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A B S T R A C T

Aquaculture at sea is gaining increasing importance, not only as a (local) food source but also due to its potential
of being combined with other offshore activities such as wind parks. Nevertheless, experience of offshore
aquaculture is limited. This study aims to provide a framework to evaluate offshore aquaculture suitability ac-
counting for the probabilistic dependence between relevant variables. This framework is applied to obtain
suitability maps of aquaculture for the North Sea for the blue mussel Mytilus edulis and the sugar kelp Saccharina
latissima. For each of these species, three ecological variables are selected and the optimal growth and critical
survival limits are defined. Here, suitability is defined as the probability of meeting these conditions. Data on the
selected variables is extracted from a large-scale 3D hydrodynamic and ecological model of the northwest Eu-
ropean Shelf, of which daily extremes are sampled. The probabilistic model is developed using bivariate copula
models, which are fitted to each variable pair to describe their joint distribution function at each studied
location. Empirical distribution functions are used to describe the univariate distribution function of each var-
iable and location. Using Monte-Carlo simulations, the probability of meeting the optimal and critical limits is
estimated and suitability maps accounting for the probabilistic dependence between the variables are generated.
In addition, suitability maps disregarding the dependence are generated and compared to those accounting for
the probabilistic dependence. It was found that considering the dependence between variables significantly
improves the accuracy of the results for optimal and critical growth conditions for both species. The presented
method allows to identify potential areas where blue mussel and sugar kelp cultivation is the most suitable. For
instance, in this study, a north-south elongated area west of the German and Danish coast appears to be most
suitable for blue mussels, while estuaries and rivers are found the most suitable for the sugar kelp.

1. Introduction

The increasing human world population (Tripathi et al., 2019) leads
to an increased demand for sustainable food sources and green energy
(Yong et al., 2022). Consequently, the production sector of aquaculture
has experienced rapid global growth, continuing to expand despite the
pandemic in recent years (Michler-Cieluch et al., 2009; FAO, 2022).
Species such as blue mussels and especially sugar kelp have the potential
to be used as food, source material for pharmaceutical industry,
biomaterial or bioenergy sources such as biogas or bioethanol (Schiener,
2014; Kerrison et al., 2015; Fernand et al., 2017; Kammler et al., 2024),
thus contributing to the solution to climate change (Yong et al., 2022).
However, available space for aquaculture near-shore is rare. Thus,

species cultivation offshore becomes more relevant, even though the
available space is limited and the competition at sea among various
sectors pose another challenge to the novel sector of offshore aquacul-
ture (Buck and Langan, 2017; Buck et al., 2018). As a result, aquaculture
of certain species combined with wind energy production have emerged
as a promising multi-use solution to address the above raised challenges
as supported by the European Union (European-Commission, 2010,
2012). Moreover, there is evidence to suggest that offshore conditions
can lead to increased growth and better product quality of some species
(Buck, 2002; Brenner et al., 2012). However, while the offshore wind
energy sector is experiencing a rapid development (Michler-Cieluch
et al., 2009), offshore aquaculture, as well as the combination of several
sectors, still needs to be further investigated and developed. Thus, the
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presented study provides a framework to assess spatial suitability of
offshore aquaculture from an environmental perspective.

Although the importance of co-use and multi-use has been recog-
nised and emphasised by both the research community and policy
makers (e.g. Buck et al., 2004; Wever et al., 2015), experience in the
field of offshore aquaculture is limited and thus comes with several risks
and uncertainties. First steps given by the scientific community point
towards the technical and biological suitability of offshore cultivation of
certain species (Buck et al., 2008; Maar et al., 2023). Technical feasi-
bility was confirmed by Gagnon and Bergeron (2017), who analysed an
exposed submerged mussel long-line structure, 4 km off the Canadian
east coast. The measured forces on the structure were significantly
smaller than the breaking strength of the lines and no damage such as
mussel fall-off was observed. As defined by (Buck et al., 2024),
“offshore” refers to a location with a distance of more than 3 nautical
mile from the shore, while “exposed” relates to the physical oceano-
graphic conditions. In an European project (UNITED Project, 2022), a
pilot case was conducted to test the cultivation blue mussels and sugar
kelp at an exposed offshore site. Regarding the biological feasibility,
Buck (2002); Brenner et al. (2012) suggested that offshore conditions
can lead to increased growth and better product quality of some species
due to the good water quality and oxygen concentrations (Hopkins et al.,
1996). Opposite conclusions were reached by Stechele et al. (2022),
where less productivity was observed offshore than near-shore. How-
ever, it should be noted that these authors performed this research for a
self-regulating cultivation technique, where wild larvae spat settles and
cultivates at the structure. There are other factors in favour of offshore
cultivation, such as limited inter-annual variability and lower risk of
toxic algae blooms. Other benefits of the open ocean are sufficient water
depths and the existence of infrastructure, especially when co-locating
aquaculture with wind parks (Buck, 2002; Maar et al., 2023). This al-
lows for shared vessels, operation and maintenance. Thus, offshore
aquaculture as single-use, or in the context of multi-use, has a great
potential leading to a growing need for tools to support the development
of these novel sustainable offshore aquaculture practices (Bergström and
Lindegarth, 2016).

In previous studies, different approaches have been used to explore
the suitability of offshore aquaculture practices. Benassai et al. (2014)
focused on the co-location of offshore wind and open-water aquaculture
in Danish waters and the southern part of the North Sea. These authors
developed a “sustainability” index which provided a first large-scale
evaluation of the suitability of aquaculture in offshore wind park sites.
This index was computed through a scoring model which considers
physical limitations, such as water depth, wind velocity and water
temperature, and biological parameters, such as chlorophyll-a
concentrations.

Gimpel et al. (2015) developed a marine spatial planning (MSP) tool
to evaluate spatial co-location scenarios of offshore aquaculture inte-
grated in wind farms. This tool accounts for environmental, economic,
inter-sectoral and social-cultural risks and opportunities and considers
13 species native in the German North Sea, resistant to offshore hy-
drodynamic conditions and economically interesting for the European
market. Di-Tullio et al. (2017) also proposed a “sustainability index” to
assess the co-location of offshore wind and open-water mussel cultiva-
tion using remote-sensing data for physical and biological variables,
following the research done in Benassai et al. (2014). Geisler et al., 2018
conducted a feasibility study on various species at the FINO3 research
platform in the German North Sea, located 80 km off the coast. In this
feasibility study, a scoring model was applied, considering biological,
technical and economical/political aspects for several different species.
The aforementioned authors identified the blue musselMytilus edulis and
sugar kelp Saccharina latissima as the most suitable species for cultiva-
tion at this location in the North Sea. Therefore, to the author’s
knowledge, methods available in the literature to identify potential lo-
cations for offshore aquaculture are deterministic so they do not directly
account for the natural variability (uncertainty) of the relevant variables

or the probabilistic dependence between them. This is, each variable is
included in the analysis through a single statistic, but variables in nature
typically present a stochastic behaviour. Moreover, the relationship
between variables is not explicitly considered, although knowing in-
formation about one variable can provide insights about the distribution
of another variable. For example, if the water temperature rises, it is
likely that the concentration of dissolved oxygen will decrease but a
deterministic estimation of one variable solely based on the other is
typically not realistic. This indicates a probabilistic relationship between
the two variables. In studies such as Ruiz-Velazco et al. (2013) or Santjer
et al. (2023), explicitly accounting for the relationship between envi-
ronmental variables was shown to play a relevant role in feasibility as-
sessments. In Ruiz-Velazco et al. (2013), a linear relationship between
variables was assumed to predict the shrimp production under com-
mercial conditions, highlighting the importance of the interactions be-
tween relevant variables. Santjer et al. (2023) took the first steps to
include the probabilistic dependence between variables and explored
the applicability of different bivariate copulas to model the probabilistic
dependence between environmental variables to assess the suitability of
cultivating blue mussels and sugar kelp in a location in the German
North Sea. Best fitting models were identified and a significant influence
of the probabilistic dependence was reported. Moreover, bivariate
copula models have been widely used in existing literature to model
multivariate joint distribution of variables (e.g.: Leontaris et al., 2016;
Ragno et al., 2023; Mares-Nasarre et al., 2024), being concluded that
considering the dependence between the variables has a severe impact
on the results. Thus, there are cases where the probabilistic dependence
plays a key role and needs to be accounted for Ju et al. (2014). Another
recent study made use of copula models, describing the joint depen-
dence between two variables to predict sedimentation processes in
aquaculture systems (López-Rebollar et al., 2024). Consequently, the
present study aims to provide a probabilistic framework which accounts
for the dependence between several ecological variables using bivariate
copulas to assess the suitability of offshore aquaculture. This framework
is applied in the south-eastern North Sea (see Fig. 1) to the cultivation of
Mytilus edulis, hereon blue mussels, and Saccharina latissima, hereon
sugar kelp. These two species have been identified as suitable using a
deterministic scoring model by Geisler et al., 2018. This methodology

