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Abstract
This paper presents and evaluates an approach to deploy image and video processing pipelines that are developed frame-
oriented on a hardware platform that is stream-oriented, such as an FPGA. First, this calls for a specialized streaming
memory hierarchy and accompanying software framework that transparently moves image segments between stages in the
image processing pipeline. Second, we use softcore VLIW processors, that are targetable by a C compiler and have hardware
debugging capabilities, to evaluate and debug the software before moving to a High-Level Synthesis flow. The algorithm
development phase, including debugging and optimizing on the target platform, is often a very time consuming step in
the development of a new product. Our proposed platform allows both software developers and hardware designers to test
iterations in a matter of seconds (compilation time) instead of hours (synthesis or circuit simulation time).

Keywords FPGA · Image processing · Medical imaging

1 Introduction

The goal of interventional medical imaging equipment is
to provide the physician with real-time images from the
anatomy of the patient while performing a medical inter-
vention. One type of such equipment is the interventional
X-ray (iXR) system. Typical interventions using the sys-
tem include repairing blood vessel deformations such as

� Zaid Al-Ars
z.al-ars@tudelft.nl

Joost Hoozemans
j.j.hoozemans@tudelft.nl

Rob de Jong
r.de.jong@philips.com

Steven van der Vlugt
steven.van.der.vlugt@topic.nl

Jeroen Van Straten
j.vanstraten-1@tudelft.nl

1 Computer Engineering Laboratory, Delft University
of Technology, Delft, The Netherlands

2 Philips Healthcare, Best, The Netherlands

aneurysms by positioning stents or replacing heart valves.
During these procedures, blood vessels are filled with a con-
trast medium, which is visualized by X-rays and shown in
real-time high resolution video images to the physician. As
radiation is harmful to patients, doses need to be kept to
a minimum. Using lower doses leads to more noise in the
images, which can be reduced by using image processing
filters.

The iXR is a complex system with strong real-time
requirements. The system consists of many different com-
pute architectures. The image processing algorithms are
often closely tuned to the platform architecture. Thismakes it
difficult to service the systems. At the same time, FPGA
(SoC)platforms are interesting for thesemedical systemsdue
to the long life time, strong performance and good real-time
capabilities. However, FPGAs are often perceived as being
difficult to design for. In order to address these issues, we
have investigated enablers for portability towards FPGAs
exploiting novel tools and techniques such as High Level
Synthesis (HLS) tools. HLS is a promising approach, but
currently still a specialistic toolflow requiring many code
changes and optimization steps to achieve performance.
Especially when moving from frame based video and image
processing algorithms to a streaming implementation.

Image or video processing algorithm development is
mainly done in a frame based manner which allows random
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access of the frame and parallelization techniques such as
tiling. FPGA accelerators cannot buffer a full frame during
processing, due to amongst others memory bandwidth,
power and latency requirements. Therefore, the algorithm
has to be implemented in a stream-based manner, where
we wish to process pixels as soon as they come in and, as
quickly as possible, pass the result on to the next processing
step (accelerator). The current HLS tools require labor
intensive hand optimizations such as using line buffers and
data re-ordering instead of random memory access. There is
a need to abstract away this implementation level in order to
ease the FPGA implementation for the programmer.

Frameworks exist that facilitate mapping computations to
FPGA (including frameworks specifically targeting image
processing), but these do not solve the frame versus stream
problem. Mapping the frame-based software to a stream-
based hardware platform on FPGA creates the following
challenges; creating a framework that moves and buffers
data (in the form of image segments) between stages,
causing the develop/test/optimize cycle time to increase
tremendously because of synthesis.

In this paper, we propose an approach to solve these chal-
lenges by using an FPGA overlay fabric consisting of soft-
core processors that are targetable by OpenCL and a stream-
ing memory framework. After an initial synthesis of the plat-
form, the time required to test iterations reduces from hours
(synthesis time) to seconds (compilation time). The aim
is to allow the final design to achieve better performance
at reduced development time (see Fig. 1).

