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A B S T R A C T   

The terminal airspace that surrounds an airport is the area with high flight density and complex structure. 
Aircraft are asked to follow the standard arrival and departure routes in terminal airspace, yet the actual tra
jectories may deviate due to air traffic control (ATC) instructions, pilots’ decisions, surveillance and flying 
performance variations, etc. Predicting aircraft trajectories considering such uncertainties plays a crucial role in 
evaluating a redesign of the standard routes. Traditional simulation approaches for generating aircraft trajec
tories in a terminal airspace are cumbersome to use as it requires a detailed setup for each new scenario, while 
most existing data-driven methods can only be used in an airspace with historical trajectories, not applicable to 
new structure designs or other terminal areas. To fill in gap, in this paper, we develop a new model based on 
Multilayer Perceptron Neural Network (MLPNN) to predict aircraft trajectories with uncertainties for terminal 
airspace design evaluations. A key feature of the proposed model is that it is trained on existing standard routes 
yet it can be applied to new standard routes to generate trajectories. The enabler of the model’s transferability is 
a novel input-and-output construction method for feature representations of raw trajectory data based on domain 
knowledge, including trajectory reconstruction, feature engineering, and output designing. After the input-and- 
output construction, a supervised learning model based on MLPNN is built to predict the standard deviations 
from the extracted features using historical trajectory data of existing standard routes. Once the model is built, 
trajectories with uncertainty can be simulated, through applying Gaussian distribution and exponential moving 
average algorithms, even on newly designed standard routes, where no aircraft have flown yet. Subsequently, 
new terminal airspace designs could be evaluated for their safety, efficiency, and environmental implications 
based on the simulated trajectories. The proposed model was tested on real-world operational data. Results 
showed that the model can quantify the characteristics of aircraft trajectories that are transferable across stan
dard routes, and generate trajectories for new standard routes. We also demonstrated the proposed model on 
evaluating deficiencies on fuel consumption of actual arrival trajectories compared with the designed arrival 
routes. The generated trajectories showed 23%–37% more fuel consumption on average than the standard arrival 
routes in the terminal airspace of Hong Kong International Airport, which was validated with actual flight data.   

1. Introduction 

The terminal airspace that surrounds an airport is the area with high 
flight density and complex structure. In fact, nearly half of all fatalities, 
about 49%, occur on approach and landing in terminal airspace from 
2009 through 2019 (Boeing Commercial Airplanes, 2020). The changes 
in airport and its terminal airspace may affect safety, fuel consumption, 

noise impact, and pollutant impact (M. Z. Li et al., 2018; M. Z. Li and 
Ryerson, 2017; Rosenow and Fricke, 2019). Therefore, a comprehensive 
evaluation of terminal airspace designs is essential to support the safe, 
efficient, and environmental-friendly operations of new airports. 

To evaluate the safety, efficiency, and environmental impact of 
airspace redesign, generating aircraft trajectories considering un
certainties plays a crucial role. In the terminal area, there are standard 
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procedures, such as Standard Instrument Departure routes (SID) and 
Standard Arrival Routes (STAR). However, actual trajectories may be 
different from the standard ones, as shown in Fig. 1. Such deviations 
may be caused by many factors, such as weather conditions, air traffic 
control (ATC) instructions, pilots’ decisions, the performance of aircraft, 
etc (T. Li and Wan, 2021). Particularly a large amount of trajectory 
non-conformance happened in terminal airspace come from congestions 
and flight separation requirements. Even in good weather conditions, 
there might be many VFR flights, resulting in congestion and trajectory 
deviations if the airport is not strategically slot constrained (e.g., many 
US airports). Thus, trajectory generation models to characterize such 
deviations and predict aircraft trajectories with probabilistic un
certainties are needed as an essential step for the analysis of airspace 
redesign. 

In the field of aviation, there is a vast amount of research related to 
aircraft trajectory prediction. Most of these studies focus on predicting 
future aircraft motion for air traffic conflict detection and resolution. 
These studies account for the uncertainty affecting the aircraft future 
positions for the avoidance of collision, via a multiple model method 
(Jilkov et al., 2019; Liu and Hwang, 2011; Yepes et al., 2007), the 
worst-case approach (Huang and Tomlin, 2009; Tomlin et al., 1998), a 
Sequential Monte Carlo method (Lymperopoulos and Lygeros, 2010; 
Visintini et al., 2006), a Hidden Markov Model (Ayhan and Samet, 2016; 
Seah and Hwang, 2009) and others. These researches focus on quanti
fying the probability of conflicts between two aircraft or more and 
perform trajectory prediction for individual aircraft, not for a fleet of 
aircraft in a particular airspace. 

