑢(ኻ)፤
𝜕𝑥፣𝜕𝑥፪

)(𝑢(ኺ)፦,፧ +
𝜕𝑢(ኻ)፦
𝜕𝑥፧

+ 𝑢(ኺ)፫,፧
𝜕𝑢(ኻ)፦
𝜕𝑥፫

)

+ (𝑢(ኺ)፤,፥ +
𝜕𝑢(ኻ)፤
𝜕𝑥፥

+ 𝑢(ኺ)፪,፥
𝜕𝑢(ኻ)፤
𝜕𝑥፪

)( 𝜕
ኼ𝑢(ኻ)፦

𝜕𝑥፣𝜕𝑥፧
+ 𝑢(ኺ)፫,፧

𝜕ኼ𝑢(ኻ)፦
𝜕𝑥፣𝜕𝑥፫

) ] + ...

≈ 𝐶።፣፤፥ (
𝜕ኼ𝑢(ኻ)፤
𝜕𝑥፣𝜕𝑥፥

+ 𝑢(ኺ)፪,፥
𝜕ኼ𝑢(ኻ)፤
𝜕𝑥፣𝜕𝑥፪

) + 𝑢(ኺ)፩,፣𝐶።፣፤፥ (
𝜕ኼ𝑢(ኻ)፤
𝜕𝑥፩𝜕𝑥፥

)

+ 12𝑀።፣፤፥፦፧ (𝑢
(ኺ)
፦,፧

𝜕ኼ𝑢(ኻ)፤
𝜕𝑥፣𝜕𝑥፥

+ 𝑢(ኺ)፤,፥
𝜕ኼ𝑢(ኻ)፦
𝜕𝑥፣𝜕𝑥፧

) + ... ,

(A.165)

which can be further elaborated by substituting definition (2.59) and manipulating the indices of the
partial derivatives:

𝜕𝜎፣።
𝜕𝑎፣

≈ 𝐶።፣፤፥ (
𝜕ኼ𝑢(ኻ)፤
𝜕𝑥፣𝜕𝑥፥

+ 𝑢(ኺ)፪,፥
𝜕ኼ𝑢(ኻ)፤
𝜕𝑥፣𝜕𝑥፪

) + 𝑢(ኺ)፩,፣𝐶።፣፤፥ (
𝜕ኼ𝑢(ኻ)፤
𝜕𝑥፩𝜕𝑥፥

)

+ 12(𝐶።፣፤፥፦፧ + 𝐶።፣፥፧𝛿፤፦ + 𝐶፣፧፤፥𝛿።፦ + 𝐶፣፥፦፧𝛿።፤)(𝑢
(ኺ)
፦,፧

𝜕ኼ𝑢(ኻ)፤
𝜕𝑥፣𝜕𝑥፥

+ 𝑢(ኺ)፤,፥
𝜕ኼ𝑢(ኻ)፦
𝜕𝑥፣𝜕𝑥፧

)

≈ (𝐶።፣፤፥ + 𝐶።፣፤፪𝑢(ኺ)፥,፪ + 𝐶።፩፤፥𝑢
(ኺ)
፣,፩)

𝜕ኼ𝑢(ኻ)፤
𝜕𝑥፣𝜕𝑥፥

+ 12[𝐶።፣፤፥፦፧ (𝑢
(ኺ)
፦,፧ + 𝛿፤፦𝛿፥፧𝑢(ኺ)፤,፥ ) + 𝐶።፣፥፧ (𝑢

(ኺ)
፤,፧ + 𝛿፥፧𝑢

(ኺ)
፤,፥ )

+ 𝐶፣፧፤፥ (𝑢(ኺ)።,፧ + 𝛿።፤𝛿፥፧𝑢
(ኺ)
፤,፥ ) + 𝐶፣፥፦፧ (𝛿።፤𝑢

(ኺ)
፦,፧ + 𝛿።፤𝛿፤፦𝛿፥፧𝑢(ኺ)፤,፥ ) ]

𝜕ኼ𝑢(ኻ)፤
𝜕𝑥፣𝜕𝑥፥

.

(A.166)

Relation (A.166) can be simplified by elaborating the Kronecker delta and factorising the second-
order spatial derivative:



106 A. Side notes F.D. Murnaghan

𝜕𝜎፣።
𝜕𝑎፣

≈ (𝐶።፣፤፥ + 𝐶።፣፤፪𝑢(ኺ)፥,፪ + 𝐶።፩፤፥𝑢
(ኺ)
፣,፩)

𝜕ኼ𝑢(ኻ)፤
𝜕𝑥፣𝜕𝑥፥

+ 12[𝐶።፣፤፥፦፧ (𝑢
(ኺ)
፦,፧ + 𝑢(ኺ)፦,፧) + 𝐶።፣፥፧ (𝑢(ኺ)፤,፧ + 𝑢

(ኺ)
፤,፧)

+ 𝐶፣፧፤፥ (𝑢(ኺ)።,፧ + 𝑢
(ኺ)
።,፧ ) + 𝐶፣፥፦፧ (𝛿።፤𝑢

(ኺ)
፦,፧ + 𝛿።፤𝑢(ኺ)፦,፧) ]

𝜕ኼ𝑢(ኻ)፤
𝜕𝑥፣𝜕𝑥፥

≈ (𝐶።፣፤፥ + 𝐶።፣፤፪𝑢(ኺ)፥,፪ + 𝐶።፩፤፥𝑢
(ኺ)
፣,፩ + 𝐶።፣፤፥፦፧𝑢

(ኺ)
፦,፧ + 𝐶።፣፥፧𝑢(ኺ)፤,፧ + 𝐶፣፧፤፥𝑢

(ኺ)
።,፧

+ 𝐶፣፥፦፧𝛿።፤𝑢(ኺ)፦,፧)
𝜕ኼ𝑢(ኻ)፤
𝜕𝑥፣𝜕𝑥፥

,

(A.167)

which, upon substitution in the Lagrangian form of Cauchy’s first law of motion (2.66), yields:

𝜌ፚ
𝜕ኼ𝑢(ኻ)።
𝜕𝑡ኼ − 𝐵።፣፤፥

𝜕ኼ𝑢(ኻ)፤
𝜕𝑥፣𝜕𝑥፥

= 0. (2.71)

where the fourth-order tensor,

𝐵።፣፤፥ = 𝐶።፣፤፥ + 𝛿።፤𝐶፣፥፪፫𝑢(ኺ)፪,፫ + 𝐶፫፣፤፥𝑢(ኺ)።,፫ + 𝐶።፫፤፥𝑢
(ኺ)
፣,፫ + 𝐶።፣፫፥𝑢

(ኺ)
፤,፫ + 𝐶።፣፤፫𝑢

(ኺ)
፥,፫ + 𝐶።፣፤፥፦፧𝑢

(ኺ)
፦,፧ , (2.72)

denotes the effective elastic moduli.

A.5.5. Wave velocity
By dividing both sides of relation (2.71) by the initial mass density 𝜌ፚ, the wave equation is obtained:

𝜕ኼ𝑢(ኻ)።
𝜕𝑡ኼ − 𝑐ኼ፣።

𝜕ኼ𝑢(ኻ)፤
𝜕𝑥፣𝜕𝑥፥

= 0, (2.73)

where the second-order tensor,

𝑐፣። = √
𝐵።፣፤፥
𝜌ፚ

, (2.74)

denotes the velocity of a wave polarising in the 𝑖-direction while propagating in the 𝑗-direction.
A longitudinal wave propagating along the 𝑥-direction is considered, for which relation (2.73) be-

comes

𝜕ኼ𝑢(ኻ)
𝜕𝑡ኼ − 𝑐ኼ፱፱

𝜕ኼ𝑢(ኻ)
𝜕𝑥ኼ = 0, (2.75)

where the expression for the wave velocity is

𝑐፱፱ = √
𝐵ኻኻኻኻ
𝜌ፚ

. (A.168)

The fourth-order tensor 𝐵ኻኻኻኻ can be expanded by using relation (2.72) and the following definition:

𝑢(ኺ)፤,፣ =
𝜕𝑢(ኺ)፤
𝜕𝑥፣

= { 𝑒፣፤ ; for 𝑗 = 𝑘
0 ; else , (2.68)

where 𝑒፣፤ denotes the first-order approximation of the strain. After collecting similar terms, 𝐵ኻኻኻኻ be-
comes:
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𝐵ኻኻኻኻ = 𝐶ኻኻኻኻ + (5𝐶ኻኻኻኻ + 𝐶ኻኻኻኻኻኻ)𝑢(ኺ)ኻ,ኻ + (𝐶ኻኻኼኼ + 𝐶ኻኻኻኻኼኼ)𝑢(ኺ)ኼ,ኼ + (𝐶ኻኻኽኽ + 𝐶ኻኻኻኻኽኽ)𝑢(ኺ)ኽ,ኽ , (A.169)

where the fourth-order tensors can be defined according to relation (2.51):

𝐶ኻኻኻኻ = 𝜆 + 2𝜇
𝐶ኻኻኼኼ = 𝐶ኻኻኽኽ = 𝜆.

(A.170)

The sixth-order tensors can be formulated by using relation (2.52):

𝐶ኻኻኻኻኻኻ = 2(𝑙 − 𝑚 +
ኻ
ኼ𝑛) + 6(𝑚 −

ኻ
ኼ𝑛) + 2𝑛

𝐶ኻኻኻኻኼኼ = 𝐶ኻኻኻኻኽኽ = 2(𝑙 − 𝑚 +
ኻ
ኼ𝑛) + 2(𝑚 −

ኻ
ኼ𝑛).

(A.171)

The fourth-order tensor 𝐵ኻኻኻኻ can then be further elaborated to:

𝐵ኻኻኻኻ = 𝜆 + 2𝜇 + (5𝜆 + 10𝜇 + 2𝑙 + 4𝑚)𝑒፱፱ + (2𝑙 + 𝜆)𝑒፲፲ + (2𝑙 + 𝜆)𝑒፳፳ . (A.172)

By factorising common terms, the above becomes:

𝐵ኻኻኻኻ = 𝜆 + 2𝜇 + (2𝑙 + 𝜆)𝑒 + (4𝜆 + 4𝑚 + 10𝜇)𝑒፱፱ , (A.173)

where 𝑒 is defined as the volumetric strain:

𝑒 = 𝑒፱፱ + 𝑒፲፲ + 𝑒፳፳ . (2.77)

Then the wave velocity 𝑐፱፱, expressed in terms of the uniaxial strains, becomes:

𝑐፱፱ = √
𝜆 + 2𝜇 + (2𝑙 + 𝜆)𝑒 + (4𝜆 + 4𝑚 + 10𝜇)𝑒፱፱

𝜌ፚ
. (2.76)

The wave velocity can be written in terms of any of the orthogonal uniaxial stresses by using the
definition of the linearised nominal stress (2.60):

𝜎፣። ≈ 𝐶።፣፤፥
𝜕𝑢(ኺ)፤
𝜕𝑥፥

. (2.60)

For a uniaxial stress in the 𝑖-direction, 𝜎።።, the above yields:

𝜎።። = 𝐶።።፤፥
𝜕𝑢(ኺ)፤
𝜕𝑥፥

= {𝜆𝛿።።𝛿፤፥ + 2𝜇[
ኻ
ኼ(𝛿።፤𝛿።፥ + 𝛿።፥𝛿።፤)]}

𝜕𝑢(ኺ)፤
𝜕𝑥፥

,
(A.174)

which, after elaborating the Kronecker delta terms, becomes:

𝜎።። = (3𝜆 + 2𝜇)
𝜕𝑢(ኺ)፤
𝜕𝑥፥

. (A.175)

Upon substituting definition (2.68), the above can be simplified to:

𝜎።። = (3𝜆 + 2𝜇)𝑒. (2.78)

The uniaxial strains can be related to each other through Poison’s ratio 𝜈. Both the first and second
Lamé parameter can be expressed in terms of 𝜈:

𝜆 = 𝐸𝜈
(1 + 𝜈)(1 − 2𝜈) ; 𝜇 = 𝐸

2(1 + 𝜈) , (A.176)

where 𝐸 denotes the Young’s modulus. Both expressions can be isolated for the Young’s modulus,
which makes it possible to express the Poison’s ratio in terms of the Lamé parameters:
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𝜈 = 𝜆
2(𝜇 + 𝜆) . (A.177)

The volumetric strain can now be rewritten in terms of one single uniaxial strain 𝑒።። of the form1:

𝑒 = 𝑒፱፱ + 𝑒፲፲ + 𝑒፳፳ = 𝑒፱፱ − 2𝜈𝑒፱፱ = 𝑒፱፱(1 − 2𝜈), (A.178)

which upon substituting (A.177) can be further elaborated to

𝑒 = 𝑒፱፱
𝜇

𝜆 + 𝜇 . (A.179)

Rewriting relation (2.76) in terms of the uniaxial strain 𝑒፱፱ yields:

𝑐፱፱ =
√𝜆 + 2𝜇 + (2𝑙 + 𝜆)𝑒፱፱

𝜇
𝜆 + 𝜇 + (4𝜆 + 4𝑚 + 10𝜇)𝑒፱፱
𝜌ፚ

, (A.180)

which can be expanded by factorising the common terms:

𝑐፱፱ =
√𝜆 + 2𝜇 + 𝑒፱፱

𝜇
𝜆 + 𝜇 [2𝑙 + 𝜆 +

𝜆 + 𝜇
𝜇 (4𝜆 + 4𝑚 + 10𝜇)]