Figure 1 High-Level Synthesis (HLS) aims to reduce development
time compared to a full-custom RTL design. Recently, FPGA vendors
started to support OpenCL code. Starting from an OpenCL program,
it costs less time to synthesize the first working design to FPGA,
but it requires a considerable number of time-consuming test, debug,
and optimization cycles before it starts to perform comparable to an
HLS design. Using an FPGA overlay accelerates this process. General-
Purpose Processors (GPP) have the advantage of being commodities,
but improving their performance using SIMD (Single Instruction,
Multiple Data) is time-consuming [1] and not portable.

This paper is organized as follows. Section 2 discusses
the background and related work. Section 3 proposes
the approach of developing frame-based programs for
stream-based architectures. Section 4 presents the hardware
implementation of the platform, while Section 5 presents the
software stack. Section 6 discusses the experimental results
performed on the platform, and Section 7 ends with the
conclusions.

2 RelatedWork

A common aim in the development of support frameworks
for specific application domains is to reduce Non-Recurring
Engineering costs by speeding up development time and
facilitating component re-use. The performance may be
slightly negatively affected (a specific full-custom design is
hard to beat), but that is usually offset by lower development
costs and shorter time-to-market [2].

In this section, we first discuss general approaches to
speed up image processing workloads, then proceed to
focus on FPGA acceleration including software support
approaches, followed by a discussion of hardware support
approaches using overlays and image processing fabrics and
hardware integration frameworks.

2.1 Accelerating Image ProcessingWorkloads

Currently, there are numerous ways to either optimize image
processing code or mapping it to FPGA/GPU. On common
ARM and x86-based systems, Single Instruction, Multiple
Data (SIMD) instruction set extensions such as AVX can be
exploited to gain considerable performance [3]. There exists
efforts to be able to insert these instructions automatically
and some compiler support exists. When a new generation
of processors or SIMD extensions is introduced, however,
code must be optimized, leading to large costs in testing
and validation. A study about optimizing HEVC using the
AVX SIMD extension concludes that ”The large speedup,
however, could only be achieved with high programming
complexity and effort.” [1].

GPUs suffer from the problem of performance portabil-
ity [4]. This means that for a new GPU generation, the
same issue arises where engineering effort may be required
to optimize the code again. Additionally, GPUs primarily
target floating point calculations, that are usually algorith-
mically not necessary for image processing.

To facilitate the optimization process and to aid design
space exploration for various target execution platforms, the
Halide programming language and compiler can be used
to generate code from a functional description of a filter
[5]. Mapping parallel computations to a variety of com-
putational fabrics (including multicore CPUs, GPUs and
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FPGA) can be done using OpenCL [6]. An overview of the
challenges in designing embedded image processing sys-
tems (including a discussion of the gap between high-level
algorithm description and low-level hardware design meth-
ods) is given in [7].

2.2 FPGA Acceleration

Mapping computations to FPGA can be performed in a
number of ways. High-Level Synthesis [8] is becoming
a standard tool in many FPGA design environments.
Additionally, FPGA vendors are supporting OpenCL
through for example SDAccel [9]. The traditional approach
of developing datapath designs in VHDL can still be utilized
for very specific designs or if the HLS tools are not
able to meet certain requirements. In the image processing
application domain, the HLS toolflow has some drawbacks.
Code modifications are often necessary, as it is not possible
to write code in a frame-based way. Efficient tools need
to be able to identify buffers in such a way that it can
be mapped to FPGA efficiently (stream based) to prevent
prohibitively slow main memory accesses. The ROCCC
HLS compiler [10] is able to insert smart buffers that can
provide some data reuse, and in [11] this concept has been
extended into a framework that can generate VHDL code
for sliding window filters with optimized memory structure.

Other related efforts exist, that aim to generate streaming
designs from C code [12] or make use of Domain-Specific
Languages (DSL), such as Halide, are Darkroom [13]
and HIPAcc [14]. These approaches are able to generate
hardware components for FPGA by providing an abstraction
layer for HLS. Using HLS and frameworks that generate
HDL code, quality of result is not always consistent and
synthesis times are still very long. This means there is still
a gap to be bridged between the image processing code and
FPGA development.