Another line of studies related to trajectory prediction is on the dy
namic terminal route concept, developing trajectory models to optimize 
aircraft movement in terminal airspace (Murça and Müller, 2015). Pfeil 
developed an A*-based algorithm for the design of three-dimensional 
(3D) terminal routes under uncertain weather conditions (Pfeil, 2011). 
Zhou et al. introduce a fast-marching method to generate 3D SIDs and 
STARs at a strategic level, where a simulated annealing method is used 
to find the optimal order (Zhou et al., 2014). Sidiropoulos et al. propose 
a priority-based framework to design dynamic arrival and departure 
routes for the multi-airport system (Sidiropoulos et al., 2018). These 
methods aim at designing new routes but not quantifying the un
certainties of flying existed routes. 

Traditional methods for evaluating new designs of arrival/departure 
routes in a terminal airspace are simulation-based. Several simulation 
models and products are available, including the Terminal Area Route 
Generation and Traffic Simulation (TARGETS) developed by MITRE 
(CSSI Inc.; MITRE, 2021) and the Future ATM Concept Evaluation Tool 
(FACET) (Bilimoria et al., 2001) developed by NASA Ames Research 
Center. However, these simulation tools either require intensive inputs 

or human-in-the-loop setup to obtain the uncertainties involved with 
flying the standard routes, or lack of the capability to simulate the 
uncertainties. 

Recent efforts have been made to train a statistical or machine 
learning model on historical surveillance data directly, to capture non- 
deterministic influences for aircraft trajectory prediction(Bongiorno 
et al., 2017). One important branch is studying flight historical data by 
regression analysis, such as a multiple linear regression (S. Hong and 
Lee, 2015), a functional regression (Tastambekov et al., 2014), a local 
polynomial regression (Hamed et al., 2013), a stepwise regression (de 
Leege et al., 2013), and neural networks (Alligier et al., 2015; Khan 
et al., 2021). These approaches have returned successful outcomes for 
improving the trajectory prediction accuracy. Another branch involves 
clustering turning points or clustering historical aircraft trajectories in 
terminal airspace (Barratt et al., 2018; Gariel et al., 2011; Jarry et al., 
2020; Mahboubi and Kochenderfer, 2017; Marzuoli et al., 2014; Murça 
et al., 2020; Murca and Hansman, 2019; Olive and Morio, 2019; Ren and 
Li, 2018). However, a common limitation of these methods is that they 
can only be used on existing standard routes of the current airport where 
historical trajectory data are available, while they cannot be applied to 
routes under design, terminal airspace with new structures, or other 
airports. 

To fill this gap in trajectory generation, we develop a novel machine 
learning model for predicting aircraft trajectory uncertainties in a ter
minal airspace with new route structures. The primary idea of our 
proposed method is to extract features that could be generalized for 
different route structures from the historical surveillance data. The 
proposed model can capture statistical properties of the aircraft trajec
tory uncertainty in a terminal airspace. The main advantage of our 
model compared with existing methods is that it is transferable to new 
standard routes. By introducing a trajectory reconstruction procedure, 
the features are re-constructed from raw trajectory data and the features 
are universal to different route structures. 

This paper is structured as follows: The proposed framework is 
described in Section 2. Model evaluation and testing are presented in 
Section 3. In Section 3, we also apply the proposed approach for fuel 
consumption evaluation in the terminal airspace of Hong Kong Inter
national Airport. Finally, conclusions and future works are presented in 
Section 4. 

2. Methodology 

We propose a machine learning approach to model the uncertainty of 
aircraft trajectories in terminal airspace and generate trajectories for 
terminal airspace redesign analysis. The model, referred as Trajectory 
Generation Model in this paper, predicts the deviations of actual aircraft 

Fig. 1. ABBEY-2B arrival in Hong Kong airspace & the standard route (in red) compared with actual trajectories (in blue).  

X. Zhu et al.                                                                                                                                                                                                                                      



Journal of Air Transport Management 113 (2023) 102473

3

trajectories from the designed routes. The simulated trajectories 
generated model can then be used for a number of analysis, e.g. fuel 
efficiency evaluation, environmental impact assessment, airspace safety 
assessment, etc., as illustrated in Fig. 2. 

The model uses a transfer learning approach, training on existing 
standard routes but can be applied to new standard routes for trajectory 
generation. The inputs of the model are historical trajectory data and 
existing standard arrival/departure routes. Then, the uncertainty of 
trajectories relative to standard routes is characterized and parame
trized via the input-and-output construction step and the supervised 
learning via MLPNN step. Lastly, when a new design of standard routes 
is given, the model can simulate aircraft trajectories flying these newly 
designed routes, with probabilistic uncertainties on a system level. 

Overall, three modules are included in the proposed model: 1) input- 

and-output construction, 2) supervised learning via MLPNN, and 3) 
trajectory generation, as illustrated in Fig. 3. In this paper, we demon
strate how this model can be used for fuel consumption analysis, as an 
example of the follow-up evaluation analysis. The details are provided in 
the following sub-sections.  