𝜌ፚ
. (2.76)

Upon substitution of the linearised nominal stress 𝜎፱፱, the expression of the wave velocity becomes:

𝑐 ᑩᑩ፱፱ =
√𝜆 + 2𝜇 ±

𝜎፱፱
3𝐾 [2𝑙 + 𝜆 +

𝜆 + 𝜇
𝜇 (4𝜆 + 4𝑚 + 10𝜇)]

𝜌ፚ
, (2.79)

where +𝜎፱፱ implies a tensile stress and −𝜎፱፱ a compressive stress. The bulk modulus is denoted with
𝐾 = 𝜆 + ኼ

ኽ𝜇. Using a similar approach for the uniaxial stresses 𝜎፲፲ and 𝜎፳፳, yields:

𝑐 ᑪᑪ
፱፱ =

√𝜆 + 2𝜇 ±
𝜎፲፲
3𝐾 [2𝑙 + 𝜆 − 𝜆

2𝜇 (4𝜆 + 4𝑚 + 10𝜇)]

𝜌ፚ

𝑐 ᑫᑫ፱፱ =
√𝜆 + 2𝜇 ±

𝜎፳፳
3𝐾 [2𝑙 + 𝜆 −

𝜆
2𝜇 (4𝜆 + 4𝑚 + 10𝜇)]

𝜌ፚ
,

(A.181)

respectively.
For a transverse wave, polarising in the 𝑦-direction while propagating along the 𝑥-direction, the

wave equation (2.73) becomes:

𝜕ኼ𝑣(ኻ)
𝜕𝑡ኼ − 𝑐ኼ፱፲

𝜕ኼ𝑣(ኻ)
𝜕𝑥ኼ = 0, (2.82)

for which the expression for the wave velocity is:

𝑐፱፲ = √
𝐵ኼኻኼኻ
𝜌ፚ

. (A.182)

The fourth-order tensor 𝐵ኼኻኼኻ is then equal to:

𝐵ኼኻኼኻ = 𝜇 + (𝜆 + 2𝜇 + 2𝜇 +𝑚)𝑒፱፱ + (𝜆 + 2𝜇 +𝑚)𝑒፲፲ + (𝜆 +𝑚 −
ኻ
ኼ𝑛)𝑒፳፳ , (A.183)

1Note that this is only valid for isotropic materials for which  is independent of the direction.
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which can be expanded by factorising the common terms:

𝐵ኼኻኼኻ = 𝜇 + (𝜆 +𝑚)𝑒 + 4𝜇𝑒፱፱ + 2𝜇𝑒፲፲ −
ኻ
ኼ𝑛𝑒፳፳ . (A.184)

The expression of the wave velocity 𝑐፱፲ then becomes:

𝑐፱፲ = √
𝜇 + (𝜆 +𝑚)𝑒 + 4𝜇𝑒፱፱ + 2𝜇𝑒፲፲ −

ኻ
ኼ𝑛𝑒፳፳

𝜌ፚ
. (A.185)

The transverse-wave velocity of a medium which is stressed parallel to the propagation direction can
be described with:

𝑐 ᑩᑩ፱፲ =
√𝜇 ±

𝜎፱፱
3𝐾 (𝑚 +

𝜆𝑛
4𝜇 + 4𝜆 + 4𝜇)

𝜌ፚ
. (2.83)

When the medium is stressed parallel to the polarisation direction, the transverse-wave velocity be-
comes:

𝑐 ᑪᑪ
፱፲ =

√𝜇 ±
𝜎፲፲
3𝐾 (𝑚 + 𝜆𝑛4𝜇 + 𝜆 + 2𝜇)

𝜌ፚ
(A.186)

For a medium which is stressed perpendicular to both the propagation direction and the polarisation
direction, the transverse-wave velocity is defined as:

𝑐 ᑫᑫ፱፲ =
√𝜇 ±

𝜎፳፳
3𝐾 [𝜆 + 𝑚 −

𝜆 + 𝜇
𝜇 ( 3𝜇𝜆𝜆 + 𝜇 +

1
2𝑛)]

𝜌ፚ
. (A.187)





B
Side notes M.A. Biot

The intermediate steps and the corresponding side notes, which are needed to understand the deriva-
tions which have been made in the book and the papers of Biot, are elaborated here.

B.1. Equilibrium equations for the stress field
This sections covers the derivation of the dynamic equilibrium in the final configuration. This dynamic
equilibrium, which lays the foundation for the wave equation, is obtained through Newton’s second law
of motion in both the initial and the final configuration.

B.1.1. Newton’s second law of motion in rest
The initial-stress components are orientated according to the assumed sign conventions. Figure B.1
displays these stresses, which should make equilibrium in the 𝑥 and 𝑦-direction.

𝑥

𝑦

+𝜔፳

𝑃ፚ(𝑎, 𝑏)
𝑆ኻኻ(𝑎, 𝑏)

𝑆ኻኼ(𝑎, 𝑏)

𝑆ኻኼ(𝑎, 𝑏)

𝑆ኼኼ(𝑎, 𝑏)

𝑆ኻኻ(𝑎 + Δ𝑎, 𝑏)

𝑆ኻኼ(𝑎 + Δ𝑎, 𝑏)

𝑆ኻኼ(𝑎, 𝑏 + Δ𝑏)

𝑆ኼኼ(𝑎, 𝑏 + Δ𝑏)

𝑋ፚ

𝑌ፚ

Figure B.1: Initial stresses acting on a square with dimensions ጂፚ, ጂ, including the assumed sign conventions.

Newton’s second law of motion in the 𝑥 and 𝑦-direction then reads:

−𝑆ኻኻ(𝑎, 𝑏)Δ𝑏 − 𝑆ኻኼ(𝑎, 𝑏)Δ𝑎 + 𝑆ኻኻ(𝑎 + Δ𝑎, 𝑏)Δ𝑏 + 𝑆ኻኼ(𝑎, 𝑏 + Δ𝑏)Δ𝑎 + 𝜌ፚ𝑋ፚΔ𝑎Δ𝑏 = 0
−𝑆ኼኼ(𝑎, 𝑏)Δ𝑎 − 𝑆ኻኼ(𝑎, 𝑏)Δ𝑏 + 𝑆ኼኼ(𝑎, 𝑏 + Δ𝑏)Δ𝑎 + 𝑆ኻኼ(𝑎 + Δ𝑎, 𝑏)Δ𝑏 + 𝜌ፚ𝑌ፚΔ𝑎Δ𝑏 = 0,

(B.1)

respectively. By dividing the above by the area of the square, Δ𝑎Δ𝑏, the following is found:

𝑆ኻኻ(𝑎 + Δ𝑎, 𝑏) − 𝑆ኻኻ(𝑎, 𝑏)
Δ𝑎 + 𝑆ኻኼ(𝑎, 𝑏 + Δ𝑏) − 𝑆ኻኼ(𝑎, 𝑏)Δ𝑏 + 𝜌ፚ𝑋ፚ = 0

𝑆ኻኼ(𝑎 + Δ𝑎, 𝑏) − 𝑆ኻኼ(𝑎, 𝑏)
Δ𝑎 + 𝑆ኼኼ(𝑎, 𝑏 + Δ𝑏) − 𝑆ኼኼ(𝑎, 𝑏)Δ𝑏 + 𝜌ፚ𝑌ፚ = 0,

(B.2)

111
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which, upon evaluating limጂፚ,ጂ→ኺ, can be recognised as the definition of a derivative for small changes.
Therefore, the equilibrium conditions become:

𝜕𝑆ኻኻ
𝜕𝑎 + 𝜕𝑆ኻኼ𝜕𝑏 + 𝜌ፚ𝑋ፚ = 0
𝜕𝑆ኻኼ
𝜕𝑎 + 𝜕𝑆ኼኼ𝜕𝑏 + 𝜌ፚ𝑌ፚ = 0,

(3.1)

where 𝜌ፚ denotes the initial mass density and 𝑋ፚ, 𝑌ፚ – the components of the initial mass force, ex-
pressed in units of acceleration.

B.1.2. Transformation rule of the stress tensor
The stresses acting on the element along the rotated axes 𝑥ᖣ, 𝑦ᖣ can be rotated back such that they are
orientated along the 𝑥, 𝑦 axes. Biot mentions in his paper “Theory of elasticity with large displacements
and rotations” [3] that this can be realised by using the tensor transformation relation:

𝜎𝜎𝜎ᖣ = 𝑅𝜎𝑅𝑅𝜎𝑅𝑅𝜎𝑅ፓ . (B.3)

Here, 𝑅𝑅𝑅 is defined as the 2 x 2 rotation matrix which is a function of any rotation 𝜔 around the three
orthogonal axes. The 2 x 2 matrices 𝜎𝜎𝜎 and 𝜎𝜎𝜎ᖣ denote the nominal stress tensor related to the original
and rotated axes, respectively:

𝜎𝜎𝜎ᖣ = (𝜎፱፱ 𝜎፱፲
𝜎፱፲ 𝜎፲፲) ; 𝑅𝑅𝑅 = (cos(𝜔) − sin(𝜔)

sin(𝜔) cos(𝜔) ) ; 𝜎𝜎𝜎 = (𝑆ኻኻ + 𝑠ኻኻ 𝑆ኻኼ + 𝑠ኻኼ
𝑆ኻኼ + 𝑠ኻኼ 𝑆ኼኼ + 𝑠ኼኼ) . (B.4)

Note that for any arbitrary small angle 𝜔, the trigonometric functions can be approximated such that
the following holds:

sin(𝜔) ≈ 𝜔
cos(𝜔) ≈ 1. (B.5)

With this approximation, all terms in relation (B.3) of the second order and higher in the rotation angle
will be discarded, which yields:

𝜎፱፱ = 𝑆ኻኻ + 𝑠ኻኻ − 2(𝑆ኻኼ + 𝑠ኻኼ)𝜔፳
𝜎፲፲ = 𝑆ኼኼ + 𝑠ኼኼ + 2(𝑆ኻኼ + 𝑠ኻኼ)𝜔፳
𝜎፱፲ = 𝑆ኻኼ + 𝑠ኻኼ + (𝑆ኻኻ − 𝑆ኼኼ)𝜔፳ + (𝑠ኻኻ − 𝑠ኼኼ)𝜔፳ ,

(B.6)

where 𝜔፳ denotes the rotation around the 𝑧-axis. Since both the rotation angle 𝜔፳ and the incremental-
stress components 𝑠።፣ depend on the strain, their multiplication will result in higher-order terms. There-
fore, the stresses 𝜎፱፱ , 𝜎፲፲ and 𝜎፱፲, approximated to the first order, become:

𝜎፱፱ = 𝑆ኻኻ + 𝑠ኻኻ − 2𝑆ኻኼ𝜔፳
𝜎፲፲ = 𝑆ኼኼ + 𝑠ኼኼ + 2𝑆ኻኼ𝜔፳
𝜎፱፲ = 𝑆ኻኼ + 𝑠ኻኼ + (𝑆ኻኻ − 𝑆ኼኼ)𝜔፳ .

(3.5)

B.1.3. Expansion of the partial derivatives with respect to the final configuration
The differentials of the final coordinates (𝑥, 𝑦) are defined as:

𝑑𝑥 = 𝜕𝑥
𝜕𝑎𝑑𝑎 +

𝜕𝑥
𝜕𝑏𝑑𝑏

𝑑𝑦 = 𝜕𝑦
𝜕𝑎𝑑𝑎 +

𝜕𝑦
𝜕𝑏𝑑𝑏,

(B.7)

which can be written in matrix notation with

𝑑𝑥𝑑𝑥𝑑𝑥 = 𝐽𝐽𝐽𝑑𝑎𝑑𝑎𝑑𝑎, (B.8)
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where 𝑑𝑎𝑑𝑎𝑑𝑎 and 𝑑𝑥𝑑𝑥𝑑𝑥 denote the 2 x 1 vectors containing the differentials of the initial and final coordinates,
respectively. The quantity 𝐽𝐽𝐽 denotes the non-singular 2 x 2 Jacobian matrix containing the derivatives
of the final coordinates (𝑥, 𝑦) with respect to the initial coordinates (𝑎, 𝑏):

𝐽𝐽𝐽 = (
𝜕𝑥
𝜕𝑎

𝜕𝑥
𝜕𝑏

𝜕𝑦
𝜕𝑎

𝜕𝑦
𝜕𝑏

) . (3.9)

The vector 𝑑𝑎𝑑𝑎𝑑𝑎 can be isolated by left-multiplying equation (B.8) by the inverse of 𝐽𝐽𝐽:

𝐽𝐽𝐽ዅኻ𝑑𝑥𝑑𝑥𝑑𝑥 = 𝑑𝑎𝑑𝑎𝑑𝑎, (B.9)

where 𝐽𝐽𝐽ዅኻ is defined as:

𝐽𝐽𝐽ዅኻ = 1
det( 𝐽𝐽𝐽) (

𝜕𝑦
𝜕𝑏 −𝜕𝑥𝜕𝑏
−𝜕𝑦𝜕𝑎

𝜕𝑥
𝜕𝑎

) . (B.10)

Upon substituting definition (B.10) into relation (B.9), the differentials 𝑑𝑎 and 𝑑𝑏 become:

𝑑𝑎 = 1
det( 𝐽𝐽𝐽) (

𝜕𝑦
𝜕𝑏𝑑𝑥 −

𝜕𝑥
𝜕𝑏𝑑𝑦)

𝑑𝑏 = 1
det( 𝐽𝐽𝐽) (−

𝜕𝑦
𝜕𝑎𝑑𝑥 +

𝜕𝑥
𝜕𝑎𝑑𝑥) ,

(B.11)

respectively. The partial derivatives of the initial coordinates with the respect to the final coordinates

are obtained by dividing relation (B.11) by the differentials 𝑑𝑥 and 𝑑𝑦. For the derivative 𝜕𝑎𝜕𝑥 this yields:

𝜕𝑎
𝜕𝑥 =

1
det( 𝐽𝐽𝐽) (

𝜕𝑦
𝜕𝑏
𝑑𝑥
𝑑𝑥 −

𝜕𝑥
𝜕𝑏
𝑑𝑦
𝑑𝑥) . (B.12)

Since the derivatives of the final coordinates with respect to each other are zero, the above can sim-
plified to:

𝜕𝑎
𝜕𝑥 =

1
det( 𝐽𝐽𝐽)

𝜕𝑦
𝜕𝑏
𝑑𝑥
𝑑𝑥 , (B.13)

which, by using 𝑦 = 𝑏 + 𝑣, becomes:

𝜕𝑎
𝜕𝑥 =

1
det( 𝐽𝐽𝐽)

𝜕(𝑏 + 𝑣)
𝜕𝑏

= 1
det( 𝐽𝐽𝐽)(1 +

𝜕𝑣
𝜕𝑏).