Fig. 1. Water depths for the European Shelf. The area of interest (AOI) of this
study is indicated with a black frame, and the location of the FINO3 research
platform is marked by a blue diamond.
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allows to identify ecologically suitable locations for offshore cultivation
and, thus, can potentially contribute to the development of multi-use
approaches that could take advantage from offshore environments
(Buck, 2002), the design of marine spatial plans and the planning of a
more sustainable use of offshore environments.

The present paper is structured as follows. First, the three-
dimensional hydrodynamic and ecological numerical model used to
extract the observations of the environmental variables is described in
Section 2.1. In order to assess the suitability of blue mussels and sugar
kelp, three ecological variables per species are selected based on the
existing literature in Section 2.2. Also, for each of the variables, the
optimal growth and critical survival limits are defined. The methodol-
ogy to build the probabilistic model proposed in this study is described
in Section 2.4. For each observation point, daily extremes are extracted
during the cultivation months of each species. The dependence for each
pair of variables is first assessed through correlation analysis in Section
3.1 and, later, the best fitting bivariate copula model for each pair of
variables is investigated across the AOI in Section 3.2). The probabilities
of meeting the critical and optimal limits for each species are computed
using the developed probabilistic models in Section 3.3. These results
are compared to the probability calculations assuming independence
between the variables to assess whether the dependence plays a key role

in the process. The strengths and limitation of the developed framework,
its transferability to other species and areas and the obtained results are
discussed in Section 4. Finally, conclusions are drawn in Section 5.

2. Materials and methods

In this section, the steps of the proposed probabilistic framework for
performing suitability analysis in aquaculture are described, as well as
the case studies used to showcase its application. The methodology is
applied to two example species, namely blue mussels and sugar kelp, to
assess their spatial suitability for offshore cultivation. A flowchart
providing an overview of the method described below is displayed in
Fig. 2.

2.1. 3D hydrodynamic and water quality model

The environmental conditions in the area of interest, AOI, marked by
a black rectangle in Fig. 1, are extracted from model outputs of the 3D
Dutch Continental Shelf Model - Flexible Mesh (3D DCSM-FM) (Zijl
et al., 2023). Hydrodynamics and water quality processes are computed
using the D-Flow Flexible Mesh (D-Flow FM) component from the Delft
3D Flexible Mesh Suite (Deltares, 2023a). Water quality processes are

Fig. 2. Flowchart displaying the main procedures of the described methodology.
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simulated with the D-Water Quality module (Deltares, 2023b), fully
integrated within D-Flow FM.

In this study, the coupled hydrodynamic-water quality 3D DCSM-FM
version described in (van Leeuwen et al., 2023) is used. The 3D
DCSM-FM model domain covers the entire North-Western European
Shelf from 15∘W to 13∘E and from 43∘N to 64∘N, including the North Sea
(Fig. 1). The horizontal model grid is coarser near the offshore bound-
aries and in deep waters ( ≈ 4×4 nautical miles) and the resolution
increases toward the shallower waters and in the Southern North Sea to
0.5×0.5 nautical miles. The water column is represented using a z-sigma
layer approach. The top 100 m (or less in shallower areas, such as at the
AOI) are divided into a fixed number of 20 uniform layers (sigma--
layers). Beneath 100 m-depth the water column is divided into z-layers,
at fixed depths over the entire domain, with thicknesses increasing
exponentially by a factor 1.19 towards the deeper layers. The hydro-
dynamic component of the model simulates water levels, currents and
tides as well as temperature and salinity. The water quality component
of the model simulates the most relevant processes in the cycling of
major nutrients (nitrogen, phosphorus and silicate), of organic carbon
and dissolved oxygen. Water quality processes parameterisation is based
on Blauw et al. (2009).

The model was run for 2 years (2014 and 2015), using a 2-year
spinup (2012–2013 conditions), allowing to account for some inter-
annual variability. These years were selected, as these are the most
recent years computed and validated by van Leeuwen et al. (2023).
Model output is produced at an hourly timestep and a 4 nautical mile
spatial resolution for the AOI (from 6∘E to 10∘E and 53.5∘N to 57∘N, see
Fig. 1).

2.2. Variable selection and sampling

In this study, the proposed methodology is applied to assess the
suitability of offshore cultivation of two species, blue mussel Mytilus
edulis and sugar kelp Saccharina latissima, in the south-eastern North Sea.
Here, their growth differences and variables affecting their growth are
described for each species. Many factors can impact the growth of these
species, such as hydrodynamic variables (waves and currents) and light
availability, especially for exposed locations offshore. However, since
there is already existing knowledge on the suitability of such offshore
aquaculture based on hydrodynamic variables (e.g., Azevedo et al.,
2019; Buck and Buchholz, 2005; Geisler et al., 2018), they are dis-
regarded here. Instead, the focus is on ecological variables, as these are
as important for assessing the suitability of sites (Schmidt et al., 2018).
As salinity is not limiting for the respected species in the North Sea, it is
not considered here either.

Three variables per species are considered to assess their cultivation
suitability based on the existing literature (references in Table 1). The
water temperature Tw[ ∘C] is selected for both species. In addition, the

dissolved oxygen Odiss[g∕m3] and chlorophyll-a concentrations
Chla[mg∕m3] are considered for the blue mussels. For the sugar kelp, the
dissolved inorganic nitrogen DIN[g∕m3] and the dissolved inorganic
phosphorus concentration DIP[g∕m3] are selected in addition to Tw.
Further information about the variables is given below, while an over-
view of the selected variables can be found in Table 1. This Table also
contains information about the optimal and critical limits per variable,
which are further described below per species, and the references used
to define the variables and their limits. Time series including the limits
per variable for both species can be found in the Appendix A for the
research platform FINO3 (see location of the blue diamond in Fig. 1,
which is used as a reference location in this study.)

2.2.1. Blue Mussel, Mytilus edulis
In this study, the cultivation of the blue mussels Mytilus edulis is

considered as growing at submerged long-lines at sea. Buck (2007)
investigated such cultivation in the German Bight and concluded that
these structures for mussel cultivation should be at least 6–7 m below
mean surface level (MSL) to avoid high impacts of waves. The long-line
was installed at a depth of 5 m, while the cultivation range was from 5 to
8 m. Another pilot project in the German North Sea (Strothotte et al.,
2021) far offshore cultivated the species at depths of 7–11 m below MSL.
Therefore, 9 m below MSL is selected in the current study and the
selected ecological variables are extracted from the numerical model at
that depth. Although the blue mussels are growing throughout the whole
year, the main growth season is between March and October. Therefore,
data from these months is selected for the analysis.