1. Input-and-Output Construction 

A key challenge of such a model lies in how to make it adaptable on 
different terminal airspace routes and airports. Airports vary in size, 
layout, runway configuration, etc., and the corresponding terminal 
airspace structures differ as well. If a learning model is directly trained 
on raw trajectory data, it won’t be applicable to new standard routes or 
new airports where trajectory data are not available yet. Therefore, the 

Fig. 2. Illustration of terminal airspace redesign assessment process.  

Fig. 3. The framework of the trajectory generation model.  
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Input-and-Output Construction module is developed to reconstruct tra
jectory data into designated features that capture the underlying pat
terns of uncertainties relative to the standard routes, so that these 
features could be easily adapted to other airports to test different pro
cedures. This module includes a unified method to process original 
ungraded data to standard trajectory data of high quality, extract key 
features to be used as model inputs, and to design the outputs for sub
sequent supervised learning. There are three submodules: a) Trajectory 
Reconstruction, b) Feature Engineering, and c) Output designing in the 
Input-and-Output Construction.  

1. Trajectory Reconstruction 

To make our model a general approach, that can be trained by 
different data sources and applied in various terminal airspace, we 
firstly conduct the trajectory reconstruction. Trajectory reconstruction is 
the process of processing original ungraded data into standard trajectory 
data of high quality. The Automatic Dependent Surveillance-Broadcast 
(ADS-B) data is selected as the data source of the aircraft trajectory 
prediction model. Each ADS-B data record we collected contains.  

1. Type of operation (departure/arrival),  
2. Aircraft number,  
3. Coordinated Universal Time (UTC) timestamp t,  
4. Position information, longitude Px, latitude Py, and altitude Pz,  
5. Track ψ ,  
6. Ground speed Vh,  
7. Vertical velocity Vv. 

Each record with the same aircraft number belongs to an aircraft j, 
and the group of all records for that aircraft forms the trajectory Tl, l =

1,…,n, where n is the total number of trajectories in the dataset. 

There are three main complications with the trajectories in their 
original format. First, the raw trajectories are specific to each runway. 
Features directly extracted from the raw data would be meaningful for 
other runways, standard routes, or airports. Second, the trajectories may 
contain outliers or noises. Third, the trajectories are not of equal length. 

We tackle the second complication first as it is a simple data filtering 
process. We use the exponential moving average (EMA) algorithm 
(Wang et al., 2018) to smooth trajectory data, acting as low-pass filters 
to remove high-frequency noise. Despite its simplicity, it is highly 
competitive with other more sophisticated trajectory smoothing 
methods. The simplest form of exponential smoothing is given by the 
formula (Chazal et al., 2011), 

P′
i =

{
P1, i = 1

αPi + (1 − α)⋅P′
i− 1, i > 1

(1)  

where, α represents the degree of weighting decrease, which is a con
stant smoothing factor between 0 and 1. Pi denotes one of the aircraft 3D 
position variables (Px, Py,Pz) at the data point i and P′

i is the value after 
smoothing by EMA at the data point i. 

Then, to solve the second complication, we build new Cartesian co
ordinate systems in each runway to transform position data into co
ordinates that are universal to any runway, as illustrated in Table 1 and 
Fig. 4. According to the landing slot of the aircraft, its 3D position in
formation (Px,Py, Pz) could be transformed into (X,Y, Z) in corre
sponding runway coordinate system. After transformation, we calculate 
the value of accumulated horizontal distance to the runway threshold, 
which is defined as DIS. Then, we deal with the varying length issue by 
distance aligning based on DIS. We set the first data point as the landing 
site of aircraft, and select 150 nautical miles (NM) DIS backward for the 
trajectory. We set a data point at each 3 NM interval so that all trajec
tories have the length of 51 data points. Trajectories that are signifi
cantly shorter than 150 NM are discarded. Then, trajectories that are 
shorter than 150 NM are extrapolated and trajectories that are longer 
than 150 NM are truncated. Meanwhile, the parameters of ADS-B data, 
such as track ψ, ground speed Vh, and vertical velocity Vv, are obtained 
in each data points through linear interpolation. 

The reconstructed trajectories have the same length after distance- 
aligning processing, which includes recomputed parameters: 3D posi
tion information (X,Y,Z), track ψ, ground speed Vh, and vertical velocity 
Vv.  

2. Feature Engineering 

Based on domain knowledge of air traffic control and flight opera
tions, we engineered five key features from the reconstructed trajectory 
data, which describes the relative position of aircraft in reference to the 
standard route. These five key features, as illustrated in Table 2 and 
Fig. 5, are derived based on the reconstruction trajectory data and STAR 
profiles. The ‘DIS’ is the aircraft’s accumulated horizontal flying dis
tance from its position to the runway threshold, and it could be obtained 
from the position data (X,Y,Z). The ‘ALT’, namely Z, means the relative 
altitude above the touchdown zone. The ‘RAR’ is defined as the relative 
angle to X-axis in the right-handed coordinate system and its range is ( −
π,π]. We assume angles on the coordinate plane have an initial side on 
the positive X-axis, and the terminal side of the angle is the side where 
the ground plane projective point of aircraft located. Positive angles on 
the coordinate plane are angles that go in a counterclockwise direction, 
while negative angles on the coordinate plane are angles that go in a 
clockwise direction. The ‘TAV’ represents the track angle variation be
tween adjacent data points. The first data point is the landing site of 
aircraft, and its ‘TAV’ is set to 0 rad. By deductive calculation backward 
step-by-step, it’s simple to derive ‘TAV’ values for the other data points 
based on the parameter track ψ . The ‘DTW’ refers to the horizontal 
distance to the nearest waypoint from STAR profiles. For each data 

Table 1 
The right-handed cartesian coordinate systems for each runway.  