(B.14)

A similar approach can be used to find the expressions of the other derivatives, which eventually yields:

𝜕𝑎
𝜕𝑥 =

1
det( 𝐽𝐽𝐽)(1 +

𝜕𝑣
𝜕𝑏) ; 𝜕𝑎

𝜕𝑦 = −
1

det( 𝐽𝐽𝐽)
𝜕𝑢
𝜕𝑏

𝜕𝑏
𝜕𝑥 = −

1
det( 𝐽𝐽𝐽)

𝜕𝑣
𝜕𝑎 ; 𝜕𝑏

𝜕𝑦 =
1

det( 𝐽𝐽𝐽)(1 +
𝜕𝑢
𝜕𝑎).

(3.8)

B.1.4. Newton’s second law of motion after deformation
The dynamic equilibrium is established through the Newton’s second law of motion at the point 𝑃፱(𝑥, 𝑦):

𝜕𝜎፱፱
𝜕𝑥 +

𝜕𝜎፱፲
𝜕𝑦 + 𝜌፱𝑋፱ = 𝜌፱

𝜕ኼ𝑢
𝜕𝑡ኼ

𝜕𝜎፱፲
𝜕𝑥 +

𝜕𝜎፲፲
𝜕𝑦 + 𝜌፱𝑌፱ = 𝜌፱

𝜕ኼ𝑣
𝜕𝑡ኼ ,

(3.6)
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where 𝜌፱ denotes the final mass density and 𝑋፱, 𝑌፱ – the components of the final mass force. By
making use of the chain rule of differentiation the above can be written as:

𝜕𝜎፱፱
𝜕𝑎

𝜕𝑎
𝜕𝑥 +

𝜕𝜎፱፱
𝜕𝑏

𝜕𝑏
𝜕𝑥 +

𝜕𝜎፱፲
𝜕𝑎

𝜕𝑎
𝜕𝑦 +

𝜕𝜎፱፲
𝜕𝑏

𝜕𝑏
𝜕𝑦 + 𝜌፱𝑋፱ = 𝜌፱

𝜕ኼ𝑢
𝜕𝑡ኼ

𝜕𝜎፱፲
𝜕𝑎

𝜕𝑎
𝜕𝑥 +

𝜕𝜎፱፲
𝜕𝑏

𝜕𝑏
𝜕𝑥 +

𝜕𝜎፲፲
𝜕𝑎

𝜕𝑎
𝜕𝑦 +

𝜕𝜎፲፲
𝜕𝑏

𝜕𝑏
𝜕𝑦 + 𝜌፱𝑌፱ = 𝜌፱

𝜕ኼ𝑣
𝜕𝑡ኼ ,

(B.15)

which, upon substitution of the definitions (3.8) and the definition of the Jacobian determinant (2.39),
becomes:

(𝜌፱𝜌ፚ
) [𝜕𝜎፱፱𝜕𝑎 (1 + 𝜕𝑣𝜕𝑏) −

𝜕𝜎፱፱
𝜕𝑏

𝜕𝑣
𝜕𝑎 −

𝜕𝜎፱፲
𝜕𝑎

𝜕𝑢
𝜕𝑏 +

𝜕𝜎፱፲
𝜕𝑏 (1 + 𝜕𝑢𝜕𝑎)] + 𝜌፱𝑋፱ = 𝜌፱

𝜕ኼ𝑢
𝜕𝑡ኼ

(𝜌፱𝜌ፚ
) [
𝜕𝜎፱፲
𝜕𝑎 (1 + 𝜕𝑣𝜕𝑏) −

𝜕𝜎፱፲
𝜕𝑏

𝜕𝑣
𝜕𝑎 −

𝜕𝜎፲፲
𝜕𝑎

𝜕𝑢
𝜕𝑏 +

𝜕𝜎፲፲
𝜕𝑏 (1 + 𝜕𝑢𝜕𝑎)] + 𝜌፱𝑌፱ = 𝜌፱

𝜕ኼ𝑣
𝜕𝑡ኼ .

(B.16)

The dynamic equilibrium can be simplified by multiplying both sides with the Jacobian determinant,

det( 𝐽𝐽𝐽) = (𝜌ፚ𝜌፱
). For convenience, the following notations are used for the first-order strains:

𝑒፱፱ =
𝜕𝑢
𝜕𝑎

𝑒፲፲ =
𝜕𝑣
𝜕𝑏

𝑒፱፲ =
1
2(
𝜕𝑣
𝜕𝑎 +

𝜕𝑢
𝜕𝑏).

(3.11)

By factorising the stress components, relation (B.16) becomes:

𝜕𝜎፱፱
𝜕𝑎 +

𝜕𝜎፱፲
𝜕𝑏 + 𝑒፲፲

𝜕𝜎፱፱
𝜕𝑎 + 𝑒፱፱

𝜕𝜎፱፲
𝜕𝑏 − (𝑒፱፲ − 𝜔፳)

𝜕𝜎፱፲
𝜕𝑎 − (𝑒፱፲ + 𝜔፳)

𝜕𝜎፱፱
𝜕𝑏 + 𝜌ፚ𝑋፱ = 𝜌ፚ

𝜕ኼ𝑢
𝜕𝑡ኼ

𝜕𝜎፱፲
𝜕𝑎 +

𝜕𝜎፲፲
𝜕𝑏 + 𝑒፲፲

𝜕𝜎፱፲
𝜕𝑎 + 𝑒፱፱

𝜕𝜎፲፲
𝜕𝑏 − (𝑒፱፲ − 𝜔፳)

𝜕𝜎፲፲
𝜕𝑎 − (𝑒፱፲ + 𝜔፳)

𝜕𝜎፱፲
𝜕𝑏 + 𝜌ፚ𝑌፱ = 𝜌ፚ

𝜕ኼ𝑣
𝜕𝑡ኼ .

(3.10)

Now all the terms of this new formulation of the dynamic equilibrium will be treated and evaluated.
The mass forces 𝜌ፚ𝑋ፚ, 𝜌ፚ𝑌ፚ can be approximated at the point 𝑃፱(𝑥, 𝑦) by using a Taylor expansion in
two dimensions:

𝑓(𝑥, 𝑦) = 𝑓(𝑎, 𝑏) + 𝜕𝑓(𝑎, 𝑏)𝜕𝑎
(𝑥 − 𝑎)
1! + 𝜕𝑓(𝑎, 𝑏)𝜕𝑏

(𝑦 − 𝑏)
1! + ... (B.17)

By considering only the first-order terms, the Taylor expansion for the initial mass force 𝜌ፚ𝑋ፚ becomes:

𝜌ፚ𝑋ፚ = 𝜌ፚ (𝑋፱ +
𝜕𝑋፱
𝜕𝑎

(𝑎 − 𝑥)
1! + 𝜕𝑋፱𝜕𝑏

(𝑏 − 𝑦)
1! )

= 𝜌ፚ𝑋፱ − 𝜌ፚ𝑢
𝜕𝑋፱
𝜕𝑎 − 𝜌ፚ𝑣

𝜕𝑋፱
𝜕𝑏 .

(B.18)

Upon isolating the mass force at the point 𝑃፱(𝑥, 𝑦), the following holds for both directions:

𝜌ፚ𝑋፱ = 𝜌ፚ𝑋ፚ + 𝜌ፚ𝑢
𝜕𝑋፱
𝜕𝑎 + 𝜌ፚ𝑣

𝜕𝑋፱
𝜕𝑏

𝜌ፚ𝑌፱ = 𝜌ፚ𝑌ፚ + 𝜌ፚ𝑢
𝜕𝑌፱
𝜕𝑎 + 𝜌ፚ𝑣

𝜕𝑌፱
𝜕𝑏 .

(B.19)
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The derivatives of the stress components can be evaluated by substituting the relations (3.5). For
the stress component 𝜎፱፱ this results in:

𝜕𝜎፱፱
𝜕𝑎 = 𝜕𝑠ኻኻ

𝜕𝑎 + 𝜕𝑆ኻኻ𝜕𝑎 − 2𝜔፳
𝜕𝑆ኻኼ
𝜕𝑎 − 2𝑆ኻኼ

𝜕𝜔፳
𝜕𝑎

𝜕𝜎፱፱
𝜕𝑏 = 𝜕𝑠ኻኻ

𝜕𝑏 + 𝜕𝑆ኻኻ𝜕𝑏 − 2𝜔፳
𝜕𝑆ኻኼ
𝜕𝑏 − 2𝑆ኻኼ

𝜕𝜔፳
𝜕𝑏 .

(B.20)

Similarly, the derivatives of the stress component 𝜎፲፲ become:

𝜕𝜎፲፲
𝜕𝑎 = 𝜕𝑠ኼኼ

𝜕𝑎 + 𝜕𝑆ኼኼ𝜕𝑎 + 2𝜔፳
𝜕𝑆ኻኼ
𝜕𝑎 + 2𝑆ኻኼ

𝜕𝜔፳
𝜕𝑎

𝜕𝜎፲፲
𝜕𝑏 = 𝜕𝑠ኼኼ

𝜕𝑏 + 𝜕𝑆ኼኼ𝜕𝑏 + 2𝜔፳
𝜕𝑆ኻኼ
𝜕𝑏 + 2𝑆ኻኼ

𝜕𝜔፳
𝜕𝑏 ,

(B.21)

whereas those of the stress component 𝜎፱፲ become:

𝜕𝜎፱፲
𝜕𝑎 = 𝜕𝑠ኻኼ

𝜕𝑎 + 𝜕𝑆ኻኼ𝜕𝑎 + 𝜔፳
𝜕
𝜕𝑎 (𝑆ኻኻ − 𝑆ኼኼ) + (𝑆ኻኻ − 𝑆ኼኼ)

𝜕𝜔፳
𝜕𝑎

𝜕𝜎፱፲
𝜕𝑏 = 𝜕𝑠ኻኼ

𝜕𝑏 + 𝜕𝑆ኻኼ𝜕𝑏 + 𝜔፳
𝜕
𝜕𝑏 (𝑆ኻኻ − 𝑆ኼኼ) + (𝑆ኻኻ − 𝑆ኼኼ)

𝜕𝜔፳
𝜕𝑏 .

(B.22)

Next, these derivatives together with relations (B.19) are substituted into relations (3.10). Since
the strains are approximated to the first order, all multiplications which result in higher-order terms are
neglected. After substitution, the dynamic equilibrium in the 𝑥-direction yields:

𝜕𝑠ኻኻ
𝜕𝑎 + 𝜕𝑆ኻኻ𝜕𝑎 − 2𝜔፳

𝜕𝑆ኻኼ
𝜕𝑎 − 2𝑆ኻኼ

𝜕𝜔፳
𝜕𝑎 + 𝜕𝑠ኻኼ𝜕𝑏 + 𝜕𝑆ኻኼ𝜕𝑏 + (𝑆ኻኻ − 𝑆ኼኼ)

𝜕𝜔፳
𝜕𝑏

+ 𝜔፳(
𝜕𝑆ኻኻ
𝜕𝑏 − 𝜕𝑆ኼኼ𝜕𝑏 ) + 𝑒፲፲

𝜕𝑆ኻኻ
𝜕𝑎 + 𝑒፱፱

𝜕𝑆ኻኼ
𝜕𝑏 − (𝑒፱፲ − 𝜔፳)

𝜕𝑆ኻኼ
𝜕𝑎 − (𝑒፱፲ + 𝜔፳)

𝜕𝑆ኻኻ
𝜕𝑏

+ 𝜌ፚ𝑋ፚ + 𝜌ፚ𝑢
𝜕𝑋፱
𝜕𝑎 + 𝜌ፚ𝑣

𝜕𝑋፱
𝜕𝑏 = 𝜌ፚ

𝜕ኼ𝑢
𝜕𝑡ኼ . (B.23)

By rewriting the equilibrium conditions (3.1), the initial mass forces can be expressed in terms of the
initial stresses:

𝜌ፚ𝑋ፚ = −
𝜕𝑆ኻኻ
𝜕𝑎 − 𝜕𝑆ኻኼ𝜕𝑏

𝜌ፚ𝑌ፚ = −
𝜕𝑆ኻኼ
𝜕𝑎 − 𝜕𝑆ኼኼ𝜕𝑏 .