As already described, the selected variables are water temperature
Tw [∘C], dissolved oxygen Odiss [g∕m3] and chlorophyll-a concentration
Chla [mg∕m3] based on existing literature (Bergström and Lindegarth,
2016; Tang and Riisgard, 2018; Kamermans et al., 2022; Li et al., 2022).
Blue mussels are relatively resistant to extreme water temperatures
(high and low), but optimal growth conditions exist for certain tem-
perature ranges according to Fly and Hilbish (2013). The minimum
dissolved oxygen concentration to enable growth of blue mussels should
be above 2 g∕m3 (Tyler-Walters and Hiscock, 2008; Tang and Riisgard,
2018). This is similar to the concentrations of Chla, which should not fall
below 0.5mg∕m3 to ensure the survivability of the species. Thus, minima
are selected to be most critical for both, Odiss and Chla.

2.2.2. Sugar kelp, Saccharina latissima
The second species considered in the current study is the sugar kelp

Saccharina latissima. According to Peteiro and Freire (2011), the ropes
for the sugar kelp are recommended to be at depths of 2–4 m below MSL.
In the pilot project in the German North Sea (Strothotte et al., 2021), the
sugar kelp is cultivated at depths of 0–4 m below MSL. Thus, here 2 m
below MSL is selected. As the sugar kelp develops better in colder water
temperatures, the main growth season is from September until May.
Therefore, data from this period at a depth of 2 m is used in this study.

The growth and survival of the sugar kelp relies heavily on the water
temperature Tw, as water temperatures above 20∘C are lethal for the
selected type of seaweed (Kerrison et al., 2015). The temperature ranges
that lead to the highest growth rates are given in Table 1. Besides, two
additional variables are inevitable for the growth of the sugar kelp ac-
cording to Buck and Buchholz (2004): dissolved inorganic nitrogen, DIN
(composed of both, ammonium, NH4, and nitrate, NO3), and dissolved
inorganic phosphorus, DIP (phosphate, PO4), each in [g∕m3]. Since too
low concentrations for both, DIN and DIP, are critical for the growth and
survival of the species, they are selected in this study.

2.2.3. Variable sampling
In this study, the daily maxima of the water temperatures Tw at the

appropriate depth (9 m and 2 m below MSL for blue mussels and sugar
kelp, respectively) are selected. The concomitants of 4 h before and after
the maxima of Tw are determined for the other variables and their
minimum values are selected.

Table 1
Overview of the selected three relevant variables and their limits for optimal
growth and survival per species, based on literature.

Blue mussels
Variable Optimal Critical References

Tw[ ∘C] 10 − 20 ≤25 Fly and Hilbish (2013); Kamermans et al.
(2022)

Odiss[g∕m3] > 2 ≤2 Belivermis et al. (2020); Tang and Riisgard
(2018)

Chla[mg∕m3] 3 − 10 > 0.5 Kamermans et al. (2022); Pascoe et al.
(2009); Riisgard et al. (2011); Filgueira et al.
(2009)

Sugar kelp
Variable Optimal Critical Reference

Tw[ ∘C] 5 − 15 ≤20 Kerrison et al. (2015)
DIN[g∕m3] > 0.35 > 0.098 Jevne et al. (2020)
DIP[g∕m3] > 0.0484 > 0.0136 via Redfield Ratio Redfield (1934)
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Fig. 3 shows an example of the data used for the relevant variables
Tw, Odiss and Chla of the blue mussel case at the FINO3 location. The
figure presents scatter plots per variable pair in their respective units, to
allow for a comparison of pairwise relationships. The limits from Table 1
are represented by dashed lines. On the diagonal of Fig. 3, the empirical
probabilistic distribution functions (pdf’s) per variable are shown.
Fig. F.1 in the Appendix F.1 shows the scatter data of the relevant var-
iables Tw, DIN and DIP for the sugar kelp.

2.3. Spearman rank correlation

Spearman’s rank correlation coefficient (Spearman, 1987), r, is
calculated between each pair of variables as a starting point of the
dependence analysis to assess the strength of the dependence between
variables and its significance (e.g. Hanea et al., 2006; Santjer et al.,
2023; Mares-Nasarre et al., 2024). r computes Pearson’s correlation
coefficient (Pearson and Galton, 1895) between the ranks of each vari-
able to assess monotonic relationships different to Pearson’s which de-
tects linear relationships. Thus, the Spearman’s rank correlation
coefficient r is used here to assess the degree of monotonic dependence
between the random variables and is given by

r =
Cov[R(X),R(Y)]

σR(X)σR(Y)
(1)

where Cov[R(X), R(Y)] is the covariance of the ranked variates of X and
Y, such as Tw or Odiss, and σR(X) and σR(Y) are their standard deviations. r
∈ [ − 1, 1], where r = 1 and − 1 represent the perfect (monotonic)
positive and negative correlation, respectively. In order to determine the
significance of the observed correlations, the p-values are calculated.
This significance test is done via the student-t distribution. Therefore,
first the t-score is calculated (Zar, 1972):

t = r
̅̅̅̅̅̅̅̅̅̅̅̅̅
n − 2
1 − r2

√

(2)

where n are the degrees of freedom or sample size. Following, the p-
value is defined as the combined area in both tails of the student-t dis-
tribution. Therefore, the p-value per tail can be determined via the cu-
mulative distribution function of the student-t distribution evaluated at
the t-score from Eq. (2) with (n − 2) degrees of freedom. A given rank
correlation is statistically significant if the p-value is below the signifi-
cant level of α = 0.05 and thus, it is unlikely that the observed corre-
lation is due to chance.

The goal of this analysis is to assess the strength of the dependence
between the selected variables (see Section 2.2) and whether they are
significant along the AOI. This can be used as a first assessment of
whether incorporating dependence between the variables is significant
for suitability analysis.

2.4. Copula modeling

Copulas are a popular approach to model dependence between
random variables (e.g., Nelsen, 2006; Genest and Favre, 2007; Joe,
2015). The concept of copulas is based on Sklar’s theorem (Sklar, 1959):
any multivariate joint distribution can be described in terms of a set of
univariate marginal distributions and a copula that models the depen-
dence between the variables. Thus, copulas are multivariate distribution
functions whose one-dimensional margins are uniform on the interval
[0, 1]. For the bivariate case, as used in this study, copulas can be
defined as follows:

Let H(x, y) for (x, y) ∈ R2 be a joint distribution with univariate
marginals F(x) and G(y), then there exists a copula C in the unit square I2

= ([0, 1] × [0, 1]):

H(x, y) = C(F(x),G(y)) (3)

Eq. (3) is satisfied for all (x,y) ∈ R2.

2.4.1. Empirical non-exceedance probabilities
In order to later calculate probabilities of meeting the optimal and

critical limits (see Table 1), the univariate uncertainty of each variable
needs to be modelled per location. This is done using the univariate
empirical distribution functions, as the limits from Table 1 are within the
range of observations and thus no extrapolation is required. Table 2
shows the empirical non-exceedance probabilities corresponding to
those limits at the location of the FINO3 research platform. Note that
FTw (x) denotes here the empirical cumulative distribution function of the
random variable Tw evaluated at x. Fig. 4 gives an example of the
empirical distribution functions of the three variables Tw, Odiss and Chla
of the blue mussel case at the location of the FINO3 research platform,
which are displayed together with the optimal limits indicated by ver-
tical dashed lines. Also, the empirical copulas are presented. For an
example of the case of the sugar kelp, see Fig. F.2 in Appendix F.1.

2.4.2. Characteristics of parametric copula models applied in this study
In this study, five commonly used parametric bivariate copula

models, with different characteristics are considered to capture the
possible asymmetric behaviour that the joint distributions of each pair
may exhibit. Copula models can be used to describe these asymmetries,
such as tail dependence. Upper tail dependence occurs when the cor-
relation between the high values of the two modelled random variables
is greater than that between lower values. Lower tail dependence occurs
when the opposite behavior is observed. For more information see Ap-
pendix B.