The Origin The Positive Orientation of Axis Unit 

Threshold position of the 
runway 

X- 
axis: 

The opposite direction of the 
runway 

m 

Y- 
axis: 

Rotating X-axis 90◦

counterclockwise 
m 

Z- 
axis: 

Vertically upward m  

Fig. 4. The framework of the trajectory generation model.  

Table 2 
Five key informative features for supervised learning.  

Inputs Description Unit 

DIS Accumulated horizontal flying distance to the runway threshold m 
ALT Relative altitude above the touchdown zone, namely Z m 
RAR Relative angle to the positive X-axis rad 
TAV Track angle variation between adjacent data points rad 
DTW Horizontal distance to nearest waypoint from STAR profiles m  
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point, we calculate the horizontal distance between the aircraft and all 
waypoints from the relevant STAR profile, and the minimum value is the 
target value. 

In summary, each data point in the reconstruction trajectory now 
contains five key informative features, namely DIS, ALT, RAR, TAV, and 
DTW, which are underlying attributes of the flight trajectory, relative to 
the standard route.  

3. Output Designing 

As for target outputs for the supervised learning in the next module, 
we use standard deviations to summarize the uncertainties of trajec
tories, as depicted in Table 3 and Fig. 6, which include 3D position in
formation (X, Y, Z), ground speed Vh, and vertical velocity Vv, in the 
reconstructed trajectory data. 

To summarize, each data point now contains five key informative 
features (DIS, ALT, RAR, TAV, and DTW) as inputs, and five output 
variables (σX, σY , σZ, σGS and σVS) designed for supervised learning.  

2. Supervised Learning via MLPNN 

After accomplishing the input-and-output construction, the next step 
is to develop the MLPNN model to predict designed outputs, based on 
the key informative features extracted from the reconstruction trajec
tory data and STAR (or SID) profiles. MLPNN is one of the most 
commonly used artificial neural network. In this study, MLPNN is tested 
against a few other advanced regression methods, which are support 
vector regression (SVR), Random Forest (RF), and Gaussian process 
regression (GPR). Details on the performance comparison of different 
regression methods can be found in Section 3.3. 

Here, we provide a brief introduction of the MLPNN model used in 
the paper. MLPNN normally consists of three sequential layers: input 
layer, hidden layer, and output layer. In this study, each input vector is 

xi = [DIS,ALT,RAR,TAV,DTW], which is a set of underlying attributes 
related to the flight trajectory. Further, each output vector oi = [σX,σY ,

σZ,σGS,σVS], is a set of standard deviations of 3D position information and 
aircraft velocity information. The structure of MLPNN employed for the 
standard deviation prediction is shown in Fig. 7. The goal of the MLPNN 
model is to develop a neural network that can accurately predict the 
standard deviations based on the input features of future data, by 
updating the weights in the network from the errors calculated of each 
training. For each neuron j in the hidden layer, it would sum up its input 
signals xi, after multiplying them by their respective connection weights 
wji. The output of each neuron is described as follows: 

yj = f
(∑

wjixi + b
)

(2)  

where, b is a bias term and f is an activation function. The commonly 
used activation functions include the sigmoid function, the hyperbolic 
tangent, or a Rectified Linear Unit (ReLu) (Nair and Hinton, 2010). 

During the training process, the weight wji is adjusted to minimize 
the differences between the desired and actual values of the output 
neurons. The minimization objective function is defined as, 

E=
1
2
∑

j

(
ydj − yj

)2 (3)  

where, ydj is the desired value and yj is the actual value of the output for 

Fig. 5. Five key informative features for supervised learning.  

Table 3 
Five output variables designed for supervised learning.  

Outputs Description Unit 

σX The standard deviation of the recomputed parameter X m 
σY The standard deviation of the recomputed parameter Y m 
σZ The standard deviation of the recomputed parameter Z m 
σGS The standard deviation of the recomputed ground speed Vh m/s 
σVS The standard deviation of the recomputed vertical velocity Vv m/s  

Fig. 6. The standard deviation of recomputed 3D position information (X, Y, Z).  

Fig. 7. The structure of MLPNN employed for the standard de
viations prediction. 
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the neuron j.  