(B.24)

Rearranging and factorising the terms containing the rotation 𝜔፳, results in:

𝜕𝑠ኻኻ
𝜕𝑎 + 𝜕𝑠ኻኼ𝜕𝑏 + 𝜌ፚ𝑢

𝜕𝑋፱
𝜕𝑎 + 𝜌ፚ𝑣

𝜕𝑋፱
𝜕𝑏 + 𝜔፳( −

𝜕𝑆ኻኼ
𝜕𝑎 − 𝜕𝑆ኼኼ𝜕𝑏 ) − 2𝑆ኻኼ

𝜕𝜔፳
𝜕𝑎

+ (𝑆ኻኻ − 𝑆ኼኼ)
𝜕𝜔፳
𝜕𝑏 + 𝑒፲፲

𝜕𝑆ኻኻ
𝜕𝑎 + 𝑒፱፱

𝜕𝑆ኻኼ
𝜕𝑏 − 𝑒፱፲(

𝜕𝑆ኻኼ
𝜕𝑎 + 𝜕𝑆ኻኻ𝜕𝑏 )

+ 𝜔፳( −
𝜕𝑆ኻኼ
𝜕𝑎 + 𝜕𝑆ኻኻ𝜕𝑏 + 𝜕𝑆ኻኼ𝜕𝑎 − 𝜕𝑆ኻኻ𝜕𝑏 ) = 𝜌ፚ

𝜕ኼ𝑢
𝜕𝑡ኼ . (B.25)
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After simplifying even further, the same approach can be used for the 𝑦-direction. The final result is
the dynamic equilibrium, expressed in terms of the initial-stress components 𝑆።፣ and the incremental-
stress components 𝑠።፣, along the 𝑥, 𝑦-direction:

𝜕𝑠ኻኻ
𝜕𝑎 + 𝜕𝑠ኻኼ𝜕𝑏 + 𝜌ፚ𝑢

𝜕𝑋፱
𝜕𝑎 + 𝜌ፚ𝑣

𝜕𝑋፱
𝜕𝑏 + 𝜌ፚ𝜔፳𝑌ፚ − 2𝑆ኻኼ

𝜕𝜔፳
𝜕𝑎

+ (𝑆ኻኻ − 𝑆ኼኼ)
𝜕𝜔፳
𝜕𝑏 + 𝑒፲፲

𝜕𝑆ኻኻ
𝜕𝑎 + 𝑒፱፱

𝜕𝑆ኻኼ
𝜕𝑏 − 𝑒፱፲(

𝜕𝑆ኻኼ
𝜕𝑎 + 𝜕𝑆ኻኻ𝜕𝑏 ) = 𝜌ፚ

𝜕ኼ𝑢
𝜕𝑡ኼ

𝜕𝑠ኻኼ
𝜕𝑎 + 𝜕𝑠ኼኼ𝜕𝑏 + 𝜌ፚ𝑢

𝜕𝑌፱
𝜕𝑎 + 𝜌ፚ𝑣

𝜕𝑌፱
𝜕𝑏 − 𝜌ፚ𝜔፳𝑋ፚ + 2𝑆ኻኼ

𝜕𝜔፳
𝜕𝑏

+ (𝑆ኻኻ − 𝑆ኼኼ)
𝜕𝜔፳
𝜕𝑎 + 𝑒፲፲

𝜕𝑆ኻኼ
𝜕𝑎 + 𝑒፱፱

𝜕𝑆ኼኼ
𝜕𝑏 − 𝑒፱፲(

𝜕𝑆ኼኼ
𝜕𝑎 + 𝜕𝑆ኻኼ𝜕𝑏 ) = 𝜌ፚ

𝜕ኼ𝑣
𝜕𝑡ኼ ,

(3.12)

respectively.

B.2. Connection between initial-stress and wave velocity
This section deals with the relation between the initial-stress components 𝑆።፣ and the expressions of
the wave velocity. Through the principle of virtual work, a link between the initial-stress components
and the elastic coefficients can be established. Upon expanding the dynamic equilibrium, the wave
equation is obtained from which the formulations of the wave velocities, expressed in terms of the
elastic coefficients, follow.

B.2.1. Virtual work principle
After deformation and rotation, a cube with unit dimensions is transformed into a parallelogram. In this
parallelogram a unit sized square is cut out, whose stress field is displayed in Figure B.2.

𝑃፱𝑃፱𝑃፱

𝜔፳𝜔፳𝜔፳

Figure B.2: Stress field of a unit cube after rotation and deformation [5] (edited).

These stress components 𝑠።፣ acting on the square are related to the element of area before de-
formation. For the purpose of the virtual work principle, it is convenient to introduce Cauchy stress
components 𝑇።፣ which are related to the element of area after deformation. This can be done by con-
sidering a portion of a force 𝑑𝑓𝑑𝑓𝑑𝑓 acting on an element with dimensions 𝑑𝑥ᖣ, 𝑑𝑦ᖣ like depicted in Figure
B.3.
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𝑃፱
1

𝑥ᖣ

2

𝑦ᖣ

𝐴

𝐵

𝐶 𝑑𝑓𝑑𝑓𝑑𝑓

𝑑𝑥ᖣ

𝑑𝑦ᖣ

𝑆ኻኼ + 𝑇ᖣኼኻ

𝑆ኻኻ + 𝑇ኻኻ

𝑆ኻኼ + 𝑇ᖣኻኼ
𝑆ኼኼ + 𝑇ኼኼ

1

2
+𝜔፳

1

2

2

1

Figure B.3: The positive definition of the local coordinate system along the boundaries of the element ፝፱ᖤ , ፝፲ᖤ, according to the
counterclockwise integration.

According to the chosen sign convention, the total force 𝑓𝑓𝑓 is defined positive when 𝑑𝑓𝑑𝑓𝑑𝑓 is integrated
along the sides of the element in a counterclockwise direction. This results in the components of the
force 𝑑𝑓𝑑𝑓𝑑𝑓, along directions 1 and 2, to be defined as1:

𝑑𝑓ኻ = (𝑆ኻኻ + 𝑠ኻኻ)𝑑𝑦ᖣ − (𝑆ኻኼ + 𝑠ኻኼ)𝑑𝑥ᖣ
𝑑𝑓ኼ = (𝑆ኻኼ + 𝑠ኻኼ)𝑑𝑦ᖣ − (𝑆ኼኼ + 𝑠ኼኼ)𝑑𝑥ᖣ.

(B.26)

The coordinates of the points 𝐴, 𝐵 and 𝐶 of the parallelogram can be expressed in terms of the strain
components and are displayed in table B.1.

Table B.1: The coordinates of points ፀ, ፁ, ፂ in terms of the strain components Ꭸᑚᑛ.

Points of the parallelogram Horizontal coordinate 𝑥ᖣ Vertical coordinate 𝑦ᖣ

𝐴 1 + 𝜖ኻኻ 𝜖ኻኼ
𝐵 1 + 𝜖ኻኻ + 𝜖ኻኼ 1 + 𝜖ኼኼ + 𝜖ኻኼ
𝐶 𝜖ኻኼ 1 + 𝜖ኼኼ

The forces on the sides of the parallelogram can now be defined by integrating the force 𝑑𝑓። along
the edges in a counterclockwise direction. This results in the following:

𝑆ኻኻ + 𝑇ኻኻ = ∫
ፁ

ፀ
𝑑𝑓ኻ

𝑆ኻኼ + 𝑇ᖣኼኻ = ∫
ፁ

ፀ
𝑑𝑓ኼ

𝑆ኻኼ + 𝑇ᖣኻኼ = ∫
ፂ

ፁ
𝑑𝑓ኻ

𝑆ኼኼ + 𝑇ኼኼ = ∫
ፂ

ፁ
𝑑𝑓ኼ.

(B.27)

These relations can be elaborated by using (B.26) and the coordinates from table B.1. For the first
expression this results in:

1The minus sign of the forces acting on the plane ፝፱ᖤ is due to the positive definition of its the local coordinate system with
respect to the global coordinate system, as has been depicted in Figure B.3



118 B. Side notes M.A. Biot

𝑆ኻኻ + 𝑇ኻኻ = ∫
ፁ

ፀ
(𝑆ኻኻ + 𝑠ኻኻ)𝑑𝑦ᖣ −∫

ፁ

ፀ
(𝑆ኻኼ + 𝑠ኻኼ)𝑑𝑥ᖣ

= (𝑆ኻኻ + 𝑠ኻኻ)𝑦ᖣ|
ፁ

ፀ
− (𝑆ኻኼ + 𝑠ኻኼ)𝑥ᖣ|

ፁ

ፀ
= (𝑆ኻኻ + 𝑠ኻኻ)(1 + 𝜖ኼኼ) − (𝑆ኻኼ + 𝑠ኻኼ)𝜖ኻኼ.

(B.28)

After using a similar approach for the expressions and rearranging the terms, the following defini-
tions are obtained:

𝑇ኻኻ = 𝑠ኻኻ + (𝑆ኻኻ + 𝑠ኻኻ)𝜖ኼኼ − (𝑆ኻኼ + 𝑠ኻኼ)𝜖ኻኼ
𝑇ᖣኼኻ = 𝑠ኻኼ + (𝑆ኻኼ + 𝑠ኻኼ)𝜖ኼኼ − (𝑆ኼኼ + 𝑠ኼኼ)𝜖ኻኼ
𝑇ᖣኻኼ = 𝑠ኻኼ + (𝑆ኻኼ + 𝑠ኻኼ)𝜖ኻኻ − (𝑆ኻኻ + 𝑠ኻኻ)𝜖ኻኼ
𝑇ኼኼ = 𝑠ኼኼ + (𝑆ኼኼ + 𝑠ኼኼ)𝜖ኻኻ − (𝑆ኻኼ + 𝑠ኻኼ)𝜖ኻኼ,

(B.29)

which can be simplified by neglecting the higher-order terms:

𝑇ኻኻ = 𝑠ኻኻ + 𝑆ኻኻ𝜖ኼኼ − 𝑆ኻኼ𝜖ኻኼ
𝑇ᖣኼኻ = 𝑠ኻኼ + 𝑆ኻኼ𝜖ኼኼ − 𝑆ኼኼ𝜖ኻኼ
𝑇ᖣኻኼ = 𝑠ኻኼ + 𝑆ኻኼ𝜖ኻኻ − 𝑆ኻኻ𝜖ኻኼ
𝑇ኼኼ = 𝑠ኼኼ + 𝑆ኼኼ𝜖ኻኻ − 𝑆ኻኼ𝜖ኻኼ.

(B.30)

It should be noted that the Cauchy stress tensor is supposed to be symmetric. This rule of symmetry
follows from the demand that the total torque, caused by the shear stresses, should be zero. However,
due to the inclusion of the initial-stress components this symmetry is lost, i.e. 𝑇ᖣኻኼ and 𝑇ᖣኼኻ, are not equal
anymore. However, for the purpose of the principle of virtual work it is actually their average which is
relevant:

𝑇ኻኼ =
ኻ
ኼ(𝑇

ᖣ
ኻኼ + 𝑇ᖣኼኻ). (B.31)

By using a first-order approximation of the strain components 𝜖።፣ and relation (B.31), the expressions
(B.30) become:

𝑇ኻኻ = 𝑠ኻኻ + 𝑆ኻኻ𝑒፲፲ − 𝑆ኻኼ𝑒፱፲
𝑇ኼኼ = 𝑠ኼኼ + 𝑆ኼኼ𝑒፱፱ − 𝑆ኻኼ𝑒፱፲
𝑇ኻኼ = 𝑠ኻኼ +

ኻ
ኼ𝑆ኻኼ(𝑒፱፱ + 𝑒፲፲) −

ኻ
ኼ(𝑆ኻኻ + 𝑆ኼኼ)𝑒፱፲ .

(B.32)

The total virtual work, exerted by the stresses acting across the deformed area, is defined as:

𝛿𝑉 = (𝑆ኻኻ + 𝑇ኻኻ)𝛿𝜖ኻኻ + (𝑆ኼኼ + 𝑇ኼኼ)𝛿𝜖ኼኼ + (2𝑆ኻኼ + 𝑇ᖣኻኼ + 𝑇ᖣኼኻ)𝛿𝜖ኻኼ. (B.33)

Knowing that the terms 𝑇።፣ are already of the first order, the expression for the virtual work can be simpli-
fied by multiplying these stress components with the first-order approximation of the strain components
𝑒።፣. After substituting relation (B.31), the expression for the virtual work becomes:

𝛿𝑉 = 𝑇ኻኻ𝛿𝑒፱፱ + 𝑇ኼኼ𝛿𝑒፲፲ + 2𝑇ኻኼ𝛿𝑒፱፲ + 𝑆ኻኻ𝛿𝜖ኻኻ + 𝑆ኼኼ𝛿𝜖ኼኼ + 2𝑆ኻኼ𝛿𝜖ኻኼ. (B.34)

This expression has to be an exact differential in order to prove the existence of a strain energy potential.
This condition is expressed in the following relations:

𝜕𝑇ኻኻ
𝜕𝑒፲፲

= 𝜕𝑇ኼኼ
𝜕𝑒፱፱

𝜕𝑇ኻኻ
𝜕𝑒፱፲

= 2𝜕𝑇ኻኼ𝜕𝑒፱፱
𝜕𝑇ኼኼ
𝜕𝑒፱፲

= 2 𝜕𝑇ኻኼ𝜕𝑒፲፲
.

