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Denoising controlled-source electromagnetic data using least-squares
inversion

Yang Yang1, Diquan Li2, Tiegang Tong2, Dong Zhang3, Yatong Zhou4, and Yangkang Chen5

ABSTRACT

Strong noise is one of the toughest problems in the con-
trolled-source electromagnetic (CSEM) method, which highly
affects the quality of recorded data. The three main types of
noise existing in CSEM data are periodic noise, Gaussian
white noise, and nonperiodic noise, among which the nonperi-
odic noise is thought to be the most difficult to remove. We
have developed a novel and effective method for removing
such nonperiodic noise by formulating an inverse problem
that is based on inverse discrete Fourier transform and several
time windows in which only Gaussian white noise exists.
These critical locations, which we call reconstruction loca-
tions, can be found by taking advantage of the continuous
wavelet transform (CWT) and the temporal derivative of
the scalogram generated by CWT. The coefficients of the non-
periodic noise are first estimated using the new least-squares
method, and then they are subtracted from the coefficients of
the raw data to produce denoised data. Together with the non-
periodic noise, we also remove Gaussian noise using the pro-
posed method. We validate the methodology using real-world
CSEM data.

INTRODUCTION

The controlled-source electromagnetic (CSEM) method is an im-
portant exploration technique for engineering and environmental geo-
physics (Goldstein and Strangway, 1975), and it is also supplemented
with seismic methods in the field of oil and gas exploration (Seigel,

1959; Goldstein and Strangway, 1975; He, 2010; Ziolkowski and
Wright, 2012). By applying inversion algorithms on these CSEM data,
we can infer geologic structures (Goldstein and Strangway, 1975;
Strang, 2007). For all electromagnetic (EM) exploration methods,
denoising the recorded data is always a challenging problem (Streich
et al., 2013; Yang, 2016). There exist many kinds of electromagnetic
noise, some of which originate from cultural sources and others are
from natural sources (Reninger et al., 2011). Especially for land-based
CSEM, strong noise from industrial, communication, mining, and
civil sources can severely pollute the CSEM data (Tang et al., 2012).
Considerable research has been carried out focusing on attenuat-

ing noise in EM data. Strack et al. (1989) propose a framework for
processing the long-offset transient electromagnetic method (TEM)
(LOTEM) data with high cultural noise levels. A robust least-
squares stacking method was proposed by Streich et al. (2013)
to process CSEM data. Another method based on an equivalent
source processing procedure was used to denoise the static shift
noise for land-based frequency-domain CSEM data (Maclennan
and Li, 2013). A discrete wavelet transform method was used to
denoise CSEM data (Willen, 2010). Decomposing signal by singu-
lar-value decomposition has been used in airborne TEM data process-
ing (Reninger et al., 2011). Chen et al. (2012) propose empirical-
mode decomposition (Huang et al., 1998; Chen and Ma, 2014; Chen,
2016) based on a denoising algorithm for marine magnetotelluric data
and obtain acceptable results. Denoising methods that are used in
seismic data can also be applied in processing CSEM data, such
as some decomposition methods (Chen, 2017, 2018). All the meth-
ods mentioned above could achieve good results in some cases. How-
ever, when the noise becomes more complicated, it is hard to get a
satisfactory result using only one method.
Also, because most geophysical signals are nonstationary, there

will be some errors when applying traditional denoising methods. In
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addition, many filters require a convolution step in the time domain,
which corresponds to a multiplication step in the frequency domain
(Strang, 2007). The filtering operator can cause different impacts on
different frequencies, but it is difficult to distinguish between two
different components in a single frequency. When attenuating noise
in CSEM data, we aim to derive the true coefficients at those CSEM
frequencies, which are usually complex valued. Because of the spe-
cial features of CSEM data, most of the seismic denoising methods
tend to cause more or less damage to useful CSEM signals.
Under such circumstances, we develop an effective denoisingmeth-

odology designed specifically for CSEM in this paper. As is known,
Fourier basis is the best for representing periodic signals (Bracewell,
2000). The useful signal is transmitted by a controlled (periodic)
source; hence, the spectrum of it (including main frequencies and har-
monics) is a set of discrete, finite spikes in the frequency domain
(Welch, 1967; Bracewell, 2000). The spectrum of noise is continuous,
which means that the energy of the noise is distributed everywhere in
the frequency domain. Besides, we have a direct measurement of
noise data for a wide frequency spectrum, i.e., for all frequencies ex-
cept for those that contain noise and CSEM signal. In this paper, we
estimate the noise component first and then subtract it from the raw
signal to output the denoised signal component. We formulate an in-
verse problem for reconstructing the noise energy at several frequency

locations where useful energy is located, and we solve it using a least-
squares method. The inverse problem takes advantage of the inverse
discrete Fourier transform (IDFT) and those locations where only
Gaussian noise exists. To accurately find the Gaussian-noise-only lo-
cations, which we call reconstruction locations, we use the locating
properties of the continuous wavelet transform (CWT) and the tem-
poral derivative of the scalogram generated by CWT.
We organize the paper as follows: First, we introduce in detail the

formulation of the inverse problem for inverting the nonperiodic
component (NPC), which can be easily solved by a least-squares
method. Then, we introduce the approach that we used to find the
time domain locations where only Gaussian noise exists using a
benchmark synthetic example that is composed of different types of
noise. Finally, we apply the proposed method to real-world CSEM
data and demonstrate the excellent result we have obtained. Several
key conclusions are drawn at the end of the paper.