2.3 FPGA Overlays

To reduce compilation time and enhance portability, FPGA
overlays are becoming an interesting research area. Using
an overlay on FPGAs would allow software programmers
to target familiar architectures, without understanding the
low-level details. MARC [15] is one such project where a
multi-core architecture is used as an intermediate compila-
tion target. It consists of one control processor and multiple
processors (Cores) to perform computations. The data cores
are used to run OpenCL kernels and the control core is used
to schedule work to the data cores. The authors conclude
that using such an overlay dramatically reduces develop-
ment time and bridges the gap between hardware and soft-
ware programs at an acceptable performance hit compared
to hand-optimized FPGA implementation. Another related

effort is OpenRCL [16]. The concept of using accelerators
to speed up applications while retaining programmability is
discussed in [17].

In [18], a toolset is introduced for customized softcore
image processing on FPGA. Customizing the softcores is
a concept that can be added to our proposed framework
to improve performance. Resource-efficient processing ele-
ments are introduced by [19, 20] and [21]. Our framework
could make use of these processors if they were available,
but our chosen processor supports OpenCL and we provide
our own design-space exploration. A similar framework has
been introduced in [22], but instead of providing stream-
based processing that allows scalability, they employ shared
memory in a banked organization, accessible via a crossbar.
This reduces scalability as will be evaluated in Section 6.

2.4 Integration Frameworks

There have been related efforts in creating FPGA develop-
ment frameworks that facilitate development and integra-
tion. One example is RIFFA [23], an open source project
that provides communication and synchronization between
host and FPGA accelerators using PCIe. As we are using
I/O directly connected to the FPGA board, we do not require
PCIe interfacing. A commercial framework that can incor-
porate HSL-generated accelerators, hand-written VHDL
and IP is the DYnamic Process LOader or Dyplo from Topic
Embedded Products [24]. It incorporates a network on chip
which connects both software functions and FPGA accel-
erators together. The network can be re-routed at run time
and designated areas of the FPGA can be re-configured
with a different accelerator through Xilinx Partial Recon-
figuration [25].

3 Approach

This section will outline how we have used a slightly
modified view on the OpenCL programming model to target
our proposed streaming-based hardware framework while
using ordinary OpenCL kernels.

3.1 OpenCL’s View on Parallel Computing

In many cases a compute ‘problem’ consists of a data-
set for which each element needs to undergo a certain
transformation and basically this transformation is the same
for each element. Consider the code example in Fig. 2:
Every b[i] is produced by the exact same code fragment
and there is no dependency of an element of b[] to another
element of b[]. Such an operation is called a ‘kernel’ in
OpenCL terminology. Conceptually, all 128 computations
could have been executed concurrently, on a platform that
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Figure 2 Code example of an OpenCL kernel.

provides 128 processing elements. This kind of parallelism
is the main target of OpenCL: execution of as many kernels
in parallel as possible. Note that the code for each kernel
is identical, but the execution flow can be different for
example due to the boundary checking ‘if’ statement in
the ‘get()’ function. The OpenCL framework tries to have
many accelerators performing the same operation on many
datasets independently. One element of such a dataset is
called a ‘work-item’.

3.2 OpenCLMemory Model

OpenCL defines 4 types of memory objects:

1. Global Memory – read/write accessible from both the
host and the execution device

2. Constant Memory – like Global Memory, but read-only
for execution devices

3. Local Memory – only accessible within (a group of)
execution devices

4. Private Memory – only accessible from a single
execution device

OpenCL also defines a data cache between the Global /
Constant memories and the execution devices. This cache is
optional, but in practice it is always needed to avoid slow-
down due to data transfers. This cache needs to be carefully
designed, as many cores will try to access it simultaneously
and in case the cache does not have enough access ports
that immediately creates a new bottleneck. Note that Global
/ Constant memory can be physically located either on the
host side or on the compute devices. When located at the
host side, the compute devices need a pull mechanism to
retrieve the argument data (work-item) which is inherently
slower than the push mechanism the host uses when the
memory is located on the devices (and conversely it is faster
for results). Also note that this model uses a frame-buffer
approach, not a streaming approach. Figure 3 shows the
OpenCL memory structure.