The copula models considered in this study are described below.
Fig. 5 shows samples generated from the five different bivariate copulas
considered in this study with the same rank correlation of r = 0.8,
namely (a) Gaussian, (b) Frank, (c) Gumbel, (d) Clayton, and two t-
copulas with different degrees of freedom ν in (e) and (f). Their bivariate
cumulative distribution functions (cdf’s) are given in Appendix C.

The density of the Gaussian copula is ellipse-shaped and thus sym-
metric (see Fig. 5 (a)). The distribution of the t-copula is also elliptical
but has a star-like shape and stronger dependence in the tails. Different
to the other considered copula models in this study, the bivariate t-
copula has two copula parameters. The first parameter is the same as for
the Gaussian copula, the correlation coefficient ρ, while the second
parameter is the shape parameter ν, describing the degree of freedom.
High degrees of freedom make the t-copula converge towards the
Gaussian copula (see Fig. 5 (f) for ν = 10). The density of the Frank
copula is also symmetric and has similar characteristics to the Gaussian
copula, with the difference that it has greater dependence in both tails
than in the centre. The Gaussian, Frank and t-copula are symmetrical
and thus are not characterised by any tail dependence (Joe, 2015).
Different to that, the Gumbel copula has an upper tail dependence in the
top right quadrant, as the correlation is higher in this quadrant of the
bivariate distribution, while the Clayton copula has a lower tail
dependence in the bottom left quadrant (see Fig. 5 (c) and (d)). Because
of the different tail dependencies of these two copula models, rotation
might be needed during the copula fitting process. Therefore, the
quadrant with the highest correlation of the variable pair is determined
and the Gumbel and Clayton copula are rotated clockwise by 90∘, 180∘ or
270∘, if necessary, such that their tail dependence is in the quadrant with
the strongest correlation.

2.4.3. Goodness-of-fit measures for copula selection
Goodness-of-fit (GOF) measures are needed to assess and compare

the performance of different parametric copula models. Two GOF
measures are applied here. The first one is the Cramér-von Mises (CvM)
statistic Sn, as described by Genest et al. (2009). It determines the sum of
squared differences between the empirical joint cdf and the joint cdf of
the parametric copula model. Sn for a sample length of n is determined
as:
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Sn(u) = n
∑

∣n∣
{Cn(u) − Cθ̂n (u)}

2
,u ∈ [0, 1]2 (4)

Here, Cn(u) = 1
n
∑n

i=11(Ui ≤ u) is the empirical copula and Cθ̂n (u) is
the parametric copula with estimated parameter θ̂n from the sample.
The lower Sn(u), the better the GOF. For the calculation of the CvM
statistics, the BANSHEE toolbox version 1.3 was used (see Paprotny et al.
(2020) and Mendoza-Lugo and Morales-Nápoles (2023) for the MATLAB
implementation and Koot et al. (2023) for the Python implementation).

The second measure to assess the GOF of the copula models are the
semi-correlations, as described by Joe (2015). For this method, the

uniform margins are transformed to standard normal N(0, 1) margins
through the inverse of the standard normal univariate Gaussian distri-
bution. This allows to better evaluate asymmetries such as tail depen-
dence. Then, the correlation coefficients per quadrant are calculated.
For positive correlated samples, the upper and lower semi-correlation
coefficients are defined as:

ρ̂+

N = Cor[Z1, Z2|Z1 > 0, Z2 > 0],
ρ̂−

N = Cor[Z1, Z2|Z1 < 0, Z2 < 0].
(5)

The smaller the difference of the semi-correlation coefficients be-
tween the empirical and parametric copula, the better the fit. If the GOF
results of the two described methods do not align, the results of Sn are
followed.

2.5. Joint multivariate probability calculation

Once the parametric copulas for each pair of variables and locations
are selected and fitted, the joint probabilities of meeting optimal growth
and critical survival limits are computed for the respective growth
period of the species. These probabilities are computed for each location
with and without considering dependence between the variables to
assess the role of dependence. Assuming independence, the joint prob-
ability can be calculated as follows:

P
(⋂k

j=1
Aj
)
=

∏k

j=1
P(Aj) (6)

where P(Aj) is the probability of variable Aj meeting the optimal (or
critical) condition. These probabilities are determined using the
empirical cdf’s of the variable data sets (see Section 2.4). When

Fig. 3. Overview of sampled data for blue mussels at the location of the FINO3 research platform together with the optimal limits from Table 1, while on the diagonal
the empirical probabilistic distribution functions (pdf’s) are shown.

Table 2
Overview of the selected three relevant variables and the univariate probability
of meeting the limits (optimal and critical, see Table 1), based on their empirical
marginal distributions, here for an example location at the FINO3 research
platform.

Blue mussels
Variable Optimal Critical

Tw FTw (10) = 0.298 FTw (25) = 1
FTw (20) = 0.989 

Odiss 1 − FOdiss (2) = 1 1 − FOdiss (2) = 1
Chla FChla (3) = 0.601 1 − FChla (0.5) = 0.918

FChla (10) = 0.959 

Sugar kelp
Variable Optimal Critical

Tw FTw (5) = 0.084 FTw (20) = 1
FTw (15) = 0.802 

DIN 1 − FDIN(0.35) = 0 1 − FDIN(0.098) = 0.671
DIP 1 − FDIN(0.0484) = 0 1 − FDIN(0.0136) = 0.562
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considering dependence between variables, the fitted bivariate copulas
are used as in higher dimensions multivariate copula modelling becomes
more difficult and loses part of its flexibility. Here, a pair copula con-
struction or a one-tree vine-copula (Joe, 2015) is applied similar to
previous studies (e.g. Mares-Nasarre et al., 2024), as shown in Fig. 6. The
one-tree vine-copula consists of three nodes which represent the three
relevant variables per species and two edges (Cij), which are the bivar-
iate copulas. Note that the variables X1 and X3 are then conditionally
independent given X2.

The model is built using the best fitting bivariate copulas for the pairs
Tw and Odiss, and Tw and Chla for the blue mussels and bivariate copulas
for the pairs Tw and DIN, and Tw and DIP for the sugar kelp. This is, the
conditioning variable for both species (variable X2 in Fig. 6) is set to
water temperature Tw, which is the dominant variable. Tw is easy to
measure and influences the other selected variables, called conditioned
variables.

The joint probability of meeting certain conditions per species and
location is calculated here through numerical simulation as follows:

1. The limits defined in Table 1 are transformed to unit space via the
empirical marginal distributions of the variables (see Table 2).

2. For each of the three variables per species, random samples with size
n = 10, 000 in [0,1] are drawn from a uniform distribution, denoted
as u1, u2 and u3. u1 represents random samples of Tw per species,
while u2 represents the conditional probabilities P(Odiss∣Tw) for blue
mussels and P(DIN∣Tw) for sugar kelp. Consequently, u3 represents
the conditional probabilities P(Chla∣Tw) for blue mussels and P
(DIP∣Tw) for sugar kelp, respectively.

3. A set of n samples per variable pair (u1 and u2, and u1 and u3,
respectively) is generated for each species using Monte-Carlo simu-
lations. This is done via the cdf and the inverse h-function (Aas et al.,
2009) for the best fitting copula models. This results in sample clouds
per variable pair conditioning on Tw. More information about the
inverse h-function can be found in Appendix D.

4. In order to determine the joint probability of these variables satis-
fying the optimal or critical growth requirements, the samples ful-
filling these conditions are counted (see an example in Fig. 7, where
the green samples fulfil the requirements). The ratio of this amount
of samples to the total number of samples n provides an estimate of
the probability accounting for the dependence between the pairs.

3. Results

3.1. Correlation analysis of the data

A correlation analysis is performed via the Spearman rank correla-
tion coefficient as described in Section 2.3. The ranges of these rank
correlation coefficients for the offshore AOI (see Fig. 1) are shown in
Table 3.