3. Trajectory Generation 

In the last module, we develop a method to simulate aircraft tra
jectories based on the output of the MLPNN module by applying 
Gaussian distribution and exponential moving average algorithms. The 
MLPNN trained in the previous step is not specific to a STAR. It can be 
transferred directly to another STAR and simulate its associated trajec
tories considering uncertainty. We apply a Gaussian distribution to 
simulate trajectories when given a new STAR in terminal airspace. First, 
we translate the new STAR into the five features as specified in Module I. 
Next, we use the trained MLPNN to obtain the five standard deviations. 
Lastly, we randomly generate the 3D position information (X, Y, Z), 

ground speed Vh, and vertical velocity Vv according to five Gaussian 
distributions. These five Gaussian distributions have means, μi = (Xi,Yi,

Zi,Vhi,Vvi), based on the new STAR, and standard deviations, σi = (σX i,

σYi, σZi, σGSi, σVSi), calculated from the MLPNN module. The notations 
and the probability density functions (PDF) of these five simulated pa
rameters in data point i on a trajectory are formulated as, 

X′
i ∼N(Xi, σX i);PDF⇒f (a)=

1
σXi

̅̅̅̅̅
2π

√ e
− (a− Xi)

2

2σ2
Xi (4)  

Y′
i ∼N(Yi, σY i);PDF⇒f (b)=

1
σYi

̅̅̅̅̅
2π

√ e
− (b− Yi)

2

2σ2
Yi (5)  

Zi
′ ∼N(Zi, σZ i);PDF⇒f (c)=

1
σZi

̅̅̅̅̅
2π

√ e
− (c− Zi)

2

2σ2
Zi (6)  

Fig. 8. Fuel consumption estimation model for terminal airspace redesigns.  

Table 4 
Feature extraction for inputs of fuel consumption estimation model.  

Target Inputs Description of Feature Extraction 

Flying Distance Calculate from position variables Xʹ and Yʹ of simulated 
trajectories 

Altitude Calculate from position variable Zʹ of simulation trajectories 
Air Temperature Obtain from METARs data 
Calibrated 

Airspeed 
Calculate from speed variable Vhʹ of simulation trajectories 

Aircraft Mass Use the values from the manufacturers or FDR data directly  

Fig. 9. Tentative layout of the three-runway system at HKIA.  

Table 5 
ADS-B data description.  

Data Target 
Flights 

Time Number of 
Flights 

Sample 
Frequency 

ADS- 
B 

Landing at 
HKIA 

January, May, and 
June in 2018 

30,798 60 Hz  
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V′
hi∼N(Vhi, σGSi);PDF⇒f (d)=

1
σGSi

̅̅̅̅̅
2π

√ e
− (d− Vh i)

2

2σ2
GS i (7)  

V′
vi∼N(Vvi, σVSi);PDF⇒f (e)=

1
σVSi

̅̅̅̅̅
2π

√ e
− (e− Vv i)

2

2σ2
VS i (8) 

Based on the PDFs, we can create five normally distributed sets of 
random numbers of (X′

i,Y′
i,Z′

i,V′
hi,V′

vi) for each data point, and then 
generate new trajectories by making connections of these simulated 
points (X′

i,Y′
i, Z′

i) in order of data point sequencing number i. 
After simulating new trajectories, we do trajectory smoothing for the 

rationality of track angle variation using the EMA algorithm. The form of 

exponential smoothing for a simulated trajectory is given by the for
mulas, 

Si =

{
X′

1, i = 1
βX′

i + (1 − β)⋅Si− 1, i > 1
(9) 

Fig. 10. Sensitive analysis of smoothing factor α.  

Fig. 11. Coordinate system transformation for HKIA.  

Table 6 
Overview of ADS-B data after input-and-output construction.  

Number of 
Trajectories 

Data Points for 
Each Trajectory 

Number of 
Datasets 

Inputs of 
Datasets 

Outputs of 
Datasets 

30,798 51 1570698 (DIS,ALT,
RAR,TAV,
DTW)

(σX ,σY,σZ ,

σGS,σVS)

Fig. 12. Four types of arrival routes in Hong Kong terminal airspace.  
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where, β represents the constant smoothing factor. X′
i is one of the new 

position variables at the data point i and Si is the value after smoothing 
by the EMA at the data point i.  

4. Preparation for Airspace Analysis 

The trajectories generated from the previous modules are now ready 
to be used for the following evaluation analysis of airspace designs. 
Here, to demonstrate how to use the simulated trajectories for a fuel 
consumption evaluation. The fuel consumption estimation model, as 
shown in Fig. 8, is for fast assessment of system-level fuel consumption 
about terminal airspace redesigns, which is proposed by Hong and Li (N. 
Hong and Li, 2018). The inputs of this model are the aircraft’s altitude, 
the air temperature, the calibrated airspeed, flying distance, and the 
aircraft mass when descending. Some of these inputs are calculated from 
the simulated trajectories, while some are obtained from Meteorological 
Aerodrome Reports (METARs) and other sources. The detailed process is 
illustrated in Table 4. The output is the fuel burn when flying the 
simulated trajectories. 