3.3 Streaming Data and OpenCL

The OpenCL model works with Single Instruction Multiple
Data (SIMD) processing. One set of kernels is operating
on the full data set. Other sets of kernels have to be
programmed each time for iterative processing, where the
data is stored to the global memory in between processing
steps. This approach is shown in Fig. 4. We would like to use
OpenCL in a data pipelined, or streaming, implementation
as explained in the previous section. This means that we

Figure 3 OpenCL memory structure.
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Figure 4 OpenCL data model.

would like a situation where we can program different sets
of kernels where data is passed on from one set to the next,
as depicted in Fig. 5. Here, results are no longer written back
to global memory, but passed to other accelerators through
a connection mechanism that needs to be scalable (as we
are targeting highly parallel workloads running on large
numbers of compute devices) and able to provide sufficient

Figure 5 Streaming data model.

bandwidth. This can be a Network on Chip or a certain
connection topology that suits the application.

Note that an alternative approach could be to execute
the different kernels consecutively on every compute device
(essentially, we are changing the kernel instead of moving
the data - keeping the data set local). This requires every
compute device to be capable of storing the instruction
stream of each kernel in local instruction memory or cache.
The storage capacity of these memories is an important
design parameter as is explored in Section 4.1. Additionally,
the size of the instruction stream will typically be larger than
the size of a data block.

3.4 OpenCL Data Architecture

In OpenCL a kernel always has a full view on the entire
dataset but in most cases that is not necessary. Given that
a certain kernel is operating on a block of data, this ker-
nel only needs a limited view on the total working set as
depicted in Fig. 6. In this example (a 5x5 convolution ker-
nel), the data located more than 2 lines above the current
coordinates (x,y) are not needed anymore and the lines more
than 2 lines below (x,y) are not needed yet. Assuming a
set of compute devices are processing the data line by line,
each device requires 5 lines of storage capacity to store their
working set. A control mechanism should feed each com-
pute device with the appropriate data in time and keep track
of the locations of lines when assigning tasks to ensure the
needed input lines are present and output results are only
overwriting stale data. The OpenCL system provides a suit-
able basis to build such a mechanism: the command queue.
This queue distributes work-items to the compute units, so
it knows exactly which work-items are being processed.
Consequently, it knows about the maximum view of each
kernel and can compute the required data (sub)set as well.

Determining the maximum view size of the kernels in
the image processing pipeline also influences certain param-
eters of the required hardware infrastructure (the storage
capacity of the local memories of the compute devices).
Conversely: for a given size of hardware buffers there is a
maximum view size for each kernel. The process of find-
ing the optimal buffer sizes between all kernels is important
to prevent bottlenecks while minimizing the required sizes.
There are numerous approaches to solve this, for example
by performing simulations with iteratively decreasing buffer
sizes, but this is outside the scope of this work. In our ref-
erence platform, we assume all filters have a maximum
window size of 5x5 and will therefore need a buffer size
of 5 lines for input and 1 additional line for output. The
width of the lines depends on the stripe length (e.g., how the
image is divided into vertical stripes), which also determines
how many vertical lines of pixels need to be processed
redundantly.
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Figure 6 A kernel only needs a
limited view on the total
working set.

4 Implementation - Hardware

An FPGA-based platform targeting image processing
pipelines needs a number of elements; a streaming mem-
ory structure, processing units, one or more DMA units,
interfaces with off-board electronics (to receive the image
and output it after processing), and control & debug inter-
faces with a central host. Additionally, run-time support is
needed to move the image segments through the streaming
memory structure. This should be done as transparently as
possible in order to keep frame-based programmability.