(B.35)
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The incremental-stress components 𝑇።፣ can be expressed linearly in terms of the first-order approx-
imation of the strains:

𝑇ኻኻ = 𝐶ኻኻኻኻ𝑒፱፱ + 𝐶ኻኻኼኼ𝑒፲፲ + 2𝐶ኻኻኻኼ𝑒፱፲
𝑇ኼኼ = 𝐶ኼኼኻኻ𝑒፱፱ + 𝐶ኼኼኼኼ𝑒፲፲ + 2𝐶ኼኼኻኼ𝑒፱፲
𝑇ኻኼ = 𝐶ኻኼኻኻ𝑒፱፱ + 𝐶ኻኼኼኼ𝑒፲፲ + 2𝐶ኻኼኻኼ𝑒፱፲ .

(B.36)

These relations must satisfy the conditions (B.35), which results in symmetry in the coefficients 𝐶።፣፤፥:

𝐶ኻኻኼኼ = 𝐶ኼኼኻኻ
𝐶ኻኻኻኼ = 𝐶ኻኼኻኻ
𝐶ኼኼኻኼ = 𝐶ኻኼኼኼ.

(B.37)

Note that the incremental-stress components 𝑠።፣ are also linear related to the strains. When sub-
stituting relations (B.32) into expressions (B.36), the stress components 𝑠።፣ can be expressed in terms
of the coefficients 𝐶።፣፤፥:

𝑠ኻኻ = 𝐶ኻኻኻኻ𝑒፱፱ + (𝐶ኻኻኼኼ − 𝑆ኻኻ)𝑒፲፲ + (2𝐶ኻኻኻኼ + 𝑆ኻኼ)𝑒፱፲
𝑠ኼኼ = (𝐶ኼኼኻኻ − 𝑆ኼኼ)𝑒፱፱ + 𝐶ኼኼኼኼ𝑒፲፲ + (2𝐶ኼኼኻኼ + 𝑆ኻኼ)𝑒፱፲
𝑠ኻኼ = (𝐶ኻኼኻኻ −

ኻ
ኼ𝑆ኻኼ)𝑒፱፱ + (𝐶ኻኼኼኼ −

ኻ
ኼ𝑆ኻኼ)𝑒፲፲ + (2𝐶ኻኼኻኼ +

ኻ
ኼ𝑆ኻኻ +

ኻ
ኼ𝑆ኼኼ)𝑒፱፲ .

(B.38)

When comparing expressions (3.13) and (B.38), a relation between the the elastic coefficients 𝐵።፣፤፥
and the initial stress components 𝑆።፣ can be found:

𝐵ኻኻኻኻ = 𝐶ኻኻኻኻ 𝐵ኻኻኼኼ = 𝐶ኻኻኼኼ − 𝑆ኻኻ 𝐵ኻኻኻኼ = 𝐶ኻኻኻኼ +
ኻ
ኼ𝑆ኻኼ

𝐵ኼኼኻኻ = 𝐶ኼኼኻኻ − 𝑆ኼኼ 𝐵ኼኼኼኼ = 𝐶ኼኼኼኼ 𝐵ኼኼኻኼ = 𝐶ኼኼኻኼ +
ኻ
ኼ𝑆ኻኼ

𝐵ኻኼኻኻ = 𝐶ኻኼኻኻ −
ኻ
ኼ𝑆ኻኼ 𝐵ኻኼኼኼ = 𝐶ኻኼኼኼ −

ኻ
ኼ𝑆ኻኼ 𝐵ኻኼኻኼ = 𝐶ኻኼኻኼ +

ኻ
ኾ𝑆ኻኻ +

ኻ
ኾ𝑆ኼኼ.

(B.39)

Upon substituting the symmetry relations (B.37), expression (B.39) can be simplified to:

𝐵ኻኻኼኼ + 𝑆ኻኻ = 𝐵ኼኼኻኻ + 𝑆ኼኼ
𝐵ኻኻኻኼ −

ኻ
ኼ𝑆ኻኼ = 𝐵ኻኼኻኻ +

ኻ
ኼ𝑆ኻኼ

𝐵ኼኼኻኼ −
ኻ
ኼ𝑆ኻኼ = 𝐵ኻኼኼኼ +

ኻ
ኼ𝑆ኻኼ.

(3.14)

B.2.2. Wave equation
For the purpose of expanding the theory to the third dimension, it is convenient to make use of the
index notation. Conform this notation system, the indices abide to the following:

𝑖, 𝑗, 𝑘, 𝑙 ∈ {1, 2, 3}. (3.15)

The dynamic-equilibrium conditions (3.12) can then be simplified to [5]:

𝜕𝑠።፣
𝜕𝑎፣

+ 𝜌ፚΔ𝑋። − 𝜌ፚ𝜔።፤𝑋፤(𝑥፥) − 𝜌ፚ𝑒𝑋።(𝑥፥) + 𝑆፣፤
𝜕𝜔።፤
𝜕𝑎፣

+ 𝑆።፤
𝜕𝜔፣፤
𝜕𝑎፣

− 𝑒፣፤
𝜕𝑆።፤
𝜕𝑎፣

= 𝜌ፚ
𝜕ኼ𝑢።
𝜕𝑡ኼ , (3.16)

where 𝑒 = 𝑒፱፱ + 𝑒፲፲ + 𝑒፳፳ denotes the volumetric strain. The strain components and the rotations are
defined as:

𝑒።፣ =
1
2(
𝜕𝑢።
𝜕𝑎፣

+
𝜕𝑢፣
𝜕𝑎።

)

𝜔።፣ =
1
2(
𝜕𝑢።
𝜕𝑎፣

−
𝜕𝑢፣
𝜕𝑎።

),
(3.17)

respectively, where the initial coordinates and the displacements are denoted with:
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𝑎። = (𝑎ኻ, 𝑎ኼ, 𝑎ኽ) = (𝑎, 𝑏, 𝑐)
𝑢። = (𝑢ኻ, 𝑢ኼ, 𝑢ኽ) = (𝑢, 𝑣, 𝑤),

(3.18)

respectively. From the above it follows that the rotation angles 𝜔።፣ are anti-symmetric. Their notation
can be simplified by specifying the axis of rotation:

𝜔ኻኻ = 1 𝜔ኻኼ = −𝜔፳ 𝜔ኻኽ = 𝜔፲
𝜔ኼኻ = 𝜔፳ 𝜔ኼኼ = 1 𝜔ኼኽ = −𝜔፱
𝜔ኽኻ = −𝜔፲ 𝜔ኽኼ = 𝜔፱ 𝜔ኽኽ = 1.

(3.19)

The quantity Δ𝑋። denotes the increment in mass force per unit mass from the initial location to the
displaced location and is defined as:

Δ𝑋። = 𝑢፣
𝜕𝑋።(𝑎፥)
𝜕𝑎፣

, (3.18)

where 𝑋።(𝑎፥) denotes the initial mass force. The incremental-stress components 𝑠።፣ can be rewritten
as:

𝑠።፣ = 𝑍።፣፤፥𝑒፤፥ − 𝑆።፣𝑒. (3.21)

The fourth-order tensor 𝑍።፣፤፥ is defined as:

𝑍።፣፤፥ = 𝐵።፣፤፥ + 𝑆።፣𝛿፤፥ . (3.22)

where 𝛿፤፥ denotes the Kronecker delta. The relations (3.14) then become:

𝐵።፣፤፥ + 𝑆።፣𝛿፤፥ = 𝐵፤፥።፣ + 𝑆፤፥𝛿።፣ . (3.23)

By setting the conditions for the initial-stress components, it is possible to examine the correspond-
ing behaviour of elastic waves. This can be done by solving the dynamic-equilibrium relations (3.16).
In order to study the influence of the initial-stress components on the wave velocity, a stressed cube is
considered. A uniform initial-stress state in the principal directions along the 𝑥, 𝑦, 𝑧 axes is assumed .
This results in the spatially independent initial-stress components which are depicted in Figure B.4.

𝑥
𝑦

𝑧

𝑆ኻኻ

𝑆ኼኼ
𝑆ኽኽ

Figure B.4: Initial tensile stresses acting on a cube, including the assumed sign conventions.
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Since the stresses are orientated along the three principal axes it follows from relations (3.1) that the
mass forces 𝑋።(𝑎፥) should be zero. Relation (3.16) then yields the following three dynamic-equilibrium
conditions:

𝜕𝑠ኻኻ
𝜕𝑥 + 𝜕𝑠ኻኼ𝜕𝑦 + 𝜕𝑠ኻኽ𝜕𝑧 + (𝑆ኻኻ − 𝑆ኼኼ)

𝜕𝜔፳
𝜕𝑦 + (𝑆ኽኽ − 𝑆ኻኻ)

𝜕𝜔፲
𝜕𝑧 = 𝜌ፚ

𝜕ኼ𝑢
𝜕𝑡ኼ

𝜕𝑠ኻኼ
𝜕𝑥 + 𝜕𝑠ኼኼ𝜕𝑦 + 𝜕𝑠ኼኽ𝜕𝑧 + (𝑆ኻኻ − 𝑆ኼኼ)

𝜕𝜔፳
𝜕𝑥 + (𝑆ኼኼ − 𝑆ኽኽ)

𝜕𝜔፱
𝜕𝑧 = 𝜌ፚ

𝜕ኼ𝑣
𝜕𝑡ኼ

𝜕𝑠ኻኽ
𝜕𝑥 + 𝜕𝑠ኼኽ𝜕𝑦 + 𝜕𝑠ኽኽ𝜕𝑧 + (𝑆ኽኽ − 𝑆ኻኻ)

𝜕𝜔፲
𝜕𝑥 + (𝑆ኼኼ − 𝑆ኽኽ)

𝜕𝜔፱
𝜕𝑦 = 𝜌ፚ

𝜕ኼ𝑤
𝜕𝑡ኼ .

(3.24)

For the first equation, 𝑖 = 1, the incremental-stress components 𝑠ኻ፣ can be elaborated with relation
(3.21):

𝑠ኻኻ = 𝑍ኻኻኻኻ𝑒፱፱ + 𝑍ኻኻኼኼ𝑒፲፲ + 𝑍ኻኻኽኽ𝑒፳፳ + 2𝑍ኻኻኻኼ𝑒፱፲ + 2𝑍ኻኻኻኽ𝑒፱፳ + 2𝑍ኻኻኼኽ𝑒፲፳ − 𝑆ኻኻ𝑒
𝑠ኻኼ = 𝑍ኻኼኻኻ𝑒፱፱ + 𝑍ኻኼኼኼ𝑒፲፲ + 𝑍ኻኼኽኽ𝑒፳፳ + 2𝑍ኻኼኻኼ𝑒፱፲ + 2𝑍ኻኼኻኽ𝑒፱፳ + 2𝑍ኻኼኼኽ𝑒፲፳
𝑠ኻኽ = 𝑍ኻኽኻኻ𝑒፱፱ + 𝑍ኻኽኼኼ𝑒፲፲ + 𝑍ኻኽኽኽ𝑒፳፳ + 2𝑍ኻኽኻኼ𝑒፱፲ + 2𝑍ኻኽኻኽ𝑒፱፳ + 2𝑍ኻኽኼኽ𝑒፲፳ .

(B.40)

After the substituting the definition of the first-order strain components 𝑒።፣, the derivatives of the stress
components are of the form:

𝜕𝑠ኻኻ
𝜕𝑥 = (𝑍ኻኻኻኻ − 𝑆ኻኻ)

𝜕ኼ𝑢
𝜕𝑥ኼ + (𝑍ኻኻኼኼ − 𝑆ኻኻ)

𝜕ኼ𝑣
𝜕𝑥𝜕𝑦 + (𝑍ኻኻኽኽ − 𝑆ኻኻ)

𝜕ኼ𝑤
𝜕𝑥𝜕𝑧

+ 𝑍ኻኻኻኼ(
𝜕ኼ𝑣
𝜕𝑥ኼ +

𝜕ኼ𝑢
𝜕𝑥𝜕𝑦) + 𝑍ኻኻኻኽ(

𝜕ኼ𝑤
𝜕𝑥ኼ +

𝜕ኼ𝑢
𝜕𝑥𝜕𝑧) + 𝑍ኻኻኼኽ(

𝜕ኼ𝑤
𝜕𝑥𝜕𝑦 +

𝜕ኼ𝑣
𝜕𝑥𝜕𝑧). (B.41)

The derivatives of the other stress components can be elaborated in a similar manner. The set of wave
equations is obtained by substituting the spatial derivatives of the stress components together with the
definition of the rotation angles 𝜔።፣ into relation (3.24).

The shape of this set of wave equations is depending on the type of waves which are being assumed.
The wave forms which have been assumed for each wave equation are displayed in Figure B.5.

𝑧

𝑦
𝑥 𝑢(𝑥, 𝑡)

𝑧

𝑦
𝑥 𝑣(𝑥, 𝑡)

𝑧

𝑦
𝑥 𝑤(𝑥, 𝑡)

Figure B.5: Graphical representation of the assumed wave forms for each wave equation.