3. Evaluation and testing 

The Airport Authority Hong Kong plan to expand Hong Kong Inter
national Airport (HKIA) into a three-runway system in project Master 
Plan 2030 by Airport Authority Hong Kong (2011), as shown in Fig. 9. In 
this context, we demonstrate the proposed trajectory generation model 
via a case study of HKIA terminal airspace to show how it can be used for 
fuel efficiency evaluation of airspace designs. 

4. Operational data description 

The ADS-B dataset used in this study is collected from Flightradar24 
every minute for 3 months, namely January, May, and June in 2016, 
covering all flights landing at HKIA. Each item of the dataset consists of 
several attributes, which include the flight ID, latitude, longitude, alti
tude, track, origin airport, destination airport, aircraft type, date, and 
monitoring time. The ground speed and vertical velocity in our analysis 
are derived from the position measurements. The data description of the 
ADS-B dataset is given in Table 5.  

2. Input-and-Output Construction of ADS-B data 

In this part, the objective is to process ADS-B data to the standard 
trajectory data of high quality, extract key features as inputs, and finally 
design the outputs for subsequent supervised learning. We handle the 
outlier and noise problems by using the EMA algorithm, with the 
smoothing factor α setting to 0.5 based on testing. The value of 
smoothing factor is decided by the sensitive analysis as shown in Fig. 10. 
We calculated the RMSE between raw trajectory and smoothed trajec
tory as a function of alpha ranging from 0 to 1 with a step of 0.1. Before 
conducting the trajectory reconstruction, we identify the landing 
runway in HKIA of each flight based on the position information. Then, 
we build new Cartesian coordinate systems for each runway, as shown in 
Fig. 11, to perform the trajectory reconstruction process. The 30,798 
reconstructed trajectories all have the same length with 51 data points. 
Each data point includes recomputed parameters: 3D position infor
mation (X,Y,Z), track ψ , ground speed Vh, and vertical velocity Vv. After 
that, the feature engineering and target outputs designing are executed 
for supervised learning based on the above-mentioned methods in Sec
tion 2.1. The detailed information of processed ADS-B data after input- 
and-output construction is summarized in Table 6. 

After input-and-output construction, the identification of which 
STAR the flight trajectories belong to is performed. There are four main 
kinds of STARs, namely ABBEY, BETTY, CANTO, and SIERA, and they 
are different from each other in terms of trajectory characteristics. We 
classify the trajectories based on waypoints information from the STARs 
profiles, and the classification results are shown in Fig. 12. To test the 
transfer learning capability of our model, we train the model on three 

Fig. 13. Training set and testing set for modeling.  

Table 7 
Detailed setting of the train-test split.   

Training Set Testing Set 

Arrival Routes ABBEY BETTY CANTO SIERA 
Number of Flights 9990 7719 4843 8246 
Split Percentage 73% 27%  

Table 8 
Parameter settings for MLPNN model.  

Hidden Layer Sizes Activation Function Weight Optimization Exponential Decay Rate for ‘Adam’ L2 Penalty Parameter Random state value Mini-batch size 

[5, 5, 3] ‘ReLU’ ‘Adam’ optimizer β1 = 0.9; β2 = 0.999 0.0001 1 64  

Table 9 
Parameter settings for RF, SVR, GPR, and OLS models.  

Model Parameter Settings Description 

RF (i) Number of trees n_trees = 100; (ii) The maximum depth of the tree 
d_max = 11; (iii) Criterion is ‘MSE’; (iv) The features to consider when 
splitting f_max = 3 

SVR (i) Kernel used is ‘RBF’; (ii) Kernel coefficient γ = 0.2; (iii) Regularization 
parameter C = 1; (iv) Epsilon value ε = 0.1 

GPR (i) Kernel used is ‘RBF’; (ii) Kernel parameters optimizer is ‘L-BFGS-B’ 
algorithm; (iii) Value added to the diagonal of the kernel matrix β = 1e− 10  

Table 10 
Comparison of model Performance by prediction accuracy.  

PA = 1-MAPE σX σY σZ σGS σVS 

RF 76.42% 81.34% 87.48% 85.94% 87.77% 
SVR 80.92% 77.99% 87.49% 82.81% 85.46% 
GPR (MEAN) 56.37% 44.52% 70.78% 80.96% 86.17% 
MLPNN 83.63% 86.91% 91.25% 87.99% 87.39%  
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STARs and test it on the fourth STAR as depicted in Fig. 13 and Table 7, 
to simulate the situation when given a new or redesigned STAR profile in 
current terminal airspace.  