METHOD

NPC estimation via least-squares inversion

Signal recorded by CSEM receivers can be divided into two com-
ponents: periodic component (PC) and NPC. Figure 1 shows a clear

Figure 1. Classifications of raw CSEM data with different components.
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classification of signal components in the CSEM data. NPC includes
nonperiodic noise and Gaussian white noise that are the noise com-
ponents of the CSEM data. PC is composed of useful signal and peri-
odic noise. Periodic noise can be rejected by applying a narrow
(notch) filter that removes a narrow band around those frequencies
of interest. Recorded CSEM data contain periodic noise, Gaussian
white noise, and nonperiodic noise. The nonperiodic noise, however,
is extremely difficult to attenuate because of its highly nonstationary
and unpredictable features. We focus on attenuating nonperiodic
noise in this paper. More specifically, we estimate NPC by construct-
ing an over-determined equation.
The assumption of the proposed method is that PCs and

Gaussian white noise are spreading all over the signal, whereas
the nonperiodic noise is time limited, which indicates that we
can pick some parts of the data that only contain Gaussian
white noise.
The proposed method is based on IDFT:

fðmÞ ¼ 1

N

XN−1

k¼0

FðkÞwkm; m ¼ 0; 1; · · · ; N − 1; (1)

where fðmÞ is the time-domain signal of NPC at mth location,
FðkÞ is the frequency-domain signal of NPC at kth location, N
is the total length of signal, and w ¼ e2πi∕N . The detailed matrix
form of equation 1 can be expressed as

2
666666666666664

fð0Þ
fð1Þ
fð2Þ
..
.

..

.

fðN−2Þ
fðN−1Þ

3
777777777777775

¼ 1

N

2
66666666666666664

1 1 1 ··· ··· ··· 1

1 w1 w2 ··· ··· ··· wN−1

1 w2 w4 ··· ··· ··· w2ðN−1Þ

..

. ..
. ..

.
··· ··· ··· ..

.

..

. ..
. ..

.
··· ··· ··· ..

.

1 wN−2 w2ðN−2Þ ··· ··· ··· wðN−1ÞðN−2Þ

1 wN−1 w2ðN−1Þ ··· ··· ··· wðN−1Þ2

3
77777777777777775

×

2
666666666666664

Fð0Þ
Fð1Þ
Fð2Þ
..
.

..

.

FðN−2Þ
FðN−1Þ

3
777777777777775

: (2)

If there are four desired frequencies in the frequency domain, we
can solve them by choosing any four points with a known value in

the time domain to construct a linear equation. The “desired
frequencies” mean those frequencies that contain noisy CSEM sig-
nal. In equation 3, the red entries are the desired frequencies and the
blue entries are those frequencies contain only noise and no CSEM
signal that is known. The blue entries in the left are the chosen
points in the time domain.

Because there exists Gaussian white noise in the data, more
points in the time domain should be used to construct an over-
determined linear equation to solve the desired frequency com-
ponents.
If we can find certain locations in the time domain where

only Gaussian noise exists, a set of over-determined equations will
be constructed to reconstruct the spectrum of NPC at those CSEM
frequency locations. Note that here NPC includes nonperiodic noise
and Gaussian white noise. Although we only select the locations
containing Gaussian white noise in the time domain, the spectrum
that requires reconstruction is a mixture of nonperiodic noise and
Gaussian white noise.
Assume that there are six time-domain points selected, and there

are four frequency locations. The over-determined linear equations
can then be expressed as

Denoising CSEM data E231
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gðmÞ ¼ 1

N

XN−1

k≠l1;l2;~l1;~l2

FðkÞwkm þ 1

N
ðFðl1Þwl1m

þ Fð~l1Þw~l1m þ Fðl2Þwl2m þ Fð~l2Þw~l2mÞ

gðnÞ ¼ 1

N

XN−1

k≠l1;l2;~l1;~l2

FðkÞwkn þ 1

N
ðFðl1Þwl1n

þ Fð~l1Þw~l1n þ Fðl2Þwl2n þ Fð~l2Þw~l2nÞ

gðpÞ ¼ 1

N

XN−1

k≠l1;l2;~l1;~l2

FðkÞwkp þ 1

N
ðFðl1Þwl1p

þ Fð~l1Þw~l1p þ Fðl2Þwl2p þ Fð~l2Þw~l2pÞ

gðqÞ ¼ 1

N

XN−1

k≠l1;l2;~l1;~l2

FðkÞwkq þ 1

N
ðFðl1Þwl1q

þ Fð~l1Þw~l1q þ Fðl2Þwl2q þ Fð~l2Þw~l2qÞ

gðrÞ ¼ 1

N

XN−1

k≠l1;l2;~l1;~l2

FðkÞwkr þ 1

N
ðFðl1Þwl1r

þ Fð~l1Þw~l1r þ Fðl2Þwl2r þ Fð~l2Þw~l2rÞ

gðtÞ ¼ 1

N

XN−1

k≠l1;l2;~l1;~l2

FðkÞwkt þ 1

N
ðFðl1Þwl1t

þ Fð~l1Þw~l1t þ Fðl2Þwl2t þ Fð~l2Þw~l2tÞ; (4)

where ~l1 ¼ N − l1 and ~l2 ¼ N − l2. Note that Fð1Þ and FðN − 1Þ
are the complex conjugate in equations 1 and 4; thus, there are ac-
tually two frequency components missing in the above equation.
The term gðjÞ; j ¼ m; n; p; q; r; t, in equation 4, denotes the
time-domain signal (i.e., the Gaussian white noise) at different lo-
cations (m; n; p; q; r; t).
Rearranging equation 4, we obtain a clear structure of an inverse

problem:

1

N
ðFðl1Þwl1m þ Fð~l1Þw~l1m þ Fðl2Þwl2m

þ Fð~l2Þw~l2mÞ ¼ −
1

N

XN−1

k≠l1;l2;~l1;~l2

FðkÞwkm þ gðmÞ

1

N
ðFðl1Þwl1n þ Fð~l1Þw~l1n þ Fðl2Þwl2n

þ Fð~l2Þw~l2nÞ ¼ −
1

N

XN−1

k≠l1;l2;~l1;~l2

FðkÞwkn þ gðnÞ

1

N
ðFðl1Þwl1p þ Fð~l1Þw~l1p þ Fðl2Þwl2p

þ Fð~l2Þw~l2pÞ ¼ −
1

N

XN−1

k≠l1;l2;~l1;~l2

FðkÞwkp þ gðpÞ

1

N
ðFðl1Þwl1q þ Fð~l1Þw~l1q þ Fðl2Þwl2q

þ Fð~l2Þw~l2qÞ ¼ −
1

N

XN−1

k≠l1;l2;~l1;~l2

FðkÞwkq þ gðqÞ

1

N
ðFðl1Þwl1r þ Fð~l1Þw~l1r þ Fðl2Þwl2r

þ Fð~l2Þw~l2rÞ ¼ −
1

N

XN−1

k≠l1;l2;~l1;~l2

FðkÞwkr þ gðrÞ

1

N
ðFðl1Þwl1t þ Fð~l1Þw~l1t þ Fðl2Þwl2t

þ Fð~l2Þw~l2tÞ ¼ −
1

N

XN−1

k≠l1;l2;~l1;~l2

FðkÞwkt þ gðtÞ; (5)

which can be written in a matrix vector formulation as

Ax ¼ bþ g: (6)

Here,

A ¼

2
6666664

wl1m w~l1m wl2m w~l2m

wl1n w~l1n wl2n w~l2n

wl1p w~l1p wl2p w~l2p

wl1q w~l1q wl2q w~l2q

wl1r w~l1r wl2r w~l2r

wl1t w~l1t wl2t w~l2t

3
7777775
; x ¼

2
664
Fðl1Þ
Fð~l1Þ
Fðl2Þ
Fð~l2Þ

3
775; (7)

and

b ¼ −

2
66666666664

P
N−1
k≠l1;l2;~l1;~l2

FðkÞwkmP
N−1
k≠l1;l2;~l1;~l2

FðkÞwknP
N−1
k≠l1;l2;~l1;~l2

FðkÞwkpP
N−1
k≠l1;l2;~l1;~l2

FðkÞwkqP
N−1
k≠l1;l2;~l1;~l2

FðkÞwkrPN−1
k≠l1;l2;~l1;~l2

FðkÞwkt

3
77777777775
; g ¼ N

2
6666664

gðmÞ
gðnÞ
gðpÞ
gðqÞ
gðrÞ
gðtÞ

3
7777775
: (8)

Equation 6 can be solved via the least-squares method

x̂ ¼ argmin
x
kAx − bk22; (9)

and the solution is expressed as

x̂ ¼ ðATAÞ−1ATb; (10)

where ½·�T denotes the transpose and ð·Þ−1 denotes the inverse.
The output error caused by the Gaussian white noise at

reconstruction locations can be expressed as

e ¼ x − x̂: (11)

Inserting equation 10 into equation 11, it is easy to derive that
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e ¼ x − x̂

¼ x − ðATAÞ−1ATb

¼ ðATAÞ−1ððATAÞx − ATbÞ
¼ ðATAÞ−1ATðAx − bÞ
¼ ðATAÞ−1ATg

¼ Lg; (12)

where L ¼ ðATAÞ−1AT . Because the Gaussian
noise vector g is unknown, it is impossible to cal-
culate e directly. Fortunately, if there is only
Gaussian noise at these locations, it is possible
to estimate output error covariance as

EðeeTÞ ¼ EðLggTLTÞ ¼ LEðggTÞLT

¼ σ2LLT ¼ σ2ðATAÞ−1; (13)

where EðggTÞ ¼ σ2I, σ is the variance of Gaus-
sian noise. It is much easier to estimate σ of the
Gaussian noise than its accurate value. The term
σ is almost the same as the variance of the
residual error at those reconstruction locations.
If more reconstruction locations are chosen; it
adds new rows to A and increases ATA. Then,
the output covariance becomes smaller, which
means that the solution becomes more stable and
accurate. Each element on the principal diagonal
of the covariance matrix σ2ðATAÞ−1 is the vari-
ance of one of the desired CSEM frequency
coefficients.
Actually, the stability of the solution depends

on two parts. One is the σ2 of the Gaussian noise
at the reconstruction locations. If the variance
at the reconstruction locations is smaller, the
variance of one single frequency coefficient is
smaller. The other one is the value of ðATAÞ−1.
If more reconstruction locations are chosen,
more rows are added to A and the values on
the diagonal of ðATAÞ−1 decrease. The variances
of the frequency coefficients are reduced, and
thus the solution becomes more stable. This
makes sense especially when the condition num-
ber of ATA is small. When the condition number
is small, the matrix is almost diagonal and the
off-diagonal values are almost zero, which indi-
cates that the coefficient is not correlated with
other frequency coefficients and the diagonal
can describe the stability of the coefficient
perfectly. Let V be the diagonal values of the
covariance matrix or the variance of each CSEM
frequency coefficient:

V ¼ diagðσ2ðATAÞ−1Þ: (14)

Let kf be the relative standard deviation (RSD) of
the coefficients at frequency f, then
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Figure 2. (a) Raw data (time domain) with a high-amplitude periodic signal in 20 and
60 Hz. (b) Continuous complex Morlet wavelet (fc = 1 Hz, fb = 1.5 Hz) scalogram.
(c) Temporal derivation of the scalogram. The frequency range is 0.02726–128 Hz.
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Figure 4. (a) Raw spectrum and (b) initial NPC spectrum after zeroing the desired
CSEM frequencies.
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Figure 3. (a) Raw data (time domain) with periodic signal in many frequencies. (b) Con-
tinuous complex Morlet wavelet (fc = 1 Hz, fb = 1.5 Hz) scalogram. (c) Temporal
derivation of the scalogram. The frequency range is 0.2726–128 Hz.