As shown in Table 3, the correlations are strong for the offshore AOI,
mostly linked with p-values below the significance level (here α = 0.05)
being then significant correlations (see Section 2.3). For the variable
pairs of the sugar kelp, correlations are occasionally found not to be
significant. This indicates that the dependence between the variables
might be relevant and, thus, needs to be considered in the suitability
analysis. The results in the following sections will mainly focus on the
blue mussel due to the stronger dependence between the variables.

Fig. 4. Overview of uniform observations of the sampled data for blue mussels at the location of the FINO3 research platform together with the empirical non-
exceedance probabilities of the optimal limits (see Table 2), while on the diagonal the univariate empirical probabilistic distribution functions are shown
together with the optimal limits from Table 1.
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Partial results for the sugar kelp will be presented; the complete results
can be found in the Appendix F3.

For further results on the spatial variability of the rank correlation
coefficients and corresponding p-values, the reader is referred to the
Appendix E.1 (Fig. E.1 and Fig. E.2) for the blue mussels and to the
Appendix F.2 (Fig. F.3 and Fig. F.4) for the sugar kelp.

3.2. Copula selection and fitting

As introduced in Fig. 4 copulas are used here to model the depen-
dence between the pairs of studied variables. Best copula model is
selected by fitting a selection of copula families (Gaussian, Frank,
Gumbel, Clayton and t-) and comparing them using two GOF techniques:
(1) the CvM statistic, and (2) the semi-correlations, as exposed in Fig. 41.

The spatial variability of the best fitting copula model for the vari-
able pairs Tw and Odiss, and Tw and Chla is displayed in Fig. 8 for the blue
mussel case, where each copula is represented by a different colour. For
the sugar kelp, the results for the pairs Tw and DIN, and Tw and DIP are
shown in the Appendix F.3 (Fig. F.5 (a) and Fig. F.5 (b)).

In the case of the blue mussels, the Frank copula is the best fit for the
variable pair Tw and Odiss across most of the investigated area, as dis-
played in Fig. 8 (a), with a parameter that ranges from − 24 to − 12 (see
Fig. 9 (b)). The Clayton copula is the optimal fit for the central region of
the North Sea and its parameter varies between 4 and 11, as shown in
Fig. 9 (a). The main difference in the results for these two areas is the
correlation in the upper left tail quadrant: if the correlation in this
quadrant for the pair of Tw and Odiss is below − 0.9, the Clayton copula
provides the best fit. When correlation goes above − 0.9, the symmet-
rical Frank copula becomes the best fit. Note that Tw and Odiss are
negatively correlated so it is required to rotate the Frank and Clayton
copula. As this variable pair is characterised by a strong correlation in
the upper right quadrant, the rotation angle for the Clayton copula is
consistently 270∘ for the entire area. The rotation angle of the Clayton
copula for the pair of Tw and Odiss can be found in Fig. E.3 (c) in the
Appendix E.2. Different to the Clayton copula, the Frank copula is
symmetrical and is thus rotated by 90∘ for negative correlations.

Regarding the pair Tw and Chla, the Clayton copula provides the best
fit (see Fig. 8 (b)) with the parameter increasing gradually from
approximately 0 in the south-east to 1.3 in the north-west of the area,
similar to the correlation pattern (see Fig. E.1 (b) in the Appendix E.1).

Fig. 5. Samples generated for random variables with rank correlation of r = 0.8
for (a) Gaussian, (b) Frank, (c) Gumbel, (d) Clayton and (e) and (f) t-copula with
ν = 0.3 and ν = 10 respectively, each for n = 10, 000 samples.

Fig. 6. One-tree vine with three nodes and two edges.

Fig. 7. Three-dimensional sample cloud for an arbitrary example, with u1 being
the conditioning variable, where the samples in green are meeting the
required conditions.

Table 3
Correlation ranges in the offshore part of the south-eastern North Sea.

Blue mussel

Tw − Odiss − 0.95 to − 0.9
Tw − Chla − 0.68 to − 0.2

Sugar kelp

Tw − DIN − 0.6 to 0
Tw − DIP − 0.7 to 0

Fig. 8. Best fitting copulas across the AOI for both variable pairs for the blue
mussels: (a) Tw and Odiss and (b) Tw and Chla.

1 Because of the extensive volume of results obtained from these two fitting
methods, the findings are not presented in this study but can be made available
upon request.
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Again, the variables are negatively correlated, so rotation of the copulas
is required. Different to the pair of Tw and Odiss, the degree of rotation
angle for the Clayton copula is less uniform, although 270∘ is still the
most prominent (see Fig. E.3 (d) in the Appendix E.2).

The t-copula is the best fitting copula model for the pair Tw and Chla
in the northwestern part, where the correlation is the strongest. The
bivariate t-copula presents two parameters: ρ (correlation coefficient)
and ν (degrees of freedom); ρ varies between − 0.6 and − 0.7, while the
parameter ν ranges from 2 to 10 (see Fig. 10 (b) and (c)). However, note
that for a ν > 10, the t-copula approximates the Gaussian copula. Finally,
near the coastline, where the correlation is not found significant, the
fitting of copula models is difficult and spread between the different
considered models.

Regarding the sugar kelp, the fitting of copula models for the variable
pair Tw with DIN does not present one dominant copula model across the
entire studied area (see Fig. F.5 (a) in the Appendix F.3) due to the low
observed correlations. In regions with a stronger correlation near the
coastline and further offshore, the Frank or Gaussian copula models
appear to be the most suitable fit. Thus, no significant tail dependence is
observed between the variables. The variability of the parameters for
these two fitted copulas is shown in Fig. F.6 in the Appendix F.4. For a
great part of the studied area offshore, the t-copula is predominant.

However, the copula parameter ν reaches values up to 107, approxi-
mating a Gaussian copula.

Different to the previous variable pair, the fitting of copula models is
less varied across the area for the variable pair Tw with DIP (as depicted
in Fig. F.5 (b) in the Appendix F.3). In regions with correlations between
− 0.4–0, the t-copula is the best fit with very high ν values (see Fig. F.7 in
the Appendix F.4). In regions where the correlation is stronger (near the
coast and further offshore), the Gumbel and Frank copulas are identified
as the best fit. For the Gumbel copula, the parameter varies between 1
and 2.2, while for the Frank copula ranges between − 8 and − 2. Note
that the samples for the Gumbel copula are rotated by 270 ∘C (see
Fig. F.8 (b) in the Appendix F.4) and for the symmetrical Frank copula by
90 ∘, as the correlation of this variable pair of Tw and DIP is negative.

In summary, the fitting of copula families in the blue mussel case
within the offshore AOI is rather uniform. In the nearshore area, how-
ever, where the nearshore processes take a relevant role, the correlation
between variables is lower leading to less clear patterns. Similarly, for
the sugar kelp, where correlations are in general lower, the fitting and
selection of the best copula model becomes more challenging.

3.3. Probability calculation and suitability maps

After selecting the copula models to fit the dependence between the
variables, the probabilities of meeting the optimal and critical thresh-
olds for the three variables during the main growth season of each
species is calculated as described in Section 2.5. These probabilities are
also calculated under the independence assumption to investigate
whether incorporating the dependence between variables improves the
estimations.

First, the probabilities of meeting the critical limits (see Table 1) are
investigated. For the blue mussels, these probabilities are for most of the
area close to 1, regardless of whether dependence is considered or not
(see Fig. E.5 (a) and (b) in the Appendix E.3). For the sugar kelp, it can be
seen that the probability of meeting the critical limits is high close to the
coast but decreases with increasing distance to the shore, as shown in
Fig. F.10 in the Appendix F.5. In Fig. F.10 (c), the differences between
the probabilities computed accounting for the dependence and dis-
regarding it are displayed, reaching a maximum of about 0.09. Close to
the coast, the differences are around 0, while offshore, the differences in
probabilities are negative for the area with tail dependence (Gumbel
model) between DIP and Tw and positive where symmetrical copula
models (i.e., Frank and t-copulas) are the best fit. Note that these dif-
ferences become more remarkable for the areas with low probabilities of
meeting the critical thresholds (northwestern part of the AOI). When
computing the difference relative to the actual probability considering
dependence, the difference can be up to 40 %.