3. Evaluation and Testing of MLPNN 

To compare with MLPNN, we tested three other regression methods: 
1) the RF method, which is suitable for complicated tasks, owing to its 
capacity in handling big data with numerous variables running into 
thousands (Genuer et al., 2017); 2) the SVR method, a kernel-based 
technique (Awad and Khanna, 2015); 3) the GPR method, which has 
internal structure to capture uncertainties in predictions (Boyle and 
Frean, 2005). 

The metrics used to evaluate the models is the prediction accuracy 
(PA), which is defined to be calculated by the formula, 

PA= 100% − MAPE (10)  

where MAPE is the abbreviation of commonly used metrics mean ab
solute percentage error, and it is defined by the formula, 

MAPE=
100%

n
∑n

i=1

⃒
⃒
⃒
⃒
Ai − Fi

Ai

⃒
⃒
⃒
⃒ (11)  

where Ai is the actual value and Fi is the forecast value. The models with 
high PA values are preferred. 

Table 8 and Table 9 report the parameter settings for the MLPNN 

Fig. 14. Training set: ABBEY-2B, BETTY-2B, and CANTO-2B.  
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model, and the other four models, respectively. For the RF model 
training, the number of trees was set to 100. For SVR and GPR models 
training, the Gaussian radial basis function (RBF) kernel was used and 

defined as (S1, S2) = exp
(
−

‖S1 − S2‖
2

2σ′2

)
, where S1 and S2 are two points 

and σ′ is the kernel hyper-parameter. For GPR models, the kernel’s 
hyper-parameters are optimized during fitting based on the ‘L-BFGS-B’ 
algorithm (Zhu et al., 1997). All the parameters in these models are 
optimized based on grid search and selected in the predefined ranges, 
and the best combination is selected according to the criterion, mean 
squared error (MSE) or root-mean-square error (RMSE). 

The performances of the RF, SVR, GPR and MLPNN models trained 
by the processed ADS-B data are summarized in Table 10. We found that 
MLPNN performed significantly better, and was more accurate by 3% on 
average than the other four models. The estimation accuracy of MLPNN 
could achieve 87.43% on average, implying that the relationship be
tween the features extracted and the designed output variables is well 

built for trajectory generation. 

5. Trajectory generation in Hong Kong airspace 

We simulate trajectories for arrival procedure design SIERA-6D 
based on the MLPNN module using Gaussian distribution and expo
nential moving average algorithms. 

First, we do the trajectory reconstruction and feature engineering for 
the STAR, SIERA-6D. Next, the five standard variations are predicted 
from the developed MLPNN model. For the data point i in SIERA-6D, we 
have the mean μi = (Xi,Yi, Zi,Vhi,Vvi) and the standard deviations σi =

(σX i,σYi,σZi,σGSi,σVSi). Based on the assumptions and the PDFs illustrated 
in Section 2.3, we create five normally distributed sets of random 
numbers of (X′

i,Y′
i,Z′

i,V′
hi,V′

vi) for each data point and then generate new 
trajectories by making connections of these simulated points (X′

i,Y′
i,Z′

i)

in order of data point sequencing number i. Then, trajectory smoothing 
is conducted by applying the EMA algorithm with the smoothing factor β 
set to 0.3. In this study, we simulated 10,000 new trajectories. 

In this study, we focus on the designated flying ranges for different 
STARs: (1) for ABBEY-2B, the range of study is from waypoint ABBEY to 
the threshold of the runway; (2) for BETTY-2B, the range is from way
point BETTY to the threshold of the runway; (3) for CANTO-2B, the 
range is from waypoint CANTO to the threshold of the runway; (4) for 
SIERA-6D, the range is from waypoint SIERA to the threshold of the 
runway. 

The comparisons of the published arrival procedures, the actual 
trajectories, and the simulated trajectories from the proposed model, are 
shown in Fig. 14 for training sets and Fig. 15 for testing on SIERA-6D. 
The results show that even the model is trained on ABBEY-2B, BETTY- 
2B, and CANTO-2B, it can simulate trajectories for SIERA-6D and show 

Fig. 15. Testing set: SIERA-6D.  

Table 11 
Fuel burn in terminal airspace estimation results.  

Fuel Consumption Mean Value Median Value 

FDR Data 1136.8 kg 1149 kg 
Simulation Data 1126.5 kg 1113.2 kg 
Estimation Accuracy 99.10% 96.90%  

Fig. 16. Boxplots of fuel burn estimation results by the MLPNN.  

Table 12 
Actual fuel burn compared with ideal fuel burn in terminal airspace.   

ABBEY- 
2B 

BETTY- 
2B 

CANTO- 
2B 

SIERA- 
6D 

Ideal Fuel Burn (kg) 600.0 700.0 700.0 900.0 
Actual Fuel Burn (Mean) (kg) 823.6 917.9 863.2 1136.8 
Over Consumption (kg) 223.6 217.9 163.2 236.8 
Percentage of Over Consumed 

(%) 
37.3 31.1 23.3 26.3 

Estimated Fuel Burn (kg) 835.1 901.4 847.6 1126.5 
Estimation Accuracy (%) 98.6 98.2 98.2 99.1  
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high similarity compared with the actual trajectories.  