4.1 Processing Element

The processing elements used in this work are based on
the ρ-VEX VLIW processor developed by TU Delft [26].
The implementation of this processor is written in a very
generic way, so design space exploration can be performed.
In our application domain, there is ample parallelism on
both instruction level and data level (that can be exploited
by SIMD or multithreading). The design-time configuration
options available for the ρ-VEX are listed in Table 1.

The processor will be configured in the smallest issue
width to improve timing and limit area utilization as
much as possible. Any decrease in area utilization may
results in a larger number of cores, which will directly
improve performance. Disabling forwarding in the pipeline
and adding additional pipeline stages will impact code
performance due to additional latency between operations,
but this penalty can be reduced or even removed by using

Table 1 Design-time configuration options of the ρ-VEX processor
and their effect on various exploration metrics.

Configuration Area Code

option utilization performance Timing

Issue-width − − + −
Forwarding − + −
Traps +/− +/− +/−
Breakpoints +/− +/− −
Perf. counters − +/− −
Additional

pipeline stages +/− − +

loop unrolling in the ρ-VEX compiler in order to fill the
latency slots with other operations. This requires the cores
to have sufficiently sized instruction memories, resulting in
another trade-off as the memory sizes will impact timing
and, to a certain extent, the number of cores that will fit on
the FPGA (Table 2).

4.2 Memory Structure

The memory structure as used in our overlay is introduced
in [27]. The concept is to organize the cores into streams
of a configurable number of cores. Within such a stream,
each processor has a local (scratchpad) instruction memory
and a local data memory. The sizes of these memories must
be set at design-time and determine the maximum size of
the program (.text section of the binary), and the maximum
size and number of line buffers that cores can store. Similar
to the design-space exploration of the instruction memory
size, as discussed in Section 4.1, the size of the data memory
buffers is an important parameter that should be carefully
considered. Too large data memories can limit the number
of cores that can be placed on the FPGA and create timing
difficulties, too small memories can results in bottlenecks in
the stream or prevent a certain core from supporting certain
filters (for example, a convolution filter with a 5x5 pixel
window size needs at least 5 buffered input lines and a buffer
to write the output line).

Table 2 Example of the design-space exploration of the ρ-VEX
pipeline organization, area utilization and timing.

Pipeline N Resource utilization Freq.

Forward Stgs LUT FF BRAM (MHz)

Enabled 7 64 99% 29% 81% 149

Enabled 5 64 93% 26% 81% 103

Disabled 7 75 96% 33% 95% 162

Disabled 5 75 98% 30% 95% 143

Disabled 7 4 5% 2% 5% 200

Disabled 7 64 82% 28% 81% 193

N denotes the number of cores in the design. The bottom two rows
represent designs that were placed & routed using manually created
placement constraints to improve timing, the upper rows are results
from running without constraints.
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In addition to its own local data memory, each core in a
stream is able to access the data memory of its predecessor
by means of an address decoder (see Fig. 7). Each core
in the stream will run a filter in the image processing
pipeline. The local data memories are implemented using
dual-ported BRAMs so that each core has single-cycle
access to both memory regions. The first and last memories
in the streams are connected to an AXI bus using a DMA
unit. The image is segmented to distribute the workload over
the available streams, while taking into consideration the
necessary overlap to perform the window-based operations.
Sending data, commands, parameters and synchronization
is performed using the local memories (for example,
convolution kernel parameters are propagated through the
stream). Loading the instruction memories, debugging and
resetting the individual cores is performed using a separate
debug bus that is operating on a lower frequency to avoid
timing difficulties. These last tasks are only performed
during startup or debugging, therefore the lower frequency
will not interfere with the performance.

4.3 Interfaces

This section will discuss the hardware interfaces that move
data to and from the processing elements and the outside
world.

4.3.1 DMA Unit

As stated, the first and last core of each stream is connected
to a DMA unit that can transfer blocks of data to the AXI
bus. This connection is implemented in a non-blocking way,

to allow cores to send a request to the DMA unit without
having to wait until it becomes available. Arbitration is
performed by means of a simplified Network-on-Chip
(NoC), as is depicted in Fig. 8.