With regard to the optimal growth conditions for the blue mussels,
the highest probabilities of meeting them are observed near the coast,
exceeding 0.4, as displayed in Fig. 11 (a). As the distance from the shore
increases, the probability gradually decreases, reaching approximately
0.2 for most of the offshore area. In an elongated area running from
south to north along the German and Danish coast, a similar probability
to that near the shore is observed. This pattern is caused by the differ-
ences in the univariate probabilities; the probability of meeting the
optimal conditions is relatively consistent and high for Tw and Odiss,
while the probability of Chla meeting the optimal conditions is more
variable. It is highest close to the coast and within the aforementioned
elongated shape, ranging from 0.6 to 0.8. In the rest of the area, the
probability is relatively low, ranging from 0.2 to 0.4. This leads to Chla
being the most limiting factor, as already pointed out by Geisler et al.,
2018.

Regarding the difference between considering or disregarding the
dependence between the variables, a maximum absolute difference of
about 0.1 is found, as shown in see Fig. 11 (b). The darker area in Fig. 11
(b) indicates a positive difference between the dependent and inde-
pendent approach, thus ignoring the dependence between variables

Fig. 9. The spatial copula parameter for the Clayton copula (a) and the Frank
copula (b) for the variable pair of Tw and Odiss for the blue mussel.

Fig. 10. The spatial copula parameter for (a) the Clayton copula, (b) rho and (c)
ν of the t-copula for the variable pair of Tw and Chla for the blue mussel.
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would underestimate the joint probability. In contrast to that, the lighter
area northwest indicates a negative difference, such that assuming in-
dependence might overestimate the joint probability for these areas.

For the sugar kelp, the probabilities of meeting the optimal growth
conditions across the entire area are very low regardless considering or
not the dependence between the studied variables (see Fig. F.9 (a) and
(b) in the Appendix F.5). While the probability of meeting the optimal
conditions for Tw all along the domain and DIN close to the coast is
relative high, DIP marginally fails to meet the specified conditions. The
probability of DIP meeting the optimal concentrations is close to 0 for
the entire area, except in estuaries and rivers, where the probability
reaches a maximum of more than 0.6. This could be primarily explained
by the nutrient influxes from coastal regions for both, DIN and DIP. The
results of the present study align with the findings from previous studies.
For instance, Gimpel et al. (2015) found that the offshore cultivation of
blue mussels is in general feasible for the AOI, while for sugar kelp,
regions with higher water temperatures and nutrient rich waters due to
river inflows are mostly suitable.

In summary, the critical limits for the blue mussel species are
generally met differently to those for the sugar kelp, especially further
offshore. For the optimal growth conditions, the overall suitability
across the entire area is higher for the blue mussels compared to the
sugar kelp, as DIP marginally fails to meet the optimal limits. Besides,
the strengths of the correlation between variables has a direct impact on
whether the dependence makes a difference in the computed calcula-
tions and, thus, needs to be accounted for. If the correlation is not sig-
nificant, the simplified independent probability calculation may be
sufficient. However, accounting for the dependence when asymmetries
such as tail dependence are present might be needed when dealing with
extremes, namely minimum and maximum observations of the vari-
ables. Also, in cases where low probabilities are computed (e.g. the
optimal requirements for the blue mussel species in Fig. 11 or critical
conditions for the sugar kelp in Fig. F.10 in the Appendix F.5), the dif-
ferences between accounting for the dependence or disregarding it can
be up to values between 30 % and 40 %. This highlights the importance
of considering the dependence between variables in suitability studied.

4. Discussion

In this study, a probabilistic framework is proposed to assess the
suitability of offshore aquaculture accounting for the dependence be-
tween relevant ecological variables. This methodology is applied as a
case study to two species, the blue mussel Mytilus edulis and the sugar
kelp Saccharina latissima. The growth offshore in the North Sea is
investigated by computing the probability of occurrence of the optimal
and critical conditions of these species. Such conditions are

parameterised using three variables per species during their growth
season: temperature, dissolved oxygen and chlorophyll-a concentrations
for the blue mussels, and temperature, dissolved inorganic nitrogen and
phosphorus concentrations for the sugar kelp. Thresholds describing
critical conditions for the survival of the species and optimal conditions
for their growth are defined based on the existing literature. Empirical
distribution functions are applied here to model the univariate uncer-
tainty of each variable (see Section 2.4.1), while bivariate copula models
are recommended in Section 2.5 to account for the probabilistic
dependence between variables. Empirical distribution functions were
used here since the optimal and critical limits are generally for most of
the variables within the observed ranges and there is no need to
extrapolate out of them. However, if those thresholds would be changed
towards more extreme probabilities, parametric univariate margins
would be needed.

The probabilities to meet the critical survival and optimal growth
limits for each species were computed both accounting for the depen-
dence using bivariate copulas and disregarding it. The results show that
this may lead to significant differences in the computed probabilities
and, thus, in the conclusions of the suitability study. Here, five para-
metric families of bivariate copulas were considered, namely Gaussian,
Frank, Gumbel, Clayton, and t-copula. Such parametric copulas were
selected as they are commonly used and they cover different shapes of
symmetric dependence, as well as the asymmetry of tail dependence.
However, no other asymmetries were considered within the considered
models. This is, for a positive dependence, asymmetries between the
upper right and lower left quadrant are considered, but not between the
upper left and lower right quadrant. Thus, further extensions of this
work may focus on analyzing the role of such asymmetries in the
computation of the probabilities (Jaeger and Morales-Nápoles, 2017).

Regarding the results, high probabilities of meeting the optimal or
critical requirements for the growth of the blue mussels are obtained. On
the contrary, the probabilities of meeting optimal conditions for the
sugar kelp are low due to the variables marginally failing to meet the
specified optimal growth conditions. This is, the computed probabilities
are sensitive to the defined thresholds. However, slightly different limits
are provided for some of the studied variables depending on the source
and there is no general consensus about the relevance of some ecological
variables for the species to grow (Bergström and Lindegarth, 2016;
Kamermans et al., 2022). Moreover, there is limited literature to define
limits for DIN and DIP for sugar kelp. In this study, the conditions for
optimal and critical DIN concentrations are taken from Jevne et al.
(2020), where the growth of small sporophytes under controlled con-
ditions in tanks for 20 days of experimental time was investigated. These
experimental results were also used to determine the conditions for DIP
via the molar Redfield ratio of 16:1 (molN∕molP) (Redfield, 1934).
Therefore, field observations would be desirable to validate such limits,
as well as further research on defining the critical and optimal threshold
for growth. However, the goal of the applications here is to showcase the
proposed probabilistic methodology and, thus, the computed probabil-
ities can be recalculated in light of new literature.

Possible extensions of this study could include hydrodynamic factors
like waves and currents that can be crucial for species (Kerrison et al.,
2015) and the safety of the installed structures for their growth. Also,
interactions between species, such as integrated multi-trophic aquacul-
ture (IMTA) or influences of large-scale cultivation systems on e.g. the
water quality can be included in extensions of this study. If the incor-
poration of further variables leads to higher dimensional models,
copula-based Bayesian Networks (e.g. Hanea et al., 2006) or Vine
Copula models (Joe, 2015) might be applied. Moreover, long-term ef-
fects such as the increase in water temperature or potential changes on
the nutrients for the species due to climate change can be investigated
and, if found significant, modelled using non-stationary margins (Ragno
et al., 2019). Finally, future studies could aim to account for the rela-
tionship between consecutive extremes as, for example, the sugar kelp
Saccharina latissima can tolerate short-term exposure to high DIP

Fig. 11. Probabilities of meeting the optimal conditions for the suitability of
blue mussel Mytilus edulis: (a) probabilities computed using the dependence
models, and (b) (absolute) differences between the probabilities computed ac-
counting for the dependence and assuming independence between
the variables.
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concentrations without negative effects for a few days (Lubsch and
Timmermans, 2019). This is not investigated here, as this study analyses
daily extremes independently, rather than in sequence.