When considering these solutions, the set of wave equations eventually becomes:

𝜌ፚ
𝜕ኼ𝑢
𝜕𝑡ኼ − (𝑍ኻኻኻኻ − 𝑆ኻኻ)

𝜕ኼ𝑢
𝜕𝑥ኼ = 0

𝜌ፚ
𝜕ኼ𝑣
𝜕𝑡ኼ − (𝑍ኻኼኻኼ +

ኻ
ኼ𝑆ኻኻ −

ኻ
ኼ𝑆ኼኼ)

𝜕ኼ𝑣
𝜕𝑥ኼ = 0

𝜌ፚ
𝜕ኼ𝑤
𝜕𝑡ኼ − (𝑍ኻኽኻኽ +

ኻ
ኼ𝑆ኻኻ −

ኻ
ኼ𝑆ኽኽ)

𝜕ኼ𝑤
𝜕𝑥ኼ = 0.

(3.25)
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B.2.3. Wave velocity
The expressions of the wave velocities, expressed in terms of the initial-stress components, are ob-
tained by dividing both sides of the three wave equations from relation (3.25) by the initial mass density
𝜌ፚ:

𝜕ኼ𝑢
𝜕𝑡ኼ − 𝑐

ኼ
፱፱

𝜕ኼ𝑢
𝜕𝑥ኼ = 0

𝜕ኼ𝑣
𝜕𝑡ኼ − 𝑐

ኼ
፱፲

𝜕ኼ𝑣
𝜕𝑥ኼ = 0

𝜕ኼ𝑤
𝜕𝑡ኼ − 𝑐

ኼ
፱፳

𝜕ኼ𝑤
𝜕𝑥ኼ = 0,

(3.26)

where 𝑐፱፱ , 𝑐፱፲ and 𝑐፱፳ denote the wave velocities of waves propagating in the 𝑥-direction while po-
larising in the 𝑥, 𝑦 and 𝑧-direction, respectively. By using relation (3.22), these wave velocities of the
stressed medium can be expanded to:

𝑐 ፒᎳᎳ፱፱ = √𝐵ኻኻኻኻ + 𝑆ኻኻ − 𝑆ኻኻ𝜌ፚ

𝑐 ፒᎳᎳ;ፒᎴᎴ፱፲ = √
𝐵ኻኼኻኼ +

ኻ
ኼ𝑆ኻኻ −

ኻ
ኼ𝑆ኼኼ

𝜌ፚ

𝑐 ፒᎳᎳ;ፒᎵᎵ፱፳ = √
𝐵ኻኽኻኽ +

ኻ
ኼ𝑆ኻኻ −

ኻ
ኼ𝑆ኽኽ

𝜌ፚ
.

(B.42)

These expressions can be further elaborated by introducing the material coefficient matrix 𝐵𝐵𝐵. For an
isotropic material the following holds:

𝐵𝐵𝐵 =
⎛
⎜
⎜

⎝

𝐵ኻኻኻኻ 𝐵ኻኻኼኼ 𝐵ኻኻኽኽ 𝐵ኻኻኻኼ 𝐵ኻኻኼኽ 𝐵ኻኻኻኽ
𝐵ኼኼኻኻ 𝐵ኼኼኼኼ 𝐵ኼኼኽኽ 𝐵ኼኼኻኼ 𝐵ኼኼኼኽ 𝐵ኼኼኻኽ
𝐵ኽኽኻኻ 𝐵ኽኽኼኼ 𝐵ኽኽኽኽ 𝐵ኽኽኻኼ 𝐵ኽኽኼኽ 𝐵ኽኽኻኽ
𝐵ኻኼኻኻ 𝐵ኻኼኼኼ 𝐵ኻኼኽኽ 𝐵ኻኼኻኼ 𝐵ኻኼኼኽ 𝐵ኻኼኻኽ
𝐵ኼኽኻኻ 𝐵ኼኽኼኼ 𝐵ኼኽኽኽ 𝐵ኼኽኻኼ 𝐵ኼኽኼኽ 𝐵ኼኽኻኽ
𝐵ኻኽኻኻ 𝐵ኻኽኼኼ 𝐵ኻኽኽኽ 𝐵ኻኽኻኼ 𝐵ኻኽኼኽ 𝐵ኻኽኻኽ

⎞
⎟
⎟

⎠

=
⎛
⎜
⎜

⎝

𝜆 + 2𝜇 𝜆 𝜆 0 0 0
𝜆 𝜆 + 2𝜇 𝜆 0 0 0
𝜆 𝜆 𝜆 + 2𝜇 0 0 0
0 0 0 𝜇 0 0
0 0 0 0 𝜇 0
0 0 0 0 0 𝜇

⎞
⎟
⎟

⎠

. (B.43)

The coefficients 𝜆 and 𝜇 denote the first and second Lamé parameter, respectively. With this definition
of the material coefficient matrix it is now possible to expand the expressions for the wave velocities to:

𝑐 ፒᎳᎳ፱፱ = √𝜆 + 2𝜇𝜌ፚ

𝑐 ፒᎳᎳ;ፒᎴᎴ፱፲ = √
𝜇 + ኻ

ኼ𝑆ኻኻ −
ኻ
ኼ𝑆ኼኼ

𝜌ፚ

𝑐 ፒᎳᎳ;ፒᎵᎵ፱፳ = √
𝜇 + ኻ

ኼ𝑆ኻኻ −
ኻ
ኼ𝑆ኽኽ

𝜌ፚ
.

(3.27)



C
Wave propagation under a stress state

The occurrence of a stress state influences the wave propagation of a medium. The intermediate steps
needed to derive the formulations which describe these influences are elaborated here.

C.1. Wave propagation in a bending rod
In his work, Biot attempts to demonstrate the influence of the initial-stress state on the elastic wave
propagation within a three-dimensional medium by generalising the model of a bending rod subjected
to an axial force. This section covers the derivation of the equation of motion of this model and the
analysis of the influence of the axial force on the wave propagation inside the bending rod.

C.1.1. Equation of motion
The equation of motion for a rod with a bending stiffness 𝐸𝐼 and a mass density 𝜌 is derived through
the combination of three types of equations. The first type is the kinematic relation which links different
elements of motion of a body to each other. For an infinitesimal bending element the kinematic relation
links the beam deflection 𝑤(𝑥) to the rotation 𝜙(𝑥) and the rotation to the curvature 𝜅(𝑥):

𝜙(𝑥) = −𝜕𝑤(𝑥)𝜕𝑥
𝜅(𝑥) = 𝜕𝜙(𝑥)

𝜕𝑥 ,
(C.1)

respectively. Here, 𝑥 denotes the direction of the axis of the rod and its deflection is in the 𝑧-direction.
The second type is the constitutive relation, linking the internal forces to elements of motion. In a
bending element, the constitutive relation describe the connection between the bending moment 𝑀(𝑥)
and the curvature:

𝑀(𝑥) = 𝐸𝐼𝜅(𝑥). (C.2)

The third type are the equilibrium equations, consisting of the equilibrium of the forces acting on the
infinitesimal bending rod like depicted in Figure C.1.

𝑉(𝑥)

𝑀(𝑥)
𝑉(𝑥 + Δ𝑥)

𝑀(𝑥 + Δ𝑥)

𝑞(𝑥)

Δ𝑥

Figure C.1: Free-body diagram of an infinitesimal bending-rod element.
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The vertical force equilibrium is obtained through Newton’s second law of motion:

− 𝑉(𝑥) + 𝑞Δ𝑥 + 𝑉(𝑥 + Δ𝑥) = 𝜌Δ𝑥𝜕
ኼ𝑤(𝑥, 𝑡)
𝜕𝑡ኼ , (C.3)

which upon division by Δ𝑥 becomes:

𝑉(𝑥 + Δ𝑥) − 𝑉(𝑥)
Δ𝑥 = 𝜌𝜕

ኼ𝑤(𝑥, 𝑡)
𝜕𝑡ኼ − 𝑞. (C.4)

By taking the limit of Δ𝑥 going to zero, the following is obtained:

lim
ጂ፱→ኺ

𝑉(𝑥 + Δ𝑥) − 𝑉(𝑥)
Δ𝑥 = lim

ጂ፱→ኺ
(𝜌𝜕

ኼ𝑤(𝑥, 𝑡)
𝜕𝑡ኼ − 𝑞) , (C.5)

which, upon using the definition of the derivative, can be simplified to:

𝜕𝑉(𝑥)
𝜕𝑥 = 𝜌𝜕

ኼ𝑤(𝑥, 𝑡)
𝜕𝑡ኼ − 𝑞. (C.6)

The moment equilibrium at the location 𝑥 reads:

−𝑀(𝑥) − 𝑉(𝑥)Δ𝑥 + 12𝑞 (Δ𝑥)
ኼ +𝑀(𝑥 + Δ𝑥) = 0. (C.7)

After dividing both sides of the equation by Δ𝑥 and subsequently taking its limit going to zero, the
following is obtained:

𝜕𝑀(𝑥)
𝜕𝑥 = 𝑉(𝑥). (C.8)

By substituting the kinematic relations (C.1) into the constitutive relation (C.2) and the moment
equilibrium (C.8) into the vertical force equilibrium (C.6), two second-order partial differential equations
are obtained:

𝑀(𝑥) = −𝐸𝐼𝜕
ኼ𝑤(𝑥, 𝑡)
𝜕𝑥ኼ

𝜕ኼ𝑀(𝑥)
𝜕𝑥ኼ = 𝜌𝜕

ኼ𝑤(𝑥, 𝑡)
𝜕𝑡ኼ − 𝑞.

(C.9)

These second-order partial differential equations can in turn be substituted in each other to form another
partial differential equation. Upon assuming that the bending rod is prismatic, i.e. 𝐸𝐼 is constant, the
fourth-order partial differential equation reads:

𝐸𝐼𝜕
ኾ𝑤(𝑥, 𝑡)
𝜕𝑥ኾ + 𝜌𝜕

ኼ𝑤(𝑥, 𝑡)
𝜕𝑡ኼ = 𝑞. (C.10)

Figure C.2 displays the free-body diagram of a bending rod subjected to an axial compression 𝑃.

𝑉(𝑥)

𝑀(𝑥)
𝑉(𝑥 + Δ𝑥)

𝑀(𝑥 + Δ𝑥)
𝑃(𝑥) 𝑃(𝑥 + Δ𝑥)

𝑞(𝑥)

Δ𝑥

Figure C.2: Free-body diagram of an infinitesimal bending-rod element subjected to an axial compression.

Due the axial compression, a fourth equation is introduced. This equation is a geometrical relation,
linking the axial force to its horizontal and vertical components. For the vertical component it holds that:
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𝑉፩ = 𝐻
𝜕𝑤(𝑥, 𝑡)
𝜕𝑥 , (C.11)

whereas the horizontal component becomes:

𝐻 = 𝑃 cos𝛼. (C.12)

By assuming that the rotation angle is infinitesimal, i.e. 𝛼 ⋘ 1, it holds, by definition, that cos𝛼 ≈ 1:

𝐻 ≈ 𝑃. (C.13)

Therefore, the vertical component can be expressed as:

𝑉፩ = 𝑃
𝜕𝑤(𝑥, 𝑡)
𝜕𝑥 . (C.14)

The inclusion of the axial compression influences the vertical force equilibrium such that relation
(C.6) becomes:

𝜕𝑉(𝑥)
𝜕𝑥 = 𝜌𝜕

ኼ𝑤(𝑥, 𝑡)
𝜕𝑡ኼ +

𝜕𝑉፩(𝑥)
𝜕𝑥 − 𝑞. (C.15)

Upon substituting the moment equilibrium (C.8) in the new vertical equilibrium (C.15), the fourth-order
partial differential equation reads:

𝐸𝐼𝜕
ኾ𝑤(𝑥, 𝑡)
𝜕𝑥ኾ + 𝑃𝜕

ኼ𝑤(𝑥, 𝑡)
𝜕𝑥ኼ + 𝜌𝜕

ኼ𝑤(𝑥, 𝑡)
𝜕𝑡ኼ = 𝑞. (C.16)

This equation of motion can be used to analyse the wave propagation within a bending rod subjected
to an axial compression.

C.1.2. Influence of the axial load on the frequency
The free oscillations of the bending rod (𝑞 = 0) can be examined by considering the homogeneous
solution,

𝑤(𝑥, 𝑡) = 𝑊(𝑥)𝑒።Ꭶ፭ , (C.17)

which, upon substitution in relation (C.16), yields:

𝐸𝐼 𝜕
ኾ

𝜕𝑥ኾ (𝑊(𝑥)𝑒
።Ꭶ፭) + 𝑃 𝜕

ኼ

𝜕𝑥ኼ (𝑊(𝑥)𝑒
።Ꭶ፭) + 𝜌 𝜕

ኼ

𝜕𝑡ኼ (𝑊(𝑥)𝑒
።Ꭶ፭) = 0. (C.18)

By evaluating the derivatives, the above is further elaborated to:

𝐸𝐼𝑑
ኾ𝑊(𝑥)
𝑑𝑥ኾ + 𝑃𝑑

ኼ𝑊(𝑥)
𝑑𝑥ኼ − 𝜌𝜔ኼ𝑊(𝑥) = 0. (4.4)

The influence of the axial compression on the frequency 𝜔, and thus the wave velocity, can be
observed through the substitution of the fundamental mode shape,

𝑊(𝑥) = 𝐴 sin (𝜋𝑥𝑙 ) , (4.9)

in the fourth-order differential equation (4.4):

𝐸𝐼 𝑑
ኾ

𝑑𝑥ኾ [𝐴 sin (
𝜋𝑥
𝑙 )] + 𝑃

𝑑ኼ
𝑑𝑥ኼ [𝐴 sin (

𝜋𝑥
𝑙 )] − 𝜌𝜔

ኼ𝐴 sin (𝜋𝑥𝑙 ) = 0

𝐴 sin (𝜋𝑥𝑙 ) [𝐸𝐼 (
𝜋
𝑙 )

ኾ
− 𝑃 (𝜋𝑙 )

ኼ
− 𝜌𝜔ኼ] = 0 ⟹ 𝐸𝐼 (𝜋𝑙 )

ኾ
− 𝑃 (𝜋𝑙 )

ኼ
− 𝜌𝜔ኼ = 0.