Denoising CSEM data E233

D
ow

nl
oa

de
d 

07
/0

9/
18

 to
 1

31
.1

80
.1

31
.1

88
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



kf ¼
ffiffiffiffiffiffi
Vf

p
Sf

; (15)

where Sf is the processed spectrum at frequency f.
Once the reconstruction locations have been chosen, the matrix

ðATAÞ−1 is fixed. Because we can get the estimated variance σ2 of

the Gaussian noise at the reconstruction locations, the total covari-
ance matrix is obtained. Then, the stability of the solution can be
calculated by equation 15. The RSD of every frequency can be ob-
tained to evaluate the accuracy of the processed result. An RSD
threshold can be set (e.g., 5%) for accepting the processed data.

Picking the reconstruction locations via
CWT

In this part, we will introduce a method for
picking the time-domain locations that only con-
tain predominantly Gaussian white noise, or
what we call “reconstruction locations.” The
method is based on the CWT:

Wfðu; sÞ ¼
Z þ∞

−∞
fðtÞ 1ffiffiffi

s
p ϕ�

�
t − u
s

�
dt;

(16)

where ϕ is the mother wavelet, fðtÞ is the input
1D signal, Wfðu; sÞ is the 2D time-frequency
spectrum, ½·�� denotes the complex conjugate,
u and s denote the position and scale, respec-
tively. We use the complex Morlet wavelet as
the mother wavelet because properties of the
Morlet wavelet are favorable for the method.
In principle, CWT analysis should be applied

to the NPC only, which just includes nonperiodic
noise and Gaussian white noise, for finding
reconstruction locations because what we need
to know is the distribution of NPC, not PC. How-
ever, we do not know the NPC at the beginning.
What we have is just raw data. Sometimes, espe-
cially when high-energy periodic signal or noise
exists, it will be difficult to find those locations
directly in the wavelet spectrum as shown in
Figure 2b. Under this condition, we take the
temporal derivative of the wavelet spectrum,
by which we get the temporal inhomogeneity in-
formation as shown in Figure 2c. Those white
areas in Figure 2c are more easily recognizable
as potential reconstruction locations than in
Figure 2b.
But that is not accurate enough to find the

reconstruction locations. When the number of
CSEM frequencies increases, it is not easy to find
the Gaussian-noise-only places directly from the
CWT spectrum and its temporal derivative. A
synthetic example is shown below. The CSEM
frequencies are 5, 15, 25, : : : , 75 Hz.
The example indicates that the periodic signal

with strong energy masks the spectrum of the
NPC. So an initial guess of NPC should be esti-
mated to reduce the influence from PC. It is nec-
essary to modify the spectrum and construct a
modified time-domain signal of initial NPC for
CWT analysis to reduce the influence of strong
periodic signal. By CWT analysis on this initial
NPC, we can find some Gaussian-only places. In

Figure 6. (a) Raw data overlapped by the true signal (blue lines). The red boxes are the
candidate reconstruction locations. (b) The spectrum of the raw data overlapped by the
spectrum of the true signal (blue line).
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Figure 5. (a) Initial NPC in the time domain, (b) continuous complex Morlet wavelet
(fc = 1 Hz, fb = 1.5 Hz) scalogram, and (c) temporal derivation of the scalogram. The
frequency range is 0.2726–128 Hz.
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this paper, we give a criterion for zeroing the
desired CSEM frequency coefficients, and then
we reconstruct the modified coefficients back to
the time domain to get the initial guess of NPC.
As shown in equation 17, we create a modified
spectrum, by setting the spectrum at the desired
CSEM frequencies to the average of the nearest
two frequency amplitudes, in which fs are the
CSEM frequencies:

ŜðfÞ ¼
�

SðfÞ f ≠ fs
Sðf−dfÞþSðfþdfÞ

2
f ¼ fs

: (17)

By using equation 18, we can estimate a noise
to signal ratio k in those CSEM frequencies. If
k is smaller than 50%, the coefficient of this fre-
quency will be set to zero; otherwise, the coef-
ficient will be kept unchanged. Following the
criterion above, comparing to Figure 3, the coef-
ficients of 35, 45, 55, 65, and 75 Hz have been set
to zero, whereas the coefficients of 5, 15, and
25 Hz are kept unchanged as shown in Figure 4b
because at these frequencies the ratio is larger
than 50%, which means that the noise in these
frequencies is very strong compared with the
CSEM signal:

kfs ¼
ŜðfsÞ
SðfsÞ

: (18)

By inverse Fourier transform, we get the modi-
fied signal in the time domain. The CWTanalysis
on this modified signal as shown in Figure 5
is quite clear compared with the result in
Figure 3.
Using the CWT spectrum from the modified

signal, it is much easier for us to find those Gaus-
sian-noise-only places in Figure 5. We do CWT
analysis on initial NPC here, rather than raw
data. By solving the over-determined equation,
we can get the first least-squares solution, and
at the same time, we can get a new NPC. This
new NPC usually is more accurate than the initial
one. Then, a second CWT analysis may be ap-
plied and a new set of reconstruction locations
could be obtained, then another calculation may
be involved. In this way, the denoising result can
be improved iteratively.
After zeroing some PCs, the three criteria for

picking the time-domain reconstruction locations
are as follows:

1) The amplitude of the reconstruction locations
should be close to zero.