The requesting core writes the target address and the data
(or size) to be transfered into a BRAM, and flags the request
in a control register. Each pair of streams is connected
to an arbiter (router) in a fully unbalanced organization
(this creates a better layout for Place and Route). Each
arbiter contains registers in order to avoid a long timing
path. When receiving a new request, an arbiter will lock
itself until the payload has been fully transferred (similar
to wormhole switching). This way, all payloads will be
transferred undivided, so the burst mode of the AXI bus
can be used most effectively. The priorities of the arbiters
are set such that streams that are further away from the bus
interface have precedence.

4.3.2 Debug Bus

In order to support the extensive debugging capabilities
that are offered by the ρ-VEX processor, a separate bus
is created that operates on a lower frequency than the
datapaths and memories. This is because this bus is not
performance critical and the lower clock will facilitate
timing on the FPGA. The bus is bridged to the AXI main
bus by means of an AXI slave interface, and connected to
all cores in the system (all of which are memory-mapped
into the AXI slave’s address space). The functionality of the
debug bus is determined by the memory regions of each ρ-
VEX core that it is able to access - the instruction memory,
data memory, and control registers. The set of control

Figure 7 Overview of the streaming memory framework. Obtaining
the image segment from the source and writing it to the sink is per-
formed by a DMA unit that accesses framebuffers in the DRAM on the

FPGA. Transfers between stream units are performed by local buses
in the FPGA fabric, connecting local memories instantiated using
BRAMs.
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Figure 8 DMA unit that is in essence a simple NoC with switches leading up to an AXI bridge that bursts packets of streaming data to a
framebuffer in DDR (or any memory address provided by the requesting stream).

registers allow standard operations such as halting and
resetting the core, but also more advanced requests such as
register file access, setting watch/breakpoints and toggling
single-step execution mode.

To be able to use all debugging functionality, the ρ-VEX
must be configured with traps enabled. Whenever a trap
occurs during execution, the core will store the cause, the
location in the program (program counter value), and an
argument in a control register. This way, it is possible to
ascertain what went wrong before the core halted or trapped
into the trap handler. For example, if the core performs a
memory read to an invalid address (unmapped or unaligned
address), it will show the cause associated with invalid data
access, along with the program counter that contained the
corresponding load instruction and the address it was trying
to access.

5 Implementation - Software

This section describes the implementation from a software
point of view, starting with the buffer management and
how the workload is parallelized over multiple cores, how
the system performs the necessary synchronization, the
way that OpenCL support has been implemented, how
the interfaces are programmed and lastly how to develop
applications for the platform.

5.1 Compilation and Operation

The process elements, as discussed in Section 4.1, are based
on the VEX instruction set architecture [28]. There is a full
toolchain available for these cores, that must be used to
compile code for the platform. A C compiler is available,
along with a port of binutils and an architectural simulator
that can be used for initial debugging of the code during
development. The process of writing parallel code for the
platform will be discussed in more detail in Section 5.4.

To load the binaries into all the processing elements,
the current platform implementation includes a management
core. In principle, this can be a (hard) ARM-based device
(in case of Zynq and comparable platforms), or even an
additional ρ-VEX core, but in our current implementation
it is a microblaze processor as it is used in Xilinx
reference designs to configure the AXI-based platform and
peripherals. This core is not running any filters, but only
concerns itself with sending commands to all the processing
elements. It is able to access all the processing elements’
control registers, instruction memory and data memory by
means of the debug bus. In addition, it can control the DMA
unit using control registers.

At startup time, the management cores resets and halts all
processing elements and loads the corresponding instruction
stream into the instruction memory of each core in each
stream. Then it populates a datastructure in the data
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Figure 9 Struct that contains a single line of a stripe of the image that
is being processed. It contains the position in the frame so it can be
used as input for subsequent filters or written into a frame buffer.

memories of each core in order to have them wait for
instructions (see also Section 5.3) and releases the cores.
During normal operation, the instruction memories only
need to be loaded once, however, it is possible to change the
image processing pipeline by simply halting the cores and
uploading a different instruction stream.