5. Fuel Consumption Estimation and Analysis 

In this part, we evaluate the arrival procedure SIERA-6D of Hong 
Kong terminal airspace from the perspective of fuel efficiency, using a 
fuel consumption estimation model developed by Hong and Li (N. Hong 
and Li, 2018). This fuel consumption estimation model was trained 
based on the Digital Flight Data Recorder (FDR) data of 2686 flights 
landing at HKIA during November in 2014, and from April to June in 
2015. As shown in Fig. 8, the inputs of the fuel consumption estimation 
model are the aircraft altitude, the air temperature, the calibrated 

airspeed, flying distance, and the aircraft mass when descending. The 
outputs are the average fuel burn in the terminal area when flying in 
SIERA-6D designs. The prediction accuracy of the fuel consumption 
estimation model is 96.6% on average. The detailed information about 
the fuel consumption estimation model training process can be found in 
(N. Hong and Li, 2018). 

Feeding the simulated trajectories of SIERA-6D into the fuel con
sumption model, we obtain the fuel burn if SIERA-6D were flew. 
Compared with the actual fuel consumption from the FDR data, the fuel 
consumption of the simulated trajectories is in agreement, as shown in 
Table 11 and Fig. 16. 

To further demonstrate the value of generating trajectories 

Fig. 17. Actual trajectory compared with the ideal trajectory in Hong Kong terminal airspace.  
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considering uncertainties, we analyze the difference between the ideal 
fuel burn if aircraft could follow STAR precisely and the fuel burn in 
practice. The results are shown in Table 12. When flying SIERA-6D, the 
ideal fuel burn is 900 kg if the aircraft could fly exactly as the designed 
procedure from waypoint SIERA to the threshold of the runway. This 
reference number is obtained from an airline’s flight planning system. 
The actual fuel burn obtained from FDR data is more than 1100 kg, 
which indicates that the current operations of SIERA-6D in Hong Kong 
airspace are not fuel-efficient. Similar analyses are conducted for four 
STARs. Compared with the ideal fuel consumption values, the actual fuel 
consumption is 37.27%, 31.13%, 23.31% and 26.31% more on average 
for ABBEY-2B, BETTY-2B, CANTO-2B and SIERA-6B/6D, respectively. 
Fig. 17 shows the flight profiles of the actual operations compared with 
the ideal ones (highlighted in red). Currently, aircraft fly much lower 
than the planned profiles, which is a major factor that causes the fuel 
over-consumption of flights that arrive at Hong Kong airport. If the 
proposed trajectory generation model was used, similar numbers can be 
obtained via a fast system-level simulation approach without requiring 
the FDR data. 

6. Conclusion 

In this research, we developed a novel trajectory generation model 
based on MLPNN, which predicts aircraft trajectories with uncertainties 
for airspace redesign analysis. The proposed framework included three 
parts: 1) input-and-output construction, 2) supervised learning via 
MLPNN, and 3) trajectory generation. Trajectory reconstruction of 
operational data, feature engineering, and output designing for super
vised learning were performed first. Next, the MLPNN was built to 
predict the relationship between the standard deviations and extracted 
features. Finally, the trajectories with uncertainties were simulated by 
applying Gaussian distribution and EMA algorithms. 

The proposed framework was evaluated and tested on ADS-B data in 
Hong Kong terminal airspace. We found that the MLPNN model ach
ieved good prediction performance and it was better than other machine 
learning methods based on RF, SVR, and GPR, respectively. We also 
demonstrated the usage of the proposed framework in estimating the 
real fuel consumption, to evaluate current STAR designs from the 
perspective of fuel efficiency in Hong Kong terminal airspace. In addi
tion, our proposed framework can be adapted to evaluate standard 
procedures in other terminal airspaces. 

However, in this model, the shape of simulated trajectories is closely 
linked to the probability distribution functions assumed. In this 
research, we assume that simulated trajectories follow Gaussian distri
bution; however, it may not hold for some special segments of the tra
jectories in real operations. For example, the current model cannot 
capture the characteristics of holding patterns. Besides, we only 
considered the diagonal variance estimation of Gaussian while ignoring 
the prediction of covariance, which will be further investigated. Other 
distribution assumptions will have potential to improve the Gaussian 
assumption such as truncated Gaussians could be applied when defining 
the normal range and would like to investigate the possibility of extreme 
values outside the range. Normalizing flow will be another worthy di
rection to assume the distribution since it can model the underlying 
complex probabilistic distributions. Dynamical system approach could 
be another direction to explore. 

Future work is planned to focus on two parts, 1) improvement on the 
feature engineering part to capture special patterns of the flight routes, 
such as the holding pattern, 2) extension of the proposed model to tra
jectory generation of other types of vehicles, such as unmanned aerial 
vehicles, freighters, maritime vessels cars, etc. 
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