2) The CWT spectrum map and the temporal
derivative map should have negligible energy
at the reconstruction locations.

3) If the CWT spectrum is influenced by peri-
odic signal or noise and there exists locations
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Figure 7. (a) Initial NPC, (b) time-frequency spectrum using CWT, and (c) temporal
derivation of the scalogram. The frequency range is 0.02726–128 Hz. The red boxes
are the chosen reconstructed locations.

Figure 9. (a) The NPC at the reconstructed locations after the last computation and
(b) distribution diagram of the noise residual.

Figure 8. The NPC at reconstructed locations after the first computation. After the com-
putation, we can check the characters of the NPC at the reconstructed locations.
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in temporal derivative map with negligible energy (as shown in
Figure 2), then these locations will be chosen.

Another synthetic example is shown below to demonstrate the
denoising performance of the proposed algorithm. Actually, this
one can be considered as a preprocessed signal of the previous si-
mulated signal because they share almost the same nonperiodic
noise. The sampling frequency is 65,536 Hz, and the total time
length is 16 s. It contains seven frequencies, which are 1, 2, 4,
8, 16, 32, and 64 Hz, with amplitude of 1000, 500, 250, 125,
62, 31, and 15 mV, respectively. It also contains Gaussian noise with

a mean square error of 200 mV and other nonperiodic noise. For
land-based CSEM, strong noise, such as square, triangle, step, im-
pulse, charging and discharging noise, or a mix of them, often exists
in raw data (Tang et al., 2012). Here, we simulated different spo-
radic noise as shown in Figure 6.
Applying CWT analysis, we can find those candidate

reconstruction locations as shown in Figure 7. We combine all these
locations and construct a large over-determined system of equa-
tions. This means that what our concern is the character of the large
matrixA, or more accuratelyATA. IfATA is a full-rank matrix, then
the solution will be stable. Besides, another parameter for stability is

Figure 10. (a) Amplitude of the processed, least-squares stacking, robust stacking, and true data in the frequency domain. (b) Phase of
the processed, least-squares stacking, robust stacking, and true data in the frequency domain. (c) RSD of the processed result in CSEM
frequencies.
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the variance of noise in reconstruction locations. If the chosen lo-
cations have little energy and a small variance, we can get quite
good solutions for the over-determined system. Figure 8 shows
the noise residuals at the reconstruction locations after the first
calculation. As can be seen, there exist some bad points including
impulse noise. We delete these locations and use the remaining
locations.
After deleting those bad locations, another calculation is done.

The noise residual at the reconstruction locations is shown in Fig-
ure 9a, which is better than the noise residual of the first calculation.
As shown in Figure 9b, the distribution of noise residual follows the
assumption of the Gaussian well. We also show the results with

other methods as benchmarks:, which are the least-squares stacking
method and the robust stacking method as shown in Figure 10a. The
robust method uses the Huber psi-function. Figure 10a shows a
comparison of amplitude at the CSEM frequencies. Figure 10b
shows the comparison of phase in CSEM frequencies. The low
number of samples is the most possible reason why the robust result
looks bad in this case. Figure 10c shows the error estimation of the
corresponding frequencies, which is calculated in equation 15.
Figure 11a shows the result with different lengths of reconstruction
locations. Here, we use same densely sampled signal, but we use
shorter reconstruction time windows each time. Figure 11c shows
the absolute error amplitude of different numbers of reconstruction

Figure 11. (a) Error amplitude with different number of reconstruction locations, (b) phase of processed results with different number of
reconstruction locations, and (c) error amplitude with a different number of reconstruction locations.
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points. Figure 11b shows the processed phase result of different
numbers of reconstruction points. Figure 12 shows the comparison
result in the time domain. It is clear that errors gradually decrease
with the increasing number of reconstruction locations. The increas-

ing number of locations can be certain to improve the variance of
the solution, but it does not make certain that their error value is
always smaller than lower number of locations. This is why in some
frequencies there is little benefit of going from 8984 to 23,875

locations.
An extreme case is that if there is only one

period of source signal, it is still possible for this
method to denoise the signal as long as it is suf-
ficiently densely sampled. If we can get enough
locations in the time domain, we can denoise the
signal effectively because there are only seven
frequencies of interest. In contrast, no statistical
method that relies on multiple samples of the
desired frequency components (such as robust
stacking) can be applied in this case, because
there is only one period of signal.

EXAMPLES

We apply the proposed method to a real CSEM
data, as shown in Figure 13. It is a LOTEM data
set acquired in the northern part of China for oil-
gas exploration, with the source-receiver offset at
5 km. The transmitting signal is a reversing-
polarity square wave with a duty cycle of 50%,
whose signal type is +0-0. We concatenate all the
transients to one signal in the time series because
the signal is only recorded whereas the source
signal is zero. It has two transients in one period,
including one positive and one negative transient.
The sampling frequency is 500 Hz. The length
of the data is 2000 s, containing a total of 100
signal periods. The main frequency is 0.05 Hz.
The frequencies of interest are 0.05 Hz and its
harmonics, approximately 400 frequencies (all
frequencies higher than 40 Hz have been elimi-
nated for computation convenience). The energy
of all the other frequencies is noise.
From Figure 13, we can find some periodic

structures and strong noise. The spectrum of
the raw data is shown in Figure 14, from which
we can see that the signal is seriously corrupted
by noise.
To use the proposed denoising method, we