(C.19)

From this, the frequency can be expressed in terms of the axial compression with:
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𝜔 = √𝐸𝐼𝜌 (
𝜋
𝑙 )

ኾ
− 𝑃𝜌 (

𝜋
𝑙 )

ኼ

= (𝜋𝑙 )
ኼ
√𝐸𝐼
𝜌 − 𝑃𝜌 (

𝑙
𝜋)

ኼ
.

(C.20)

The above can be further elaborated with:

𝜔
2𝜋 =

𝜋
2𝑙ኼ
√𝐸𝐼
𝜌 − 𝑃𝜌 (

𝑙
𝜋)

ኼ

= 𝜋
2𝑙ኼ√

𝐸𝐼
𝜌 (1 −

𝑃
𝐸𝐼
𝑙ኼ
𝜋ኼ),

(C.21)

which can be simplified to:

𝜔
2𝜋 =

𝑐
𝜆 =

𝜋
2𝑙ኼ√

𝐸𝐼
𝜌 (1 −

𝑃
𝑃
), (4.10)

where 𝜆 denotes the wavelength and 𝑃 – the buckling load:

𝑃 =
𝐸𝐼𝜋ኼ
𝑙ኼ . (4.11)

If the axial load is assumed to be a tensile force, 𝑇 = −𝑃, and the bending stiffness of the rod is reduced
to zero, relation (C.21) becomes:

𝜔
2𝜋 =

𝑐
𝜆 =

1
2𝑙√

𝑇
𝜌 , (4.12)

which describes the frequency of a string under tension.

C.2. Acoustoelastic effect
The relation between the wave velocity and the stress applied to a medium is denoted as the acous-
toelastic effect. Based on the expressions found by Hughes and Kelly [13], Lillamand et al. [18] have
derived a linear relation between the relative wave-velocity change of a medium and the stress applied
on this medium. This section covers the derivation of the linearised formulation of the acoustoelastic
effect.

C.2.1. Reformulation of the wave velocity
For the purpose of finding an expression for the acoustoelastic effect, it is convenient to revise the for-
mulation of the wave velocity of a stressed medium. As has been shown in Chapter 2, the longitudinal-
wave velocity of medium which is stressed parallel to its propagation direction is defined as:

𝑐 ᑩᑩ፱፱ = √
𝜆 + 2𝜇 ± 𝜎፱፱3𝐾 [2𝑙 + 𝜆 +

𝜆 + 𝜇
𝜇 (4𝜆 + 4𝑚 + 10𝜇)]

𝜌ፚ
. (2.79)

This expression can be written as a summation of stress-independent part and a stress-dependent
part:

𝑐 ᑩᑩ፱፱ = √𝜆 + 2𝜇𝜌ፚ
±
2𝑙 + 𝜆 + 𝜆 + 𝜇𝜇 (4𝜆 + 4𝑚 + 10𝜇)

3𝐾𝜌ፚ
𝜎፱፱ , (C.22)
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where the stress-independent part denotes the initial wave velocity,

𝑐 ኺ
፱፱ = √𝜆 + 2𝜇𝜌ፚ

. (C.23)

Upon factorising 𝑐 ኺ
፱፱ in relation (C.22), the wave velocity of the stressed medium can be expressed in

terms of the initial wave velocity:

𝑐 ᑩᑩ፱፱ = √𝜆 + 2𝜇𝜌ፚ
√1 ±

2𝑙 + 𝜆 + 𝜆 + 𝜇𝜇 (4𝜆 + 4𝑚 + 10𝜇)

3𝐾(𝜆 + 2𝜇) 𝜎፱፱

= 𝑐 ኺ
፱፱
√1 ±

2𝑙 + 𝜆 + 𝜆 + 𝜇𝜇 (4𝜆 + 4𝑚 + 10𝜇)

3𝐾(𝜆 + 2𝜇) 𝜎፱፱ .

(C.24)

C.2.2. Relative wave-velocity change
When considering the wave velocity as a function of the stress 𝜎፱፱, the expression above can be
approximated within the proximity of a stress with:

𝑐 ᑩᑩ፱፱ (𝜎፱፱) = 𝑐 ᑩᑩ፱፱ (𝑎) + 𝜕𝑐
ᑩᑩ፱፱ (𝑎)
𝜕𝜎፱፱

(𝜎፱፱ − 𝑎). (C.25)

The linearisation at zero stress, i.e. 𝑎 = 0, gives an accurate approximation of the wave velocity
subjected to stresses. Upon substituting expression (C.24) in relation (C.25) and using 𝑎 = 0, the
following is eventually obtained:

𝑐 ᑩᑩ፱፱ ≈ 𝑐 ኺ
፱፱ (1 +

2𝑙 + 𝜆 + 𝜆 + 𝜇𝜇 (4𝜆 + 4𝑚 + 10𝜇)

6𝐾(𝜆 + 2𝜇) 𝜎፱፱). (C.26)

The above can be written in a more general form with the index notation:

𝑐 ᑜᑝ
።፣ = 𝑐 ኺ

።፣ (1 + 𝐴።፣፤፥𝜎፤፥), (4.17)

where the fourth-order tensor 𝐴።፣፤፥ denotes the acoustoelastic constant. This expression can be further
elaborated to:

Δ𝑐።፣ (𝜎፤፥) = 𝐴።፣፤፥𝜎፤፥ , (4.18)

where Δ𝑐።፣ denotes the relative wave-velocity change:

Δ𝑐።፣ =
𝑐 ᑜᑝ
።፣ − 𝑐 ኺ

።፣
𝑐 ኺ
።፣

. (4.19)

By repeating relation (C.26) for other waveforms, the different expressions for the acoustoelastic
constants are determined. These expressions can be assembled in the following matrix:

𝐴𝐴𝐴 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜

⎝

𝐴፱፱፱፱ 𝐴፱፱፲፲ 𝐴፱፱፳፳ 𝐴፱፱፱፲ 𝐴፱፱፱፳ 𝐴፱፱፲፱ 𝐴፱፱፲፳ 𝐴፱፱፳፱ 𝐴፱፱፳፲
𝐴፲፲፱፱ 𝐴፲፲፲፲ 𝐴፲፲፳፳ 𝐴፲፲፱፲ 𝐴፲፲፱፳ 𝐴፲፲፲፱ 𝐴፲፲፲፳ 𝐴፲፲፳፱ 𝐴፲፲፳፲
𝐴፳፳፱፱ 𝐴፳፳፲፲ 𝐴፳፳፳፳ 𝐴፳፳፱፲ 𝐴፳፳፱፳ 𝐴፳፳፲፱ 𝐴፳፳፲፳ 𝐴፳፳፳፱ 𝐴፳፳፳፲
𝐴፱፲፱፱ 𝐴፱፲፲፲ 𝐴፱፲፳፳ 𝐴፱፲፱፲ 𝐴፱፲፱፳ 𝐴፱፲፲፱ 𝐴፱፲፲፳ 𝐴፱፲፳፱ 𝐴፱፲፳፲
𝐴፱፳፱፱ 𝐴፱፳፲፲ 𝐴፱፳፳፳ 𝐴፱፳፱፲ 𝐴፱፳፱፳ 𝐴፱፳፲፱ 𝐴፱፳፲፳ 𝐴፱፳፳፱ 𝐴፱፳፳፲
𝐴፲፱፱፱ 𝐴፲፱፲፲ 𝐴፲፱፳፳ 𝐴፲፱፱፲ 𝐴፲፱፱፳ 𝐴፲፱፲፱ 𝐴፲፱፲፳ 𝐴፲፱፳፱ 𝐴፲፱፳፲
𝐴፲፳፱፱ 𝐴፲፳፲፲ 𝐴፲፳፳፳ 𝐴፲፳፱፲ 𝐴፲፳፱፳ 𝐴፲፳፲፱ 𝐴፲፳፲፳ 𝐴፲፳፳፱ 𝐴፲፳፳፲
𝐴፳፱፱፱ 𝐴፳፱፲፲ 𝐴፳፱፳፳ 𝐴፳፱፱፲ 𝐴፳፱፱፳ 𝐴፳፱፲፱ 𝐴፳፱፲፳ 𝐴፳፱፳፱ 𝐴፳፱፳፲
𝐴፳፲፱፱ 𝐴፳፲፲፲ 𝐴፳፲፳፳ 𝐴፳፲፱፲ 𝐴፳፲፱፳ 𝐴፳፲፲፱ 𝐴፳፲፲፳ 𝐴፳፲፳፱ 𝐴፳፲፳፲

⎞
⎟
⎟
⎟
⎟
⎟
⎟

⎠

. (4.20)
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The entries of this matrix are defined differently according to the theories of both Murnaghan and Biot.
For Murnaghan’s theory, a total of five different combinations of stress orientation and wave orientation
is found, resulting in five different expressions for the acoustoelastic constants:

𝐴ፌ፮፫፧ፚ፠፡ፚ፧𝐴ፌ፮፫፧ፚ፠፡ፚ፧𝐴ፌ፮፫፧ፚ፠፡ፚ፧ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜

⎝

Υ Φ Φ
Φ Υ Φ
Φ Φ Υ
Χ Ψ Ω
Χ Ω Ψ
Ψ Χ Ω
Ω Χ Ψ
Ψ Ψ Χ
Ω Ψ Χ

⎞
⎟
⎟
⎟
⎟
⎟
⎟

⎠

, (4.21)

where the acoustoelastic constants are defined as:

Υ =
2𝑙 + 𝜆 + 𝜆 + 𝜇𝜇 (4𝜆 + 4𝑚 + 10𝜇)

6𝐾(𝜆 + 2𝜇)

Φ =
2𝑙 + 𝜆 − 𝜆

2𝜇 (4𝜆 + 4𝑚 + 10𝜇)

6𝐾(𝜆 + 2𝜇)

Χ =
𝑚 + 𝜆𝑛4𝜇 + 4𝜆 + 4𝜇

6𝐾𝜇

Ψ =
𝑚 + 𝜆𝑛4𝜇 + 𝜆 + 2𝜇

6𝐾𝜇

Ω =
𝜆 +𝑚 − 𝜆 + 𝜇𝜇 ( 3𝜇𝜆

𝜆 + 2𝜇 +
1
2𝑛)

6𝐾𝜇 .

(4.22)

For Biot’s theory, the matrix is defined as:

𝐴ፁ።፨፭𝐴ፁ።፨፭𝐴ፁ።፨፭ =
1
4𝜇

⎛
⎜
⎜
⎜
⎜
⎜
⎜

⎝

0 0 0
0 0 0
0 0 0
1 −1 0
1 0 −1
−1 1 0
0 1 −1
−1 −1 1
0 −1 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟

⎠

. (4.23)



D
Preliminary experiments

For the purpose of obtaining reliable results, it is important to perform several preliminary experiments.
During these experiments, the material parameters of the test specimens are validated. In order for the
specimens to be representative, their initial wave velocity as well as their elastic parameters should be
within the range of the theoretical estimated values. In addition, the proper working of the ultrasonic
transducers must be verified. This has been done by searching for the centre frequency and ensuring
that the emitted wave signal has a significant amplitude.

D.1. Initial wave velocity
For the purpose of verifying the proper working of the ultrasonic transducers, some elementary mea-
surements have been performed. During these measurements, the initial wave velocity of the speci-
mens were estimated through handpicking with the ToF method. Here, a distinction has been made
between the large transducers and the small transducers. For these measurements S-wave trans-
ducers have been used. The round shaped housing of these transducers, however, create boundary
effects which result in additional P-wave motion. This enables the identification of both the P -and
S-wave arrivals of the specimens.

D.1.1. Large transducers
The large transducers have been applied on the flat sides of the cylindrical specimens. Subsequently
a signal is emitted along the height of the specimens. Table D.1 displays a summary of the specimens
which have been used for these measurements.
Table D.1: Test specimens used for the acoustic measurements and their respective dimensions.

Specimen Type Height ℎ [mm] Diameter 𝑑 [mm] Mass 𝑚 [g]

CP-1 Cement paste 71.78 32.66 123.05
CC-2 Concrete 70.53 29.82 111.92
CP-3 Cement paste 70.02 32.20 116.17
CC-4 Concrete 64.48 29.79 101.80

The P -and S-wave arrivals of these specimens have then been identified with the ToF method, like
depicted in Figure D.1. The arrival of the P-wave, 𝑡ፏ, is indicated by the first break of the wave whereas
the arrival of the S-wave, 𝑡ፒ, is indicated by the abrupt increase in amplitude. The initial P -and S-wave
velocities are then determined from these identified arrival times with

𝑐ፏ =
ℎ
𝑡ፏ

𝑐ፒ =
ℎ
𝑡ፒ
,

(D.1)

respectively.
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Figure D.1: Identification of the arrival times with the ToF method. Signals emitted along the axial direction by the large trans-
ducers at a frequency of 1 MHz. (a) Specimen CP-1. (b) Specimen CC-2. (c) Specimen CP-3. (d) Specimen CC-4.