The proposed method is highly transferable to other species, such as
fish or oysters, to define cultivation suitability through probabilities by
accounting for the probabilistic dependence structure among variables.
Beyond aquaculture, renaturation or species reintroduction, not just in
the marine context, are a possible field of application.

5. Conclusion

The offshore aquaculture sector is still in early stages. Some meth-
odologies exist for spatial planning, but they do not account for the
dependence between the relevant growth variables of species. In this
study, a method accounting for this dependence between variables is
proposed and its results are compared to the results when disregarding it
(independent case). To model the joint distributions of the studied
variables, bivariate copulas are applied. Using the developed models,
the spatial suitability for the cultivation of two species, specifically blue
mussels Mytilus edulis and sugar kelp Saccharina latissima, is assessed in
the south-eastern North Sea. This is done by determining the probabil-
ities of meeting certain conditions for three ecological variables per
species. The results show that there is a significant difference in the
probabilities when incorporating the dependence compared to assuming
probabilistic independence. This is especially remarkable for areas with
low probabilities (less suitable areas for cultivation) as not accounting
for dependence can underestimate the suitability by up to 40 %. How-
ever, if the correlation between the variables is low, the independent
approach may be sufficient, such as in most of the studied area for the
sugar kelp. Besides, the results of this study indicate that both species’
cultivation is generally suitable in the defined area with regard to their

survival conditions. For the optimal growth conditions, an offshore
north-south elongated area along the German and Danish coast seems to
be most suitable for blue mussel cultivation next to near-coast areas.
Different to that, optimal conditions for the sugar kelp are only met in
rivers and their estuaries.
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Appendix A. Timeseries of the studied variables

Fig. A.1. Time series of the relevant variables for the blue mussels, where the green background marks the optimal growth conditions and the yellow parts mark the
critical survival conditions.
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Fig. A.2. Time series of the relevant variables for the sugar kelp, where the green background marks the optimal growth conditions and the yellow parts mark the
critical survival conditions.

B. Tail dependence

Here, the tail dependencies are described.
The upper tail dependence parameter λU can be described as follows:

λU = lim
u→1
P
[
X > F− 1

X (u)
⃒
⃒Y > G− 1

Y (u)
]
,

λU ∈ [0, 1]
(B.1)

While the lower tail dependence parameter λL is determined by:

λL = lim
u→0
P
[
X ≤ F− 1

X (u)
⃒
⃒Y ≤ G− 1

Y (u)
]
,

λL ∈ [0, 1]
(B.2)

Where X and Y are continuous random variables with distribution functions ∣F∣ and ∣G∣. If λU> 0 then X and Y are upper tail dependent while if λL>
0, the random variables are lower tail dependent (Nelsen, 2006).

C. Cumulative distribution functions of bivariate parametric copulas

Below, the bivariate cumulative distribution function (cdf) of the respected copula families are given (Czado, 2019; Nelsen, 2006; Joe, 2015).
The cdf for the bivariate Gaussian copula is given by

C(u1, u2; ρ12) = Φ2
(
Φ− 1(u1),Φ− 1(u2); ρ12

)
(C.1)

where Φ2 is the joint cdf of a bivariate normal distribution, Φ− 1 is the inverse cdf of a univariate standard normal distribution and ρ12 being the
correlation coefficient.

The cdf for the bivariate t-copula is given by

C(u1, u2, ν12, ρ12) =

∫ u1

0

∫ u2

0

t
(
T− 1

ν12
(v1),T− 1

ν12
(v2); ν12, ρ12

)

tν12

(
T− 1

ν12
(v1)

)
tν12

(
T− 1

ν12
(v2)

) dv1dv2 (C.2)

where T− 1
ν12

(⋅) is the inverse of the cdf of a univariate t-distribution with ν12 degrees of freedom, tν12 (⋅) is the pdf of a univariate t-distribution with ν12

degrees of freedom and t( ⋅ , ⋅ , ν12, ρ12) is the bivariate pdf of the t-distribution.
The cdf for the bivariate Frank copula is given by

C(u1, u2, δ12) =

−
1

δ12
ln
(

1 − e− δ12 − (1 − e− δ12u1 )(1 − e− δ12u2 )

1 − e− δ12

) (C.3)

where − ∞ < δ12 < ∞ is the copula parameter, describing the dependence, while δ12 → 0+ means independence.
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The cdf for the bivariate Clayton copula is given by

C(u1, u2, δ) =
(
u− δ

1 + u− δ
2 − 1

)1
δ (C.4)

where 0 < δ < ∞ is the copula parameter, describing the dependence, while independence occurs with δ → 0.
The cdf for the bivariate Gumbel copula is given by

C(u1, u2, δ) = exp

⎡

⎣ − {(− lnu1)
δ
+ (− lnu2)

δ
}

1
δ

⎤

⎦ (C.5)

where δ > = 1 is parameter of dependence, while independence is described with δ = 1.

D. (Inverse) conditional distribution functions

Conditional distribution functions associated with a bivariate copula are used in this study. These are usually referred to as h-functions by (Aas
et al., 2009). For a bivariate copula CXY, the h-function is defined as:

h(x, y, θxy) = F(x|y) =

∂CXY(x, y, θxy)
∂y

(D.1)

with X being the conditioned variable, Y being the conditioning variable, and θxy being the set of parameters for the copula of the joint distribution
function of x and y. It represents the cdf when X and Y are uniform.

Its inverse with respect to the first variable X, h− 1(X, Y, θxy) is equivalent to the inverse of the conditional distribution function. For the copulas used
here (Gaussian, Gumbel, Clayton, Frank, and t-copula), the h-function is given by an explicit analytical expression that can be analytically inverted for
all pair-copulas except for Gumbel, which requires numerical inversion (Aas et al., 2009; Czado, 2019). Below, the inverse conditional distribution
functions (inverse h-functions) of the respected copula families are given, as well as the h-function for the Gumbel copula (Aas et al., 2009; Joe, 2015).

The inverse conditional distribution function (hinv) for the Gaussian copula is given by

h− 1
12 (u1, u2, ρ12) =

Φ
{

Φ− 1(u1)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ρ2
12

√

+ ρ12Φ− 1(u2))

} (D.2)

where ρ12 is the parameter of the copula, Φ is the cdf of the standard normal distribution and Φ− 1 its inverse.
The inverse conditional distribution function (hinv) for the t-copula is given by

h− 1
12 (u1, u2, ρ12, ν12) =

tν12 × {t− 1
ν12+1(u1)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
ν12 + (t− 1

ν12
(u2))

2
)
(1 − ρ2

12)

ν12 + 1

√
√
√
√

+ρ12t− 1
ν12
(u2)

(D.3)

where ρ12 is the parameter of the copula, ν the degree of freedom, and tν12 the standard cdf of the t-distribution and t− 1
ν12

its inverse function.
The inverse conditional distribution function (hinv) for the Frank copula is given by

h− 1
12 (u1, u2, δ12) =

− log
{

1 −
1 − e− δ12

(u− 1
1 − 1)e− δ12u2 + 1

}

∕δ12

(D.4)

where δ12 is the parameter of the copula.
The inverse conditional distribution function (hinv) for the Clayton copula is given by

h− 1
12 (u1, u2, δ12) =

{
(
u1uδ12+1

2
)− δ12

δ12+1 + 1 − u− δ12
2

}− 1∕δ12 (D.5)

where 0 < δ12 < ∞ is the parameter of the copula, controlling the dependence.
The conditional distribution function for the Gumbel copula is given by
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h(u1, u2, δ12) = C12(u1, u2)
1
u2
(− logu2)

δ12 − 1

×{(− logu1)
δ12 + (− logu2)

δ12}
1∕δ12 − 1

(D.6)

where C12(u1, u2) is the copula, as defined in Equation (C.5) and δ12≥1 is the parameter of the copula, controlling the dependence. Note that it is
necessary to obtain the inverse of the h-function numerically.