first apply CWT analysis to the raw data. As we
can see in Figure 15, the CWT spectrum has been
influenced by a periodic signal or in other words
the CSEM signal. Therefore, we apply the zero-
ing criteria in equations 17 and 18 to the raw
data, then we obtain a modified time-domain sig-
nal as shown in Figure 16a, in which the coeffi-
cients of 189 CSEM frequencies have been put
zero. Applying CWT analysis to this modified
signal, we can get the CWT spectrum and tem-
poral derivative from which we can find some
candidate reconstruction locations. This is just
the first set of reconstruction locations. Actually,
we can get a new NPC after every iteration. If we
could find some good reconstruction locations
the first time, it will be quite fast to get a satis-
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Figure 12. Comparison among raw data, true signal, and denoised signal in the time
domain. Note that the blue line and the pink line are almost the same.
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Figure 13. Real CSEM data in the time domain.
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Figure 14. Spectrum of the real data.
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factory result. In this case, we obtained the final result after only two
iterations.
Based on CWTanalysis, the selection of reconstruction locations

can be automated by defining a certain threshold in a CWT spec-
trum or the sum of some frequencies’ spectrum (e.g., calculate the
sum of the 10–40 Hz wavelet spectra as shown in Figure 17b, then
show a curve based on these sums as shown in Figure 17c). In this
case, we first select some locations manually (the red boxes in Fig-
ure 16), and then we apply this criterion to the whole signal length,

which is the automatic part. By statistical analysis of the sum of
10–40 Hz wavelet spectra at manually selected locations, we could
find the value in those manually selected locations to show how low
the value will be qualified for reconstruction locations. Then, by
giving a certain threshold value as shown in Figure 17c, in which
the locations with a value smaller than the given threshold are quali-
fied locations, we can select a lot of candidate reconstruction
locations automatically. As shown in Figures 18 and 19, a set of
reconstruction locations, particularly many very short time windows

Figure 15. (a) Raw data, (b) time-frequency spec-
trum using CWT, and (c) temporal derivation of
the scalogram. The frequency range is 0.05–40 Hz.
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(b) time-frequency spectrum using CWT, and
(c) temporal derivation of the scalogram. The fre-
quency range is 0.05–40 Hz. The red boxes are the
candidate reconstruction locations by manually se-
lection.
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Figure 17. (a) Initial NPC after zero operating.
(b) Time-frequency spectrum using CWT, fre-
quency range is 0.05–40 Hz, the red slashed box is
the area for summing wavelet spectra (10–40 Hz).
(c) The curve of the sum for the 10–40 Hz wavelet
spectra, the red line is a candidate threshold to select
reconstruction locations.
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that would not have been identified manually, are obtained by this
automatic selecting process.
Figure 20a shows the processed result of amplitude at CSEM

frequencies. Figure 20b shows the processed result of phase at CSEM
frequencies. Figure 20c shows the error estimation of the correspond-
ing frequencies. Figure 21 shows the comparison of the least-squares
stacking, robust stacking, and processed result in the time domain. In
this case, the result of robust stacking does improve some, but not
quite so well. Figure 22 shows the coefficients of 0.75 Hz for 100
periods, which are quite scattered. This is a possible reason why the
result for the robust method is not so good. In Figure 23a, the noise
residual at the reconstruction locations is shown. We suppose in these
locations, there exists only Gaussian noise or small-amplitude noise.
It is obvious that the noise in these reconstruction locations follows
the assumption quite well as shown in Figure 23b.

Using the same procedure, we denoise the data with 4000s length
(200 periods) and 1000s length (50 periods). The processed results
as shown in Figures 24 and 25 show that the proposed denoising
method is quite effective.
In Figure 26a, we compare the denoising results in one figure for

data with different lengths. The respective relative estimated stan-
dard deviations at CSEM frequencies are shown in Figure 26b. In
Figure 26a, the processed amplitude curve of 4000s is smoother
than 2000s, and the curve of 2000s is smoother than that of 1000s.
By applying the same threshold criterion to the 4000s, 2000s, and
1000s data, the numbers of reconstruction locations are 34,615,
21,304, and 8328, respectively. It is clear that more qualified
reconstruction locations can help to get better results. If more
locations are involved, the RSD decreases, which indicates that
the error in the corresponding frequency is smaller.

Figure 18. Reconstruction locations (in red) and raw data (in black) in the time domain.

Figure 19. Reconstruction locations (in red) and NPC (in blue) in the time domain.
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Figure 20. (a) Amplitude of the processed, least-squares stacking, and robust stacking in the frequency domain for 2000s data. (b) Phase of the
processed, least-squares stacking, and robust stacking in the frequency domain. (c) RSD of the processed result in CSEM frequencies.

Figure 21. Processed, robust stacking, and least-squares stacking result in the time domain (shown in 20 s length).
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DISCUSSIONS

The reason why we put most of the desired frequencies to zero for
the CWT analysis is that the CWT analysis is based on NPCs. In
many cases, the periodic CSEM signal can mask the structure of the
NPC (including nonperiodic noise and Gaussian noise). Zeroing the
signal at the frequencies of interest aims to get an initial guess of
NPC. Besides, we have given a criterion for zeroing CSEM fre-
quency coefficients. After each computation, a new NPC can be
obtained. The CWTanalysis is then applied to the new NPC. Under
such conditions, we can find those good locations more accurately.
Our main goal is to remove NPC from the data (although as a by-
product, we also estimate the spectrum of Gaussian white noise at
the frequencies of interest during the inversion). The method works
if the influence of the NPC is inhomogeneous. The key principle of
this method is to gather all the time-domain locations with low-am-
plitude noise (qualified reconstruction locations), and then by the

presented inversion algorithm, to transform all
these information into frequency coefficients.
For the robust stacking method, different

weighting functions may lead to different results.
The result is quite related to the weighting func-
tion that we choose. In our method, the problem
has been transferred to find a time of low noise
because what we do in this method is to find
small-value places of NPC. Besides, for the sta-
tistic method, it is usually to operate on time
windows of data that are an integer multiple of
the signal period, whereas in our method, the sig-
nal is divided into much smaller pieces. It is
unnecessary to operate on time windows of fixed
length related to the signal period, in which we
can construct the inversion problem by combin-
ing all fragmented locations together into a large
over-determined equation. Thus, it is more flex-
ible to process CSEM data via the presented
framework. Furthermore, over-sampling the sig-
nal without adding recording time (i.e., sampling
much more densely than what is required for cor-
rectly recording the frequencies of interest) can

Figure 23. (a) NPC value in the reconstruction locations after processing and (b) dis-
tribution diagram of the noise residual.