5.2 Buffer Management

As discussed in Section 4.2, the image processing workload
will be distributed across the available cores in two
dimensions - each core in a stream will perform a separate

filter (task-level parallelism), and each stream will handle
a part of the image (data-level parallelism). The image
is divided by vertical stripes of a certain width. In our
reference design, the total number of cores is 16 streams of
4 cores each and the default stripe width is 60 pixels. The
stripes are buffered per line in the local data memories of the
processing elements. The data structure of these buffers is
depicted in Fig. 9. The type of filters that are to be supported
by a certain core in the stream determines the number of
line buffers that need to fit into the input data memory. If
the filter operates on a 5x5 window to produce 1 output line,
there must be enough storage capacity to store 5 lines in the
input memory and 1 line in the output memory. Note that
these storage requirements overlap between two adjacent
cores. The buffers circulate in such a way that the required
input lines are stable, and the line that is not needed anymore
will be used as output storage for the previous core (see
Fig. 10). The horizontal overlap is handled by extending
the stripes on both sides when reading in the input from
the framebuffer using DMA. This overlap is dependent on
the filter size in the same way as the required number of
buffered lines.

When distributing block-based filters among multiple
streams, some amount of overlap is required between the
stripes. Instead of communicating these pixels between
cores (which is not supported by the memory structure),
our platform redundantly computes them in every stream.
The largest filter size determines the necessary amount of

Figure 10 Diagram showing the
overlap between stripes
allocated to neighboring
Streams, and lines that
automatically overlap because
they are allocated to the same
stream.
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overlapping pixels, and these are added to the workload
automatically by the management core. Edges can be dealt
with in different ways; each core could implement the edge
behavior and perform a check on each input line to identify
whether it is an edge line. However, this will increase code
size. Another option is to implement the behavior on a
dedicated core and instruct the management core to send all
edge lines to it. If the management core is fast enough, it
could also perform the filters on all the edge lines directly.

5.3 Synchronization and Communication

As the processing elements’ data memories are not
connected to the AXI bus directly, but to a slower debug bus,

Figure 11 Example of a struct that is used to communicate between
the cores, and to synchronize the streams. It can be used to change
which filter should be performed, update filter parameters, and to apply
backpressure to predecessor cores (using the statemember). This struct
is used to communicate between core 1 and 2 (therefore it does not
contain any parameters for cores 0 and 1) and contains 6 linebuffers.

controlling each individual core from the microblaze using
this debug bus would be too slow. However, each processing
element is able to receive commands from the management
core by means of a data structure that is depicted in Fig. 11.

The struct contains a state member that is used for
synchronization and to control buffer ownership. The
predecessor core can take ownership of a line buffer by
writing the index of that particular buffer into the state field.
The buffers contain consecutive lines in a circular fashion
and it is always implied that the buffers that are not reserved
by the predecessor core contain valid lines (so that these can
be used as input by the successor core). The successor core
resets the state value to 0 when it is finished processing its
line. The predecessor core will wait for this event before
proceeding with the next line, so this mechanism can be
used to apply backpressure.

In addition to the state member, the structs contain a filter
parameter struct for each following core. An example of
this struct is depicted in Fig. 12. If the state field is set to
-1, a core will propagate these values to its successor. This
way, new values can be loaded into each core. Lastly, the
communication struct contains a number of line buffers. As
discussed, the exact number must be set by the designer
after careful consideration of the filters that a certain core
needs to be able to perform. Automating this using a
dataflow buffer sizing analysis method could be considered
as possible future work.