E. Additional results for the blue mussel case

E.1. Correlation analysis

Fig. E.1. Correlations between the selected three variable pairs for the blue mussel case: (a) Tw and Odiss, (b) Tw and Chla and (c) Odiss and Chla.

Fig. E.2. p-values for the correlations between the selected three variable pairs for the blue mussel case: (a) Tw and Odiss, (b) Tw and Chla and (c) Odiss and Chla.
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E.2. Angle of rotation for Gumbel and Clayton copula

Fig. E.3. Rotation of the Gumbel Copula in (a) and (b) and rotation of the Clayton copula in (c) and (d) for the variable pairs of Tw and Odiss, and Tw and Chla,
respectively.

E.3. Probability calculation

Fig. E.4. The spatial probabilities with (a) accounting for dependence (Pdep) and (b) without (Pindep), describing the suitability of blue mussel Mytilus edulis for the
optimal growth conditions.
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Fig. E.5. The spatial probabilities with (a) considering (Pdep), (b) without considering dependence (Pindep), describing the suitability of blue mussel Mytilus edulis for
the critical growth conditions; while in (c), the differences between the two approaches is displayed.

F. Additional results for the sugar kelp

F.1. Example of the sampled data

Fig. F.1. Overview of sampled data for sugar kelp at the location of the FINO3 research platform together with the optimal limits from Table 1, while on the diagonal
the empirical probabilistic distribution functions (pdf’s) are shown.
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Fig. F.2. Overview of uniform observations of the sampled data for sugar kelp at the location of the FINO3 research platform together with the empirical non-
exceedance probabilities of the optimal limits (see Table 2), while on the diagonal the univariate empirical probabilistic distribution functions are shown
together with the optimal limits from Table 1.

F.2. Correlation analysis

Fig. F.3. Correlations between the selected three variable pairs for the sugar kelp: (a) Tw and DIN, (b) Tw and DIP and (c) DIN and DIP.
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Fig. F.4. p-values for the correlations between the selected three variable pairs for the sugar kelp: (a) Tw and DIN, (b) Tw and DIP and (c) DIN and DIP.

F.3. Copula fitting results

Fig. F.5. Best fitting copulas across the AOI for both variable pairs for the sugar kelp: in (a) Tw and DIN and in (b) Tw and DIP.
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F.4. Copula parameter and angle of rotation for Gumbel and Clayton copula

Fig. F.6. The spatial copula parameter for the respected copula families for the variable pair of Tw and DIN for the sugar kelp.

Fig. F.7. The spatial copula parameter for the Gumbel, Frank and t-copula for the variable pair of Tw and DIP for the sugar kelp.
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Fig. F.8. Rotation of the Gumbel and Clayton Copula for the sugar kelp for the variable pairs of Tw and DIN and Tw and DIP.

F.5. Probability calculation

Fig. F.9. The spatial probabilities with (a) considering dependence (Pdep), (b) without considering dependence (Pindep), describing the suitability of the sugar kelp
Saccharina latissima for the optimal growth conditions and (c) the difference between the two approaches.
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Fig. F.10. The spatial probabilities with (a) considering dependence (Pdep), (b) without considering dependence (Pindep), describing the suitability of sugar kelp
Saccharina latissima for the critical growth conditions and (c) the differences between the two approaches.
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Pogoda, B., Temming, A., 2015. A gis modelling framework to evaluate marine
spatial planning scenarios: co-location of offshore wind farms and aquaculture in the

R. Santjer et al. Aquacultural Engineering 107 (2024) 102479 

21 

https://doi.org/10.1016/j.insmatheco.2007.02.001
https://doi.org/10.1016/j.insmatheco.2007.02.001
https://doi.org/10.1080/00318884.2019.1625610
https://doi.org/10.1080/00318884.2019.1625610
https://doi.org/10.1016/j.chemosphere.2020.126314
https://doi.org/10.1016/j.chemosphere.2020.126314
https://doi.org/10.1016/j.ocecoaman.2014.04.007
https://doi.org/10.1016/j.ecss.2016.01.040
http://refhub.elsevier.com/S0144-8609(24)00090-6/sbref6
http://refhub.elsevier.com/S0144-8609(24)00090-6/sbref6
http://refhub.elsevier.com/S0144-8609(24)00090-6/sbref6
https://doi.org/10.1007/s10499-012-9501-0
http://refhub.elsevier.com/S0144-8609(24)00090-6/sbref8
http://refhub.elsevier.com/S0144-8609(24)00090-6/sbref8
http://refhub.elsevier.com/S0144-8609(24)00090-6/sbref8
https://doi.org/10.1007/s10152-006-0056-1
https://doi.org/10.1007/s10152-006-0056-1
https://doi.org/10.3389/faquc.2024.1428056
https://doi.org/10.1023/B:JAPH.0000047947.96231.ea
https://doi.org/10.1023/B:JAPH.0000047947.96231.ea
https://doi.org/10.1016/j.aquaculture.2005.04.062
https://doi.org/10.1016/j.aquaculture.2005.04.062
https://doi.org/10.1016/j.ocecoaman.2004.04.002
https://doi.org/10.1016/j.ocecoaman.2004.04.002
https://doi.org/10.1007/s10152-008-0115-x
https://doi.org/10.1016/j.ecolmodel.2017.10.012
https://doi.org/10.1016/j.rser.2016.10.046
http://refhub.elsevier.com/S0144-8609(24)00090-6/sbref17
http://refhub.elsevier.com/S0144-8609(24)00090-6/sbref17
http://refhub.elsevier.com/S0144-8609(24)00090-6/sbref17
https://doi.org/10.1007/s00442-012-2486-6
https://doi.org/10.1007/s00442-012-2486-6
https://doi.org/10.1016/j.aquaeng.2017.05.004
https://doi.org/10.1016/j.aquaeng.2017.05.004
https://doi.org/10.1061/ASCE1084-0699200712:4347
https://doi.org/10.1061/ASCE1084-0699200712:4347
https://doi.org/10.1016/j.insmatheco.2007.10.005
https://doi.org/10.1016/j.insmatheco.2007.10.005


German EEZ. Mar. Policy 55, 102–115. https://doi.org/10.1016/j.
marpol.2015.01.012.

Hanea, A., Kurowicka, D., Cooke, R., 2006. Hybrid method for quantifying and analysing
bayesian belief nets. Qual. Reliab. Eng. Int. 22, 709–729. https://doi.org/10.1002/
qre.808.

Hopkins, D.D., Goldburg, R.J., Martson, A., 1996. An environmental critique of
government regulations and policies for open ocean aquaculture. Ocean Coast. Law
J. 2.
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López-Rebollar, B.M., Arévalo-Mejía, R., Díaz-Delgado, C., Latif, S., Ouarda, T.B., 2024.
Settling velocity and effective density analysis for aquaculture floc particles: an
approach through bivariate parametric copula. Aquac. Eng. 107, 102459. https://
doi.org/10.1016/j.aquaeng.2024.102459.

Lubsch, A., Timmermans, K.R., 2019. Uptake kinetics and storage capacity of dissolved
inorganic phosphorus and corresponding dissolved inorganic nitrate uptake in
saccharina latissima and Laminaria digitata (phaeophyceae). J. Phycol. 55, 637–650.
https://doi.org/10.1111/jpy.12844.

Maar, M., Holbach, A., Boderskov, T., Thomsen, M., Buck, B.H., Kotta, J., Bruhn, A.,
2023. Multi-use of offshore wind farms with low-trophic aquaculture can help
achieve global sustainability goals. Commun. Earth Environ. 4, 447. https://doi.org/
10.1038/s43247-023-01116-6.

Mares-Nasarre, P., van Gent, M.R., Morales-Nápoles, O., 2024. A copula-based model to
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