Figure 24. (a) Amplitude of the processed, least-squares stacking, and robust stacking in the frequency domain for 4000s data. (b) Phase of the
processed, least-squares stacking, and robust stacking in the frequency domain.
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Figure 22. Coefficients of 0.75 Hz for 100 periods. The horizontal
axis is real, and the vertical axis is imaginary.

E242 Yang et al.

D
ow

nl
oa

de
d 

07
/0

9/
18

 to
 1

31
.1

80
.1

31
.1

88
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



help to increase the accuracy of the solution and improve the
denoising result.

CONCLUSION

The NPC is a type of strong and irregular noise existing in CSEM
data. It is difficult to remove such noise using conventional algo-
rithms, which hinders the wide application of the CSEM method
due to the low signal-to-noise ratio of many data sets. We have
proposed a novel method for effectively attenuating the NPC that
includes nonperiodic noise and Gaussian noise. The NPC can be
accurately estimated by least-squares inversion. To formulate the
inverse problem, we need to first detect a set of time-domain loca-
tions where only Gaussian white noise and PCs are presented. The
zero preprocessing is helpful to reduce the influence of periodic sig-
nal on CWTanalysis. The temporal derivative of the time-frequency
spectrum that is generated using CWT can serve as an effective
indicator for picking the time-domain reconstruction locations.
The real CSEM data demonstrate the very successful performance
of the proposed methodology. Besides, many harmonics of signal
are also denoised in this method, which can be further used.

ACKNOWLEDGMENTS

We would like to thank S. Fomel and J. Tang for their technical
advice on the proposed method, R. Streich, K. MacLennan, N. Cue-
vas, and one anonymous reviewer for the constructive suggestions that
greatly improved the manuscript, and J. He for the endless help
throughout this research. We are also grateful to Z. He for providing
the real data. The research is supported by the National Science Foun-
dation of China (grant no. 41227803) and Guangxi Key Laboratory of
Hidden Metallic Ore Deposits Exploration (grant no. 13-051-19). Y.
Chen was partially supported by the starting fund at Zhejiang Uni-
versity.

REFERENCES

Bracewell, R., 2000, The Fourier transform & its applications: McGraw Hill.
Chen, J., B. Heincke, M. Jegen, and M. Moorkamp, 2012, Using empirical
mode decomposition to process marine magnetotelluric data: Geophysical

Figure 25. (a) Amplitude of the processed, least-squares stacking, and robust stacking in the frequency domain for 1000s data. (b) Phase of the
processed, least-squares stacking, and robust stacking in the frequency domain.

Figure 26. (a) Amplitude of the processed result for 1000s, 2000s,
and 4000s data. (b) RSD of the processed result for 1000s, 2000s,
and 4000s at CSEM frequencies.

Denoising CSEM data E243

D
ow

nl
oa

de
d 

07
/0

9/
18

 to
 1

31
.1

80
.1

31
.1

88
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



Journal International, 190, 293–309, doi: 10.1111/j.1365-246X.2012
.05470.x.

Chen, Y., 2016, Dip-separated structural filtering using seislet thresholding
and adaptive empirical mode decomposition based dip filter: Geophysical
Journal International, 206, 457–469, doi: 10.1093/gji/ggw165.

Chen, Y., 2017, Fast dictionary learning for noise attenuation of multidimen-
sional seismic data: Geophysical Journal International, 209, 21–31, doi:
10.1093/gji/ggw492.

Chen, Y., 2018, Non-stationary least-squares complex decomposition for
microseismic noise attenuation: Geophysical Journal International, 213,
1572–1585, doi: 10.1093/gji/ggy079.

Chen, Y., and J. Ma, 2014, Random noise attenuation by f-x empirical mode
decomposition predictive filtering: Geophysics, 79, no. 3, V81–V91, doi:
10.1190/geo2013-0080.1.

Goldstein, M. A., and D. W. Strangway, 1975, Audio-frequency magneto-
tellurics with a grounded electric dipole source: Geophysics, 40, 669–683,
doi: 10.1190/1.1440558.

He, J., 2010, Wide field electromagnetic sounding methods: Journal of
Central South University (Science and Technology), 41, 1055–1072.

Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C.
Yen, C. C. Tung, and H. H. Liu, 1998, The empirical mode decomposition
and the Hilbert spectrum for nonlinear and non-stationary time series
analysis: Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, 454, 903–995, doi: 10.1098/rspa
.1998.0193.

Maclennan, K., and Y. Li, 2013, Denoising multicomponent CSEM data
with equivalent source processing techniques: Geophysics, 78, no. 3,
E125–E135, doi: 10.1190/geo2012-0226.1.

Reninger, P. A., G. Martelet, J. Perrin, and Y. Chen, 2011, Singular value
decomposition as a denoising tool for airborne time domain electromag-

netic data: Journal of Applied Geophysics, 75, 264–276, doi: 10.1016/j
.jappgeo.2011.06.034.

Seigel, H. O., 1959, Mathematical formulation and type curves for induced
polarization: Geophysics, 24, 547–565, doi: 10.1190/1.1438625.