The identified arrival times and the corresponding wave velocities following from the large trans-
ducers are displayed in Table D.2.

Table D.2: Identified arrival times and initial wave velocities of the specimens along the axial direction.

Specimen Arrival 𝑡ፏ [µs] Arrival 𝑡ፒ [µs] P-wave velocity 𝑐ፏ [m/s] S-wave velocity 𝑐ፒ [m/s]
CP-1 17.50 29.60 4102 2425
CC-2 15.70 26.40 4492 2672
CP-3 17.20 30.00 4071 2334
CC-4 14.00 24.90 4606 2590

Theoretically estimated values 4000 2500

From the data in Table D.2 it can be concluded that the initial wave velocities of the specimens are
within the proximity of the expected theoretical values. Furthermore, it can be observed that the initial
wave velocities of the concrete specimens are larger than those of the cement-paste specimens.
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D.1.2. Small transducers
Similar to the large transducers, the small transducers have been applied at the flat sides of the speci-
mens. In addition, they have also been applied on the curved sides of the cylindrical specimens. The
latter enables the measurement of the initial wave velocity along the radial direction of the specimens.
For these measurements, wave signals have been emitted along both height and the diameter of spec-
imen CP-1. Figure D.2 displays the time signatures and the identification of the arrivals in the axial and
radial direction, respectively.

0 10 20 30 40 50
−100

−50

0

50

100

Time [µs]

A
m

p
lit

u
d

e
 [

m
V

]

P-
w
av
e
ar
riv
al

S-
w
av
e
ar
riv
al

(a)

0 5 10 15 20 25
−400

−300

−200

−100

0

100

200

300

400

Time [µs]

A
m

p
lit

u
d

e
 [

m
V

]

P-
w
av
e
ar
riv
al

S-
w
av
e
ar
riv
al

(b)

Figure D.2: Identification of the arrival times with the ToF method. Signals emitted through specimen CP-1 by the small trans-
ducers at a frequency of 400 kHz. (a) Signal along the axial direction. (b) Signal along the radial direction.

The identified arrival times and the corresponding wave velocities following from the small trans-
ducers are displayed in Table D.3.

Table D.3: Identified arrival times and initial wave velocities of signals emitted through specimen CP-1 by the small transducers.

Propagation direction Arrival 𝑡ፏ [µs] Arrival 𝑡ፒ [µs] P-wave velocity 𝑐ፏ [m/s] S-wave velocity 𝑐ፒ [m/s]
Axial 17.50 33.22 4102 2161
Radial 8.00 12.20 4083 2677

Theoretically estimated values 4000 2500

From the amplitudes of the time signatures in Figure D.2 it can be concluded that the small trans-
ducers function properly. By comparing the identified initial wave velocities of specimen CP-1 (Figures
D.2 and D.3), it is observed that the initial P-wave velocities are coherent. The initial S-wave velocities,
however, show less coherence. This can be attributed due to the uncertain S-wave arrival, resulting
from the interference of P -and PS-wave reflections.

D.2. Uniaxial compression
The second-order elastic parameters are determined through the cyclic uniaxial compression of the
specimens. During this load cycle, the specimens are loaded from 0 to 20 MPa with a partial unloading
to 10 MPa. Following from this uniaxial compression are the stress-strain diagrams, depicted in Figure
D.3. The axial strain is based on the measurement from the vertical LVDT, which includes the defor-
mation of the setup. Therefore, in order to obtain the actual axial strain of the specimen, the data from
the vertical LVDT must be calibrated.
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Figure D.3: Stress-strain diagrams of specimen CP-3 from the uniaxial compression. Data acquired from cyclic loading ranging
from 0 to 20 MPa. (a) Strain measured by the vertical LVDT. (b) Strain measured by the circumferential LVDT.

D.2.1. Calibration
The strain displayed in Figure D.3a contains some deformation following from the setup. In order to
calibrate this data, an aluminum cylinder has been subjected to the same uniaxial compression as the
test specimens. Figure D.4 displays a photo of the aluminum cylinder in the experimental setup as well
as the resulting force-displacement diagram.
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Figure D.4: Uniaxial compression of an aluminum cylinder for the purpose of calibrating the axial deformation measurements;
፡  70.12 mm, ፝  29.84 mm, ፄ  70 GPa. (a) Photo of the calibration setup. (b) Force-displacement graph following from the
uniaxial compression of the aluminum cylinder: second loading branch from 10 MPa to 20 MPa (graph shifted to the origin).
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Since the material parameters of this aluminum cylinder are known, it is possible to determine the
axial deformation of the setup with:

𝑢፬፞፭፮፩ = 𝑢፭፨፭ፚ፥ − 𝑢ፚ፥፮፦።፧፮፦ . (D.2)

Here, the axial deformation of the aluminum, 𝑢ፚ፥፮፦።፧፮፦, is obtained through Hooke’s law:

𝑢ፚ፥፮፦።፧፮፦ =
𝐹ℎ
𝐸𝐴 , (D.3)

where 𝐴 denotes the surface area of the ground plane of the cylinder.

D.2.2. Second-order elastic parameters
The raw data from the vertical LVDT has been calibrated by removing the axial deformation of the
setup. The Young’s moduli of the specimens have then been determined through the tangent to the
stress-strain diagrams, like depicted in Figure D.5.
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Figure D.5: Stress-strain graphs after the calibration: second loading branch from 10 MPa to 20 MPa (graph shifted to the origin).
(a) Specimen CP-1. (b) Specimen CC-2B. (c) Specimen CP-3. (d) Specimen CC-4B.
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The axial strain and radial strain of the specimens are then used to determine Poisson’s ratio of the
specimens:

𝜈 = −𝜖፫ፚ፝።ፚ፥𝜖ፚ፱።ፚ፥
. (D.4)

Figure D.6 displays the development of Poisson’s ratio as the compression on the test specimens
increases.
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Figure D.6: Development of Poisson’s ratio as compression increases: second loading branch from 10 MPa to 20 MPa (graph
shifted to the origin). (a) Specimen CP-1. (b) Specimen CC-2B. (c) Specimen CP-3. (d) Specimen CC-4B.

The strange scatter witnessed in Figure D.6a is caused by the poor attachment of the circumferential
LVDT during the uniaxial compression of specimen CP-1. In spite of this inaccurate data, it can be
observed that the outliers are approximately centered around 𝜈 = 0.20. The large value for Poisson’s
ratio of specimen CC-2B could be attributed to a local inhomogeneity of the specimen which was close
to the circumferential LVDT.
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Both the Young’s moduli and Poisson’s ratio of the final test specimens have been summarised in
Table D.4.

Table D.4: Overview of the final test specimens and their second-order elastic parameters.

Specimen Young’s modulus 𝐸 [GPa] Poisson’s ratio 𝜈 [−] 𝜆 [GPa] 𝜇 [GPa]
CP-1 20.30 0.20 5.64 8.46
CC-2B 37.25 0.35 32.19 13.80
CP-3 25.80 0.21 7.72 10.66
CC-4B 51.10 0.28 25.40 19.96
Expected values 20-40 0.20





E
MATLAB script: Stretching Technique

E.1. Stretching code
1 f unc t i on [EPS,CC,COEF_CORR,ERROR]= s t re tch ing_code ( data , re f , t ime , eps i lon ,

time_window ,DTAU,message )
2

3 % Inpu t parameters :
4

5 % data : Mat r i x o f n data s igna l s o f N samples [N x n ]
6 % re f : Reference s i gna l [N x 1 ]
7 % time : Time ax is [N x 1]
8 % eps i lon : Range of s t r e t c h i ng [ min : step :max ]
9 % time_window : Time window boundaries i n samples ( po s i t i v e i n t ege r )
10 % DTAU : Zero lag t ime ( o r i g i n o f s t r e t c h i ng )
11

12 % Output parameters :
13

14 % EPS : S t re t ch ing f a c t o r s [ n x 1 ]
15 % CC : Maximum cross−c o r r e l a t i o n c o e f f i c i e n t s [ n x 1 ]
16 % COEF_CORR : Cross−c o r r e l a t i o n c o e f f i c i e n t s [N x n ]
17 % ERROR : Er ro r
18

19 %% Code
20

21 ERROR=0;
22 i f e x i s t ( ’ data ’ , ’ var ’ ) ==0; d isp ( ’ e r r o r : no i npu t data ’ ) ;CC=0;EPS=0;ERROR

=1; re t u rn ; end
23 i f e x i s t ( ’ r e f ’ , ’ var ’ ) ==0; r e f =mean( data , 2 ) ; end
24 i f e x i s t ( ’message ’ , ’ var ’ ) ==0;message= ’?−? ’ ; end
25 i f e x i s t ( ’DTAU ’ , ’ var ’ ) ==0;DTAU=0; d isp ( ’ defaust re tch ing_LCPCl t DTAU=0 ’ ) ; end
26 %i f e x i s t ( ’ fe ’ , ’ var ’ ) ==0; fe =1; d isp ( ’ d e f au l t sampling f req=1 Hz ’ ) ; end
27 i f e x i s t ( ’ time_window ’ , ’ var ’ ) ==0; time_window = [1 : s ize ( data , 1 ) ] ; d isp ( ’

d e f au l t t ime window = f u l l record ’ ) ; end
28 i f e x i s t ( ’ eps i l on ’ , ’ var ’ ) ==0; eps i l on =[−1e−2:1e−4:1e−2] ; d isp ( ’ d e f au l t

eps i l on range=[−10^{−2} 10^{−2}] w i th 10^{−4} step ’ ) ; end
29

30 CC=zeros ( s ize ( data , 2 ) ,1 ) ;
31 EPS=zeros ( s ize ( data , 2 ) ,1 ) ;
32

33 s t r i n g_d i sp =[ ’ processing s t rech ’ message ] ;
34
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35 COEF_CORR=zeros ( leng th ( eps i l on ) , s i ze ( data , 2 ) ) ;
36 f o r EPS_index=1: leng th ( eps i l on )
37 t ime2 =( t ime+DTAU) *(1+ eps i l on ( EPS_index ) ) ; % Stretched t ime ax is
38 synt= i n t e rp1 ( time , re f , t ime2 , ’ sp l i ne ’ ) ;
39

40 f o r DATE_index=1: s ize ( data , 2 )
41 temp=cor rcoe f ( synt ( time_window ) , data ( time_window , DATE_index ) ) ;
42 COEF_CORR(EPS_index , DATE_index )=temp (2 ) ;
43 end
44

45 end
46 COEF_CORR;
47 [CC b ]=max(COEF_CORR) ;CC=CC’ ;
48 EPS=eps i l on ( b ) ’ ;

E.2. Cross-correlation
1 %% Sc r i p t f o r per forming cross−c o r r e l a t i o n to determine the r e l a t i v e wave

v e l o c i t y change
2 %
3 % Uses the f o l l ow i ng f unc t i on :
4 %
5 % data_raw .m : Loads the n data s igna l s o f N samples [ n x N]
6 % stre tch ing_code .m : Ca lcu la tes the cross−c o r r e l a t i o n o f re ference

and data
7

8 %% Load the data
9

10 % Define the inpu t parameters o f the data_raw .m func t i on
11

12 t e s t = ’ f i n ’ ;
13 t ransducer = ’ smal l ’ ;
14 o r i e n t a t i o n = ’ a x i a l ’ ;
15 wavetype = ’S ’ ;
16 f requency = ’ 400kHz ’ ;
17 sample = ’ cement paste 3 ’ ;
18

19 % Run the data_raw .m func t i ons
20

21 [ n , name, TDM_raw, E_raw , TA, FA, df , sigma ] = data_raw ( tes t , t ransducer ,
o r i en t a t i o n , wavetype , frequency , sample ) ;

22

23 % Define the inpu t parameters o f the s t re tch ing_code .m func t i on
24

25 data = TDM_raw . ’ ; % Transposes the data s igna l s i n t o
column vec to rs

26 r e f = data ( 1 , : ) ; % The re ference s i gna l i s the f i r s t
t race o f the data

27 t ime = TA . ’ ; % Transposes the t ime ax is i n t o a
column vec to r

28 eps i l on = [−10e−2:1e−4:10e−2] ; % Range of s t r e t c h i ng from −10 to 10%
29 t _ s t a r t = 25; % S ta r t o f t ime window at 25

microseconds
30 t_end = 40; % End of t ime window at 40

microseconds
31

32 t1 = f i n d (TAc>= t _ s t a r t , 1 , ’ f i r s t ’ ) ; % Datapoint o f f i r s t boundary
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33 t2 = f i n d (TAc>=t_end ,1 , ’ f i r s t ’ ) ; % Datapoint o f l a s t boundary
34 time_window = t1 : t2 ; % Time window i n t e r v a l i n da tapo in ts
35 DTAU = 0; % Or ig in o f the s t r e t c h i ng / s t r ess i ng
36

37 % Run the s t re tch ing_code .m func t i on
38

39 [EPS,CC,COEF_CORR,ERROR]= s t re tch ing_code ( data , re f , t ime , eps i lon , time_window
,DTAU) ;
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