5.4 Application Development

One of the related work in terms of software development
for image processing filters is Halide [5]. It can generate

Figure 12 Example of a struct that is used to communicate filter
parameters between cores. In theory, each core in the stream could
have a specific struct because they can all have a distinct instruction
memory containing different filters. In our reference implementation,
the cores all support two different filters (median and convolution),
and the kernel that is used for the convolution can be modified using
the struct.
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code by describing the relationship between an output pixel
and its required input pixels. This is possible because the
operations are the same for each pixel, using different
input pixels. As discussed in Section 3, a work-item size
of a single pixel is bad because of overhead (not only on
a software level, but this would also prevent the DMA
engine from achieving high bus throughput as this requires
burst transfers). Therefore, the platform operates on lines
instead of pixels. Developing filters for the platform consists
of modifying the frame-based reference implementation
into a line-based implementation. In the halide analogy,
instead of describing how to calculate a single pixel, the
programmer must specify how to compute a line of a given
length. The difficult facets of the code transformation are
handled by the hardware framework as outlined in the
previous sections. These include time-consuming and error-
prone elements such as buffer management, dividing the

workload over multiple processing elements (whose number
will most likely change during the exploration phase),
synchronization, and I/O (using DMA transfers).

The framework supplies the input linebuffers and an
output linebuffer, the width of the line, and parameters
for the filter (if applicable). Kernels can be programmed
in OpenCL and compiled with our LLVM backend from
the Portable OpenCL (pocl) framework [29]. Alternatively,
kernels can be programmed in C or VEX assembly code.
The kernel code must be linked together with a control loop
that polls for work (supplied by the framework).

6 Experiments/Evaluation

To evaluate the approach, we have developed a reference
implementation using the framework and synthesized this

Figure 13 Layout of a 64-core
platform on a Xilinx VC707
evaluation board. Each color
represents a ρ-VEX 2-issue
VLIW processing element. The
cores are organized in 16
streams of 4 cores. The upper
right corner contains additional
logic such as the HDMI
interface, DDR controller,
Microblaze and DMA unit.
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Figure 14 Resource utilization comparison with a related platform
[22]. The advantage of this work is that it provides the option of adding
additional processing pipelines instead of increasing the number of

cores connected to a central memory component. This is far more scal-
able and allows us to place a considerably larger number of cores on
an FPGA.

for the Xilinx VC707 evaluation board with a Virtex 7
FPGA. The VHDL design is fully parameterized, and
the fabric is organized in 16 streams of 4 consecutive
cores with each 4 KiB of instruction and data memory.
Figure 13 depicts the layout of the placed and routed design
on the FPGA, after providing placement constraints for
each individual stream of 4 cores while constraining the
management core (microblaze) and interface logic such as
HDMI and DDR controllers to the upper right corner.

In Fig. 14, a comparison has been made with a related
effort named BioThreads [22], showing the advantage of our
memory structure regarding scalability.

The workload of the medical imaging platform con-
sist of window-based image processing algorithms. For
our evaluation, we have implemented the convolution oper-
ator that can be used with various filter kernels (which
can be programmed into the processing elements as dis-
cussed in Section 5.3). The detector provides images with
a resolution of 960 by 960 pixels. As our reference plat-
form has 16 parallel streams, this results in a line size
of 60 pixels. Table 3 depicts the performance of the plat-
form for a convolution kernel using a 3x3 and 5x5 filter
size.

Table 3 Performance for different filters of a single processing
element per line, per image segment, and the total throughput assuming
a 16-stream platform running at 200 MHz assuming no I/O stalls.

Algorithm Cycles/line Cycles/img Frames/s

(60 pixels) (960x960) (200 MHz)

Convolution 3x3 4005 3844800 52

Convolution 5x5 10216 9807360 20

7 Conclusions

This paper presented our approach of using a VLIW-
based FPGA fabric that allows image processing kernels
to be programmed in a frame-based fashion and processed
efficiently in a stream-based fashion. The hardware
framework handles most of the required effort in the
required code transformation by automatically assigning
image segments to parallel pipelines of processing elements.
Our memory structure is scalable and allows pipelines of
different size with different filters to be mapped to the
fabric. Instead of repeatedly synthesizing the platform,
designers can explore and debug the design using this
framework by only recompiling OpenCL or C code. If the
platform does not provide enough throughput to satisfy the
performance requirements, the code that is mapped onto the
VLIW softcore processors can be passed through a HLS
toolflow to produce a faster system that uses the same
streaming memory structure. Results show that the platform
is more scalable compared to a related image processing
framework.
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