Strack, K. M., T. H. Hanstein, and H. N. Eilenz, 1989, LOTEM data process-
ing for areas with high cultural noise levels: Physics of the Earth and
Planetary Interiors, 53, 261–269, doi: 10.1016/0031-9201(89)90010-1.

Strang, G., 2007, Computational science and engineering: Wellesley-
Cambridge Press.

Streich, R., M. Bechen, and O. Ritter, 2013, Robust processing of noisy
land-based controlled-source electromagnetic data: Geophysics, 78, no. 5,
E237–E247, doi: 10.1190/geo2013-0026.1.

Tang, J., Z. Xu, X. Xiao, and J. Li, 2012, Effect rules of strong noise on
magnetotelluric (MT) sounding in the Luzong ore cluster area: Chinese
Journal of Geophysics, 55, 4147–4159, doi: 10.6038/j.issn.0001-5733
.2012.12.027.

Welch, P. D., 1967, The use of fast Fourier transform for the estimation of
power spectra: A method based on time averaging over short, modified
periodograms: IEEE Transactions on Audio and Electroacoustics, 15,
70–73, doi: 10.1109/TAU.1967.1161901.

Willen, D. W., 2010, Method for wavelet denoising of controlled source
electromagnetic survey data: E.P. Patent 1, 922, 567.

Yang, Y., 2016, A de-noising method for periodic CSEM data based on in-
verse discrete Fourier transform (IDFT), continuous wavelet transform
(CWT) and over-determined equations (ODEs): 86th Annual Interna-
tional Meeting, SEG, Expanded Abstracts, 1039–1042.

Ziolkowski, A., and D. Wright, 2012, The potential of the controlled source
electromagnetic method: A powerful tool for hydrocarbon exploration,
appraisal, and reservoir characterization: IEEE Signal Processing Maga-
zine, 29, 36–52, doi: 10.1109/MSP.2012.2192529.

E244 Yang et al.

D
ow

nl
oa

de
d 

07
/0

9/
18

 to
 1

31
.1

80
.1

31
.1

88
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

http://dx.doi.org/10.1111/j.1365-246X.2012.05470.x
http://dx.doi.org/10.1111/j.1365-246X.2012.05470.x
http://dx.doi.org/10.1111/j.1365-246X.2012.05470.x
http://dx.doi.org/10.1111/j.1365-246X.2012.05470.x
http://dx.doi.org/10.1111/j.1365-246X.2012.05470.x
http://dx.doi.org/10.1111/j.1365-246X.2012.05470.x
http://dx.doi.org/10.1093/gji/ggw165
http://dx.doi.org/10.1093/gji/ggw165
http://dx.doi.org/10.1093/gji/ggw492
http://dx.doi.org/10.1093/gji/ggw492
http://dx.doi.org/10.1093/gji/ggy079
http://dx.doi.org/10.1093/gji/ggy079
http://dx.doi.org/10.1190/geo2013-0080.1
http://dx.doi.org/10.1190/geo2013-0080.1
http://dx.doi.org/10.1190/geo2013-0080.1
http://dx.doi.org/10.1190/1.1440558
http://dx.doi.org/10.1190/1.1440558
http://dx.doi.org/10.1190/1.1440558
http://dx.doi.org/10.1098/rspa.1998.0193
http://dx.doi.org/10.1098/rspa.1998.0193
http://dx.doi.org/10.1098/rspa.1998.0193
http://dx.doi.org/10.1098/rspa.1998.0193
http://dx.doi.org/10.1190/geo2012-0226.1
http://dx.doi.org/10.1190/geo2012-0226.1
http://dx.doi.org/10.1190/geo2012-0226.1
http://dx.doi.org/10.1016/j.jappgeo.2011.06.034
http://dx.doi.org/10.1016/j.jappgeo.2011.06.034
http://dx.doi.org/10.1016/j.jappgeo.2011.06.034
http://dx.doi.org/10.1016/j.jappgeo.2011.06.034
http://dx.doi.org/10.1016/j.jappgeo.2011.06.034
http://dx.doi.org/10.1016/j.jappgeo.2011.06.034
http://dx.doi.org/10.1190/1.1438625
http://dx.doi.org/10.1190/1.1438625
http://dx.doi.org/10.1190/1.1438625
http://dx.doi.org/10.1016/0031-9201(89)90010-1
http://dx.doi.org/10.1016/0031-9201(89)90010-1
http://dx.doi.org/10.1190/geo2013-0026.1
http://dx.doi.org/10.1190/geo2013-0026.1
http://dx.doi.org/10.1190/geo2013-0026.1
http://dx.doi.org/10.6038/j.issn.0001-5733.2012.12.027
http://dx.doi.org/10.6038/j.issn.0001-5733.2012.12.027
http://dx.doi.org/10.6038/j.issn.0001-5733.2012.12.027
http://dx.doi.org/10.6038/j.issn.0001-5733.2012.12.027
http://dx.doi.org/10.6038/j.issn.0001-5733.2012.12.027
http://dx.doi.org/10.6038/j.issn.0001-5733.2012.12.027
http://dx.doi.org/10.6038/j.issn.0001-5733.2012.12.027
http://dx.doi.org/10.1109/TAU.1967.1161901
http://dx.doi.org/10.1109/TAU.1967.1161901
http://dx.doi.org/10.1109/TAU.1967.1161901
http://dx.doi.org/10.1109/TAU.1967.1161901
http://dx.doi.org/10.1109/MSP.2012.2192529
http://dx.doi.org/10.1109/MSP.2012.2192529
http://dx.doi.org/10.1109/MSP.2012.2192529
http://dx.doi.org/10.1109/MSP.2012.2192529

